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(...) Thus in the thirteenth century the great Franciscan theologian Bonaventure felt
obliged to reproach his colleagues of the philosophical faculty at Paris with having
learned how to measure the world but having forgotten how to measure themselves.

J. Ratzinger (Benedict XVI), Introduction to Christianity

(...) En el siglo XIll san Buenaventura, gran tedlogo franciscano, echaba en cara a sus
colegas de la facultad de Paris que habian aprendido a medir el mundo, pero se habian
olvidado de medirse a si mismos.

J. Ratzinger (Benedicto XVI), Introduccién al Cristianismo
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Introduction and Summary

Up to where scientists know, the Universe is made of particles, space, time, and the laws that
dictate their interactions. One of these forces is the strong force, from which there emerge,
in turn, the forces inside the nuclei of the atoms. The particles that suffer these strong
interactions are called hadrons. Quantum Chromodynamics (QCD) [IH7] is the theory that
describes the strong interactions. It is a relativistic, non-abelian, Yang-Mills [8] quantum field
theory, in which quarks and gluons are the fundamental degrees of freedom (the quantum
fields of the theory). Quarks are matter particles, and gluons are the particles that carry
the strong interactions. It is a beautiful and successful theory, one of the cornerstones of the
greatest scientific theory ever: the Standard Model. QCD has proven successful to describe a
wealth of physical phenomena.

However, as it stands, that is, with quarks and gluons as dynamical degrees of freedom, it
can only be used in the high energy regime, where, due to the (predicted by QCD) asymptotic
freedom, quarks manifest themselves as weakly interacting point-like particles, and then per-
tubartive methods can be used, as in as much it is done in Quantum Electrodynamics. For
low energy interactions, the complementary behaviour of QCD, the infrared slavery, points to
the confinement of quarks inside hadrons. However, confinement is an obscure point not well
understood in QCD yet, though lattice QCD offers new insights to the problem. Still, in the
QCD mass spectrum of hadrons, we find a remarkable fact, the appearence of an isospin triplet
of pseudoscalar mesons, the pions, 7, whose mass is much smaller than the others. This key
feature points to the fact that a well known approximate symmetry of QCD, namely the chiral
symmetry, SU(2), ®SU(2)g, is spontaneously broken [9-14] to SU(2)4+r = SU(2)y, whereas
the generators of the broken symmetry would give rise to a massless triplet of particles, the
so called Goldstone bosons. As the symmetry is not exact due to the finite quark masses, the
pions are not exactly massless, and so they are called pseudo-Goldstone bosons. Although we
have considered SU(2) giving rise to a triplet of pions, we can extend these considerations
the SU(3) symmetry. Then, we include the other lightest pseudoscalar mesons, kaons (K)
and eta (n), which, together with the triplet of pions, would form an octet. The hadrons
are thus organized into SU(3) multiplets, the so called Eightfold way [15]. From the previous
considerations, one could attempt to construct an effective quantum field theory in which the
dynamical degrees of freedom are not quarks and gluons themselves, but the pions instead.
Indeed, this scheme has been put in practice, and a theory has emerged: Chiral Perturbation
Theory (ChPT) [16-19]. It is, then, the effective theory of QCD at low energies, and it can
be treated perturbatively, allowing for a systematic expansion in powers of momenta of the
external pseudo-Goldstone bosons and quark masses. In Chapter [, we shall attempt the
formal and rigorous construction of ChPT, with the general formalism for the construction
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of effective Lagrangians [20,21], that will be reviewed first, and the knowledge of the chiral
symmetry of the strong interactions and its spontaneous breakdown.

Together with its great successes, ChPT has some evident shortcomings in practical ap-
plications. On one hand, it cannot reproduce the conspicuous resonant behaviour found in
the hadronic spectrum. Being a perturbative expansion, it cannot generate the pole structure
attached to resonances in the scattering amplitudes of hadrons. On the other hand, the pre-
dictive power of the theory is progressively lost as one increases the order of the expansions,
because of the appearence of the so called low energy constants, that encode information from
the underlying theory (QCD) and thus not fixed by the symmetries. These shortcomings im-
ply that non-pertubative schemes are necessary as complementary tools to be used together
with the pertubative information that we can extract from ChPT. In the meson-meson or
meson—baryon interactions, among these nonperturbative methods, one can cite the Inverse
Amplitude Method (IAM) [22H32], the Bethe-Salpeter (BS) approach [33-37] and the N/D
method, which was originally devised in Ref. [38] and afterwards used in several works. Later
on, it was retaken in connection with the more recent advances of effective field theory (ChPT)
and applied to meson—meson or meson—baryon interactions [39H47]. We shall refer to some of
these works later on, when introducing the scalar sector and, specially, the 0 meson (nowa-
days denoted by fo(500) by the Particle Data Group (PDG) [48].) Most of this thesis will
be related to the applications of one of this non-pertubative schemes, the N/D method, that
we refer as Unitarized Chiral Perturbation Theory (UChPT). Its formalism will be briefly
explained in Chapter [2l There, a physical fundamental concept, unitarity, is introduced, and
its consequences are studied. We also introduce here the concepts of scattering amplitudes
and partial waves. We shall study from a general point of view the appearence of resonances
attached to poles in the unphysical Riemann sheets of the scattering amplitudes. Convinced
of the importance of unitarity, we will review the application of the N/D method to deduce
the most general structure of a partial wave amplitude when the so called unphysical cuts are
neglected [39]. The N/D method is a unitarization method, that splits the contribution of
the unitarity and unphysical cuts in two different functions, D and N, respectively. We shall
also explain how to introduce the unphysical cuts in a perturbative way.

In Part [l then, we have derived the basic framework of this thesis, that will be applied to
a variety of problems in Part [l We now comment on the different issues that will be treated
in the body of the thesis. We try to give an overview of the experimental and theoretical
status of each analyzed topic, motivating thus our study. We give some details of the methods
used and an advance of the main results, trying to connect them with earlier works.

X 3k ok

We shall start by studying the scalar sector of the meson—meson interactions in Chapter [3l
In ChPT, due to its perturbative character, the scalars (with J”¢ = 0t quantum numbers)
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do not appear straightforwardly. The lightest of these scalars (with masses below 1 GeV)
are the o, k, f(980) and a(980) mesons. Its connection with the dynamics of the lightest
pseudoscalars (the dynamical degrees of freedom in ChPT) and its relation to unitarity or final
state interactions was realized along several works. Regarding the 77 interactions specifically,
one has first to mention the works of Truong and collaborators [22H27] who first emphasized
the important role played by the null isospin (/) S-wave 77 final state interactions, through the
TAM technique. Within this formalism, the o pole was first obtained in Ref. [28], together with
the K* and p resonances in the P-waves. Because of the lack of coupled channels in the IAM at
that time, it was not possible to obtain other light scalar resonances as the f,(980) and ag(980).
Simultaneously, in Ref. [33], within the BS approach, it was obtained the o pole, together with
the fo(980) and a((980). The interplay of some of the authors of the previous works led to the
coupled channel extension of the IAM method [29], obtaining then in Refs. [29H31] the whole
lightest scalar nonet, together with the lightest vector nonet. In turn, the approach of Ref. [33]
was settled on more general grounds in Ref. [39] by means of the N/D method (from which
one can also derive the IAM equations). From a theoretical point of view, most of these works
stress the role of the unitarity cut and the strong final state interactions among mesons, and
also show that crossed cuts can be treated perturbatively when studying the resonant scalar
dynamics. Finally, let us quote that the pole positions obtained in Refs. [2§], [33] and [30],
are, respectively, 440 — i 245, 469 — i 194 and 442 — ¢ 227 MeV. References [33,[89] clearly
established that the o resonance is dynamically generated by the pion strong self-interactions.

Other approaches to the problem of the lightest scalar can be found in Refs. [49-52].
Indeed, Refs. [49,50], within the MIT bag model, already predicted in the late 1970s a light
scalar nonet of four quark broad resonances, with masses (in modern notation for the states)
M, ~ 650 MeV, M,, = My, ~ 1100 MeV and M, ~ 900 MeV. In Refs. [53-58] the mixing
between these resonances was considered. Other successful phenomenological approach to
study the lightest scalar resonances is based on meson-exchange models [59H61]. Recently,
Refs. [62,63] studied the possibility of the construction of a chiral Lagrangian with an explicit
scalar singlet field.

Concerning the heavier scalar resonances, we also study in this thesis the isoscalar-scalar
resonances fo(1370), fo(1500), fo(1710) and fo(1790), listed by the PDG [48]. Crystal Barrel
Collaboration (see [64] for a comprehensive review) data at LEAR at CERN improved the
knowledge of the 07" spectrum, confirming or discovering the a(1450), fo(1370) and f,(1500)
resonances, whereas the BES Collaboration [65H67] confirmed the spin assignment of the
fo(1710) and found another resonance, f;(1790). We will discuss further on controversies
and results about these states in the body of the thesis, when presenting our own results,
and we refer the reader to the reviews of Refs. [64,[68]. Besides the general interest of these
states in the determination of the hadron spectrum, they are relevant for another issue of the
scalar-isoscalar spectrum, namely, the identification of glueballs. In QED, photons do not
carry electric charge, so they do not directly interact among them. In QCD, gluons carry
color charge and interact between them, due to the Yang—Mills nature of the theory. It is
generally believed that QCD predicts the existence of mesons without valence quarks, the
so-called glueballs. Its confirmation in the spectrum of strong interactions is then at the heart
of the theory. Interest in the glueballs started since the early days of QCD, and its study
was one of the first applications of QCD sum rules [71,[72]. Due to the strong coupling of the
vacuum with the 07" channel, the results are not conclusive yet [T1H78]. In general, these
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works agree with the presence of a glueball around 1.5 GeV, though the existence of an extra
glueball around 0.5 GeV is also proposed. A glueball with a mass around 2> 1.5 GeV is also
predicted in several models [T9-83]. In the quenched lattice QCD spectrum [84-89] the mass
of the lightest scalar glueball is predicted with a mass M = 1660 + 50 MeV, close to the
fo(1500) and fy(1710) resonances, so that these are considered strong candidates to have a
large glueball component. Reference [88] obtains that the f,(1710) is mainly a pure glueball.
Reference [89] evaluated in quenched lattice QCD the decays of the latter resonance to two
pseudoscalars and calculated a pattern of decays in agreement with some reported data on the
fo(1710) [48]. Studies with dynamical fermions, mixing glueballs and quarkonia, are still at
a preliminary stage (see Ref. [90] and references therein, as well as references in Sec. B11) In
Ref. [91] (see also Refs. [92H94]) it was found a chiral supression of the couplings of the scalar
glueball Gy to g, I'(Gy — s5) > I'(Gy — uti+dd), in agreement with the result of Ref. [89] in
lattice QCD. This mechanism also implies that the scalar glueball should not mix. However,
the situation is not clear yet and different results are obtained in different works [95HI00],
following the same idea of mixing of the glueball with the nearby nn and ss states.

To sudy the scalar sector, we calculate the null isospin I S-wave meson-meson partial
wave in terms of thirteen coupled channels, nr, oo, KK, nn, n', 0’1, pp, ww, K*K ', wo,
¢¢, aym and 7*m. The SU(3) symmetry is enlarged to U(3) as to include the effects of the
n' meson [I0IHIO4]. The multipion states are effectively simulated in terms of the two-body
resonance states oo, pp, aym and 77w, although we will conclude that the inclusion of the
latter two channels is not relevant. Simultaneously, we also study the S-wave amplitude
K—n" — K~7", involving the I = 1/2 and I = 3/2, with the coupled channels Km, Kn and
K1/, in the line of Refs. [43/44]. The interaction kernels among the different states are obtained
from chiral Lagrangians. The chiral symmetry is also gauged, so as to derive those vertices
involving vector resonances by minimal coupling. For the o resonance we take advantage of
the fact that this resonance is dynamically generated in UChPT, as previously stressed, in
terms of two pion rescattering. This allows us to fix its elementary transition matrix elements
with other channels without including any new free parameter. We also consider the exchange
of bare resonances [105,[106] in the s—channel. We observe that, in order to describe data, we
need two octets (with bare masses at 1300 MeV and 1900 MeV) and a singlet (with a bare
mass M ~ 900 MeV.) We are then able to provide fits to a rich set of data involving several
phase shifts and inelastic cross sections up total centre mass energy of around /s ~ 2 GeV.
We pay special attention to the role of 47, in particular below the KK threshold. We then
study the spectroscopy content of our fits and find poles corresponding to the large set of
resonances: o, fo(980), fo(1370), fo(1500), fo(1710) and f3(1790) for I = 0 and », K (1430)
and K*(1950) for I = 1/2. Their pole positions and couplings to the different channels are
also given. We shall also see that one pole, mainly corresponding to the fy(1370), is a pure
octet state, as well as his companion in I = 1/2, the K§(1430). We identify the f,(1710)
and an important contribution to the f;(1500) as an unmixed glueball. This is based on an
accurate agreement of our results with the aforementioned predictions of lattice QCD [89] and
the chiral suppression of the coupling of a scalar glueball to gq [91].
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Another interesting problem is the presence of excited pseudoscalars, with quantum num-
ber as those of the pseudo—Goldstone bosons, but heavier in mass (lying in a range of 1 GeV
and 2 GeV), that we adress in Chapter 4l In I = 1, one has the 7(1300) and 7(1800) reso-
nances, and in [ = 1/2 the K(1460) and K (1630) resonances. Maybe, the most interesting
case here is the I = 0 sector, where, according to PDG [48], there are three resonances in a
narrow range of masses, namely 7(1295), 1(1405) and 7(1475). A review of the experimental
situation can be found in Ref. [I07]. One of these resonances would be an extra state if we
arrange the nearby pseudoscalars in a nonet. Given the clear signal of the 7(1405) resonance
in gluon-rich processes (e.g., J/VU radiative decays), it becomes then a perfect candidate to
be the lightest pseudoscalar glueball [I08-110]. However, the lattice QCD prediction for the
lowest mass pseudoscalar glueball is about 2.4 GeV [84H86], a quite exciting discrepancy. This
picture for the classification of these resonances has been criticized in [IT11], where it is stated
that just one of these states exists. It is questioned the mere existence of 1(1295), and it
is argued that the 7(1405) and 7n(1475) are actually the same state, 1(1440). Recently, this
suggestion has received support in Ref. [I12]. Another resonance, called X (1835), has been
recently observed, and the analyses suggest 1¢(J¢) = 0% (0~+) quantum numbers.

If the scalars are generated through the interactions among the lightest pseudoscalars,
it is therefore tempting to think that higher pseudoscalars are generated from the interac-
tions of the lightest pseudoscalars with the lightest scalars, in a beautiful picture resembling
the bootstrap hypothesis of the old days. This also shows a pattern in which spontaneous
chiral symmetry breaking manifests in the hadron spectrum. In order to shed some light
into the question of the pseudoscalars above 1 GeV, we study the interactions between the
f0(980) and ap(980) scalar resonances and the lightest pseudoscalar mesons. We first obtain
the elementary interaction amplitudes, or interacting kernels, without including any ad hoc
free parameter. This is achieved by using the previous results on the nature of the lightest
scalar resonances as dynamically generated from the rescattering of S-wave two-meson pairs.
Afterwards, the interaction kernels are unitarized through UChPT and the final S-wave am-
plitudes result. We find that these interactions are very rich and generate a large amount
of pseudoscalar resonances that could be associated with the K (1460), 7w(1300), 7(1800),
n(1475) and X (1835). Then we can say, at least, that an important contribution to these
states is of a dynamical origin. We also consider the exotic channels (that is, with quantum
numbers that cannot be obtained with gg combinations), with I = 3/2 and I = 1, having
the latter positive G-parity. The former could be also resonant in agreement with a previ-
ous prediction [I13]. Later works [IT4,[115], studying three-pseudoscalar systems by means of
the Fadeev equations, also obtain some of the cited resonances, namely, K (1460) and 7(1300).

X %k ok

The nature of the o meson is studied in Chapter [Bl It is the lightest resonance with the
quantum numbers of the vacuum, JP¢ = 0**. The history of the ¢ meson is a long one. We
already commented about the works that, putting together the chiral dynamics of the lightest
pseudoscalars (pions, for the case of the o) and the effects of unitarity, could obtain the o pole.
More recently, Ref. [116], based on the solution of the Roy equations and ChPT at two-loops,
obtained the value 445735 — i 27270, MeV. The Roy equations implement crossing symmetry
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exactly, while the works related to TAM, N/D and BS do it perturbatively. Another recent
precise determination [I17], based on dispersion relations, yields 484 4+ 17 — ¢ 255 + 10 MeV.
Let us also mention that all these analyses neglect altogether the inelasticity due to the 4w
channel in 77 S-waves, whereas in our study of the scalar sector in Chapter [3] the 47 channel
was approached as oo and pp states. The fact that all these pole positions (the latter ones
and those obtained in the works previously mentioned) for the o lie rather close to each other
(particularly one can say that convergence is reached very accurately for the real part) is
another indication for the correctness of treating crossed-channel dynamics perturbatively, as
done in the framework of the works mentioned above. Whence, we could conclude that our
present knowledge on the pole position of the o resonance is quite precise and, furthermore,
we understand the underlying physics at the hadronic level. Experimentally, new interest
is triggered on the o resonance from recent high-statistics results, e.g. J/¥ — wnm, where
a conspicuous peak is seen [I18]. Indeed, this decay mode was the first clear experimental
signal of a o resonance [119,[120]. Another marked peak around the o energy region is also
observed in several heavy meson decays, e.g., it was observed with high statistical significance
in D — ntn- ot [121].

Besides the pole position and the couplings of this resonance, a natural question is about
its nature: ¢g, four quark, meson molecule, glueball, etc. A four-quark nature is assigned
in [49/50], since a whole nonet of scalars is predicted, with masses and widths compatible
with those of o, &, fp(980) and a¢(980). The four-quark nature of the lightest scalars is
also favored in other works, see e.g. Ref. [122]. The relative strength of the o coupling to
KK compared to 77 is also taken as an important property in order to disentangle between
different models for the nature of the o meson, as stressed in Ref. [123]. This reference points
out that the not so much suppressed coupling of the o to KTK~ as compared with that to
7™, is a key ingredient to advocate for a gluonium nature of the ¢ meson. According to
Ref. [123], a simple ¢q interpretation of the o fails to explain the large width of the o while
a four-quark scenario has difficulties to explain its large coupling to K™K ~. It is then worth
emphasizing that the T-matrices obtained in Refs. [33,89] and similar works (and also in
Chapter ) also predict a ratio for the o couplings to K™K~ and 777~ in perfect agreement
with the value given by Ref. [123]. However, in this case this stems from the dynamical
generation of the o resonance from the Goldstone boson dynamics associated to the strong
scalar isoscalar 7m interaction. QCD sum rules were also applied for the study of the lightest
scalar meson, e.g. in Refs. [I123H127]. It is argued too that the o resonance is the chiral
partner of the pion [128-134] and the way in which the o pole evolves when approaching the
chiral symmetry restoration limit is different according to the nature of this resonance [135].

Considerations based on increasing the QCD number of colors, Ng, were exploited in
Refs. [39,136H139], showing that the o resonance has a non-standard N¢ dependence. This
can be done more safely for N 2 3, not too large, while statements for No > 3 depend much
more on fine details of the approach [I38[140-146]. The N¢ evolution of the o-pole trajectory
is clearly at odds with the expectations for a purely gq or glueball resonance, but in the lines
of what it is expected for a meson-meson or four quark resonance [I38,[141HI47]. In the large
Ne¢ limit it is well known that loops are suppressed so that the 77 rescattering vanishes away
and then the o resonance pole disappears according to Refs. [39,136H138)148].

In this Chapter, the nature of the o or fy(500) resonance is elucidated further by evaluating
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its quadratic scalar radius, (r?)9. This allows one to have a quantitative estimate for the size
of this resonance. Within our approach, the ¢ is a dynamically generated state from the pion-
pion interactions. This allows us to obtain its scalar form factor from chiral Lagrangians, and
from it we calculate its quadratic scalar radius. We obtain that the ¢ resonance is a compact
object with (r?)? = (0.19 & 0.02) + 4 0.06 £ 0.02 fm®. For comparison, the quadratic scalar
radius of the pion is (r?)T = 0.65 £ 0.05 fm? [149]. However, (r?)7 is similar to the measured
K= quadratic charge radius [I50], (r2)5* = 0.28 + 0.07 fm?2. A four-quark picture seems
adequate, rather than a w7 molecule. Our results are connected with other recent works,
mentioned above, that support a non standard nature of the o as well, while fulfilling strong
QCD constraints. We shall also study the Feynman—Hellman theorem [I51[152] relating the
o meson mass to that of the pion through the scalar form factor of the former.

We also offer a detailed study of the low-energy S-wave m7m scattering amplitude, using
UChPT with the chiral amplitudes calculated in SU(2) at O(p*). From the amplitudes, we
extract our values for the threshold parameters of S-wave 7w phase shifts, the O(p?) chiral
perturbation theory low energy constants as well as the o pole position. Our result for the pole
position is /s, = 440 &= 10 — 4 238 &= 10 MeV, whereas we also have an accurate description
of the threshold parameters aj = 0.219 + 0.005, b3m? = 0.281 + 0.006. From the comparison
with other accurate determinations in the literature we obtain average values for the latter
quantities /s, =458 £ 14 — 261 + 17 MeV and a = 0.220 £ 0.003, b = 0.279 & 0.003 m 2,
in good agreement with our own results. We also obtain reliable results for the SU(2) O(p?)
LECs, namely I; = 0.8+ 0.9, [, =4.6+ 04, I3 =2+ 4 and I, = 3.9 + 0.5. These results are
compared with other works, both from phenomenological studies and lattice results.

The quark mass dependence of the size of the o as well as its mass and width is consid-
ered too. The latter are compared with lattice QCD results [I53] and theoretical calculations
obtained within the IAM [I54], finding a general agreement. The fact that the mass of this
resonance tends to follow the threshold of two pions, as found in lattice QCD, is another clear
indication that this resonance is a dynamically generated meson-meson resonance. We find
that, for a pion mass large enough (m, = 470 MeV at NLO and m, 2 370 MeV at LO), the o
meson becomes a 77 bound state. The dependence of (r?)?7 with the pion mass is also studied.
For those pion masses in wich the o meson is a bound state, we find a larger value for (r?)J.
In this situation, hence, a molecular picture is more appropriate.

It has already been remarked the non—perturbative character of the strong interactions.
For this reason, Lattice QCD has become a powerful tool to study them, and, in particular,
the hadronic spectrum. A recent review on the methods and results (excluding however the
glueball question) can be found in Ref. [I55]. In Lattice QCD, through the path integral
formalism, one studies the interactions of quarks and gluons in a lattice box of finite volume.
Whence, one needs to connect the results obtained within this discrete and finite space to
the continuum and infinite real space. The standard Liischer method [I56,[157] provides such
a link and is the most used one. However, an improvement over this method was recently
given in Ref. [I58]. The derivation in Ref. [I58] is done using the techniques of UChPT. It
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assumes a volume independent kernel to be unitarized. Analogously, the Liischer method
shows that volume dependent contributions are exponentially suppressed with L, the size of
the box. However, loops in t— and u—crossed channel are volume dependent in finite volume
calculations in Quantum Field Theory. Furthermore, also contributions from tadpole loop
functions (that contribute directly to the amplitude, but also through m, and f,) are volume
dependent. What we intend in Chapter [0l is to investigate these contributions in the case
of mm S-wave interactions, both for the I = 0 and I = 2 cases. The former, as has already
been stated, is relevant for the o meson case (the fo(980) also, if the K K channel were also
considered). The I = 2 case is also important, because it is well known that the crossed
channel dynamics contributions are important here. We compare three different approaches
for w7 scattering: BS, N/D and IAM. The BS approach can be considered as an O(p?) version
of the N/D method. Since it has just tree-level amplitudes in the kernel (no loop functions),
it has no volume dependence. On the contrary, the IAM and the N/D approaches include the
O(p?) chiral amplitudes, which are explictly volume dependent. We then derive the necessary
modifications of the infinite volume versions of these amplitudes and calculate them for the
case of a finite box. In essence, these modifications consist in an appropiate substitution of
momentum integrals by sums over the allowed momenta in a finite box. We quantify the
error made by neglecting the exponentially supressed effects in usual extractions of physical
observables from lattice QCD spectra. We conclude that for n7 phase-shifts in the I = 0
channel up to 800 MeV this effect is negligible for box sizes bigger than 2.5m_' and of the
order of 5% at around 1.5 — 2m_!. For I = 2 the finite size effects can reach up to 10% for
that energy. We also quantify the error made when using the standard Liischer method to
extract physical observables from lattice QCD, which is widely used in the literature but is
an approximation to the one used in the present work.

In the previous chapters we have worked exclusively with meson—meson interactions. In
Chapter [7l we deal with nucleon—nucleon (NN) interactions. This is a basic process, whose
understanding is necessary in a large number of problems in physics, ranging from nuclear
structure to neutron stars. Recent interesting reviews, from a modern perspective of Effective
Field Theory, can be found in Refs. [I59-162]. Weinberg proposed [163HI65], in the early
1990s, to use ChPT to calculate the NN potential in terms of the explicit degrees of freedom
(nucleons and pions). At this point, it is worth emphasizing the irony of going back to
Yukawa’s view (pion exchanges among nucleons) but with the remarkable difference that
nowadays thanks to ChPT one can calculate systematically the NN potential and connect
with QCD through the chiral symmetry, its spontaneous and explicit breaking and the values
of the chiral counterterms.

Since NN interactions are non—perturbative, the chiral NN potential must be iterated.
Weinberg suggested to solve a Lippmann—Schwinger (LS) equation in terms of the former.
However, the chiral potential is singular at the origin, thus some kind of regularization is
required, typically, a three momentum cut-off A. This program was first carried out in
Refs. [I66HI69]. Many works are done within this formalism, and we refer the reader to
the above reviews, and also to the Introduction in Chapter [1 for further references.
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Despite the great phenomenological success of this approach, several works in the literature
[T70H176] showed, from different approaches, that the chiral counterterms that appear in the
ChPT Lagrangian following the standard power counting are not enough to renormalize the
amplitude, that is, to absorb the LS equation cut-off dependence. Some works thus proposed
to promote some higher orders counterterms to lower ones (one should rather say demote.) So
doing, Ref. [I70] obtained stable results in the limit A — co. However, it should be stressed
that this implies a violation of the standard ChPT power counting, but also of the low energy
theorems relating the parameters in the effective range expansion [I77]. Besides, one should
bear in mind that in the limit A — oo a more complicated power counting arises [178]179].
On the other side of the question are the works in Refs. [I77,I80] that, following the lines
of Refs. [I81L[182], show that the cut-off A should not be taken beyond the breakdown scale
of the EFT, typically below 1 GeV. We will discuss further on this issue through Chapter
Chapter [7, and a more detailed account can also be found in Section 4.5 of Ref. [I59].

In our work, we consider NN interactions from Chiral Effective Field Theory. We apply
the N/D method to NN partial waves taking as input the one-pion exchange (OPE) discon-
tinuity along the left-hand cut. This discontinuity is amenable to a chiral power counting as
discussed in Refs. [162,183][184], being OPE its leading order contribution. In the first part
of the Chapter, we restrict to uncoupled partial waves. By applying the N/D method, we
obtain a linear integral equation for each partial wave. For S— and P-waves (orbital angular
momentum ¢ < 1) our method can be directly applied. For D— and higher waves (¢ > 2), the
integral equations must be solved in the presence of ¢/ — 1 constraints, so as to guarantee the
right behavior of the D- and higher partial waves near threshold. This is accomplished by
the introduction of Castillejo-Dyson-Dalitz (CDD) poles [185], which is always allowed in the
N/D method. Later on, we generalize our formalism to coupled channels, discussing in some
detail the case of the deuteron in the 3S;-3D; partial waves. Our phase shifts and mixing
angle in every wave are compared with those of the Nijmegen group [I86], which stem from
a partial wave analysis (PWA) of experimental data. We would like to emphasize now that
we present here a novel method to study the NN interaction, in which the calculated NN
partial waves are based on dispersion relations and chiral Lagrangians and are independent
of regulator. At this stage, our calculation is at leading—order and thus not yet competitive
with present high—precision calculations. Though, we must stress that this method can be
systematically improved order—by-order, and that the basic input is calculated from ChPT.
Both features are in harmony with the modern perspective of Effective Field Theories.

After having treated all these topics in the body of the thesis, we attempt to draw our
conclusions in Chapter [8, pointing out the main achievements of our work. In order to
facilitate the reading of the thesis, we relegate some technical aspects in several appendices
given in Part [[lll at the end of the thesis. The references are collected at the very end of this
thesis. We include separatedly, as an author publication list, those that have appeared due to
the work contained in it, namely [AlBLICLDLELF, il i, i iv o] . .
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1.1 Introduction

In this Chapter we attempt the formal and rigorous construction of Chiral Perturbation
Theory (ChPT). We employ the general formalism to derive effective Lagrangians [20,21] in
Quantum Field Theory and the knowledge of the chiral symmetry of the strong interactions
and its spontaneous breakdown.

First, in Sec. [[2, the Goldstone theorem [9,[10] is deduced. It dictates the appearence of
massless particles if a global symmetry of a quantum field theory spontaneously breaks down.
In Secs. to [L7 a detailed review of the construction of effective Lagrangians is done. The
Lagrangian of QCD and its chiral symmetry is investigated in Sec. [[8 The implications of
the spontaneous symmetry breaking on the hadronic spectrum of the latter is also studied. In
Sec. we give the basic building blocks to construct chiral Lagrangians together with their
transformation properties under Lorentz transformations, chiral symmetry, parity, charge con-
jugation and Hermiticity. Then, the most general lowest order Lagrangian invariant under the
previous symmetry transformations is constructed in Sec. [LT0. In Sec. [[L.TT], the Lagrangians
up to order O(p?) are given, whereas in Sec. the extension of the formalism to include
explicit resonances is reviewed. Finally, in Sec.[[L12] an example of an actual calculation made
from the deduced chiral Lagrangians is performed.

1.2 Goldstone theorem

Let A be a generic observable, and consider the continuous global symmetry group &, that
leaves invariant the ground state, |0). Then

glo) =3 gl0) = e 2 |o) (1.1)
(0]A]0) — (0]g~'Ag|0) (1.2)

To first order in the parameters 6,,
(0)g7"Ag|0) = (0]e* %@ A% 0) = (0[A] 0) +i (0] [aQa, A] |0) + O0%) . (1.3)

If each charge @), is a Noether charge, then @) = 0,0, is conserved with j# = > 6,7* the
associated current,

0 — /d?’:c T, 1) (1.4)
j*(Z,t)

S = 0, (1.5)
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Now consider the vacuum expectation value, (-- )y, of the conmutator of the operator
A with the current (instead of the charge),

() A@)] )y, =
(0|7 ()| N) (N A(@)]0) = (0 |A(2)| N) (N |5*(1)] 0))

(0] ) (V14(0)]0) =707 — (0] 4(O) N) (N [j*(©)]0) ==

= g/ AP (P = P (1.6)
where

i(2m) 7 pM(p) = X2 (0]5*(0)| V) (N [A(0)] 0) 8(p — pwv) (1.7a)

i (2m)~° %O\A 0)| N) (N |5*(0)]0) 6(p — pw) - (1.7b)

Due to Lorentz invariance p(p) and p(p) must have the form

P(p) = ()K" (1.8)

o) = o)) .

S

When these expressions are inserted into Eq. (ILH), the p* can be written as derivatives, so
that:

(o)A DWC
- 138 [ @ (pu P0G+ g ()0 )
- / 2 (puli — a3 1?) + () A (z — yi %)) (1.10)
where
Ay(zp%) = pO(p°)e 5 (p® — %) (1.11)

is the propagator containing the particle contribution, but not the antiparticle one, due to
the 0(p°) factor. An identity was inserted through

pul0?) = [ 26" = u2)pa (i)

and analogously for p(p?). Now, if y — x is spacelike, (y — x)? < 0, then the time component
is not invariant under a proper Lorentz transformation, so A (z;u?) can depend only on 22
and p?, which implies A, (y — z; p?) = Ay (x — y; ?). In addition, due to microcausality, in
this case all conmutators must vanish when evaluated for y and x with y — x spacelike, and
then

([P A@)]),,0 = —aaw Janta =) (puli®) + al®)) =0,
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and whence
pu(p?) = —pu(p?)  Vpi? (1.12)

Now, going back to the general case where A, is not even,

([P, A@)]), . = /du () (Ar(y —w50®) = Ap(e —yip®)) . (113)

and, as the current is conserved, Eq. (L3), then

_aayA < [jx<y)’ A(m)} >VAC B

= —/dMQpn %) 0, (A+(y—x;u2) — Ay(z—yip?)) =
= +/du 1o (i) (As(y — wip?) = Ap(w — ;%)) =0, (1.14)
because A, satisfies

Oy + )AL (y —z;6°) = 0
O, Av(y —z;0%) = O, Ap(z —y;p?)

An important conclusion is reached, namely that

©ep(p) =0, (1.15)

but it should not be concluded that p(u?) = 0, rather, it is shown in what follows that
p(u?) ~ §(u?). We now try to explicitly integrate Eq. (LI3)) for A = 0:

<{j0(y),A($)} VA ( /dz’L /du Pn (1t (P°)o(p* — 1i?) (e—ip(y—a:) + e-i-ip(y—x))

Z' / A2, (112) / i Gl e I B

1

2

with w(p?) = /P2 + p2. In order to go further, since the integration in p’ cannot be easily
performed unless one takes 2° = 9%, we integrate instead over . On the Lh.s. this will give

the conmutator of the charge, whereas the integral in the r.h.s. will simply give a Dirac delta
function 6®(p), so that

([Q, Alx))vac = /dﬂ P 4 ei#(yo—x0)> : (1.16a)

For the case 2° = ¢°, it reduces to:

([QAW" D)) =1 [ duotu®) (1.16b)
To satisfy together Eqs. (LI5) and (LIG), it is necessary then that
p(p*) = i0(1*) ([Q, A(@)Jvac - (1.17)

In view of this result and comparing with Eq. (I.7)), we notice that there must exist a single-
particle state with p% = 0, that is, a massless particle. This is the content of the Goldstone
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theorem [9,[10]. In words, it states that, for each generator ) that does not anihilate the
ground state, there must be a spin-zero massless particle, called Goldstone boson, with the
same quantum numbers as () (because this particle is generated from the vacuum through
these operators.)

For example, consider QCD, with SU(2), ® SU(2)g — SU(2)y. As SU(2) has three
generators, we find three Goldstone bosons, the isospin triplet of pions, 7, 7= and #°. If
instead we consider SU(3), then eight generators are present, so the set of Goldstone bosons
is enlarged to 7+, 7, 70, ns, Kt, K—, K* and K°. Of course, as this symmetry is not exact,
the masses are not exactly zero, being this effect more remarkable in SU(3).

1.3 Properties of nonlinear Lagrangians

Throughout the next sections (Secs. to [L7)) the formalism for the construction of effective
Lagrangians [20,21] will be reviewed. This will make possible to deduce the most general
invariant Lagrangian under chiral symmetry transformations. It is worth mentioning that
this formalism is very general and, besides the applications that we study here, it is widely
used in other fields of theoretical physics, i.e., in supersymmetry [187].

Let L be the Lagrangian of a specific quantum field theory, in terms of some fields, ¢,
L[¢] = Lo[¢] + L1[¢] (1.18)

being Lg the free field Lagrangian and L; the interaction Lagrangian. The following change
of variables is done,
o=xFIx]  Fl0]=1 (1.19)

so that, to first order in y, ¢ = x + O(x?) and x creates and anihilates the same particles
than ¢ does. In terms of y, the Lagrangian is

L[xF|x]] = Lo[x] + L2[x] , (1.20)

or, in words, we get the same free Lagrangian, but the interaction Lagrangian is different.
However, there is a theorem [188] valid for relativistic quantum field theory with weak restric-
tions on the form of F[x| that states that the on-shell matrix elements of this Lagrangian are
the same than those obtained from

L'[¢] = Lo[¢] + La[¢] (1.21)

In all physically relevant cases, L and F' are expansions in power of the ¢ fields and their
derivatives (this will be the case of QCD and ChPT), and this condition is enough for the
theorem to be valid. The very reason of the validity of the theorem lies on the fact that
terms of order greater than the first do not contribute on shell because they do not contain
one-particle singularities. This theorem holds for the exact solution, but also order-by-order,
as we show in the following lines. Consider, for an arbitrary parameter a, the Lagrangian

Lig¢;a] = a™*Llag] , (1.22)

so that the free Lagrangian remains invariant.
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For a connected Feynman diagram, if we denote by

P the power of a,
V' the number of vertices,
N; the number of lines flowing into/from vertex i,
E  the number of external legs,
I the number of internal legs,
L the number of loops,
then it results that: ;
P=) (N;-2).
i=1
Because of the following identities,
v
SN Ni=E+2[, (1.23)
L=I-V+1, (1.24)
then
P=F—-2+42L. (1.25)

This means that, for a fixed reaction (this is, for the same external particles, fixed E) the
power of a increases with the number of loops. The aforementioned theorem is valid for the
exact solution, and we are expressing the latter as a power series in a, which has shown to be
equivalent to a power series in the number of loops. Introducing a in the field transformation
Eq. [L19),
ap = axFlax]

we get

L{¢;a] = a™LlaxFlax]] - (1.26)

The same rules as before apply to a=2Ly[ay] and then, because of the aforementioned theorem
on reparametrization field independence, each coeffcient in the a power expansion of the on-
shell S-matrix should be the same. Note that each of these coefficient-amplitude are calculated
with the same number of loops.

1.4 Standard form of nonlinear representations

Consider a connected, compact, semisimple Lie group & with n parameters, and a continuous
subgroup $ C & whose generators anihilate the vacuum, $]0) = 0, €1 |0) = |0). Let

Vi, i=1,....n—d (1.27)

be the generators of §) and
A, 1=1,....d (1.28)

be the remaining generators of the group . For the case of Chiral Perturbation Theory,
though it will be treated in detail later in Secs. [L8HL.I0], let us determine now the group &
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and the subgroup ). The massless QCD Lagrangian with Ny flavours has a global invariance
under the group SUL(N;) ® SUR(Ng) ® Uy (1) @ Ua(1). The Uy (1) is exactly conserved and
its generator is the baryon number. The U,(1) symmetry is broken at the quantum level,
giving rise to the so called Uy (1) anomaly. We identify & with the group of chiral transfor-
mations, & = SUL(N¢) @ SUg(Nf). Chiral symmetry is spontancously broken [9-14], and the
subgroup that remains unbroken is ) = SUy (Ny) = SUL;r(Vy), that originates the famous
eightfold way [15]. The lightest pseudoscalar mesons are the Goldstone bosons generated by
the spontaneous symmetry breaking of & into ).

Any element g € & has the form g = ¢4t where £A means Zlefi CA = A
and analogously for uV. With a suitable choice of parameters, this element can be uniquely
decomposed in a neighborhood of the identity element of &, denoted by ¢, as g = e¢4e*V. We
now proof this latter statement.

For infinitesimal transformations, this is clear, since
g=eMY ~ep EA+ AV ~ e (1.29)

but we can show that this decomposition is more general than the restricted case of infinites-
imal transformations. If § is an invariant subgroup, then

- N
o A @
g = M = lim <e+§ +uV> =

N—o00 N N
. . _ _2 _
= lim (gaby)" = lim (gabves') (ehbven ). (aXbves™) el =
= I)Nlim ga = hett = hetth i = e5p = etV (1.30)
—00

ga = N and hy = e®V/N are infinitesimal transformations because N — oco. Use of the
invariance of £ has been made to put ga™byga™ " = hg;n ), where the last superscript means
that it is some element of §), depending of the power of g4 in the left-hand side of the equation.
As $) is a subgroup, the product of these h&}n ) is again some element h € §, and we write it as
h = e*V. The orthonormal condition of the generators, Tr(V;4;) = 0,? has been used to write
hef4h~! = 4 for some new coordinates €. Let us calculate

Tr(VibA;571) = Tr(h™'VibA;) = B Tr(ViA;) =0, (1.31)

where it was used that h='V;h = E;;, V) because § is invariant. The above equation implies
that hA;h! contains just A generators, otherwise the trace would be different from zero.
Thus,

_ 1 - _ 1 - 1
hetpt =>" Ehngjh_l h& A =D o Cu&j A=Y ﬁ(fA)n =, (1.32)
n * n * éVl n *

So we have shown, in the case of §) being an invariant subgroup, that

g — eEA"rﬂV — eEAeuV — euVGEA , (133)

'In the following, we use the sum convention of Einstein on repeated indices.
2This is the one that holds for chiral symmetry.
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without restricting to the case of infinitesimal transformations. The last equality follows from
one of the intermediate steps of Eq. (I30). Finally, let us also note that the transformation
g = AV — 84euV induces a transformation of variables (£, i) — (£, ), which has, for the
case g = ¢, a non-zero Jacobian, namely, J = 1. Thus, invoking continuity, the transformation
has a non-zero Jacobian in a neighborhood of the identity element of &, so the transformation
is valid, which is another proof.

Consider now the element goet? with gy € &. As shown, we can write
goet? = 846V where & = €/(€,90) and v/ = v/ (£, go) (1.34)

Let also be a unitary and linear representation b : ¢ — D(h)y, with b € §. To each element
go We assign a pair of transformations

go: =&
V=D (V). (1.35)
These transformations give a non-linear realization of the group &. To show this, notice that
goeth = fAeuV
91€§IA
gi1goc™! = ge

" 17
— 65 Aeu \%4

/ ! 11 1" / 1" "
£A€uV :ef Aeu VeuV — X Aeu \%

?

so that
9190 ¢ — &'
v =D (") y=D (e ) =D (") D (V) v, (1.36)
which is the required composition rule:
" =¢"(€(€,90)01) , (1.37)
D(e*"V) = D(e“//V)D(e“'V) . (1.38)

The matrices D($)) of a representation depend just on the elements of the group: this is
the case for the transformation on £ under h € §). However, the transformation on v depends
also on the ¢ through «', and thus this transformation is meaningful (and the equality in
Eq. (I30) is true) only if considered together with that on £. In what follows, we will suppose
that D(bh) is in its completely decomposed form, and we will call Eq. (IL35) our standard form
for a realization.

Let us see now that, when restricted to the subgroup $), the realization Eq. (IL35]) becomes
a linear representation. First, we have:

et = heth Tl = ' = £ etV | (1.39)

and thus D(e*V) = D(h). As u is obviously independent of &, then this transformation is
linear. Second, & = D®(h)¢, where D® is a linear representation of §. For example, If we
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have & = SUL(N) ® SUg(N) and $ = SUy(N), then D® is the adjoint representation of
SU(N):
£ s = D& Ah ™ = &b AL = D(h)wé Aa
&'/

where D is the adjoint representation, which we call, from now on, D, and, as promised,

There is a special case in which the form of the transformation of £ can be further simplified,
namely, when the group & has an automorphism R : g — R(g) so that

vi & v
A B 4

Chiral groups are within this case: the parity operator induces an automorphism that changes
the sign of the axial generators. Applying the automorphism to

vV — e—g/AgoegA
we get
e’V = A R(gy)e

so that
4 = goe® 1 R(gy 1) . (1.40)

For chiral groups, one has g = grgr, with g, = e?** and gr = €%, Then R(g) = e ref*r,
and

2A . 2AR 260
! — —
o2 A oML OAR 264 ,—PAR o —OAL

eW\L 6—2€>\L 6—9/\L 69>\R 62€>\R6—50)\R

thus

U
026 AR

e 2L — pPAL 280 =0

AR o2EAR o —¢PAR

Both results are consistent, for the generators A\;, and Ar behave in their respective spaces
as Gell-Mann matrices, and so we can obtain the transformation law for e=2*¢ from that of
e?Ar because

6*25')\12 — P R 2AR o —OAR

which is the same transformation for e=2*t with the change L > R.
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1.5 Classification of all nonlinear realizations

In this section, we give the most general form of a nonlinear realization. It will be shown that
all of them can be brought into the standard form studied above, by a reparametrization of
fields, see Eq. (LI9) in Sec. [[3

This problem will be considered from a broader point of view. Let M be a n-dimensional
real differentiable manifold. Let & be a compact connected semisimple Lie group, used as a
transformation over M,

g:z— Tyx reM,ged® (1.41)

where x can denote both a point of M and a n-dimensional column vector in some coordinate
system. We suppose that Tz is an analytic function both on g and x. Next we identify the
fields of the effective theory to be studied with some particular set of cordinates in M. Thus,
the problem of finding all field transformation laws under a group is equivalent to find all
possible ways of realizing a group in a differentiable manifold M.

It turns out to be advantageous to consider the problem in this manner, since going from
one set of fields to another just means a change in the coordinates of M, which has no
geometrical consequences, nor changes on the on-shell S-matrix elements. The analyticity
hypothesis is necessary due to the power series expansions we make in field theory, and also
because we want to preserve locality. However, the analogy is not complete, since in field
theory general coordinates transformations are not allowed, as seen in Sec. [L.3} rather, these
transformations must preserve the origin, according to Eq. (ILI9). This leads us to suppose
that there exists a special point in the manifold M, that we call origin, and allow just for
coordinate systems that share the origin, i.e., systems in which the origin is represented by
the same point. There is no need to characterize globally the action of the group on the
manifold, but just in a neighborhood of the origin, because fields are ultimately used in a
power-series expansion. Also, for the usual properties of connected compact Lie groups, we
will pay attention only to a neighborhood of the identity element of &.

There can be elements of the group & that leave invariant the origin of M. These elements
form a subgroup 9, $ C &, called the origin stability group. It can consist of a single element,
the identity element of &, and could extend up to the whole group &. We will suppose that
$ is continuous.

Summarizing, our problem can be stated as follows: given & and $), we want to find the
most general way of realizing them over the manifold M, with all the restrictions commented
above. This problem, as shown in what follows, is equivalent to that of finding all nonlinear
realizations of & that become linear when restricted to the subgroup $ C &.

Theorem (Linearization theorem). Let & be a semisimple connected compact Lie group and
let 5 C & be the subgroup of all elements that leave invariant the origin so that, in these
coordinates,

T,0=0 VYhesH

Then there exists a set of coordinates y in a neighborhood of the origin so that, in these new
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coordinates,

Tyy=DMb)y VbhehH, (1.42)

being D(h) a linear representation of $).

Proof. Given that Tyzx is continuous in x and that 730 = 0 it follows that, close to the origin,
there must exist a neighborhood which is invariant under the action of the subgroup $), because

the latter is continuous, compact and bounded. Thus, expanding Tjz,
Tyx = D(h)z + O(2?) ,

being D(h) a linear realization of §. We define now n functions,

y=[db D7 (0)Th (1.43)

where df is the invariant measure and the group integral is normalized to [(dh = 1. The
functions y are analytical in z and, in fact, we have

y=1x+0(?).

Whence the Jacobian determinant [0Jy/0x] is one in the origin, and so we can use the y as a

new system of coordinates around the origin. Under the action of an element by € §,

ho:y — kmD*wﬂu%w:émD*mﬂmxz
= [a(obe) D7 (5ot ") Tz =
= D(ho) /ﬁ d(hhe) D" (hho) Tyne = D(bo)y ,

and this proves the theorem. [l

This theorem is useful as a simple test of linearizability, and also, if the transformation
law can be linearized, it provides a formula to obtain the new coordinates.

Let us proceed now to consider our main problem. Our complete set of orthonormal
generators is composed by V;, the generators of ) and A;, the rest of the generators of &. Let
us define the differentiable manifold N consisting of all the points of the form 7;0. We can
associate the coordinates & to the points of N through ¢f40. As every transformation rule
can be written as g = ef4e*V in a neighborhood of the identity, it is clear then that in some
neighborhood of the origin we can write

VeeN z=g0=e"e"r0=¢e0, because ¢"V0 =0

Therefore, in the aforesaid neighborhood there is a unique set of parameters &; for each point
of N acting as coordinates for N in that neighborhood. Let us prove this last statement,
namely, that N = {e$40 = e#4e*V0 = g0 | g € B} admits as a unique system of coordinates
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the parameters &,, a = 1,...,d. Suppose that there exist two such sets, (1), and (£2)a,
a=1,...,d. Then

5140 = 240 = e 2 = 0 5 e 28 = WV .
Performing a power expansion in the last equality,

—(&)1 AL+ (€)1 A — (€)1(E)mALAp + - = u;Vi4 -,

where the ellipsis indicate higher orders in the power expansion. In order to generate a V' we
have to go to the A;A,, product, so the u are O(£?) and the leading term of the left hand side
of the previous equation must be zero, so & = &s.

The transformation properties of N are now completely determined,

g(ef10) = €4V = e840 |

Let us now introduce n — d coordinates in a real vector ¢). Then a point of M, in some
neighborhood of the origin has coordinates (£,1)*. The origin 0 is now (0,0)*. Points of the
form (£,0)* are in N, for:

9(£,0)" = get*(0,0)" = eV (0,0) = £4(0,0) = (£,0)* & =¢(&9) .

The representation of & is then reducible. From the linearization theorem above, it follows
that the coordinates (£,1)* can be chosen so that $) acts linearly, since it leaves the origin
invariant. With a suitable choice of coordinates v, the representation, since $) is compact,
becomes completely irreducible,

euV<§71/J)* _ (D(b)(euV)é&,D(euV),(b) 7
and the ¢ transform under the adjoint representation of & restricted to $, D® induced by

! —_
ef A euVefAe uV

¢ = DP(n)¢

We introduce new coordinates, that we call standard coordinates,

(&) = (0, 9)" (1.44)

connecting the subspace of £ = 0 with that of £. For £ = 0, we have (0,¢) = (0,)*, the
Jacobian is thus 1 and the transformation is allowed in a neighborhood of the origin. We can
work out the transformation of the new coordinates under the action of h € $:

b(&,v) = et (0,0)" = eM0(0,0)" = (0, D(h)y)" = (£, D(h)w) ,  (1.45)
with ¢ = D®(h)¢. Whence, we have proven the following:

Lemma. Under the subgroup $) the standard coordinates transform as (D) (h)¢, D(h)ab) with
the same linear representation as for the original coordinates.
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With the results gathered in this Section, we already know how a generic element g € &
acts in the new coordinates. Let us see now that they transform like Eq. (IL35), i.e., like our
standard form:

g(&, ) = gef(0,9)* = 4"V (0,1))* =
e 40, D(e“ V)Y = (¢, D(e”V)) |

where the last step follows from the previous lemma. Therefore, we see that, as promised
in the beginning of this Section, the most general nonlinear realization of a group & with
a subgroup $ that leaves invariant the origin reduces to the standard form after a suitable
change of coordinates in a neighborhood of the origin.

1.6 Covariant derivatives

Through Sec. the transformation porperties of the fields were considered, and now the
transformations of their derivatives must be studied, since Lagrangian densities, used in quan-
tum field theories, are functions of the fields and their derivatives. In Sec. a generic set
of coordinates was chosen and brought into an adequate form, called standard form. In this
Section, essentially the same procedure is followed, but with the derivatives of the fields. Of
course, the transformation properties of these derivatives are determined by those of the fields
themselves. Thus, the derivatives 0,§ and 9,1 are introduced as independent coordinates on
the manifold M:

(& ¥, 0.8, 0,0)" . (1.46)

As we saw in Sec.[[l4] under the subgroup $), £ and v transform linearly (under their respective
transformations), and the associated u' are independent of &, and then

(€, 0,8, 0,0)" == (DP(9)E, D(B)ib, DD ()8,€, D(5)8,10)" (1.47)

The derivatives, as said, are not in standard form, but as shown, they transform linearly under
$ and they can be brought into standard form with a suitable change of coordinates. The new
coordinates, transforming in the standard way, are denoted with D,§, D,1, and are defined
as

<§7¢7Du£> D;ﬂb) = eéA(O7w7a,u£78,uw>* (148)

They are constructed so that they transform under & in a standard form, analogous to (L35l),
(D) = D(b)<€UIV)(DM§) (1.49)

(D) = D"V (D) . (1.50)

We consider now the following derivative:

0u(&(2),9(2)) = 0,50, ())" . (1.51)

One has:
8Me§($)A(0, V)t = eS@)A {6_5(””)’4(9“65(@’4(0, @Z,)*} :
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and we define:?
@AY e @A = A4,V . (1.52)

Inserting this above, we finally get:
eS(@)A [efi(z)Agueé(w)A(O’ ID)*} — S@A (efé(x)Aaueﬂw)A) (0,9)* 4 e6®4(0,0,4)*
= ef@A (p, A+ v,V +9,) (0,9) = (§,9, pu, (0, + v, TIV) , (1.53)
where in the last step we have added two extra coordinates, representing the covariant deriva-
tives of £(x) and ¢ (z), given, respectively, by:
D, &(x) = pu(z) , (1.54)
D,(x) = (0, +v,V)Y(x) . (1.55)

Let us now explicitly check the transformation rules for D,{ and D,y, Eq. (I49) and
Eq. (L50). Let g € & (recall that g is not space-time dependent). We have:

geft = AV
g0, = (9,5 M eV + 50,6
and thus, eliminating g,
g = £AeVeea
£ et Ve, e84 = (9,65 4 e A(0,eY)
e 649,684 = Vet )Y — (9, V)e Y =
= eV e A9, eV 4 eV (9,0 ) =
—_—
(vuV+puA)
eV (0, V 4 puA) eV eV (9,7 =
= v,V+p,A.
Identifying terms,
pA = eV, Ae™V (1.56)
vV = Vv, V)e ™V — (9, )e V. (1.57)

From the first of these equations, recalling that D®(h) is the representation induced by
hetAh~! = e84, we read that
P, =DV )py . (1.58)

We have to work out now the expression of (D,)’,
(Du)" = 0" + v,V =
= (8#6“/‘/)1/1 + e"’Vasz + (e“/VU“V — 8#e“lv)e’“lve“lvz/1 =
eV (0u + v,V ) ="V Dy = D(e”V) Dyt

so that: /
(D) = D(e“V)D, . (1.59)

3Notice that, for the explicit developments that follow, we should write the matrices representing the
generators V; in some representation with a different symbol, T;. However, since no confusion will arise, we
will make some notation abuse, and will denote them still by V;.
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1.7 Gauge fields

Now we take one further step, considering that the transformations g depend of space-time.
In this case, 9,§ and 0,1 do not transform linearly under $), and thus gauge fields must be
introduced. We denote them by p;, and a;,, associated with generators V; and A;, respectively.
Their transformation laws are given by:

puV + a A — PLV + GLA = 0(puV +a,A)g™ — [ (0u0)87 ", (1.60)

being f a universal coupling constant of the gauge fields. Now, the fields a, and v, are
introduced through:

et (Ou + f(puV + a,A)) et = v,V +puA (1.61)

which is the analogous to Eq. (L52). In what follows, we take f = 1 for clearness and
conciseness.

Instead of 0,1, we have to consider now (9,4 p,V)1. This combination transforms linearly
under $), since, for g = h € 9,

PV =bp Vo = (9.0)b7 (1.62)

so that:
(0 + PV )& =5 (0, + pV )00 (1.63)

Next we show the transformation law of Eq. (L8I). As get* = ef'4e”V, then e84 =
gefte=V . Inserting this into the transformed version of (LLG1)),

_ —¢A "A _
vV +pA = et (8M + 0,V + aLA) ef 4 =
= Ve gt ((9# + 0,V + a;LA) getle vV =
= Ve (g7 0,0+ 07 (0, V + a)A)g) eV 4
puV+auA
+ Vet (0N e Y 4 eV (9, Y) =

= vV {e’&‘ (Op + p.V +a,A) eﬁA} eV 4 e“’Vaﬂe*”’V =

PuA+v,V
v,V +p,A = eV (ppA+ v, V) eV 4 eV, V.

Whence, identifying terms:
pA= eV Ae ™V (1.64)
v,V = Vv, V)e ™V — (9, )e V. (1.65)

Comparing with (L56) and (L57), we see that the transformation properties are the same
as in the global (instead of local) case, which drive to the wanted results for the covariant
derivatives.
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1.8 The chiral symmetry of the QCD Lagrangian

1.8.1 The Lagrangian

Quantum Chromodynamics (QCD) [IH7] is a non-abelian Yang-Mills theory [§] with gauged
color SU(3) symmetry. The Lagrangian density of QCD is:

1
Locp = YTy (zlﬁ - mf) q5 — §Trgﬁyga’“’ ; (1.66)
!

Two shorthand are used here: ) = YD, and ¢ = q'+°, with Yu the Dirac matrices. The
flavors of the quarks are f = u,d, s, c, b, t, and each flavor contains three colors. The covariant
derivative is \

1D, =10, — gAz?“ , (1.67)
where \,, a = 1,...,8 are the SU(3) Gell-Mann matrices, acting in the color space, and A,
are the octet of color gauge vector bosons, gluons. The color field or strength field G, is

G, = 0uAL — 0,AL — gfue [ AL, AT] (1.68)

so that the gluons are coupled among themselves with a universal coupling constant g. From
now on, we focus on the bilinear part of the QCD Lagrangian in the quark fields, since
obviously the strength part has no flavor content. We also use a matrix notation for the
quark flavours, as:

Lqocp = @(“p—M)CH"“,
u
qQ = d

S

with M = diag(m,, mg, ms), and we are anticipating here that we will restrict ourselves to the
so called light quarks, u, d and s. Heavier quarks are neglected in this effective Lagrangian
approach since we will restrict here to energies well below the production threshold of particles
involving these quarks.

1.8.2 Chiral symmetry

Chiral symmetry is a symmetry? of the Lagrangian in the limit of massless quarks. Massless
here will be a good aproximation for the u, d quarks (SU(2) symmetry) having current masses
my ~ 5 MeV, myg ~ 10 MeV [48,189,190]. These are small compared to a Aqcp ~ 0.3 GeV.
For the s quark the situation is not so clear, because its mass is around a factor 1/3 of Aqcp.

Let us introduce (helicity) projection operators,

_IE

Py 5

= P, (1.69)

4We define symmetry as an operation made over an object that leaves it invariant. In this case, a transfor-
mation of the fields of the Lagrangian that leaves the equations of motion invariant.
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where I is the identity operator, and s, the chirality matrix, acting on Dirac space, is defined
as Y5 = 1Y0Y1Y2Y3 = 7§, so that v5 anticommutes with ~#,

{7} =0. (1.70)

The usual properties of Dirac matrices determine those of 75, and from these we can show
that the operators defined in Eq. (L6Y) are indeed projection operators,

P = P}
P.+P =1, (1.71)

P, and P_ project into the positive and negative helicity eigenstates in the massless limit,
respectively, and they are also usually denoted by Pr and Pp, (right-handed and left-handed).
We define right- and left- handed quark fields as

qr = Prq  qr=qP-_,
qo=P_q qr=qPy,

so that g = (Py + P_)g = qr + q¢ and ¢ = q(P- + Py) = qr + qr- Whence, the derivative
piece of the Lagrangian can be written as

qvD'q = q((Py+ P )y.(P-+ Py)) D¥q
= q P,’)/IuPJr‘i‘PJr’Y‘qu‘i‘PJF”)/#PJF‘FP*’)/HP, D'uq

—— ——
PiP =0  P_Piy,=0

= GrPar+ @D -
Proceeding in an analogous way, one has for the mass term:
—qMq=—qrMqr — Gt Mqr , (1.72)
and chirality is mixed.

If we now set M = 0, massless quarks, the flavor independence of the Lagrangian makes
it invariant under global U(3), ® U(3)g transformations,

8
qr — exp (z > 95&) qr, (1.73)
a=0
8
qr — €xp (z > 95&) qr (1.74)
a=0

where A\g = 1/2/3 I, as to enlarge the generators of SU(3) to complete the ones of U(3). The
associated Noether currents are:
A _
Lt = qL”y“?qL Rl = qu“?qR a=1,...,8 (1.75a)
L'=q~"q  R'=qrY"qr (1.75b)
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and the equations satisfied by these currents are:

oLl = —i <QL/\2aMQR - QRM/\;QL) (1.76a)
o L' = —i(@eMqr— qrMaqr) (1.76b)
ouRy, = —i (q}%/\;MQL - QLM/\;QR) (1.76c¢)
OuR" = —i(GrMqr — qL.Mqr) (1.76d)

which are zero in the case M = 0, as advanced, meaning that there would be a conserved
charge in that case. The divergence of the currents are proportional to the current quark mass
parameters. The charge operators are the integrals over full space of the y = 0 component
(in Dirac space) of the currents, the charge densities,

QL(t) = / 47 L0(7,1) = / 47 qL(f,t)yoA;qL(f, 1) (1.77)
QFt) = /dx RY(%1) /dx qr(Z,t voﬁqR(x t) (1.77Db)
QFt) = /dz LY(Z,t) = /dx qr(Z, )7 qr (£, 1) (1.77¢)
OR(t) = / d7 RO(7,1) = / 47 Gr(Z, )7 qr(Z, 1) (1.77d)

Denoting by fup. the structure constants of SU(3) symmetry, such that [7“ %} =1 fabc%, the
algebra of the charges is:

[ 57 Qé} = 7:fabcCQcL (178)
[ (Iz%’ Qiﬂ = Z'fachf (179)
QLQF] = 0 (1.80)

The last equation of the algebra reflects the fact that the charges L/R operate on different
spaces. The first two are obtained inserting the explicit expressions for Q% in the commuta-
tors, and through the use of the equal time commutation relation of the quark fields and the
commutator of the Gell-Mann matrices.

So far, we have developed the algebra of the group SU(3), ® SU(3)g,”> which is a subgroup
of the U(3), ® U(3)r. However, the former is not realized (a la Wigner) in Nature, as we will
discuss below. Still, we can introduce a linear combination of left and right charges/currents
to obtain vector and axial charges/currents,

JWV =R I QY =QF + QF (1.81a)
Jul=RE— LY — QF=QF-QF (1.81b)
JV =R - QY =Q +QF (1.81c)
JH =R [P QA =QF - QF (1.81d)

°In analogous way one could proceed for SU(2), ® SU(2)g.
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Qi (t) = /dx 7’ fq 7, t) (1.82a)
A1) = /dfﬁo%z‘lq(f,t) (1.82b)
Q'(1) = [a7 ;') (1.8%)
QYt) = [ a7 P sa(. 1 (1.82d)
QLA = ifuQ! (1.83)

{ Z?Q?} = Z.fabccgf (184)
QQ1] = ifweQY (1.85)

0, J"Y = ig [M,);]q (1.86)
0"y = i@{M,AZ“}%q (1.87)
O, J" = 0 (1.88)

2

3
9 T' = 2igMrysq + —

322C | GurYoo (1.89)

We will briefly discuss the singlet vector and axial charges/currents (the last two equations)
because we will not further refer to them. The singlet vector current, J*V = gy*q is conserved
(0,J*V = 0) even when quarks are massive. This exact U(1)y symmetry implies baryon
number B conservation, thus leading to the organization of hadrons in mesons, B = 0, and
baryons, B = 1. The singlet axial current should be conserved from classical symmetry
considerations. However, it is not conserved at the quantum level, giving rise to the U(1)4
anomaly [T91HI93],% which is indeed responsible for the appearence of the term involving the
tensor form in the last line.

From symmetry considerations of the Lagrangian, and thus, of the Hamiltonian, we would
expect the hadron spectrum to be composed of degenerate multiplets with quantum numbers
following the pattern of & = SU(3), ® SU(3)z. As QY and Q4 are linear combinations of
left- and right- handed charges, they commute with the Hamiltonian. They have opposite
parities, so one would expect the existence of degenerate multiplets with opposite parities
(parity doubling), but this is not seen in Nature. The argument would go as follows. Consider
a one-particle state, |«, +) such that it has definite parity (positive, in this case) and mass
(energy), i.e., it is an eigenstate of the Hamiltonian and of the parity operator:

Hla,+) = M|a,+)
Pla,+) = +]a,+) .

SIn the large N (number of colors) limit, this symmetry is restored, since the divergence of the current is
proportional to g2 and this scales as N5 ' [194-196].



1. Construction of effective Lagrangians. Chiral Lagrangians. 32

Let us consider the state |, +), defined as:

[Qa4) = Q2 la, +) .

such that it has energy and parity given by

HQoy) = HQL|a,+) = QL H |a,+) = MQS o, +) = M |Q)
P’Qa,+> = PQ?P_1P|OZ,+> - _Qf |Oé, +> = - |Qa,+> )

where we have used the fact that [Qf, H } = 0 and {Qf, P} = 0. This follows because Q%
is a symmetry of the Hamiltonian, as stated before, and thus commutes with it, and because
Q2 is an operator with negative parity. Now, |, ) can be expanded in terms of negative
parity states,”

0.4) = Qo4 = 2o’ 4) (o + @2 +) +

0
+318, =) (B — Qe +) =3 Cl )y 18 -) (1.90)
B’ B’

Now, if we assume that Q2 |0) = 0, we have:

[Qut) = Qf o, +) = Q2L [0) = Q2 bl 1| 0) + bl Q2 [0)
0

=2 Clo e 1877) - (1.91)
B/
where bt are creation operators. The last step follows from Eq. (C90). Thus,

[ ?,b(];’_;'_} - ;Cgﬂ/,),(aﬂr)b%’,— . (192)

The key assumption here was Q2 ]0) = 0. This is called a Wigner-Weyl realization of the
symmetry. The states |3, —) are states degenerate in mass with |, 4) and with opposite
parity, leading to a spectrum with parity doubling, as stated before. That is, there are
multiplets of SU(2)r ® SU(2)L, in which the states transform one into another under the
action of the generators. As stated before, no such multiplets are seen in the spectrum.
But if Q7' |0) # 0, which is called a Nambu-Goldstone realization of the symmetry, then this
argument does not follow. Indeed, if Q2 |0) # 0, then this state is not even defined [197].

Actually, from the experimental point of view, no such parity doubling is observed, see
Fig. 1], i.e., comparing the sector J¥ = 0~ with that of J¥ = 0% we see that they are not
degenerate in mass, rather, the latter has resonances heavier than the particles found in the
former. Thus, the non-existence of parity doubling in the hadronic spectrum together with

"The fact that <o/ ,+ ‘Q,ﬂ a, +> = 0 can be shown by inserting the identity through the parity operator in
the right way,

(o, +|Q% a,+) ={(/,+|P'PQIP'P|a,+) = — (o, + Q2| o, +) =0,

and analogously (8, — |Q2| 3,—) = 0.
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Figure 1.1: Schematic representation of the hadronic spectrum. We show here the
hadrons considered in Figures [[L2] and [[4], in order to see how they organize
in approximately degenerate multiplets. Considering the multiplets JZ = 0~
and JP = 07T, it is clear that no parity doubling is observed, as a Wigner-Weyl
realization of the symmetry would require.

the fact that it is still organized in multiplets points to SU(3)y and not SU(3), ® SU(3)g as
the approximate realization of the symmetry. And even more, we see also from Fig. [[LT] that
the J¥ = 0~ masses are much smaller than the others,® which leads us to think of them as
candidates for the Goldstone bosons that come out from the Goldstone theorem, which holds
if there are some generators that do not anihilate the vacuum. Thus, the chiral symmetry
seems to be spontaneously broken [9HI4] down to SU(3)y. Let us also remark here that
global vector-like symmetries, as the former, cannot be spontaneously broken, according to
Vafa—Witten theorem [198199.

On the other side, there is a theorem due to Coleman [200], that can be stated as:

Theorem (Coleman theorem). Let ) be a generator of a continuous symmetry group &,

8The fact that the mass of the pion, 7, which is an isospin triplet, is much smaller than that of the other
pseudoscalars is due to the fact that the SU(2) symmetry, which would generate three pseudoscalar Goldstone
boson, is a better approximate symmetry than SU(3), which would generate eight of them.
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q=—1 q=0 q=—1 q=20

Figure 1.2: The lightest pseudoscalar meson octet, J© = 0~ and B = 0 (left) and
the lightest baryon octet, J = %Jr and B =1 (right).

defined through a space integral of the time component of a given current density J*(x), such
that it anihilates the vacuum (i.e., the vacuum is invariant under &.) Then the Hamiltonian
of the theory is invariant under the transformations of the field induced by &, and the current

18 conserved.

The best summary of the theorem is given by the title of the original article: The Invariance
of the Vacuum is the Invariance of the World. The symmetry of the ground state thus
determines the symmetry of the spectrum. The spectrum thus is telling us the symmetry of
the ground state. Whence, we are lead to consider that:

QUIY=Q"10) = 0, (1.93)
QL0) # 0 (1.94)

As stated before, the fact that the ground state is not invariant under the axial transfor-
mations naturally leads to the appearence of Goldstone bosons. To each axial generator Q4
that does not anihilate the ground state there corresponds a massless Goldstone boson whose
quantum numbers are the same than those of the corresponding generator. In this case, the
Goldstone bosons, denoted by ¢,(x), are pseudoscalars, and transform one into each other
under the subgroup $ = SU(3)y as an octet,

[ Xﬁgbb(x)} = ifabc¢c(x) ) (195)

corresponding to the adjoint representation of SU(3)y, see Eq. (L4H). Accordingly, the spec-
trum is organized into approximately degenerate multiplets of SU(3)y. In Figs. [L2 and
4] some of these multiplets, transforming under irreducible representations of SU(3), are
shown.

We are now in position to link the results of the first part of this chapter with the symmetry
group considered so far. The group ® is SU(3);, ® SU(3)g, and $ = SU(3)y is the subgroup
that leaves invariant the vacuum or ground state, with [QX, Qﬂ = ifwp.QY. This is the
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Figure 1.4: The lightest vector meson nonet, J” = 1~ and B = 0 (left) and the
lightest scalar meson nonet, J© = 0% and B = 0 (right) (See [53] and Chapters

and [).

subgroup considered in the general analysis done at the begining of this chapter, so we identify
QY with the generators V; in the general formalism. The rest of the generators are those that
do not anihilate the vacuum, i.e., the vacuum is not invariant under the group elements
generated by these generators, @/, which are thus identified with the A; considered in the
general formalism.

1.8.3 The Lagrangian with external sources

We want to construct the most general Lagrangian, with the following properties:

It must be invariant under chiral transformations (see Subsection [L9.]).
It must be invariant under charge conjugation (L9.2)) and parity (L9.5).
It must be Lorentz invariant, i.e., scalar under Lorentz transformations (L9.4)).

It must be Hermitean (L9.3).
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In order to construct such a Lagrangian, we introduce in our original Lagrangian the couplings
of external sources s(z), p(z), v,(x) and a,(x) to quark currents and densities through [I8§]

Lo = —qs(x)q + iqysp(x)g + ¢v"v,(2)g + v y5a,(x)q - (1.96)

We can then introduce the mass term in this Lagrangian as s(x) = M, and the electroweak
interactions through the substitutions

g 1 g
UM = _GQAM — m <Q COS 29[/[/ — 6) ZM — Tﬁ (T'FW: + hC) (197&)
g 1) n
=7 Z, T h. 1.97b
“u 2 cos Oy (Q +2\/_( W C) (1.97b)
. 2 0 0
0O 0 -1
0 Vud Vus
T.=|l0 0 0 (1.97d)
0 O 0

Use of this substitution will be made latter in the discussion of the meaning of the constant
fr, the pion decay constant. By now, we must discuss the transformation properties of
these external sources under Lorentz, parity, charge conjugation and, in particular, chiral
transformations.

1.9 Transformation properties of the building blocks

1.9.1 Chiral transformations

We want to impose gauge invariance under the SU(3) version of the chiral transformations in

Eqgs. (L73) and (I74), which can be written as:

4w =Vrar 4, =Viaqr ,

where Vg = Ve r(z). From time to time, we will omit the space-time dependence of the
transformations Vz and of the fields. The piece of L. containing v, and a, plus the derivative
term of Ly can be written as:

Lextrder = gV (v + Y50, +10y) ¢ =
= qrY" (vy + 50, +10,) qr + " (vy + V50, +10,) g1,
Under the transformations, the Lagrangian reads
Loxirder = arV"Vj (v; + Y50, + ic?“) Vrar + @y"Vy (UL + sy, + @'8“) Vigr +
+ iqrY*Ouqr + iq Y Ouqr,
Recalling the properties in Eq. (IL70) and Eq. (I71)), this can be cast as:

Lowrar = 300" Vi (v, +a), +i0,) Ve + V] (v}, — @, +i0,) V1] ¢ +
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i (VA (o) +d) +i8,) Ve — Vi (v, — a, +i0,) Vi] g+ (1.98)
+igy"0,q

Identifying terms, so that the Lagrangian becomes invariant, we have:

1 1
v, = ivg (U;—FCLL—'—Z'(?M) VR+ 5

1 1
a = Vi (vt a, +i0,) Ve = VI (v, — @), +i0,) Vi (1.100)

Vi (v, — a), +i0,) Vi (1.99)

It is simpler to work in terms of the right/left fields, defined as:

r, = v, ta,= VETLVR + V3. Vr (1.101)
L, = vu—a,=VIIVL+iV]9Vp (1.102)

and invert these equations to get finally:

r() = Va(z) (ru(z) +i0,) Va(2)" (1.103a)

Chiral transformations " ‘ ;
1(2) = Vi) ((2) + i0,) Vi)' (1.103b)

Completely analogous work can be done with s(z), p(x), where it is also convenient to work
with the linear combinations

X =s+ip (1.104)
X' =s—ip (1.105)
and we get:

Chiral transformations

X=vext v (1.106b)

For the external right /left fields, we can introduce the corresponding field strength tensors,

;i = 8;17"1/ - azﬂnu —1 [Tua Tu] ) (11073)
f;fy = aHlV - az/l;t ) [l/u lu] . (1107b)

Under chiral transformations, Eq. (ILI03]), these tensors are transformed into

(fE) = 0,V LV + Vi 0, Vi +Vvil, 9,V] +i0, Vi, 0,V] +i vy 9,0,V]

uv
O ® ® © ©
— A,V LV =V a1, VI —Vil, 8,V —id,V;, 8,V] —iVy, 9,0,V]
© @ ® ©
— i Vel VL VL V] + [Veau Vi Vil V|
O @

+ Vil Vi viavi] +i (Viau v, via, vy
e 8
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Now, as
Vio Vi Vi, Vi| = —0.vio, Vi - 0,v,0,V]
Veo Vi Vil V| = =0,V Vi = Vila,vi
Vel Vi Vio, V| = Vil o, Vi + 0, Vil V]
then
@®+@+@=0
O+@+@=0
©+®+B=0
®+@®=0

so we are left with
@+@+0 = Vi (Bl — by — i [l L) V]

Summarizing,

(L (@) = Vale) (£5) Vila)' (1.1084)

Chiral transformations n , .
(Fi(x)) = Vi) (£1) Val)" . (1.108b)

We can proceed now with the chiral transformations of the Goldstone bosons, and exploit
the results of the first sections. Recall that we had (Eq. (L34)):

geth = e 4evV (1.109)

and g = VVg. It is perhaps more comfortable to write this, at least the first time, recalling
that & is a direct product, so g actually means g = V;, ® Vg, and the last equation is, therefore,

(VL @ Vg) (e_g’\L ® 6£>\R) = (e_glh ® €§,>\R> (e“,’\L ® e“,’\R) (1.110)

so that, for both sectors,

Vietr = 8 reAn (1.111a)
Vie 9 = ¢ Arevde (1.111Db)

For the automorphism R we had, according to Eq. (IL40),
XA = geXR(g7Y) | (1.112)

and, if g =V}, ® Vg, then g7! = Vg & Vg and R(g™!) = Vg ® VLT, because the automorphism
changes R <> L (corresponding to parity). Thus, the last equation means that

6725/)\11 ® 6251/\13 _ (VL ® VR) (efzf)\[, ® €2£AR) (V};E () Vg) (1113)

XA = Y2y (1.114a)
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e = Vo2 (1.114Db)

The matrix u(z) = e is one of the basic objects. Denote h = ¢“*, and then Eq. (CI11a)
can be cast as

v = Vyuh! = o'f = hutv) (1.115a)

Chiral transformations
u't = Viufht — o' = huV (1.115Db)

From u(z) we define U(x) = u(z)u(z), and, using the last equations appropiately, it is seen
that U(x) transforms as

Chiral transformations  U'(z) = VU (x)V, (1.116)

Notice that we could have defined directly U(x) instead of u(z) and read its transformation
properties from Eq. (LII4]), that are seen to be consistent with Eq. (CI1G).

We now proceed to calculate the covariant derivative of U(x), from the results of Sec.
and Sec. [Tl Let us rewrite Eq. (L61) as

e (0, —ip,V —ia,A) et = —iv,V —ip,A (1.117a)
&4 (0, —ip,V +iaA) et = —iv,V +ip,A (1.117b)

where we introduced some ¢ factors in the definitions of the fields for convenience, and took
advantage of the automorphism of chiral groups (recall that R <> L under a parity trans-
formation) to write the second equation. We have also introduced the fields with a tilde,
U, p, a and P to avoid confussion with the external fields originally introduced in the QCD
Lagrangian. Indeed, they are the same external fields but rewritten in terms of the generators
V@ and A® for p,V and a,A, respectively. From Eq. (LIIT7), we can obtain

—2i9,V = u'0,u + ud,u’ —iu' (5,V + a,A)u —iu (p,V — a,A) u' (1.118a)
= {UT, @m] — iuTruu — z’ulﬁuT =2, ,
1

I, = 5 ([UT, 8Mu} — iulr,u — iulmﬂ) : (1.118b)
—~2ip, A = uOu + duu’ — il (p,V + a,A)u+iu(p,V — a,A)ul = (1.118c)

=u' (O,u u+ud,u—ir,U+iUl)u' =u'D,Uu’ = —iu, ,
u, = iu'D,Uul (1.118d)
D,U =90,U —ir,U +iUl, . (1.118e)

D,U(z) is the covariant derivative of the Goldstone fields matrix U(z). Its transformation

can be deduced from Egs. (L64)) and (LI15), because’

WD, U = —2ip), A = eV (=2ip, A)e ™ (1.119)
= hu! D Uutht = 't (Ve D, UV ) 't (1.120)

9Notice that D,U’ is a shorthand for (D,U)".
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so that

DU = VgD, UV} | (1.121)

Chiral transformations
ul, = hu,ht . (1.122)

It is perhaps instructive to explicitly check the last transformation, and how the covariant
derivative is such that it compensates for the terms arising from derivatives. Proceeding,

DU = 0,U" =i (U = U'lL,) = 8,Ve U Vi + Vi ,U V| + Vi U 9,V ~
—i (Var Vi + Ve, Vi) (VaUVE) + i (VaUV]) (Vil Vi + V20,V ) =
= Ve UV + Vg UV +Va UV} —iVgr, U Vi+
+ Vg 0,V VRUV] —iVRUVIVLLVE — VU VIV 0, V]
and, as
Vi 0,V VRUV,) = —VRVE9,VRUV] = —0,Vz UV}
VaUVi VL0,V = VrU9, V]

then
DU = Vg (8,U —ir, U +iUl,) V] = Vg (D, U) V], (1.123)

as expected.
We have, by now, worked out the transformation properties of all the basic ingredients we

can use to achieve our goal of building the most general chiral Lagrangians. However, some
additional definitions are customary in the literature, that ease the work. They are:

L _, ¢L 1
Fo=uf,u", (1.124a)
R _ TR
F,=ufau, (1.124b)
X+ = 2By (uT(s +ip)u’ +u(s — zp)u) = 2By (uTqu + uXTu) (1.124c)

and By is a constant added for later convenience. Their transformation properties are

/
(FL) = hELR! (1.125)
Chiral transformations ( F,ﬁ ), —h Fﬁ/ ht | (1.126)
Y. = hxsh' . (1.127)

The matrix u(x) = €% contains the Goldstone bosons fields, ¢,(z), which are identified
with the coordinates &, and the matrices A — % are the Gell-Mann matrices for SU(3), or
A — 2, the Pauli matrices, for SU(2), so that'”

u(z) = e'Vver | (1.128)
\20(x
Ulz) = 7 (1.129)

10The /2 factors in the following definitions can vary through the literature; what must be the same in the
parametrization is the whole exponent within the exponential.
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where f is a constant!! to be specified later, and ® is
V28 () = ¢o(x) A" . (1.130)

The transformation (LII6]), though simple in terms of the U(x) matrix, would be very com-
plicated in terms of the ¢,(z) fields, i.e., these do not have a simple transformation un-
der a generic element of the group &. However, when the transformation is restricted to
$H = SUy(N), Vg =V, =V, it implies

U= ? S U —vuvt = ve Pyt = V5

SO
o — VoVt .

which means that the ¢,(z) transform, under ), as an octet, because, parametrizing V' =
ewa%a, the last expresion can be expanded to get

Qsc); — (¢c - 0a¢bfabc) ); )

which means that they transform under the adjoint representation, (7%.). = i fape- Notice that
this result is in agreement with Eq. (L95).

With these considerations, and by restricting the transformation V' to be an isospin or an
hypercharge rotation, the quantum numbers of the different Goldstone bosons can be given,
and we can write ®(z) as:

Pt V2r~ =
7+ %n Vort V2Kt

ﬂ@(x)‘sU@) =Y ¢ioi= ( Ve ) , (1.131)

8
V20 (z)| su = 2Pt = | V2 =m0 e V2K (1.132)
=1 \/§K7 \/5[—(0 _%77

1.9.2 Charge conjugation

Under charge conjugation C, a term containing quark spinors ¢ (z) tansforms as

V(@) M ()i (x) — Cip(2)M(2)th(2)C™" = 9 (2)C(M'(2))"C™ () (1.133)

where C = +%9? is a matrix acting on Dirac space, M'(x) denotes the transformed M (x)
under charge conjugation (because it will often contain fields in addition to Dirac and/or
flavor matrices) and AT denotes the transpose matrix. The matrix C can be shown to fulfill
the following properties:

C{vs, 757"} ¢t = {15,957} (1.134)

"The fields ¢, (x) have energy dimensions, [¢,] = E, which can be inferred from the fact that 0,¢,0" @,

must have dimension E4. Thus, in order to have a dimensionless argument in the exponential, we must have

% with f a dimensionful constant, [f] = E.
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c{yret =—{y} . (1.135)

Consider the term ¢y*v,q. It transforms as

g — G TCT, g = — ", g = @y vug (1.136)

where the last equality means that we impose invariance under charge conjugation. Thus,
under charge conjugation, v, transforms as v/,(z) = —v,(z)". In a similar way, we can also
work out the transformation of a,, s and p, and the results are:

v, (x) = —vu(x)" (1.137)
! = T 1.138
Charge conjugation a“/ (z) au(xT ’ ( )
§'(x) =s(x)" (1.139)
p'(z) = p(x)” . (1.140)
From these relations, it is inmediate to obtain

T
ri(r) =~ , (1.141)
I(z)=—rl, (1.142)

Charge conjugation g a
oI V(@) =x", (1.143)

T *

(@) =" =" (1.144)

The transformation of the field strength tensor is also straigthforward,

( 5/)/ = Ourl, = D1y, — i | rl| = —0ulL + AL — i |11 1] =
———
—[lul]”
- (a“l’/ - a’/l# — [l,ua lll])T

Thus,

(72) =~ ( fy)T (1.145)

Charge conjugation ( jy), _ ( ﬁ,)T (1.146)

The charge conjugation properties of the Goldstone bosons can be worked out from those
of the axial charges Q2,

QA /dx qy 75);(1(35 t) (1.147)

Thus we have to calculate

2\ AT
1a_
CyvsC™ 5 7752

which means that Q4 — Q'/ A = (QMT. For completeness, we also give the transformation of
left /right and vector charges:

(1.148)

QF - Q'y =—-(@H", (1.149)
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QF - Q'Y =-(QH)7", (1.150)
QY = QY =-(QV)", (1.151)
QL - Qi =+@H". (1.152)

As commented, the last transformation gives us, in turn, the transformation law for the
Goldstone bosons, and thus, ®(x) — ®'(x) = ®7(z), which implies

P'(x) = () (1.153)
Charge conjugation u'(z) = u(z)” (1.154)
U'(z) = U(x)" (1.155)

The covariant derivative, taking into account the transformation of r, [ and U, is
(DU =0,U" —ir, U +4U"l, = 9,U" +illUT —iUTr] =
= (0,U —ir, U +iUl,)"

so that:

(D U(z)) = (D U(x))" (1.156)

Charge conjugation
8¢ CONJUS () = u(z)” (1.157)

The following transformations can also be derived:

(FE8) = — (F57) (1.158)

Charge conjugation
Ve = XL (1.159)

A technical problem with charge conjugation is that, as seen, it gives A — A’ = (—1)4 AT
(recall that A are matrices in flavor space). Thus, when forming terms for the Lagrangian
from the product of two building blocks, A and B, it will transform as AB — (AB) =
(—1)eates AT BT instead of ~ (AB)T, which makes it harder to check the invariance un-
der charge conjugation. If we have just the product of two terms, it is not a problem, for
(ATBT) = (AB). For products of more than two terms, the trick is to consider commutators
and anticommutators, so that

[A, B] = (=1)atez [A, B]" | (1.160)
{A,BY = (=1)eatestl 14 B} (1.161)

1.9.3 Hermiticity

If we consider a term in the Lagrangian like g(z)M (x)q(z), its hermitian conjugate is

(q(x) M (2)q(x))" = )" M (2)7%(x) .
Thus, we need some properties of the Dirac matrices, namely:

Py = P == T = eyt = s
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In order to ensure hermiticity, the external fields must be hermitean themselves:
vl () = vu(z) (1.162)
f(x) = 1.163
Hermiticity @) = u(x) ( )
st(z) = s(x) (1.164)
p'(z) = p(a) (1.165)
and thus
f(z) = 1.166a
ri(x) =r,(x
Hermiticity ‘; ) n(@) ( )
L(x) = 1.(z) (1.166Db)

x and x' obviously transform one into each other. The field strength

a simple way, since [r,, r)l = — [74,7,], and thus

Hermiticity ( :?'j’L(x))T = fRL(g)

= Jw

R
1%

'L also transform in

(1.167)

The matrix ®(z) is hermitian as well, as follows directly from its definition, Eq. (LI30):

Hermiticity ol (z) = ®(x) ,
Applying this to U(x), it follows that:
Ul(z) = e_iﬁq)fw = e_i@ =U"(z)
or
Hermiticity :(:17) i U_ll ()
u'(z) = u" (x)

The covariant derivative transforms as

DUt =8,U" + iU, —il, Ut = —Ut0,U" +iUtr, —il, U =

~U"(0,U —ir, U +iUL,) U

so that

D, U(z)' = —U(z)'D,U(2)U ()"

Hermiticity ;
(%) = up(2)

(1.168)

(1.169)

(1.170)
(1.171)

(1.172)
(1.173)

(1.174)
(1.175)

Finally, with these results, the following transformations are easy to derive:

(F(2))' = Pt (a)

Xi(z) = x4 (2)

Hermiticity

(1.176)
(1.177)
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1.9.4 Lorentz transformations

Lorentz as well as parity transformations are somewhat different to the transformations dis-
cussed up to now, for they involve change in the space-time coordinates. Consider a La-
grangian density depending on a generic field ¢(z). Thus, a transformation of the field will
be a symmetry if:

L(¢'(a"),0,¢(2")) = L(p(x), Oup(x)) (1.178)
that is, if the Lagrangian written in terms of the transform field ¢' at the transformed co-
ordinate ' is the same as the original Lagrangian. Consider a proper, ortochronus, Lorentz
transformation A in Minkowski space:!?

't =AY (1.179)

From a general point of view, Lorentz transformations on the fields can be described through
a unitary operator U(A) (acting on the operators, not on the coordinates), giving:

U (M)e(x)U(A) = ¢/(2) , (1.180)

whereas:

¢'(2) = D(A)p(x) (1.181)
being D(A) a matrix of a representation of the Lorentz group acting on the space of the ¢
fields indices. Then:

U (Me()U(A) = D(A)p(A™ ") (1.182)
=¢'(x) . (1.183)
For a scalar field ®(z), we have the simplest transformation possible, ®'(2') = ®(x), or

@' () = ®(A~'z) (that is, D(A) = 1). Its decomposition in creation and anhilation operators,
a' and a, respectively, is (up to irrelevant normalization constants):

/ d'k6(K — m*)O(k") (e~ * a(k) + e al (k) . (1.184)

Under the transformation Eq. ([IS0), one has:
U~ (A (2)U(A) = / d4ks (K k) (

- / A RS(k* — m?)0(K?) (e H ) + TR 6 (1))

= d4p5(P2—m >e<p0> (e‘“””a(A‘ p)+e ™l (A7lp)) , (1185)

) (e ™ U Ya(k U+e+““U*1aT(k)U)

and then:
(Ma(k)U(A) = a(A k) , (1.186a)
(Na'(B)U(A) = a'(A™'k) . (1.186b)
Acting on a one-particle state |®(k)) = a'(k) |0), it is found:
A [@(R) = U W)a (UM UT(A)0) = al (AT k) [0) = |B(ATR)) . (1.187)
|0)

12Recall that A#,A,7 = 67 = g7, and that (A™")" = A" so (A" AV, =4t
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or

U(A) |B(k)) = |B(AK)) . (1.188)

In terms of the operator U(A), the Lorentz invariance of the Lagrangian, Eq. (LI78]), can be
recast as:
U N AN)L(x)UA) = L(A ) . (1.189)

Let us move now to the spinor case, to study the Lorentz transformation properties of the
fields in the external Lagrangian. The free Dirac Lagrangian density is:

L), d(a)) = () (199, — m) (x) (1.190)

A spinor ¢ (x) transforms as:

U(a') = S(A)(z) (1.191)
Y (2') = (x)y°S™" . (1.192)

The transformed mass term is given by:
V(@) (@) = () ST A P(x) = P(2)y(x) (1.193)

where in the last equality we impose the invariance as in Eq. (LI78). Then the matrices S(A)
must satisfy:

7ST(A) = S7HA) . (1.194)
For the derivative term of the Lagrangian, we have:
V(@)oY (o) = d(a)STHA AL 0, () = ()7 D, () - (1.195)

Here, the derivative QQ refers to the transformed coordinates, and thus 8L transforms as a
vector:
0

g, = = A0, . (1.196)

= oxn

From Eq. (ILI99), it is deduced that:

STHAY ALY S(A) =+, (1.197)
STHA)YS(A) = A" 47, (1.198)

and thus the v matrices are usually said to transform as vectors. Now, in the Lagrangian
with external fields, let us consider the term ¢(z)vy*v,(x)q(x), where the quark spinors are
denoted by ¢(x). The transformed Lagrangian is:

()70, ()¢ (') = @(2)S T (A S (@ )a(x) = Gy vu(x)a(e) (1.199)

which implies that v, must transform as v*(Az) = A*0"(x), or v*(x) = A" v (A ).
Proceeding analogously with a,, s and p, we get

V(@) = AL up (A1) (1.200)
Lorentz a,(z) = Aya, (A ) (1.201)
() = (") (1.202)
P'(x) = p(A'x) (1.203)
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Above, we also used that:
STHA)S(A) =75 - (1.204)

Together with parity (as shown below), this means that v,(z) is a vector, a,(z) is an axial-
vector, s(z) is a scalar, and p(x) is a pseudoscalar. As there is no change of sign, we directly
get:

ri(x) = A1y (A7) (1.205)

Lorentz l;L(x): “plﬁ( ) (1.206)
X' () = x(A™"z) (1.207)

) = (1.208)

X'(A ")

The tensors f% L( ) have a derivative, that also transforms as a vector, thus

(x

Lorentz  f1,""(x) = A,°A P 555 (A "a) (1.209)

pv

As usual, the axial charges will give us the transformation properties of the Goldstone bosons.
Thus,

P'(x) = d(A ') (1.210)

¢ () = Pa(A" ) (1.211)

U'(z) = U(A '2) (1.212)

Lorentz w(w) = u(A™x) (1.213)
D,U'(x) = A,’D,U(AN ') (1.214)

w,(z) = Ay u,(A ') (1.215)

Fl, (@) = AN ESE (A ) (1.216)

(1.217)

Xi(@) = xx(A'2)

The transformation of D,U as a vector is due to the fact that the three terms of D,U contain,

respectively, 0, r,, l,, all of them transforming as a vector. The same argument applies to
d FR’L
u, and F 2"

1.9.5 Parity

Let us consider parity transformations,
't = = (20, 7). (1.218)
The following properties of the Dirac matrices will be useful here:

=1 90 = P (1.219)
P17’ == Y’ = =P (1.220)

Under parity transformations, a spinor of intrinsic parity ng = +1 transforms as:

V(Pr) = nsy"P(x) (1.221a)
V(Px) = ns(x)y’ (1.221b)
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or

V' (x) = nsy" (D) (1.222a)
W (x) = ngh(Px)y" (1.222b)

since 22z = z. In terms of a unitary operator, we have:

Upth(2)U, " = ¢/ (2) = nsy"(Px) . (1.223)
The different terms in the Lagrangian with external sources transform as:

)M (@)a(x) = H(P)M (P20 (P1) = TP M( P a(2) = Tw)M(2)a(x)
(1.224)
In general, there will be field and Dirac matrices in M (x). The transformation on M(z) is
thus:
M'(x) = "M(2x)y° . (1.225)

Let us consider the term gy*vsa,q. We must have:

7“75%(@ = " v57%a,(Px) = —P* Ay vsa,(Px) (1.226)
so that a, transforms as a),(z) = —2,"a,(Px). For the rest of the external source, the
transformations are

s'(x) = s(Px) (1.227)

p'(z) = —p(Px) (1.228)
Parity , y

v, () = P, v, (Px) (1.229)

a,(r) = =2, a,(Px) (1.230)

The change of sign in a, and not in v, (in charge conjugation it was the opposite) induces a
change r <+ [, and, in the same way ocurs with y;,

r(v) = 2,/1,(Pr) (1.231)
Parity L(x) = P r, (D) (1.232)
V(@) = ¥ (#2) (1.233)
V1(2) = x(#) (1.234)

In ﬁ;L we have two indices: the derivative changes under parity as v,, and, again, there is a

change r <> [, which results in

Parity  f1,""(2) = 2,227t (Px) (1.235)

nuv

The parity transformations of the Goldstone bosons are derived from those of the charges
4 which implies a change of sign because

0 (7075> O = s (1.236)
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whence, and as U(x) = eXpi@j

V' (z) = —&(Px) (1.237)

Parit ¢, () = —¢a(Px) (1.238)
T Uy = U (Pe) = U (20) (1.239)
U (1) = u N (Pr) = ul (Px) (1.240)

where we have used Eq. (LI70). For the covariant derivative, 0, r and [ give a common factor
2, , so that:

D, U'(z) " < 0 UNPz) — il (Px)UT(Px) + iUT(t@x)m(;@xg

I N(Px)
2,/ (D,U(Pz)) (1.241)

and we have used Eq. (ILI66). Thus we can write:

DU (x) = 2,/D,U'(Px) (1.242)

Parit
@) = — 2l (2e) (1.243)

At last, for the fields defined in Eqs. (L124)), we can also derive the following transformations:

Pt (x) = 2,02, Fy () (1.244)

Parity
Xx(#)' = £x2(P7) (1.245)

1.9.6 Cayley—Hamilton theorem

The Cayley—Hamilton theorem is a useful tool to reduce the number of independent terms in
the Lagrangian. For our purposes, it can be stated as follows.

Theorem (Cayley-Hamilton). Let A be an square n X n matriz, and let p(\) be its charac-
teristic polynomial,

p(A) = det (A — AL,)

where 1, is the n X n identity matriz. Then,

p(A) =0 (1.246)

Notice that some abuse of notation has been made in the theorem, for p(\) refers to a
polynomial in complex or real variable A, thus being p()\) itself a real or complex number, and
p(A) refers to the formal replacement of A by A, thus p(A) is itself a matrix (the zero matrix,
in this case). We apply it for the two cases we could be interested, n = 2 or n = 3.
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n =2 The polynomial can be written as
p(A) = A2 — (A)A 4 det A
with (A) = TrA the trace of the matrix A. Thus,
p(A) = A — (A)A +det AT, =0

which allows to write det A in terms of traces of A and powers of it.

n =3 We can write

p(A) = A* — (A)N2 + ; ((4)% = (A%)) A — det A

and thus ]
p(A) = A — ()4 + 5 ((4)? = (A%) A~ det A T .

Then, for both cases, we can write the determinant of the matrix in term of the traces, and
this will diminish the number of independent term in our Lagrangians (where, in fact, no
determinants will be present). One can also obtain relations between traces of monomials
involving different number of terms by multiplying p(A) by A", n > 1.

1.10 Chiral power counting and effective Lagrangian at O(p?)

1.10.1 Lowest order Lagrangian and Goldstone boson masses

If we set the quark masses to zero, M = 0, as well as the external field, v, =a, =p =5=0,
every Lagrangian we could build would contain derivatives. Besides an unimportant term
UU' =1, the lowest order Lagrangian we can construct is

Leg ~ (0,U0"UT) (1.247)

where (- - -) denotes the trace in flavour space. Let us assign to U the zeroth order, U ~ O(p°).
We count the derivatives as O(p), since they tipically introduce an external momentum p. This
means that the previous Lagrangian Leg is O(p?). From the definition of D,U, which involves
r, and [, in the same foot that 0,, it seems to be convenient to count r,,[, as O(p), and
thus, DU, u, ~ O(p). The x building blocks will have inside the term s(z) = M + - -, and
one could think that s(z) ~ O(p). However, the term that involves y would be (Uty + xTU),
which, upon expansion, will give the standard mass terms of Klein-Gordon fields, £ ~ m?y?,
so the correct chiral order of x is x ~ O(p?). Another argument not to assign x ~ O(p)
is that, in that case, the leading order Lagrangian would be £ ~ (x), thus no kinetic term
of the pseudoscalar Goldstone bosons would be present, because it enters through the term
(0,U0*UT). The assignments of the chiral order of the building blocks are summarized in
Table [Tl

Given two matrices A and B transforming as A — VzAV,) and B — VzBV]/, we can
construct an invariant term as ABT — VRAVLT VLBTV; = VRAB‘LV];, which, due to the cyclical
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op’) O O
U w,D,U fRF

r,ua lu X5 X+
Table 1.1: Chiral order of the building blocks.

property of the trace, (VRABV) = (ViVRAB') = (AB'), i.e., it is invariant under chiral
transformations. If, instead, we have two matrices C' and D transforming as C' — hCh' and
D — hDh', then, (CD) — (hChthDh') = (C'D), which is automatically invariant.

The effective Lagrangian L.g will have an expansion in chiral powers as
L= LY (1.248)
d
As we have seen, the lowest possible order is O(p?). Given the transformation properties of
the building blocks we have discussed so far, the most general Lagrangian is

L = a(D,UD"U"Y + b(x) (1.249)

Up to now, we have been solely guided by the light of symmetry arguments, but the values
of the constants will never be given by symmetry considerations.

The term (9,U0"UT) gives the kinetic term. Expanding U in powers of ®, we are left with

a{0,U0"UT) = ?g@q)auq)) —
4a
g

which gives the proper normalization of a kinetic term for a = {TQ. For the mass term, take
s =M and p =0 to get

(970" 7" + 0,md"n + 20,7+ Oy + 0, K0, K~ + 9,K°0,K°)

2b

b(x+) =b 2Bo((U + U') M) = —ﬁ230<<1>2M> -
4b 1
=~ 2 (m 7 2 TR 2 (1 2m)

+ (4 my) KTK™ + (m+ms)K°K_'O) :

where we have taken M = diag(m,, mgq, ms) and m, = my = m, which means exact isospin
symmetry. The mass term for 7% is thus

4b
—— 2By m = —m?

f? "
The constant b can thus be absorbed into By with the definition b = f;, and thus

m2 = 2By m (1.250a)
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S

Figure 1.5: Feynman diagrams for the pion weak decay constant, f..

m2 = 2B, (m i m5> , (1.250D)
N+ 2
m2 = 2B, <m+3m> . (1.250c)
The most general effective Lagrangian at O(p?) is thus [16H19]:
f? f?
£? = Z<D#UD“UT> + () (1.251)

which depends upon two constants, f and By, which is hidden in the definition of y,. Even
without the (experimental) knowledge of these constants, we have achieved predictive power,
because, from relations Eq. (L250), we have

3m? +m2 = 4mj (1.252)

which is the well-known Gell-Mann-Okubo mass formula, which is satisfied within 10 %.

1.10.2 The weak decay constant of the pion at O(p?)

To obtain an experimental value for f, we calculate, from our Lagrangian, the lifetime 7 of the
pion. The charged pion ©* decays mainly to p*v, through an intermediate W, see the left
diagram of Fig. for a very schematic plot, with a branching fraction of I';/T" ~ 0.99. The
hadronic term of the amplitude, corresponding to the vertex 7© — W™, represented in the
right diagram of Fig. by a blob, is given by the Lagrangian term contained in (D,UD*UT),
with the substitutions of Eq. (L7,

v, = —a, = —235 (TJFVVJr + h.c.)

which results in the Lagrangian

Ly = —92f (WHT.0" ) + W, (T]0"®)) =
9f L e
= % (Vi 0n™ + ViV, o)

The leptonic vertex is taken from the standard electroweak Lagrangian, and the whole ampli-
tude is

M = =G pViafu(v,)p(l = s)v(u")
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V242
8M2

is the Fermi constant. Finally, the decay rate is

1 GEVidl 2 LAY

_— —Flual - 1— —H

T 47 Sy, m2
with the values 7 &~ 2.6 - 1078 s, Gp ~ 1.17 - 107! MeV 2, m, ~ 140 MeV, m,, ~ 106 MeV
and |V,q| = 0.97, we get the value f ~ 93 MeV. The meaning of this constant, which from

now on we call the pion weak decay constant, and denote with f,, is thus clear: it gives the
strength of the weak decay of the charged pion (whence its name).

where Gp =

1.11 Chiral Lagrangians for SU(2) and SU(3) at O(p*)

In this Section, we give the NLO Lagrangians, considering first the SU(3) case and later
discussing the SU(2) ones.

1.11.1 SU(3) and standard power counting formula

With the techniques described so far, that lead us to the O(p?) Lagrangian in Eq. (L249), one
can construct the most general Lagrangian up to O(p*), that is, a Lagrangian which includes
all the terms with O(p*) power counting and invariant under the symmetry of the theory. For

SU(3), this reads
= L(D,U'D"U)? + Lo(D,UD,UY{D*UTD"U)
+ Ls(D,U'D*UD,U'D"U) + Ly(D, UTD*UY (XU + xUT)
+ Lsy(D, U DFU (XU 4+ UTX)) + Le(x'U + xUN? + L (XU — xUT)?
+ Lg{(x'UX'U + xU™xU") —iLo(f&' D, UD,U" + f#*D,U'D,U)
+ Lig(UT f8U frw) + Hi{fruw £+ fruwf7) + Ha(xTx) (1.253)

The L; attached to each term of the Lagrangian are the so called low energy constants,
which we will discuss later on, in the context of the SU(2) Lagrangians. To reduce the number
of independent constants and thus have more predictive power, one should reduce the number
of independent terms of the Lagrangian to the minimum. This can be done through the use
of trace identities, like the ones shown in Subsec. [[.9.6] and the use of the classical equation
of motion of pions, derived from Eq. (L249)). If this is not done, one would have a correlation
between the different low energy constants attached to each term of the Lagrangian.

The chiral expansion is performed over a typical hadronic mass scale A, ~ 1 GeV, which
roughly corresponds to the more massive states in the spectrum in Fig. [[LT], that are integrated
out, like the p, w, etc.!® In this way, comparing the O(p?) and O(p?) Lagrangian, one has

f2/4

Li ~
As

~107% . (1.254)

13The lightest scalar resonances, o, &, fo(980) and ag(980), require extra qualification that will be fully
discussed along this thesis.
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Also, from the unitary corrections, one can deduce [201]:

Ay Anfr ~1 GeV . (1.255)

The standard chiral power counting of a connected diagram, p? (where p is a generic small
momentum compared to A, ~ 1 GeV), obeys the equation [18,221]

D=2+ Ny(d—-2)+2L. (1.256)
d

In this equation, d is the chiral dimension of a vertex, N, the number of vertices with dimension
d and L is the number of loops. Each derivative increases the counting by one unit and the
lightest quark masses add two units to D. The O(p?) or leading order (LO) calculations have
D = 2 with no loops (L = 0) and involve only d = 2 vertices. For the O(p*) ones, or next-
to-leading order (NLO), D = 4, and one has diagrams with L = 1 that involve only d = 2
vertices. There are also diagrams with L = 0 with only one d = 4 vertex, with the rest of
vertices having d = 2.

1.11.2 SU(2) Lagrangian in O(4) notation

The original Lagrangians for SU(2) given by Gasser and Leutwyler [I8] were written in terms
of invariant scalar products of O(4) vectors, instead of traces from SU(2), since these two
groups are isomorphic. In that notation, the SU(2) chiral Lagrangians at O(p?), Lo, and
O(p*), L4, are:

2
£E<72()J(2),GL = jquAV“UA +21%(xaUa) (1.257a)

L .c =1 (V*UAV,UL) + 1 (V*UAV Us) (V UV, Ug) + I (xaUa)’
+ U (V*xaVUA) + 15 (UaFw apFpcUc) + 16 (VU AF,L 48V Up)
+ 17 (RaUa)* + hn (xaxa) + ha (Fu,apFE4) + hs (RaXa) (1.257b)
Above, uppercase subscripts denote the components of the O(4) vectors, A = 0,1,2,3,
whereas, in the following, lowercase ones denote the last three components, ¢ = 1,2,3. The

pion fields are included through the O(4) real vector field with components Uy (z) of unit
length, UpsUs = 1, as:

[j(l‘) = (Ul, UQ,Ug) = 7?1(;’) = }‘ (71'1,77'2,71'3) (1258)

— 1 hd 1 —
Ul(z)=+/1-U(z)2=1— 5U2 - gU4 - (1.259)
The relation between the charged and Cartesian pion fields is given by:

+ ™ F iﬂ'Q 0 3

=—5 o= . (1.260)

The vectors x;(x), xi(x), are proportional to the scalar and pseudoscalar sources,

Xo = 2Bs(x) | (1.261)
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Xi = 2Bp'(z) | (1.262)
Yo = 2Bp°(2) , (1.263)
Xi = —2Bs'(z) . (1.264)

The explicit chiral symmetry breaking due to the finite u and d quark masses enters through
the xo term, by putting xo = 2B(s(z) + m). Here, 2B = m? is the pion mass at leading
chiral order. That is, in our notation m represents the pion mass at LO, i.e., the parameter
that appears directly from the Lagrangian, while m, refers to the physical pion mass. We
consider exact isospin symmetry, so that m is the algebraic mean of the v and d quark masses.
The fields s°(z) and p’(x) refer to the scalar and pseudoscalar c-number external sources, in
order. The parameter B is related to the value of the quark condensate in the chiral limit
(¢'¢?) = —0" f2B [18]. In this notation, the covariant derivative V,, is defined by:

V,uUO = aqu + a,u,iUi (1265)

3
VUi =0,U; —a,;Uy+ > €,;Up (i=1,2,3) (1.266)

j,k=1

Finally, the tensor F),, 4p is defined by:
(V,uvl/ - VVVM)UA - F,ul/,ABUB (1267)

It is customary to employ the finite and scale independent constants I; defined by

L = 0 +%i

3277
100 = g (o)
R
hi = B 40 2
W) = g;(ﬁmog?;) ,
R = u* (:—(logéhr—kl”(l)—l—l)) : (1.268)

Above, n — 4 is the dimension of the Minkowski space, and the quantity R is infinite. It is
cancelled with the infinities that originate from loops, through the loop functions calculated in
dimensional regularization, as seen in Appendix [Blfor the case of wm scattering in the presence
of a scalar source, studied in Chapter B or in Sec. [LT2 where the scalar pion form factor is
worked out as an example. The dependence on the renormalization scale p is also reabsorbed
by the constants [;. The [; are, up to a numerical factor, the renormalized coupling constants
[ at the scale i = m ~ m,. In the chiral limit the I; are not defined as they are then divergent
quantities. We have also defined analogously the h; low energy constants. The needed ~;, J;
coefficients are [18]:

Nn=3, M=3. W=y W=2, B=—g, %w=—3, w=0.  (1.269)

§1=2, 3=—, 63=0. (1.270)
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1.11.3 SU(2) Lagrangian in matrix notation

The Lagrangian written before can be put in the general matrix notation that has been worked
out up to now (as in the case of SU(3)). For that purpose, the U matrix is written in terms
of the components Uy as [203]:

U(x) = Uy(x) +i70(x) | (1.271)
and then, the Lagrangians can be written as:
@) f? oS
Lsve) = Z(DMUDNU ) + Z<X+> ; (1.272a)

l !
L8 = DD + L(DUD,UN (DU DU

I I
+ 2 (U + UxDY? + 2D, UD*X! + D, D"U")

16 4
! I

+§5<2 Ruprut — o — (R g”>+¢§6< " pruD Ut + fE DMUTDYU)
I hi+h , V

— 1%( Ut = UxN? + =00t — 2ha(fE £17 + FE 1)

hi—h

% (Ut +UxXH? + (U = UxH? = 20U U + UXTUXT)?) |, (1.272b)

and we have rewritten the leading order Lagrangian for reference easiness.

We finally note that for SU(2), alongside with the so called exponential parametrization,

Ulz) = exp (@“?(D) , (1.273)

where ® is given by Eq. (LI3T), there is also another frequently used one,

Ulz) = W o(x) = /F? — 2(x) . (1.274)

related indeed to Eq. (L271)). All parametrizations must give the same results for on-shell
amplitudes or observables in general, but the relation of the parametrization in Eq. (L274)
(for the Lagrangians in Eq. (IL272)) to that of Subsec. is that both give the same results
also off the mass shell.

1.12 Self-energy, form factor and quadratic scalar radius of
the pion

In this Section, an explicit calculation from SU(2) ChPT is worked out, namely, the pion
scalar form factor and, from it, the pion quadratic scalar radius. In this way, through an
explicit example, we put in practice the previous theoretical formalism. As a by-product, it
also gives us an introduction to the renormalization procedure, the cancellation of divergences,
and all that. Finally, as we will have the opportunity to compute an observable quantity, that
can be compared with the experiments, we can have a first idea on the accuracy of ChPT.
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-3(p?) O
> . > = > > + > 0—>

Figure 1.6: Diagrams for the one-loop calculation of the pion self-energy. Full
circles represent O(p?) vertices, while the empty ones correspond to the O(p?)
vertices.

1.12.1 Pion self-energy and O(p*) pion mass. Renormalization

The calculation of the pion self-energy, —iX(p?), is necessary in order to take into account
the renormalization of the wave function of the initial and final pions. It also defines the
physical mass, m,, in terms of the bare mass, m. The diagrams that contribute to the pion
self-energy at O(p*) are depicted in Fig. We use the O(4) form of the Lagrangian, with
the parametrization given in Eq. (L259). There is a one-loop contribution from the O(p?)
Lagrangian, as well as a tree level contribution from the counterterms of the O(p*) Lagrangian.
One has: B2 A (2 o] 24 (2

_ 3m () | 2mly  piAo(m) (1.275)

2f? f? f?

Notice that X(p?) is linear in its argument. The one-point function Ag(m?) is given in
Eq. (B.2), Appendix Bl together with the different n-point loop function used in this and

other chapters.

%(p?)

The pion bare propagator,'* Ay(p?), is given by:

. )
@Ao(p2) =

R 1.2
P —m? 0" (1.276)

where m? = 2Bm, the pion mass at O(p?). The summation of the Dyson series, as seen in
Fig.[L7 results in the appearence of the self-energy in the renormalized or dressed propagator,

Ar(p?),
iAR(P?) = iAo(P?) 4+ iAo(—iX)iAg + - - - = iAg(1 — iZ iAR) (1.277)

so that:

ST -V B i _ !
iAp(p”) = 1+ iAo(p?) i2(p?) - Ao—l(pQ) —2(p?) C p2—m2— B(p?)

(1.278)

If we make a Taylor series in 3(p?) around p* = m?2, we have:
B(p?) = B(m2) + (p* —m2)¥ (m2) +-- -, (1.279)
and then we can write:

AR (P =p" = m? = 3% = (p —m2)(1 = X' (m2)) + (m7 —m? = %(m3)) . (1.280)

™

We impose now the condition that the dressed propagator has a pole for p? = m?2, the mass

of the pion at O(p*). Recall that, at O(p?), we have m? = m?. Then the mass of the pion at
O(p*) is given by the equation:

m2 —m? —%N(m2) =0, (1.281)

s

4From now on, we ommit here the 0% in the propagators, since it is not relevant for our discussion.
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iAp iA

Figure 1.7: Dyson series for the propagator: the dressed propagator consists of
the sum of all possible insertions of self-energies in the bare propagator.

and the dressed propagator at O(p?) is written as:

i i+ ) iZ

“An(p) = P-m)(1-%)  pP-m  pomd’ (1.282)
where the constant Z is the so called wave-function renormalization constant:
Z=146Z =1+ (m2). (1.283)
The bare propagator is defined in term of the bare field ®, as:
iDo(p?) = / ALz (0 | TP (2)®0 (0] 0) (1.284)
whereas the dressed propagator reads:
iAR(p?) = / Al (0 [T g ()P R(0)]] 0 (1.285)

which means that the renormalized field is defined in terms of the bare one as ®p = Z1/2®,,.
Whence, in order to have a proper normalization in our amplitudes, when these have n external
legs, we have to multiply them by (Z/2)" ~ 1 + 50Z. This procedure is called wave function
renormalization, since by means of this procedure the fields, i.e., the wave functions, are
renormalized.

Now we can calculate m?2 taking into account Eq. (L28])) and Eq. (L275). We can write:

_Amtlz +m2Ag(m?)
— T ,

and, as stated in Sec. [[T1], the /; are defined such that the divergences of the loops (in this
case, Ag) are cancelled. Thus,

Y(m2)

™

(1.286)

m4—

4mily 4+ m2 Ag(m?) = _F;?l?’ : (1.287)

which is indeed finite, and we have taken into account that m? — m2 = O(p*), as Eq. ([L281)

shows. This is an important result: the mass at O(p*) remains finite, and also independent
of the renormalization scale u, and it is:

2

m —
m2 =m? (1 - ng> + 0% , (1.288)

Notice also that, as one would expect, the masses of the Goldstone bosons go to zero when
the masses of the quarks go to zero (because m? o ).
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e Qo

Figure 1.8: Diagrams for the coupling of a pion (solid lines) to the axial current
(wiggly lines), needed to calculate f, at O(p*). Full and empty vertex are O(p?)
and O(p*), respectively. The leftmost diagram, which is O(p?), was included in
Fig. [LH, whereas the other two are the O(p*) contributions.

In the same way that we have calculated the physical pion mass, we calculate the physical
weak decay constant of the pion, f,, by repeating the calculation in Subsec. [LI0.2 at O(p?),
with the basic diagrams of Fig. [L8 One finds that:

2

fr=1f (1 + 16777:2]”2 l4> + O . (1.289)

1.12.2 Pion form factor and quadratic scalar radius

The diagrams that contribute the to pion form factor at O(p?) are depicted in Fig. [LI There
are contributions from the O(p*) Lagrangian and also from the O(p?) to one loop. As we shall
see below, the latter have infinities that can be derived with some renormalization method
(dimensional regularization here), and the former are defined in such a way that they cancel
these divergences (hence the name of counterterms). The different amplitudes, from left to
right and top to bottom in Fig. [[L9, read:

iTy = —2Bi, (1.290a)
2 4 2

T, = —2B@W, (1.290b)

. 5Bi

iTy = —?Ao(mz), (1.290c)

. 2Bi m?

iTy = f2<A0(m2)+<q2—2> Bo(q2,m2)> : (1.290d)

where the loop functions Ay and By, as commented, are given in Appendix [Bl The infinite
and scale dependent terms arise from these loop functions and from the [;, see Eq. (L2685,
namely:

m? - 1 -
AP = +—— BX® = 4——
0 +167r2R’ 0 +167T2R’
1 - 1 -
I3 647r2R’ Iy +16772R’ (1.291)

where R = R + In(m?/p?), and R is given in Eq. (LZ68), and the infinite terms add up to:

. i - m?
T :qu—‘l = —QBZW

=0

R. (1.292)

The whole amplitude is then:
iTs = i(To + T + Thnite) - (1.293)
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Figure 1.9: Diagrams needed for the scalar form factor of the pion at O(p*). The
wiggly lines represent here an scalar source, whereas the solid ones denote the
pion. Full vertices represent O(p?) vertices, while the white ones are O(p*).

We will consider later Thyite, the finite part of the O(p*) contribution to the amplitude. Now,
as seen in Subsec. [LT2.1], we have to multiply the amplitude by a factor (Z(/2)? = Z = 1462,
with Z given in Eq. (IL283)), and then:

iTsZ = i(TodZ + T + Ty + Thnite) + O(P°) . (1.294)
Terms like T7°6Z and Tnite0Z are neglected because this is an O(p?) calculation, and they

are O(p%) (07 is O(p?) and T and Thpire are O(p*)). The important point to stress is that,
now,

TodZ +T> =0, (1.295)

that is, the divergences cancel exactly. The final, finite result is:

Tht =Ty + Thoseo = T 2B (7o g (2 M\ g s 1.296
final — 0+ finite — O_W 49" —i3m- — | g _7 U(Q,m) ( )

with By the finite and scale independent piece of By (¢f. Appendix [B]).

Actually, the form factor is defined as Fy(¢*) = —MTgna = 2B(---) = m?(---). Ex-
panding m? in terms of m2 up to O(p?), and for low ¢*, one has:

2 2 13
P =m2(1- -7 _(b—1)+ L _ <l—>
(¢) = me ( 3272 2 (b-1)+ g JZAET

From this expansion, the quadratic scalar radius of the pion is defined as:

1 0F.(¢%) 1
F.(¢*) = F.(0) |1 :F,T()(l —(r)g? )
(q) ( ) ( + Fﬂ(0> aq2 q2:0+ ( ) + 6<rﬂ>q +
so that it results: 5 13
2 f— 7 _
() = g2 [E <l4 12) (1.297)

Just as an estimate, taking I3 = 2.9 +2.4 and Iy = 4.6 £ 0.9 [I8], we get (r2) ~ 0.6 fm*. For
more details on the issue of the quadratic scalar radius, see Ref. [I49] and references therein.
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1.13 Including explicit resonances in the Chiral Lagrangians

So far, the interactions of the lightest hadrons have been derived as an Effective Field Theory,
resulting in a Quantum Field Theory given by the Lagrangians of the previous sections. In
Refs. [105,106] an extension of this formalism is performed, allowing for the inclusion of
hadron states other than the lightest pseudoscalar mesons. At lowest order, these explicit
resonances include scalar (S;, JF¢ = 07F) and pseudoscalar (P, 0~) singlets, scalar (Ss,
0*1), pseudoscalar (Sg, 07 1), axial (A, 177) and vector (V, 177) octects. The kinetic part of
the Lagrangians is given by:

1 1
Lin(R=V,A) = —i(VARMVVR”“ — §1\41%5RWRW> (1.298a)

1 1 1
Lin(R=S,P) = §<V”RV#R — MAR?) + 5awm#Rl -3 n R (1.298Db)

where R corresponds to octets of resonances, and R; to the singlets. The covariant derivative
defined by VR is given by:

V.R=0,R+[T,,R) (1.298¢)
1
Tu=3 (uh (0 — i) u+ w (9 — ily) uf) . (1.298d)

The latter has already been introduced in Eq. (L.II8b]), but we include it here for reference
easiness. Since R is an octet, the action of the covariant derivative corresponds to the adjoint
representation. This is why it appears inside the commutator symbol.

The interaction Lagrangians are given by:

L = fkmy wy —i—z’i‘%(Vuyu“u”) | (1.298¢)
Lroe = 2%@,” . (1.2081)
Lo++ = ca(Sguu’') + cnlSsx+) (1.298¢g)
Lo++ = €451 (uut) + 6,51 (x+) (1.298h)
Lo+ = idy(Psx_) , (1.298i)
Lo+ =idnPr{x_) . (1.2985)

In the above Lagrangians, we have introduced one new notation,
Y =F"+FL (1.299)

where the F}"; are defined in Eq. (LI24). The different octets are given by:'?

Ak &
Sy = ag — o % K;° , (1.300a)
_ -0
K; Ky  —Zfs

5Note that, in Py and P;, the fields m, K and 7 refer to particles different from those in the lightest
pseudoscalar nonet, but with the same quantum numbers.
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Py = T =+ KO ’ (1.300Db)
K- K° —
v S AR
Vi, = o~ _% + K*0 , (1.300c)
K*~ K jgws "
4+ b af Ky
Ag=| o _%;g oKD . (1.300d)
K K _%fl w

Above, the vector (V,,,) and axial-vector fields (A,,) have been introduced as antisymmetric
tensor fields. Denoting both type of fields with W,,, they are normalized such that, for a
state |V, p) with momentum p and polarization vector €(p), one has:

(0 (Wi | W, p) ::jvzw,<pﬂeu<p>-—-pye#<p>> , (1.301)

and the propagator is given by:

S 2
© My,

T'iWuWe =5 o
OIT (W W} 10) = i

<gupguo(p2 - MI%V) — GupPvPo + GuoPvDp — (:u A V)) .

(1.302)
For a formulation in terms of vector fields instead of tensor ones or a discussion on the
differences, see Refs. [106}204-206].

In subsequent chapters, we will use the Lagrangians for the scalar and pseudoscalar nonets.
However, when dealing with the vector and axial fields in Chapter B we will introduce an-
other formalism, in which they are considered as Yang-Mills fields, through minimal coupling,
identifying the classical external gauge fields r* and [* with the proper combinations of axial
and vector fields.
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2.1 Introduction
Unitarity is one of the cornerstones of quantum mechanics. In plain words, it is the statement
that the probability is conserved. It is difficult to overestimate its importance. Its fundamental

implications will be treated in Sec. Z2] in the context of S-matrix theory. An introduction to
the formalism of partial waves is delivered to Sec. 2.3

One of the most striking features of the strong interactions is the conspicuous apearence of

63
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peaks, dips and valleys when the results of experiments on cross sections are plotted versus the
energy of the particles involved. These peaks (sometimes dips) are evidence of intermediate
states or particles, called resonances, whose presence makes the reaction more likely, hence
increasing the cross section (or producing other effects in other observables). The difference
with elementary particles is just a matter of life time: resonances are much more short-lived.
Of course, the concept of isolated resonance is an ideal one. In most cases, what is seen in
the experiments is the superposition of several efects, as the presence of other resonances,
thresholds, and so on. An introduction to the appearence of resonances and bound states in
the context of one-dimensional Quantum Mechanics is found in Sec. 2.4l A general approach
to the appearence of resonances in the amplitudes will be given in Sec. [2.5]

When the amplitude for a given process is known mathematically for the physical region in
terms of a certain variable (usually, the center of mass energy squared, s), one can analitically
continue the amplitude to the complex plane of that variable. In this picture, the resonances
correspond to simple poles in the complex plane for that variable, being the pole position
related to the mass and width parameters of the resonance associated to. As the resonances
appear as simple poles in the so called unphysical Riemann sheet, in Sec. we will treat the
topic of the Riemann sheets in detail.

Most of the content of this thesis is related, to a greater or lesser extent, to Unitarized
Chiral Perturbation Theory (UChPT), which is a non-perturbative scheme to be used together
with the perturbative results of Chiral Pertubation Theory. The master equation of UChPT
and its foundations will be studied in Sec. 7l Finally, a real example of the application
of UChPT as well as the other general results of this Chapter can be found in Sec. 2.8
namely, the two-meson scattering in the channel I¢(JF¢) = 17(0*") and the appearence of
the ag(1450) resonance.

2.2 S-matrix and unitarity

When dealing with S-matrix theory, we have to assume that the states are asymptotically
free. Given a system in an initial state |3), the probability amplitude of finding the system
in the final state |«) is given by the S-matrix element (« |S|3). For simplicity, let us assume
that the set of states {|n)} forms a complete and orthonormal set of states,

(mln) = Omn (2.1)

> m) (m]

e., they form a basis that allows one to express any state |¢) as a linear combination of
them, |¢) = 3, an |n), the coefficients satisfying 3, |am|* = 1. Unitarity is the statement
that, given an initial state |¢), the probability that when, measured, it ends in some of the
basis state |m), is one. That is,

> l(m S| ) P=1=3(s]s"m) (m|S|¢) =
— <¢‘STS‘ ¢> = Z, at, m <m’ ‘STS’m>
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As this must hold for any choice of the coefficients a,,, we must conclude that

<m/

where the last equality can be proved analogously.

S1S|m) =Gy STS=T  SST=1 (2.3)

Let |p) be the state of a spinless meson with four momentum p such that p? = m? = p°°— 2.

The normalization of these states is given by

(P'lpy = 2m)*2p°6 (5 — 1) (2.4)

and orthonormality can be expressed through

[ (1 gy 1) ) = b 25)

Of course, these relations can be generalized to multiparticle states using the direct products
of monoparticle states.

Now, let us consider a two-particle scattering process i) — |f),

a(p1) b(pz2) — c(ps) d(pa) (2.6)

We can split the S-matrix as
S=1+T (2.7)

explicitly separating the situation when the particles are widely separated in space and thus
not interacting at all. Due to energy conservation and translation invariance (the center of
mass motion does not affect the scattering amplitude) we can write:

B) (2.8)

The states |3) and |«) represent the same states than |i) and | f) once the center of mass motion
is removed, and then, the operator S5 connects states with the same total four momenta.
Analogously, we can split the T-matrix, and define

(f1S]i) = 2m)16W (2; — 2,) («|S

Sy =14+1Ty» (29)
The unitarity condition of the S-matrix translates into the T-matrix as

T —T"=4TT' (2.10a)
Ty — Tl = iT5T), (2.10b)

and, by inserting a resolution of the identity operator in terms of the set of intermediate states
on the right-hand side of Eq. (ZI0), we can write the latter equation as:

(@[T 8) = (a|Th] 8) =i 3 [aQu(a|Ts|a) (a1},

8) (2.11)

where the element of phase space is:

1Q. = [T[&*mem)'6(2 = > p) | (2.12)
=1 =1
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being n, the number of particles in the state a. For the two-particle case, the phase space is
given in terms of the center-of-mass variables,

~dQ D
Q0 = 5 ant -

Above, s the Mandelstam variable that represents the total center of mass energy squared,
and |p] is the center of mass momentum.

(2.13)

2.3 Partial waves

In general, for a given two-spinless-particle scattering process like Eq. (2.6), it can be described
by the Mandelstam variable s and two polar angles, # and ¢. However, rotational invariance
ensures that the matrix elements are independent of the azimut ¢. As a result, we can
always choose the coordinate axis with the z-axis pointing in the direction of the initial three-
momentum (the direction of the center of mass). We take profit of this fact to expand the
T»(s,0) matrix elements' in terms of Legendre polynomials® P (cosf) as

Ty(s,0) = i(?L—i— 1)Pp(cosO)T(s) , (2.14)
Tr(s) = ;-/_19C089 Pr(cos0)T»(s,0) , (2.15)

with cos @ = p-p’. The amplitude T} (s), called partial wave amplitude with angular momentum
L, depends now just on the variable s.

By inserting the partial wave expansion into the unitarity condition Eq. (ZI1J), the Lh.s.
side becomes:

(T | B) = (a|TS,

B) =2i>" Pr(cos )ImT{*(s) , (2.16)
L
and the amplitudes on the r.h.s. give rise to:

(o[ ) (a7

BY =S T ()T} (s)(2L + 1)(2L' + 1) Py (cos 0') P (cos 0") . (2.17)

Taking into account Eq. (ZI3]) with dQ = dcosf'd¢’, and also the addition theorem for the
spherical harmonics [207, Sec. (3.7)]:

/! 4 * / /
Pr(cosd) = ﬁZYLM(e,O)YLM(e L&) (2.18)
M

'We do not distinguish here between the operator and the matrix elements since no ambiguity can arise in
what follows.
2Their normalization is given by:

1
o1 1/
/1(1(:030 Pr(cos )P (cosf) = 2;_i 1

DN =
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we have:

2m
d¢'Pp(cos0") =

) 2L+ 1 Z/ de' Y (0,0)Y0 (0, ¢") = 27 P (cos 0) Pr(cos ') . (2.19)

Then, the cos# integral, given the Legendre polynomials normalization, can be performed
straightforwardly, and the final result is:

i3 [aQu (o |7y

We end with the important result:

a) (a|Th|8) = 4'7|Tpafz 2L + 1)Py(cos )TV () TP (s) . (2.20)

(a8) |Pal ), yo(Ba)* o
Im7 ) (s) = ZSW\[T ()T ()0(s — %) | (2.21)

where s the s-value for the threshold of the state a. We can write the last equation (which
is a sum over open intermediate states) as a product of matrices, as

ImTy, =715, p T} (2.22a)

where p is a diagonal matrix:
’p1|

Pij = 87'('\/_ z]

(2.22b)
This equation can be written also as:

ImT; ' = —p. (2.22¢)

Let us consider an elastic reaction, which means that the process is ab — ab with no possi-
ble intermediate states other than the ab state itself. Then the matrices are one dimensional,
and T;' = v —ip so that Ty, = (v +ip)/(v® + p?), with p = |p] /(87+/s), so that, writting

v =1/UV?+ p?cosdr, p=+/v*+ p?sindy, we have

8m/s
1Pl

The phase dr,, which depends on s, is called the phase shift.> We define the S;, matrix element
for the elastic process as

17 =

ePL sin &, . (2.23)

Sp=1+42ipTy, =1+ 47|f\1/_ = %L (2.24)

and, of course, |SL|* =

The generalization to the inelastic case, when n coupled channels are involved, defines the
S-matrix with angular momentum L, Sy, as:

Sp =1+ 2ip'*Typ'? (2.25)

3From a wave function point of view, the only effect of elastic scattering on the asymptotic wave function
is the modification of the outgoing part of it by this factor e?**¢: the scattering shifts the phase.
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Due to Eq. (Z22al), S;, satisfies:
S8t =518, =1. (2.26)

Unitarity imposes then that [S7| < 1, because, for n > 2 channels,

(SeS)mm = 1= |SE[ 4 |52 4+ s = 5P+ 3 i

For a two-particle scattering, the S-matrix can be parametrized in term of three real param-

eters as
g — ne2i i1 — n2ei01792) (2.27)
L in/T = 1ei(o1+52) 1e2is2 : '

For the nucleon-nucleon scattering, to be studied in detail in Chapter [{, one usually writes
1 = cose€, and e is called the mixing angle.

2.4 Resonances: a first approach from Quantum Mechanics

In this section, a first approach to the general features of resonances is given from the point
of view of elementary, non-relativistic Quantum Mechanics. For that purpose, we consider an
example from one-dimensional quantum mechanics, which is rather simple, yet illuminating.
Let us consider the scattering of two particles in one dimension, interacting through a central
potential. The Hamiltonian of the system is given by:

R h2 . h2 .

Hgys(71,75) = _TWVI - TmQVg + V(|71 —7%]) . (2.28)

Now, we separate the relative motion, 7, from that of the center of mass (CM), ﬁ,

B— maT + Moty
my + Mo
M =my +my (total mass) ,
pw=mymsy/(my +ms) (reduced mass) . (2.29)

The inverse of the first two equations are:

Mo=R4—2
mi + Mo
~ m
H=R—- ———F. (2.30)
my + Mo
The relations between the gradients are:
- - m o
Vl - + r ! )
my + Me
Vy=-V,+ —"F"—Vp, (2.31)
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in an obvious notation. Hence,

oo, B, R, h-,
“ VT g Ve = g Vi 5, v (2.32)

Whence, we can write the wave function as W(r},75) = wCM(E)w(F), and the Schrodinger
equation can be separated:

Hon You(R) = Eom vom(R)

Hy(7) = E(F) (2.33)
being
N hZ -
Hen = —mvﬁz ,
N "2 .
H= —ﬂv%vqﬂ). (2.34)

In words, we have reduced the movement of the system to that of the CM, behaving as a free
particle (because there is no potential in its Hamiltonian) of mass M, and that of the relative
movement, which is that of a particle of mass pu interacting through the potential V. Notice
that the center of mass momentum, ]3, and the relative one, p, are given by

P = —ihﬁR = —ih(ﬁl +62> =p1+Da,

mo T, my §2> _ Aﬁ _ L@ , (2.35)

mi + ma mi + my mi + mo mi + may

7= —ihV, = —ih(

Now we study the particular case of two identical masses, m; = my = m, so that M = 2m,
pu = M/2, and the relative three-momentum is p = (pj} — p2)/2. The relation to relativistic
kinematics, which is the usual one in this thesis, goes as follows. The four-momenta of the
two particles in their CM of mass frame is:

P = (fd—ﬁ) p2 = (f —ﬁ) : (2.36)

Thus, p; — po = 2p. This momentum is related to the energy F as E = —%, so that

NG — 5 P2 1 1
_ ~ = —-m4+—99yE=m+-FE 2.37
2 \/m m 2m m 2m H m 27 ( )
or

Vs=2m+E , (2.38)
that is, the above threshold condition /s > 2m translates into F > 0.

We now turn our attention to the specific potential given in Fig. 2.1l specified by:

0 for lz| >a+0b,
V() Vi>0 for a<|z|<a+b, (2.39)
Vo <0 for lz| < a .
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Vi Vi
——————————————————— V=0
r=—(a+Db) r=—a T =a r=a+b
L2 L1 LR R1 R2
Vo
Figure 2.1: The potential for the study of scattering, resonances and bound states.
The most general form of the wave function can be written as:
Vra(x) = I2e™ + Opae™™* | Vpa(x) = Ipoe™™ + Opoe™™
Vpi(z) = Ine™* + Ope ™ | Ypi(z) = Ine™® + Opie™™* | (2.40)
Vrr(@) = I pe™™ + Oppe™ ™"
with k, k1 and ko given by the Schrodinger equation,
k=\/2uFE |
k= /20(E = Vo) ,
ko =\ 2u(E — Vi) . (2.41)

We must obtain the coefficients of the exponentials in the wave function by imposing continuity
of the wave function and the first derivative in x = £a and x = £(a+0b). The problem is easier
to solve by considering solutions with well-defined parity, since the potential is symmetric
under z — —z. Define functions ¢*(z) = ¥(x) & ¥(—=x), so that

by~ L@ @)

U(—x) = : (2.42)

and with ¢*(z) = £*(x). We just need to consider the zones LR, R1 and R2,

Vin(r) = A (M7 £ e7h7)
Vi () = Bee™ 4 Crem (2.43)
Vi (z) = Die™ + Prem*

The relation among the two set of coefficients is given by:

B, +B_ Ci+C_ Dy +D_ P, + P
= Op1 = — Ipp = —F Opy = ———

I S+ T oo Dy +D- _
R 9 9 2 2
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OL1:B+;B_ IL1:O+;O_ OL2:D+;D_ ]LQZPJFQP_
La=00 o= d (2.44)
The solution of the continuity conditions can be written in terms of A, as
2kyBret™ = Ay (€M% (ky + k) £ € F1 (ky — ky))
2hpCle ™20 = Ay (™19 (hy — ky) £ €™ (hy + k) )
4kkyDopet ™) — AL GL(E)
4kkyPre”*eth) — AL By (E) (2.45)
where the functions G+ and F'+, that play an important role in the following, are given by:
Gi(E) = ™™ et™ (k4 ky) (ko + kp) £ ™20 ™ (K + ko) (ko — ki)
+ e Tl — ) (ky — k) £ 720Nk — ko) (y + k1) (2.46a)
Fi(E) = e"*0e ™Mok — ko) (ky 4 k) £ e7™20e™™10 (k — ko) (ko — k1)
+ ek tikia (o foY(ky — k) £ e7F2Pe TRk 4 ko) (kg 4 Ky ) (2.46D)

We will take, for the numerical examples in what follows, V5 = —800 MeV, Vi = +400 MeV,
a =3 fm and b = 3 fm, and a mass m; = my = m = 140 MeV, similar to that of the pion.

2.4.1 Bound states: \, < E<O0

Let us consider first the case Vy < E < 0, which gives a discrete spectrum of bound states,
lying in the physical Riemann sheet of the momentum k, characterized by Imk > 0. By
putting k = ik, we see that, in order to end with normalizable wave-functions, solutions of

the type e~** = e must be avoided for x > a + b, and those et = =% for x < —(a + b).
Thus, we must set I;o = Oge = 0, that is, P, = P_ = 0, which can be done simultaneously
only if Fy, = A_ = 0or F_ = A, = 0. The first condition leads to even wave functions,

since A_ = 0 implies B_. = C_ = D_ = 0. Analogously, the condition F. = A, = 0 leads
to odd wave functions. From their definitions, we see that the function F, is purely real and
F_ is purely imaginary for V5 < E < 0. This means that the conditions F, =0 or F._ =0
select eigenvalues for the energy E with Vj < E < 0, corresponding to bound states with
well-defined parity. The energy eigenvalues for the bound states of our numerical calculation
are given in Table 2], according to their parity. We also show the value ,/(z?), which is
smaller for the ground state than for the others. This can be understood easily in terms of
the wave functions, because the ground state has an even wave function without nodes, that
is more peaked around zero. In general terms, odd wave functions, since they are zero for
x = 0, are spread all over the potential well.

2.4.2 Scattering and resonances: E > 0

The scattering problem consists in the study for £ > 0 of this potential when there is an
incoming wave, for instance, from the left, x+ = —o0, and no incoming wave from the right. In

4Notice that, according to their definitions, it is not possible to simultaneously have Fy = F_ = 0. On the
other hand, if Ay = A_ = 0, the wave-function vanishes altogether.
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Figure 2.2: The modulus squared of the wave function, |¢(x)|?, plotted for the
different states in Table 211

terms of the coefficients, it means Ogy = 0, that is P, = —P_, sothat I;o = (P, —P_)/2 = P,.
Thus, A, F,(F)=—A_F_(F). It is important here to study the transmission and reflection
coefficients, which are the ratios:

p_lm o, _Ow

= — . 2.47
Iro Ipo (2.47)
In terms of the functions G4+ and Fi,
e—2ik(a+b) G+(E) G,(E)
= (Rm  m) (245
e—2ik(a+b) G+(E) G (E)
R = 5 <F+(E) + F(E)) . (2.48b)

These satisfy the important relation |T|? + |R|* = 1, that is, the particle is transmited or
reflected. This fact is related to unitarity. When plotted against the energy F, as in Fig.
(solid blue line), the transmission coefficient shows an structure of peaks, that corresponds to
resonances. These have the form:

o (T2
= sy wr

(2.49)

which is called a Breit-Wigner amplitude. In Fig. it is also plotted (dashed red line) an
incoherent sum of two such amplitudes corresponding to the resonances 2% and 3~ shown in
Table 21 These structures correspond to poles of T in the second Riemann sheet in the
E-complex plane at positions £ = Ey —i['/2, and T is called the width of the resonance. It
is worth noticing that the condition for the poles to appear is then F, (F)=0or F_(E) =0,
just as in the case of the bound state problem, giving rise to a coherent global picture of the
problem of resonances and bound states, that is, the problem of the spectrum of the theory.

In Fig. the wave functions for the resonances are also plotted. However, since the
widths of both states 27 and 3~ are small, there is a fact that cannot be fully appreciated
there. In the region R2, the wave function is proportional to et™? both for the case of a
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State (n”) E (MeV) T (MeV) /(z2) (fm)

1t —743.5 1.3
1 —575.6 1.9
2t —302.4 2.0
27 29.4 0.4
3t 442.7 28.9

Table 2.1: Bound states and resonances parameters for the potential studied,
Vo = —800 MeV, Vi = +400 MeV, a = 3 fm and b = 3 fm.

1 T T T T T T T
2- 1 |
0.8 08| |
0.6 B
06 0.4 -
N [ -
= 0.2
= 0 .
04
/56 57 58 59 60 61 62
0.2
0 ! ! ! ! g I
0 50 100 150 200 250 300 350 400 450 500

E (MeV)

Figure 2.3: Modulus squared of the transmission coefficient, |T'|>. Resonant struc-
tures are around energies £ = 60 MeV and F = 440 MeV. The solid blue line
represents the exact value, Eq. (2.48)), whereas the red dashed line is the incoherent
sum of two Breit-Wigner amplitudes, Eq. (2:49), with the parameters of Table 211
The first structure is reproduced with high accuracy, whereas for the second one
the agreement is worse because of interference with higher resonances not shown
here.

bound state and a resonance. For the latter, however, since k = k, — ik; with k; > 0, the
wave function is e *e*®  The first term gives an oscillating wave functions, with modulus
le?*%| = 1, but the second term grows exponentially for z — +o00. A similar reasoning applies
in the case x — —oo. Thus, the wave function diverges and cannot be normalized, and mean
values of observables, such as (z?), cannot be calculated. This is a serious problem largely
studied in the literature. Some approaches to calculate normalizable wave functions have been
developed [208-216].

2.5 Resonances

We first discuss resonances in the elastic amplitude case, and then generalize the discussion
to inelastic transitions.
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2.5.1 Elastic case

In Sec. 2.1] it was stated that resonances appear as simple poles in the so called unphysical
Riemann sheets of the amplitude. We have also seen that this is the case in Quantum Me-
chanics in Sec. [Z4l In this Section we concentrate in the former point (the appearence of
poles), whereas the question of the Riemann sheet is delivered in Sec. 2.6l For this purpose,
suppose that the amplitude® of an elastic channel has a pole at the position sy = s — 7,

2 2
T(s)=-——2—=——9 (2.50)
s — Sg S — Sp + vy

The minus sign is an arbitrary convention. We suppose that v is small enough (that is, the
resonance is narrow) for the following developments. For physical (real) s ~ sg, one has

lgI* /sr
(Vs —M)* + 17

where M = ,/sg is the mass of the resonance, I' = v/M is its width, and the coupling of the
resonance to the channel is |g|. The previous equation is known as the Breit-Wigner resonance
formula. It is clear that the amplitude squared has a maximum at s = M?, and, since the
cross section is proportional to the former, it will have also a maximum when the center of
mass energy (E = ./s) reaches the resonance mass M. In addition,

T(s)F = (2.51)

7 (M £1/2)%)] = ; T (M) (2.52)

which can be used to estimate the width of a resonance, as it is done in Chapter [, where
pseudoscalar resonances are studied.

Due to unitarity, some restrictions arise for the coupling g. For simplicity, let us consider
the case of the elastic scattering aa — aa. Then

pls)] = /5 — M2 (2.53)

where M, is the mass of the a particle. Writing g% = |¢?| €, one has:

s
T(s)

= (s —sg)cosp+ysing +i(ycosp — (s — sg)sing) , (2.54)

Close to the resonance mass, s ~ s = M?, we have

8mp(s) = ’pg\?” + fﬁf‘;(ﬁ)f +O((s — M*)?) . (2.55)

Imposing Im T7!(s) = —p, Eq. (222d), we get:

cos¢ 1 |p(sn)

2| 8m M 7
sin ¢ 1 M?

= "7a 2.56
]~ 8m 20 [p(sg) (2:56)

SWe disregard here the index in T, for clearness.
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These relations can be cast as

r 1
tan¢g = ~3a7 (o) /AL (2.57a)

| = 8 Ve 1
RN ey

g (2.57b)

If we take the condition I' < M further, these equations reduce to tan¢ = 0, and ¢? is real
and positive (because cos ¢ > 0), so that

(2.57¢)

Now, coming back to T7!(s), its real part will go through zero near the resonance mass,
namely at s = s,

r
Se=M?*—~ytan¢ = M? (1—Mtangb> , (2.58)

and taking again the condition I' < M further, then s, = M?2. If Re T'(s) goes (quickly)
trhough zero, then the phase shift goes through an odd multiple of /2, 6(sg) = (2n+ 1)7/2.

Thus, a resonance manifests in the amplitude as a simple pole, and in what refers to the
observables, if it is narrow enough, it will make the amplitude squared (and thus the cross
section) have a maximum and the phase shift go through (an odd multiple of) 7/2.

2.5.2 Inelastic case

We will now generalize this discussion to the multichannel case.® If the amplitude has a pole
at s = M? —iI'M, then we can write s — M? —il'M = (E — M +i['/2)(E + M — il'/2),
neglecting the term with I'?. Thus, a pole for /s = E, E = M — iI'/2, arises. Then we can
write the S-matrix as

S(E) = S +

4 2.59
E—M+1)/2 (2:59)
where .7} is the background matrix and Z is the matrix of residues. In the discussion of the
elastic case we did not consider the background (that is, we set it to 4 = I). We set & as
a constant” (in the elastic case, we considered its energy dependence) close to the resonance
E ~ FEg. Unitarity implies that:

S8t =1= A+

r
(E_M)Q_i_%z ((E ER) (%5/0 —|—5”0%) i5 (@yo SR ) +%%>

and thus, the background must be unitary, YOYOT = I, and, in addition, we have the following
conditions® on Z:

RSy + SR = 0, (2.60a)

5T will follow the lines of Weinberg, Ref. [217], p. 161-165, but see also [21§].
"We are thus assuming that the width is small and that the resonance is far away from threshold.
8Note the erratum in Eq. (3.8.6) in Ref. [217].
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%@-i@%ﬁ-%ﬂﬁ::m (2.60D)

By setting Z = —il'./ ¥}, these equations are simply:

d = A, (2.60c)
d? = o, (2.60d)
which allows to write r
S=11- i—Tﬂf S . (2.61)
E — M + ZE

The deep meaning of the Egs. (2.60]) is that, given a resonance, only the absolute value of the
coupling makes sense, since its phase is fixed by unitarity and the background, if present.

For the elastic case without background, Eqgs. (Z:60) reduce to the conditions Egs. (Z57). In
this case, .%) = 1, and thus Z = —iI". By comparing with T, we have Z = —i|p| g* /(87 M?),
and then the condition Eq. (Z57d) is reached, and also g2 is found to be real and positive.

The condition for the matrix  implies that it can be written as [218]:

Ay = with Y |u? =1, (2.62)

Considering the term between brackets in Eq. (ZG1]), which is the resonant S-matrix, Sg, it

follows that:
r

Spii =0 —
Rl =00 T T L

From the condition Eq. (Z62) we see that |u;|> < 1. We call the partial width to the product
Ty = ul? . (2.64)
By construction, Y, I'; = I'. By comparing with the definition

2 2 /(OM
T;'i — 9ii ~ gm/( )

~— St 2.65
§ — S E—M+ig’ (2.65)

we reach the condition )

_ Yii pi(sr)|
8rM?2

which is like Eq. (Z57d), but for the coupled channel case.

r; (2.66)

The couplings g;;, related to the residues of the pole in the amplitude in the unphysical
Riemann sheet, can be obtained, for s =~ sq, by:
9ig;

Tii(s) = — + regular terms . (2.67a)

Numerically, it is usually better to obtain them through the Cauchy theorem:

A 27rz‘ i
ﬁ:jwﬁﬂgz—ggé e Tij(so + Ae')dd (2.67b)

S0

1

gig; = —%
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T][(S — CiE)

Figure 2.4: Complex s-plane, where the unitarity branch cut is shown, starting
at threshold, s = s1, and extending to infinity.

with A — 0, and being I'y, a counterclock closed path around enclosing sy (but no other
poles).

Finally, we would like to end here with some remarks. The cases considered so far in this
Section are somewhat ideal, and the situation to disentangle the different resonances in a given
channel as well as their partial widths can be very involved. An example of this is the scalar
sector, to be studied in Chapter Bl Usually, resonances appear close to thresholds, and then
their shape can be rather distorted, due to the Flatté effect [219], first noticed in the scalar
sector for the case of the ay(980) resonance. Also, if the background is sizeable, the width
of the amplitude needs not to be the same width I' deduced from the pole, nor the phase go
through /2. Needless to say, if the width of the resonance is very large, this simple picture
does not embrace sufficiently the complexity of physical scattering in the energy region under
consideration.

2.6 Unitarity cut and Riemann sheets

The appearence of the unphysical Riemann sheets of an amplitude in two-body scattering
reactions is due to the presence of branch points sitting in the thresholds of the different
channels. Let us consider, for definiteness, an elastic amplitude, so that there is just one
threshold, s;. Due to the usual +ie prescriptions in Quantum Field Theory, such an amplitude
is defined for s — s + ie. If we analytically continue the amplitude in the variable s, to the
upper half-plane, that is, for finite €, s + i€ — s + 77y, we are moving through the so called
physical sheet. The amplitude in the physical sheet is analytic except for the so called unitarity
or right hand cut,” and thus, the lower half plane of the complex variable s can be reached by
moving from s + i€ to s — ie below threshold. This is the movement (a) in Fig. 241

However, if we cross the unitarity cut, moving continuously to the lower half plane, as
indicated in Fig. 24 by (b), we reach the unphysical sheet. As it is connected continuously

9The presence of the crossed cuts, that arise from crossing symmetry has no influence on the following

discussion, so we will not refer to it.
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with the physical sheet in the real axis above threshold, s > s, it must be that:
Tr(s +i€) = Trr(s — ie) (2.68a)

where T7(s) indicates the amplitude in the physical sheet and T;(s) the amplitude in the
unphysical or second Riemann sheet. Then, once Ty;(s) is defined, it can be analytically
continued to any region of the complex s-plane. Taking into account the Schwarz reflection
principle, T7(s*) = Ty(s)*, the previous equation can be rewritten as:

Tri(s —ie) = Ty(s — i€) — 2iIm Ty (s — ie) (2.68Db)
or, in a maybe more useful form,
T (s —ie) = Ty (s —ie) — 2iIm T (s — ie) = Ty *(s — ie) + 2ip . (2.68¢)

The last equation applies for a partial wave amplitude, satisfying Eqgs. (222]), in the elastic
case, or as a matrix equation for the coupled channel case.

Given that an amplitude satisfies unitarity, Eqs. (Z22), then it cannot have poles on
the physical sheet on the real axis above threshold. From Eq. (Z22), it can be seen that a
cancellation oo = constant x o0o?, should occur, which is not possible. Alternatively, thinking
in terms of an elastic channel, the representation Eq. (Z.23)) for the amplitude 77, (s) shows that
it must be finite in the physical region, so it cannot have a pole. Notice also that, since above
threshold and on the real axis the physical and the unphysical Riemann sheets of the amplitude
coincide, no pole can appear there neither in the unphysical Riemann sheet. Below the lowest
threshold it is possible to have a pole in the physical Riemann sheet, however, and this is
the case of a bound state. An example is the deuteron, a neutron—proton bound state in the
3581 — 3D, waves, which will be considered in Chapter [l But note also that nothing prevents
a pole appearing on the real axis, below threshold, but on the unphysical Riemann sheet:
these are anti-bound or virtual states. We saw, in our simple problem of Quantum Mechanics
in Sec. 2.4], that bound states appear as real eigenvalues of the Hamiltonian for energy values
below threshold, as stated above. However, resonances appeared in the second or unphysical
Riemann sheet of the amplitude. This is because the eigenvalues of the Hamiltonian must
be real, but resonances correspond to complex eigenvalues. Whence, we can summarize the
appearence of poles as follows:

e On the real axis, below threshold, we can have poles in the physical Riemann sheet
(bound states) or in the unphysical Riemann sheet (antibound states).

e On the real axis, but above threshold, we cannot have poles (neither in the physical nor
the unphysical Riemann sheet), because of unitarity.

e On the complex plane, there can be poles in the unphysical Riemann sheet (resonances),
but not in the physical Riemann sheet (because the Hamiltonian eigenvalues must be
real).

2.7 Unitarized Chiral Perturbation Theory

We have seen in Chapter [I] that the spontaneous chiral symmetry breaking imposes strong
constraints in the interactions of the lightest scalar pseudoscalars. These interactions can
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thus be derived in the framework of an effective field theory: Chiral Perturbation Theory
(ChPT). Beyond its great success [220H223], we can point out some shortcomings in the range
of applicability of the theory. As seen in Chapter [II, it contains free parameters, not fixed
by the symmetries. The number of these parameters increases with the order of the studied
Lagrangians. At O(p?), beyond the masses of the lightest pseudoscalars, there is the weak
decay constant of the pion, f,, but, at O(p*), several low energy constants appear, and,
at O(p®), this number increases up to about one hundred, so that its predictive power is
lost to a large extent with the chiral order. In addition, being a perturbative expansion,
it does not incorporate full unitarity, which is seen to be an important ingredient in strong
interactions. By including more and more orders (that include loop diagrams), unitarity
is perturbatively satisfied because of its nonlinear dependence on the scattering amplitude,
Eq. (ZI0a). For the same reason, the perturbative character of the theory makes it impossible
to reproduce resonances, that are associated with poles in the amplitudes, and that appear
at masses already below 1 GeV. From the pointed drawbacks of the theory, it is clear that
non-perturbative schemes are, not just desiderable, but necessary in order to study hadron
physics comprising its full richness.

We will follow here the procedure of Ref. [39], where the most general structure of an
arbitrary partial wave when the unphysical cuts are neglected is given. It is then the zeroth
order approach to a partial wave when the unphysical cuts are treated perturbatively. The
amplitudes so obtained are then matched to the lowest order of ChPT and its extension to
include explicit resonances. A similar formalism, connected to the one presented here, is
obtained in Ref. [33], where it is related to the Bethe-Salpeter equation.

Besides the unitary or right hand cut, starting at threshold (denoted here with sy,), a
partial wave T'(s) has the so-called unphysical or crossed cuts, due to crossed channel dynam-
ics. For example, in nucleon-nucleon scattering, to be studied in Chapter [7, the left-hand
cut in the low energy extent is due to multipion exchange diagrams. Then, the cut starts at
s = S = —m?2 /4, and extends to s = —oo. For simplicity, from now on, we refer to the set
of different possible unphysical cuts as left-hand cut. Thus, for s < s, the left-hand cut is
given by:

T(s+ie) — T(s —ie) = 2ilm Tier () (2.69)

The standard way to simultaneously solve Egs. (2.22) and (2.69) is the N/D method [38]
(Cf. also [224, Ch. 8]). For simplicity, let us consider the elastic case first. This method
rests on the separation of the unitary cut and the unphysical cuts, due to crossed channel
dynamics, by writting

T(s) = (2.70)

where the function N(s) carries the left-hand cut and D(s) bears the right hand cut. The
explicit threshold behaviour of an [ partial wave, T'(s) o (p?)! = v/, can be taken into account
by defining 7"(s) = T'(s)/v!, and then

T'(s) = (2.71)
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It is clear then that:

mmﬂ@:{?NT@f“=w@N%Wl,iZi 272

Im T () D'(5) 5 5 < Siens

(2.72b)
0 ;S > Sleft

Im N'(s) = {
As T"(s) is determined by the ratio of N'(s) and D’(s), we can multiply both by any arbitrary
real analytic function without changing 7"(s) nor the conditions Eqs. ([2.72). If N'(s) had

poles, we could apply this procedure to remove them, and so we consider in the following that
N'(s) is free of them.

An n + 1-subtracted dispersion relation for N’(s) can be written down then as:

_ n+1 Sleft Im T (8/)D/<S/> n
N/ — (SSO)/ d / left ~m m 273
(s) T - 8§ (s — s0)"+1(s' — 3) + Z Am$S ( )

and the n + 1 subtractions are such that:

N/
lim (s)

s—oo gntl

=0. (2.74)

If we neglect the left-hand cut, then N’(s) is just a polynomial, and, as remarked before,
we can divide both N’(s) and D’(s) by this polynomial, setting thus N’'(s) = 1 and obtaining
a dispersion relation for D'(s) that reads:

D)= - +l/d’ oo Z%ﬁ+z

S—Sol+1 15— 8

(2.75)

The last term accounts for the possible presence of Castillejo-Dalitz-Dyson (CDD) poles [185],
and, among other effects, it absorbs the zeroes of the polynomial used to set N’(s) = 1. The
CDD poles will appear again in Chapter [[l, when dealing with nucleon-nucleon scattering.

In order to proceed further, we will make some considerations about the No — oo limit,
with N¢ being the numbers of colours in QCD.!® We split the subtraction constant into two
pieces,

am = ak 4+ a5 (s) | (2.76)

where the superscripts L and SL refer to leading and subleading order in the large N¢ limit,
respectively. As the meson-meson amplitudes scale as N * [T94196], D’'(s) and a% run as N¢.
The integral in Eq. (Z75]) is zeroth order in this counting. Its dependence on the subtraction
point sq is reabsorbed in a3l (sy), which is of the same order in Ng. Thus, in the limit
N¢ — o0, D'(s) simplifies to:

Dloo ZaLsm_'_Z

10As a funny anecdote, I remember that M. Scadron, in the SCADRON70 Workshop, at the occasion of
his 70th birthday, listening to a talk where the No — oo limit was copiously considered, said to the speaker:

(2.77)

s—58;

“You can talk about the large N¢ limit, but Ng = 3 is its actual value!”.
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where the sum of poles now picks up just the relevant CDD poles in this limit, and R$° is also
the leading part of R;. In the previous equation, the left and right pieces represent contact and
pole terms, respectively, that is, tree level amplitudes. The contact terms can be matched with
the standard lowest order ChPT amplitudes, and the pole terms, with the explicit interchange
of resonances in the s-channel (t- and u- interchanges are neglected, consistently with the
assumption that the left-hand cut is neglected). By denoting these contributions as Ty and
Tg, respectively, one is lead to write:

T>(s) = Ty(s) + Tr(s) = V(D™ (s))* (2.78)

Finally, by defining the function g;(s) as

L s — so) L poo (sVo(s!
a(s)V' = ZO aSF(s)s™ — (7r)+ /Sthds = s()()sf)(— 20)”1 : (2.79)

the final amplitude can be written as

T(s) = (1) +a(s) " - (2.80)

In the previous equation, T corresponds to the tree level amplitudes before unitarization is
accomplished, and then the latter is done through the g;(s) function.

This formalism can be generalized to the case of coupled channels straightforwardly. The
matrix 7'(s) will be given by the inverse of (T°)~! + G, where the matrix 7° will have as
matrix elements the amplitudes of the different channels as given by ChPT plus the interchange
of resonances, and G(s) will be a diagonal matrix whose elements will be the g;(s) functions
with the integrand p(s’) particularized for each of the channels.

We can make and additional generalization, allowing also to include crossed channel con-
tributions in a perturbative manner [41.225], and keeping the matrix formulation for coupled
channels. For that purpose, we expand Eq. (Z70) (writting K instead of T°°, since it also
includes now subleading contributions in the N¢ expansion),

-1 -1
T:(K_l—l—G) :((K2+K4+K6+"')_1+G)
:KQ+K4—K2GK2+K6—K4GK2—K2GK4+K2GKQGK2—|—"'
=Th+Ty+Ts+--- (2.81)

where in the last step we indicate that this expansion must be matched with the ChPT
perturbative calculation, and the chiral orders are indicated by the subscripts. The former
set of matrix equation can be solved (starting from the lowest order) to get:

Ko=T,, (2.82a)
Ki=Ti+T, G T, (2.82b)
Ke=Ts+T. G+ T GTi+To GT, G Ty, (2.82¢)
Ky=Ts+ - . (2.82d)
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Figure 2.5: Absolute value of the matrix element Si;, corresponding to 7w with
IG(JPC) — 1—(0++).
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Figure 2.6: The two Riemann sheets of the function G(s) for the case of 7
scattering. The threshold is located at ,/s1 =~ 690 MeV. The blue surface is the
physical Riemann sheet, whereas the red one is the unphysical Riemann sheet.

=17(0"") channel

"For more details on this issue, see the introductory sections in Chapters B and

2.8 A detailed example: two-meson scattering in the /¢ (JF¢)

In this section we offer a detailed example in which all the subjects treated so far in this
Chapter can be seen at work. We will study the three-coupled channel with quantum numbers
17(0*+), given by the two-meson channels 77, KK and 71’. We make use of the amplitudes,
formalism and fit to the data presented in Chapter [ and in Appendix [D] so that we do not
extend on these details. In this channel, the ay(980) resonance appears, but we will not focus
on it, but rather on the ay(1450) resonance, higher in mass, and not affected by the presence
of the nearby threshold of K K, which makes the discussion of the a¢(980) more involved.™ Tt
should be remarked that we do not pursue here an accurate description of this resonance, but
just to present a realistic calculation which, at the same time, will allow us to put in practice
some of the concepts and ideas seen so far in this Chapter.

In Fig. we show the absolute value of the matrix element Si;. Up to the opening of
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200
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1450 . 0 Im /5 (MeV)

Re /s (MeV) 15500

Figure 2.7: The amplitude |T: 33,|2 is shown in the Riemann sheet where the pole
appears. The z axis range is arbitrarily cut, so the effects of the pole can be seen.
A contour plot is shown at the top where the location of the pole can be seen.

Channel  Coupling  Partial width

m 1.26 18
KK 2.46 61
o 3.53 92

Table 2.2: Couplings and partial widths of the a(1450) resonance.

the K K threshold, at /s ~ 1 GeV, the channel 77 is elastic, thus satisfying |Sy;| = 1. Above
threshold, other channels open up and thus |S1;| < 1. The dip at above 1 GeV is characteristic
of the a((980).

We have seen that the poles to which resonances are associated are located in the un-
physical Riemann sheet. Now we describe how to change from the physical to the unphysical
Riemann sheet in the context of UChPT. As we have seen in the previous Section, we can
write a partial wave amplitude as:

T (s) =V 7l(s) + G(s) , (2.83)

where V (s) contains the dynamical information of the theory and is real on the real axis, and
G(s) is the matrix that contains the one-loop two-meson propagators, whose imaginary part
is

Im G(s) = —p(s) , (2.84)
thus satisfying unitarity, Eqs. (Z22)). We consider, for definiteness, the elastic case. The G(s)

function is given in Eq. ([£I2)). As we have seen in Eq. (ZG8d), the change of the Riemann
sheet of an amplitude concerns basically the piece in the last equation. Then,

Gri(s —i€) = Gr(s —i€) + 2ip(s) , (2.85)

where, recall, p(s) = v/p2/(8m/s). A technical detail is that, in the previous equations, one
must take y/p? such that Im /p? > 0. In Fig. we see an example of the two Riemann
sheets, for the case of 71 scattering, being the threshold at /sy ~ 690 MeV. We plot there
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the imaginary part of G(s). We see the unitarity cut, opening at threshold, and that one
can move to the lower half plane without changing the Riemann sheet, by moving around
threshold from below. It is also seen the condition Eq. (Z68al) over the real axis for s > s;.

As there are three channels, we have 23 posible Riemann sheets of the amplitudes. As
we have seen, the physical Riemann sheet has no poles. Usually the Riemann sheets that
must be inspected when searching for poles are those that are conected continuously with the
physical one, such as the example in Fig. 26 If we are looking for the ay(1450), well above
the highest threshold, ,/s7, &~ 1100 MeV, we must change to their respective Riemann sheets
all of the G(s) functions associated with each channel. The pole, shown in Fig. 27, is found
at \/so = 1454 — 194 MeV. Thus, from Im,/sy, we deduce I' = 188 MeV. This compares well
with the PDG [48], that quotes M = 1474+19 MeV and I' = 265 £+ 13 MeV. One should take
into account that we miss multiparticle states and that our calculated width should indeed
be smaller than the total one quoted in the PDG [4§].

The couplings of the poles to the channels, obtained with Eq. (2.67), are given in Table 2.2
together with their respective partial widths, as given by Eq. (Z66]). From the partial widths,
calculated as in Eq. (2.66]), we see that >, I'; = 171 MeV, quite close to I' = 188 MeV deduced
from the pole. The slight disagreement is due to the finite and not so small width, I'/M ~ 0.13.
Whence, there arise differences when formulas valid for I' < M are used.
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3.1 Introduction

One of the main features of strong interactions at low energy is the spontaneous breaking
of the chiral symmetry, which implies the existence of Goldstone bosons, to be identified in
SU(2) with the triplet of pions (which acquire mass due to the small, but finite, light quark
masses), and in SU(3) with the octet of the lightest pseudoscalars, J¥¢ = 0=, 7, K and 7.
In the limit of chiral symmetry restoration there should be scalars, 07+, degenerate in mass
with the pseudoscalars. As a result, one can also say that the appearance of 07" mesons in
QCD is a benchmark characteristic of any theory of strong interactions and, furthermore, the
difference in mass between the pions and the o is an order parameter of spontaneous chiral
symmetry breaking.!

An explicit realization of these considerations is the linear sigma model [226-232]. How-
ever, we have seen in Chapter [I that the Effective Field Theory that takes into account
the consequences of the spontaneous breaking of chiral symmetry at low energy QCD, with
sufficient generality [233],234], is Chiral Perturbation Theory (ChPT) [I7HI9], a non-linear
sigma model. In ChPT, however, due to its perturbative nature, the presence of the scalars
is not readily connected with the appearance and dynamics of the lightest multiplet of pseu-
doscalars. The tight relationship between the lightest pseudoscalars and scalars in ChPT was
recovered when resuming an infinite string of diagrams (related with unitarity) through the In-
verse Amplitude Method (IAM) [26,28-3032], Bethe-Salpeter [33] and N/D frameworks [39].
From these analyses it was clear, as expected on general grounds and given the smallness
of the left-hand cut contributions in the resonance S-wave meson-meson amplitudes below
Vs =~ 1 GeV [39], that chiral symmetry, in terms of resummed ChPT, requires the presence of
light scalars in the spectrum of the strong interaction realm. These resonances correspond to
the o or fy(500), K, fo(980) and ay(980), which not by accident, due to their referred relation
with the lightest pseudoscalars, are also the lightest among the scalars. In Refs. [53H58] the
mixing between these resonances was considered. Other successful phenomenological approach
to study the lightest scalar resonances is based on meson-exchange models [59H61].

Crystal Barrel data at LEAR improved significantly the knowledge of the 07" spectrum
above 1 GeV with the discovery or confirmation of the ay(1450), fo(1370) and f,(1500) [64].
BES Collaboration fixed the spin of the f;(1710) [65] and found a new resonance, fo(1790)
[66,[67]. There is some recent controversy on the existence of the broad fy(1370) [68 and
another state reported is the f;(2020) [69]. For more references on these states see e.g. [48.[70].
All these resonances are specially relevant for another issue of great interest in the I = 0, 0"
spectroscopy, which is the identification of glueballs. Since QCD is a non-abelian Yang-Mills
theory, the gluons interact among themselves, a major difference with QED, where photons
do not couple each other. Whence, it is generally believed that QCD predicts the existence
of mesons without valence quarks (or with valence gluons, see a discussion in Ref. [82].) In
a pure Yang-Mills theory the identification of these states would be straightforward. In the
real world, however, they can be mixed with other non-glueball states of the Fock space.
Interest in the glueballs dates back to the early days of QCD [I,I6,[7] and was one of the
first issues of application of QCD sum rules [71,[72]. This application however is not without
difficulties due to the strong coupling of the vacuum with the 0™* channel and the results

Tn the study of Ref. [I34] the o was determined as the chiral partner of the 7.
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are not conclusive yet [T1H76]. In recent papers the role of instanton contributions has been
stressed [77.[78]. Both papers agree with the presence of a glueball around 1.5 GeV but obtain
different conclusions about the existence of a lighter glueball around 0.5 GeV, depending on
how the instantons are treated. A glueball with a mass around 2 1.5 GeV is also predicted
in several models [79-83].

The glueball spectrum in quenched lattice QCD is already established [84H87] and predicts
that the mass of the lightest 07" glueball is 1660 + 50 MeV (plus a 10% error in fixing the
physical scale due to the quench approximation). The main issue with these calculations is
that dynamical fermions are not included (infinitely heavy quarks) and hence the comparison
with experimental phenomenology is not straightforward. Since the seminal calculation by
the IBM group [88], a typical scenario for the identification of the lightest glueball consists
of mixing the latter with the nn and ss states closest in energy. The output resonances are
always the fy(1370), fo(1500) and fy(1710). Ref. [88] obtains that the f5(1710) is mainly a
pure glueball. Ref. [89] evaluated in quenched lattice QCD the decays of the latter resonance
to two pseudoscalars and calculated a pattern of decays in agreement with some reported data
on the fy(1710) [48].

This scheme has recently been confirmed in Ref. [91] (see also Refs. [92H94]) which finds
a chiral suppression in the way I'(Gy — s5)/T(Go — uti + dd) > 1, with Gy the glueball.
However, the situation is not clear yet and different results are obtained in different works
[95H100], following the same idea of mixing of the glueball with the nearby nn and ss states.
On the other hand, the presence of the nearby f,(1790) [66,67] has not been taken into account

in all these studies and this could make some difference.

The mixing between quarkonia and glueballs sets up for the calculations of unquenched
lattice QCD with two flavours of dynamical fermions in Refs. [235-238]. The most recent
computations are Refs. [00,239-241]. These studies find a low scalar singlet at energies that
follow the trend of the two pion threshold simulated in the lattice. On the other hand, they
also find a singlet resonance with a mass in the range of quenched results for the lightest
glueball.

In our study, published in Ref. [A], we consider the coupled channel 07 scattering between
the two body I = 0 states made from the members of the lightest 0~ and 1~ multiplets from
7 threshold up to 2 GeV. Thus, we consider the scattering between the 7w, KK, nn, nn', 01/,
pp, ww, we, ¢¢ and K*K* channels. In addition, we take into account the oo channel. The oo
and pp states play an important role to mimic the S-wave I = 0 47 channel. This multipion
channel plays a crucial role for energies somewhat above 1.2 GeV, see e.g. Ref. [64]. However,
the multipion channels do not give rise to any sign of specific branch cut near 0.56 GeV for
the 47 state nor around 0.84 GeV for the 67 one. This indicates, as signaled in Ref. [242],
that the production of four or six pions occurs mainly via intermmediate two resonance states
like oo, pp and ww. There are experimental evidences [243],244] that the 27 in 47 clusters
around the masses of o and p. We shall also explore the significance of the contribution from
the a1(1260)7w and 7(1300)7 channels, although since the a;(1260) decays mainly to pm and
or [48], as probably for the m(1300), we expect that they are taken into account by the oo
and pp channels already included. This will turn to be the case, as discussed below. We
also study simultaneously the I =1/2 and [ =3/2 S-wave amplitudes following the scheme
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of Ref. [43,[44], so that we have more data to constraint our free parameters. Finally, let us
mention that we include in our amplitudes the contributions of s—channel exchange of octets
and singlets of scalar resonances, as discussed in Sec. We consider many phase shifts,
elastic and inelastic cross sections that are fitted simultaneously.

To obtain the interaction kernel among the channels we employ chiral Lagrangians at O(p?)
(see Chapter [Il), but with the SU(3) symmetry enlarged to U(3) so as to include the " meson.
No free parameters are present in the elementary kernels. This is due to the fact that the we
employ ChPT and the couplings involving vector resonances are obtained by minimal coupling
gauging chiral symmetry. To evaluate the oo couplings we make use of UChPT (Chapter [2),
where the o resonance appears as dynamically generated from the self interactions between
the pions in the scalar isoscalar pair of pions composing the resonance [3339]. The interaction
kernels are then unitarized to resum unitarity and the analyticity requirements of the RHC,
following the scheme of UChPT [33],39,41,225].

Other hadronic studies in a similar energy region as ours interested in the S-wave I = 0
scattering are [68,245-H249]. Refs. [245H247] follow an scheme based on coupled channels, as
we also do here. But while these references only considers 3 or 4 channels we have included
many more, namely 13 coupled channels. Let us also mention that our interaction kernels
are calculated from chiral Lagrangians that establish constraints on the type of interaction
vertices allowed, while those of Refs. [245H247] are quite ad hoc. Refs. [68248,249] follow a
different strategy, based on overlapping resonances employing the method of Dalitz-Tuan [250]
based on multiplying diagonally one-resonance S-matrices. The couplings of those resonances
are typically fitted and do not come either from any general Lagrangian. In addition these
references have a large number of free parametres, typically around 40, many more than the
13 ones we use here. In our study no form factors are included either, instead, we include
a subtraction constant for each channel, though some relations between the values of these
constants for different channels can be also established.

We pay special attention to the spectroscopical content of our fits, related to the poles in the
unphysical Riemann sheets of our solutions. In this way, we connect on the conflictive aspects
previously referred concerning the 0™+ resonances. Many schemes have been implemented so
far that usually emphasize one aspect or the other of the 07+ dynamics [49-52]116],136l137,
951-271].

This Chapter is organized as follows. Sec. developes the formalism employed to cal-
culate the interaction kernels, paying special to the way used to include the vector-vector
(Subsec. BZ2) and the oo (Subsec. B:2.3)) channels. In Sec. these interaction kernels are
gathered to construct the unitary partial waves. In Sec. [3.4] we obtain the fits to the scat-
tering data. The relevant poles of our solutions and their connection with physical states are
discussed in Sec. B8l and more support to our spectroscopy is given in Sec. 3.6l One of the
main results of this work, the identification of the scalar glueball, is treated in Sec. B.7. Our
summary and the conclusions are delivered in Sec. 3.8
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3.2 Coupling the different channels

In order to obtain the coupling between the different channels we employ U(3) ChPT at the
lowest order including explict scalar resonances. Note that for I = 0 one needs to consider the
channels nn, nn’ and 7'y’ so as to study energies up to s'/2 < 2 GeV, and hence U (3) symmetry
is invoked. We follow here a similar scheme to that already employed in Refs. [43[44], where
the K'np and K7’ were included so as to describe data up to similar energies. As commented
above, for the I = 1/2 and I = 3/2 S-wave we take the same formulae of Refs. [43,144], but
now describing simultaneously the I = 0 S-waves.

3.2.1 Lagrangians

We need first to consider the extended version of SU(3) ChPT [19] to the U(3) case. In the
large N¢ limit, the singlet n; field becomes the ninth Goldstone boson field and can then
be incorporated with an extended U(3), ® U(3)g chiral Lagrangian [I0IHI04]. A consistent
counting that combines the chiral expansion in powers of momenta, quark masses and 1/N¢
can be built, such that m, ~ 1/Ng ~ O(p*) [272]. At the lowest order the extension to
U(3) is straightforward. We can employ the same Lagrangians for SU(3) ChPT [19] (given in
Sec. [L10) and with resonances [105,[106] (see Sec. [LI3]) but with U(x) being then the 3 x 3

matrix:
U(x) = exp (7, \/§q)>

f
LAY
¢ = ¢z 771]I = qbz i
ot =
ﬁ + %778 + ﬁﬁl T K+
= T —Lfo + f778‘|’ \[771 K° , (3.1)
K~ K" _%7]8 + %Th

where f is the pseudoscalar weak decay couplings in the SU(3) chiral limit. We also have

¢o = m and A\g = 4/2/31. The corresponding Lagrangians are those given in Eq. (ILI0) plus
the 1; mass term:

Ly = JZ{(D UTDMU) + (x TU+XUT)}—; 22 (3.2)

Here, the covariant derivative is
DU =0,U —1r,U+1Ul,, (3.3)

with r, and [, the right and left external vector fields, respectively, introduced for gauging
the U(3)r ® U(3)g chiral group, as seen in Secs. [L6HLT, and also Subsec. L9l The M,
is a term originating from the U(1)4 anomaly, which is large though formally of O(1/N¢).
It is responsible of the large mass of the 7y, see e.g. [273]. The quark masses are included
in y = 2ByM with M = diag(m,, mg, ms), the matrix of the light quark masses. The
diagonalization of the mass term is achieved via the pseudoscalar mixing

n\ cosf sind M
n —sinf cosf ns )
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For the numerical analysis that follows we take sinf = —1/3 ~ —20°.

The other Lagrangians that we employ are the ones corresponding to the JF¢ = 0+
octet and singlet of scalar resonances, from the chiral invariant resonance Lagrangians of
Refs. [105,[106]. They were already introduced in Chapter [ Sec. [LI3] but we include them
here for easiness of reference for the following discussions:

Lsy = ca(Ssuu”) + cn(Sex+)
Ls, = caSi{uu") +nSi(x+)
Yo = ulyu'+uxlu . (3.4)

Recall that S; denotes a singlet and Sg, whose form is given in Eq. (L300al), an octet. In the
large N¢ limit one expects, because of the U(3) symmetry, that the S; and Sy fields would
join in the 3 ® 3 matrix Ss + S;/v/3, analogously to Eq. (BI)). Then, a relation between the
singlet and octet couplings would arise, namely c¢; = ¢;/v/3 and ¢,, = &,/v/3. In addition,
the mass of the S and that of the octet Sg would be the same [I05,106]. Nevertheless, in
the following we do not use these relations. In fact, the previous study in the meson-meson

= 0 S-wave [39], the formalism of which we extend here (so that we include more channels,
simulating multipion states, and move to higher energies), indicates that this relation between
the couplings of singlets and octets can suffer of large deviations. We also point here that
similar values to those of ¢; and ¢, of Ref. [39], were also obtained in Ref. [43,/44] in a
detailed study of the I =1/2 and 3/2 meson-meson S-wave up to 2 GeV. In that reference
the previously mentioned U(3) relations among the couplings and masses of scalar octets and
singlets were used. Notice, however, that the I =1/2 and 3/2 S-waves are not directly sensitive
to the scalar singlets, as I =0 S-wave does, but only through to the bulk properties coming
from crossed channel exchanges. The same Lagrangians of Eq. (84]) can be used repeatedly
when including more than one octet or singlet of scalar resonances. In this case, as it will
occur here, one must distinguish between the couplings and masses of the scalars according
to the multiplet that they belong to.

Our two body I =0 states are:

o = —jg (I7°(p)7°(=p)) + [7* (p)7~ (—p)) + I~ (p)7* (—p))) (3.5a)
77)0 = la(p)o(-p)) (3.5b)
KK = =5 (K7 (0) K (=p) + () K"(p)) (3.50)
o = SlaeIn(—p)) (3.54)

In'n')o = ﬁln’(p)n’(—p» : (3.5f)
P)o _\}6 (I @) (=p)) + " (P)o~ (=P)) + |~ (P)o" (D)) (3.5g)
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0

K = = (I (0) K (=p) + ()R “(p)) (3.51)
wé)o = |w(P)(—P)) | (3.5)

[66)0 = |6(P)6(—P)) | (3.5k)
[7(1300)7)o = —jg (Im(1300)°(p)*(~p)) + |7(1300) " (p)7~ (—p)) + [7(1300)” (p)7* (~p)))
(3.51)

jaym)o = —jg (la*()7°(=p)) + s (P)7~ (=p)) + |as~ (P)7* (—))) - (3.5m)

Note the extra factors 1/4/2 in the definition of the states |7m)o, |00)o, [1m)0, |77 )0, |17 Vo,
lpp)o and |ww)g. These are symmetry factors introduced because these states are invariant
under the exchange p <+ —p. In this way, they can be treated on the same foot as the rest of
states, like e.g. the |K K)o one. For the I =1/2 states one has:

1
|K7)1 = %(|K+Wo>+\/§|f{oﬂ+>)7
|Kn)ip = |K), (3.6)
K1)y = |KT) .

3.2.2 Two-vector resonance states

We take the two-vector resonance states pp, ww, K*K*, wé and ¢¢. We note that the
threshold for such states is around 1500 MeV for the pp and ww, 1800 MeV for the K*K*
and w¢ and 2000 MeV for ¢¢. These thresholds coincide with regions where resonance states
are expected as shown by experiment [48]. There are also phenomenological studies [243]244]
that indicate that the 47 state is accounted for as oo and pp two body clusters, however
signals as 7(1300)7 and a;7 are also reported [48]. These latter states are also included here,
as explained in Subsec. B.2.4l Similar studies and other theoretical ones [274] indicate that
the ww contributes very little to this partial wave. We shall see that we agree on that.

In order to include these two-vector resonance states we make use of the Lagrangians in
Egs. (32) and (34)), identifying the external classical gauge fields r, and [, with the proper
combinations of vector and axial-vector fields. In this way the couplings of the vector and
axial-vector are obtained through minimal coupling. This is a generalization of the way that
vector mesons are introduced in vector meson dominance attending the isospin, hypercharge
and baryon number currents [275,276] (see also [277].) The couplings of the vector and axial-
vector are calculated within the Extended Nambu-Jona-Laisinio model in Ref. [278], where
these resonances appear, except for a mass term, in the same way as through minimal coupling
at the level of the constituent chiral-quark Lagrangian.? In this section we are only interested
in the vector ones and then we have:

=9V, l,=guv,, (3.7)

2We thank the late J. Prades for a useful discussion on this issue.
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with g a universal proportionality constant and

0
%—F%WS—F%&& ) p+ K*+
o I O P < BT
—x0

K*~ K —%wg + %wl

The coupling g in Eq. (B7) is determined from the width p — 77, with the result g = 4.3.
Making use of ideal mixing, one has ¢ = —\/%Ug + %wl and w = %wg + \/gwl. As a
result, one can obtain from Eq. (8:8)) and the Lagrangians Eq. (32) and Eq. (3:)) the different

amplitudes involving the two-vector resonances. In this way, the Lagrangians for the transition
of two-vector to two and four pseudoscalar are given by:

EV‘/@Z = 92<’UM/U'M®2 — 'UM(I)’UM(I)> s
2
Lyyer = _6§’F<vuvﬂq>4 — 40, DD + 3, D2 D?) . (3.9)

There is no transition at this order from the Lagrangians in Eq. ([B4]) of the scalar res-
onances to VV. Note that the previous Lagrangians in Eq. (89) do not involve derivatives
on the pseudoscalar fields, as generally required by chiral symmetry. However, one should
take into account that the V'V channel is only relevant for energies around and above its
threshold (always larger than 1.5 GeV) so that the two pseudoscalars are very energetic and
away from the soft chiral limit. In this way, the energy dependence that would be implied
by the momenta of the pseudoscalar due to derivatives is soft in the coupling of the V'V with
PP (P referring to any pseudoscalar) and for practical purposes, Eq. (89) is a good approx-
imation. This is certainly not the case at low energies where the pseudo-Goldstone nature of
the pseudoscalar implies derivative couplings and this is essential to be kept.

For the projection of the V'V system in [ = 0 with J = 0 it is appropriate in our case to
work in the basis where the mono-particle state is defined in terms of the three-momentum
and the spin in its rest frame. In this way [217,224], the total momentum J of a two-
vector resonance state is given by the sum of the orbital angular momentum L plus the
total spin S in the centre of mass frame, like in non-relativistic quantum mechanics. It is
a fact of the Lagrangian in Eq. (3) that the resulting amplitudes are directly in S-wave.
They are proportional to €, (7, A\1)e*(—p, A2), with p parallel to the z-axis (initial state), and
e(p, A) is the polarization vector of V' with A the three component of the spin at rest. The
projection in S = 0 is straightforward. The only point is to write the polarization vec-
tor e*(p,\) for p = %|p]Z in terms of the four-vectors in the rest frame, €5 = (0,0,0,1),
el = —(0,1,4,0)/v/2, € = (0,1,—4,0)/+/2, with well defined third component of spin 0,
1 and —1, respectively. The polarization vectors with finite three-momentum =+pZ are ob-
tained by performing a boost in the F2 direction, respectively, with velocity v = p/p® and

p’ = /M2 + p?. The resulting vectors are given by e (£|p]Z,0) = (+v,0,0,1)/v/1 —v?,
et (£[p1Z, +1) = (0,1, —1,0)/v/2, " (£|plZ, —1) = (0,1, +4i,0)/v/2. Thus, the S = 0 combina-
tion 5, (1M1 1 — A;]00 11)e*(p, A1)e,(p, — A1) gives rise to the factor (3 4 2|p1?/M2)/v/3. The
I = 0 projection is straightforward taking into account the isospin states given in Eq. (33]).
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3.2.3 Two-o states

In this Subsection we discuss the calculation of the elementary amplitudes from the La-
grangians of Eqs. (32) and (B4]) involving the oo state. The key point is to realize that,
according to the results of UChPT [33,[39], the o resonance is made up from the interactions
between two pions in I = 0 and S-wave. This will allow us to obtain the couplings involving
the o0 meson without introducing any new free parameters. In order to obtain two-o reso-
nances, one needs four pions grouped in two I = 0 S-wave w7 states. Let us denote by s;
and s, the total CM energy squared of every of the two I = 0 7w states. The desired transi-
tion amplitude is then obtained taking the limit s, so — s,, with s, the ¢ pole position in
the sheet with the reversed sign for the pion CM three-momentum (second Riemann sheet).
This can be straightforwardly generalized to any number of o mesons, e.g., for the transition
amplitude oo — oo one needs eight pions grouped in 4 sets of 77 in I = 0 and S-wave. For
Tm — oo six pions are involved grouped in three sets and so on. Then, several s; (with 4
running from 1 up to the number of o’s that scatter) are needed, and the limit s; — s, must
be finally taken.

For illustration let us show how to proceed for the calculation of |[KK)y — (00)o. First,

from the Lagrangians of Eqs. (3.2)) and (8:4) one calculates the amplitude |[K K)o — |77 )o|77)0,
(R)

which is given by the sum T(KI—()O_>(M)()(M)0 + T(K[—()(H(M)O(M)0 with:
) V2 B 2
T(Kf()o—>(7r7r)0(7r7r)0 - 36f4 (5(81 + 82) 10m7r) )
(R) _ ( ) (7)o () /B(KK 7)o (7mm)o
T(Kf()o—>(7r7r)o(7r7r)0 - Z M2 + Z M : (310)

Ss

The superscript 2 means that the amplitude is calculated at lowest order in ChPT and the
superscript R indicates that this amplitude is due to the exchange of explicit scalar resonances.
The sums in Sg and S; extend over the octets and singlets of scalar resonances, respectively.
The couplings a; and f3; are given in Appendix [Al

Now, every I = 0 S-wave 77 state, because of its rescattering, gives rise to a o pole. Note
that in Eqgs. (810) the I = 0 77 pairs are already in S-wave and the angular projection is not
necessary. This also happens for the rest of transition amplitudes involving the oo state. The

rescattering between the pions in a 77 pair is taken into account by multiplying Eqs. (B.10)
by 1/D(s1)D(s2) with

D(s) =141ty G(s), (3.11)
where ty = (s — m2/2)/f2, the I = 0 S-wave 77 amplitude at lowest in ChPT and G(s) =
(a+log TZ—; —o(s)log E g )/ (4m)?, 0 = /1 —4m2 /s and s is the total CM energy squared.

The subtraction constant « is fixed such that to/D(s) describes properly the I = 0 S-wave
7 phase shifts in the elastic region [39], o ~ —0.7 for u = M, with M, = 770 MeV (the
p mass.) The value of a depends on that of the renormalization scale u, being the results
independent of the value taken for the latter. We follow Ref. [279] to treat the rescattering
between two pions in I = 0 and S-wave, similarly also as in Refs. [3440,146.280,281]. From
Ref. [39] a general partial wave in the elastic case can be written as,

T =[I+N(s)-G(s)] " - N(s) . (3.12)
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The interaction kernel N is fixed by matching the previous general expression with the chiral
series order by order. For instance at leading order, N(s) = ts(s). Eq. (312) implies that once
the two pions in I = 0 and S-wave are produced from the primary vertex N, the rescattering
between them takes place according to the factor 1/D(s) and Eq. (B12) arises. In the same
way here, the dressing of Eq. (BI0) by the I = 0 S-wave 77 rescattering in every I = 0
S-wave w7 subset implies then

. _ (2+R) 1
T(KK)oH(M)o(m)o - T(Kf()g—>(7r7r)o(7r7r)0D(SI)D(82> : (3.13)

: . . - (2+R)
In the previous equation the superscript 2 + R indicates that T( KR )y ()0 ()

sum of T®? and TW in Eq. (310)).

, Is given by the

The o pole is contained in each of the factors 1/D(s;) in the unphysical Riemann sheet on
which

Gls) = Guis) = {a—%bgng——0@)<bgzyﬂ_]7+2m>} CIm(s) >0, (3.14)

1
(47)? K s)+1

and the complex conjugate of this expression for Im(s) < 0. In the subsequent the subscript
1T means that the corresponding function is evaluated on the second 77 Riemann sheet. In
this way, when taking the limit s;, s — s, in Eq. (813]) one has,

2
ga(mr)o
51— 54)(52 — 54)

Li=1,2. (3.15)

517§2H3>50 T(Kk)oﬁ(ﬂw)o(mr)() - N(KI_()OQJU (

where g, (xr), is the o coupling to an I = 0 S-wave 7 state and Nk is the transition

amplitude we are interested in. From this equation we can write,

Jo—oo

i o (51— 55)(52 = 85) (24R)
N(KK)o—mo - sl,lslgrgsa -DII<81>'DII<82>g§'(7r7T)O (KK)o—(mm)o(nm)o”

(3.16)

Note that the limiting factor limg, s (s; — $5)/(D11(5)Go(rr),) always appears related with
every of the 7m I = 0 S-wave pairs and hence is worth calculating it once for ever. This can
be easily done by a Laurent expansion of Dy;(s) around s,, as in Ref. [279],

. 51— So . 1 t2(51) go’(7T7T)0
lim ———— = lim S1— Sy5) = — . 3.17
A D) B goomata(n) Dulsn) ) T T ha(s,) (3.17)

Above, we made use of the following Laurent series of the full amplitude:

ta(s1) ta(s1) gg'(ﬂ'ﬂ')o
= ~ — + regular terms . 3.18
Dir(s1)  1+ta(s1)Grr(s1) 81— Sq & ( )

Now, the coupling gf_(m)o can be retrieved from the derivative of the inverse of the elastic
amplitude,

1 _ dG[[(Sl)
t22(81)f2 dSl ’

So

5 :—ﬂ(mﬁw+emﬁnz

3.19
gU(THT)Q dsl ( )
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so that:

2
Yo (xm)o 2 1 2 -3 2
Zotmmo ~ ~ 1 . .2
t2(8a)2 f 1— dGrr(s1) t22(80—)f2 fTI' 9 x 10 GeV (3 0)

dsy
This factor f? is cancelled by the corresponding ones that appear when calculating multipion
tree level amplitudes as each pion field enters together with a 1/ f factor. For explicit numerical
values,?

So

Jo(rn)o 1

ol ):f 1/2:98—2'161\/16\/'2]", (3.21)
Sy B

: (1- 20| 12(s)2)

or s./“ = (0.46 — 1 0. eV. Note that the previous value 1s mainly a positive real number.
for s1/2 = (0.46 —i0.24) GeV. Note that th i lue is mainl iti ] numb

For our computation evaluations we employ finally the value 97.1 MeV, that corresponds to
the modulus of |gs(rr),/t2(5,)| With the values of Ref. [279]. As a result, from Eqs. (3.18]),

(BI7) and (3:20), we obtain:

2
N, o - _ L (2+_R) _ga(mr)o ~ L (2+_R) (3 22)
(KK)o—(o0)o \/§ (KK)—(7m)o(mm)o t2(50') - \/5 (KK)—(mm)o(rm)o -~ :

The factor 1/4/2 included above is a symmetry factor already introduced in the definition of
the I = 0 |oo)g state in Eq. (B.3]). In calculating the previous expression the variables s;, in
virtue of the limit in Eq. (BI3]), are placed at s; = s,. However, in doing this the elementary
amplitude Ny, (00), develops an imaginary part, because s, is complex (in Ref. [279] s,
is given by s, = (0.47 —40.22)* GeV?2.) This is due to the finite width of the ¢ resonance to
two pions. The finite width of a resonance can also be interpreted as giving rise to a mass
distribution for the latter. We take this point of view and vary the mass for the o resonance
in N(go)y—¢, as discussed below in Sec. B.3l

3.2.4 The 7(1300)7 channel

We first discuss the evaluation of the elastic transition 7(1300)7 — 7(1300)7. We make use
of the Weinberg-Tomozawa term for an octet of pseudoscalar resonances (see Sec. [[L13):

Liin = ;<D”HDHH> — (O[T, 1)) + ... (3.23)

with IT an octet of pseudoscalar resonances including the 7(1300). The covariant derivative
D,IT is given by,

DI = 9,1+ [Fua 1],
1
r, = 5 {uT(au —iry,)u + u(0, — ilu)uT} : (3.24)

From the Lagrangian in Eq. (3:23) one straightforwardly calculates

1
Nig1s = F 2s(s —m2 — M2) +s* — (M2 —m2)*] (3.25)

3Note that the sign given when taking the square root of this quantity is not relevant, since this factor
always appears squared, as can be seen in Eq. (3:222) below.
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For the evaluation of the rest of interacting kernels involving one 7(1300)7 state, either
as final or initial channel, we make use of the interaction Lagrangian from Ref. [105,1006], as
presented in Sec. [[L13] involving an octet of pseudoscalar resonances II,

Ling = idy(TIx_) = X+ XD + 30D + 30xP?) I) (3.26)

dm
Y

with x_ = ulxu" — uxTu. From this Lagrangian the transitions 7(1300)r <> V'V’ are zero,
with V'V’ corresponding to any vector-vector state. The other non-vanishing elementary
transition amplitudes involving the m(1300)7 channel are displayed in Appendix [Al The
coupling constant d,,, when this channel is included, is taken from the literature [105].

3.2.5 The a;(1260)7 channel

For the introduction of the axial-vector field a;(1260), the external fields r, and [, appearing
in the Lagrangian of Eq. (8:2) are identified with Aa, and —Aa,,, respectively, where A is a
constant and a,, is an octet of axial-vector resonances with J7¢ = 1*+.* The constant \ is
evaluated from the decay width aj — 7 with the value of 640 4 246 KeV [48]. For this
transition one employs Eq. (8:2) keeping one pseudoscalar field and one photon, together with
the axial-vector field. The photon enters through the vector field eA, = r, = [, [221]. The
resulting Lagrangian is

L(ay — 1) = —V2efra}(1260) 7~ | (3.27)

and the calculated width is given by

af2N\?

[(ay = ym) = 7
M2

(3.28)

with M,, ~ 1260 MeV the mass of the a; axial-vector resonance [48]. From this equation one
gets A =58+ 1.2.

Other amplitudes that can be derived from the Lagrangian of Eq. (8.2)) involving the a;m
state are a7 <> a1 and a;7 <> PQ, with P,@Q € {7, K,n,n'}. The appropriate vertices are,
respectively,

Lojnsan = )\2<CLM(1)GM(I) — @Ma“qﬂ) ,
2
Lonsrg = \g_f(a“ D201 D + 0" D B* — 200"D ) . (3.29)

The transition amplitude a;m — oo requires the Lagrangian of Eq. (8:2)) with 5 pseudoscalar
fields,

V2
Loirsos = W@ (400" 07 4 40°0"D ® — 6°0"D D> — 9" B — ¥9"P)) . (3.30)

4The charge conjugation transformation properties of this axial-vector field can be worked out from the
requirement that QCD is invariant under this transformation with a, o< gy*vs¢, in standard notation.
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By incorporating the axial-vector fields in the Lagrangians involving the scalar resonance
multiplets Sg and Sy, Eqgs. (8:4]), one can also evaluate the couplings of these resonances with
the a;m state. The resulting Lagrangians are:

2V2

ESg—)(llﬂ' = —Cq

Lsan = —ad‘“fsmﬂa@ . (3.31)

(a,0"'® + 0'day) ,

Total angular momentum and parity conservation require the state a;m to be in a P-wave
for the relative orbital angular momentum. The appropriate projected state for our porpuses
is given by:

1
laym; J =0,0=1) = T ;/df)}/lm(f))(mamll()) laym; plo) (3.32)

with the notation for the Clebsch-Gordan coefficients (mjmams|j1j2Js), for the composition
of spins j; + jo = j3. In the previous equation ¢ is the third component of spin of the a;
resonance in its rest frame.

Since the axial-vector state |a;; p1,0) can be both in the final or initial state we give the
general expression for the polarization vector €(pq, o) for arbitrary p and o,

ypcos0/p°
(v —1)cosf sinf cos ¢

(v —1)cos® sinf sin ¢
1+ (y—1)cos?d

yp sin fet® /p°

—1| 1+¢%(y—1)sin?0 cos¢
V2 | i4e(y—1)sin20 sin ¢
e(y —1)sinf cos @

and €(p, —1) = —¢(p, +1)*. In the previous equation p° = |/p? + M2 and v = 1/,/1 — p?/p.

A technical point worth being mentioned is related to the time reversal invariance prop-
erties associated with the Lagrangians L, - pg, Lsg—a;r and Lg,q,=. The issue is that the
amplitudes calculated from these Lagrangians, and also the projected partial waves, contain
explicitly a 4 factor whose sign depends on whether we take the a7 as initial or final state.
This ¢ factor originates because the presence of just one derivative acting on the meson fields.
A general result is that partial waves are symmetric under this exchange because time reversal
invariance. However, the way a state transforms under time reversal is affected by an arbitrary
phase and it turns that depending on this phase the partial waves are or are not symmetric
under the exchange of the inital <+ final states. As we make use later of this symmetry when
working out the coupled channel partial wave amplitudes, we have chosen the phase of the
a1 () field so as the partial wave amplitudes are symmetric under such exchange. For that we
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use the fields,

a(l)(ﬂf) = 1 / 22 5 )€(p70)e—ipx —CT(p, ) (p, )* sz} :
a;r(l') = _Z/(27T)32po [a(p,a)e(pja)efipx —i—bT(p, o)e(p, o)*e zpz} ’
(@)

ap () = a
Note the multiplying factors +i in front and our notation is such that [a(p,c),al(p’,0’)] =
(27)32p%0,0:0(p — P’). This phase selection also respects the isospin convention followed in
the construction of the states in Eq. (35). This fixes the +i sign in front of the a?(z) field
with respect to the —i in front of the af () field.

(3.33)

Due to the P-wave nature of the relative orbital angular momentum in the |a;7) state
each amplitude involving the a;7 system is proportional to |p|”, with p the three-momentum
of the a7 state and n = 1 or 2 depending of whether the amplitude under consideration
involves one or two a;m states, respectively. This makes that such elementary amplitudes
grow as (]\/[31 / \/E)n for s < MZ . Notice that such values of s are not physical at all for
the a7 state because they are much smaller than the threshold for such channel. In order
to avoid such behaviour we multiply the resulting elementary amplitudes by a decreasing
function exp (—|p|*/A?|), with A ~ 1 GeV. The final results depend only marginally on the
precise value for A. Indeed, as we discuss later, the a;m channel has very small effects on the
physical final results.

3.3 Full amplitudes

We use here the general method of Ref. [39], exposed in Sec. 271 to obtain unitarized partial
waves by resumming the RHC [29,[30139,41],225]. The key point is the general expression,
now in coupled channels,

T = 1[I+ N(s)g(s)] " N(s), (3.34)

where N(s) is a n X n matrix (with n the number of channels) whose matrix elements are the
elementary amplitudes obtained from the previous sections. They can be found in Appendix[Al
The function ¢(s) is a diagonal n x n matrix whose matrix elements correspond to the unitarity
bubbles, Figl3.1l The latter are given by the once subtracted dispersion relation as explained
in Sec. 2.7

S — 8o

o als)/(TV)

T Jsg (8 —80)(s —s—ie)’

9i(s) = gi(s0) — (3.35)

with sp the subtraction point, which is convenient to take on the real axis below threshold
(Sth;i)- On the other hand, ¢; is the CM three-momentum for channel i. For completeness,
we give here the g;(s) function for the cases of equal and an equal masses of the intermediate
particles. If we denote by M; and M; the masses of the particles 1 and 2 in a channel, the
following explicit expressions for g;(s) result:

Ml - MQIM
2

(s) = ! % 0% OM o(s) = —4M?/s
06 = o (or 108 2~ aou 4 ) o) = T a0 (330
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s =

Figure 3.1: The function ¢(s) as a loop in terms of Feynman diagrams.

My # M,
1 M2 M2 — M? M2 M2+ M2 — s+ 92,
gi(s) = O‘i+10g71+2—1—i_slog—22_q(5)10g 12—1- 2 s+ 2¢i/s |

The logarithm is taken such that log(—1) = im and «; is the subtraction constant for channel
i. Notice that the function g;(s) for two pions was already used in Subsec. B.22Z3] when the
function 1/D(s) was introduced.

Equation (3.34)) is expanded in powers of Ng (numbers of unitarity loops), in order to fix
the matrix N(s),
T=N—NgN+... (3.37)

This expansion is matched with the elementary amplitudes calculated in Sec. from the
Lagrangians of Eqs. (3.2]) and (34) which do not involve loops. As a result NV;; is directly
identified with the S-wave amplitudes given in Appendix [Al

It is interesting to remark here that our unitarization scheme is not equivalent to the
Inverse Amplitude Method [29,30] (IAM). The differences arise because in the TAM one
performs an extra chiral expansion of N=' = Ny ' — Ny 'N,N, ' + ..., the subscript indicates
the chiral order. This further expansion is here avoided. Notice that this assumption does
not always hold even at low energies, as it is the case close to the Adler zeroes. In this case,
N, vanishes around the Adler zero and hence |Ny| is not longer smaller than |N;|. However,
in our approach we do not assume that |Ny(s)| < |Na(s)| for all values of s at low energies
but only at the level of the chiral expansion, similarly as in ChPT.> We perform the previous
expansion at low energies, in order to match with the resonance ChPT results. The problem
of the IAM in conjunction with the Adler zeroes was discussed in detail in Refs. [282]283].

In applying Eq. ([8:34) to the I = 0 S-wave one has to face the problem of the mass
distribution of the o resonance because of its large width. Let us take first the Lehmann
representation for a propagator P(s):

—1 toe ImP(s’
P(s) = — ds’# . (3.38)
T Jsn s — 8" + 1€
The so called spectral function ImP(s) is a priori unknown but as a first approach we take it
to be:

mP(s') — Im{ ! } , (3.39)

s —m2 +imyLy(s)

with Ty (s') = Ty (1 —4m2/s")Y/2/(1 — 4m?2 /m?)'/? since the width must tend to zero as the
phase space of the two pions. On the other hand, m, and I', are, respectively, the real and

SFor example, it could occur that Na(s) = 0 but not Ny(s). The point is that the latter must be sufficiently
small to be qualified as O(p*).
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minus twice the imaginary part of s}/2. The latter was given above, although one can also
take m, and I', from other references. We furthermore normalize Eq. (339) so as to always
have
+oo

/ ds' TmP(s') = 1 . (3.40)

Sth
Eq. (B38)) is specially suited for our purposes as it gives the propagator for the o resonance
as a superposition in s’ of a standard one with mass square equal to s’. In this way, from
Eq. (334), we can express the g(s), function as,

+oo +oo

9(8)4 :/ ds’l/ dsy ImP(s7)ImP(s5)g(s; 81, 85)4 (3.41)
Sth Sth

where s| and s} as arguments in g(s; s}, sh)4 refer to the squared masses M? and M7 with

which this function is evaluated according to Eq. ([B36]). That is, the channel oo can be

considered as a continuum set of channels with different masses squared s} and s}, and a mass

distribution governed by ImP(s})ImP(s)).

Because of this continuum of channels embedded in oo, Eq. (334) is indeed an integral
equation. In order to solve it we discretize the mass distribution so that it is transformed in an
algebraic one that can be easily solved. We check then that for a sufficiently large number of
partitions the results are stable if further increased this number. In this way, the g(s) matrix
has diagonal matrix elements,

g(s; 81, 89)4 ImP(s))ImP(s5) A1 Ay (3.43)

Here, A; and A, are the steps in &} and s}, respectively, that result from the discretization,
and s and s, must be identified with M7 and M7 in Eq. (3:36). Similarly, the interaction
kernels Ny; = N; 4 depend on s} and s} and Ny4 as well on s} and s/, see Appendix [Al These
variables run when multiplying N(s) with g(s). There is here a technicality due to the fact
that these interaction kernels increase power with s, (at most quadratically) and this causes
troubles in the convergence of the sum over s,. As a result we shall fix s, in N;; = N, 4 and
Ny4 to a given value. We have then checked that the results do not depend on this precise

value as long as the mass taken satisfies \/37 < 500 MeV. This also implies that Eq. (3.34)
becomes finally an algebraic one with g(s), calculated as in Eq. (8:41]) whithout folding with
the kernels Ny; because now they are calculated with fixed values for the ).

3.4 Results

3.4.1 Experimental data

In order to fix our free parameters we then fit a large amount of scattering data from the 7
threshold up to /s < 2 GeV. Above this energy further channels are expected to be relevant,
e.g. f0(980)f0(980), a(980)an(980), ete, so that this extension to higher energies is left as
future work. We now list the different data used:

e [ = 0 S-wave 77 elastic phase shifts, 63(s). The low energy data come from K4
decays [284],285] which are very precise but only span energies below the kaon mass.
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For 0.45 < /s < 0.63 GeV. we take the data considered in Ref. [39], which is an average
between data of Refs. [286H-290]. Above 0.63 GeV, the data taken are from Ref. [290]
alone since its analysis takes additionally into account the polarization of the proton
target. In Ref. [291] it was found that only the the so called “down-flat” solution of
Ref. [290] should be considered, while the “up-flat” solution can be rejected because
it is not compatible with 77 Roy equations. The upper energy limit of these data is
Vs < 1.6 GeV. Ref. [286] gives data up to higher energies, but we do not agree with
the steady increase of the data for energies above 1.4 GeV and this is why they have not
been included in the fit. Instead, our results generate a rapid upwards motion at around
1.4 — 1.5 GeV, similarly as in Ref. [290]. This behaviour was already found Ref. [274],
which can be considered as an indication of the scalar resonances fy(1370) and f,(1500).
These data and our results are shown in the upper part of Fig. 3.2

I =0 S-wave elastic parameter n = |S1;|. We employ the data of Refs. [289] and [290].
Given the large errors, both data sets are compatible. These data, as well as our results,
are shown in the bottom part of Fig. 3.2

I =0 S-wave 7 — KK phase shifts. Here we consider the data from Refs. [292,293].
Ref. [292] provides data up to /s ~ 2.4 GeV while Ref. [293] up to /s ~ 1.6 GeV. As
shown in Fig. 3.3 the errors for the latter data are rather small and give a higher value
for the phase of the peak at ~ 1.5 GeV.

I =0 S-wave mr — KK |Si5|, the data are from the sames references as the previous
data, Refs. [292,293]. The data of Etkin et al. [292] are not normalized so that a global
constant is allowed to float when fitting them. The central value of this constant given
by our fits has been used to plot these data in Fig.

I =0 S-wave 7w — nn |Si3]>. The data are not normalized and correspond to the S-
wave contribution separated out in Ref. [294]. A normalization constant is then included
as a free parameter.

I =0 S-wave mm — nn’ |Si5]%. The data are from Ref. [295] and as in the 77 — 1 case
they are not normalized, so that a normalization constant is also included. The data for
nn and nn’ data are shown in Fig. 3.4l

K~n" scattering from Ref. [296], both the modulus of the amplitude, Ay, and the phase,
¢o, are given and fitted. This scattering can be written in terms of the I = 1/2 and
3/2 amplitudes as in Ref. [43/44]. In Fig. we show the solution® A of Ref. [296]. In
Ref. [43//44] it was shown that the solutions B and D of Ref. [296] are not physical because
they violate unitarity. The solutions A and C are indeed very similar for /s > 1.85 GeV,
and this is why only the solution A of Ref. [296] is shown. We also recall that for these
data we are using the same approach as in Ref. [43,[44], but now we simultaneously fit
the I = 0 S-wave previous data.

We also fit the values of Ref. [297] a) = 0.220 4 0.005 and M?2b) = 0.276 £ 0.006 for the
threshold parameters (see Chapter B Eq. (59) for their definition and a more accurate
determination and a discussion of these parameters.) Our results for these parameters
are aj = 0.216 and M?2b) = 0.277, in good agreement with the cited values.

SThere is a four-fold ambiguity for energies above 1.85 GeV in Ref. [296].
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M (MeV) ¢4 oréq (MeV) ¢y or &, ( MeV)

s 12904+45  25.8+0.5 25.8 + 1.1
5% 1905 +13 203414 ~13.9+2.0
S 894 413 144403 46.6 + 1.1

Table 3.1: Parameters of the bare resonances included. We show in boldface the
parameters that have been fixed to previous works, as explained in the text.

3.4.2 Free parameters

We have performed two type of fits, with and without including the 7(1300)7 and a;(1260)7
channels. As commented in Sec. 3.1l the contribution to the observables of these channels is
found to be marginal, so we show our fit results without them.

Apart from normalization constants of the data (which cannot be considered as free param-
eters of our approach), we have the free parameters of the bare resonances and the subtraction
constants of the loop functions. The former are shown in Table 3.1l With our fits, we deduce
that two octets and one singlet of scalar resonances are needed. The mass and couplings of
the first octet are fixed to the values of Refs. [43[44], as well as the mass of the second octet.
The mass of the singlet is difficult to fix, because of its correlation to the couplings, that is,
similar results can be obtained with lower values of the mass altogether with higher values of
the couplings, specially for the coupling ¢,,.

Regarding the subtraction constants, since the SU(3) breaking is softer in the vector sector,
and in order to reduce further the number of free parameters, we take one common subtraction
constant for every V'V channel (recall that these comprise pp, K*K*, ww, wg and ¢¢). Once
fixed, if we let them free, small variations are found. The subtraction constants are found
to be natural sized, which indicates that we are not generating poles in artificial ways. The
values of the subtraction constants are as follows: a,, = —1.36 £ 0.05, ax iz = —0.47 £ 0.04,
Apy = —0.96£0.06, a,r = 1.54£0.08, a,,y = 0.86%0.09, a,, = —2.31£0.04 and a,,y = 6.010.3.

In total, we have 12 free parameters (15, when including a;7 and 7(1300)7 channels), for
about 370 data points, for different observables, which come from different and independent
experiments, so that we perform a global description of the experimental results, which allows
in turn a global description of the spectroscopy. We want to stress that we employ standard
chiral Lagrangians to calculate the interaction kernels avoiding ad hoc parameterizations as
in other studies, which do not incorporate so many coupled channels as we do, see e.g. [248]
249,274]. Refs. [248,249] employ around 40 parameters, a number larger than we do here.
Refs. [245-247,274] use also 13-14 free parameters (as we do) but only consider 3 coupled
channels at most.

3.4.3 Results for the observables

All the experimental data can be deduced from the S-matrix. With our normalization, its
matrix elements are given by:

Sig = 04+ 2ix/pi TN/ (3.44)
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Figure 3.2: Fit to mm — 7 experimental data. In the upper panel, we show the
phase shift. In the region 0.45 GeV < /s < 0.63 GeV, they are the average em-
ployed in Ref. [39], and for /s > 0.63 GeV, they are taken directly from Ref. [290].
The data of the low energy region, /s < 0.45 GeV, enlarged in the inset, are from
Refs. [284,285]. In the bottom panel, we show the elasticity parameter 7. Blue
circles are from Ref. [290] and green diamonds, from Ref. [289].
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Figure 3.3: Fit to 7 — KK experimental data. Blue circles are from Ref. [292]
and red diamonds from Ref. [293].

where p;(s) = ¢i(s)/8m/s and ¢;(s) is the CM three-momentum for channel i.

Our results for the observables are shown throughout Figs. B.22H3.5l The width of the
band around the curves takes into account two standard deviations from the x? resulting
from the central fit, denoted by x2. Monte-Carlo samples for the values of the free parameters
(including those that have been fixed), have been generated allowing a large variation in the
values of the parameters derived from the central fit. For each sample a x? is calculated and
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Figure 3.4: Fit to 7w — nn (left) [294] and nn’ (right) [295] experimental data.
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Figure 3.5: Fit to K~ 7" experimental data from Ref. [296], both phase (left) and
amplitude (right).

only those x? that satisfy
ne = A/ (2x1)? (3.45)

are kept. Here n, is the number of standard deviations, that we take equal to two. This
equation is derived from simple statistical considerations in appendix A of Ref. [292]. We find
a good overall agreement with data.

Regarding the mm — 77 scattering data, we want to stress that we are able to accurately
reproduce the precise data from K., decays without destroying the agreement with higher
energies, as can be seen in Fig. B2l One observes a rapid increase of the phases around
1.4 — 1.6 GeV in contrast with the steady increase of Ref. [286]. This increase is related with
the marked peak in the 77 — KK phase shifts at /s ~ 1.5 GeV, which is also connected
with the appeareance in our amplitudes of the f;(1370) and f;(1500) resonances.

For the 7 — KK I = 0 S-wave phase shifts, shown in the upper panel of Fig. B3 our
curve follows better the data from Ref. [293]. These data show an even more marked peak in
the 1.5 GeV region than the [292] ones, as found in our results. Our curve also reproduces
closely |Si2|, as shown in the bottom panel of Fig. B3 It is also interesting to observe the
good agrement with the 77 — nn and nn’ shown in the two panels of Fig. B4 even if they
contribute with a necessarily low weight in x? (this makes the error band much wider than in
other observables.)
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PDG ‘ This work
Resonance M (MeV) I (MeV) I =0 Poles (MeV) M (MeV) T (MeV)
o = fo(500) 456 £ 6 —i 241 £7
f0(980) 980+ 10 40— 100 983 +4 —i25+4 9834+4  50+8
fo(1370) 1200 — 1500 200 — 500 | f& 1466 +15—i 158 £12 1370+ 30 316+ 24
fo(1500) 1505 + 6 109+7 | fE16024+15—-i444+15 1502+15 1054+ 30
fo(1710) 1724 + 7 137+ 8 1690 4+20 —i 110420  17004+20 160 + 40
fo(1790) 1790739 270130 1810 15— 1904+20 1810430 380 + 40
PDG | This work
Resonance M (MeV) T (MeV) | I=1/2 Poles (MeV)
r = K (800) - - 708 +6 —i 313+ 10
K§(1430) 141446  290+21 | 143546 —i 142+ 8
K(1950) - - 1750 4 20 — i 150 + 20

Table 3.2: Pole content of our amplitudes, as compared with the PDG. Top: I =0
poles. Bottom: I = 1/2 poles.

Regarding the K~ 7t data, we also observe for the phase ¢q(s) that our curve lies below
the rapid increase at 1.7 GeV. We recall here the discussion on this issue in Refs. [43/44], where
it was shown that unitarity requires that ¢, < 180°. Once those points with ¢g(s) > 180° are
eliminated, the agreement is good.

3.5 Spectroscopy

Let us now focus on the spectroscopy that we can obtain from our amplitudes. We find poles
corresponding to the o, f4(980), fo(1370), fo(1500), fo(1710) and fo(1790) for I = 0 and for
I =1/2 we have the poles of the s, K;(1430) and K;(1950). The pole positions are collected
in Table[3.2l However, the resonance spectrum cannot be understood by just quoting the pole
positions, and some further explanations will be given in this Section.

The poles appear in different Riemann-sheets of the many 2" Riemann sheets existing for
an n coupled channel problem. Here n = 11 or 13 depending of whether the a;(1260)7 and
7(1300)7 states are included or not, respectively. Along the real s—axis on the physical sheet,
there is always a non-physical Riemann sheet that matches with the physical one. Then one
has to study the poles in this non-physical Riemann sheet as they contribute to the behaviour
of the physical amplitudes between the opening of the previous and next Riemann sheets. Each
different sheet is characterized by the sign in front of the definition of the three-momentum
of chanenl 7,

(s = (My 4+ Mp))(s — (M — My)?)
q; = 2\/5 )

with M, and M, the masses of the two particles composing the channel 7. In this way either

(3.46)
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Fo(1370) (I = 0) | Kg(1430) (1 = 1/2)
Coupling bare final Coupling bare final
Grt - 3.9 359+£0.16 IKn 50 4.8
Jrogo 23 2231018 | gk, 0.7 0.9
Gnn 1.4 1.70+£0.30 9K 3.4 3.8

Gy 3.7 4.00+0.30
Gy 38 3.70+0.40

Table 3.3: The couplings (in GeV) of the fy(1370) and K§(1430) resonances to

different channels, and the couplings of the bare octet, Sél). Their similarities
show that the former are mainly an octet, not mixed with nearby resonances.

Im(g;) = 0 or Im(g;) < 0. The physical sheet is that with the positive sign for all the channels.
For a given value of s along the real axis the non-physical Riemmann connected continuously
with the physical one is that sheet with Im(g;) < 0 for all the channels 4 whose threshold,
Sthis 18 Sthi < 8. For oo, pp, aym and 7w(1300)7 states, whose composite particles are one or
both resonances with a significant width and have a non definite threshold, the sign of ¢; is
changed for those values of \/E + \/g < Rey/s, see Eq. ([B.41) for the meaning of s} and sb.
In this way the continuous extrapolation to the physical sheet is guaranteed.

Our description of the scalar isoscalar resonances below 1 GeV, the o and the f;(980) for
I = 0 and the k for I = 1/2, is in good agreement with previous works on the subject (see
references in Sec. [3.]]), so we may focus on the more complicated region 1 GeV < /s < 2 GeV.
Four resonances with I = 0 are found there: f,(1370), fo(1500), fo(1710) and f,(1790), that
we discuss in the following. After the description of these resonances, we discuss altogether
those in the I = 1/2 sector.

3.5.1 £,(1370)

A pole is found at /s = 1466 +15—1i(158 +£12) MeV, which we denote by f. This pole can be
seen in Fig. in the 0o — oo amplitude. Though the mass deduced from the pole is found
to be closer to 1.5 GeV, in most of the amplitudes the peak is located at 1.37 GeV, which is
closer to its nominal mass. However, the value favored by the high statistics study of the Belle
Collaboration on vy — 797% is 1.47 GeV, close to the mass deduced from the pole. It should
be noted that the PDG value has a large uncertainty, M = 1200 — 1500 MeV. Regarding its
width, we deduce I' = 316 + 24 MeV, also inside the PDG values, I' = 200 — 500 MeV. It is
found to have a large width to 7w, I'(47) /T'(27) = 0.30 £0.12, in agreement with the interval
0.10—0.25 of Ref. [68]. In TableB33], we show the couplings of the f,(1370) and compare them
with those of the bare octet we have introduced, Sél) (recall that it has Mél) = 1.29 GeV, and
c((il) = (1) = 26 MeV), showing that they are indeed very similar. The same can be said of
the K((1430) in the I = % channel. From the similarities of the couplings of these poles with
respect to the bare ones we deduce that the first scalar octet is a pure one, not mixed with
the nearby resonances.
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Figure 3.6: We show the f& ~ f,(1370) pole effects in the oo elastic amplitude.
In the upper plot, it is shown the pole in the complex s plane (actually, we use
v/s). In the bottom left, a contour plot of the previous one is shown, where it
can be well appreciated that the gradient of the amplitude is not parallel to the
imaginary axis, giving rise to a shift in the peak of the amplitude, as can be seen
in the bottom right picture. The amplitude is finally peaked at 1.37 GeV.

3.5.2 £,(1500)

We find a pole located at 1602 + 15 — (44 £ 15) MeV, denoted by f&, lying on the Riemann
sheet that connects with the physical one up to the nn' threshold, /s ~ 1.5 GeV. Thus, it is
located 100 MeV above the maximum energy at which the two Riemann sheets are connected,
but, however, its influence on the physical amplitudes is large, as can be seen in Fig. B.71
The mass peak of the f,(1500) is thus at 1.5 GeV due to the nn’ threshold. This is a similar
effect to the one relating ag(980) and KK threshold, see Ref. [39]. In addition, we have the
nearby fF pole. The width is T' = 1.2 x 88 MeV = 105 + 36 MeV, because a Breit-Wigner
at /s = 1.6 —i0.04 GeV is cut by nn’ threshold. Summarizing, this is a complicated energy
region, where no simple approaches nor analysis without proper coupled channels mechanisms
should be employed. We have found three interfering effects giving raise to fo(1500), namely
(i) the f& pole at /s = 1.6 —i0.04 GeV; (ii) the f& ~ f3(1370) pole, at 1.47 —i0.16 GeV; and
(iii) the nearby thresholds nn' and ww.

3.5.3 £,(1710)

This resonance is given by a pole located at /s = 1690 4+ 20 — i110 £ 20 MeV on a Riemann
sheet continuosly connected with the physical one at the real s axis. In Fig. this pole is
shown in the 1’ elastic amplitude. It can be seen there that the mass peak is slightly shifted
to /s =~ 1.7 GeV. The effective width on this amplitude is I' = 160 MeV, closer to the value
quoted by the PDG, I' = 1374+ 8 MeV, than that deduced directly from the imaginary part of
the pole position, that would be I" = 220 £ 40 MeV (yet not far to the PDG value.) However,
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Figure 3.7: We show the three interfering effects giving rise to the fy(1500) res-
onance. The main one is the f& pole. The f& ~ fo(1370) also contributes. The
nn’ threshold is also shown with a red line.

the effective width can depend on the process. In Table [3.4] we show some of the branching
ratios calculated from the residues and compare them with the PDG values, finding a very
good agreement.

An striking feature we find in our approach is that the fo(1500) and f;(1710) resonances
are tightly connected. The fy(1500) originates mainly from the f& pole, but, if we continuosly
change from the Riemman sheet in which it is located to the one where the f,(1710) pole is
located, we see that the former continuosly moves to the latter. They are the same underlying
pole reflected in different Riemann sheets, and the origin of this pole is not the higher octet
we have introduced. However, the final pole position of f and f;(1710) and the effects they
produce are different enough to consider them as different resonances. The identification of
the fp(1710) resonance as mainly the lightest scalar glueball is treated in Sec. 31

BR This work PDG
HEK) 0364012 0.3845:9

Ttotal

r 0.03
Lom 0224012 018499

Ttotal

T'(7m) +0.11
S 0324004 04150}

L)
i 0644038 0.4840.15

Table 3.4: Branching ratios of the fy(1710)
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Figure 3.8: The fy(1710) pole in the n'n’ — n'n’ amplitude is shown. In the
picture of the pole in the complex plane, the shift of the mass peak towards higher
energies is shown. Over the real axis, the resonance appears narrower than what
can be expected from the pole position.

3.5.4 £,(1790)

It originates from a pole located at /s = 1810 — (190 £ 20) MeV, but shows weak signals
on the real axis. It couples weakly to KK, a major difference with respect to fy(1710), as
also observed by BESII. Tt is the partner of the pole at /s = 1.75 — i0.15 GeV in I = 1/2,

and they originate from the dressing of the higher bare octet we have introduced, SéQ) , with
M = 1.9 GeV and couplings given by c¢g = 20 MeV and ¢,, = —14 MeV.

355 1=1/2

Concerning the I = 1/2 S-wave amplitudes we obtain the same resonances as in Refs. [43][44]
with pole positions for the x, K$(1430) and KF(1950) given in Table 322l We recall here the
discussion in Subsec. B5.0] leading to deduce that f;(1370) and K5(1430) are pure octets.
Note that now all these resonances in I = 1/2 have been obtained consistently witht the
spectroscopy content of the I = 0 S-wave.

3.6 WA102 and CBC data

In order to find further support to our approach and, specially, to our spectroscopy, we fit the
data from the WA102 Collaboration on pp — pprtn~, KTK~ [298] and nn at 450 GeV /¢ [299]
and those of the Crystal Barrel Collaboration (CBC) on pp — 7% and pp — 70y’
[301]. These data are also very convenient theoretically as the two mesons produced interact
negligibly with the two protons because the latter are very energetic [302]. To fit the data we
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Figure 3.9: The fo(1790) pole is shown in the nn’ — nn’ amplitude, where it
appears as a dip in the real axis.

employ a coherent sum of Breit-Wigner functions and a non-resonant term, similarly as done

by the WA102 Collab. [298]:

a.eiejg._
A — N X J 73t < / 4
(Vs)i = NR(V/s); +j§4 M7 s VT Vs < my +m (3.47a)
A(VE): = NR(S3) + 11+ 3~y a9 V5 2 my +m) (3.47D)
' N MY - s — i MT o ’
NR(V/5)i = al/s — my, — my)Pe V9 (3.47¢)

The subset of resonances A and B are given by

A= {U7f0(980>7f(%7f({%}
B = {0, fy(980), fy(1710), f,(1790)}

The parameters a; and 6; are the modulus and the phase of the production vertex of the
Jun resonance, M;, I'; and g;,; are, respectively, the mass, width and the coupling to channel
i of the same resonance. The mass M is determined from the pole position and the coupling
gj.i is given by the residue of the partial waves at the pole position. On the other hand, T';
in Eq. (847) is the largest between its value from the pole position and the one calculated by
summing the partial decay widths I';; = 0(y/s —mg —me) Nilgji|*qi/ (87 M), with \; = 1/2 for
identical particles. In addition, my-+m; is the threshold for the channel 2 and «, 3, 7, 0 are real
parameters. The form of the non-resonant term is taken from the WA102 Collaboration [298].
The constant 7; is fixed so that the amplitude A(y/s); is continuous at w,,, = m, + m;.
Equation (3.47) incorporates important new facts compared to the analyses of the WA102
Collaboration. First, the pole positions and couplings for the different resonances are those
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Figure 3.10: Fits to the data of WA102 and CBC Collaborations data. Prominent
peaks associated with the resonances described in this work are clearly seen.

already determined from our study of the scattering data. Second, the a; and 6; parameters
are the same for all the WA102 reactions considered. On the other hand, Eq. (847) is a toy
model which shows in simple terms how the change of sheet at the nn’ threshold takes place
with the corresponding change in the poles involved. Above w,, the o and f,(980) give tiny
contributions. Our fitted curves correspond to the solid lines in Fig. [3.10] where they are
compared to the data. Prominent peaks associated with the f;(980), fo(1710) and f,(1500)
are observed. We also show our good reproduction of the CBC data for the nn and nn’ mass
projections from pp annihilation into 7%n and 7%n’. We also use Eq. (3.47) but without the
non-resonant term, N R(,/s).
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3.7 ldentification of the scalar glueball

QCD, the theory of strong interactions, is a non-abelian Yang Mills theory so that gluons
carry colour charge and interact between them. It is generally believed that QCD predicts the
existence of mesons without valence quarks, the so called glueballs. Its confirmation in the
spectrum of strong interactions is then at the heart of the theory. In quenched lattice QCD
the lightest glueball has the quantum numbers JF¢ = 0*F with a mass of (1.66 & 0.05) GeV
[85H87]. The closest 07 scalar resonances to this energy range that are listed in the PDG
[48] are the fy(1500) and fy(1710). Some references favour the former as the lightest scalar
glueball [I00], while others do so for the latter [89,91].

Let us now take a look at the couplings of the f;(1710) resonance, given in Table This
pattern suggests an enhancement in ss production. Indeed, in the following we show that
it corresponds to the chiral supression mechanism of the coupling of a scalar glueball to qq,
explained in Ref. [91] (see also Refs. [92H94]). According to this mechanism, this coupling is
proportional to the quark mass, thus implying a strong suppression in the production of nn
relative to that of ss. This mechanism is not in disagreement with the by now scarce results

in lattice QCD, as shown in Fig. B.11l

Let us denote B
_ uu+dd

N = 8§ Mn N (3.48)
so that:
i+ dd + s5 2 + 15
m= o 5 V2 + 1) (3.49)
V3 V3
_uﬂ+dd—2s§_ N — V21 (3.50)

BT V3

With a pseudoscalar mixing angle given by sin 5 = —% for n and 7', we have

B 1+\/§
=t
, 2 1

=Nt/ 5t h—F2=
7777377\/5

By denoting the production of nsns, nsn, and 1,1m, by gss, gsn and gn,, respectively, we can
write:

1 22

2
Gn'y = 5Yss + 5 9nn +

3 3 3 Ins
V2 V2 1
Gy = _?gss + ?gnn + ggns

1 2 22

g7777 = ggss + ggnn - Tgns

With these equations, we can solve for g, gns and gn,, and the results, for f& and fy(1710)
are shown in Table[3:6l The chiral supression mechanism implies then that |gss| > |gnn|. Then
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Figure 3.11: Coupling of the scalar glueball to pseudoscalar pairs. The points
correspond to the quenched lattice calculations [89], whereas the line correspond

to a coupling proportional to pseudoscalar masses squared (that is, proportional
to quark masses), as predicted by the chiral supression mechanism [91].

the OZI rule together with this fact supress the coupling |g,s|. Taking e.g. the couplings of
18t one obtains g,s = 11.5 £ 0.5, gps = —0.2 and g,, = —1.4 GeV, and the strong suppression
is clear.

gl (GeV)  fo(1370) fe fo(1710)
gnin-| 359£0.16 1.30£022 1.21+0.16
lgogol  2:23£0.18 2.06+£0.17 2.0+0.3

. 1.74+03  378+0.26 3.3+0.8
|G| 40403 4994024 51+0.8
lgyw| 37404  83+06 11.7+16

Table 3.5: Couplings of the f5(1370), f&¥ and fo(1710) resonances to the different
pseudoscalar-pseudoscalar channels.

Coupling (GeV) f& fo(1710)
Jss 115£05 13.0+£1.0

Ins -0.2 2.1

Gnn —-1.4 1.2
Gss/6 1.9£0.1 21+0.2

Table 3.6: Couplings of f and fy(1710) in terms of 7 and 7,.

We now consider the KK coupling. A K° in terms of valence quarks corresponds to
% | 5u'/+/3, summing over the colour indices, and analogously for the l_( . The production of
a colour singlet §s from the K°K° requires then the combination §;s7 = 6755 /3+ (5,57 —6!55/3),
and similarly for w;u’. As the production occurs from the colour singlet Ss source, only the
configuration sswuu contributes, picking up a suppression factor of 1/3. In addition, the
coupling gss has an extra factor 2 compared to that of a ssuwu, because the former contains
two §s. One then expects for the coupling to K°K° an absolute value 9ss/6, |groio| = 2 GeV,
as can be seen in Table [3.5
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Another resonance with a known enhanced coupling to §s is the f,(980). However, the
sizes of its couplings to nn, 1’ and 1y’ follow the opposite order to the fo(1710) and fg* cases
and all of them are much smaller than the coupling to K K.

It should be stressed that the chiral supression mechanism also implies that the glueball
should remain unmixed. This accurately fits with our previous result that both the fI and
f0(1710) do not mix with the nearby f¥. In addition, the masses of the f&¥ and fo(1710) poles
are in excellent agreement with the quenched latticed QCD result [85H87].

One final remark is in order here. It should be noted that our work proceeds completely
independent of the chiral suppression mechanism of Chanowitz [91], that is, no hypothesis
about it is done to construct our amplitudes. Finally, when comparing our spectroscopy and
the pattern of the couplings and mixing, this mechanism naturally fits in our results.

3.8 Summary and conclusions

In this Chapter, we have studied the scalar sector (071) of meson—meson interactions, with
a special focus on the isoscalar (I = 0) channels, within the framework of UChPT. Our
amplitudes are calculated from chiral Lagrangians, and then unitarized through the N/D
method. In the isoscalar channel, we have included almost all the relevant channels up to
a CM energy about /s ~ 2 GeV. The pseudoscalar-pseudoscalar interactions include the n/
meson, through the extension of the SU(3) symmetry to U(3).

The 47 channels are effectively included by considering the oo and pp channels. We have
followed a novel method to work out the amplitudes involving the ¢ meson, without includ-
ing any ad hoc parametrization, but directly from chiral Lagrangians. This can be done by
taking into account the nature of this resonance, which is a dynamically generated one in the
77 scalar-isoscalar scattering. Whence we can determine its coupling, which appears in the
amplitudes, without introducing any free parameter. The desired amplitudes are obtained
by considering the o-pole limit, s — s,, in the amplitudes involving 77 channels. The pp
interactions (more generally, the vector-vector interactions), on the other hand, are intro-
duced through minimal coupling, identifying the external classical gauge fields in the chiral
Lagrangians with the appropriate vector and axial fields. In this way, up to a global coupling,
determined from the decay width of the p, these channels are introduced in a free-parameter
way. We have also considered the a;m and 7*m channels, but these barely contribute to the
amplitudes. We have also considered for our amplitudes the s—channel interchange of scalar
resonances, determined from resonance chiral Lagrangians. The couplings and bare masses
are fitted then to experiment.

Our relatively small number of free parameters are fitted to a wide variety of meson-meson
scattering data (370 data points), consisting mostly of phase-shifts and amplitude intensities.
Our fits indicate the need of two octets at M ~ 1290 MeV and M =~ 1900 MeV and one singlet
at M ~ 900 MeV in the scalar-isoscalar sector. Once our amplitudes are determined, we pay
special attention to the spectroscopic content of them. The scalar-isoscalar resonances listed
in the PDG up to /s ~ 2 GeV are reproduced. We find the o, f,(980) and  pole positions in
agreement with previous works. Regarding the f;(1370), it originates from a pole, f¥, located



117 3.8 Summary and conclusions

at /s ~ 1470 — 1160 MeV. However, the amplitudes are peaked mostly at /s = 1370 MeV,
close to its nominal mass. We find that its couplings to pseudoscalar-pseudoscalar pairs are
very similar to those of a bare octet. Whence we conclude that it is a pure octet, which
does not mix with the nearby resonances. Similar conclusions can be drawn for the K (1430)
resonance in I = 1/2. In our approach, the f,(1500) resonance appears as an interfering
effect of the nearby 77’ and ww thresholds and the poles f& and f{f, the latter located at
Vs =~ 1505 — i110 MeV. Though further study would be desiderable, what can be deduced
from our analysis is that no simple approach (as e.g. simple sums of Breit—Wigner amplitudes,
and so on) can be used in this complicated energy region. We also find a pole that can be
identified with the f3(1790), with a weak coupling to K K, as pointed out by the experiments.
We discuss about the fy(1710) at the end of this Section.

As further support to our spectroscopic study, we fit the data of the WA102 Collab. on
pp — ppPQ (PQ = ntn~, KtK~ or nn) and those of the CBC Collab. on pp — PQ
(PQ = nn, nn'). This is done a posteriori, that is, we use the spectroscopic content of our
previous fits in the fits of these latter amplitudes, and we find an excellent agreement.

The fo(1710) is associated to the pole located at /s = 1690 — 110 MeV. It is striking
that, by continuosly changing from the Riemann sheet in which it is located to the one in
which the f is present, we move continuosly from one to another pole. That is to say, both
poles correspond to the same resonance but reflected on different sheets. From the pattern of
its couplings to pseudoscalar—pseudoscalar channels, we realize that it perfectly fits into the
chiral supression mechanism of Ref. [91] (deduced from QCD) for the glueball decay into these
channels. Besides, its mass is very close to the ones predicted by lattice QCD simulations.
Strikingly, we can conclude then that the fy(1710) can be identified with the lightest scalar
glueball. The latter should also reflect through the f& pole in the behaviour of the physical
fo(1500) resonance. This could explain why some studies [100] also indicate this resonance as
a candidate for the lightest scalar glueball.
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4.1 Introduction: Pseudoscalar resonances above 1 GeV

As shown in Chapter[Il, due to the spontaneous chiral symmetry breaking of strong interactions
[I1H14] strong constraints among the interactions between the lightest pseudoscalars arise,
which are most efficiently derived in the framework of ChPT [I6HI9]. For the isospin (/)
I =0,1 and 1/2 channels, the scattering of the pseudoscalars in S-wave is strong enough to
generate dynamically the lightest scalar resonances, namely, the f,(980), a(980), x and o,
as shown in Refs. [27,29130,33,39]. Indeed, in Chapter B it was studied the spectroscopy
of the scalar resonances (including the above cited) up to /s = 2 GeV. Still one can make
use of the tightly constrained interactions among the lightest pseudoscalars in order to work
out approximately the scattering between the latter mesons and scalar resonances, as we
show below. We concentrate here on the much narrower resonances f,(980) and a((980) and
consider their interactions with the pseudoscalars 7, K, n and n’. If these interactions are
strong enough new pseudoscalar resonances with J¢ = 0= would come up. This is the
case and the resulting pseudoscalar resonances have a mass larger than 1 GeV (this energy

119
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limit is close to the masses of the f,(980) or ao(980)), typically following the relevant scalar—
pseudoscalar thresholds.

The problem of the excited pseudoscalars above 1 GeV is interesting by itself. These
resonances are not typically well-known [48]. In I = 1/2 one has the K(1460) and K (1630)
resonances. The I = 1 resonances 7(1300), 7(1800) are somewhat better known [48]. They
are broad resonances with a large uncertainty in the width of the former, which is reported
to range between 200-600 MeV in the PDG [48]. Some controversy exists for interpreting
the decay channels of the 7(1800) within a quarkonium picture [IT1,[303]. It was suggested
in [303] that, together with the second radial excitation of the pion, there would be a hybrid
resonance somewhat higher in mass [303H305]. The recent works in Refs. [114,[115], studying
three-pseudoscalar systems by means of the Fadeev equations, obtained conclusions similar to
the ones reported below. The 7(1300) resonance is obtained in 7K K when the KK system
gets reorganized as fo(980), while the K (1460) is obtained in the K K K system.

Special mention deserves the I = 0 channel where the 7(1295), n(1405), n(1475) have
been object of an intense theoretical and experimental study. For an exhaustive review on
the experiments performed on these resonances and the nearby 17" axial-vector resonance
f1(1420) see Ref. [107]. Experimentally it has been established that, while the 7(1405) decays
mainly to aom, the n(1475) does so to K*K + c.c [48,107]. In this way, the study of the
nmm system is certainly the most adequate one for isolating the 7(1405) resonance because
both the f;(1420) and 7(1475) have a suppressed partial decay width to this channel [4§].
References [48|[107] favor the interpretation of considering the 7(1295) and 7(1475) as ideally
mixed states (because the 1(1295) and the 7(1300) are close in mass) of the same nonet of
pseudoscalar resonances with the other members being the 7(1300) and K (1460). All these
resonances would be the first radial excitation of the lightest pseudoscalars [303]. The 7(1405)
would then be an extra state in this classification whose clear signal in gluon-rich process, like
pp [BO6H309] or J/¥ radiative decays [310,[311], and its absence in v~ collision [312], would
favor its interpretation as a glueball in QCD [108-110].

However, this interpretation opens in turn a serious problem because present results from
lattice QCD predict the lowest mass for the pseudoscalar glueball at around 2.4 GeV [84H86].
Given the success of the lattice QCD prediction for the lightest scalar glueball, with a mass
at around 1.7 GeV [ALQ1,93], this discrepancy for the pseudoscalar channel would be quite
exciting. QCD sum rules [76] give a mass for the lightest pseudoscalar gluonium of 2.05 +
0.19 GeV and an upper bound of 2.34 + 0.42 GeV. However, the 7(1405) would fit as a 0~
glueball if the latter is a closed gluonic fluxtube [313]. On the other hand, it has also been
pointed out that the mass and properties of the 7(1405) are consistent with predictions for a
gluino-gluino bound state [I10J314315]. The previous whole picture for classifying the lightest
pseudoscalar resonances has been challenged in Ref. [I11]. The authors question the existence
of the 7(1295) and argue that, due to a node in the * Py wave function of the n(1475) [316],
only one isoscalar pseudoscalar resonance in the 1.4-1.5 GeV region exists. This node shifts
the resonant peak position depending on the channel, agm or K*K + c.c. In turn, Ref. [112]
establishes a new mechanism, based on a K*K K triangle loop, that could explain the shift
in the resonance peak position for the 1(1405/1475) in terms of only one resonance in this
energy region.
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Figure 4.1: Triangle loop for calculating the interacting kernel for S;(p1)P1 (k1) —
Sa(p2) P2(ke), where the four-momentum for each particle is given between brack-
ets. S1 2 represents the initial, final scalar resonances and similarly for P; 5 regard-
ing the pseudoscalar mesons.

It has been also recently observed by the BES Collaboration the resonance X (1835) with
quantum numbers favored as a pseudoscalar 0~ resonance both in J/¥ — ~pp [317] and in
J/¥ — yrtr—n [318]. For the former decay Ref. [319H321] offers an alternative explanation
in terms of the pp final state interactions.

We consider in this Chapter the S-wave interactions between the scalar resonances f;(980)
and a((980) with the pseudoscalar mesons 7, K, n and n’. The approach followed is an
extended version of that of Refs. [322,1323] applied to study the S-wave interactions of the
»(1020) with the f,(980) and ao(980) resonances, respectively. We show that the interactions
derived generate resonances dynamically that can be associated with many of the previous
pseudoscalar resonances listed above, namely, with the K(1460), 7(1300), 7(1800), n(1475)
and X (1835). In this way, new contributions to the physical resonant signals result from this
novel mechanism not explored so far. In addition, we also study other exotic channels and
find that the I = 3/2 agK channel could also be resonant. The developments in this Chapter
were published in Ref. [BJ.

After this introduction we present the formalism and derive the S-wave scattering ampli-
tudes for scalar-pseudoscalar interactions in Sec.[£.2l The results are presented and discussed
in Sec. 4.3l Conclusions are given in Sec. 4.4l

4.2 Formalism. Setting the model

Our approach is based on the triangle diagram shown in Fig. [41] where an incident scalar
resonance S; decays into a virtual KK pair. The filled dot in the vertex on the bottom of
the diagram corresponds to the interaction of the incident (anti)kaon in the loop with the
pseudoscalar P; giving rise to the pseudoscalar P, and the same (anti)kaon. The out-going
scalar resonance is denoted by S5. The basic point is that this diagram is enhanced because the
masses of both the f,(980) and ao(980) resonances are very close to the K K threshold. In this
way, for scattering near the threshold of the reaction, one of the kaon lines in the bottom of
the diagram is almost on-shell. Indeed, at threshold and in the limit for the mass of the scalar
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equal to twice the kaon mass this diagram becomes infinite. This fact is discussed in detail in
Ref. [322] where it was already applied for studying successfully the ¢(1020) fo(980) scattering
and the associated 17~ Y (2175) resonance. The BABAR [324,[325] and BELLE [326] data
on ete” — ¢(1020)fy(980) were reproduced accurately, where a strong peak for the latter
resonance arises. An important conclusion of Ref. [322] is that the Y (2175) can be qualified
as being a resonance dynamically generated due to the interactions between the ¢(1020) and
the fo(980) resonances, see also Ref. [327]. This work was extended to I = 1 in [323] for
studying the ¢(1020)a¢(980) S-wave. There it was remarked the interest of measuring the
cross sections ete™ — ¢(1020)7%n because it is quite likely that an isovector companion of
the Y'(2175) appears. In our present study, as well as in Refs. [322323], one takes advantage
of the fact that both the fy(980) and a(980) resonances are dynamically generated by the
meson-meson self-interactions [3339/53]. This conclusion is also shared with other approaches
like Refs. [52,251,[328]. In this way, we can calculate the couplings of the scalar resonances
considered to two pseudoscalars, including their relative phase. The coupling of the f,(980)
and a(980) resonances to a KK pair in I = 0 and 1, respectively, is denoted by gy, and gq,-
These states |[KK);—o and |[KK);_; are given by

_ 1 _

f|
In this way, the fo(980) couples to K+ K~ (K°K?) as —5(=75)3s, while the ao(980) couples

as _%(\[)gao

|IKK)— = KK~ — K°K° . (4.1)

Let us indicate by P the total four-momentum P = p; + k; = py + ko in Fig. 1l This
diagram is given by g1g2 L, with g; and g, the coupling of the initial and final scalar resonance
to a K K pair, respectively, and Lg is given by

By T(P— 1))
b= / (2m)* (02 — mi +ie)((p1 — 0)? — mE +ie)((p2 — £)* — mi +ie) (4.2)

In this equation T'((P — ¢)?) represents the interaction amplitude between the kaons with the
external pseudoscalars. Here, we employ the meson-meson unitarized scattering amplitudes
obtained in Ref. [39] but now enlarged (as in Chapter[B]) so that states with the pseudoscalar r/
are included in the calculation of T'((P — ¢)?). In Appendix [D] we show these amplitudes and
how they are obtained from different fits. These amplitudes contain the poles corresponding to
the scalar resonances o, k, fo(980), ag(980) and other poles in the region around 1.4 GeV [39].
Their pole positions and relevant couplings are shown in the aforesaid Appendix, in Tables
D2 and [D.3] respectively.

In order to proceed further we have to know the dependence of T'((P —¢)?) on its argument
that includes the integration variable ¢. This can be done by writing the dispersion relation

satisfied by T'(¢?) which is of the form:!
_ Res; 2 _ 00 ImT(s
T(q?) = T(s4) +Zq 4 T L4 SA/ e mT()
Sth S

—@*)(s' —sa)

4.3
q®> — 8 S; — Sa s (4.3)

!The T'(¢?) amplitude is on-shell because off-shell contributions would cancel propagators [33] in the loop
represented in Fig. [L.1] and the enhancements discussed above no longer take place. This is why we neglect
such off-shell contributions in T'(¢?).
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One subtraction at s4 has been taken because T'(¢?) is bound by a constant for ¢> — oo, with
T(s4) the subtraction constant. Typically there are also present poles deep in the g?-complex
plane located at s; whose residues are Res;. These poles appear on the first Riemann sheet
and are an artifact of the parameterization employed [39,/190]. For ¢? along the physical region
they just give rise to soft extra contributions that could be mimicked by a polynomial of low
degree in ¢2. Inserting Eq. (E3) into Eq. (EZ), with (P — £)? = ¢*, one can write for Lg

LK = < SA +Z RQSZ ) 03+ZC4 RGSZ
R N ) [ L 04(3’)] . (4.4)
T Jsen S — 54

Here we have introduced the three- and four-point Green functions C3 and Cy(M?) defined
by

CodY 1
Cs = Z/ (2m)% (02 — m% +ie)((p1 — 0)2 — m3% +ie)((pa — )2 — m% + i)’
o[ dY 1
Ca(My) = Z/ (2m)4 (2 — m% +ie)((p1 — €)2 — m3% +ie)((pa — £)2 — m% + ic)
1

(4.5)

(P02 —MZtic)

Notice that M? can be real positive (when M? = s’ in the dispersion relation), but it could
also be negative or even complex when M? = s; from the poles. One has still to perform the
angular projection for C3 and Cy(M3). Once this is done, Eq. (&4) can still be used but with
Cs and Cy(M?) projected in S-wave, as we take for granted in the following. These functions
and their S-wave projection are discussed in Appendix [El For S;(p1)Pi (k1) — Sa(p2)Pa(k2)
we have the usual Mandelstam variables s = (p; +k1)? = (pa+k2)?, t = (p1 —p2)? = (k1 — ko)?
and u = (p1 — k2)* = (po — k1)? = M3, + M3, + M3, + M3 — s —t, with the masses of the
particles indicated by M with the subscript distinguishing between them. The dependence on
the relative angle 6 enters in t as t = (p{ —k{)>—(p—p’)? = (p! —k})?> —p? —p"* +2|p||p’| cos O
with p and p’ the CM three-momentum of the initial and final particles, respectively.

Our basic equation for evaluating the interaction kernels is Eq. (@4]). One has only to
specify the pseudoscalars actually involved in the amplitude T(¢*) according to the specific
reaction under consideration. We now list all the channels involved for the different quan-
tum numbers and indicate the actual pseudoscalar-pseudoscalar amplitudes required as the
argument of Lg:

e [ =0,G=+1

gao LK[4 T;KB—/er - T;Kl—/er} )

TL (Goﬂ' — agT

)=
1=1/2
TL(CLUW — f077) - 2gf0ga0LK[T’I7K*>7TK] )
Tr.(fon — fon) = QQfOLK[TJKl_G,K] ;
)=
)

/ 1=1/2 ]

Tr(aom — fon') = 295,900 Lk [Tn’K—mK
Tr(fon — fon') = 2gf0LK[Terl/§/K] ;
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To(fon' = fon') = 205 Lic| Ty ] - (4.6)
e [ =1/2
o
TL(fOK — fOK) = %LKBTII(}J—J(I_( +TII(?(O—>KI_(] )
V'395,9a - _
Tu(foK — aoK) = I L TIEL e =TI k]
9
Ti(aoK — aoK) = T2 L BTiR kg + Tk ki (4.7)
e /=1 G=-1
29]260 I1=3/2 I1=1/2
TL(fOﬂ- — f()ﬂ') = 3 LK[Q TTrK—MTK +T7rK—>7rK] 9
29f,9a 1/2
TL(fOﬂ- — aOn) - ﬁLK[TﬂK%nK] )
T (agn — agn) = 2920LK[T77[;1—{727K] ;
294,9a I=1/2
Ty(for — aopn) = ﬁ[’K[TﬂK%n’K] )
Tr(agn — aon’) = 2930LK[T17[;1—<727’K] ;
Ty laon’ = aon') = 202, Lic[ Ty ] - (4.8)
o /=1 G=+1
2930 I=1/2 1=3/2
TL(a’Oﬂ- - Cl()ﬂ') = 3 LK[4T7rK—>7rK - T7rK—>7rK] : (49)
o [ =3/2
Ti(aoK — aoK) = 292 Lx[Thp ki) - (4.10)

In the previous equations the different scalar-pseudoscalar states are pure isospin ones
corresponding to the isospin [ indicated for each item. This also applies to the pseudoscalar-
pseudoscalar states, with [ as indicated in the superscript of 7. The symbol G refers to
G-parity. On the other hand the I = 3/2 wK amplitude, being much smaller than the
I =1/2 one, has negligible effects, although it has been kept in the previous expressions.

For each set of quantum numbers specified by the isospin I and G-parity G (if the latter
is not defined this label should be omitted) we join in a symmetric matrix 7;5 the different
Tp(i — j) calculated above. Then, in order to resum the unitarity loops, as indicated in
Fig. 4.2] and obtain the final S-wave scalar-pseudoscalar T-matrix, 774, we make use of the
equation

Tic =1+ Tic- 91a(s)] " Tic - (4.11)

The general derivation of this equation, based on the N/D method [38], was given in Chapter 2
See Refs. [39,41] and Ref. [33], where it is connected with the Bethe-Salpeter equation. In
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Figure 4.2: Tteration of the interaction kernels (blue triangles) by inserting scalar-
pseudoscalar intermediate states (red lines). Double lines denote the scalars,
whereas the single ones represent the pseudoscalars. The orange circles represent
thus the S — K K coupling, and the green squares are the unitarized pseudoscalar-
pseudoscalar amplitudes.

Eq. (EII) gs¢(s) is a diagonal matrix whose elements are the scalar unitarity loop function
with a scalar-pseudoscalar intermediate state. For the calculation of g;(s);, corresponding
to the iy, state with the quantum numbers /G and made up by the scalar resonance .S; and
the pseudoscalar P;, we make use of a once subtracted dispersion relation [39]. The result is

1 M2  ME—MZ+s. M2

= —— 1 i i i 1 7

gic(s) (47)2 {a1 tlog 112 25 ©8 M3
+|\1;§| log(s — A+ 2+/s|p|) + log(s + A + 2/s|p|)

—log(—s+ A+ 2¢/s|p|) —log(—s—A+2\/§|p|)]} (4.12)

with |p| the three-momentum of the channel S;P; for a given s and A = M3 — MZ. The

subtraction a; is restricted to have natural values so that the unitarity scale [322] 4 f,./ \/m
becomes not too small (e.g. below the p-mass) so that |a;| < 3. In addition, we require the
sign of a; to be negative so that resonances could be generated when the interaction kernel is
positive (attractive).

As already indicated in Ref. [323] to ensure a continuous limit to zero ay(980) width,
one has to evaluate T;o at the ag(980) pole position with positive imaginary part so that
pio = Re[M,,]? + i€, in agreement with Eq. [f2). Instead, in gg(s)q,p, With P one of the
lightest pseudoscalars, M,, should appear with a negative imaginary part to guarantee that,
in the zero-width limit, the sign of the imaginary part is the same as dictated by the —ie
prescription for masses squared of the intermediate states. Such analytical extrapolations in
the masses of external particles are discussed in Refs. [329-331]. The same applies of course
to the case of the f,(980) resonance.

4.3 Results

In this section we show the results that follow by applying Eq. (@IT) to the different channels
characterized by the quantum numbers /G, as given in the list from Eq. (48) to Eq. (ZI0).
As discussed after Eq. (£12)) we consider values for the subtraction constant such that they
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Figure 4.3: Modulus squared of the foK — foK (left) and apK — apK (right)
S-wave amplitudes for a; = —0.5 . The points correspond to the energies where
the amplitudes have been actually calculated.

are negative and not very large in modulus (|a;| < 3). In this way, the resonances generated
might be qualified as dynamically generated due to the iteration of the unitarity loops. We
present the results for each of the channels with definite G separately.

431 1=1/2

First we show the results for the I = 1/2 sector that couples together the channels f;(980)K
and ag(980)K. We show the modulus squared of the foK — foK and agK — aoK S-wave
amplitudes in the left and right panel of Fig. [£3] respectively. We obtain a clear resonant
peak with its maximum at 1460 MeV for a; around —0.5, that corresponds to the nominal
mass of the K(1460) resonance [48]. The results are not very sensitive to the actual value
of a; but the position of the peak displaces to lower values for decreasing a; and the width
somewhat increases. The visual width of the peak is around 100 MeV, although it appears
wider in agX — aoK scattering. In Refs. [332,1333] a larger width of around 250 MeV is
referred. One has to take into account that the channel K*(892)x is not included and it
seems to couple strongly with the K (1460) resonance [48]. It is also clear from the figure that
the peak is asymmetric due to the opening of the fyK and agK thresholds involved. Taking
into account the relative sizes of the peaks in the left and right panels of Fig. one infers
that the K(1460) couples more strongly to fo/ than to aoK, with the ratio of couplings as

950k / Gapic| = (B2)/* = 1.4,
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Figure 4.4: Modulus squared of the agn’ — agn’ (left) and apn — agn (right)
S-wave amplitudes. For the former a; = —1.3 and for the latter a; = —2.0, see
the text for details. The notation is as in Fig.

432 I =1

We now consider the I = 1 case. As commented in the introduction two broad resonances are
referred in the PDG, the 7(1300) and 7(1800). In our amplitudes we find quite independently
of the value of a; that the a(980)n channel is almost elastic. This is due to the fact that
the interaction kernels T (agn’ — aon) and T (agn’ — for) are much smaller than the rest
of kernels, typically by an order of magnitude. This happens because the kernels are domi-
nated by the threshold region. However, the threshold for ag(980)n’ is much heavier than the
thresholds for the other two channels. In this way, for the inelastic processes involving the agn’
channel, even at threshold for one of the channels, there is always a large three-momentum
for the other channel and the kernel is suppressed. Of course, this does not apply for the
aogn’ elastic case where the kernel has a standard size and produces around 1.8 GeV a strong
resonant signal that could be associated with the 7(1800) resonance. To reproduce the mass
value given in the PDG [48] for this resonance, 1816 + 14 MeV one takes a; for agn’ around
—1.3. The visual width of the peak is around 200 MeV, close to the width quoted in the
PDG [48] of 208 + 12 MeV. The other two channels couple quite strongly between each other
and typically give rise to an enhancement between 1.2-1.4 GeV when varying a; equal for each
of them, which could be associated with the 7(1300). However, for |a;| between 1 and 1.8 a
too strong signal in the agn threshold originates. For |a;| below 1 the resonant peak in the
|T'(agn — agn)|? lies around 1.4-1.5 GeV, somewhat too high for the 7(1300) resonance [48].
This is why we show in Fig. [£.4] the modulus squared of agn — agn for a; = —2 where a peak
close to 1.2 GeV is seen with a width of around 200 MeV. One can also see the strong effect
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Figure 4.5: Modulus squared of the fon' — fon (left) and fon — fon (right)
S-wave amplitudes. For the former a; = —1.25 and for the latter a; = —0.8, see
the text for details. The notation is as in Fig. [£.3]

of the agn threshold at around 1.52 GeV. Its size is rather sensitive to the actual vale of |a|
when this lies between 1 and 1.8. There is the interesting fact, which is independent of the
value of a, that there is no signal for 7(1800) in the agn system nor signal of the peak at
1.2 GeV in the agn’. We have also checked that this is also the case for the fym state, that is,
it does not couple with the 7w(1800). This is another reflection of the fact that the agn’ tends
to decouple from the other states.

433 1=0

We move next to the I = 0 system where the fon, apm and fyn' couple. Here occurs similarly
to I =1, so that the much higher fyn’ channel mostly decouples from the other two channels.
We then proceed similarly and distinguish between the subtraction constant a; attached to
apn’ and to the other two channels agm and fyn. For a; around —1.2 one obtains a resonance
of the fon' channel at a mass of 1835 MeV, in agreement with that quoted in the PDG for
the X (1835), 1833.7 £ 6.1 4+ 2.7 MeV. This is shown in the left panel of Fig. where the
modulus squared of the f,(980)n" — fo(980)n" S-wave amplitude is shown. The width of
the peak at half its maximum value is around 70 MeV, in good agreement with the width
given in the PDG for the X (1835) of 67.7 £ 20.3 £ 7.7 MeV. We consider next the other
two coupled channels, a(980)7 and fy(980)n. We obtain a clear resonant signal with mass
around 1.45 GeV for |a;| < 1. This is shown in the right panel of Fig. [£.5] where the modulus
squared of the f3(980)n — fo(980)n is given for a; = —0.8. It is not possible to increase
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Figure 4.6: Modulus squared of the exotic I = 3/2 agK — agK S-wave amplitude
with a; = —0.5. The notation is as in Fig.

further the mass of this peak by varying a;. An important fact of this resonance is that it
does not couple to the agm channel. For example, the analogous curve for the modulus squared
of the ag(980)m — ao(980)m S-wave in the 1.4 GeV region is absolutely flat (by considering
the inelastic process fo(980)n — a¢(980)7 we estimate a coupling to the latter channel more
than 14 times smaller than to fy(980)n.) Because the 7(1405) resonance couples mostly to
ao(980)m [48] we then conclude that the generated resonant signal around 1.45 GeV should
correspond to the 1(1475). Its form is rather asymmetric due to the opening of the f,(980)n
threshold, with a width at half the maximum of its peak of around 150 MeV. The width
quoted in the PDG [48] is 85 + 9 MeV. It is also known that the 7(1475) couples strongly to
K*(892)K +c.c, a channel not included in our study. The threshold for this channel, at around
1.39 GeV at the decreasing slop of our present signal, should certainly modify its shape. For
higher values of |a;| the peak tends to become too light in mass compared with the 7(1475).
For the a(980)m — a¢(980)7 reaction one also appreciates a strong a(980)m threshold effect
at around 1.16 GeV. No resonance around the mass of the 7(1295) is observed.

4.3.4 Exotic channels

Regarding the exotic channel with I = 3/2 we find an interesting result. Our amplitude gives
rise to a clear resonant structure at around 1.4 GeV for |a;| < 1.5. We show the modulus
squared of T'(af K* — af K*), because the af K* states are purely I = 3/2, for a; = —0.5
(the same value used before in Fig. @3] studying the I = 1/2 case) in Fig. LGl One also
observes that the shape of the resonance peak is asymmetric with a clear impact of the agK
threshold. Our results for |a;| < 1 tends to confirm the predictions of Longacre [I13] that
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Resonance 1@ Width (MeV) Properties
K (1460) I=3 I > 100 |9 f0 5/ Gaorc| = 1.4
7(1800)  IG =1
7(1300) 16 =1
X (1835) I¢ =0t I'~70 fon' elastic
0
3
2

- I’ ~ 200 apn’ elastic
- I' = 200 aom, fon coupled channels

n(1475) I¢ =0t I' ~ 150 fon elastic
Exotic I = I ~ 200 apK threshold

Table 4.1: Resonances resulting from our study. For more details see the discus-
sions of the results in the text.

studied the K K7 and K K K system and concluded that the exotic I = 3/2 J¥ =0~ KKK
system was resonant around its threshold due to the successive interactions between a K, K
and a 7. For |a;| > 1 we find that the resonance shape in |T'(af K* — ai K*)|? progressively
distorts becoming lighter and flatter. Let us notice also that the aoK system was not isolated
in the two experiments quoted in the PDG where the I = 1/2 K (1460) was observed [332,[333].

The other exotic channel with I = 1 and G = +1 involves the isovector agm state. Whether
a resonance behavior stems at around 1.4 GeV depends on the actual value of a;. For |a;| <1
the enhancement near 1.4 GeV is much weaker and is overcome by the cusp effect at the agm
threshold. For larger values of |a;| the resonant signal is much more prominent. No such
resonance has been found experimentally, e.g. in peripheral hadron production [334], so that
la;| < 1 should be finally taken.

In Table [A.1] we collect all the resonances found in our study for the different quantum
numbers discussed.

4.4 Summary and conclusions

In summary, we have presented a study of the S-wave interactions between the scalar res-
onances fp(980) and ag(980) with the lightest pseudoscalars (w, K, n and ) in the region
between 1 and 2 GeV. The different channels studied comprise those alike the n, K and ,
and the exotic ones with isospin 3/2 and 1, the latter having positive G-parity. First, inter-
action kernels have been derived by considering the interactions of the external pseudoscalars
involved in the reaction with those making the scalar resonance. We take advantage here
of previous studies that establish the f;(980) and a¢(980) as dynamically generated from
the interactions of two pseudoscalars, so that no free parameters are introduced in their cal-
culation. Afterwards, the final S-wave amplitudes are determined by employing techniques
borrowed from Unitary Chiral Perturbation Theory. Interestingly, we have obtained resonant
peaks that for the non-exotic channels could be associated with the pseudoscalar resonances
K(1460), 7(1300), m(1800), n(1475) and X (1835), following the notation of the PDG [4§].
The resonances that come out from this study can be qualified as dynamically generated from
the interactions between the scalar resonances and the pseudoscalar mesons. This establishes
that an important contribution to the physical signal of the resonances just mentioned has a
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dynamical origin. The exotic I = 3/2 channel could also exhibit a resonant structure around
the agK threshold, in agreement with the behavior predicted by Longacre [I13] twenty years
ago. However, larger values for the subtraction constant |a;| tends to destroy this resonant
behavior. No signal of the intriguing 7(1405) resonance is obtained.

This approach should be pursued further by including simultaneously to the interaction
between the scalar resonances and the pseudoscalar mesons, considered here, those arising
from the lightest vector resonances with the same pseudoscalars in P-wave. In this way, both
pseudoscalar and axial resonances will be studied together.






On the size and the nature of the o
meson

Contents of this Chapter:
5.1 [ntroduction. History of the @ mesoml . . ..\ vovor oot 133
5.2 ISI(2) Chiral LAGIANGIALS . -+« o« e vee et e e e e e e e 137
5.3 |z scattering and the @ meSOT « -+« « v o v ov e e 137
531  [Thesm — amamplitudd . . . oo oot 137
532  [Fits and the @ meSOm. .+« o v v ettt e 139
5.3.3  [The ¢ meson. Comparison with other determinationd. ... .................... 145
5.3.4 WMW&M ........................ 149
54  [The scalar form factor of the @ MeSOI. « « + « « v v v v vv oo 154
541 IKiematicd . oo o e 154
542  [The zx H —s zr scattering amplitudd . . .« . oo oo 158
543  [Scalar form factol . . . ..o 161
55  |Quadratic scalar radius and Feynman-Hellman theoremm « . . . « .o« oo ovveeoeenenn ... 166
5.6  |Summary and conclusiond . . . . .o\t 171

5.1 Introduction. History of the o0 meson

The lightest resonance in QCD with the quantum numbers of the vacuum, J7¢ = 0+, is
the o or fy(500) resonance [48]. Its connection with chiral symmetry has been stressed since
the sixties in the linear sigma model [227], while its tight relation with the non-linear sigma
model was realized in the nineties. In this respect there have been several papers that clearly
connect this resonance with chiral dynamics of the two-pion system. One has first to mention
the works of Truong and collaborators [22H24)26] who first emphasized the important role
played by the null isospin (/) S-wave 7m final state interactions in several processes giving

133
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rise to a strong numerical impact on the estimations based on current algebra technique or
ChPT [I8,19,220,221,223]. A notoriously improved comparison with experiment was then
obtained, e.g. for K, decays [23], n — 37 [22], scalar and pion vector form factors [24]
and w7 scattering [26]. These works stress the role of the right-hand or unitarity cut and
make use of a method to resum unitarity based on the expansion of the inverse of a form
factor or scattering amplitude. This is the so called Inverse Amplitude Method (IAM), that
in the end is analogous to a Paddé method of resummation. Within this technique the
o pole was first obtained in Ref. [28], together with the K* and p resonances in the P-
waves. However, due to the lack of coupled channels, no further light scalar resonances were
generated, in particular the f,(980) and a¢(980). Independently, the o resonance pole was also
obtained simultaneously in Ref. [33], together with the I = 0 f,(980) and a¢(980) resonances.
The associated amplitudes were determined by solving the Bethe-Salpeter equation taking
as potential the lowest order ChPT Lagrangian. Only one free parameter (a natural sized
cut-off) was involved. Later on, when the IAM was extended to coupled channels [29], it was
possible to obtain in Refs. [29H31] the o, f5(980), a¢(980) and k resonances altogether, that
is, the whole nonet of the lightest scalar resonances [39,49,[51,53]54,[335], together with the
nonet of the lightest vector resonances.

The approach of Ref. [33], based on solving a Bethe-Salpeter equation, was put on more
general grounds in Ref. [39] by applying the N/D method [38], as exposed in Sec. 27 in
Chapter 2 In this way, it is possible to include higher orders in the chiral counting [41],225]
as well as explicit resonant fields [105] and crossed-channel dynamics, if required. Later works
based on this scheme are Refs. [Alfii,B.[43]. With this approach [39] one builds a unitarized
meson-meson scattering amplitude by solving the N/D equations in an algebraic way so that
an approximate solution is obtained by treating perturbatively the crossed cuts. As a result,
the ChPT expansion is reproduced order by order, while the unitarity cut is resummed [41].
In this respect, one should stress that the crossed cuts can be treated perturbatively for the
isoscalar wm S-wave. Its size was estimated to be smaller than 10% in Ref. [39] along the
physical region for energies up to around 1 GeV. Indeed, different approaches with various
degrees of sophistication provide very similar values for the o pole resonance parameters, mass
and width. Either by employing just the leading order (LO) ChPT [33] (without left-hand
cut at all), next-to-leading order (NLO) [28] or next-to-next-to-leading order (N2LO) [283].
In these two later references the left-hand cut is included as calculated by ChPT at one and
two-loop orders, respectively. The fact that the results are very similar clearly indicates that
the left-hand cut is indeed a perturbation. The o pole positions in /s, with s the total
center of mass energy squared, obtained in these works are: /s, = 469 — i 194 MeV [33],
440 — i 245 MeV [28] and 445 — ¢ 235 MeV [283]. In the following we identify the mass and
half width of the o resonance from the pole position as M, —il';/2 = /5.

More recently, Ref. [I16], based on the solution of the Roy equations [336] and ChPT at
two-loops [297,337], obtained the value 44513° —i 27277, MeV. The Roy equations implement
crossing symmetry exactly, while the previous references [28,33,[39,283] do it perturbatively.
The fact that all these pole positions for the o lie rather close to each other (particularly one
can say that convergence is reached very accurately for the real part) is another indication for
the correctness of treating crossed-channel dynamics perturbatively, as done in the framework
of Refs. [39L[162] (see also [EL[F.[144].) Indeed, to our mind, both schemes are complementary
because the Roy equations need for their implementation of the knowledge of large amount
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of data in several partial waves up to high energies, which is affected by systematics errors
in experiments (many of them old ones) and also in theory (e.g. high energy extrapolations),
not always well under control. Let us also mention that all these analyses neglect altogether
the inelasticity due to the 47 channel in 77 S-waves so that, up to the opening of the KK
threshold at around 1 GeV, no inelasticity is assumed. The 47 channel was approached in
Ref. [A] as oo and pp states (with their couplings to all the channels predicted from chiral
dynamics) and found the o pole at 456 +£6 —1i 24147 MeV.! This pole position is quite close to
those in the previous references and compatible with the result 484 17— 255+ 10 MeV from
Ref. [I17]. Thus, since the pole positions of Refs. [AL28]33,116,117,283] lie so close to each
other we could conclude that our present knowledge on the pole position of the ¢ resonance
is quite precise and, furthermore, we understand the underlying physics at the hadronic level.

Between earlier approaches to the previous discussed results based on ChPT concerning
the lightest scalars, we have Refs. [49,[50] within the MIT bag model that already in the
late seventies predicted a complete nonet of four-quark 0™+ resonances (comprising the o,
£0(980), ao(980) and k), with M, = 660 £ 100 MeV and I', = 640 4 140 MeV. The four-quark
nature of the lightest scalars is also favored in Refs. [122,338-341] attending to scattering
and production data, including two-photon fusion, J/¥ and ¢ decays, and in Refs. [139,267].
The important role played by two-meson unitarity for understanding the scalar sector for
Vs S 1.GeV was also stressed in Ref. [51] (a similar approach was later followed in Ref. [259]),
employing a unitarized chiral quark model, and in Ref. [52], within the Jilich meson-exchange
models. Considerations based on increasing the QCD number of colors, Ng, were exploited
in Refs. [39,136H139], showing that the o resonance has a non-standard No dependence. This
can be done more safely for No = 3, not too large, while statements for No > 3 depend
much more on fine details of the approach [I138,[140HI46]. QCD sum rules were also applied
for the study of the lightest scalar meson, e.g. in Refs. [I23-127]. It is argued too that the o
resonance is the chiral partner of the pion [128-134] and the way in which the o pole evolves
when approaching the chiral symmetry restoration limit is different according to the nature
of this resonance [135].

From an experimental point of view new interest is triggered on the o resonance from
recent high-statistics results, e.g. J/U — wrm where a conspicuous peak is seen [118]. Indeed,
this decay mode was the first clear experimental signal of a o resonance [I119,120]. Another
marked peak around the o energy region is also observed in several heavy meson decays. E.g.
it was observed with high statistical significance in D — 77~ 7t [121]. Both types of decays
present a strong peak in the o mass energy region because the absence of the Adler zero in
the pion scalar form factor, as explained in Refs. [279,1342].> However, for the low-energy
scalar and isoscalar 77 scattering the presence of an Adler zero at s ~ m?2/2 requires of
a strong nonresonant background to cancel the pole contribution from the o resonance, as
discussed in Ref. [279]. The role of this large nonresonant background, taking into account
the Adler zero constraint, was already stressed in Ref. [257] in order to understand S-wave
I = 0 7w scattering. These results triggered other studies on the o and x resonances, e.g.,
Refs. [54],253,335,[344H347]. Another field of increasing activity, both experimental [348-351]

In addition this reference was able to reproduce simultaneously all the isoscalar S-wave resonances quoted
in the PDG [48] from w7 threshold up to 2 GeV. A coherent picture of the scalar sector dynamics and

spectroscopy then arose, including the identification of the lightest scalar glueball.
20ne can explain consistently both types of decays in terms of the pion scalar form factors [279,280}[343].
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and theoretical, concerns the fusion of two photons into a pair of pions and from there to
extract the width of the o to vy [34352H359]. This is also expected to shed light on the nature
of the o meson [353,1354], once nonresonant background effects are properly considered. At
this point, Refs. [353,[354] relies on the fact that nonresonant terms in the S-matrix mainly
affect the phases of residues but not their modulus for sufficiently narrow resonances [217],
which is arguable for the o case [352360].

The relative strength of the o coupling to K K compared to 77 is also taken as an impor-
tant property in order to disentangle between different models for the nature of the o meson
(qq, four-quarks, glueball or wm-molecule), as stressed in Ref. [I123]. This reference points
out that the not so much suppressed coupling of the o to K"K~ (g,+x-), as compared
with that to 777" (gortr-), |9ox+k-|/|Gon+-—| = 0.37 £ 0.06 [123], is a key ingredient to
advocate for a gluonium nature of the o meson. According to Ref. [123], a simple ¢g inter-
pretation of the o fails to explain the large width of the o while a four-quark scenario has
difficulties to explain its large coupling to K+*K~. It is then worth emphasizing that the
T-matrices obtained in Refs. [AL33,89] also predict a ratio for the o couplings to K™K~
and 77~ in perfect agreement with the value above of Refs. [123],[124,[361]. Explicitly, we
have |gox+x-|/|gontn-| = 0.36 £ 0.04 from the average collected in Ref. [53]. However, in
our case this stems from the dynamical generation of the o resonance from the Goldstone
boson dynamics associated to the strong scalar isoscalar wm interaction. We also stress that
this approach has been confronted with a large amount of data from different reactions, both
scattering and production experiments, in most of the reactions already quoted in this in-
troduction. However, the extensive phenomenological studies of Refs. [339-3411,1362] obtained
much smaller values for the previous ratio of couplings.

In this Chapter we report on our work in Ref. [C]. One of the main aims here is to
show that the often identification of dynamically generated resonances from the interactions
of two mesons (pions in our case) as meson-meson molecules is misleading. As we show here,
depending on the meson mass, one can have situations where the size of a dynamically gen-
erated meson-meson resonance is certainly too small to be qualified as a two-meson molecule.
Indeed, its size could be as small as that of one of the mesons involved in their formation.
The fact that the o is such a tight compact object clearly hints that the two pions pack so
much that it is not meaningful anymore to keep their identities separately. At this stage, a
four quark compact resonance seems a more appropriate picture. This is also supported by
the N¢ evolution of the o-pole trajectory which is clearly at odds with the expectations for a
purely qq or glueball resonance, but in the lines of what it is expected for a meson-meson or
four quark resonance [I38,[I41HI47]. However, by increasing the pion mass the o resonance
pole tends to follow the two pion threshold, and when it is close to the latter its size increases,
becoming a spread object. This is a clear indication for the molecular character of the o for
large enough pion masses, m, = 400 MeV. In addition, let us also emphasize that our work
is the first calculation of the size of the o resonance. This is a novel way to study its nature
in the literature.

The rest of the Chapter is organized as follows. In Sec. we shall comment on the
Lagrangians to be used in the calculations. Next we dedicate Sec.[b.3to evaluate mr scattering
at one-loop order in Unitary ChPT. A wide set of data is fitted, including some recent lattice
QCD determinations as a function of m,. We pay special attention to the threshold parameters
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and the o pole position. For these quantities we also compare with previous phenomenological
determinations and the lattice QCD results on the dependence of the ¢ pole mass as a function
of the pion mass. We dedicate Sec. 6.4l to the calculation of the scalar form factor of the o
resonance. First pion scattering in the presence of a scalar source is discussed. The scalar form
factor of the o is calculated from the double o pole present in the amplitude for the previous
process, once 77 initial and final state interactions are taken into account. As a result, we
can determine the quadratic scalar radius of the o and then have some information on the
size of this resonance. We stress that this radius is pretty small, around 0.5 fm, indicating
that the o is a compact object. We also discuss the relation between the value of the o
scalar form factor at the origin and the dependence of the o pole with the pion mass, related
by the Feynman-Hellmann theorem. Both issues, the quadratic scalar radius of the ¢ and
the Feynman-Hellman theorem, are addressed in Sec. 5.5l Conclusions are given in Sec. .6l
Related to the calculations in this Chapter, we dedicate Appendix [Bl to the loop functions
used throughout the amplitudes calculated, which are in turn given in Appendix [C] for pion
scattering in the presence of a scalar source.

5.2 SU(2) Chiral Lagrangians

We follow the standard ChPT counting, Eq. (L256) and the processes under consideration,
the scattering of pions with and without the presence of a c-number external scalar source,
are calculated both at LO and NLO. The LO calculation has D = 2 with no loops (L = 0)
and involves only d = 2 vertices. At NLO, D = 4, one has diagrams with L = 1 that involve
only d = 2 vertices. There are also diagrams with L = 0 with only one d = 4 vertex, with
the rest of vertices having d = 2. Up to NLO, O(p?), one has to consider the SU(2) chiral
Lagrangians at O(p?), Ly, and O(p*), L4, that we take from Ref. [I8], as in Eq. (L257).
The covariant derivative V, reduces in the problem that we are studying to the standard
derivative, V,, — 0, since we do not consider here external vector nor axial-vector currents.
We stress that, in the following, the pion propagators employed are iAg(p?), Eq. (L282), in
terms of the physical pion mass. This will make simpler the calculation of some diagrams for
the process mms — 7. Let us also mention that the amplitudes calculated are given in terms
of the physical mass and weak decay constant of the pion. The latter is given by Eq. (L289).

5.3 7w scattering and the o meson

5.3.1 The ™ — 7w amplitude

The chiral Lagrangians exposed in Sec. comprise four low energy constants (LECs), [;,
at O(p?). Additionally, our resummation procedure, explained below, includes a subtraction
constant through the two-meson unitarity one-loop function. Before considering the nws — 7w
amplitude, we must fix these free parameters. This is accomplished by comparing our results
for the scalar 7w — w7 phase shifts with I = 0, 2 with experiment, and also other observables
with lattice QCD determinations.

We denote by x,(s,t) the I = 0 w7 scattering amplitudes calculated from Fig. [5Ilin ChPT
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Figure 5.1: Feynman diagrams for w7 scattering up to NLO. Full circles represent
O(p?) vertices, while the empty ones correspond to the O(p*) vertices.

at O(p"), with n = 2 or 4. Their projection in S-wave are indicated by &,(s). Diagram a) is
the LO contribution, while the rest of diagrams are the NLO ones. The last two diagrams,
namely, e) and f) contribute to the wave-function renormalization of the pion external legs.
We introduce the usual Mandelstam variables s, ¢ and u. The variable s corresponds to the
total energy squared of the two pions in their center of mass frame (CM), while the other two
are defined as:

t = —2p*(1 — cos )
u = —2p?(1 + cos )
s+t+u=4m?
2 S 2
_ 2 _ 5.1
pT=g s (5.1)

Here, p? is the three-momentum squared of the pions in their CM and 6 is the scattering
angle in the same reference frame. The amplitudes &, (s) are then given by,

En(s) = 111/_111 cosf xn(s,t) . (5.2)

In the previous equation an extra factor of 1/2 has been included, in correspondence with the
so called unitarity normalization [33]. The I = 0 77 state is symmetric under the exchange
of the two pions so that the unitarity normalization avoids having to take into account the
presence of the factor 1/2 whenever it appears as an intermediate state. In this way, the same
formulas as for distinguishable particles can be employed. In what follows, we employ the
unitarity normalization in all the isoscalar 77 matrix elements unless the opposite is stated.

Let us indicate by T'(s) the scalar-isoscalar unitarized 77 partial-wave amplitude. Follow-
ing the unitarization method of Refs. [39,41], the right-hand cut or unitarity cut is resummed
by the master formula:

v
T(s)= — )
1+ V(s)G(s)

As shown in Chapter 2] this formula is deduced by solving algebraically the N/D method [38],
39], treating perturbatively the crossed cuts, whereas the unitarity cut is resummed exactly.

(5.3)



139 5.3 wm scattering and the o meson

Here, G(s) is the scalar two-point function,

G(s) = 1617T2 (a + log ZL; —o(s)log ZEZ;) , (5.4)

with chiral order p°. In the previous equation o(s) = \/ 1 —4m2 /(s +ie). The interaction
kernel V' (s) has a chiral expansion, V(s) = V,(s)+Vi(s)+- - -, with the chiral order determined
by the subscript. The different chiral orders of V(s) are calculated by matching T'(s) with its
perturbative expansion calculated in ChPT. In this way up to O(p*),

_ V)

14 V(s)G(s)

= 62(8) + 54(6’) 4+ ...

= Va(s) + Vi(s) — VE(s)G(s) + ... , (5.5)

T(s)

where the ellipsis indicate O(p®) and higher orders in the expansion. It results then:

Va(s) = &a(s)
Vi(s) = &(s) + &(s)°G(s) - (5.6)

The finite piece of the unitarity term in Fig. 5] (that is, the term of & (s) that contains
the unitarity cut and is proportional to the unitarity two-point one-loop function) is given by:

& (s) = =& (s)Bo(s) - (5.7)

Here, By(s) is the two-meson loop in dimensional regularization, without the R+ log(m?/u?)
piece (that cancels out with the other infinite and scale dependent terms, see Egs. (B.5) and
(B.6) in Appendix Bl) In this way, the kernel V(s) = Va(s) + Vi(s) has no unitarity cut
because:

&1 (s) + &(5)G(s) = =& (5)(Bo(s) — G(5)) , (5-8)

and the cut cancels in the r.h.s. of the previous equation. The full unitarity cut arises from
the denominator 1+ V(s)G(s) in Eq. (5.3).

In this Section we have dealt with the I = 0 unitarized amplitudes but, needless to say, the
same formalism applies to the I = 2 ones, by just changing the kernel V'(s). We additionally
note here that the same subtraction constant is used for both channels, as required by isospin
symmetry [47].

5.3.2 Fits and the o meson

At LO, there is just one free parameter corresponding to the subtraction constant in G(s).
At NLO, there are, in addition, four LECs, ;, i = 1,2,3,4. For I = 0, the phase shifts that
we fit contain the very precise data of K4 decays below /s = 400 MeV [285]363H366]. These
data are corrected for isospin breaking effects, as explained in Ref. [367]. Above that energy,
the data of Ref. [368] and the average of different experiments [287-290,369,370], as used
e.g. in Ref. [39], are taken into account. For I = 2, the data come from Refs. [371]1372].
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Figure 5.2: Comparison of our scalar mm phase shifts to experimental data for
I =0 (top panel) and I = 2 (bottom panel). The (red) dashed line shows our fit
for the LO case (V(s) = Va(s)), whereas the (blue) solid one shows the NLO fit
(V(s) = Va(s) + Va(s)). The bands represent our uncertainties. The inset in the
top panel shows in more detail the low energy K4 decays data. The data for I =0
are from the K4 decay data of Refs. [285,863H366] (with isospin breaking effects
taken into account as in [367]) and other data from Refs. [287-290,368-370]. For
I = 2 the phase shifts are from Refs. [371,372].

Table 5.1: Summary of our LO and NLO fits. In the last column the y? per
degree of freedom is given.

. 7 7 7 7 X
Fit l l l l

1 a 1 2 3 4 dof
LO —1.36 £0.12 - - - - 1.6

NLO —-124+04 08+£09 46+04 2+4 39+05 0.7

The fits extended to a maximum energy \/smax = 0.8 GeV at LO, both for I = 0 and I = 2,
whereas at NLO we extend this range up to y/smax = 1 GeV for I = 2. This is not done for
I = 0 because of the related presence of the K K threshold and the f3(980) resonance. The
phase shifts are denoted by !, with I = 0, 2. For our NLO fits we also fit recent lattice
QCD results as functions of the pion mass for f, [373,374] and the isotensor scalar scattering
length, af [374,375].% For the latter there are also the results of Ref. [376], that we show also

3We consider the spread of these lattice QCD results as a source of systematic error for our fits. The final
errors included in the fit are depicted by the dashed error bars in Fig.
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Figure 5.3: Dependence of f, (top panel) and a2 (bottom panel) with m, as
compared with lattice QCD data. The (blue) solid line is given by our NLO fit,
whereas the band represents our estimated error. The data are from Refs. [373}
375). For a2 we also show the data of Ref. [376], although we do not include them
in our fits.

in Fig. 5.3 though they are not included in our fits. The dependence of f, with the pion mass

is calculated at NLO in ChPT, Eq. (L289). The scattering length a? is defined through the
threshold expansion in powers of p? of our full results:

ReTd

167

that we extrapolate in terms of the pion mass squared.

= ay + 0pp* + O(|pl*) . (5.9)

The resulting values for the fitted parameters are given in Table[5.Il At LO the subtraction
constant for the G(s) function is a = —1.36 £ 0.12. Four LECs appear additionally to the
subtraction constant as free parameters at NLO. In order to avoid large correlation among
them, the subtraction constant at NLO is constrained to remain near its value at LO. This is
done by adding a new term to the x? taking into account the difference between the values of a
at LO and NLO, but enlarging its error at LO from 0.12 to 0.2, so that its contribution to the
resulting y? is tiny but enough to remove the large correlations that would appear otherwise
among the LECs and the subtraction constant. The parameters of both fits (LO and NLO)
are shown in Table 5.1l and the corresponding phase shifts are plotted in Fig. with their
respective errors. The left panel is for I = 0 and the right one for I = 2. The (red) dashed
lines arise from our fit at LO (V(s) = Vi(s)), whereas the (blue) solid ones show the NLO
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Ref. I I I3 ly
18] CL —2.3+3.7 6.0+ 1.3 29424 4.640.9
[337] CGL —0.4+0.6 4.31+0.11 - 4.440.2
[377 ABT 0.44+2.4 4.9+ 1.0 2.575% 4.20 £0.18
[378] PP —03+1.1 4.540.5 - -
[379] GKMS 0.37+1.96  4.1740.47 - -
[380] BCT - - - 4.440.3
[149] OR - - - 4540.3
[381] DFGS - - ~15+16 42410
[366] NA48/2 - - 2.6+ 3.2 -
[382] RBC-UKQCD - - 2.57 4 0.18 3.83+0.9
[383] PACS-CS - - 3.14 4 0.23 4.04 +0.19
[384] ETM - - 3.70 + 0.07 £ 0.26 4.67+0.03 4 0.1
[385,386] JLQCD/TWQCD - - 3.38 £0.40 £0.2415°"  4.09 + 0.50 £ 0.52
I387) MILC - - 2.85 +0.817057 3.98 +0.327051
This work 0.8+0.9 4.6+0.4 244 3.940.5

Table 5.2: Comparison of different phenomenological and lattice QCD determi-
nations of the LECs [;, « = 1,2,3,4. Together with every reference, for an easier
comparison the initials of the authors or those of the collaboration are given.

fit (V(s) = Va(s) + Vi(s)). In the inset of the upper panel the agreement of our results with
the lower energy data from K4 decay can be appreciated. We must stress that the difference
between LO and NLO manifests mostly in the I = 2 channel phase shifts, as can be seen
in Fig. In this channel, the left-hand cut is more important, but our amplitudes only
incorporates the latter in a perturbative way, so that at NLO it is well reproduced, but it is
absent at LO. In Fig. our results for f, (left panel) and a2 (right panel) are shown, and
compared with the aforementioned lattice QCD results.

In Table we collect some phenomenological [I8],[149][337,377H381] and lattice QCD
[382H387] determinations of the LECs. For the latter the last values of each collaboration
are taken, and, in addition, the direct SU(2) fit results are selected if values for SU(2) and
SU(3) fits are offered. We have also included the range obtained for I3 from the data of
the NA48/2 Collaboration [366]. These determinations are compared graphically in Fig. [5.4]
where for every LEC the different results are compatible within errors. The lattice QCD
results concerning [, 5 are scarce. The JLQCD and TWQCD Collaborations [385] recently
reported li—1ly=—-29+09+ 1.3, whereas, from our fit, we obtain [y —ly = —3.8+1.3. For
the phenomenological determinations in Table (.2] since 1_172 agree well between each other,
also the aforementioned difference between these LECs does. We finally note that from our fit
we obtain at NLO ChPT that f = 86.8 4+ 0.8 MeV, so that f./f = 1.065 £ 0.010, compatible
with the estimate of lattice QCD results given in Ref. [388], f./f = 1.073 £ 0.015.

Our function G(s) stems from the calculation of a once-subtracted dispersion relation (see
e.g. Ref. [39].) If, instead, it is calculated approximately by employing a three-momentum
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Figure 5.4: Comparison of the different lattice QCD and phenomenological de-
terminations of the LECs collected in Table The (green) diamonds are lattice
QCD determinations, and (red) circles are the phenomenological ones. The range
obtained for I3 by the NA48/2 Collaboration is represented by a (blue) triangle.
The (black) squares are our results. For an easier comparison, we have included a
shaded area that represents our results (except for I3.)

cut-off A, one has the following relation between the subtraction constant and A [30,41]:

2 2
e ms
Our values for the fitted subtraction constant gives a cut-off A ~ 750 MeV ~ M,, which is
quite a natural value. We will make use of these considerations based on Eq. (5.10) later on,
when dealing with the m, dependence of the ¢ pole position.

Fit V5o (MeV) al bym2
LO 4656+ 2—4231+ 7 0.209 + 0.002 0.278 +0.005
NLO 4404+10—17¢238+10 0.219 £ 0.005 0.281 £ 0.006

Table 5.3: o pole position and threshold parameters for the isoscalar scalar partial-
wave amplitude.

The o pole appears in the second or unphysical Riemann sheet of the amplitude. This
sheet is reached by changing the function G(s) in the following manner [33]. For s real and
above threshold we have

Gu(s +ie) = Gi(s + ie) — AG(s) , (5.11)

where the subscript denotes the physical (I) or the unphysical (II) Riemann sheet. In the
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Figure 5.5: Montecarlo-like error analysis for the ¢ mass (M, = Re,/s,) and
half-width (T',/2 = —Im,/s,) and threshold parameters aj and b3. The (blue)
error ellipses correspond to the NLO fit while the single (red) point with errors is
for the LO result.

previous equation, AG(s) is the discontinuity along the unitarity cut,

p(s)

8my/s

with p(s) = v/p? = /s/4 —m2, the CM pion three-momentum, such that Imp(s) > 0. In
order to explore the unphysical Riemann sheet, one then makes the analytical extrapolation
in the cut complex s plane of Eq. (B.IT]).

AG(s) = Gi(s + ie) — Gi(s — i) = —i (5.12)

In the second sheet the o resonance is a pole in the I = 0 S-wave w7 amplitude,

T g
(s~ s,) = ——20— 4. | (5.13)

5— S,
being g, the coupling to the 7w channel and the ellipsis indicate the rest of terms in the
Laurent series around s, (with Ims, < 0.) The pole position s, is given in Table 5.3 together
with the resulting values for the threshold parameters of the scalar-isoscalar partial wave. The
o pole position is used to define its mass and width, M, —iI';/2 = /s,.

The error analysis for any quantities calculated here (e.g. the fitted values for the LECs,
o pole position, etc) is performed by randomly varying our parameters around their fitted
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Ref. M, (MeV) T,/2 (MeV) al bym?2
1389] 470 £50 285+ 25 - -

[LT6] 441716 2721, - -
[117] 484 +17 255410 0.233 £0.013  0.285 +0.012
[A] 456 +£12 241+ 14 - -
1390] 463+ 6751 254 +6733  0.2184+0.014  0.276 4+ 0.013
23] 452 +12 260 + 15 - -
1391] 457713 27911 - -
1360] - - 0.222 4 0.014 -
[297] - - 0.220 £ 0.005 0.276 £ 0.006
This work 440 £ 10 238 £ 10 0.219 £ 0.005 0.281 £+ 0.006
Average 453+ 5 258+ 5 0.220 +0.003  0.279 £+ 0.003
Mean 458 + 14 261 £ 17 0.223 £ 0.007  0.280 £+ 0.004

Table 5.4: Values of M,, I',/2, a and b extracted from the literature. The value
of Ref. [366] corresponds to the latest experiment on K4 decays (with the errors
added in quadrature for an easier comparison.)

values and accepting those values for the parameters which have a x* < x2,, + Ax? Here
X2, is the best value for the x?. For the LO case, since there is just one free parameter, we
give our two-sigma confidence interval (otherwise the errors would be too small), given by
Ax? = 4. At NLO the one-sigma confidence interval corresponds to Ay? = 5.9. The resulting
error ellipses are shown in Fig. for the threshold parameters, upper panel, and for the o
mass and width, lower panel. Notice that since there is only one free parameter at LO then
a curve results instead of an error ellipse as in NLO. This is why at LO we have just shown
the resulting value with its errors.

5.3.3 The o meson. Comparison with other determinations

We compare now our results for the 0 mass and width as well as for the threshold parameters
with other determinations from Refs. [ATT6/TT7123[389H391]. References [116/117] are recent
sophisticated determinations of the pion pole position claiming to be very precise. In Ref. [A]
(see Chapter B) based on chiral Lagrangians and the implementation of the N/D method, a
detailed study of meson-meson scattering in the scalar sector up to around /s = 2 GeV was
performed. All the relevant channels were taken into account, even the 47 channel through the
oo and pp channels whose interactions kernels were predicted making use of chiral symmetry
and vector meson dominance. A good description of the data considered was achieved, which
allowed a full description of the resonances experimentally seen up to that energy.*

The relevant quantities contained in those references are collected in Table (.4, and com-
pared in Figs. and 5.7 with our LO and NLO determinations. If all these determinations
can be considered as different measures of the same physical quantity, then they should be

4In Table 5.4l we double the errors of our previous determination [A], so as they have a similar size as those
from other calculations. In this way the weighted average is not so much biassed from just one determination.
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Figure 5.6: In this figure we show the values for the threshold parameters a) and

b)) from different papers in the literature, as indicated in the plots. In the first two
panels, from left to right, the (dark gray) inner strip corresponds to the interval
covered by the weighted average whereas the (light gray) outer strip is for the
mean value, both given in Table 54l In the last panel, the rectangles correspond
to the aforementioned intervals in the aJ-bJm2 plane. The references are: A [390],
B [117], C [297] and D refers to the NLO determination of this work.

compatible. A good check of their mutual compatibility is to determine whether they are
compatible within errors with their weighted average.® These values are calculated and given
in Table 5.4

The ideal situation is that for the threshold parameters ay and by, as can be seen by simple
inspection of Fig. [5.6] or directly from the values in Table 5.4l All values agree within errors
with their weighted average:

ag = 0.220 4 0.003 ,
bym?2 = 0.279 £ 0.003 . (5.14)
The latest NA48/2 Collaboration result [366] is aj = 0.222040.01284; £ 0.00504ys; £ 0.0037y,,

in good agreement with Eq. (5I4]). For completeness we also report our result at NLO for
the I = 2 isoscalar scattering length:

as = —0.0424 £+ 0.0012 . (5.15)

°For a given set of N independent measures x; with their errors o;, the (weighted) average is given by
T = (Zi\; x,/of) / (ZZ\; 1/0?) and the standard deviation o by 1/02 = YN | 1/02.
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Figure 5.7: In this figure we show the values for the mass and width of the o
resonance from different papers in the literature, as indicated in the plots. In
the first two panels, from left to right, the (dark gray) inner strip corresponds to
the interval covered by the weighted average whereas the (light gray) outer strip
is for the mean value, both given in Table 5.4l In the last panel, the rectangles
correspond to the aforementioned intervals in the M,—I';/2 plane. The references
are: A [116], B [117], C [391], D [390], E [123], F [389], G |A], and H refers to the
NLO determination of this work.

The last value from K4 decays of the NA48/2 Collaboration [366] is aZ = —0.0432+0.0086. +
0.00344yst £ 0.0028yy,, whereas the precise determination of Ref. [297] gives a% = —0.0444 +
0.0010. At this point, it is worth stressing that our unitarized amplitudes with the kernels
calculated at NLO allow a good reproduction of the low energy behavior (K., data and
scattering lengths) while keeping the agreement with the higher energy data.

The case of the 0 mass and width is not so mild. In Fig.[5.7one can see that the agreement
within errors of the different values with the weighted average starts at the level of (2 — 3)o.
At this stage it is then preferable to take the mean of the different measures instead of the
weighted average. In this way we have:

M, = 458 + 14 MeV |
I,/2 =261+ 17 MeV . (5.16)

The resulting error is around 3 times bigger than that for the weighted average over the
different values considered. The different determinations agree within errors with the above
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Figure 5.8: From top to bottom. First (second) panel: Mass (half width) of the
o as a function of m;. In the last panel we show the half-width as a function of
the mass of the o while varying m,. In the figures the (red) thinner and (blue)
thicker solid lines correspond to the LO and NLO results, respectively. In the
upper panel the (black) thin dot-dashed line represents the two-pion threshold,
2my. The larger circles in the last panel highlight the chiral limit and physical
case results, whereas the smaller circles represent 25 MeV steps in m,, starting at
my = 50 MeV. The dashed, gray lines are the results of Ref. [I54]. The squares in
the first panel correspond to the lattice QCD results of Ref. [392], while the rest
of points are taken from Ref. [I53].

result, Eq. (B.I06). It can be concluded that our present knowledge on the pole position of
the o meson is quite precise, with the uncertainty of the order of few tens of MeV, lying in a
range much narrower than the values nowadays reported in the PDG.
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Figure 5.9: From left to right. In the first two panel we show s, in units of the
pion mass squared as a function of m,. The second panel shows in more detail
the region for m, > 300 MeV. In the last panel g2 is depicted in the same units.
In the figure the (red) thinner solid lines are for the LO results, and the (blue)
thicker solid ones correspond to NLO. The solid lines correspond to the real part
of the quantity shown, whereas the dashed ones represent its imaginary part. We
indicate with arrows the points at which s, = 4m2 at LO and NLO.

5.3.4 Dependence with m, of the 0 meson mass and width

We can now study the evolution of the o meson properties when the physical pion mass m;
varies (e.g. by changing the current quark masses in QCD.) This is an interesting problem by
itself. Tt is also related to the form factor of the o meson, F,(s), since ds,/dm?2 and F,(0) are
proportional by the Feynman-Hellman theorem, as discussed below. At LO, the only changes
produced by varying m?2 are those occurring inside the kernel V5(s) and the loop function
G(s). At NLO, f, varies with m?2 because of Eq. (.289)), and also the LECs because it follows

from Eq. (L268) that:
2
—_ —_ mTr
li(m2) =1 (m2 ) —log ——"— . (5.17)
m7r, phys
We can consider the subtraction constant a in the function G(s) as independent of m, in view
of Eq. (510). With the above considerations one searches the o pole position in the s-complex

plane, s,, for different values of m., just as in the physical pion mass case. The coupling g2
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is also obtained by means of the Cauchy theorem.

Before discussing this evolution, it is useful to make some analytical derivations. Let us
consider the unitarized 77 amplitude, Eq. (5.3)), as a function of both the Mandelstam variable
s and the pion mass squared, T'(s,m?). In the second Riemann sheet it reads:

B V(s,m2)
1+ V(s,m2)Gpr(s,m2)

T(s,m?)

7 (5.18)
This function has a Laurent series around s, expressed in Eq. (513). Taking the derivative
of T'(s,m?2) with respect to m2 in both sides of Eq. (5:I3)), and attending to the double-pole
terms, one obtains:

$o(m?2) = __alma) (V(s0,m2) = V (55, m2)*G11(55,m2)) (5.19)

g T V($07m3r)2 g T g T g T ) .
where the dot denotes derivative with respect to m?2. In the previous equation we have taken
into account that Eq. (B.I8) requires that Grr(s,) = —1/V (s, ) at the pole position s,.

Analogously, since g,(m2)? is minus the residue of the pole of the amplitude in the s
variable, one gets:
V(sy,m2)?

2, 3y _ o 5.20
ga(mﬂ) V’(Sg,m%) — V(S(ﬂ m3r>2G/II(SU’m72T) ’ ( )

where the prime denotes a derivative with respect to the s variable. Omne should replace
G11(s5,m2) by G(s,,m2) (the function in the physical Riemann sheet) in Egs. (5.19) and
(520) for the case when the o pole becomes a bound state. From Egs. (5I9) and (&.20),
given the knowledge of s, and g2 in the physical case, the evolution of the pion pole and the
coupling with m?2 could be studied directly. We have checked that the numerical results are
the same as those obtained by looking for the pole in the complex plane for different pion
masses, as explained above.

The main features of the evolution of the o meson with m, can be grasped by the inspection
of Figs. and 0.9 In Fig. 5.8 we show /s, as a function of m,, so that, M, is shown is
the upper plane, I, /2 in the middle one and the plane M,—I',/2 in the panel on the bottom.
The (red) thinner solid lines originate from the LO calculation, V' = V5, and the (blue)
thicker solid ones from the NLO results, V = V5 + Vj, Eq. (5.6]). For the physical situation
(m, ~ 140 MeV), we have the case just described, that is, the o meson is seen as a pole
in the unphysical Riemann sheet. As we increase m,, the imaginary part of /s, decreases,
becoming zero at m, ~ 310 MeV for LO and at m, ~ 330 MeV for NLO.5

In Fig. we show s, in units of the pion mass squared in the first and second panels
from left to right. In the latter the scale of the ordinate axis changes and is restricted to

6At this point another pole (not shown in the figures) starts to appear below the o one. This is due to
the appearance of two real solutions for the equation 1 + V(s)G(s) = 0, since the imaginary part of s, is
zero in this region. There is no need to consider further this pole since, irrespectively of whether it lies in the
same Riemann sheet than the higher pole, the effects of the latter overwhelmingly dominate over those of the
former. For smaller m,, since the solutions are not real, the o corresponds to two complex conjugated values.
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values slightly slower than 4m?, so that one can appreciate the evolution of the real part of

s, and distinguish it from the line s, = 4m2 (which is difficult to realize from the first panel
for m, > 300 MeV.) In the last panel we show g2 in the same units for varying m,. For all
the panels the solid (dashed) lines are for the real (imaginary) part, and the thicker (thinner)
lines correspond to NLO (LO) results. Notice that both for LO and NLO, ¢* diverges at the
point where s, becomes purely real. Approaching this point from lower values of m,, Im g2
diverges, whereas, approaching it from higher values of m,, then Re g2 is the one that diverges.
This can be understood from the behavior of the derivative of s,, that is not defined precisely
at this point, and in view of Eq. (5.I9), where it is seen that $, oc g2.

For even larger values of m, (m, ~ 370 MeV at LO and m, ~ 480 MeV at NLO), s,
osculates the 27 threshold, while standing below it, and changes from the unphysical Riemann
sheet to the physical one, becoming a bound state. Since s, ~ 4m?2 close to this point, the
binding energy is small, and so is the coupling, becoming exactly zero when s, = 4m?2. These
points are indicated with arrows in Fig. 5.9 This behavior can be shown analytically. From

Eq. (520), one deduces that for s, ~ 4m?2,

g2 = —n 64mmyy/|ss — 4m2| (5.21)

with 7 = +1 for the unphysical Riemann sheet (at the left of this point) and n = —1 for the
physical Riemann sheet (at the right.) Therefore, g2 = 0 for s, = 4m?2, as indicated by the
arrows in the rightmost panel of Fig. (.9 However, it is worth noticing that from Eq. (5:21))

it follows that g2/y/|s,/4 — m2| = ¢2/|ps| is finite. On the other hand, the fact that the

pole changes from one Riemann sheet to the other in a continuous way can be understood in
terms of Eqgs. (B.I1) and (5I2)). The difference between the G(s) function calculated in the

two Riemann sheets is given by a piece proportional to o(s,) = (/1 —4m2 /s, that vanishes

for s, = 4m?2. At this point, where the o is a zero bound state, one also has an infinite value
for the scattering length.

The mere existence of this critical point can be examined analytically. For s = 4m?2, the
function G(s) can be written as:

m2 m2
_ o2y 0tlogiy  logUF
Gls = 4m2) = — —H = A (5.22)

with 2 = e™*u? a new scale. If we concentrate on the simpler case of LO, V (4m?2) = Tm?2 /2f2,
the equation for finding a pole at s = 4m?2, V=! + G = 0, can be cast as f(z) = 0, with

flz) =14 azxlogx , (5.23)
where
v =m?/ (5.24)
and
oa=Tu2/(327%f3) > 0. (5.25)

Since o > 0 a zero of the f(x) function is only possible for 0 < x < 1. Actually two zeros
of this function exists if the value of the function at its minimum zy = e™! is negative (see
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Figure 5.10: Representation of the function f(z), Eq. (523)), for two values of
a, a > ay (upper line) and a < a4 (bottom line). The variable z is defined in
Eq. (5.24)).

Fig. 5I0l) This condition in terms of the variable a requires that the latter is smaller than

the critical value ay,
T2

T (5.26)

a, = —1 4+ log

If this is the case there is a zero for 0 < x < xg and another one for g < = < 1. For our
value of the renormalization scale, y = 770 MeV, a, ~ —0.6, so that the fitted value a ~ —1.4
given in Table G.1] is much smaller than a,. We also have that our value for xy corresponds
to m, ~ 900 MeV, then a pole with s, = 4m?2 exists for 0 < m, < 900 MeV. The solution of
Eq. (5:23) for the value of a fitted gives that this pole is located at m, ~ 370 MeV, as stated
above and indicated by the left most arrow in the panels of Fig. (.9

For the NLO case, the situation becomes somewhat more involved, and the function f(x)
is now:

flx)=1+ oz(:n)xlog:n(l + a(a:)ﬁ(:nﬂ) : (5.27)

where a(x) is defined as in Eq. (5:25), but at NLO one has to take into account its implicit
dependence on z o« m2 through f,. On the other hand, 5(z) is defined as

40 2
=—L—--1
= - 35, 21 21 189
L=0+205— B+ Sl + o+ - s loga, (5.28)
where I? = l_i(mfrjphys) corresponds to the LECs calculated at the physical pion mass and
Ty = M2 s/ Ha (5.29)

For the values collected in Table [B.1] we find that s, = 4m72T for m, ~ 480 MeV. Nevertheless,
this value is quite sensitive to the LECs, and it should be taken merely as indicative (for some
values of the LECs not far from the fitted ones the change from virtual to bound state does
not occur at all.) This sensitivity is illustrated by the error band in Figs. 5.8 and 5.9l
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In Fig. 6.8 our results on the pion mass dependence of the o pole position, partially
presented in Ref. [v], are compared with other works. The (gray) dashed line, denoted by
IAM, gives the results of Ref. [I54] in the framework of the IAM. The points shown come from
the lattice QCD studies of Refs. [I53392]. Interestingly, we find a remarkably good agreement
with the curve from the IAM results [154] for m, < 400 MeV. As stated by the authors, the
point where s, = 4m?2, and thus the o meson becomes a bound state, is m, ~ 460 MeV when
they employed the NLO ChPT amplitudes [393], whereas m, ~ 290-350 MeV when the N*2L.O
ChPT amplitudes were used. We show in Fig. the curves of Ref. [I54] corresponding to

this latter case.

A lattice QCD search of light scalar tetraquarks with J¥¢ = 0%+ (we focus here on the
I = 0 results) is performed in Ref. [I53]. Along with the lowest 7(p)7(—p) scattering state,
an additional lighter state is found. For the dynamical simulations of Ref. [I53] the former
state is denoted in Fig. B8 with n = 1 (green filled circles) and the latter one with n = 2
(pink filled triangles). For the quenched simulations we use the (green) empty circles and the
(purple) empty triangles, in the same order as before.” The points with n = 1 and 2 overlap
at each pion mass, and the quantitative agreement with our curves is satisfactory. However,
both our curves and the lattice QCD results of Ref. [I53] do not agree with most of the points
of the lattice QCD calculation of Ref. [392] and, in addition, the tendency of the points is
qualitatively different to that for our results and those of Ref. [I53].

For larger values of m, we obtain values for the ¢ meson mass, both at LO and NLO,
that remain below but always close to the 77 threshold, in agreement with the lattice QCD
results of Ref. [I53]. Note that this is not the case for the IAM calculation of Ref. [I54] for
m, 2 400 MeV. The fact that the o meson follows so closely the threshold for higher values
of m,, both according to our calculation and to the lattice QCD calculation of Ref. [I53],
clearly indicates that for such masses it is dynamically generated from the m7 interactions.
We elaborate further on the nature of the ¢ resonance below. However, one should keep in
mind that the ¢ meson becomes an anti-bound or virtual state between those pion masses in
which it has zero width and has not crossed to the physical Riemann sheet yet. In the bound
state case, an additional state appears in the energy levels spectrum in the box, whereas an
anti-bound state does not. In order to discern the latter situation one should look at other
computable quantities, such as the sign of the I = 0 S-wave 77 scattering length.

It is also interesting to study the chiral limit, m, — 0. As can be seen in Fig. [5.9]
Ss/m?2 — 00, because s, remains finite in this limit. Indeed, the values calculated for s, near
the chiral limit behave as (for m, < 150 MeV),

2

So(m2) = 85, +amZ +bm?2 log MTW : (5.30)
T,phys

with the values of the o pole position in the chiral limit given by /s, = 453 — 282 MeV
(LO) and /5, = 402 — 263 MeV (NLO), see Fig. 6.8

"However, we must also point out that the lattice QCD simulations are performed for each pion mass at
a single volume and lattice spacing, so the continuum and infinite volume values of the ¢ meson mass in the
bound state case may differ from those values.
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m(p1) m(p3)
H(q)
m(p2) T(p4)

Figure 5.11: Kinematics of the w7 scattering process in the presence of a scalar
source, m(p1)m(p2)H(q) — m(p3)m(ps). Pions correspond to the solid lines and the
scalar source to the wavy one. The gray blob indicates the interactions involved.

5.4 The scalar form factor of the 0 meson

We turn now our attention to the calculation of the scalar form factor of the o meson, that is,
the interaction of the o resonance with a scalar source (denoted in the following by H.) As
an intermediate step we calculate first the scattering of two pions in the presence of a scalar
source, from which we extract the scalar form factor of the ¢. This can be done because the
o originates as a pole in the interaction of a scalar isoscalar pair of pions, as discussed in
Sec. 0.3l We start by considering in Subsec. B.4.1] the kinematics of the 7mH — 7m reaction,
which is somewhat more complicated than the standard kinematics of a two-body reaction.
In Subsec. 5.4.2] we discuss the one-loop calculation of the amplitude 77 H — 77 from the
chiral Lagrangians of Sec.[5.2l In terms of this amplitude one can derive the scalar form factor
of the ¢ meson, as performed in Subsec. [5.4.3] This is accomplished by taking into account
pion rescattering, similarly as done above for m7 scattering, with some modifications that are
carefully examined.

5.4.1 Kinematics

We are interested in pion-pion scattering with a scalar source, 7(p;) +7(p2) + H(q) — 7(ps) +
7(ps), Fig. BIIl The overall center-of-mass frame, CM, is the same as the rest frame of
the final pions, while that corresponding to the initial ones is denoted by CMB. Due to the
presence of the scalar source CMB does not coincide with CM. In the CM one has

s

pP3 = <\/—7+p> 9
2
S

Ps = (2, —P> )

2 _ S 2
pP= 2 m?, (5.31)
4
and
P1+P2=—q

P+ =+vs—¢
q=(¢",q) . (5.32)
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Figure 5.12: The unit three-momenta in terms of the polar and azimuthal angles.

p

We denote by s and s’ the invariant masses squared for the final and initial pions, in order.

At the end of the calculation, the limit s, s’ — s, is taken. It follows that

2
(pr4p)?=5=(Vs—¢") —a’=s+¢ —2"Vs,

and then,

Analogously, one has in CMB:

o s—8+¢
q - 2\/5 I
2 (S+S,_q2)2 /

T

& 5 —5 —q?
2v/s ’
I 2)\2
62:(8—{_8 Q) — 5.

4s’

(5.33)

(5.34)

(5.35)

In the following quantities with a tilde are expressed in CMB. Notice that p is the three-
momentum of the first pion in CMB, while p refers to the three-momentum of the third pion

in CM.
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The final (initial) two-pion states are projected into S-wave in CM (CMB) because the o
resonance is defined as a pole in the second Riemann sheet of the 77 isoscalar S-wave in CM
(CMB). The unit three-momenta (indicated with a hat) are given in terms of the polar and
azimuthal angles (see Fig. B.12)) as:

p = (sinfcos¢,sinfsine,cosb) ,
f) = (sinécosq%,sinésingg, cosé) ,
qa = (0,0,1), (5.36)

where we have chosen the z-axis to be the direction pointed by q. We now work out the
Lorentz transformation from CMB to CM:

(1 +P2)eyp = (x/?,ﬁ),

— _ 0 _ — —
The transformation reads:
s + S/ _ (]2
RN W',
—q = —Wsv. (5.38)
It follows then that v = 1/4/1 — v? and v are
I 2
kil | (5.39)

Y = 2\/;\/; )
2
a2V (5.40)
Ws o s+s —¢?
We further define the four-momenta > and A given by
X o= (pitp),
A = (p—p2) - (5.41)

v =

In the CM
S = (\/g_ ¢, _q) . (5.42)

The momentum transfer A has a simple expression in CMB where it is given by A = (0, 2p).
We then perform its Lorentz transformation to CM, with the result

AO — _2q..:’f)7
Vs
A = 2p+2(y-1)[p[(P-4)q . (5.43)

The problem has six independent Lorentz invariant kinematical variables.® We define, in
analogy with two body scattering, the following six alike Mandelstam variables,

§ = (p3 +P4)2 )

80mne the five four-momenta involved in the reaction is fixed by energy-momentum conservation. From the
other four ones we can construct 6 independent scalar products. Notice that p? = p2 = p3 = m2 and that ¢°
can be derived from Eq. (543) in terms of other Lorentz invariants.
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= (p1+p2)
=(p1 — ps) )
t' = (p2 —pa)?
U= (p1 p4)2 )
u' = (py — p3)? . (5.44)

These variables fulfill the relationship

s+t+u+s +t +u =g +8m2, (5.45)

which is the analogous one to s+t +u = 4m?2 valid for two-pion scattering, Eq. (5.1]). Though
¢ and the variables in Eq. (5.44]) are not independent because of Eq. (5.45)), it is convenient
to write the different amplitudes 7mH — 77 in terms of all of them, given the symmetries
present in the calculation.

In virtue of the previously worked Lorentz transformation, Eq. (B.40), we have the four-
momenta properly defined in CM in terms of the key variables s, s, ¢*> and the polar and
azimuthal angles in the two-pion center of mass frames (the Lorentz invariants only depend
on the difference between the azimuthal angles, see Eq. (5.47)) below.) It is convenient to
express p; = (X + A)/2 and ps = (X — A)/2, with ¥ and A given in CM by Egs. (5:42]) and
(543). In terms of this set of variables, the Lorentz invariants of Eq. (5.44)) are given by

t 2m2 —2(a+ A+ B+C)
t = 2m2-2(a—A-B+0O) ,
u = mfr—Q(oH—A—B—C’),
u = 2m2—-2(a—-A+B-0C), (5.46)
where
1 1
ziﬁo-pg’4:§(s+s’—q2),
1 Vs
A= A" p} Y= cosf
58 P3a |01||p|\/—COS
1=
B= —52 ‘p= +§ la| |p|cosf , (5.47)
Ly N V) e SR
C=—-—-A-p=-— p-p+ cosfcosf | .
58P =—[pp| <p P NS

In the previous equation the five kinematical variables, s, ¢,

together with the scalar product

p-p =sind sinfcos(¢p — ¢) + cos b cosd .

, cosf, cosf are used

(5.48)

In terms of the variables in Eq. (5.44]) one can express the inverses of several pion propa-
gators that appear in many Feynman diagrams that contain the scalar source attached to an

external pion leg, cf. diagram (a.

Dy = (q+p1)? —m =s +t +d —4m72T,

2) of Fig. 513 It results:
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=5+t +u —4m?
=5+t +u —4m?2 |
2

=5+t +u —4m

Dy = (Q+p2)2—m
Ds=(qg—p3)*—m
Dy=(qg—ps)*—m

SIS RN

(5.49)

Because of Eqgs. (5.47), the angular dependence of these inverse propagators is rather simple:
D; and Dy depend just on cos 6, while D53 and D, do on cosf. The propagating pion can
become on-shell for certain angles, giving rise to a pole in the propagators. These poles, when
the S-wave angular projections are performed, result in logarithmic divergences. In particular,
there is always a pole for ¢> — 0. We treat this issue later on.

5.4.2 The wm H — wm scattering amplitude

To determine the Feynman diagrams required for the 77 scattering in the presence of a scalar
source up to O(p?) in ChPT it is useful to have in mind first those diagrams of plain 7w
scattering in Sec. 5.3 Fig. B.Il Now, one external scalar source has to be added in all the
possible ways to those diagrams. As deduced from the Lagrangians £, and L4, Eqs. (L257]),
the scalar source can couple to any even number of pions. In Fig. we show the diagrams
that must be calculated at the one-loop level, where the external scalar source is indicated by
a wiggly line. The LO diagrams correspond to (a.1) and (a.2).? Diagrams (a.2), (e.1) and (f.1)
can be handled together because their sum corresponds to taking the full pion propagator in
between the external source and the four-pion vertex, Eqs. (L282), (L283) and (L288). In
addition, all the diagrams on the bottom line of Fig. 513, namely, (€.1)-(£.3), correspond to
the wave function renormalization of the LO ones. Both issues are derived to NLO from the
pion self-energy diagrams, Fig. [0 Eq. (I.288). Once the the renormalization of the pion
propagator and the the wave function renormalization are taken into account, as well as the
rest of diagrams diagrams in Fig. [5.13] one has the basic topologies shown in Fig. [5.14l

Compared with 77 scattering the presence of the c-number external scalar source H com-
plicates considerably the simple expressions for the former [I8]. The calculation for each of
the diagrams in Fig. 5.4 is given in Appendix [l Specifically, we calculate the processes
70(p) T (po)H(q) — 7°(p3)m°(psa) and 7°(py)7°(pe)H(q) — 7 (p3)m~(p4), with the former
denoted by T, and the latter by T,.. These two processes are considered in order to iso-
late the pion pairs with definite isospin (I) by taking the appropriate linear combinations.
The standard decomposition of the 7°7% and 777~ states in two-pion isospin definite states,
|rm(113)), being I3 the third-component of isospin, is

i) = \/?W(?O» - \/glm(OO» :
) = —\/g\m(%)) - \/glm(lob - \/g\m(OO» :

where we have taken into account that |77) = —|m;1 = 113 = —1), as follows from the
definition of the 7 field, Eq. (I.260). Because of isospin conservation (the scalar source H (q)

90f course, the scalar source can be attached to any of the pion legs but for conciseness we draw explicitly
the attachment to only one. This should be understood in the following.
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KK KK 90K

b. b.
®.1) ®.2) (c.1) (c.2) (c.3)

XK K ECE K

(f.1) (f.2) (f.3) (d.1) (d.2) (d-3)

KO KKK

(®.1) €.2) €.3) 1) f.2) 3)

Figure 5.13: Feynman diagrams for the 77 scattering amplitude in the presence
of a scalar source, mm H — 7w, at one-loop order in ChPT.

XXX XXX
A 5O

VIII

AN

Xl

Figure 5.14: Final set of Feynman diagrams for the w7 scattering in the presence
of a scalar source, 7m H — mm, at O(p*) in ChPT omitting the pion propaga-
tor dressing and wave function renormalization of the leading order diagrams in

Fig. B.I13

is isoscalar), the Wigner-Eckart theorem implies

(97°|S|7070 s) = + §<m(20)\31m(20)[{>
n ;<m(00)|5|m(00)H> |
(77~ |S|n%70 s) = :1))<m(20)|5|m(20)H>
+ ;(WW(OO)|S|W7T(OO)H> , (5.50)

with & the S-matrix. From this equation we can isolate the purely I = 0 matrix element,
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: W(s <. ) : > o g,

1+ V(s’)G( 1+ V(s)G(s)

Figure 5.15: External scalar source coupled to a double ¢ pole in the 77 H — 7w
process. The o pole is originated by the resummation of pion re-scattering, as
indicated in the left diagram by the iteration of the unitarity two-point function.

A(s, s, %0, 0, ¢, ), corresponding to
A(s, 5, ¢,0,0, 6, 8) = (rm(00)|S|mn(00) H) (5.51)
From Eq. (B.50), we have:

A(s,s',¢%,0,0,0,0) = (°7°|S|7%7° s) + 2(xt 7~ |S|7%70 s)
= Ty + 2T - (5.52)

We are interested in this matrix element because the o is isoscalar.

The o is an S-wave resonance so that it is also required the S-wave angular projection of
the initial and final isoscalar pion pairs. This is straightforward for the final pions because
the CM coincides with its own rest frame, with the result:

|73 00) 30 = — / dp |7 (ps) 7 (p)(00)) . (5.53)

Regarding the initial pair of pions, its state is defined in CMB analogously as in the previous
expression. One has still to perform the Lorentz boost to the CM frame so that

jr; 00), ) [l f (f —B)(00)) . (5.54)
where U(v) is the Lorentz boost operator from CMB to CM, with the velocity v given in

Eq. (&40). When acting on the pion states (which have zero spin) the only effect is the
transformation of the four-momenta from CMB to CM. Then, we can also write Eq. (5:54) as

o 00)12 = - [ B x(p1(B))m(2(B))(00)) (5.55)

where p; and py are written in terms of the four-momenta in CMB. From Eq. (541), p; =
(X +A)/2, pp = (X — A)/2 with 3 and A given in Egs. (542) and (543), in order, as a
function of the CMB kinematical variables.

Employing the states projected in S-wave, Egs. (5.53)) and (5.55), we are then ready to
calculate the required matrix element in ChPT, ¢(s, s, ¢%):

o(s,s',¢*) = /dQQ A(s,s',q%0,0,0,0) . (5.56)

3272
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Note that the extra factor 1/2 in Eq. (0.56]) arises because of the unitary normalization, as
explained after Eq. (5.2). In the last equation, the double solid angle integration is

/d29 /dcose/dcose/ do d¢ (5.57)

One linear combination of azimuthal angles, ¢ and ¢, is a spare variable, and then one in-
tegration in Eq. (&R1) is trivial. This is so because they appear just through the expres-
sion cos(¢ — @), as explained above, Eq. (0.47). In fact, for any periodic angular function,

f(v) = f(y+ 2m), one has:

40 [d5 16~ 3) =2n [d) 7). (55%)

5.4.3 Scalar form factor

Once the perturbative amplitude for the process mm H — nm is calculated, we proceed by
taking into account pion rescattering, similarly as was done for 7w — 77, see Eqs. (B.3)-
(5.6). The resulting amplitude is denoted by Ts(s, s, ¢?), and following the same unitarization
method as in Sec. from Refs. [39,41], it can be written as:

Wi(s, s, q?)
(1+V(s)G(s)) (1 +V(s)G(s"))

Ts(s,s',q°) = (5.59)

This is the analog to Eq. (53) but now for the process 7w H — mm, with the new kernel
W (s, s, q?) instead of V(s) in Eq. (B3)). It is important to stress the presence of two factors
1 + VG in the denominator of Eq. (5.59). This is so because in 7w H — 77 the presence of
the scalar source H(q) makes necessary to resum the unitarity loops corresponding to both
final and initial state interactions.

The kernel W (s, s’,¢*) is obtained in a chiral expansion by matching Eq. (5.59) order by
order with its perturbative calculation. The chiral expansion of the kernel is

W =Wy +Wy+00(°% , (5.60)

where we omit the dependence on the arguments s, s’ and ¢? for easy reading. The subscripts
in Eq. (5:60) refer to the chiral order. Then, the amplitude Eq.(5.59) is expanded, as it was
done in Eq. (&), so that one has:

Ts(s, S/, C]Q) :W2 -+ W4
—WoVa(s5)G(s) — WaVa(s)G(s") + O(p°)
=2 + 1 + O(p°) , (5.61)

where ¢, (s, s, ¢*) is the O(p"™) contribution to (s, s, ¢*) defined in Eq. (5.56). The kernels
W, (s, s',q?) are determined by matching the above expressions order by order, so that:

WZ(S? 5/7 q2) = @2(37 8,7 q2>
Wi(s,s',q*) = (s, s, @) + 2 6(5)G(s) + @2 &(s)G(S) (5.62)
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where it was used that V5(s) = &(s), Eq. (B0).

The form factor of the o meson, F,(¢?), can now be extracted from Ts(s, s', ¢*), employing

W = Wy + W, in Eq. (659). For that one has to isolate the double o pole present in

Ts(s,s',q%), as drawn on the right-hand side of Fig. 515 The double o-pole contribution can
be written as:'°

Fo(®) 95 _ W(s,s',¢°)

lim

(5 = 8a)(8' = 85) w0 (L+V(s)G(s)) (1 + V(s)G(s))

(5.63)

Expanding the r.h.s. of the above equation around s, 8" — s,, and equating the double-pole
term, the result is:
2

Fo(q?) = V(g;;)QW(SO,SU,qQ) . (5.64)

In determining the kernels W, (s, s’,¢*), we have followed the master guidelines of pure
7 scattering procedure to take into account the rescattering of the pions given in Sec. B.3.1]
However, some modifications are needed in our case because of the presence of the pion
propagators in the external pion legs attached to a scalar source, see Fig.[5. 14l Let us focus, for
clearness, in the LO amplitudes ¢»(s, s', ¢*), corresponding to the diagrams I and 1T in Fig. [5.14]
(the amplitudes are given in Appendix [C]). Before the angular projection in Eq. (B.56), one
has

4 2
As(s. o', ,6,0,0,8) = — 25 (1 2% S—mﬂ/Q> , (5.65)
J 7% i=1 D;
where the subscript in A refers to the chiral order, s;5 = s' and s34 = s, and the D, are the
inverse of the pion propagators given in Eq. (5.49). These contributions proportional to the
propagators stem from the piece of diagram II in which the on-shell part of the 47 vertex is
retained, so that the pion propagator is not cancelled out by an off-shell part from the 47
vertex (cf. Ref. [33]). Considering, for conciseness, the case s = s’ (the one interesting for the
o scalar form factor for which s = s’ = s,,), these propagators can be written as:

1 1
== _ (5.66)
D1 % —2|plq|cosd

and similarly for the other D;. It should be noted that for certain values of ¢* and s, these
propagators can have a pole in the variable cos . In particular, for ¢> — 0 this is always the
case. Upon angular integration, this contribution gives rise to an imaginary part that diverges

as 1/4/]¢?| for ¢* — 0~. As shown below, this limit is the one that matters in order to calculate
the quadratic scalar radius of the o, but this divergence would lead to an undetermined value
for it. This fact is not acceptable and indicates a deficiency in the procedure followed up to
NOw.

Let us clarify this important technical point and the way it can be solved. The term of
the amplitude As(s, s, ¢%, 0,0, ¢, ¢) in Eq. (5.65) that is proportional to the pion propagators,

10Because of invariance under temporal inversion the amplitudes for 7r — ¢ and ¢ — 77 are equal.
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ool 5

Figure 5.16: String of unitary diagrams to be resummed when the scalar source is
attached to an external leg. On the right, the resulting single ¢ pole contribution
is depicted.

that we denote by -/42,pr0p,11 can be written as:

1. 4B
Az prop = &2(5) 2 1~ » (5.67)

=1

where we have taken into account that & (s) = (s —m2/2)/f2. Once Aj prop is projected in the
S-waves for the initial and final pion pairs, Eq. (5.56), we end with the contribution W3 6 to
the kernel W (s, s, ¢?) in Eq. (5:59). Keeping in this resummation only terms up to one-loop,
and hence proportional to G(s), one obtains Tso prop given by

TS?,PI'OP - _2€Q(S)G(S)W2,prop(s7 S, q2) 3 (568)
where the expansion
1 oo

TT6006): — 2 e+ D ©E6EE)", (5.60)

is employed.!?

However, the result of the one loop calculation in ChPT of the diagram VIII, once properly
projected in isospin and S-waves as discussed above, gives half of the amplitude in Eq. (.68]).
Whence Eq. (5:59) is double counting this kind of terms at the one-loop level. Analogously,
it can be seen in the n-loop terms of the resummation that the contribution of the kernel
proportional to W o is counted n + 1 times, Eq. (5.69). This is so because we are missing
the proper combinatoric factors as an on-shell factorization scheme for unitarizing is employed.
Thus, instead of resumming these terms with 1/(1 + VG)?, they should be resummed with
just 1/(1 4+ V@) in order to give the proper diagram counting. Notice that in this case they
do not contribute to the double-pole term needed for F,(¢?), as can be seen from Eqs. (5.6G3))
and Eq. (5.64). This is also shown schematically in Fig. 516 Had we considered an integral
equation for the resummation procedure instead, this kind of contributions would be integrated
giving terms proportional to the three-point function Cy(s, s’,¢*), in which the scalar source
interacts with intermediate pions, like the terms appearing in the diagram X of Fig. 514l This
is not a shortcoming of our approach, because this kind of diagrams are properly included
when the kernel W (s, s',¢*) is calculated at higher orders in the chiral counting, as can be
seen in Fig. 514 E.g. at the one-loop level calculation of W (s, s', ¢?) one has the diagram X
of Fig. 5.14l that arises from iterating once the pion-propagator contributions at tree level.

HRecall that we are interested in the s = s’ case.
12Recall that V (s) in Eq. (559) is &2(s) because we are unitarizing a one-loop ChPT calculation for 7w H —
.
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From the previous discussion we remove the terms of the amplitudes with the external
scalar source coupled to initial or final asymptotic pion legs from the kernel W (s, s', ¢*) in
Eq. (&59), as they do not contribute to the scalar form factor of the 0. The latter requires the
coupling of the external scalar source to intermediate pions and vertices. Now the question
arises of how to remove properly the terms arising from the Feynman diagrams with the
scalar source attached to a pion propagator in an external pion leg. We cannot simply drop
these diagrams because the pion propagator between the source coupling and a pure pionic
vertex in an external pion leg may be cancelled by off-shell terms from the 77 interaction
vertex [33]. Indeed, such contributions are required in order to have results independent of
pion field redefinitions that mix diagrams with different number of pion propagators. Rather,
a procedure based on the full on-shell amplitude calculated in ChPT up to some order, which
is independent of the former redefinitions, must be given.

Let us consider the general case, and write these contributions as:

flz.y) , (5.70)

r — 2o

where = = cosf and z = ¢*/(4|p||q|).'* Here we have collected in y the rest of the variables.
In order to subtract the pure pole contribution in Eq. (570) we subtract from the numerator
above the residue of the pole,

f(x,y) — f(xo,y) )

r — 29

(5.71)

In the LO case, in view of Eq. (5.65)), this amounts to removing the whole term proportional to
the propagator, since it just depends on s (or s') and not on @ (or ), that is, df(z,y)/0z = 0.
This subtraction procedure is independent of pion field redefinition because in f(z,y) all
the pion lines are put on-shell so it cannot contain any off-shell remainder that could be
counterbalanced by other off-shell parts coming from other vertices, and giving rise to possible
pion field redefinition dependences.

With this procedure we are then ready to calculate F,(¢?). For that we define the new
amplitude B(s, s',¢%, 60,0, ¢, ¢) obtained from the original A(s, s, ¢%, 6,0, ¢, ¢), Eq. [552), by
removing the contributions with the scalar source attached to an external pion leg, following
the procedure in Eq. (B71). In terms of the former we calculate its angular projection as in
Eq. (5.56), obtaining the new amplitude ®(s, s', ¢%):

1

®(s, 8, q%) = 93 /d2Q B(s,s',q%0,0,0,0) . (5.72)

Then, the final expression for the interaction kernel, that we now denote by W(s, s', ¢%), is

(¢f. Eq. (0.62))

W=Wy+W,,
W2 = ®2 9
Wy = By + By &5(5)G(s) + P2 &o(s)G(S) | (5.73)

13We are considering again the case in which the scalar source is attached to m(p;), since the argument for
the the other cases is analogous.
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with the subscripts indicating the chiral order as usual.

The scalar form factor of the ¢ is finally given by

Fo(¢*) = V(gi)QW(sg,sa,qQ) : (5.74)

For definiteness let us explicitly give the expressions at LO and NLO for F,(¢?) from the
previous equation:

FO>¢") = 57) (50550, 4°)
o ‘/2(80)2 2\905 90> )
FNLO(q2> _ (gyLO)Q
’ (Va(ss) + Va(so))”
x (Wa(s0, 50, 6°) + Wils,50,4°)) - (5.75)
With
LO\? : LO Va(s)
= 1 —_ _—
(9:°)" = Jim, (5% = )3 POk
NLO\ 2 : NLO Va(s) + Va(s)
= 1 — 5.76
(ga ) sﬁlsrol\%‘o(so’ S) 1 + (%(S) + ‘/4<S)) G(S) Y ( )
where s2© and sY© are the o pole positions at LO and NLO, respectively, given in Table (.3,

and for V5 and Vj see Eq. (5.0).

One technical detail is in order. The ¢ resonance is a pole in the second Riemann sheet
of wm scattering for the physical pion mass. As we have seen in Sec. [5.3.4] when increasing
the pion mass above some value the ¢ meson becomes a bound state and moves into the first
Riemann sheet (the corresponding pion mass value is indicated by the arrows in Fig. [(.6]).
Then, Eq. (574) has to be understood in the same Riemann sheet as the o pole happens.
This requires the evaluation of W(s, s, ¢%) in Eq. (5.73) either in the first or second Riemann,
according to the value taken for the pion mass.!4

We now discuss the analytical continuation of the loop function Cy(s, s, ¢*) to the second
Riemann sheet (we take from the beginning in the present discussion that s’ = s), where it is
denoted by Co./(s, s,q?). The function Cy(s,s’,¢*) corresponds to the three-point one-loop
function of diagram X in Fig. [5.14l and its calculation is discussed in Appendix [Bl In order to
proceed with the analytical continuation we first evaluate the difference

AC(s,q%) = Cy(s +ie, s +ie, ¢*) — Co(s — ie, s — i€, ¢°) (5.77)

for s and ¢* real and ¢*> < 4m2.1® The second Riemann sheet in 77 scattering is reached by
crossing the real s-axis above threshold, s > 4m2, and so we have to consider Eq. (5.77)) for

14This qualification is only relevant for Wjy(s, s, ¢?).

5For ¢2 > 4m?2 the opening of the 27 production process introduces additional complications that we skip
now since we are mostly interested to values of ¢? around zero, used below to calculate the quadratic scalar
radius of the o resonance. The whole region ¢ < 4m? is of interest and considered by us as well.
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Figure 5.17: The normalized scalar form factor of the o meson calculated at NLO
for the physical case with /s, given in Table 5.3l The range in ¢ extends from
¢* ~ —0.6 GeV? =~ —30m2 up to ¢? ~ 0.08 GeV? ~ 4m2.

the same values of s. It turns out that a cut in s extends for s > 2m$r + Mgy /4mE — ¢? = s
for which AC(s, ¢?) is non-zero (the same expression for the cut also occurs for s < 2m?2 —
Myy/4m2 — q2). When ¢*> — 07 (this limits gives the same value for the quadratic scalar radius
as ¢> — 07) to cross the real axis for s > 4m? implies to consider AC(s,¢*) given by the
mentioned cut for Cy, s > sy, corresponding to A,Cy in Eq. (B.I1). Once this discontinuity

is evaluated we continue it analytically in s and ¢ and subtract it to Cy(s, s,¢?) (calculated
in the first Riemann sheet), as done above to determine Gy;(s), Eq. (BI1). It results,

CO;H(Sa QQ) = CO(S, q2) - AC(Sa QQ) . (5-78)

Notice that for calculating Wy, Eq. (B.73)), it is not necessary to use Gy;(s) when the o pole
remains in the second Riemann sheet. This is due to the fact that ®, contains the two-point
one-loop function By(s), evaluated in Appendix [Bl so that the discontinuity when crossing
the unitarity cut above threshold cancels mutually between these two functions.

We show in Fig. B.IT the modulus squared of F,(g?) normalized to F,(0) for ¢*> < 4m?
calculated at NLO with the physical value of m,. We observe a monotonous increasing
function with ¢®>. The LO result is just a constant because ®, is so and is not shown in the
figure (it would be just 1.)

5.5 Quadratic scalar radius of the o meson and the Feynman—
Hellman theorem

The quadratic scalar radius of the o resonance, (r?)J, is related to the scalar form factor of
the o by a Taylor expansion around ¢* = 0,

OF,(q?)

2
an q_|_...

7°>=0

Fy(q*) = F,(0) +
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2
= F,(0) (1 + %<fr2>g +-- ) , (5.79)
where the ellipsis indicate higher powers of ¢? in the Taylor expansion. In this way,
6 O0F,(¢°)
7?7 = z 5.80
CEERD 0 |, o0

Notice that, since the form factor reduces to a constant (independent of ¢?) at LO, we find
that (r?)7 = 0 for this case, similarly as the case for the quadratic scalar radius of the pion [I§]
within standard ChPT. Whence, the quadratic scalar radius must be calculated at least at
NLO. Before discussing the results for the physical pion mass case, we study the dependence

of (r?)7 with the pion mass. We show the square root of the quadratic scalar radius of the

o, y/(r?)g, in the upper panel of Fig. B.I8 as a function of m,, with its real part given by
the (blue) solid line and its imaginary part by the (red) dashed line. It diverges in the chiral
limit (m, = 0) and where the ¢ pole coincides with the two-pion threshold (indicated by
the rightmost arrow in Fig. [5.9.) The latter point corresponds to a zero energy bound state
and as such it must have infinite size, as dictated by elementary quantum mechanics. On
the other hand, in the chiral limit (r?)7 also diverges as logm,, similarly as the quadratic
scalar or vector radius of the pion [I8], because the infinite size of the pion cloud around the
bosons. It is relevant to note that the imaginary part of this quantity, despite the ¢ meson
has a width larger than 200 MeV for pion masses up to around 300 MeV, as shown in Fig. [5.8]
is much smaller than its real part, which makes its interpretation easier. In the lower panel of
the same figure we depict the real (blue solid line) and imaginary (red dashed line) parts of
the quadratic scalar radius of the o, (r?)7. It is notorious that in most of this range of pion
mass values the square root of (r?)J is around 0.5 fm quite independently of the width of the

0 1mesoI1.

For the physical pion mass we find the values

(r?)? = (0.19 + 0.02) — i (0.06 & 0.02) fm?,
(r2)7 = (0.44 + 0.03) — i (0.07 + 0.03) fm , (5.81)

with the errors calculated as explained in Sec. 5.3l This value is almost the same as the
corresponding quadratic scalar radius for K, (r?)5™ = (.1806 4+ 0.0049 fm? [189], for which
the scalar resonance x (or K{(800)), tightly related to the o resonance by SU(3) symmetry
[39,49, 51153, 54], plays a leading role [4344]. For comparison, the quadratic scalar radius of
the pion is (r?)T = 0.65 £ 0.05 fm? [149].6 It is notorious that the value determined for the
scalar radius of the o resonance is smaller than that for the pion. It is even smaller than the
measured quadratic electromagnetic pion radius, <r2>"}i = 0.439 £+ 0.008 fm? [394]. However,
(r2)7 is similar to the measured K* quadratic charge radius [I50], (r2)5* = 0.28 + 0.07 fm?.
Scalar glueballs are expected to have even smaller sizes, 0.1-0.2 fm [395]396].

The value obtained for (r?)? in Eq. (5.81) implies that the two scalar isoscalar pions

S
generating the o resonance are so tightly packed that the o resonance becomes a compact state.

16A recent lattice QCD determination [385] gives (r2)T = 0.617 + 0.079 4 0.066 fm?, or, adding the errors
in quadrature, (r2)7 = 0.6 + 0.1 fm?, in good agreement with the value given in Ref. [149].
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Whether the two pairs of color singlet valence quarks gq in the two-pion state recombine giving
rise to combinations of other possible QCD states as e.g. ¢*¢ [49,60,54,568,[126,267,[397-405],
glueball, etc is beyond the scope of our study based on hadronic degrees of freedom. In this
respect the large N¢ evolution of the o pole position [39,[136HI39.148] is enlightening and
clearly indicates that the o resonance is not dominantly a glueball or a gg resonance. In
Refs. [I38,148] it was found that this large N¢ behavior is compatible with the fact that
this resonance owes its origin to 77 interactions becoming a 77 resonance. This large N
behavior is also compatible with a (qg)? state that fades away as two ¢g mesons as expected
in the large N¢ limit [147]. This picture on the dynamical generation from 77 interactions
of the o meson is also supported by the nontrivial simultaneous fulfillment [I48] of semi-local
duality [148,406] and scalar, pseudoscalar spectral function sum rules [148], both for No = 3
and varying N¢.

On the other hand, for larger values of m,, the 0 meson closely follows the 27 threshold,
as demonstrated in the previous section, and its size is then large. Thus, in this range of pion
masses, the ¢ meson progressively becomes a two-pion molecule and its nature is then much
more clear and simple (for m, = 400 MeV it follows from Fig. B.I8 that /(r2)% > 1.5 fm).'7

~J

This can also be related to the behavior of the quantity g?dG/ds evaluated at s = s, (and
G evaluated in the Riemann sheet in which the pole appears). This quantity is close to one
for a composite meson [215,216,411-H414]. We have checked that for the large values of m,
in which the ¢ meson is a bound state, we have g2dG/ds 2 0.8, which points to a molecular
nature. For values of the pion mass close to the physical one, we have instead g?dG/ds ~ 0.

Another interesting point is to consider the relation between F,(0) and the derivative of
the o pole with respect to the quark mass. According to the Feynman-Hellmann theorem
[T51L152], one has the relation:

ds,  F,(0)

= (5.82)

Notice that F,(0) is proportional to B and precisely their ratio is not ambiguous. On the
other hand, ds,/dm? is given in Eq. (5.I9). Then we can write:

dsa gg(mgr) ’ 2 V 232, 2
dm? - V(sy,m2)? (V<Savmw) (85,m57) GU(SU’mW)>
dm?
s . 5.83
dm? ( !

The dependence of m2? on m? is worked out up to O(ml) in Eq. (IL288) from where one
obtains:

dm? m2 /- 1 A

We show our results for —F,(0)/2B at NLO and compare them with ds,/dm? in Fig. 519, so
as to check Eq. (5:82). In the upper two panels we show the real part and in the bottom one the

17A similar value was obtained for the size of the A(1405) resonance in Ref. [407], which is also a resonance
that qualifies as dynamically generated form the meson-baryon interactions [35,41,47,408,[409]. In Ref. [410]
the matter or scalar form factor for this resonance was studied.
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Figure 5.18: Top: the square root of the quadratic scalar radius of the o as a
function of m, is shown for 0 < m, < 600 MeV. Bottom: the quadratic scalar
radius is represented in the range 0 < m, < 350 MeV. In both panels, the (blue)
solid lines represent the real part of each quantity, whereas the (red) dashed line
is the imaginary part. The points over the curves represent our results for the
physical case with their statistical errors, Eq. (&.81]). Due to the scale used they
cannot be appreciated in the upper panel.

imaginary part. The agreement is certainly remarkable for m, < 300 MeV, at the level of just
a few percents of difference. This range of pion masses is highlighted in the second and third
panels, from top to bottom. Let us note that in Eq. (5.82)) we are comparing two quantities
that are obtained from the chiral expansion of two different interacting kernels. The expansion
is not performed on the full amplitudes and this is why there is not a perfect agreement, as it
is the case in the standard perturbative calculations of ChPT [I8,[I9]. In our case the factor
V(s,,m2)? multiplying G;(s,, m2) in the right-hand side of Eq. (583) is equal to (V3 + V4)?,
while @, from Eq. (5.72) only contains V3, because it is a ChPT one-loop calculation at
O(p*).'® Thus, the differences correspond to higher order terms in the calculation of F,(0),
beyond the O(p?) or NLO calculation of the kernel W(s, s’,¢*), Eq. (5.73)), performed in the
present work.

Another point also worth mentioning is the fact that the left-hand side of Eq. (5.83]) does

18Notice that the derivative with respect to m2 of the function G(s,m2) is proportional to Cy(s, s, m2).
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Figure 5.19: Feynman-Hellmann theorem: comparison between ds,/dm? and
—F5;(0)/2B, Eq. (5.83), as a function of the pion mass. The (blue) thick solid
lines correspond to ds,/dm? at NLO, Eq. (519), whereas the (red) dot-dashed
lines are evaluated at LO, where ds,/dm? = ds,/dm?2. The (green) dashed lines
are —F,(0)/2B. From top to bottom, in the first panel the real part of the quanti-
ties are represented in the range m,, 50 < m, < 600 MeV. In the second panel, the
same is shown for 50 < m, < 300 MeV. The bottom panel shows their imaginary

part.
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not involve any contribution with pion propagators in the external legs but the derivative acts
on the vertices and intermediate pion propagators in loop functions. This is also the case in
F,(0) once the pion propagators in the external legs are removed as explained in Sec. [5.4.3]

5.6 Summary and conclusions

In this Chapter we have discussed the nature of the ¢ resonance (nowadays also called f,(500)
in the PDG [48]) by evaluating its quadratic scalar radius, (r?)J. This allows one to have a
quantitative idea of the size of this resonance.

There are many studies since the nineties based on supplementing Chiral Perturbation
Theory with non-perturbative S-matrix methods, that clearly indicate a dynamical origin for
the o resonance due to the isoscalar scalar wm strong self interactions [22-H24]26,28],129,33].
More recent studies based on the dependence with N of the o pole [39,[136HI38,[144] also
corroborate that this resonance cannot be qualified as a purely gqq or glueball, with the pole
trajectories compatible with the expectations for a meson-meson dynamically generated object
or a four-quark state. In the large No limit it is well known that loops are suppressed so
that the 77 rescattering vanishes away and then the o resonance pole disappears according
to Refs. [39,138,148]. These results have been strongly supported recently [148] by the
simultaneous fulfillment of semi-local duality [148[406] and scalar, pseudoscalar spectral sum
rules [148], both for N = 3 and varying Nc.

The next question is whether the two pions are loosely distributed, so that the ¢ meson
might be qualified as molecular or, on the contrary, they overlap each other giving rise to a
compact object of a size comparable or even smaller than that of its constituents. A proper way
to answer this question is to determine quantitatively the size of the o resonance. For that we

calculate in this work the quadratic scalar radius of this resonance obtaining the value (r?)7 =

(0.1940.02) — ¢ (0.06 £ 0.02) fm?. Despite the o has a large width the resulting value for the
quadratic scalar radius is almost a real quantity, which makes easier its physical interpretation.
This value is very close to the K7 quadratic scalar radius, (r?)5™ = 0.1806 £0.0049 fm? [I89],
similar to the measured K* quadratic charge radius [I50], (r2)5° = 0.28 + 0.07 fm?, and
smaller than the quadratic scalar radius of the pion, (r*)T = 0.65 + 0.05 fm? [149]. This

means that the ¢ is certainly a compact object. The square root of its quadratic scalar radius
is 1/(r?)7 = (0.44 £ 0.03) — i (0.07 £ 0.03) fm.

We have further tested our result for the size of the ¢ by considering the dependence of
(r?)? on the pion mass. As m, rises the o meson mass follows the 27 threshold. This fact has
been recently observed in the lattice QCD calculation of Ref. [153], and was pointed out much
earlier in Refs. [39,53] as well as in the more recent work [I54]. In such situation, with a small
binding energy, the expected size of the ¢ resonance should be definitely larger than that of
a hadron. We obtain a quadratic scalar radius that increases rapidly as soon as the width
of the ¢ meson tends to vanish, which for our present NLO fit occurs for pion masses above
~ 330 MeV. In this way, already for pion masses around 370 MeV, /(r?)7 is larger than 1 fm
and diverges for m, ~ 470 MeV, precisely the value at which the ¢ resonance becomes a zero
binding energy bound state. In this case, a molecular or 77 bound state image is appropriate
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for the 0 meson. For even higher pion masses, the binding energy is still small which gives rise
to large sizes for the o. Nevertheless, we observe a steady (albeit weak) tendency to increase
the binding energy for higher pion masses so that its size tends to dismiss progressively, but
for the mass range explored in this work it is always 2 1.5 fm. The clear tendency of the o
resonance to follow the two-pion threshold is a manifest indication for this resonance being a
meson-meson dynamically generated one. For smaller pion masses between 50 and 300 MeV
the square root of the quadratic scalar radius of the ¢ meson is rather stable with a value
around 0.5 fm, independently of its width.

The value of the scalar form factor of the o resonance at ¢*> = 0, F,(0), is related via the
Feynman-Hellmann theorem with the derivative of the ¢ pole position with respect to the
pion mass. Within uncertainties, we have checked the fulfillment of such relation.

We have studied 77 scattering in NLO SU(2) Unitary Chiral Perturbation Theory as
well. We obtain a good reproduction of w7 phase shifts for I = 0 and I = 2, and also for
lattice QCD results of the I = 2 scattering length a3 and f,. We have offered a detailed
comparison between different precise determinations in the literature, including our present
calculation, of the o meson mass and width, and of the threshold parameters aJ, b3. The
resulting average values are aj = 0.220 + 0.003 and bym2 = 0.279 £ 0.003. For the o meson
pole parameters we take the mean of the different values with the result M, = 458 £ 14 MeV
and ', /2 = 261 £ 17 MeV. Our own determinations obtained here at NLO in Unitary ChPT
are aj = 0.21940.005, bm? = 0.28140.006, M, = 440+ 10 MeV and T, /2 = 238 4+ 10 MeV.
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6.1 Introduction

One of the aims in present lattice QCD calculations is the determination of the hadron spec-
trum and many efforts are devoted to this task [153,239,415-437]. A recent review on the
different methods used and results can be seen in [I55]. Since one evaluates the spectrum for
particles in a finite box, one must use a link from this spectrum to the physical one in infinite
space. Sometimes, when it rarely happens, an energy level in a finite box rather independent
of the volume is taken as a proof that this is the energy of a state in the infinite volume
space. In other works the “avoided level crossing”, with lines of spectrum that get close to
each other and then separate, is usually taken as a signal of a resonance, but this criterion
has been shown insufficient for resonances with a large width [I58[438[439]. A more accurate
method consists on the use of Liischer’s approach, but this works for resonances with only
one decay channel. The method allows to reproduce the phase-shifts for the particles of this

173
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decay channel starting from the discrete energy levels in the box [I56,[157]. This method
has been recently simplified and improved in [I58] by keeping the full relativistic two-body
propagator (Liischer’s approach makes approximations on the real part, c¢f. Egs. (€30) and
[@310) below). The work of [I58] also extends the method to two or more coupled channels.
The extension to coupled channels has also been worked out in [440H442]. The work of [15§]
presents an independent method, which is rather practical, and has been tested and proved
to work in realistic cases of likely lattice results. The method has been extended in [443]
to obtain finite volume results from the Jiilich model for the meson-baryon interaction and
in [444] to study the interaction of the DK and nD, system where the D%,(2317) resonance
is dynamically generated from the interaction of these particles. The case of the k resonance
in the K7 channel is also addressed in [445] following the approach of Ref. [I58]. It has also
been extended to the case of interaction of unstable particles in [446], to the study of the DN
interaction [447], the w7 interaction in the p channel [448] and to find strategies to determine
the two A(1405) states from lattice results [449)].

In Ref. [I58] the problem of getting phase-shifts and resonances from lattice QCD results
(“inverse problem”) using two coupled channels was addressed. Special attention was given
to the evaluation of errors and the precision needed on the lattice QCD calculations to obtain
phase-shifts and resonance properties with a desired accuracy. The derivation of the basic
formula of [I58] is done using the method of the chiral unitary approach [42] to obtain the
scattering matrix from a potential. This method uses a dispersion relation for the inverse of
the amplitude, taking the imaginary part of 7! in the physical region and using unitarity
in coupled channels [39,141]. The method does not integrate explicitly over the left-hand
cut (LHC) singularity. Nevertheless, the latter might lead to interesting problems in finite
volume calculations because in field theory, loops in the t— or u—channel that contribute to
crossed cuts, are volume dependent. There is no problem to incorporate these extra terms into
the chiral unitary approach by putting them properly in the interaction kernel of the Bethe
Salpeter equation or N/D method [39,138], or using the Inverse Amplitude Method (IAM)
[23,25H28,30]. However, the method of [I58] to analyze lattice spectrum and obtain phase-
shifts explicitly relies upon having a kernel in the Bethe Salpeter equation which is volume
independent. The same handicap occurs in the use of the standard Liischer approach, where
contributions from possible volume dependence in the potential are shown to be “exponentially
suppressed” in the box volume. Yet, there is no way, unless one knows precisely the source of
the volume dependent terms, to estimate these effects and determine for which volumes the
“exponentially suppressed” corrections have become smaller than a desired quantity. This is
however an important information in realistic calculations. The purpose of the work in this
Chapter is to address this problem in a practical case, the scattering of pions in S-wave. For
that we determine the strength of these volume dependent terms as a function of the size of
the box and the impact of these effects in the determination of the phase-shifts in the infinite
volume case.

The problem of w7 interaction in the lattice using the Liischer approach has been studied
for the case of I = 2, where one has no coupled channels and is technically easier for lattice
calculations [374.[450,451]. Along these lines in [452] a pioneer work is done of the problem
that we address here performing a perturbative calculation at threshold for the case of I = 2.
Our approach is technically different, non perturbative, can be used for scattering energies
and to evaluate phase shifts and is done for I =0 and [ = 2.



175 6.2 The 7= scattering in the finite box

We report here the results obtained in our paper, Ref. [D]. The contents of this Chapter
are as follows. After this introduction, we summarize in Sec. the three models used to
evaluate 7 scattering in the infinite and finite volume case. We then follow by studying the
dependence on the lattice size of the box L of the resulting phase shifts in Sec.[6.3l Conclusions
are collected in Sec.

6.2 The 7w scattering in the finite box

In this section we explain the three models that we are going to consider in the present work
to evaluate the mm scattering within the chiral unitary approach: lowest order Bethe-Salpeter
(BS), N/D and TAM. The latter two provide contributions to the LHC of the scattering
amplitude while the BS does not. After summarizing the models for the infinite volume, we
explain for each of them how to evaluate the scattering in a box of finite size L. We study
the scalar channel up to total energies of about 800 MeV for both the I = 0 and I = 2 cases.
The former is relevant for the lattice QCD studies of o (or fo(500) [48]) meson resonance,
while for the latter the LHC is more relevant (see below). Up to those energies the K K and
nm channels in the I = 0 case are negligible, hence, we deal here only with the 77 channel.
The 47 channel, although open at lower energies around 555 MeV, is also neglected. Their
effects were included in Chapter Bl (see Ref. [A]) and the resulting inelasticity was negligible
up to energies above 900 MeV. This extra intermediate state gives rise to L dependence that is
not exponentially suppressed but, since phenomenologically is negligible in the energy range
considered here, we do not expect any significant effects from this side. This channel was
also neglected in the previous study of 77 scattering at threshold in finite volume [452] and
its calculation is beyond our present aim. The 47 channel gives rise to a three-loop or O(p°)
contribution to the interaction kernel in ChP'T, while here we restrict ourselves to the one-loop
or O(p?) calculation of the interaction kernel. Indeed, any other volume dependence effect
not considered by us in our present research is at least part of a two-loop calculation of the
interaction kernel in ChPT.

6.2.1 Lowest order Bethe-Salpeter approach

In the chiral unitary approach the scattering matrix can be given by the Bethe-Salpeter
equation in its factorized form [33]

T=1-Va'v=v1'1-qg", (6.1)

where V' is the w7 potential, V = —%(s — m;) for ] =0and V = #(3 —2m?) for I = 2,
which are obtained from the lowest order chiral Lagrangians [I8], with m the pion mass and

fr =924 MeV. In Eq. (61]) G is the loop function of two meson propagators, which is defined

* d* 1 1
. p
G = / , 6.2
' (2m)* (P — p)?2 — m? +ie p> — m? + i€ (6.2)

with P the four-momentum of the global meson-meson system. This function has already
appeared in several of the preceeding chapters. Nonetheless, since it will be often refer-
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enced in the following, we include it here again. Note that Eq. (G1]) only has right-hand cut
(RHC), unlike the other two approaches discussed in the next subsections. We must note that,
throughout this Chapter, the amplitude has a different normalization convention with respect
to the one of the preceeding chapters. In particular, the amplitude here has an additional
minus sign, which, in turn, makes the chiral amplitudes to have the same additional minus
sign.

The loop function in Eq. (62) can be regularized either with dimensional regularization
or with a three-momentum cutoff. The connection between both methods was shown in
Refs. [30,41]. In dimensional regularization! the integral of Eq. ([6.2), GP, is evaluated and
gives for the 77 system [41}[453]:

oc—1

2
GP(E) = ! {a(,u)+log:r;—l—aloga+l}, (6.3)

where 0 = /1 — %, s = E?, with E the energy of the system in the center of mass frame,
i is a renormalization scale and a(u) is a subtraction constant (note that only the combi-
nation a(u) — log p? is the relevant degree of freedom, that is, there is only one independent
parameter).

The loop function G can also be regularized with a three momentum cutoff p,,., and, after
the p° integration is performed [33], it results

By 1 1
(27)2 w(p) s — dw(p)? + ie

ag:/

|ﬁ| <Pmax

w(p) = \/m? + p2 . (6.4)

Let us now address the modifications in order to evaluate the 77 scattering in a finite
box following the procedure explained in Ref. [I58]. The main difference with respect to the
infinite volume case is that instead of integrating over the energy states of the continuum
with p being a continuous variable as in Eq. (6.4]), one must sum over the discrete momenta
allowed in a finite box of side L with periodic boundary conditions. We then have to replace
G by G, where

N 1 |ﬂ<pmax 1 1
G = —
L3 zﬁ: w(p) s —4w(p)?’
2
ﬁZA%ﬁ,ﬁeZ3 (6.5)

In our context we refer to the G function given in Eq. (6.3) as calculated in “dimensional regularization”.
Of course, with the latter procedure the result is infinite. The infinite is removed by the subtraction constant
a(p). A more accurate formulation can be given in terms of dispersion relations, see Sec. 277 and references
therein.
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For the sake of comparison with the other models considered in the present work, where
dimensional regularization is always done, we use the procedure of [444] in order to write the
finite volume loop function G in terms of the infinite volume one G evaluated in dimensional
regularization:

GP =G” + lim

Pmax—>00

1 Pmax . d3ﬁ .
E Z: I(pZ)S) - / 3-[(])7 S)] ) (66)
pi

P<Pmax

where I(p, s) is the integrand of Eq. (6.4)),

1 1
w(p) s —dw(@)?

1(p.s) (6.7)

Note that GP of Eq. (66) depends on the subtraction constant a instead of the three-
momentum cutoff p,... The dependence on the latter cancels in the difference between the
two terms in the square brackets of Eq. (6.6]).

In the box the scattering matrix reads

~ 1

T=——-—. (6.8)
V-1_ QD

The eigenenergies of the box correspond to energies that produce poles in the T matrix, which

corresponds to the condition GP(E) = V~1(E). Therefore for those values of the energies,

the T" matrix for infinite volume can be obtained by

T(E) = (V{(E) - G"(E)) ' = (G"(B) - GP(B)) . (6.9)
The amplitude is related to the phase-shifts by
STE 1
TE)=———— 1
() p cotd—1i’ (6.10)
where p = % 1-—- % is the CM momentum.

Eq. (€9) is nothing but Liischer formula [I56,157] except that, as shown in Ref. [I5§],
Eq. (629) keeps all the terms of the relativistic two-body propagator, while Liischer’s approach
neglects terms in Re I(p) which are exponentially suppressed in the physical region, but can
become sizable below threshold, or in other cases when small volumes are used or large energies
are involved.

We would like to make the following observation here. Let us consider Eq. (6.9) in the
cutoff regularization procedure. We would obtain

T(E)=(G-G)! (6.11)

with G and G given by Eqs. ([64) and (6.5) respectively. In the application to Quantum
Mechanics of Liischer formalism, the cutoff would be playing the effect of a finite range.
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However, one should note that the difference G — G has a finite limit when the cutoff goes to
infinity and this is what the Liischer formalism assumes. Note that the difference of the part
of the sum and integral from p,,., to infinity goes rapidly to zero as pna.x increases, leading
to terms exponentially suppressed in L. So, to make the limit of pp.y infinite in Eq. (61T
is within the usual assumptions in the derivation of Liischer formula and makes the results
cutoff independent. Then Eq. (6I1) in the limit of pya., — oo is exactly Liischer formula,
up to the relativistic corrections that we have mentioned. On the other hand, in lattice
QCD calculations the information on py,,, does not exist since the cutoff is implicitly infinite
and divergences of the theory are reabsorbed in some physical observable. In this sense a
rederivation of the improved Liischer formula, Eq. (629]), without invoking cutoffs is advisable
and this is done in [444] (Eqgs. (11) to (17) of that paper), with the dimensional regularized
G functions. This is what we have used in Eq. (6.6) and throughout this Chapter.

6.2.2 Chiral amplitude at O(p*) in a finite volume

Both in the TAM and the N/D methods (explained below) the dependence with the finite
size of the box enters through the chiral amplitude A4(s,¢,u), which is used to calculate the
partial waves at O(p*), denoted by T;. The Feynman diagrams involved in its calculation
were shown in Fig. 0] in Chapter [ (since in the first part of Chapter [l we dealt with
7 scattering at NLO). This amplitude receives contributions from loop diagrams, whose
momentum integrals should be replaced by discrete sums over the allowed momenta in the
finite box. In particular, these contribution come from s—, t— and u—channel loop diagrams,
and also from tadpole diagrams. Note also that, as in Chapter B, we write the amplitudes in
terms of the physical pion mass m, and decay constant f,, so that the NLO contributions
(tadpole loop-functions in the finite box) to them are included as O(p*) terms in the amplitude
Ty. The O(p*) nr scattering amplitude Ay(s,t,u) can be generically written, both for I = 0
and I = 2, in terms of only two one-loop functions G and H:

Ay(s,t,u) = Py + PpH(m?) + Pg G(s) + PgG(t) + Pe.G(u) | (6.12)

where Px are polynomials of the Mandelstam variables. In particular, the LECs appear only
in Pr. In the above equation, H and G(P?) are the one— and two— point one loop functions?
respectively:

dPq wgt+wp_ 1
G(P?) :/ 7 , (6.13)
(2m)3 2wWgWp_g (PO —wg — wﬁfqa)(PO + wg+ wﬁfqﬂ)
B7 1
H :/ 6.14
(27)% 20y (6.14)

and P is the four-momentum entering the loop so that G(s), G(t) and G(u) in Eq. (6.12) arise
from the s—, — and u—channel loops (G.13) with P? = s, t and u respectively. In dimensional
regularization and after the divergences and scale dependencies are absorbed in the LECs [1§],
the loop functions then read

GR(P2) —

6.2 <—1 + U(Pz)logl—l_a(P)> : (6.15)

1 —o(P?)

2Recall that these functions were used in Chapter [f] with the notation Ay and By. The notation in this
Chapter for these functions is the one used in the original paper, [D].
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with o(P?) = /1 —4m2/P2. On the other hand, because of the regularization approach

followed, we have Hf = 0. The partial waves T} are then obtained by projecting the I = 0 or
I = 2 amplitude A, on angular momentum J.

The chiral amplitude in finite volume is calculated replacing Ty(s) with Ty(s), which is the
S-wave projection of the I = 0 or I = 2 7w scattering amplitude in finite volume A4(8, t,u).
The latter is obtained from Eq. (6I2)), but replacing the loop functions in Egs. (6.13) and
([EI4) with their finite volume counterparts, GE and HE. Following again the procedure
n [444] (see also the discussion at the end of subsection [6.2.1]), we obtain the finite volume
loop functions from the infinite volume ones as

- gmax d3 pod
R _ R/ p2 ; q -
G(P) =GP+ Tim_| 75 Y1@P- [ gEl@n). (619
q<gmax
_ 1 gmax dgq_’ 1
R = HR 4 i -/ 6.17
q<gmax
where I(q, P) is the integrand of Eq. (613]),
Wg+ Wp_z 1
I(G, P) = 57— (6.18)

2WgWp_g (P —ws—wp_ )(P0+wq+wp q)

Note that the box breaks Lorentz symmetry and fixes the reference frame to the center of

mass frame of the initial pions. For this reason we have used P as the argument of G® in
Eq. (6.16) instead of P2

In the case of the s—channel loop, where P = 0 so that (P°)2 = P2 = s, we obtain GF(P)
as in Eqs. ([68) and (67), but with GP replaced by GF. Note that GF(P) in this case only
depends on P2 = s. For the t—channel loop, where P® = 0 so that P2 = —P2 = ¢, the
integrand 1(g, P) reduces to

. 1
I§P) = (6.19)

2wqwp_g (wWg+ wp_g)’

but now, contrary to the s—channel case, G(P) not only depends on P? = ¢, but also on
P and its relative orientation respect to the cubic lattice of allowed momenta in the box,
{g@;}. In the end this translates into a dependence on the scattering angle 6, already present
int = —2(s/4—m2)(1 — cosf), but also on the azimuthal angle ¢, and this also happens
with the u—channel case. Thus, when projecting into S-wave, T'(s) = 1 [ d(cos6)A(s, cosb),
we should now also integrate on ¢, T'(s) = 1= [ d¢ [ d(cos0)A(s,cos 6, ). Finally, HE can
be evaluated using the Poisson resummation formula (see e.g. [452]) and taking into account
that Hf = 0 we obtain

—~ m 1
Hit = T — K, (|i|mL), 6.20
42, O;énZe:ZZi | | 1(’ ’ ) ( )

where K is the Bessel function.

The s—channel loops, though treated in different ways by the IAM and N/D methods,
are responsible for the right unitarity cut, and contain the most important L dependence
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of the amplitude. This L dependence coming from the unitarity cut is the one used by the
Liischer /chiral unitary approach method to obtain the phase-shift from the energy levels in
a finite volume. However, the t— and u—channel loops (which give rise to the LHC when
projecting into partial waves) and the tadpoles, give an extra dependence on L (polarization
corrections in the terminology of Ref. [I57]) that is neglected in the Liischer/chiral unitary
approach method since it is exponentially suppressed.

6.2.3 The IAM approach

We consider now the elastic IAM [24-28], which we briefly review in this section and describe
how to extend it to consider scattering in a finite box.

The elastic IAM makes use of elastic unitarity and Chiral Perturbation Theory (ChPT) [1§]
to evaluate a dispersion relation for the inverse of the m7 scattering partial wave of definite
isospin I and angular momentum J, 777 (in the following we drop the superscript I.J to
simplify notation). The advantage of using the inverse of a partial wave stems from the fact
that its imaginary part is fixed by unitarity,

o

— . 6.21
167 ( )

g 2 ~1

Im 7T = 167T‘T‘ = ImT "=
Thus, the RHC integral can be evaluated exactly in the elastic regime and the obtained
partial wave satisfies unitarity exactly. The partial wave amplitudes calculated in ChPT
cannot satisfy unitarity exactly since they are obtained in a perturbative expansion T =
Ty + Ty + Op°), where Ty = O(p?) and Ty = O(p*) are the Leading Order and Next—to—
Leading Order contributions in the chiral expansion of 7', respectively. However, unitarity is
satisfied in a perturbative way,

g

Im 7T, = Im 7T, =—
m Lo O, m 1Ly 167

T, . (6.22)
These equations allow us to evaluate the dispersion relation and obtain a compact form for
the partial wave as we show below.

We write then a dispersion relation for an auxiliary function F' = T%/T, whose analytic
structure consists on a RHC (RC') from 4m? to oo, a LHC from —oo to 0, and possible poles
coming from zeros of T,

3 , Im F(s)

F(s) = F(0) + F'(0)s + LF"(0)s* + =

LC(F P 2
ot ey T LCE) PO (6.23)

where we have performed three subtractions to ensure convergence. In the above equation
LC(F) stands for the integral over the left-hand cut, and PC stands for possible poles con-
tributions, which are present in the scalar waves due to the Adler zeros. Using Eqs. (6.21])
and (6.22]) we can evaluate ezactly in the RHC integral Im F' = —Im T}, and obtain for the
RHC RC(F) = —RC(Ty). The subtraction constants can be evaluated with ChPT since
they only involve amplitudes or their derivatives evaluated at s = 0, F(0) ~ T5(0) — T4(0),
F'(0) ~ T3(0) — T3(0), F"(0) ~ —=T,(0). The LHC can be considered to be dominated by
its low energy part, since we have three subtractions, and it is also dumped by an extra
1/(s" — s) when considering physical values of s. Then, we evaluate it using ChPT to obtain
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LC(F) ~ —LC(Ty). The pole contribution is formally O(p®) and we neglect it (this causes
some technical problems in the subthreshold region around the Adler zeros which can be easily
solved, but they do not affect the description of scattering or resonances, for details see [282]).
Taking into account all the above considerations we arrive at

73(s)
T(s)

~ T5(0) + T3(0)s — T4(0) — T;(0)s — 3T5(0)s? (6.24)

- RC(T4) - LC(T4) == TQ(S) - T4(S) y

where in the last step we have taken into account that T5(s) is just a first order polynomial
in s so that Ta(s) = T5(0) + 75(0)s, and that the remaining piece in the middle member of
Eq. (624) is a dispersion relation for —Ty(s). Then one obtains the simple TAM formula,

TIAM 73 6.95
T —Ty (6:25)
This formula can be systematically extended to higher orders by evaluating the subtraction
constants and the LHC in the dispersion relation to higher orders. Note that the full one-loop
ChPT calculation is used, so the IAM partial waves depend on the chiral Low Energy Con-
stants (LECs), that absorb the loop divergences through their renormalization and depend on
a renormalization scale . Of course, this i dependence is canceled out in physical observables.
In the case of w7 scattering there appear four LECs, denoted {7 (u), i = 1...4. These LECs
are not fixed from symmetry considerations and their value has to be determined from exper-
iment. For the ITAM calculations here we take the values used in [393]: 103] = —3.7 £+ 0.2,
10305 = 5.0 £ 0.4, 1035 = 0.8 £ 3.8, 103]; = 6.2+ 5.7, at pu = 770 MeV, which give a good
description of phase-shift data.

Now, the energy levels in the box are obtained from the poles in the scattering partial wave,
Eq. (625), or equivalently, the zeros of Th(s)—T4(s). From these energy levels at several values
of L one can re-obtain the phase-shifts for the infinite volume with the Liischer/chiral unitary
approach method, and compare them with the exact infinite volume result to quantify the
effect of neglecting the L dependence coming from the crossed channel loops and tadpoles.

6.2.4 The N/D method

The case presented in Subsec. can be put in the more general framework of the N/D
method. This was already explained in Sec. [Z7], and it was applied later in different chapters.
In particular, the case of 77 scattering at NLO was treated in detail in Sec. 5.3l We recall the
main results therein, with the proper sign and notation of this Chapter (recall the different
normalization of the amplitude in this Chapter). We have:

Va(s) = Ta(s) ,
Vi(s) = Tu(s) — To(s)*GP(s) . (6.26)

Since it will be useful some lines below, we also recall here that there is no RHC in the chiral
amplitude Vj, because, as seen in Eq. (5.8),

Tj (s) = Ta(s)°G7(s) = Ta(s)*(G"(s) — G"(s)) , (6.27)
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where we have adopted the sign conventions of this Chapter.

For the free parameters (I; = 1,...,4 and a subtraction constant a) we take the values of
the fit in Chapter Bl Sec. £.3], collected in Table (.11

In order to study the finite volume scattering, the same replacements as in the IAM and
BS methods must be done. In particular, in the kernel V(s) — V(s) no change is needed in
Va(s), whereas V(s) is changed to Vj(s),

174(3) = ﬁ(s) — Tg(s)QC:'D(s) . (6.28)

Notice that, in view of Eq. (6.21), there is no finite volume effect in the s-channel contributions
to the kernel V(s). The volume dependence enters then in the kernel through the - and u-
channel loop functions and tadpoles evaluated as discussed in Sec. The s—channel
volume dependence enters then at the denominator of the amplitude:

T(s) = V(s)
1—-V{(s)GP(s)

(6.29)

through the function GP(s) in its version of Eq. (6.6), which gives the most important con-
tribution to the aforementioned dependence, as in the case of the IAM method. The change
in the values of the subtraction constant a with L is not considered because this is accounted

for by employing GD(S), Eq. (6.6]).

6.3 Results

As already explained, the main aim of the present work is to quantify the effect of the de-
pendence of the different potentials considered on the size of the box, L. Hence, we are going
to compare the L dependence of the N/D and the IAM methods with that of the BS, which
kernel does not depend on L. We discuss first the results for the I = 0 case and later those
of the I = 2 case.

First we show in Fig. (left panel) the results for the 77 phase-shifts in S-wave and
I = 0 for the three different models in infinite volume. Note that in the present work we
are not interested in a detailed description of scattering data, but on the effects of ignoring
the exponentially suppressed dependence on the box size when using Liischer’s or the chiral
unitary approach to obtain the scattering phase-shifts from the energy levels in finite volume.
The TAM and N/D results (solid and dashed lines, respectively) are the fits explained in
the previous section and the BS (dot-dashed line) is fitted in this work to the experimental
data [284H286,289/,290364] shown in the figure up to 800 MeV. The TAM and N/D approaches
are essentially equivalent at low energies but differ slightly as the energy increases. Thus the
difference between the IAM and N/D phase shifts is mainly due to the different set of data
used in the fit and it also gives an idea of the theoretical uncertainty. The BS approach
produces a curve in between the other two, closer to the N/D at low energies and to the ITAM
at higher energies. In any case, the different models are compatible within the experimental
uncertainties. Let us note that what matters for the discussions in the present work is not
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Figure 6.1: S-wave, mm — 7w phase-shifts for the three different mod-

els considered: solid, dashed and dot-dashed lines correspond to IAM, N/D

and BS, respectively. Left: I = 0 case. The experimental data are from

Refs. [284H280,289) 290, 364]. Right: I = 2 case. The experimental data are

from Refs. [371,372].

the actual values of the phase-shifts at infinite volume but the relative change when going to
the finite box.

In Fig. (left panel) we show the energy levels for different values of the cubic box
size, L, for the different models which have been obtained from the poles of the scattering
amplitudes in the finite box as explained in the previous section. The dotted lines represent
the free w7 energies in the box, while the other lines correspond to IAM, N/D and BS as in
Fig. 611

The differences are very small for the largest values of L shown in the plot but are more
important for smaller L, specially between the N/D and IAM methods. The BS approach
produces a curve in between the other two, closer to the N/D. The IAM and BS are more
similar for larger values of energies as can also be seen in the phase shifts, Fig. 6.1l As an
example of small L, we note that for L = 1.7m_! the difference between N/D and TAM is
about 30 MeV.

An actual lattice calculation would provide some points over analogous trajectories in
the E vs. L plots. The “inverse problem” is the problem of getting the actual scattering
amplitudes (and hence by-product magnitudes like phase-shifts) in the infinite space from
data produced by lattice QCD consisting of points in plots of E vs. L over the energy levels in
the box. For points in these levels the amplitude in the infinite volume can be extracted from
the generalization of the Liischer formula, as explained in the previous sections, see Eq. (6.9]).
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Figure 6.3: Solution of the inverse problem for the IAM and N/D methods. The
BS result is the same as in the infinite volume case and thus we do not show it in
the figure. Left: I = 0. Right: I = 2. We show the results obtained only from
level 2 (I = 0) or levels 1 and 2 (I = 2) of Fig. since the results with levels
above these ones almost overlap with the infinite volume line. For the meaning of

each line consult the inset in the figure.
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In Fig. (left panel) we show the phase-shifts obtained for the different methods imple-
menting the “inverse problem” analysis (or “reconstructed” results) with Eq. (69) and from
the E vs. L plot. For the BS model the results are independent of the level used for a given
E, since the potential does not depend on L, and they are equal to the infinite volume result.
Therefore we do not show the BS result since it is the same as in Fig. [6.1l For the IAM and
N/D methods the results depend on the level chosen for a given FE since the potentials depend
on L as explained in the previous sections. Actually, for levels above the second one of Fig.
the results are almost equal to the infinite volume results and hence we do not show them
in the figure since they would almost overlap with the infinite volume line. This is because,
as seen in Fig. [6.2] for the higher energies these levels imply large values of L. Indeed, for
energies below 800 MeV this implies values of L higher than about 3m_!. For the results
obtained with level 2, the phase-shifts differ in about 5% of the result in the infinite volume
at the higher energies considered. For E ~ 800 MeV this implies L values slightly smaller
than 2m_', as can be seen in Fig. G2l Tt is worth noting that the effect of the dependence
on L of the models with LHC go in the same direction and are of similar size in spite of the
different models used. This gives us confidence that the actual L dependence of the LHC cut
is properly considered and the real effect of any realistic model would be of the order obtained
in the present work. An analysis with Eq. (€9) applied to actual lattice results of E versus L
levels would neglect the possible L dependence of the potential and hence the errors from the
L dependence of the LHC would be of the order of the differences shown in the figure. Note
also that the L dependence of the results are smaller than the initial difference between the
N/D and TAM themselves and also lower than the experimental uncertainties. Therefore, an
actual lattice calculation should care about this L dependence only if it aims at getting errors
smaller than the effect obtained in the present work.

Let us now discuss the results for I = 2. In the right panels of Figs. 6.1 and we
show for the I = 2 case the same results that were shown in the left panels for I = 0. In
Fig. [6.1] we see that the TAM and N/D methods provide very similar results and compatible
with the experimental data while the BS approach gets worse phase-shifts. This is because in
the IAM and N/D the LHC is included perturbatively order by order, unlike the BS model,
and in this channel the LHC cut is more relevant. In Fig. (right panel) we show the energy
levels in the box for this channel.

Now both TAM and N/D provide similar results. In Fig. (right panel) we show the
solution of the inverse problem for the phase-shifts. We see that the N/D method provides a
higher L dependence for large values of the energies, unlike IAM. At 800 MeV the difference
is about 10% for the N/D and 2% for the IAM. The difference in the phase-shifts between the
two approaches is large in spite of the energy levels being very similar. This is because the
energy levels are very close to the free case, unlike the I = 0 case, and then the G function is
very steep. This makes that small variations in E provide large variations in G.

In usual inverse problem analysis from actual lattice results, it is common to use the
Liischer formula [I56,157] which, as explained in section [6.2.1], is an approximation to that
used in the present work, Eq. (69). Therefore it is worth studying what is the error made
in the reconstructed phase-shifts if one uses the Liischer equation instead of the exact one.
In Ref. [I58] it was shown that the Liischer method can be reproduced if in Eq. (67) one
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Figure 6.4: Difference between the exact inverse method formula, Eq. (69]), and
the approximated Luscher formula. The approach corresponding to each line is
given in the inset in the figure.

substitutes
I(p.s) = — L (6.30)
b,s) = . .
w(p) s —4dw(p)?
by
1 1
I(p,s) = —. 6.31
(8:9) 2v/s pn — D (6:51)

2
where pox = £4/1 — 2=,

In Fig. [6.4 we show the effect in the I = 0 phase-shifts of using the pure Liischer method,
Eq. (6310, instead of the exact one, Eq. ([630). (For the I = 2 case the effect is small and
thus we do not show any plot.) The difference is significant only for phase-shifts extracted
from level 2 of the left panel of Fig. since the difference is only relevant for small values
of L. Therefore we only plot results extracted from level 2. The difference between the exact
method and the Liischer one is similar for all the three different models for the potential. The
size of the difference is similar to the one from the L dependence of the potential discussed
above, and goes in the same direction, so that the effect is magnified.



187 6.4 Summary and conclusions

6.4 Summary and conclusions

In this Chapter we have faced the problem of the presence of the LHC of the w7 amplitude
for the evaluation of phase-shifts from lattice QCD results using Liischer’s approach. The
nonperturbative approach, the study for energies different than threshold and the study of
the I = 0 w7 system are done in the present work for the first time in the literature. The t—
and u—channel terms can be taken into account in a field theoretical approach by means of the
[IAM, or NLO N/D methods, leading to good reproductions of the scattering data. Results
from lattice QCD should contain all the dynamics and, as a consequence, should account for
these effects too. However, the method to go from the discrete energy level in a box from
lattice simulations to the phase shifts for scattering in the infinite volume case requires the use
of Liischer’s approach, or its improved version of [I58], both of which rely upon the existence
of a volume independent potential. Yet, the terms contributing to the LHC, containing loops
in the t— and u—channels, are explicitly volume dependent. In this work we have investigated
the errors induced by making use of [156] or [I58] in the reproduction of phase-shifts from the
energy spectrum of lattice calculations in the finite box by evaluating the volume dependence
of the 7m scattering amplitude in one-loop ChPT. The latter is then implemented in non-
perturbative methods to extract the final partial wave amplitudes. We have found that in the
case of 7w scattering in S-wave, both for I = 0 and I = 2, the effect of the L dependence
in the potential is smaller than the typical errors from the experimental phase-shifts or the
differences between the three models that we have used, the IAM, N/D NLO and BS LO.
This is good news for lattice calculations since one of the warnings not to go to small values of
L was the possible L dependence of the potential which in some cases, like in the present one,
we know that exists. We found that it is quite safe to ignore this dependence for L > 2.5m !,
and even with values of L around 1.5 — 2m_" the errors induced are of the order of 5%.

On the other hand we have quantified the error made by using the pure Liischer formula
instead of the exact one, Eq. (69). The difference in the phase-shifts between this approxi-
mation and that of Eq. (6.9) has a similar size as the difference between the latter and the
infinite volume case, and goes in the same direction, so that the effect is magnified.

All these findings, together with the use of the approach of Ref. [I58] that also eliminates
L depended terms (exponentially suppressed) from the Liischer’s approach, can encourage the
performance of lattice calculations with smaller size boxes with the consequent economy in
the computing time.
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7.1 Introduction

The Nucleon-Nucleon (NN) interaction is a basic process whose understanding is necessary
for the study of nuclear structure, nuclear reactions, nuclear matter, neutron stars, etc [159-
[162,183,184]. Since the early nineties [163-165] the low energy Effective Field Theory of
QCD, Chiral Perturbation Theory (ChPT) [I8,19], has been applied to NN scattering in a
large number of studies, see e.g. [163H169,1454H465]. Further references can be found in the
above reviews. A sophisticated stage has been reached where the NN potential is calculated
in ChPT up to N3LO [458,1462).

However, as the NN interaction is nonperturbative, the chiral NN potential must be

189
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iterated. It was proposed by Weinberg in his seminal papers [163,[164] to solve a Lippmann-
Schwinger equation in terms of the calculated chiral NN potential, which can be improved
order by order. Since the chiral potential is singular at the origin a regularization method,
typically a three-momentum cut-off A [166,167/458-460,/462], should be introduced for solving
the Lippmann-Schwinger equation.

Despite the great phenomenological success achieved by the NN chiral potentials in de-
scribing NN scattering data [458,[462], it was shown in the literature [I70-176] that the chiral
counterterms introduced in the NN potential following naive dimensional analyses are not
enough to renormalize the resulting NN scattering amplitude. In Ref. [I70] one countert-
erm is promoted from higher to lower orders in the partial waves 3Py, 3P, and *D,. As a
consequence, stable results are achieved, independent of cut-off in the limit A — oo, when
the LO one-pion exchange (OPE) potential is employed. Similar conclusions are drawn in
Ref. [470]. However, this promotion implies a violation of the standard ChPT counting and of
the low energy theorems relating the parameters in the effective range expansion. The works
in Refs. [177,[180], following the ideas of Refs. [I81[182], stress that the cut-off A should not
be taken beyond the breakdown scale of the EFT, typically around 1 GeV. If no higher-order
counterterms are introduced when the cut-off is taken to infinity the mixing between the S
and D waves in the 3S;-3D; system vanishes and one has a strong cut-off dependence of the
tensor force from the non-local OPE potential so that it vanishes for A — oo [466]. One
should be aware that when A — oo a more involved counting emerges [171178[179,[466-468].
The extension of these ideas to higher orders in the chiral potential is not straightforward
and cannot avoid cut-off dependence up to now [469,[470]. On the other hand, the application
of Weinberg’s scheme has given rise to a great phenomenological success in the reproduction
of NN phase shifts if the cut-off is fine-tuned in a region around 600 MeV, not beyond the
breakdown scale of the effective field theory (EFT) (see e.g. [456-H460L462-464]). Of course,
the cut-off dependence is not removed then.

Partial wave amplitudes with larger orbital angular momentum ¢, ¢ > 3, can be calculated
in Born approximation with sufficient accuracy [178,179,454,1467,[468]. Then, they do not
pose a problem for renormalization, making use of standard perturbative renormalization. It
is also argued in the same Ref. [I70] that higher orders terms in the chiral NN potential
could be treated perturbatively. Ref. [I70] was extended along these lines to subleading two-
pion exchange (TPE) in Ref. [469]. The promotion of higher orders to lower ones due to
nonperturbative renormalizability is studied in detail in Ref. [I78|[179,467,468] by making
use of the regularization group equations (see also Refs. [I7IHI73] for a coordinate space
renormalization by imposing appropriate boundary conditions).

In this Chapter, we report on our papers [EL[E]. We shall employ the N/D method [3§]
for studying NN interactions, for both uncoupled and coupled! partial waves. The N/D
method was exposed for the case of meson-meson partial waves in Sec. 2.7l We just recall
here that it is based in the splitting of the left-hand cut (LHC) and the right-hand cut (RHC)
in two different functions, N and D, respectively. A linear integral equation then results for

!Some words regarding our terminology are in order. NN spin-triplet (S = 1) partial waves can mix
(except for the Py, see Appendix [Fl) Then, we call them coupled or uncoupled, depending on the case.
The term inelastic, as opposed to elastic, refers in NN interactions terminology to processes in which other
particles are produced, e.g., NN — NNz (which is the lowest threshold inelastic process).
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determining the N N partial waves. The input is given by the discontinuity of the partial wave
along the LHC due to multi-pion exchanges, the lightest one being just OPE. The well known
behavior of a partial wave near threshold, that vanishes like |p|*, with |p| the center of mass
(CM) three-momentum and ¢ the orbital angular momentum, is not automatically fulfilled for
¢ > 2 in the N/D method [329,471],472]. As first shown in Ref. [E], one can accomplish the
right threshold behavior solving the N/D method in the presence of £ — 1 constraints. These
are satisfied by introducing ¢ — 1 Castillejo-Dalitz-Dyson (CDD) poles [I85], as we discuss
below.

In the past Refs. [A73H477] applied the N/D method to study quantitatively NN scatter-
ing. Ref. [473] was restricted to the S-waves and took only OPE as input along the LHC.
Refs. [474,475] included other heavier mesons as source for the discontinuity along the LHC in
line with the meson theory of nuclear forces, so popular at those days. A more modern work,
Ref. [476], modeled the LHC discontinuity by OPE and one or two ad-hoc poles. We stress
that we present here a novel way to introduce the N/D method in harmony with the modern
perspective of EFT. In this way, we show that one can calculate systematically within ChPT,
according to the standard chiral counting, the discontinuity along the LHC that is the basic
input for the N/D method. This allows one to systematically improve the results order by
order, which is not the case by applying previous schemes [477]. In addition, the threshold
behavior of partial waves with orbital angular momentum (¢ > 2) is satisfied within our ap-
proach by including CDD poles, as we show below. However, in the previous works [474,[475]
the correct threshold behavior was achieved in an ad-hoc way by including a fictitious pole
below threshold, with the subsequent dependence of the results on its location that was fitted
to data. Furthermore, in our results we always respect unitarity (for both the coupled and
the uncoupled waves cases), which was not the case in Refs. [A73-476].

After this Introduction we discuss the N/D method for calculating the NN uncoupled
partial waves in Sec. [[L2l Special attention is paid to derive the constraints needed to meet
the threshold behavior for a partial wave with ¢ > 2 and how to fulfill them. The results
for the uncoupled partial waves are discussed in Sec. [[L3 We present the generalization
of the method to the case of coupled channels in Sec. [[.4] where the corresponding three
linear integral equations needed for each set of coupled partial waves are derived. The results
obtained with this formalism are given in Sec. [.5. We consider in some detail the important
case of the 3S;,-2D; waves, Subsecs. [[[5.1HT.5.2, whereas the higher coupled partial waves are
treated in Subsec. [[L.5.3] Conclusions are given in Sec. [[.60l The OPE amplitudes used in this
Chapter are contained in Appendix [l Appendix [Gl contains the technical way used to solve
numerically the integral equations. In Appendix [H] the cancellation of a potential divergence
in a function involved in our equations is treated.

7.2 The N/D method for NN uncoupled partial waves

7.2.1 NN partial waves cuts

We consider the nucleon-nucleon (NN) scattering

N(p1; 0101)N(p2; 0202) — N(pi; 0100 N(py; 05as)
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whose scattering amplitude in the center-of-mass frame (CM) is indicated by
(p', o0 ohas| Tyl |p|Z, o1ao90s)

Here the initial momentum p = |p|z is along the z-axis and the final one corresponds to p’.
Its decomposition in partial waves is discussed in detail in Appendix A of Ref. [162], to which
we refer for further details. We denote a NN partial wave by Tyrs(¢', ¢; |p|*) being ¢ the final
orbital angular momentum and ¢ the initial one, while J, S and I stand for the total angular
momentum, spin and isospin of the reaction, respectively:

Y0 (2
Tis(C, 4| pl?) = 2;:_)1 > (010hs5]515259) (010253]51529) (08353|05T ) (m sy s5|¢' S J)
X (0/10/22'3|7'17'QI)(a1a2i3|7'17'2])/dﬁ’ (0, 0o oba | Ty||p|2, o1 0000) Yo (P)* (7.1)

In this equation, the Clebsch-Gordan coefficients for the couplings of two angular momentum
J1, j2 to js is indicated by (mimaoms|jij2js), with my, mo and ms the corresponding third
components.

A NN partial wave amplitude has two cuts [224], RHC for 0 < p? < oo, due to unitarity,
and the LHC for —oco < p? < L with L = —m?2/4, due the crossed channel dynamics. Both
cuts are depicted in Fig. [[.Il The upper limit for the latter is given by the OPE, as the pion
is the lightest particle that can be exchanged in the ¢- and u-channels. Because of unitarity,
a partial wave amplitude satisfies in the CM frame above the elastic threshold and below the
pion production one, the relation

ImTJ[S(Elag; |p|2)_1 = - 6ﬁ’f 3 (72)

with m the mass of the nucleon. In our normalization, the S-matrix is given by:

m|p|
1
T

Sirs =1+ Tirs -

As shown in Ref. [I62] one can calculate perturbatively in ChPT Im7);s along the LHC,
since this imaginary part is due to multi-pion exchanges. The infrared enhancements asso-
ciated with the RHC, see Fig. [[.2] are absent in the discontinuity along the LHC because,
according to Cutkosky’s theorem [478][479], it implies to put on-shell pionic lines. Within
loops the pion poles are picked up making that the energy along nucleon propagators now
is of O(p), instead of a nucleon kinetic energy. In this way, the order of the diagram rises
compared to that of the reducible parts and it becomes a perturbation. At leading order (LO),
according to the counting developed in Refs. [162[183] (that for two nucleon irreducible dia-
grams coincides with the standard chiral counting [I63HI65]), the only contribution to Im7.5
along the LHC is OPE.

7.2.2 S- and P-waves (£ =0,1)

In the following we take the uncoupled channel case for which ¢ = ¢ = J (except for the
3Py.) An scheme of the different waves that are coupled or not in NN scattering can be found
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Figure 7.1: The thick lines correspond to the RHC and LHC, from top to bottom.
In the same figure the integration contours Cy and Cj; for evaluating D jyg(A) and
Njs(A), respectively, are shown. One has to take the limit e — 0F.

Figure 7.2: RHC enhancements. Left: reducible diagram. No pion lines are

put on-shell. The intermediate states are NN, so that typical energies go like

é X mTN > %, and this gives an enhancement of this diagram on the RHC. Right:

irreducible diagram. Pionic lines are put on-shell. The intermediate states are
NN, so that typical energies are ~ %, thus no enhancement is present.

in Appendix [Fl The N/D method [3§], as explained in Subsec. [Z7] rests on the separation
between the RHC and LHC. In this way, a partial wave T5(A) is written as:?

Nyis(A)

=D (7.3)

Tres(A)

The function Nz5(A) has only LHC while D j,5(A) has only RHC. Taking into account elastic
unitarity, Eq. (Z.2]), one can write:

mv A
ImDJg5<A) = _NJ[S(A>? , A>0. (74)
Along the LHC, from Eq. (7.3]), one also has:
ImNj5(A) = Dyps (A) ImTyp5(A) , A< —m2/4 . (7.5)

We first write down a dispersion relation (DR) for D s5(A) and Nj5(A) taking as integration
contours C; and Cj; in Fig. [l respectively. The integration along the circle at infinity

2We replace the subscript I by ¢ when denoting a partial wave. The former can be deduced from £ and S,
because of the rule £+ S5+ 1 =odd and I =0 or 1.
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vanishes, if necessary, by taking the sufficient number of subtractions. For the case of a
once-subtracted DR the following expressions result:

D) =1~ 4L /Oé?(;;%?jjggs%zg)’ o
Nyes(A) = Nus(D) + =2 fare éﬁ““ﬁ?ifﬁ“ﬁ; . (.7

Here we have indicated by p(A) the non-relativistic phase space, for A > 0:
p(A) = mVA/4r (7.8)
and, for A < L = —m?2 /4, whe have defined:
Ajes(A) = TmTys(A) (7.9)

For physical scattering, A — A + ie . The subtraction constant in D j;5(A) has been fixed
to 1 because, according to Eq. (Z3), only the ratio between Njis(A) and D jps(A) matters
for determining Tjy5(A). In this way one has the freedom to fix the value of D ,5(A) at one
point. The key difference with Sec. 2.7 is that here we do not neglect the LHC and we do not
set N(A) =1.

Asymptotically, for p? — —oo, OPE tends to constant, so that, according to the Sugawara
and Kanazawa theorem [329/[480] one subtraction is necessary for the DR of Njg(A), even
though A jys(A) — 1/A in the case of OPE. On general grounds, a partial wave amplitude is
bound by a constant because of unitarity for A — +o0o and the same theorem then requires
that at least one subtraction is necessary.

An integral equation for D jys(A) results by including the DR for Njs(A), Eq. (Z1), into
that of DL][S(A), Eq (m

Dyis(4) = 1~ Nyus(D) ; ° /0213102 (¢® — fl()i) - D)

A—D [+ AJ@S 2)D yes (k)
- ——— [d¢’ : 7.10
2 /0 1 2—q¢?>—ie)(k* - D) (7.10)
We now introduce the function g(A, C) defined as:
L e p(a*)
= — [ dg¢® 7.11
s i
In terms of this function, Eq. (.I0) can be written as:
A-D A yis(K*) D jos (K2
Dyes(4) = 1= (A — D)Nys(D)g(4, D) + pst0Pas ) g 0y . (r.12)

This is a linear integral equation for D j;5(A). Its linearity is an important fact because it
allows one to take more subtractions and still being amenable for an iterative solution. We
take as a convenient subtraction point D = 0. In the case of the S-waves, this relates the
subtraction constant, Nj,s(0), to the corresponding scattering length, a,, through:

dma,

Nyes(0) = — (7.13)

m
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The only uncoupled S-wave is the 1Sy, and the scattering length for this wave is a;, = —23.758+
0.04 fm. Finally, we can write an integral equation for the D j;s function for an S-wave as:

Dyes(A) =1 — AN us(0)g(A, 0) + (ﬁﬁAM“H¥L“%6¢A¢% (7.14)

This is an integral equation for Dj,5(A) with A on the LHC, and it can be solved with
the method exposed in Appendix Once D jys(A) is solved from Eq. (TI4]) one can then
calculate Njs5(A) by inserting the former into Eq. (7)), with D = 0, which now reads:

A YD s (k?
Nyes(A) = Nyes(0 /dk‘2 M;:Q 12 Jif)( ) . (7.15)

For a P-wave, the same equations hold with Nj5(0) = 0 because a P-wave amplitude
vanishes at threshold as |p|?, and D j,5(0) = 1.

7.2.3 Higher waves (£ > 2)

Egs. (CI4) and (CI5) can be readily applied to S- and P-wave scattering. However, these
equations do not guarantee that the resulting partial wave amplitude has the correct behavior
as A’ for A — 0, with ¢ > 2, because of the full implementation of rescattering in Eq. (Z12).
At LO A s = Al gives rise to OPE through the dispersive integral:

A Alr (k2
T (A) = 1) + 5 [k S0 (7.16)
with T'}75(0) a subtraction constant. As discussed above, since the OPE amplitude [162] tends
to constant for A — oo, the Sugawara and Kanazawa theorem requires that one subtraction
is needed. The fact that for £ > 0 a partial wave vanishes as A’ for A — 0 makes that
T}75(0) = 0 when ¢ > 0. This behavior also implies that Al7¢ must fulfill the set of ¢ — 1
sum-rules (constraints):

Alr (k2)
2 JéS _
ﬁm o ) o, (7.17)

with A =2,3,...,fand ¢ > 2. These constraints are obtained straightforwardly by performing
the power expansion of Eq. (Z.I6]) and imposing that T,5(A) — A for A — 0.

Let us now consider again Eq. (T7). As Dj5(A) — 1 for A — 0 then Tjps5(A) — Nyes(A)
in this limit. The expression for Ny5(A), Eq. (1), is similar to Eq. (ZI6). Indeed, they
would be the same equation if Dj,5(A) were replaced by 1 in Eq. (Z7) (and with A j,(k?)
evaluated at LO). As a result, Njs(A), determined by implementing Eq. (.12]) into Eq. (1),
does not vanish as A for A — 0, because of the departure from 1 of D jss(A).

It is then convenient to proceed in such a way that the right behavior of T)5(A) around
threshold is incorporated explicitly. For that purpose we consider the N/D equation for
Tjes(A) /A" instead of that for Tys(A), Eq. (Z3). For that purpose, we consider the N/D
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equation for Tys(A)/A" instead of Tyrs(A). The quotient Tys(A)/A* has no pole at A = 0
because Tjys(A)— A" when A — 0. Notice also that because of unitarity Tys(A)/A* — 0 for
A — +00 so that, according to the Sugawara and Kanazawa theorem [329/480], no subtraction
are needed for the DR of Nys5(A) for £ > 0. EFT results do not always share the right high
energy behavior so that subtractions will be certainly necessary for a higher order calculation
of Ays(A). At LO this is not the case because A7, — 1/A for A — co. We then have
(¢ >0):

NJ[S(A)
Trs(A) = A2 7.18
st( ) DJZS(A) ( )
A s () D s ()
5 A Jes Jes
NJKS(A) T Eiolz ]{326(]{32 A) ) (719)
DN
D js(A ﬁ 24 JZS( )
AJES DJZS )g?=b
— 1+ 2[R /d 2 2
+ / & @ (7.20)

where the subtraction has been taken at threshold.

The previous equation for D j,5(A) is not satisfactory for £ > 2 because the last integration
onther.h.s. of Eq. (Z20) is divergent. In this way, by applying the N/D method to Tly.s(A) /A
we have changed the problem of the bad behavior of Tj,s(A) around threshold into a high
energy problem in the form of divergent integrals. To end up with a convergent DR for
Djis(A) in Eq. (C20) it is necessary that Njs(A) vanishes at least as:

Nys(A) — 1/A" for A — oo . (7.21)

However, Njs5(A) from the DR in Eq. (Z.I9) vanishes only as 1/A, independently of ¢. The
set of constraints needed to satisfy the asymoptic behavior in Eq. (.ZI]) can be deduced by
performing in Eq. (ZI9]) a high energy expansion of Nj,s(A) in powers of 1/A. It results in:

deg A os(k*)D yus(K?)
2\

with A = 2,3,...,¢ and ¢ > 2. These sum rules generalize the ones fulfilled by A4 (A) in
Eq. (CI7).°

=0, (7.22)

The usefulness of the ¢ — 1 restrictions in Eq. (T.22]) can be well appreciated by rewriting

Njs(A) in Eq. (Z19) as:

1 =2 2AJ@5(/{32)DJ55(1€2) 1 QAJZS(kz)DJZS(kQ)
Nyes(A) = —— Z Am+1 /dk 2(6—m) + T A1 dolz k2(k2 — A) :

(7.23)

The last term on the r.h.s. of the previous equation vanishes explicitly as 1/A’ for A — oo,
while the terms in the sum on m of the r.h.s. are zero once the constraints of Eq. (7.22)) are
fulfilled. In this way, inserting this expression for Nj,s(A) in Eq. (Z20)), one has:

(k*)D yos(K?)
kQ

3Eq. (TZ) is a consequence of Eq. (ZI8) because for A — +o0o, due to unitarity, the ratio T.5(A)/A*
tends to 1/A1/2 while D jy5(A) — AY/? (when only one subtraction is taken.)

A L, A
Does(A) =1+ [k 28 9AR) (7.21)
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and a convergent DR integral equation for D jsg(A) results.

It should be stressed that Eqs. (ZI]), (ZI9), and (Z.24]) lead to the same equations as
for the case of a P-wave amplitude, ¢ = 1, cf. Egs. (Z.3)), (ZI4) and (ZI5).* In the case of
a P-wave, no constraints are needed because the right behavior near threshold is obtained
straightforwardly. On the other hand, Eq. (Z24]) can be readily applied to S-wave by just
adding the term proportional to Nyss(0) present in Eq. (ZI4]). One subtraction should be
taken in Eq. (TI9) in order to transform it as Eq. (ZI5) for ¢ = 0.

Now, let us address the way to solve the N/D method, Eqgs. (ZI8)), (ZI9) and (T.24),
in the presence of the constraints Eq. (7.22). It is well known [224,329] that the function
D jis(A) in the N/D method is determined modulo the addition of Castillejo-Dalitz-Dyson
(CDD) poles [I85]. These are associated to specific dynamical features of the interaction
that arise independently of the LHC discontinuity, Ajss(A), and unitarity. Typically, the
addition of CDD poles corresponds to the existence of pre-existing resonances or to Adler
zeros [333841/43,44]. Both features are indeed absent in the low-energy NN scattering [186].
We exploit this ambiguity in the Dj,5(A) function and include ¢ — 1 CDDs at infinity so as

to satisfy Eq. (T.22):

A LN gus(k*) D es(k?) o Ay
Dys =1+ 2 /dk:2 gAY 2 . (7.25)
T J—o0 k2 ; Bz A— Bz

The last term in the r.h.s. corresponds to adding ¢ — 1 CDDs. The factor A/B; in front of

every CDD arises because the function D jg(A) is normalized to 1 for A = 0 and it has the

residue 7; at A = B;. The sum of the CDDs gives rise to a rational fraction Q,_1/P,_1, where

the subscript in @ and P indicate the degree of the polynomial in A. Since the only relevant

fact at low energies is the ratio v;/B? we take at the end the limit B; — oo with ~;/B? not

vanishing. The ¢ — 1 CDD poles are gathered at the same point B and we write:
<A A A"

2 BAB T (Aope

i=1

(7.26)

The coefficients ¢; are finally determined by requiring that the set of ¢ — 1 constraints in
Eq. ([22) are satisfied (this is done in Appendix[G]). The calculation is performed in terms of
finite but large B, and one has to check that the results are stable by taking B arbitrarily large.
At the level of low-energy NN scattering we have modified D j,5(A) by adding a polynomial
of degree ¢ — 1 with fixed coefficients.

We end with the following expressions

Nyes(A)
Tug(A) = ALS\A) 7.7
7es(A) Dyes(A) (7.27)
L Lo Ages(K?) D s (k)
NJZS(A) = ; Elokoz k2@<k2 IR A) ) (728)
A (L A ges (k) D ges(k?) AN e, Am
Dys(A) =1+ - /Elolf 12 9(A, k%) + A-By 1 (7.29)

4Tt is equivalent to have the explicit factor A in Tjss, Eq. (ZI8), or included in the definition of Njyg,

Eq. (CI3).
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and the constraints

L, A ys(k?)D s (K2
/dk2 ses( ]3%“5( ):o, AN=23,...,0,(>2. (7.30)

The previous formalism is also meaningful for the case in which Aj5(A) — C, with C a
constant, as A — co. We do not discuss in this work its extension to the case when A jy5(A)
diverges for A — 0o as we are interested now only in LO NN scattering. This generalization

of our formalism, left as a future work, will be discussed when considering higher orders in
the chiral expansion of A j5(A), which include the important TPE contributions [4811482].

Summarizing the results of this Section, we have presented a general approach based on
the N/D method to construct NN scattering partial waves amplitudes. For ¢ = 0,1 one
employs Eqgs. (CI4) and (ZI3), being the amplitude Ty, given by Eq. (Z3). For ¢ > 2,
one has Eqs. (T.27)-(7.29), that must be solved in the presence of the constraints given in
Eq. (Z30). In Appendix [G] the solution of this integral equation subject to the constraints is
studied.

7.3 Results for uncoupled partial waves

In this Section we present our results for the phase shifts, §, of the uncoupled partial waves
with ¢ < 5 obtained by applying the N/D method as explained in Sec. We compare them
with the Nijmegen partial wave analysis (PWA) [I86]. Our results, shown in Figs. [.3HT.5]
are represented with a black line, and the Nijmegen data with a red one, unless otherwise is
stated. We show the results up to |p| = 300 MeV. Notice that at |p| ~ 360 MeV the pion
production threshold opens and three-momenta are no longer small, |p| ~ \/mm,; > m..

In Fig. we show the lowest elastic waves, namely, 'Sy, 1P, 3P, and 3P,, whose am-
plitudes do not contain CDD poles because ¢ < 2. The agreement in P, and 3P, is quite
satisfactory. For the 'Sy it is known that a higher order chiral counterterm is needed to re-
produce the large effective range and thus improve the agreement with the data [I70]. In the
case of the 3P, wave, large corrections stem from TPE. Since this is a LO calculation, none
of these corrections is included. But we want to stress an important point. In this Chapter
what we present is a novel method to study the NN interactions. A regulator independent
(thus cut-off independent), unitary description of the NN interaction with the right analytical
properties, is reached. The inclusion of just OPE, that is, the LO in the calculation, is, of
course, just a first step. The agreement with the data can be improved by including higher
orders in the LHC.

For the 1S, and 3P, waves we have also tried with a relativistic calculation of the function
g(A, k?) Eq. (TII), since these are the waves for which the discrepancies with the data are
larger. In this approach, the p(¢?) function is replaced in the S-matrix and in the integrals
where it is involved by its relativistic counterpart:

(2)_\/?777’ _\/q_2m m
PE)="yr dm EFmE

The results with this relativistic phase-space improvement are represented by the dashed
(black) lines in Fig. Though the corrections are in the right direction, the discrepancies

— p(¢*)
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Figure 7.3: Comparison of the 1Sy, 3Py, ' P, and 3P; waves phase shifts with the
Nijmegen PWA. The solid black line represents the results of this work, while the
red one represents the Nijmegen PWA [186]. For the 1Sy and 3Py, the dashed black
line corresponds to the relativistic version of this work, see the text for details.

are still large. As expected, relativistic corrections are small in the energy range shown,
though noticeable for the ®P, partial wave for |p| = 200 MeV.

For higher waves one needs to include £ —1 CDD poles in order to fulfill the constraints in
Eq. (C30), and guarantee that partial waves have the right behavior at threshold vanishing
as |p|*. Our results are shown in Figs. [4] and [75, and good agreement is found, except for
the ' Dy wave. Our curves are quite similar compared with the LO results of Ref. [I70]. This
reference offers an approach with cut-off independent results with the NN potential (Vyy)
given by OPE. The largest discrepancy concerns to the * Py partial wave where in Ref. [I70] a
counterterm is promoted from higher orders so as to achieve cut-off stable results for A — oo
due to the attractive 1/r® tensor force in OPE. As a result, their agreement with data is
much improved. The main difference between our approach and that of Ref. [I70] concerns
the treatment of the LHC. Namely, for the 3P wave the iteration of the NN potential is
responsible for the need of this extra counterterm. The first iteration VyyGVyy (with G
the unitary two-nucleon reducible loop function) is a new source of LHC discontinuity [483]
containing contributions from TPE and iterated OPE. The real part stemming from the former
is divergent. Within our approach the sources of LHC discontinuity from VynyGVyy are NLO
according with the standard chiral counting. At that order new subtractions are required
(as discussed in Subsec. [[(5.2]) which will mimic the role of the extra counterterm taken in
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Figure 7.4: Comparison of the 'Dy, 3Dy, 1 F3 and 3F3 waves phase shifts (black
solid line) to the Nijmegen PWA (red solid line).

Ref. [I70]. While our method is based on the calculation of A ,5(A) perturbatively along
the LHC, the application of a Lippmann-Schwinger equation with the chiral NN potentials
is based on the perturbative calculation of the latter [I63-165]. In both cases the diagrams
required for the calculation of A j,5 and Vi are two-nucleon irreducible, in the sense that no
intermediate two-nucleon state arises, which justifies its perturbative treatment [162-165,183].
In both cases as well the RHC is exactly resummed, as required because of the enhanced two-
nucleon reducible diagrams. This resummation is performed in terms of the interaction kernel,
A o5 or Vi, depending on the approach. The N/D method respects the LHC discontinuity
so that A g is the same as in the final partial wave amplitude. For a Lippmann-Schwinger
equation this is not the case as new sources of imaginary parts along the LHC result from the
iteration of Viyy [483]. It is also worth stressing that our approach based on the N/D method
is a dispersive one offering results that by construction are cut-off independent, while this is
still an issue in the application of the Lippmann-Schwinger (or Schrodinger) equation to NN
scattering with Viyy calculated from ChPT [I70,177,180,1469].

For the 1Sy and ' D, partial waves, for which we do not have good agreement at LO with
data [186], our results are indeed very similar to those of Ref. [I70], too. In the case of the
' P| partial wave our phase shifts run closer to data at low energies than those of Ref. [I70].

In order to show the independence of our results with the value of B, the position of
the CDD poles, once this value is large enough, we show in Fig. for the 3G, partial wave
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Figure 7.5: Comparison of the Gy, 3Gy, ' Hs and 3Hs waves phase shifts (black
solid line) to the Nijmegen PWA (red solid line). The lines in ' Hj are almost
overlapping.

different lines corresponding to B = 10"m? for n = 2, 3,4,5, and 6. A narrow band is obtained
despite the large variation in the values of B considered.

7.4 The N/D method for NN coupled partial waves

In this Section, the generalization of the method of Sec. for the uncoupled partial waves
to the case of coupled channels is developed. For the spin triplet NN partial waves with
total angular momentum J one has the mixing of the orbital angular momenta ¢ = J — 1 and
0" = J +1 (except for the 3P, partial wave.) Each set of coupled partial waves is determined
by the quantum numbers S, J, ¢ and ¢, where S is the total spin. In the following for
simplifying the notation we omit them and indicate the different partial waves by T;;, with
i = 1 corresponding to / = J—1and i = 2 to ¢’ = J+1, a convention that we adopt from now
on. As a result, a two coupled channel T-matrix results. In our normalization, the resulting
S-matrix reads

S(A) =1+1i2p(A)T(A) =

- cos 2¢ €21 jgin e eio1+02) _—
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such that 0; refers to the phase shifts for the channel with ¢ = J — 1 and d, to that with
¢ = J + 1. The non-relativistic phase space is given by p(A), defined in Eq. (T8). Along
the RHC, the unitarity of the S-matrix, SST = S'S = I, can be written in terms of the
(symmetric) T-matrix as ImT'(A) = —p(A) L. In the following, the imaginary parts above
threshold of the inverse of the T-matrix elements, denoted by ¢;;(A), play an important role,

1
Imtij(A) =—1;(A) ,A>0. (7.32)
Employing the relationship between the T- and S-matrices, Eq. (Z31), we can express the
different v;; in terms of phase shifts and the mixing angle along the physical region above
threshold. In this way, one can write the diagonal partial waves as t; = (€% cos 2¢ — 1)/2ip,
while for the mixing amplitude ;5 = ¢192) sin 2¢/2p. From these expressions it is straight-
forward to obtain for A > 0:

15in? 2¢ !
_ _ 2
vi(4) = p(4) [1 1 — cos 2€ cos 251] ’ (7.33)
1502 -1
B _ 5 sin 2¢
vaa(A) = p(4) [1 1 — cos 2€ cos 252] ’ (7.34)
sin(d; + o
al(A) = 2p(A) 22O L 0] (7.35)

sin 2e

Although not explicitly indicated, it should be understood that the phase shifts and the mixing
angle depend on A. Eq. ([32)) generalizes that of an uncoupled partial wave, Eq. (2,
employed in Sec. Indeed, if we set € = 0 in v11(A) and ve(A), the uncoupled case is
recovered. Note also that v;;(A)/p(A) > 1.

We apply the N/D method to solve our equations for the T-matrix. As has been previously
shown, in the N/D method a partial wave ¢;; is written as the quotient of a numerator function
N;;(A) and a denominator one D;;(A). The function N;; only has a LHC while the function
D;; has only a RHC. In Refs. [484,1485], a straightforward generalization of the one-channel
N/D method of Chew and Mandelstam [38] was given by writing 7= N - D~! in matrix
notation. This T-matrix would be symmetric, as it is required by temporal inversion, only
under the assumption that DT(TT — T')D vanishes for A — oo [485], where the superscript
T indicates the transpose of the corresponding matrix. However, this is not the case for the
chiral potentials, even at LO, e.g., in the 3S,-3D; coupled partial waves. This condition is
then too restrictive for its application to chiral EFT where different numbers of subtractions
are taken in the different partial waves involved, whose number also varies according with
the chiral order considered in the calculation of the imaginary part of the NN partial wave
amplitude along the LHC. Whence, our generalization to the coupled partial waves case must
follow other guidelines.

In what follows, we generalize the procedure of Sec. to the coupled case. Instead of

making use of a matrix notation as in Refs. [484,[485], we write down three N/D equations,
one for each of the three independent partial waves t;;, as in Ref. [477],

tii(A) = Al L(A) : (7.36)
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The factor A% guarantees the proper threshold behavior with 11 = ¢, loy = ¢' = { + 2 and
lig = (0 +10")/2 =10+ 1. As stated above the splitting of the ¢;;(A) function is such that N;;
bears the LHC and D;; the RHC, and then:

ImD;;(A) = —N;;(A)AYiv,;(A) , A>0), (7.37)
ImN;;(A) = Dij(A)A;(A)JA% | A< L, (7.38)

with Imt;; = A;; along the LHC. The imaginary parts of D;; and N;; are zero elsewhere along
the A-real axis.” As argued in Ref. [162] and in Sec. [.2, A;; can be calculated perturbatively
in ChPT along the LHC, since it originates from multi-pion exchanges putting on-shell pion
propagators. The intermediate states require then at least one pion so that we apply ChPT
always to irreducible N-nucleon diagrams, responsible for the discontinuity along the LHC.

Two DRs can be written for the functions D;; and NN;;, employing the contours C; and
Cyr in Fig. [Tl respectively. The integration along the circle at infinity vanishes, if necessary,
by taking sufficient number of subtractions. At LO in the chiral counting [162}[I83], the
only contribution to A;; along the LHC is OPE. Asymptotically, for p? — —oo, OPE tends to
constant, so that, according to the Sugawara and Kanazawa theorem [329,480] one subtraction
is necessary for the DR of N;;(A) in S-wave, even though A;;(A) — 1/A in the case of OPE.
On general grounds, a partial wave amplitude is bounded because of unitarity by constant/ VA
for A — +o0 so that t;;D;;(A)/A% tends to constant for S-wave and zero for any other partial
wave.® As a result the same theorem then requires that at least one subtraction is necessary
for the S-waves:

A oo, v5(6*) Nig(¢°) ¢
Dy(A)=1-= /0 A (7.39)
_ Aty Ay(K*) Dy (k%) _
NZJ(A)_N(H——/dk: kz(kQ o =0, (7.40)
Dy;(k?)
/ a2 k% k;2 A it (7.41)

The subtraction point is taken at threshold. One subtraction is taken for the D;;(A) function
which is fixed to 1, as in the uncoupled case. For ¢;; = 0, S-wave, one subtraction is taken in
N;;(A), as just discussed. In this Section, dedicated to the NN coupled partial waves, this is
the case only for the 3S; channel. The subtraction constant Ny is the amplitude at threshold,
T11(0) = Ny, and then it can be fixed in terms of the S scattering length, a;:

4
Ny = ——2t (7.42)
m

with the value a; = 5.424 £0.004 fm. The former equation is then just like Eq. (.I3]), but for
the 35; case. Below in Sec.[Z.5.1]we also fix Ny in terms of the experimental deuteron binding
energy.

An integral equation for the function D;;j(A) would result by inserting Eq. (Z40) or
Eq. (C4T) into Eq. (Z39). However, as argued in detail in Sec. [[.2, divergent integrals appear

®Because the Schwartz reflection principle is satisfied by ¢;;, D;; and N;; the discontinuity across the RHC
or LHC is given by 2i the imaginary part of the function, just as in the uncoupled case.

6Here we are taking that D;; diverges as VA for A — 0o as in the uncoupled case. This is consistent with
the results obtained explicitly in this work.
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for ¢ > 2 unless a set of £ — 1 constraints are satisfied by D;;(A). The generalization of the
sum rules of Sec. to the coupled channel case is:

Aij (k) Dy (k?)
/dk’Q ’ k”‘j =0, A=23,...6;>2 (7.43)

Expanding the denominator inside the integral of Eq. (Z41]), N;;(A) can be written as:

L e ) Dy (R) 1 2 (k) D (1)

0 = s AP L L oS0
and the terms within the sum vanish if the constraints of Eq. (T3] are fulfilled. This guar-
antees that N;;(A) vanishes as 1/A% which ensures the convergence of the resulting integral
equation for D;;(A).

Let us take first 4;; # 0. By inserting the non vanishing piece of N;; into Eq. (39), once
the constraints Eq. (T.43)) are satisfied, we find the following integral equation for D;;(A):

AL Ay (k2) Dy (2
Dij(A):1+—/dl<:2 il ]12 1)

gi; (A, k%) (7.45)

2 VZJ 2)
gy (A, k) / dg - (7.46)
The functions g;;(A, k?) are the generalization of g(4, k?) given in Sec. for the uncoupled
case. An important technical detail is discussed in Appendix [HL We show there how the
constraints in Eq. (T43) guarantee that the functions g;;(A4, k%) are finite curing a potential
divergence for ij = 22 in the ¢* — 0 limit. This divergence was noticed in Ref. [477] but no
procedure was given there to remove it.

The N/D method in the presence of the constraints Eq. (T.43]) was solved in the uncoupled
channel case by means of the insertion of CDD poles. This idea is generalized to the case of
coupled channels, and the following equations are then obtained:

(k2)Dy; (k)
9 =, 2
/ dk k;&] o o (7.47)
i (K2) Dy (k2 A2 e, An
Dij(A)=1+;[§ok2 el 112 il )gij(A,kQH(A_OB)%1 (7.48)

The coefficients ¢;, specific for each wave although not explicitly indicated, are determined in
such a way that the constraints in Eq. (Z43)) are satisfied, as in the uncoupled case.

Notice that for the P-waves (¢;; = 1) (we have in our present study the mixing partial
wave in the 35;-2D; system and the 3P, in 3P,—3F, scattering), no constraints are needed,
so that the sum over the CDD poles is dropped and the same formalism applies. This is also
clear because for this case Eq. ((T4I]) vanishes as 1/A so that there is no room for restrictions.

Let us take now the case ¢;; = 0, that only occurs for the 35, wave. Since a subtraction is
needed in Nyp, Eq. ((C40), one should change Eq. (748)) in two ways as there is no sum over
CDD poles and one has to include an extra term associated with the subtraction in N;;(A) for
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this case. It is straightforward to obtain by inserting Eq. (Z40) into Eq. (T.39]) the appropriate
integral equation for Dy;(A) for the 3S; partial wave:

(k) D11 (k?)
L2
with g11(A, k%) given by Eq. (T46]). Notice also that from Eq. (Z40) it is clear that N;;(A)

tends to constant for ¢;; = 0 and A — o0, so that there is no need for constraints. This is
why no sum over CDD poles is present in the previous equation.

A Lo, Ay 9
DH(A) =1- ANogH(A, 0) -+ ; /_dk’ gn(A, k ) s (749)

To obtain the final amplitudes, the D;;(A) functions are obtained along the LHC (A <
—m?/4) by solving the integral equations in Eq. (T4R) or Eq. (7.49). Next, the functions
D,;;(A) are obtained along the RHC (A > 0) from the same equations because the integrand
is known. To obtain the functions N;;(A), since the constraints in Eq. (Z43)) are obeyed, one
can use for ¢;; # 0 either Eq. (Z47) or the first term on the right hand side of Eq. (Z44))
(but the former is more suitable numerically, since it converges faster.) For the ®S; wave,
one should use Eq. (740). The partial waves ¢;;(A) are obtained by employing the resulting
D;;(A) and N;;(A) functions in Eq. (7.30).

Summarizing, up to now, we have repeated the steps followed in the construction of the
partial waves in the uncoupled channel case. The main difference with respect to the uncoupled
case treated in Sec. is that now one has to solve simultaneously three N/D equations for
ij=11, 12 and 22 with the functions g¢;;(A, k?) linked between each other. They depend
on the phase shifts §; and d, and on the mixing angle ¢, defined in Eq. (Z31]), which are
also the final output of our approach. Thus, we employ an iterative procedure (similar to
Ref. [477]) as follows. Given an input for §;, d; and €, one solves the three integral equations
for D;;(A) along the LHC, and then the amplitudes for the RHC can be calculated. The phase
shifts §; and J, are reobtained from the phase of the S-matrix elements S;; and Sso, while
sin2e = 2pA“2Nyy/|D1s|. In this way a new input set of v;; functions, Eqs. (Z.33)-(7.35),
is obtained. These are used again in the integral equations, and the iterative procedure is
finished when convergence is found (typically, the difference between one iteration in the three
independent D;; functions along the LHC is required to be less than one per mil.) As the
initial input one can use the results given by UChPT [162], or some put-by-hand phase shifts
and mixing angle, and we find no dependence of our final unitary results with the input
employed.

It can be shown straightforwardly that unitarity is fulfilled in our coupled channel equa-
tions, solved in the way just explained, if |S1;(A)[* = [Sy2(A)|* = cos® 2¢ for A > 0. From the
fact that Tmty = v15|t12/?, as follows from Eq. (Z32)), and sin 2¢ = 2plt15| (the latter equality
is valid only when convergence is reached), it follows that the phase of 15 is 01 + 09, as required
by unitarity, Eq. (Z31)). By construction the phase shifts are equal to one-half the phase of
the S-matrix diagonal elements when convergence is achieved.

7.5 Results for coupled partial waves

We now present the reproduction of the phase shifts and mixing angles for the NN coupled
partial waves with J < 3 comparing with the data from the Nijmegen PWA [I86]. We pay
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special attention to the 3S;-3D; system and the deuteron, which is treated in Subsec.[Z.5.1l An
extension of our formalism for this wave to include more subtractions in the DR is presented
in Subsec. [[L5.2] which allows a better description of the phase shifts and the properties of
the deuteron. Higher partial waves are treated in Subsec. [[.5.3

7.5.1 35,—3D; coupled waves

Now we discuss our results for the 3S,-3D; coupled waves. Previous papers applying the
N/D method to adjust NN scattering are Refs. [473H476]. We already commented about
Ref. [473,1476]. The other two works by Wong and Scotti, Refs. [474,[475], include together
with OPE other heavier mesons, 71, p, w, and the ¢ is also included in Ref. [475]. Then,
these works follow the basic ideas of meson theory of nuclear forces, that were also used
for the construction of NN potentials (See Ref. [486] and references therein for a historical
perspective). There are some approximations in Refs. [473-475] that we avoid in our work.
E.g. only elastic unitarity is used in Refs. [473,/474] neglecting the mixing between coupled
partial waves. Ref. [475] considers the mixing only for the 3S;-2D; coupled partial waves. In
addition, in order to satisfy the threshold behavior for partial waves with ¢ > 2, so that they
vanish as AY, Refs. [A74,475] make use of a rather ad-hoc formula. This method was criticized
in Ref. [487] because it includes an unphysical pole for every partial wave at a CM squared
energy s, somewhat below 4m? (the threshold for NN scattering). In addition, Refs. [474/475]
also have a cut-off dependence in the way the vector resonance exchanges are damping to avoid
their divergences at infinity. Though the results of Refs. [473-475] are interesting and obtain
typically a good reproduction of data at the phenomenological level, we offer here a novel
way of employing the N/D method in the light of EFT. We then present the method ready
to be used in a systematic way by improving order by order the discontinuity of the partial
wave amplitudes along the LHC since it involves only NN irreducible diagrams, as discussed
above [162]. We satisfy exact unitarity for all the partial waves as well. It is also important
to stress that the N/D method for coupled channels is now presented in a way ready to be
used at any chiral order, without being constrained to satisfy the too demanding Bjorken-
Nauenberg condition [485] in order to end with symmetric partial waves. We accomplish the
right threshold behavior for ¢ > 2 by adding CDD poles at infinity, which is always legitimate
in the N/D method if there are good reasons for including them (which have been offered
before, see Sec. [[2] [E].) Thus, we do not need to modify the right analytical properties of
partial waves by including a fictitious pole in s; which is then fine tuned to data, as done in
Refs. [A74,475)].

The deuteron (d) is a neutron-proton (np) bound state with total angular momentum
J = 1 and spin S = 1 (and isospin zero.) As such, it is seen as a pole below threshold
(Jp|? < 0), in the physical Riemann sheet in the 3S;-3D; coupled partial waves. The binding
energy of the deuteron, E; (defined positive), is given by
2
By =k (7.50)
m
where k2 is the three-momentum squared at which the pole is located, so that it is negative.
Specifically, in our approach it appears as a zero in the functions D;;(A). From the amplitudes
calculated in Sec. T4 we find the deuteron at the position k3 = —0.08m? in the S amplitude,
corresponding to Fy; ~ 1.7 MeV. The experimental value is Fy ~ 2.2 MeV. Recall that
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the subtraction constant Ny appearing in the 3S; partial wave is determined by fixing the
35 scattering length to its experimental value, Eq. (Z22)). There is still a remnant input
dependence for the 2S;-3D; coupled partial waves in our unitary solutions that we fix by
requiring that the deuteron pole position is the same in the 3S; and in the mixing partial
wave. Independently of the input we do not find any pole in the 3D; partial wave. Indeed, if
we disregard the coupling between 3S; and 3D; and use the method of Sec. [[.2] (Ref. [E]) for
uncoupled waves, the pole appears in the same position in 3S; and, again, it does not appear
in 3D;. However, the pole should be located at the same energy in every channel, but this is
not the case because we are not using a matrix formalism but solving independently the three
linked N/D equations. Notice also that the deuteron is found mainly in a 3S; state, and thus
the coupling to D, is very weak.

In order to cure this deficiency and having the right pole structure guaranteeing the pres-
ence of the deuteron pole in 3D;, we write down a twice subtracted DR for the 3D, partial
wave, such that the function Day(A) has a zero at a given k3. The DR reads:

A AA =) [+, (@) Nij(¢?) g2
Di' A =1—- = — 7/ 2 J J : 51
o a w7 P = A -1 (7:51)

written in a way that is valid for both the *D; partial wave (i = 22) and for the mixing
partial wave (ij = 12), although we do not use it for the latter. By inserting the expression
for N;;(A), Eq. (C41)), into the previous equation, we end up with the following integral
equation:

A AA—K3) Lo, Ny(K?) Dy (k2
Dij(A) = 1_M+(7rd)/_§ok2 J(k;ijﬂ( >g§;l><A,k2>, (7.52)

where gg-l ) (A, k?) is a generalization of the functions g;;(A, k?) of Eq. (7.48),

2\ 2(6-1)
(A, k?) = / dq? ””(q )a . .
gz] q ( 2 k2)<q2 _ kg) (7 53)

For the 3S,-3D; waves, we have ¢ = 0 and ' = 2, so that {15 = 1 and {55 = 2, and the previous
integrals are convergent because of the extra subtraction taken. Recall that, in the formalism
first presented in Sec. [[4] one must take into account a constraint for the Dys(A) partial wave
in order to end with a convergent integral equation. Note that from Eqs. (L52) and ([Z.53))
the high-energy behavior of the functions D;; changes, now diverging as A%2, instead of A'/2
as in Sec. [7.4] stressed before for the uncoupled case. As a result the criterion of imposing
that N;; — 1/A% for A — oo, the one used in the uncoupled case to deduce the need of
constraints, does not hold now because of the extra subtraction.” The price to pay for having
included a second subtraction is the need for an input value for k3, which has to be provided.
It is then more natural for the 3S;-3D; system to fix the binding energy of the deuteron to
its experimental value than the scattering length, as we do below.

As stated in Sec. [[L4], an iterative procedure is followed in order to obtain our final results
for the phase shifts and the mixing angle from the three N/D equations coupled. For every

"From Eq. (ZZI) it follows immediately that Nas — 1/A which is the behavior required for Ny =
TyoDao /A2, taking into account the high-energy behavior of Das(A) just discussed.
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Figure 7.6: Comparison of our results for the 3S; and 3D; phase shifts and the
mixing angle €; to the Nijmegen PWA [I86], shown by the dot-dashed (red) lines.
The solid (black) lines correspond to fixing the 3S; scattering length to experiment,
while the dashed (blue) lines in addition fix the deuteron pole position in 3D; at
the same value as that in 3S;. On the other hand, the double dotted (green) lines
stem by fixing the deuteron pole position in the 3S; partial wave at its experimental
value. The dash-double-dotted (cyan) lines correspond to having additionally fixed
the deuteron pole in the 2D; partial wave at the same point as in 35;.

iteration along that procedure, one obtains from the 2S; wave amplitude the deuteron pole
position, k2. This is the value used as an input for the function Dgy(A) at every step. In
this way it is not fitted as a free parameter in order to fix the deuteron binding energy, but it
comes out in a natural way from 2S; and the coupled channel mechanism. The results that we
obtain with this approach are shown in Fig.[Z.6 by the dashed (blue) lines, while those obtained
when there is no deuteron pole in *D;, using Eq. (T48)) instead of Eq. (T52) with ¢;; = 2,
correspond to the solid (black) lines. The results are compared with the Nijmegen PWA [186]
given by the dash-dotted (red) lines. For the 3S; phase shifts both lines are very similar. The
differences are larger for the ®D; phase shifts, which are then quite sensitive to reproducing
correctly the deuteron pole also in the 3D, partial wave. Indeed, the result without imposing
the deuteron in this partial wave is very similar to that obtained from perturbative OPE [454].
Differences are rather small for the mixing angle €¢;. As the main contribution to the deuteron
comes from 39, its position remains almost unchanged compared with the uncoupled case,
with a value obtained for the binding F; ~ 1.7 MeV, once the experimental scattering length
is fixed. This corresponds to an effective range r ~ 0.46 fm, which is much smaller than the
experimental value r = 1.749 fm, the difference being around a 70%. This fact is already
well documented in the literature [488]. Indeed, Ref. [473] shows that when the N/D method
is used with only OPE as the source of the imaginary part along the LHC one needs to fit
two experimental inputs for every NN S-wave in order to reproduce the scattering length
and effective range. For 3S; the scattering length and the deuteron binding energy are taken
(we take the same input in Sec. below), while for 1Sy two well measured phase shifts at
different energies are employed. This result from Ref. [473], and our own ones presented below
in Sec. [[(5.2], makes us confident that a NLO study in ChPT with the N/D method will be
phenomenologically successful because a new counterterm enters at this order multiplying an
energy dependent monomial. The authors of Ref. [473] make the approximation of considering
only elastic unitarity for 3S;, neglecting its coupling with 3D;, while our treatment is exact.

It is also interesting to fix the subtraction constant Ny in terms of the deuteron binding
energy and then compare with our previous results when the scattering length was fixed.
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Imposing Dy (k3) = 0 from Eq. (Z49) and solving for Ny one has

k2 L
1+ /deAll(kg)dll(kQ)gll(k2, k2) k2
N, = o0 , 7.54
: K2 (g0 (2.0) 1 G(2)) (7:54)

where we have first split
Dii(A) = dii(A) — K*Nogu (A, 0) (7.55)
from where the function dy;(A) is defined. We have also introduced in Eq. (.54)) the function
G(A) given by
Lot 2 2 2
G(A) = ;/_dk Ay (k%) g11(k7,0)g11 (A, k%) (7.56)

The integral equation for dj;(A) can be obtained from that in Eq. (Z.49)) taking into account
Eq. (T53) and replacing Ny by its expression Eq. (.54]). It results

dll(A) =14+ ‘:/fikQAll(k2]zjll(k2) {911(/1, ]{?2) (757)

_ g1 (k% k)G (A) }_ é g(4)
911(k3,0) + G(k3) k3 g11(k3,0) + G(k3)

As in the previous case we fix the dependence on the input by requiring that the deuteron
pole in the mixing wave is located at the same position as in the 3S; wave, at the k2 cor-
responding to the binding energy E; = 2.2 MeV. Regarding the 3D; partial wave no pole
position is found unless one imposes it in the Dyy(A) function, making use of Eq. (Z.52)), hav-
ing then the right pole structure. Once the deuteron pole is imposed the value that we obtain
for the 35 scattering length is 4.6 fm and for the effective range 0.41 fm. The latter is indeed
very similar to the values obtained before when the scattering length was taken as input. The
resulting scattering length is around a 15% lower than its experimental value. We show in
Fig. by the dash-double-dotted (cyan) lines the results obtained when the deuteron pole is
imposed in the S and 3D, partial waves, while the double-dotted (green) line is for the case
when the deuteron pole position is imposed only in the former. The results are rather similar
to the case when the scattering length was fixed. The most sensitive observable is the mixing
angle €; where the largest difference happens in the peak, somewhat less than 1 degree.

It is worth comparing our results with the pionless effective field theory. In this case pions
are integrated out as heavy degrees of freedom. We can reach this limit by taking g4 — 0 in
our results, which implies A;; = 0. Only the term proportional to N, survives in Eq. (7.49)
and N1 (A) = Ny from Eq. (40). We can determine Ny by fixing the experimental scattering
length, Eq. (C42), or by reproducing the deuteron binding energy Ny = —4n/y/m3E,. The
former case is given by the solid (black) line and the latter by the double-dotted (green) one
in Fig. [[7l For comparison we also show the lines corresponding to our full results, obtained
by fixing the scattering length and the deuteron binding energy to their experimental values.
The former case corresponds to the dashed (blue) line and the latter to the dash-double-dotted
(cyan) line, as already shown in Fig.[7.6 One observes that the inclusion of pions significantly
improves the phase shifts and make also the results more stable independently of whether the
scattering length or the deuteron pole are adjusted.
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Figure 7.7: Comparison between the results obtained for the theory without pions
and our full results at LO. The Nijmegen PWA [I86] corresponds to the dot-dashed
(red) lines. When the 3S; scattering length is fixed one has the dashed (blue)
line for the pionfull case and the solid (black) line for the pionless one. When the
deuteron binding energy is fixed the dash-double-dotted (cyan) line for the pionfull
theory and the double-dotted (green) line for the pionless case result.

7.5.2 One extra subtraction

Now we impose that the 35 partial wave reproduces at the same time both the experimental
values for the 35 scattering length, a;, and the deuteron binding energy, E,. Similar re-
strictions were already imposed in Refs. [473,[476]. To accomplish it we introduce one extra
subtraction constant in the Dj;(A) function by taking one more subtraction in the disper-
sion relation. In this way we enhance the role played by the low energy region because the
extra subtraction gives more weight to the low energy part of the integrand in the dispersion
relation, so that it vanishes faster as A — co. The new dispersion relations for Ni;(A) and
Dy (A) read:

AL ALR)DL(R)
Nua(A) = No+ = [ R —A)

o A A(A k2 x 9 1/11(]{32)
Du(A)=1- k2 TNO/O ak (k2 — A)(k? — k7)k?

DAk, (7.58)

n A(A —E}) /L dszn(kQ])fn(kQ)g

with

2 2 vii(g®)
) = [ G (759

By construction Dy;(k3) = 0 in Eq. (T58), which guarantees the presence of the deuteron in its
experimental position. Having the right value for the 35, scattering length fixes the constant
Ny to Eq. (T42). The extra subtraction taken in Dy, Eq. (Z58), will be also necessary when
considering the NLO ChPT contribution to the discontinuity across the LHC because then
the resulting A;;(A) diverges as A for A — oo.

The deuteron pole is also imposed in the ®D; partial wave by employing Eq. (Z.52)) so that
the right pole structure is accomplished. The input is fixed such that the resulting deuteron
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Figure 7.8: From left to right we plot our results, solid (black) curves, for the 3S;
and 3Dy phase shifts and the mixing angle €;, when the experimental 35; scattering
length and deuteron binding energy are imposed. The Nijmegen PWA [I86] data
are shown by the dot-dashed (red) lines.

pole position in the mixing partial wave 3S;-2D; is located in the same position as for the
other two coupled partial waves, as already discussed above.

In Fig. [8 we show from left to right the 3S; and 3D; phase shifts and the mixing angle
¢; resulting from Eq. ((C5]), in that order. A clear improvement as compared with Fig. [0 is
observed, so that now the resulting curve run closer to the Nijmegen PWA [I86] for the 35,
phase shifts. An improvement also happens for the mixing angle €; which now overlaps better
with the Nijmegen results for three-momentum up to around 100 MeV and later the trend
of the curve tends to follow that of the Nijmegen PWA. Let us also stress that the failure to
reproduce € in the Kaplan-Savage-Wise scheme [I74,[175] was the main reason to conclude
that its perturbative treatment of pion exchange was not appropriate [489]. In contrast,
our LO reproduction of ¢, in Fig. (6]) is already quite close to the Nijmegen results [186]
and improves when considering the extra subtraction, as shown in Fig. [[.8 This is a clear
indication that €; will be also properly reproduced at NLO in the calculation of A;;(A).

Next we evaluate the three independent deuteron parameters that can be calculated from
NN scattering [490]. The first quantity is the binding energy of the deuteron that is fixed
to its experimental value as input. The second quantity that we consider is the asymptotic
D/S ratio n. For that we make use of the Blatt and Beidenharn parameterization [491] and
diagonalize the 3S;-2D; S-matrix, S;, by an orthogonal real matrix O,

S1 = OSl;diag o' ) 0= ( cosar TERa ) )

sine; cose;

Sy 0
Stidiag = ( 00 S ) . (7.60)
2

In terms of €; one can write for the asymptotic D/S ratio n as [490,1492]
n=—tane . (7.61)

The third quantity that we calculate is ¢ times the residue of the eigenvalue Sy at the deuteron
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pole position a = \/—k3,

2

—L 4 regular terms . (7.62)
o+ i|p|

We should remark that since we do not employ NN potential to study NN scattering we
cannot compute the wave function of the deuteron and in terms of it evaluate straightforwardly
(in the simplest approximation) other quantities like e.g. the deuteron electric quadrupole
moment () or the mean-square deuteron radius (r?)!/2. This does not mean that we cannot
obtain such observable quantities from our T-matrix but simply that we should consider other
processes beyond pure NN scattering. For instance, in order to calculate the mean-square
deuteron radius (r?) we should proceed like done in Chapter [l to calculate the same quantity
but for the f;(500) or o resonance, where 77 scattering in the presence of a scalar source was
calculated. Similarly, we should study here NN scattering in the presence of a scalar source
giving rise to the matter form factor of the deuteron. This is beyond the present study and
requires an independent study by itself.

The resulting values that we obtain are:
n=0.028, N>=0.74fm". (7.63)

Our results compare well with the experimental determinations n = 0.0271(4) [493,494] and
n = 0.0263(13) [495]. They also are close to those evaluated in Nijmegen PWA 1993 [186]:

n=0.02543(7) , N2 =0.7830(7) fm™" . (7.64)

Thus, once we reproduce simultaneously the NN scattering length and the 3S; scattering
length, the deuteron properties that can be extracted from scattering compare well with the
values determined in partial wave analyses or experiment. We obtain the following value for
the effective range r:

r = 1.56(3) fm , (7.65)

where the error is just statistical by fitting the low-energy phase shifts generated by our
own amplitudes. This number is quite close to the Nijmegen PWA 1993 [I86] result, r =
1.753(2) fm.

In Ref. [496] the OPE potential from ChPT is employed in a LS equation solved by
making use of an interesting method based on identifying the input with the T-matrix deep
in the LHC, writing in terms of it the potential. Their results for n and r are very similar
to ours in Egs. (Z.64) and (Z.63]), obtaining the intervals of values n = 0.0281-0.0293 and
r = 1.36-1.58 fm. Their results for the elastic ®S; phase shifts are also quite similar to ours,
though for 3D; they are closer to Nijmegen points [I86]. Regarding the mixing angle ¢,
Ref. [496] obtains that for a large renormalization scale p the resulting curves depart from
Nijmegen data [I86] by an absolute amount similar to ours for |p| 2 100 MeV (our results
lie above while theirs lie below). One should keep in mind that we have taken the scattering
length and the binding energy as input for our calculations, while Ref. [496] only adjusts the
scattering length.

It is well known since the sixties that for the 3S;-3D; coupled partial waves solving a LS
equation in terms of the OPE potential gives a significantly better phenomenology than solving
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the N/D method taking for A;;(A) the discontinuity along the LHC induced by OPE [487].
However, it is worth keeping in mind that [496], as well as [I70], obtain phase shifts for
1Sy which are very similar to ours in Sec. [.3l It is known that the 1Sy phase shift data of
Nijmegen [I86] are reproduced quite closely [458] once TPE contributions and NLO LECs in
the four-nucleon Lagrangian are included. In our novel theory, that calculates the NN partial
waves from ChPT by employing the N/D method, there is no reason to expect that the phase
shifts should be reproduced at LO worse in the 'Sy partial wave than in the 2S;-3D; coupled
waves (which results strictly correspond to Fig. in terms of only one needed subtraction).
In this respect, it is rewarding that by considering NLO contributions to the NN potential
in the standard Weinberg approach [458] one can obtain good results for 1.S;. This should be
also expected for the 3S;-3D; case within our approach. Indeed, we have already seen that
by including one extra subtraction the reproduction of phase shifts (particularly for the 35)
and mixing angle clearly improves. When considering two-pion exchange at NLO some extra
counterterms are needed because A;;(A) diverges as A for A — —oo along the LHC.

Solving a LS equation with OPE for the 3S;-3D; system is much more successful phe-
nomenologically than for the 1Sy case. One should be aware that this is something that is
checked a posteriori and is not rooted in the chiral counting (in which our approach, as well
as the calculation of the potential in ChPT, is based). From our point of view the ladder
resummation in the LS for the 3S;-3D; case is providing higher orders terms to A;;(A) in the
right direction. However, this improvement should come out when applying the N/D method
to (just a few) higher orders, because along the LHC A;;(A) is perturbative and amenable
to a chiral expansion as discussed. For 'Sy the higher orders in A(A) provided by the LS
equation are not the important source of dynamics and one has really to consider the full ma-
chinery in order to incorporate at higher orders TPE with the associated chiral counterterms.
It is our aim to develop in the time being a NLO (NNLO) study of NN scattering with our
approach based on the N/D method and the ChPT calculation of A(A) in order to definitively
settle this important issue. We would like to stress once more that at this stage our study is
mostly exploratory and not competitive with the nowadays sophisticated potentials [I86] or
calculated at higher orders from ChPT [458][462].

The set of works [I71497H499] gives rise to a remarkable description of deuteron properties
employing the NN potential given by OPE in a LS equation, e.g. Ref. [I71] achieves for many
observables a 2 — 3% of deviation with respect to the experimental values. But this is not
the only aim of an EFT. That is, one does not expect such a high degree of convergence
by taking only the LO ChPT NN potential. This is more a matter of phenomenological
success and not rooted in the chiral EFT. For baryon ChPT the expansion scale is not so
great, A ~ 1272 f2/g%m ~ 500 MeV [162,500], and such a great precision is then difficult to
understand from the ChPT expansion. We want to emphasize this point (consider e.g. the
not so great achievement for the 'Sy case) and develop a formalism where contributions to a
given process can be obtained order by order systematically in the chiral EFT expansion of

A(A).

7.5.3 Higher partial waves

Finally, we present the results for the spin triplet waves with total angular momentum J =
2 and 3, obtained with the formalism derived in Sec.[7.4l They are shown by the solid (black)
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Figure 7.9: Comparison of our results for the 3Py, 3F,, D3 and 3G3 phase shifts
and the mixing angles ez and €3, shown by the solid (black) lines, to the Nijmegen
PWA [I86], represented by the dot-dashed (red) lines.

lines in Fig. [ where they are compared with the Nijmegen PWA [I86] (dash-dotted (red)
lines).

We see already a good agreement with data for 3F, and G35 as well as for the mixing
angles €5 and e3. The lower partial waves 3P, and 3Ds are not well reproduced with only
OPE yet. This fact for the 3D partial wave was already observed in Ref. [454], where OPE
was treated perturbatively. In this reference Dj is also obtained with opposite sign to data.
The same behavior is observed in Ref. [489] at NLO (but not at NNLO). In Ref. [I70], with
one counterterm promoted to LO for the 3P, wave, the situation is similar. The 3P, and D3
phase shifts are not well reproduced at LO, while the others compare well with data. We
expect to restore the agreement with experiment at higher orders in the application of our
method to 2P, and 3Ds.

7.6 Summary and conclusions

We have applied the N/D method to NN scattering from ChPT. In this method the two cuts
present in a NN partial wave, the RHC and LHC, are separated in two functions, D j5(A) and
Nyes(A), with A the center-of-mass three-momentum squared. While D j,5(A) has only RHC,
the function Njss(A) has only LHC. The NN partial waves, Tjis = Nyus/Djs (¢ = 0, 1)
and A*Nyps/Dyes (£ > 2), are determined in terms of their discontinuity along the LHC cut
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due to multi-pion exchanges, A j;5(A). At leading order, considered in this work, only OPE
contributes. For D- and higher partial waves, with orbital angular momentum ¢ > 2, one has
to impose the proper behavior of a partial wave at around threshold, such that it vanishes as
Af for A — 0. This gives rise to £ — 1 constraints, for £ > 2, in the form of sum rules involving
the functions A jys and D jsg, that must be fulfilled when solving the N/D method. Since the
function D j5(A) is determined modulo the addition of CDD poles (that corresponds to zeros
of the NN partial waves along the real axis) we have then added ¢ —1 of such poles at infinity
in Djs for ¢ > 2. By sending such poles to infinity we do not include any zero of any NN
partial wave at finite energies. In addition, the residues of these poles in D ,5 are fixed once
the sum rules are satisfied, so that no new parameters are included. At low energies the CDD
poles behaves like adding a polynomial of degree ¢ — 2 to D j,s. This method is presented
in a novel way, adequate to improve the results order—by—order, both for the uncoupled and
the coupled channel case. This should be accomplished by taking higher orders in the chiral
expansion of the calculation of the discontinuity of the partial wave amplitudes along the
LHC, A;;(k?).

The resulting NN partial waves do not contain any regulator. A subtraction constant is
required for the 1S, partial-wave (and for the 3S; partial-wave, once the formalism is general-
ized to coupled partial waves) that is fixed by reproducing the experimental scattering length.
Our results are very close to those of Nogga, Timmermans and van Kolck [I70] that provide
cut-off independent NN partial waves with OPE as potential. The only noticeable difference
concerns the 3Py partial wave for which Ref. [I70] promoted a higher-order counterterm to
leading order so as to achieve cut-off stable results. In our approach there is no special treat-
ment to the 3P, partial wave compared to others and our results are a prediction for the 3P,
phase shifts at leading order. For the ! P, partial wave our phase shifts run closer to data than
those of [170].

Later, we have extended our method to the case of uncoupled partial waves. This extension
is accomplished by providing three N/D equations for each set of partial waves coupled. The
solution is obtained in an iterative and self-consistent way. The correct solution satisfies
coupled channel unitarity, and also the right threshold behavior, by fulfilling sum rules that
are a generalization of those of the uncoupled case.

We have studied the 2S,-3D; coupled waves either by fixing the resulting subtraction
constant to the experimental value of the scattering length or the deuteron binding energy.
We find that the 2D; phase shifts are the most sensitive to this choice. As expected, in all
the cases the triplet S-wave effective range comes out much smaller than experiment. We
have also considered the pionless case and compared with our full results that include OPE.
It is then seen that the results clearly improve for the latter case. For the waves with orbital
angular momentum ¢ > 1 at LO there is no subtraction constant and the results are parameter
free. The resulting phase shifts and mixing angles agree well with the Nijmegen partial wave
analysis results, except for the 3P, and 3 D3 partial waves.

Certainly, including OPE as the only source of discontinuity along the LHC is phenomeno-
logically just a first step and a NLO calculation should be undergone to establish the capability
of the method to reproduce properly NN scattering data. However, one should stress at this
point that our approach based on the N/D method offers a way to calculate NN scattering
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independently of any explicit cut-off, because only convergent integrals appear, while keeping
the chiral power counting. The dispersive integrals are convergent by taking the appropriate
number of subtractions with the related subtraction constants fixed to experimental data.
This method allows one to perform calculations systematically, order by order in ChPT.



Conclusions

In the following lines, we give a succinct summary of the main achievements within this work,
both regarding theoretical methods and practical results.

In Chapter 3 we studied the scalar sector, focusing mainly on the isoscalar part. We used
the N/D method and Chiral Lagrangians for such purpose. A useful method was developed
there to treat scattering amplitudes involving states that contain scalar mesons (the o meson in
this case, but it can be easily generalized to other cases) that are dynamically generated from
the interactions among the lightest pseudoscalars. With this method, one can calculate such
kind of amplitudes directly from Chiral Lagrangians, without introducing any free parameter,
and without using ad hoc parameterizations. Moreover, we could also include amplitudes
involving vector fields by considering the latter as gauge fields of the chiral symmetry. From
the point of view of the results, our study is quite global because all the relevant channels,
to which the resonances can decay as reported in the PDG [48], up to the maximum energy
considered (y/s ~ 2 GeV), were included. In this way, we have extended several former (and
pioneer) works that studied the scalar sector, also based on the joint implementation of chiral
symmetry and unitarity constraints (see Ref. [42] for an early review). We were able to provide
a global description of many scattering observables, as well as of the hadronic spectrum in
the considered sector. Besides the lightest scalars, we can describe all the resonances listed
by the PDG in the isoscalar—scalar sector: f,(1370), fo(1500), fo(1710) and fo(1790). With
these resonances, once their pole positions and residues are known by our study of scattering
data, we find also agreement with data of the CBC and WA102 Collaborations in which
these channels can be observed. This point is non—trivial, since our description of these data
proceeds a posteriori, from the resonances we find in our amplitudes without fitting them to
these data. The fy(1370) resonance turns out to be an almost pure octet, hence not mixed
with the resonances close in energy. The same can be said about the K((1430) in I = 1/2. We
must stress that, from our study, we can undoubtedly state that this energy region requires a
careful study including all the relevant coupled channels, a point frequently underestimated.
The main result of our study of the scalar sector regards the fy(1710) resonance. We can
identify it as the lightest scalar glueball, by the comparison of the couplings of this resonance
with those predicted by the chiral suppression of the couplings of a glueball to gq, as predicted
by QCD [91], also supported by lattice QCD calculations. In addition, the mass that we find
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for it is close to that predicted by quenched lattice QCD [84H89]. This work had some impact
in our community. Some of the branching ratios we find for the f;(1710) are indeed cited by
the PDG, and Ref. [A] (in which this Chapter is based) is cited in the PDG “Note on scalar
mesons” as a support for the scenario in which the f;(1710) is identified with the glueball.

In Chapter [4 we studied the interactions between the lighter and narrower scalar reso-
nances (f,(980) and a¢(980)) and the lightest pseudoscalars, in order to explore the possible
dyanmical generation of heavier pseudoscalar resonances. We take advantage of the fact that
these scalars are dynamically generated in the interactions of pseudoscalars, so that we can
calculate the desired amplitudes directly from the Chiral Lagrangians, similarly as done for
the o in the previous chapter. We find that these interactions are very rich, and strong enough
to generate pseudoscalar resonances as K (1460), 7(1300), 7(1800), n(1475) and X (1835), the
former with n—quantum numbers, also. There is an open controversy about the possible exis-
tence of three 7 states in a narrow window of mass: 7(1295), n(1405) and 7(1475). There are
suggestions that the latter two could be the same state 1(1440). We do not find any signal
for the n(1295), and find just one resonant state that we tentatively identify with the 7(1475)
because of its coupling pattern. This work, which has found some relevance in the community
and published in Ref. [B], has already supposed some advance in this issue. We could shed
some further light by including other channels (with vectors) in our approach.

The nature of the o meson is discussed in detail in Chapter [5 by calculating its quadratic
scalar radius, (r?)7, so as to have an estimate of its size. We find this size to be small, roughly

/(r2)7 = 0.45 fm, similar to the K* quadratic charge radius, (r2)5% = 0.28 & 0.07 fm?, and

smaller than the quadratic scalar radius of the pion, {/(r?2)7 = 0.81 fm. This leads us to
conclude that the o meson is a rather compact object, in which the two pions (from which it
is dynamically generated) are strongly overlapping. Thus, a four—quark picture seems more
appropriate than a 77 molecule. These results are in agreement with other works that rule
out the possible gg or glueball nature of the o, but leave open the question of wether it is
a pionic molecule or a four—quark object. This is the main result of our work. We have
also studied in detail the 77 scattering amplitudes in SU(2) UChPT, by fitting the LECs
appearing in the Lagrangian to different data and lattice results. We have obtained values
compatible with other phenomenological as well as lattice results. Our values are i; = 0.8+£0.9,
ly =4.6+04, 15 =2+4 and I, = 3.940.5. We also find a sensible result for the o pole position,
Vs, = M, —il';/2, with M, =440+ 10 MeV and I', /2 = 238 £ 10 MeV. A comparison with
other determinations of the o pole by other groups is offered, finding a general agreement
between a large number of different works. Our average values from this comparison are
M, = 458+ 14 MeV and ', /2 = 261+ 17 MeV. In this respect, it is good news that the PDG
has changed the name of the ¢ meson (f(600) is now named f,(500)) but, most importantly,
has considerably reduced the uncertainties quoted on its mass and width. This reflects the
fact that, due to the work of a large number of people working in the field, our knowledge
of the o pole position is quite precise, lying in a range of tens of MeV and, furthermore, we
understand the underlying hadronic physics.

The quark mass dependence of the size of the o as well as its mass and width is considered as
well. The latter ones are compared with lattice QCD results [I53] and theoretical calculations
obtained within the IAM [I54], in remarkable agreement. The fact that the mass of this
resonance tends to follow the threshold of two pions is another clear indication that this
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resonance is a dynamically generated meson-meson resonance. We find that, for a pion mass
large enough (m, = 450 MeV), the o meson becomes a spread 77 bound state. Studying
the dependence of (r?)? with the pion mass is also useful to understand its physical meaning.
For those pion masses in wich the ¢ meson is a bound state, we find a larger value for (r?)J.
This value, indeed, becomes infinite when the o is a zero binding energy bound state, which
agrees with what is expected on Quantum Mechanics grounds. In these situations, hence, a
molecular picture is more appropriate. Finally, we have studied the dependence of the o form
factor F,(¢?) (from which (r?)7 is extracted) for zero-momentum transfer, ¢*. This is related
to the dependence of the o meson pole with m, through the Feynman—Hellmann theorem,
and a good agreement is found. To our mind, this also supports our treatment of the . All

these studies were published in Ref. [C].

In Chapter [0l we investigate the 77 interactions in a finite volume, for the cases of isospin
I =0 and I = 2. This is an important task, that should be useful for the advances of lattice
QCD calculations, which has become a powerful and widespread tool to study the strong
interactions and, in particular, the hadronic spectrum. In Lattice QCD, through the path
integral formalism, one studies the interactions of quarks and gluons in a lattice box of finite
volume. But one needs to link the results thereof obtained to the real world interactions, which
take place in a continuum and infinite space. In our work, we have studied the corrections
that are due to the finite volume in these interactions, by implementing these corrections (that
arise due to the crossed loops and tadpoles in a field theoretical approach) into the formalism
of Ref. [I58], which is an improvement of the Liischer method [I56,[157]. The former is
based in UChPT, and assumes a calculated kernel which is volume independent. The latter
also neglects finite volume corrections, since these are exponentially supressed. Yet, there is
no way, unless one knows precisely the source of the volume dependent terms, to estimate
these effects and determine for which volumes the “exponentially suppressed” corrections have
become smaller than a desired quantity. This is however an important information in realistic
calculations. Our calculation, thus, estimates the size of these supressed contributions. We
conclude that for m7 phase-shifts in the I = 0 channel up to 800 MeV this effect is negligible
for box sizes bigger than 2.5m_! and of the order of 5% at around 1.5 — 2m_!. For I = 2
the finite size effects can reach up to 10% for that energy. We also quantify the error made
when using the standard Liischer method to extract physical observables from lattice QCD,
which is widely used in the literature but is an approximation of the one used in the present
work. We must stress that the nonperturbative approach, the study for energies different than
threshold and the study of the I = 0 77 system are done in the present work for the first time
in the literature. All these findings, published in Ref. [D], are of relevance in the lattice QCD
community because, together with the use of the approach of Ref. [I58] that also eliminates
L depended terms (exponentially suppressed) from the Liischer’s approach, it can encourage
the performance of lattice calculations with smaller size boxes with the consequent economy
in the computing time.

The topic of Chapter [7]is the study of NN interactions. This is a crucial process both for
applications in nuclear physics and for a deeper understanding of the strong interactions. This
problem is usually studied following the Weinberg proposal [163HI165] of solving a Lippmann—
Schwinger equation in terms of the calculated chiral NN potential in ChPT (which consists
of contact terms and irreducible multi-pion exchange diagrams.) Many advances have been
done in the last two decades in this issue. There is, however, some controversy about a
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possible inconsistency in the Weinberg scheme of solving the Lippmann-Schwinger equation
from the ChPT calculated potential. Our method is based in solving the N/D method, taking
as the input for the N/D equation the discontinuity due to multi—pion exchanges along the
left-hand cut. This discontinuity is adequate for a chiral power counting as discussed in
Refs. [162,[183[184]. Whence, this is an interesting method, because in this way we can avoid
the aforementioned consistency problems of the Weinberg scheme. Without entering in the fine
details of the approach, we must state that it can be applied to uncoupled as well as coupled
channel partial waves. For partial waves with orbital angular momentum ¢ > 2, in order to
satisfy the right threshold behavior, our method requires the presence of some constraints in
the functions of the N/D method. These constraints are satisfied by means of CDD poles.
We obtain a general agreement for the phase shifts and mixing angles of the partial waves
that we calculate, which are compared with the Nijmegen partial wave analysis [186]. When
discussing the 3S;-3D; case, we made some extension of the dispersion relations involved in
the N/D method. This also lead us to be confident regarding future improvements of our
method, when calculating the left-hand cut discontinuity in higher orders. Let us remark that
our method is a novel one, and that, at present, it has been worked out just at leading order,
where the discontinuity along the left-hand cut is given by just one-pion exchange. Hence its
predictions are not as precise as those of other methods that offer higher order calculations.
We must stress, though, that this method can be improved order by order, by considering
higher order pion exchanges in the calculation of the left-hand cut discontinuity, and also that
it is based in Chiral Lagrangians, in harmony with the modern persepectives of Effective Field
Theories. Our work in this Chapter is given in Refs. [ELE].
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Elementary amplitudes for the scalar
sector

In the following, in order to make notation simpler, we enumerate the channels as follows:

(1)(rm), (2)(KK), (3)(mm), (4)(00), (5)(n), (6)(pp), (T)(ww), (8)(n'n), (9)(K*K"), (10)(wg),
(11)(¢9), (12)(7*r) and (13)(aym).

From the Lagrangians of Eqs. (82 and (34]) one can calculate the interaction kernels
N, ; = N, ;, which are symmetric due to time reversal invariance.! In the following equations,
we glve the matrix elements N; ; with the understanding that those not shown are zero. On
the other hand, the octet and smglet scalar resonance couplings, a; and f3;, respectively, are
given below, and the vanishing couplings are not shown. For the I = 1/2 and 3/2 S-waves,
involving the Km, Kn and K7’ channels, we take directly the formulae from Refs. [4344],

where they can be found.

s—m?2/2 ol
Nip= i L Al
11 f2 + Z Mg’g _ + Z Mg'l ? ( )
V/3s Q10 5152
Nig=——+ A2
1,2 4f2+ZM§8— +Z;M§1—s’ (A.2)
Q103 B13
Nig=— + , (A.3)
A T

2
N1?4:{—75m7r+20(3+81+82)+Z 10y +Z 5164 }( Oé())) : (A4)

18v/3f4 5 Mg, — 5 Mg — 5| \Go(rm)o
Q105 5155
Nis=— + , (A.5)
N N

'For the a7 state one has to choose conveniently the phase of the state so that this result holds for those
transition amplitudes involving this channel.
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4g° s/2 — 2M?
Nig=o(3+ X202 A6
=5 ( e (A.6)
m? Q10 315
N1,8 - - = + + 5 (A7)
21/3f2 %Mﬁs—s SZIMgl—s
S 2 - 2M2 *
Mo =2 (34 L2 ) (A8)
K*
10d,,
Ny 12 3f3 m2 (A.9)
Ny — 4G pa, /5 +Z o103 +Z 51513 (A.10)
113 = — — ; :
f Mal Ss Mg'g - S1 Mgl —$
3s a3 2
Nop =— + 2 4 2 | (A11)
412 %Mgs—s 5 MZ —s
2(3s — 2m; — mi) Qa3 B233
Nyg=— ’7 + + : (A.12)
912 %Mﬁg—s %:Mél—s
5(s1 + s9) — 10m2) Qa0ry Ba234 < Q )2
Ny = - 4+ + , (A.13)
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N _ n n T K + 205 + 2M5 ’ A14
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s/2 — 2M?
Nog =g° (3 f’) , (A.15)
M
2 s/2 — 2M?
No7z=— 592 <3 + ]\42> ) (A.16)
Nyg =— it =+ (A.17)
362 %;Mgs—s ;Mgl—s
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Noiz=——————+ , (A.22)
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4 , A.32
{ 36f4 MSs %: Mgl — S} ga(mr)o ( )
5/2—2M2 ) ( a )2
N, 3+ , (A.33
S 6\/_f2 ( M%{* g0(7r7r)0 )
7v/3d, ap )’
Ny =-— s m < : ) ; (A.34)
9f Jo(nm)o
20\/§G Pa \/_ Q0013 BaPis ( Q )2
Nyiz3 =1 — : , A.35
b { of M, T2 - M3, - 3 Mgl — 5 \Go(rmpo (4.35)
2(4m3. — m?2) &g
Nssg=—"7—>""" E: +—§: (A.36)
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G2<2\/§+ 1) (s — (ma + Ma1)2>(5 — (Mg — MGI)Q) + Z 04%3 _|_ Z 613

Nizaz = 3 SM?2. o M2, - < MZ — s’

(A.44)

oy = f12 lcas + 2m2 (e — c)] | (A.45)
Qg :\/%[cds +2m2 (e — ca)] (A.46)
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2
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Ly
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Loop functions

In this Appendix, we give the loop functions used through the thesis, mainly in Chapters
and [l We start with the scalar one-, two- and three-point one-loop scalar integrals, denoted
by Ay, By and Cy, respectively, and depicted in Fig. Bl The vector and tensor integrals,
defined later, can be cast in terms of the former. Special attention is dedicated to the case
of the three-point function, whose cuts are also calculated since they are needed in order to
calculate the scalar form factor of the o meson. Notice that all the internal masses are equal,
as we only have pions as degrees of freedom. For this reason, we do not include the dependence
on the internal mass M? in the following (except for the case of the function Ay, which does
not depend on any external momenta).

B.1 Scalar loop integrals

The simplest one is the one-point loop integral, given by:

d*k 1
Ao(M?) = . . B.1
o(M7) 1(27T)4/€2—M2—|—’l'6 (B.1)
In dimensional regularization, it results:
M2 M2
Ag(M?) = log —- B.2
o(00) = o (R 0w 2 ) (B.2)
with
R=u"* ( S (1+T()+ log47r)> , (B.3)
n E—
and n — 4.
The two point function is:
d*k 1

, (B4)

Bﬂﬁ%:%%%(m_ﬂp+a)0k—PV—AP+“)

227



B. Loop functions 228

Ao(M?) Bo(P?, M?)

Co(p3, p3. &%, M?)

Figure B.1: Diagrams for the one-loop functions Ay, By and Cy (from left to right
and top to bottom, respectively).

and analogously, in dimensional regularization,

By(P?) =

M? P?) -1
(R Hlog o —1- o(P?)log °'()> , (B.5)
g

1672 (P?) + 1

with o(P?) = /1 — 4M?2/P2. Since the function is divergent and p-dependent, we define the
subtracted function, By(P?),

M2
B R+ log —-
By(P?) = By(P?) — Tglu (B.6)

This is the function that will appear in the amplitudes, since the piece that we have subtracted
cancels out with the alike terms in the loops and the chiral counterterms. The same procedure,
applied to Ag(M?), gives

_ M2 M?2

this is why in the amplitudes of Appendix [ there is no dependence on A.

The three-point function is defined by:

d*k 1
2m)4 k2 — M? + e

2 .2 2N\ _ -
CO(plup%q)_'%(
1

" <(k: —p)?— M2+ ¢e> ((k )2 — M2+ ie)

, (B.8)
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and it depends on the three scalar p?, p3 and ¢*> = (p; — p2)?. It is finite and after lengthy
calculations [501], it can be cast in integral form:

1
Cr(2 2. a2) —
ot 2z ) 1672\ (p?, p3, ¢%) /2
/1 108 f(p1, 2) —logf(p?,zl)+
0 Z— 2z
+/1 1,108 /(13 2) —logf(p3,22)+
0 Z— 22
1 1 2 —1 2
+/ dz ng(q 7Z) ng(q 723) } ’ (BQ)
0 Z—Z3
where we have defined:
f(p? 2) = p*2(z — 1) + M? — e , (B.10)
Ma, b, c) = a® + b* + ¢* — 2ab — 2bc — 2ac , (B.11)
1 P —p3— ¢
=14 > B.12
170 ( FARAP) (B.12)
1 ps—pi—¢°
_ 1 B.13
273 ( TN ") (B.13)
1 ¢’ —pi — 3
=— (14— . B.14
BT ( " A(pi, p3, q*)? (B.14)

The usefulness of Eq. (B.9) lies in the fact that it is well suited for its analytical continuation
to the complex plane, which is needed in our case, since the cases p? = p3 = s, are studied.
Notice that the residues of the integrals when z — z; are zero because of the form of the
numerators, and also that, since z(z — 1) > 0 for z € [0, 1], the arguments of the logarithms
do not cross any cut.

On the other hand, since the pole of the o resonance appears in the unphysical Riemann
sheet, we need to calculate the amplitudes 7w H — 77 in this sheet. This involves the function
Co(s,s,q?) in this sheet,! and this is not so trivial as in the case of the function G(s) (see

Egs. (5.I0) and (5:12)). For that purpose, we calculate the discontinuity along the unitarity
cut of the function Cy(s, s, ¢*):

ACy = Cy(s +ie, s +ie, ¢*) — Co(s — i€, s — i€, ¢*) , (B.15)

for s > 4M?. This can be obtained directly from the integral representation in Eq. (B.9)), and
the result depends on the value of ¢2. We are interested mainly in the case ¢> < 0, and we
find two cases:

A,Cp = 1 for ¢ < ¢2 | B.16
" 47T)‘(S7 S, (]2)1/2 o <Z+ - Zl) o o ( )
1 1—2z12_— 2
ACy = 1
" 47T>‘(57 S5 q2)1/2 o ( Rl A4 Zl)

!'Notice that we have already considered s = s’, since this will be the case in the o form factor, because
s=3s5"=s,.
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1 1-— z3
1 ( ) for 2 < ¢* <4M? B.17
T S e e Or (an < ¢ (B.17)
where we have defined zy = (1 & o(s)). In the previous equation ¢Z, is the so called

anomalous threshold, given by M?¢?, = —s(s — 4M?) < 0, where the last inequality follows

from s > 4M?. The case that connects continuously with ¢? = 0 is the one denoted by A,Cy,

which is the one involved in the calculation of the quadratic scalar radius, for which we take
2 _

qg — 0.

As a cross-check of the validity of our procedure, let us note that the function Cj is
related for ¢> = 0 to the derivative of the function G(s) with respect to M?, denoted by
dG(s, M?)/dM?* = G. Indeed, one has

: 1 o(s)—1

2Cu(s,s,0) =G(s) = S7250(5) log o) 1 (B.18)

In the calculation of the scalar form factor Cy appears, while in the derivative of the o pole
position, $,, one has G. Both are related through the Feynman-Hellmann theorem, Eq. (5.82),
and thus, the unphysical Riemann sheet for the function Cy must be related to that of the
function G(s). When the pole is in the unphysical Riemann sheet, we have:

l

Gri(s) = Gi(s) — AG(s) = Gy(s) — Trso(s) (B.19)
If we now calculate the value A,Cy(s, s,0), we find:
AyCo(s,s,0) = 8#537(3) , (B.20)
so that
Co.1(s,s,0) = Cor(s,s,0) — ApCo(s, s,0)
= Co;(s,s,0) — ! (B.21)

8rso(s)

which implies, as stated, 2Cy./(s, s,0) = Grr(s).

B.2 Vector and tensor loop integrals

Vector and tensor loop integrals appear throughout the amplitudes in Appendix[Cl We reduce
them to the scalar ones by means of the Passarino-Veltman method [502]. We start with the
two-point vector and tensor integrals, defined by

dk (ks ks }
B{M;MV} - Z/Z E .
(27 (k2—M2+z'e) ((k—P)?—M2+ze>

On Lorentz-invariance grounds, we can write

(B.22)

B* = —P"By,(P) , (B.23)
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where the minus sign is introduced for convenience, and, performing the contraction P*B,,, it

can be shown that: 1
By (P?) = —§BO(P2) . (B.24)

Analogously, the tensor integral can be decomposed as:
B,ul/ = PHP,/BQ()(PZ) + gl“,P2321<P2) R (B25)

and the following results, by the appropriate contractions, are obtained:

Ao(M?)  M?*— P? 1 P?
P2By(P?) = 22 - By (P? M?—— B.26
Ao(M?)  4M? — P2 1 P?
P?By (P?) = 22 By(P?) — — [ M*— — B.2
21(F) 6 12 o(P%) ~ 52 6 (B.27)
For the three-point vector and tensor integrals, we define:
d*k  {k,; kuk,}
Cloom :/ i Nl B.28
{pry Z(2W>4]€2—M2+i6 ( )
1
>< b
<(k )P - M2+ z'e) ((k; ) — M2+ ie)
and
C“ = —p’fC’H —p’gClQ s (B29)
CM = plpiCo1 + phpyCoa + (PiDs + PYph) Cos + " Coy (B.30)

where for simplifying the writing we have omitted the arguments in C;;(p?, p3, ¢*). The results
for these functions are:

Cii = (p3Bo(p3) — pp2Bo(p?) — (p3 — p1p2) Bo(q?)

—p3(p} — Pip2)Co(p, 3, 4)) /(2 det H) (B.31)
Cip = (pro(p%) — pip2Bo(p3) — (P11 — p1p2) Bo(4?)

—p} (3 — P1p2)Co(p, 3, 4°)) /(2 det H) (B.32)
Cos = —6417# + ]?Co(p?,pi,f)

+ i (Bo(g®) + piCi + p3Cha) (B.33)
Cy = (p%Ra — plpch) /det H | (B.34)
Cog = (prd - Plszb> /detH (B.35)
Cos = (PiRe + P3Ry — pipa(Ra + Ra)) /(2det H) | (B.36)

with

2
H = ( Y4 P1p2 ) 7 (B37)

pip2 D3
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and

1 2 1,

R, = ZBO(q ) - 5]91011 — Oy, (B-38)
1 1 1

Ry = ZBO(QQ) - 529%012 - ZBO(Z’Z) ) (B-39)
1 1 1

R, ZBO(QQ) - 51?3011 — ZBO(p%)a (B-4O)
1 1

R, ZBO(C]Q) - 5p3012 —Coy . (B-41)

Analogously to the scalar loop integrals, we define the subtracted functions Bij and C‘ij
by substituting in their expressions given above Ay — Ag and By — By. The amplitudes
7m H — 7w in Appendix[Clare then written in terms of finite and scale independent functions.



ww H — wmw amplitudes

In this Appendix, the amplitudes 7w H — 7w are given for completeness. We follow the
nomenclature given in Fig. (.14l We give the finite contributions to each amplitude once the
infinite and scale dependent terms are cancelled among them. In this way, the amplitudes are
written in terms of the finite and scale independent constants I; as well as the subtracted loop
functions defined in Appendix [Bl, By, etc... The diagrams denoted in Fig. 514 by VI, XI and
XII, both in the case of 7°7° H — 7°7% and 7°7° H — nt7~, are proportional to the tadpole
function, Aq(M?), so they do not contribute to the finite amplitude, as explained before.

In the subsequent, unless the opposite is stated, the subscript ¢ = 1,...,4 indicates the
pion leg with four-momentum p; to which the scalar source is attached. The functions D;,
corresponding to the inverse of the pion propagators when the scalar source is attached to
the iy, external pion leg, are used through this Appendix. These functions were defined in

Eq. (549).

C.1 Diagrams |

C.1.1 7°7n°H — 7oxO

68
Two) — — (C.l)
3B m?2 -
T(NLO) _ _Fﬁlz; . (C.2)
C12 7°x°H - ntn~
2B
T = - (C.3)

K
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2
_B m; -

T(NLO) — 7 4.
fi4m

(C.4)

The NLO result corresponds to the LO diagram I multiplied by 207, with the latter given
in Eq. (L283). In addition m?, f? are expressed in terms of the physical values m, and f,

according to the expansions of Eqs. (L.288)) and (T:289).

C.2 Diagrams Il

C.2.1 7°7m°H — 7ox°

2B m2
(LO) __ T
o =2 (178
2B m2
(LO) __ T
T, = F (1 + Dz) ,
2B m2
(LO) __ T
I3 = F (1 + D3> ,
2B 2
T = (1 + 7;2) : (C.5)
TONLO) _ E _4m721- ﬂ4i4 — 33
! A 4r2 " D, 1672 [
TINLO) _ E l_4m72r i %4& - 31_3
2 Al 4n2 " Dy 1672 [
ST A 4m2 " Dy 1672 [
B (ly