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(...) Thus in the thirteenth century the great Franciscan theologian Bonaventure felt
obliged to reproach his colleagues of the philosophical faculty at Paris with having
learned how to measure the world but having forgotten how to measure themselves.

J. Ratzinger (Benedict XVI), Introduction to Christianity

(...) En el siglo XIII san Buenaventura, gran teólogo franciscano, echaba en cara a sus
colegas de la facultad de París que habían aprendido a medir el mundo, pero se habían
olvidado de medirse a sí mismos.

J. Ratzinger (Benedicto XVI), Introducción al Cristianismo
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Introduction and Summary

Up to where scientists know, the Universe is made of particles, space, time, and the laws that
dictate their interactions. One of these forces is the strong force, from which there emerge,
in turn, the forces inside the nuclei of the atoms. The particles that suffer these strong
interactions are called hadrons. Quantum Chromodynamics (QCD) [1–7] is the theory that
describes the strong interactions. It is a relativistic, non-abelian, Yang-Mills [8] quantum field
theory, in which quarks and gluons are the fundamental degrees of freedom (the quantum
fields of the theory). Quarks are matter particles, and gluons are the particles that carry
the strong interactions. It is a beautiful and successful theory, one of the cornerstones of the
greatest scientific theory ever: the Standard Model. QCD has proven successful to describe a
wealth of physical phenomena.

However, as it stands, that is, with quarks and gluons as dynamical degrees of freedom, it
can only be used in the high energy regime, where, due to the (predicted by QCD) asymptotic
freedom, quarks manifest themselves as weakly interacting point-like particles, and then per-
tubartive methods can be used, as in as much it is done in Quantum Electrodynamics. For
low energy interactions, the complementary behaviour of QCD, the infrared slavery, points to
the confinement of quarks inside hadrons. However, confinement is an obscure point not well
understood in QCD yet, though lattice QCD offers new insights to the problem. Still, in the
QCD mass spectrum of hadrons, we find a remarkable fact, the appearence of an isospin triplet
of pseudoscalar mesons, the pions, π, whose mass is much smaller than the others. This key
feature points to the fact that a well known approximate symmetry of QCD, namely the chiral
symmetry, SU(2)L ⊗SU(2)R, is spontaneously broken [9–14] to SU(2)L+R ≡ SU(2)V , whereas
the generators of the broken symmetry would give rise to a massless triplet of particles, the
so called Goldstone bosons. As the symmetry is not exact due to the finite quark masses, the
pions are not exactly massless, and so they are called pseudo-Goldstone bosons. Although we
have considered SU(2) giving rise to a triplet of pions, we can extend these considerations
the SU(3) symmetry. Then, we include the other lightest pseudoscalar mesons, kaons (K)
and eta (η), which, together with the triplet of pions, would form an octet. The hadrons
are thus organized into SU(3) multiplets, the so called Eightfold way [15]. From the previous
considerations, one could attempt to construct an effective quantum field theory in which the
dynamical degrees of freedom are not quarks and gluons themselves, but the pions instead.
Indeed, this scheme has been put in practice, and a theory has emerged: Chiral Perturbation
Theory (ChPT) [16–19]. It is, then, the effective theory of QCD at low energies, and it can
be treated perturbatively, allowing for a systematic expansion in powers of momenta of the
external pseudo-Goldstone bosons and quark masses. In Chapter 1, we shall attempt the
formal and rigorous construction of ChPT, with the general formalism for the construction

1



Introduction 2

of effective Lagrangians [20, 21], that will be reviewed first, and the knowledge of the chiral
symmetry of the strong interactions and its spontaneous breakdown.

∗ ∗ ∗

Together with its great successes, ChPT has some evident shortcomings in practical ap-
plications. On one hand, it cannot reproduce the conspicuous resonant behaviour found in
the hadronic spectrum. Being a perturbative expansion, it cannot generate the pole structure
attached to resonances in the scattering amplitudes of hadrons. On the other hand, the pre-
dictive power of the theory is progressively lost as one increases the order of the expansions,
because of the appearence of the so called low energy constants, that encode information from
the underlying theory (QCD) and thus not fixed by the symmetries. These shortcomings im-
ply that non-pertubative schemes are necessary as complementary tools to be used together
with the pertubative information that we can extract from ChPT. In the meson–meson or
meson–baryon interactions, among these nonperturbative methods, one can cite the Inverse
Amplitude Method (IAM) [22–32], the Bethe-Salpeter (BS) approach [33–37] and the N/D
method, which was originally devised in Ref. [38] and afterwards used in several works. Later
on, it was retaken in connection with the more recent advances of effective field theory (ChPT)
and applied to meson–meson or meson–baryon interactions [39–47]. We shall refer to some of
these works later on, when introducing the scalar sector and, specially, the σ meson (nowa-
days denoted by f0(500) by the Particle Data Group (PDG) [48].) Most of this thesis will
be related to the applications of one of this non-pertubative schemes, the N/D method, that
we refer as Unitarized Chiral Perturbation Theory (UChPT). Its formalism will be briefly
explained in Chapter 2. There, a physical fundamental concept, unitarity, is introduced, and
its consequences are studied. We also introduce here the concepts of scattering amplitudes
and partial waves. We shall study from a general point of view the appearence of resonances
attached to poles in the unphysical Riemann sheets of the scattering amplitudes. Convinced
of the importance of unitarity, we will review the application of the N/D method to deduce
the most general structure of a partial wave amplitude when the so called unphysical cuts are
neglected [39]. The N/D method is a unitarization method, that splits the contribution of
the unitarity and unphysical cuts in two different functions, D and N , respectively. We shall
also explain how to introduce the unphysical cuts in a perturbative way.

In Part I, then, we have derived the basic framework of this thesis, that will be applied to
a variety of problems in Part II. We now comment on the different issues that will be treated
in the body of the thesis. We try to give an overview of the experimental and theoretical
status of each analyzed topic, motivating thus our study. We give some details of the methods
used and an advance of the main results, trying to connect them with earlier works.

∗ ∗ ∗

We shall start by studying the scalar sector of the meson–meson interactions in Chapter 3.
In ChPT, due to its perturbative character, the scalars (with JP C = 0++ quantum numbers)



3 Introduction

do not appear straightforwardly. The lightest of these scalars (with masses below 1 GeV)
are the σ, κ, f0(980) and a0(980) mesons. Its connection with the dynamics of the lightest
pseudoscalars (the dynamical degrees of freedom in ChPT) and its relation to unitarity or final
state interactions was realized along several works. Regarding the ππ interactions specifically,
one has first to mention the works of Truong and collaborators [22–27] who first emphasized
the important role played by the null isospin (I) S-wave ππ final state interactions, through the
IAM technique. Within this formalism, the σ pole was first obtained in Ref. [28], together with
the K⋆ and ρ resonances in the P -waves. Because of the lack of coupled channels in the IAM at
that time, it was not possible to obtain other light scalar resonances as the f0(980) and a0(980).
Simultaneously, in Ref. [33], within the BS approach, it was obtained the σ pole, together with
the f0(980) and a0(980). The interplay of some of the authors of the previous works led to the
coupled channel extension of the IAM method [29], obtaining then in Refs. [29–31] the whole
lightest scalar nonet, together with the lightest vector nonet. In turn, the approach of Ref. [33]
was settled on more general grounds in Ref. [39] by means of the N/D method (from which
one can also derive the IAM equations). From a theoretical point of view, most of these works
stress the role of the unitarity cut and the strong final state interactions among mesons, and
also show that crossed cuts can be treated perturbatively when studying the resonant scalar
dynamics. Finally, let us quote that the pole positions obtained in Refs. [28], [33] and [30],
are, respectively, 440 − i 245, 469 − i 194 and 442 − i 227 MeV. References [33, 39] clearly
established that the σ resonance is dynamically generated by the pion strong self-interactions.

Other approaches to the problem of the lightest scalar can be found in Refs. [49–52].
Indeed, Refs. [49, 50], within the MIT bag model, already predicted in the late 1970s a light
scalar nonet of four quark broad resonances, with masses (in modern notation for the states)
Mσ ∼ 650 MeV, Ma0 = Mf0 ∼ 1100 MeV and Mκ ∼ 900 MeV. In Refs. [53–58] the mixing
between these resonances was considered. Other successful phenomenological approach to
study the lightest scalar resonances is based on meson-exchange models [59–61]. Recently,
Refs. [62,63] studied the possibility of the construction of a chiral Lagrangian with an explicit
scalar singlet field.

Concerning the heavier scalar resonances, we also study in this thesis the isoscalar-scalar
resonances f0(1370), f0(1500), f0(1710) and f0(1790), listed by the PDG [48]. Crystal Barrel
Collaboration (see [64] for a comprehensive review) data at LEAR at CERN improved the
knowledge of the 0++ spectrum, confirming or discovering the a0(1450), f0(1370) and f0(1500)
resonances, whereas the BES Collaboration [65–67] confirmed the spin assignment of the
f0(1710) and found another resonance, f0(1790). We will discuss further on controversies
and results about these states in the body of the thesis, when presenting our own results,
and we refer the reader to the reviews of Refs. [64, 68]. Besides the general interest of these
states in the determination of the hadron spectrum, they are relevant for another issue of the
scalar-isoscalar spectrum, namely, the identification of glueballs. In QED, photons do not
carry electric charge, so they do not directly interact among them. In QCD, gluons carry
color charge and interact between them, due to the Yang–Mills nature of the theory. It is
generally believed that QCD predicts the existence of mesons without valence quarks, the
so-called glueballs. Its confirmation in the spectrum of strong interactions is then at the heart
of the theory. Interest in the glueballs started since the early days of QCD, and its study
was one of the first applications of QCD sum rules [71,72]. Due to the strong coupling of the
vacuum with the 0++ channel, the results are not conclusive yet [71–78]. In general, these
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works agree with the presence of a glueball around 1.5 GeV, though the existence of an extra
glueball around 0.5 GeV is also proposed. A glueball with a mass around & 1.5 GeV is also
predicted in several models [79–83]. In the quenched lattice QCD spectrum [84–89] the mass
of the lightest scalar glueball is predicted with a mass M = 1660 ± 50 MeV, close to the
f0(1500) and f0(1710) resonances, so that these are considered strong candidates to have a
large glueball component. Reference [88] obtains that the f0(1710) is mainly a pure glueball.
Reference [89] evaluated in quenched lattice QCD the decays of the latter resonance to two
pseudoscalars and calculated a pattern of decays in agreement with some reported data on the
f0(1710) [48]. Studies with dynamical fermions, mixing glueballs and quarkonia, are still at
a preliminary stage (see Ref. [90] and references therein, as well as references in Sec. 3.1.) In
Ref. [91] (see also Refs. [92–94]) it was found a chiral supression of the couplings of the scalar
glueball G0 to q̄q, Γ(G0 → ss̄) ≫ Γ(G0 → uū+dd̄), in agreement with the result of Ref. [89] in
lattice QCD. This mechanism also implies that the scalar glueball should not mix. However,
the situation is not clear yet and different results are obtained in different works [95–100],
following the same idea of mixing of the glueball with the nearby nn̄ and ss̄ states.

To sudy the scalar sector, we calculate the null isospin I S-wave meson-meson partial
wave in terms of thirteen coupled channels, ππ, σσ, KK̄, ηη, ηη′, η′η′, ρρ, ωω, K∗K

∗
, ωφ,

φφ, a1π and π∗π. The SU(3) symmetry is enlarged to U(3) as to include the effects of the
η′ meson [101–104]. The multipion states are effectively simulated in terms of the two-body
resonance states σσ, ρρ, a1π and π∗π, although we will conclude that the inclusion of the
latter two channels is not relevant. Simultaneously, we also study the S-wave amplitude
K−π+ → K−π+, involving the I = 1/2 and I = 3/2, with the coupled channels Kπ, Kη and
Kη′, in the line of Refs. [43,44]. The interaction kernels among the different states are obtained
from chiral Lagrangians. The chiral symmetry is also gauged, so as to derive those vertices
involving vector resonances by minimal coupling. For the σ resonance we take advantage of
the fact that this resonance is dynamically generated in UChPT, as previously stressed, in
terms of two pion rescattering. This allows us to fix its elementary transition matrix elements
with other channels without including any new free parameter. We also consider the exchange
of bare resonances [105,106] in the s–channel. We observe that, in order to describe data, we
need two octets (with bare masses at 1300 MeV and 1900 MeV) and a singlet (with a bare
mass M ≃ 900 MeV.) We are then able to provide fits to a rich set of data involving several
phase shifts and inelastic cross sections up total centre mass energy of around

√
s ≃ 2 GeV.

We pay special attention to the role of 4π, in particular below the KK̄ threshold. We then
study the spectroscopy content of our fits and find poles corresponding to the large set of
resonances: σ, f0(980), f0(1370), f0(1500), f0(1710) and f0(1790) for I = 0 and κ, K∗

0(1430)
and K∗(1950) for I = 1/2. Their pole positions and couplings to the different channels are
also given. We shall also see that one pole, mainly corresponding to the f0(1370), is a pure
octet state, as well as his companion in I = 1/2, the K∗

0(1430). We identify the f0(1710)
and an important contribution to the f0(1500) as an unmixed glueball. This is based on an
accurate agreement of our results with the aforementioned predictions of lattice QCD [89] and
the chiral suppression of the coupling of a scalar glueball to q̄q [91].

∗ ∗ ∗
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Another interesting problem is the presence of excited pseudoscalars, with quantum num-
ber as those of the pseudo–Goldstone bosons, but heavier in mass (lying in a range of 1 GeV
and 2 GeV), that we adress in Chapter 4. In I = 1, one has the π(1300) and π(1800) reso-
nances, and in I = 1/2 the K(1460) and K(1630) resonances. Maybe, the most interesting
case here is the I = 0 sector, where, according to PDG [48], there are three resonances in a
narrow range of masses, namely η(1295), η(1405) and η(1475). A review of the experimental
situation can be found in Ref. [107]. One of these resonances would be an extra state if we
arrange the nearby pseudoscalars in a nonet. Given the clear signal of the η(1405) resonance
in gluon–rich processes (e.g., J/Ψ radiative decays), it becomes then a perfect candidate to
be the lightest pseudoscalar glueball [108–110]. However, the lattice QCD prediction for the
lowest mass pseudoscalar glueball is about 2.4 GeV [84–86], a quite exciting discrepancy. This
picture for the classification of these resonances has been criticized in [111], where it is stated
that just one of these states exists. It is questioned the mere existence of η(1295), and it
is argued that the η(1405) and η(1475) are actually the same state, η(1440). Recently, this
suggestion has received support in Ref. [112]. Another resonance, called X(1835), has been
recently observed, and the analyses suggest IG(JP C) = 0+(0−+) quantum numbers.

If the scalars are generated through the interactions among the lightest pseudoscalars,
it is therefore tempting to think that higher pseudoscalars are generated from the interac-
tions of the lightest pseudoscalars with the lightest scalars, in a beautiful picture resembling
the bootstrap hypothesis of the old days. This also shows a pattern in which spontaneous
chiral symmetry breaking manifests in the hadron spectrum. In order to shed some light
into the question of the pseudoscalars above 1 GeV, we study the interactions between the
f0(980) and a0(980) scalar resonances and the lightest pseudoscalar mesons. We first obtain
the elementary interaction amplitudes, or interacting kernels, without including any ad hoc
free parameter. This is achieved by using the previous results on the nature of the lightest
scalar resonances as dynamically generated from the rescattering of S-wave two-meson pairs.
Afterwards, the interaction kernels are unitarized through UChPT and the final S-wave am-
plitudes result. We find that these interactions are very rich and generate a large amount
of pseudoscalar resonances that could be associated with the K(1460), π(1300), π(1800),
η(1475) and X(1835). Then we can say, at least, that an important contribution to these
states is of a dynamical origin. We also consider the exotic channels (that is, with quantum
numbers that cannot be obtained with q̄q combinations), with I = 3/2 and I = 1, having
the latter positive G-parity. The former could be also resonant in agreement with a previ-
ous prediction [113]. Later works [114,115], studying three-pseudoscalar systems by means of
the Fadeev equations, also obtain some of the cited resonances, namely, K(1460) and π(1300).

∗ ∗ ∗

The nature of the σ meson is studied in Chapter 5. It is the lightest resonance with the
quantum numbers of the vacuum, JP C = 0++. The history of the σ meson is a long one. We
already commented about the works that, putting together the chiral dynamics of the lightest
pseudoscalars (pions, for the case of the σ) and the effects of unitarity, could obtain the σ pole.
More recently, Ref. [116], based on the solution of the Roy equations and ChPT at two-loops,
obtained the value 445+16

−8 − i 272+9
−13 MeV. The Roy equations implement crossing symmetry
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exactly, while the works related to IAM, N/D and BS do it perturbatively. Another recent
precise determination [117], based on dispersion relations, yields 484 ± 17 − i 255 ± 10 MeV.
Let us also mention that all these analyses neglect altogether the inelasticity due to the 4π
channel in ππ S-waves, whereas in our study of the scalar sector in Chapter 3 the 4π channel
was approached as σσ and ρρ states. The fact that all these pole positions (the latter ones
and those obtained in the works previously mentioned) for the σ lie rather close to each other
(particularly one can say that convergence is reached very accurately for the real part) is
another indication for the correctness of treating crossed-channel dynamics perturbatively, as
done in the framework of the works mentioned above. Whence, we could conclude that our
present knowledge on the pole position of the σ resonance is quite precise and, furthermore,
we understand the underlying physics at the hadronic level. Experimentally, new interest
is triggered on the σ resonance from recent high-statistics results, e.g. J/Ψ → ωππ, where
a conspicuous peak is seen [118]. Indeed, this decay mode was the first clear experimental
signal of a σ resonance [119, 120]. Another marked peak around the σ energy region is also
observed in several heavy meson decays, e.g., it was observed with high statistical significance
in D → π+π−π+ [121].

Besides the pole position and the couplings of this resonance, a natural question is about
its nature: qq̄, four quark, meson molecule, glueball, etc. A four-quark nature is assigned
in [49, 50], since a whole nonet of scalars is predicted, with masses and widths compatible
with those of σ, κ, f0(980) and a0(980). The four-quark nature of the lightest scalars is
also favored in other works, see e.g. Ref. [122]. The relative strength of the σ coupling to
KK̄ compared to ππ is also taken as an important property in order to disentangle between
different models for the nature of the σ meson, as stressed in Ref. [123]. This reference points
out that the not so much suppressed coupling of the σ to K+K− as compared with that to
π+π−, is a key ingredient to advocate for a gluonium nature of the σ meson. According to
Ref. [123], a simple qq̄ interpretation of the σ fails to explain the large width of the σ while
a four-quark scenario has difficulties to explain its large coupling to K+K−. It is then worth
emphasizing that the T -matrices obtained in Refs. [33, 39] and similar works (and also in
Chapter 3) also predict a ratio for the σ couplings to K+K− and π+π− in perfect agreement
with the value given by Ref. [123]. However, in this case this stems from the dynamical
generation of the σ resonance from the Goldstone boson dynamics associated to the strong
scalar isoscalar ππ interaction. QCD sum rules were also applied for the study of the lightest
scalar meson, e.g. in Refs. [123–127]. It is argued too that the σ resonance is the chiral
partner of the pion [128–134] and the way in which the σ pole evolves when approaching the
chiral symmetry restoration limit is different according to the nature of this resonance [135].

Considerations based on increasing the QCD number of colors, NC , were exploited in
Refs. [39, 136–139], showing that the σ resonance has a non-standard NC dependence. This
can be done more safely for NC & 3, not too large, while statements for NC ≫ 3 depend much
more on fine details of the approach [138,140–146]. The NC evolution of the σ-pole trajectory
is clearly at odds with the expectations for a purely q̄q or glueball resonance, but in the lines
of what it is expected for a meson-meson or four quark resonance [138,141–147]. In the large
NC limit it is well known that loops are suppressed so that the ππ rescattering vanishes away
and then the σ resonance pole disappears according to Refs. [39,136–138,148].

In this Chapter, the nature of the σ or f0(500) resonance is elucidated further by evaluating
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its quadratic scalar radius, 〈r2〉σ
s . This allows one to have a quantitative estimate for the size

of this resonance. Within our approach, the σ is a dynamically generated state from the pion-
pion interactions. This allows us to obtain its scalar form factor from chiral Lagrangians, and
from it we calculate its quadratic scalar radius. We obtain that the σ resonance is a compact
object with 〈r2〉σ

s = (0.19 ± 0.02) + i 0.06 ± 0.02 fm2. For comparison, the quadratic scalar
radius of the pion is 〈r2〉π

s = 0.65 ± 0.05 fm2 [149]. However, 〈r2〉σ
s is similar to the measured

K± quadratic charge radius [150], 〈r2〉K±
V = 0.28 ± 0.07 fm2. A four-quark picture seems

adequate, rather than a ππ molecule. Our results are connected with other recent works,
mentioned above, that support a non standard nature of the σ as well, while fulfilling strong
QCD constraints. We shall also study the Feynman–Hellman theorem [151, 152] relating the
σ meson mass to that of the pion through the scalar form factor of the former.

We also offer a detailed study of the low-energy S-wave ππ scattering amplitude, using
UChPT with the chiral amplitudes calculated in SU(2) at O(p4). From the amplitudes, we
extract our values for the threshold parameters of S-wave ππ phase shifts, the O(p4) chiral
perturbation theory low energy constants as well as the σ pole position. Our result for the pole
position is

√
sσ = 440 ± 10 − i 238 ± 10 MeV, whereas we also have an accurate description

of the threshold parameters a0
0 = 0.219 ± 0.005, b0

0m
2
π = 0.281 ± 0.006. From the comparison

with other accurate determinations in the literature we obtain average values for the latter
quantities

√
sσ = 458 ± 14 − i 261 ± 17 MeV and a0

0 = 0.220 ± 0.003, b0
0 = 0.279 ± 0.003 m−2

π ,
in good agreement with our own results. We also obtain reliable results for the SU(2) O(p4)
LECs, namely l̄1 = 0.8 ± 0.9, l̄2 = 4.6 ± 0.4, l̄3 = 2 ± 4 and l̄4 = 3.9 ± 0.5. These results are
compared with other works, both from phenomenological studies and lattice results.

The quark mass dependence of the size of the σ as well as its mass and width is consid-
ered too. The latter are compared with lattice QCD results [153] and theoretical calculations
obtained within the IAM [154], finding a general agreement. The fact that the mass of this
resonance tends to follow the threshold of two pions, as found in lattice QCD, is another clear
indication that this resonance is a dynamically generated meson-meson resonance. We find
that, for a pion mass large enough (mπ & 470 MeV at NLO and mπ & 370 MeV at LO), the σ
meson becomes a ππ bound state. The dependence of 〈r2〉σ

s with the pion mass is also studied.
For those pion masses in wich the σ meson is a bound state, we find a larger value for 〈r2〉σ

s .
In this situation, hence, a molecular picture is more appropriate.

∗ ∗ ∗

It has already been remarked the non–perturbative character of the strong interactions.
For this reason, Lattice QCD has become a powerful tool to study them, and, in particular,
the hadronic spectrum. A recent review on the methods and results (excluding however the
glueball question) can be found in Ref. [155]. In Lattice QCD, through the path integral
formalism, one studies the interactions of quarks and gluons in a lattice box of finite volume.
Whence, one needs to connect the results obtained within this discrete and finite space to
the continuum and infinite real space. The standard Lüscher method [156,157] provides such
a link and is the most used one. However, an improvement over this method was recently
given in Ref. [158]. The derivation in Ref. [158] is done using the techniques of UChPT. It
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assumes a volume independent kernel to be unitarized. Analogously, the Lüscher method
shows that volume dependent contributions are exponentially suppressed with L, the size of
the box. However, loops in t– and u–crossed channel are volume dependent in finite volume
calculations in Quantum Field Theory. Furthermore, also contributions from tadpole loop
functions (that contribute directly to the amplitude, but also through mπ and fπ) are volume
dependent. What we intend in Chapter 6 is to investigate these contributions in the case
of ππ S-wave interactions, both for the I = 0 and I = 2 cases. The former, as has already
been stated, is relevant for the σ meson case (the f0(980) also, if the KK̄ channel were also
considered). The I = 2 case is also important, because it is well known that the crossed
channel dynamics contributions are important here. We compare three different approaches
for ππ scattering: BS, N/D and IAM. The BS approach can be considered as an O(p2) version
of the N/D method. Since it has just tree-level amplitudes in the kernel (no loop functions),
it has no volume dependence. On the contrary, the IAM and the N/D approaches include the
O(p4) chiral amplitudes, which are explictly volume dependent. We then derive the necessary
modifications of the infinite volume versions of these amplitudes and calculate them for the
case of a finite box. In essence, these modifications consist in an appropiate substitution of
momentum integrals by sums over the allowed momenta in a finite box. We quantify the
error made by neglecting the exponentially supressed effects in usual extractions of physical
observables from lattice QCD spectra. We conclude that for ππ phase-shifts in the I = 0
channel up to 800 MeV this effect is negligible for box sizes bigger than 2.5m−1

π and of the
order of 5% at around 1.5 − 2m−1

π . For I = 2 the finite size effects can reach up to 10% for
that energy. We also quantify the error made when using the standard Lüscher method to
extract physical observables from lattice QCD, which is widely used in the literature but is
an approximation to the one used in the present work.

∗ ∗ ∗

In the previous chapters we have worked exclusively with meson–meson interactions. In
Chapter 7 we deal with nucleon–nucleon (NN) interactions. This is a basic process, whose
understanding is necessary in a large number of problems in physics, ranging from nuclear
structure to neutron stars. Recent interesting reviews, from a modern perspective of Effective
Field Theory, can be found in Refs. [159–162]. Weinberg proposed [163–165], in the early
1990s, to use ChPT to calculate the NN potential in terms of the explicit degrees of freedom
(nucleons and pions). At this point, it is worth emphasizing the irony of going back to
Yukawa’s view (pion exchanges among nucleons) but with the remarkable difference that
nowadays thanks to ChPT one can calculate systematically the NN potential and connect
with QCD through the chiral symmetry, its spontaneous and explicit breaking and the values
of the chiral counterterms.

Since NN interactions are non–perturbative, the chiral NN potential must be iterated.
Weinberg suggested to solve a Lippmann–Schwinger (LS) equation in terms of the former.
However, the chiral potential is singular at the origin, thus some kind of regularization is
required, typically, a three momentum cut-off Λ. This program was first carried out in
Refs. [166–169]. Many works are done within this formalism, and we refer the reader to
the above reviews, and also to the Introduction in Chapter 7 for further references.
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Despite the great phenomenological success of this approach, several works in the literature
[170–176] showed, from different approaches, that the chiral counterterms that appear in the
ChPT Lagrangian following the standard power counting are not enough to renormalize the
amplitude, that is, to absorb the LS equation cut-off dependence. Some works thus proposed
to promote some higher orders counterterms to lower ones (one should rather say demote.) So
doing, Ref. [170] obtained stable results in the limit Λ → ∞. However, it should be stressed
that this implies a violation of the standard ChPT power counting, but also of the low energy
theorems relating the parameters in the effective range expansion [177]. Besides, one should
bear in mind that in the limit Λ → ∞ a more complicated power counting arises [178, 179].
On the other side of the question are the works in Refs. [177, 180] that, following the lines
of Refs. [181, 182], show that the cut-off Λ should not be taken beyond the breakdown scale
of the EFT, typically below 1 GeV. We will discuss further on this issue through Chapter
Chapter 7, and a more detailed account can also be found in Section 4.5 of Ref. [159].

In our work, we consider NN interactions from Chiral Effective Field Theory. We apply
the N/D method to NN partial waves taking as input the one-pion exchange (OPE) discon-
tinuity along the left-hand cut. This discontinuity is amenable to a chiral power counting as
discussed in Refs. [162, 183, 184], being OPE its leading order contribution. In the first part
of the Chapter, we restrict to uncoupled partial waves. By applying the N/D method, we
obtain a linear integral equation for each partial wave. For S– and P–waves (orbital angular
momentum ℓ 6 1) our method can be directly applied. For D– and higher waves (ℓ > 2), the
integral equations must be solved in the presence of ℓ− 1 constraints, so as to guarantee the
right behavior of the D- and higher partial waves near threshold. This is accomplished by
the introduction of Castillejo–Dyson–Dalitz (CDD) poles [185], which is always allowed in the
N/D method. Later on, we generalize our formalism to coupled channels, discussing in some
detail the case of the deuteron in the 3S1–3D1 partial waves. Our phase shifts and mixing
angle in every wave are compared with those of the Nijmegen group [186], which stem from
a partial wave analysis (PWA) of experimental data. We would like to emphasize now that
we present here a novel method to study the NN interaction, in which the calculated NN
partial waves are based on dispersion relations and chiral Lagrangians and are independent
of regulator. At this stage, our calculation is at leading–order and thus not yet competitive
with present high–precision calculations. Though, we must stress that this method can be
systematically improved order–by–order, and that the basic input is calculated from ChPT.
Both features are in harmony with the modern perspective of Effective Field Theories.

∗ ∗ ∗

After having treated all these topics in the body of the thesis, we attempt to draw our
conclusions in Chapter 8, pointing out the main achievements of our work. In order to
facilitate the reading of the thesis, we relegate some technical aspects in several appendices
given in Part III, at the end of the thesis. The references are collected at the very end of this
thesis. We include separatedly, as an author publication list, those that have appeared due to
the work contained in it, namely [A,B,C,D,E,F, i, ii, iii, iv,v]. .
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1.1 Introduction

In this Chapter we attempt the formal and rigorous construction of Chiral Perturbation
Theory (ChPT). We employ the general formalism to derive effective Lagrangians [20, 21] in
Quantum Field Theory and the knowledge of the chiral symmetry of the strong interactions
and its spontaneous breakdown.

First, in Sec. 1.2, the Goldstone theorem [9, 10] is deduced. It dictates the appearence of
massless particles if a global symmetry of a quantum field theory spontaneously breaks down.
In Secs. 1.3 to 1.7 a detailed review of the construction of effective Lagrangians is done. The
Lagrangian of QCD and its chiral symmetry is investigated in Sec. 1.8. The implications of
the spontaneous symmetry breaking on the hadronic spectrum of the latter is also studied. In
Sec. 1.9 we give the basic building blocks to construct chiral Lagrangians together with their
transformation properties under Lorentz transformations, chiral symmetry, parity, charge con-
jugation and Hermiticity. Then, the most general lowest order Lagrangian invariant under the
previous symmetry transformations is constructed in Sec. 1.10. In Sec. 1.11, the Lagrangians
up to order O(p4) are given, whereas in Sec. 1.13 the extension of the formalism to include
explicit resonances is reviewed. Finally, in Sec. 1.12, an example of an actual calculation made
from the deduced chiral Lagrangians is performed.

1.2 Goldstone theorem

Let A be a generic observable, and consider the continuous global symmetry group G, that
leaves invariant the ground state, |0〉. Then

g |0〉 g∈G−→ g |0〉 ≡ e−iθaQa |0〉 (1.1)

〈0 |A| 0〉 −→
〈
0
∣∣∣g−1Ag

∣∣∣ 0
〉

(1.2)

To first order in the parameters θa,
〈
0
∣∣∣g−1Ag

∣∣∣ 0
〉

=
〈
0
∣∣∣e+iθaQaAe−iθaQa

∣∣∣ 0
〉

= 〈0 |A| 0〉 + i 〈0 | [θaQa,A] | 0〉 + O(θ2) . (1.3)

If each charge Qa is a Noether charge, then Q = θaQa is conserved with jµ =
∑
θaj

µ
a the

associated current,

Q =
∫

d3x j0(~x, t) , (1.4)

∂jµ(~x, t)
∂xµ

= 0 . (1.5)
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Now consider the vacuum expectation value, 〈· · ·〉VAC, of the conmutator of the operator
A with the current (instead of the charge),

〈[
jλ(y),A(x)

]〉
VAC

=

=
∑

N

(〈
0
∣∣∣jλ(y)

∣∣∣N
〉

〈N |A(x)| 0〉 − 〈0 |A(x)|N〉
〈
N
∣∣∣jλ(y)

∣∣∣ 0
〉)

=
∑

N

(〈
0
∣∣∣jλ(0)

∣∣∣N
〉

〈N |A(0)| 0〉 e−iPN (y−x) − 〈0 |A(0)|N〉
〈
N
∣∣∣jλ(0)

∣∣∣ 0
〉
e−iPN (x−y)

)

=
i

(2π)3

∫
d4p

(
ρλ(p)e−ip(y−x) − ρ̃λ(p)e−ip(x−y)

)
, (1.6)

where

i (2π)−3 ρλ(p) =
∑

N

〈
0
∣∣∣jλ(0)

∣∣∣N
〉

〈N |A(0)| 0〉 δ(p− pN) (1.7a)

i (2π)−3 ρ̃λ(p) =
∑

N

〈0 |A(0)|N〉
〈
N
∣∣∣jλ(0)

∣∣∣ 0
〉
δ(p− pN) . (1.7b)

Due to Lorentz invariance ρ(p) and ρ̃(p) must have the form

ρλ(p) = pλρn(p2)θ(p0) (1.8)

ρ̃λ(p) = pλρ̃n(p2)θ(p0) . (1.9)

When these expressions are inserted into Eq. (1.6), the pλ can be written as derivatives, so
that:

〈[
jλ(y),A(x)

]〉
VAC

=

= − 1

(2π)3

∂

∂yλ

∫
d4p

(
ρn(p2)θ(p0)e−ip(y−x) + ρ̃n(p2)θ(p0)e−ip(x−y)

)

= − ∂

∂yλ

∫
dµ2

(
ρn(µ2)∆+(y − x;µ2) + ρ̃n(µ2)∆+(x− y;µ2)

)
, (1.10)

where
∆+(z;µ2) =

1
(2π)3

∫
d4pθ(p0)e−ipzδ(p2 − µ2) (1.11)

is the propagator containing the particle contribution, but not the antiparticle one, due to
the θ(p0) factor. An identity was inserted through

ρn(p2) =
∫

dµ2δ(p2 − µ2)ρn(µ2) ,

and analogously for ρ̃(p2). Now, if y − x is spacelike, (y − x)2 < 0, then the time component
is not invariant under a proper Lorentz transformation, so ∆+(z;µ2) can depend only on z2

and µ2, which implies ∆+(y − x;µ2) = ∆+(x − y;µ2). In addition, due to microcausality, in
this case all conmutators must vanish when evaluated for y and x with y − x spacelike, and
then 〈[

jλ(y),A(x)
]〉

VAC
= − ∂

∂yλ

∫
dµ2∆+(y − x;µ2)

(
ρn(µ2) + ρ̃n(µ2)

)
= 0 ,
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and whence
ρn(µ2) = −ρ̃n(µ2) ∀µ2 (1.12)

Now, going back to the general case where ∆+ is not even,

〈[
jλ(y),A(x)

]〉
VAC

= − ∂

∂yλ

∫
dµ2ρn(µ2)

(
∆+(y − x;µ2) − ∆+(x− y;µ2)

)
, (1.13)

and, as the current is conserved, Eq. (1.5), then

− ∂

∂yλ

〈[
jλ(y),A(x)

]〉
VAC

=

= −
∫

dµ2ρn(µ2) �y

(
∆+(y − x;µ2) − ∆+(x− y;µ2)

)
=

= +
∫

dµ2µ2ρn(µ2)
(
∆+(y − x;µ2) − ∆+(x− y;µ2)

)
= 0 , (1.14)

because ∆+ satisfies

(�y + µ2)∆+(y − x;µ2) = 0

�y ∆+(y − x;µ2) = �y ∆+(x− y;µ2) .

An important conclusion is reached, namely that

µ2ρ(µ2) = 0 , (1.15)

but it should not be concluded that ρ(µ2) = 0, rather, it is shown in what follows that
ρ(µ2) ∼ δ(µ2). We now try to explicitly integrate Eq. (1.13) for λ = 0:

〈[
j0(y),A(x)

]〉
VAC

=
i

(2π)3

∫
d4p

∫
dµ2ρn(µ2)p0θ(p0)δ(p2 − µ2)

(
e−ip(y−x) + e+ip(y−x)

)

=
1
2

i

(2π)3

∫
dµ2ρn(µ2)

∫
d3~p

(
e−iω(~p2)(y0−x0)ei~p(~y−~x) + eiω(~p2)(y0−x0)e−i~p(~y−~x)

)
,

with ω(~p2) =
√
~p2 + µ2. In order to go further, since the integration in ~p cannot be easily

performed unless one takes x0 = y0, we integrate instead over ~y. On the l.h.s. this will give
the conmutator of the charge, whereas the integral in the r.h.s. will simply give a Dirac delta
function δ(3)(~p), so that

〈[Q,A(x)]〉VAC =
i

2

∫
dµ2ρ(µ2)

(
e−iµ(y0−x0) + eiµ(y0−x0)

)
. (1.16a)

For the case x0 = y0, it reduces to:
〈[
Q,A(y0, ~x)

]〉
VAC

= i
∫

dµ2ρ(µ2) . (1.16b)

To satisfy together Eqs. (1.15) and (1.16), it is necessary then that

ρ(µ2) = iδ(µ2) 〈[Q,A(x)]〉VAC . (1.17)

In view of this result and comparing with Eq. (1.7), we notice that there must exist a single-
particle state with p2

N = 0, that is, a massless particle. This is the content of the Goldstone
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theorem [9, 10]. In words, it states that, for each generator Q that does not anihilate the
ground state, there must be a spin-zero massless particle, called Goldstone boson, with the
same quantum numbers as Q (because this particle is generated from the vacuum through
these operators.)

For example, consider QCD, with SU(2)L ⊗ SU(2)R → SU(2)V . As SU(2) has three
generators, we find three Goldstone bosons, the isospin triplet of pions, π+, π− and π0. If
instead we consider SU(3), then eight generators are present, so the set of Goldstone bosons
is enlarged to π+, π−, π0, η8, K+, K−, K0 and K̄0. Of course, as this symmetry is not exact,
the masses are not exactly zero, being this effect more remarkable in SU(3).

1.3 Properties of nonlinear Lagrangians

Throughout the next sections (Secs. 1.3 to 1.7) the formalism for the construction of effective
Lagrangians [20, 21] will be reviewed. This will make possible to deduce the most general
invariant Lagrangian under chiral symmetry transformations. It is worth mentioning that
this formalism is very general and, besides the applications that we study here, it is widely
used in other fields of theoretical physics, i.e., in supersymmetry [187].

Let L be the Lagrangian of a specific quantum field theory, in terms of some fields, φ,

L[φ] = L0[φ] + L1[φ] (1.18)

being L0 the free field Lagrangian and L1 the interaction Lagrangian. The following change
of variables is done,

φ = χF [χ] F [0] = 1 (1.19)

so that, to first order in χ, φ = χ + O(χ2) and χ creates and anihilates the same particles
than φ does. In terms of χ, the Lagrangian is

L[χF [χ]] = L0[χ] + L2[χ] , (1.20)

or, in words, we get the same free Lagrangian, but the interaction Lagrangian is different.
However, there is a theorem [188] valid for relativistic quantum field theory with weak restric-
tions on the form of F [χ] that states that the on-shell matrix elements of this Lagrangian are
the same than those obtained from

L′[φ] = L0[φ] + L2[φ] (1.21)

In all physically relevant cases, L and F are expansions in power of the φ fields and their
derivatives (this will be the case of QCD and ChPT), and this condition is enough for the
theorem to be valid. The very reason of the validity of the theorem lies on the fact that
terms of order greater than the first do not contribute on shell because they do not contain
one-particle singularities. This theorem holds for the exact solution, but also order-by-order,
as we show in the following lines. Consider, for an arbitrary parameter a, the Lagrangian

L[φ; a] = a−2L[aφ] , (1.22)

so that the free Lagrangian remains invariant.
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For a connected Feynman diagram, if we denote by

P the power of a,

V the number of vertices,

Ni the number of lines flowing into/from vertex i,

E the number of external legs,

I the number of internal legs,

L the number of loops,

then it results that:

P =
V∑

i=1

(Ni − 2) .

Because of the following identities,

V∑

i

Ni = E + 2I , (1.23)

L = I − V + 1 , (1.24)

then
P = E − 2 + 2L . (1.25)

This means that, for a fixed reaction (this is, for the same external particles, fixed E) the
power of a increases with the number of loops. The aforementioned theorem is valid for the
exact solution, and we are expressing the latter as a power series in a, which has shown to be
equivalent to a power series in the number of loops. Introducing a in the field transformation
Eq. (1.19),

aφ = aχF [aχ]

we get
L[φ; a] = a−2L[aχF [aχ]] . (1.26)

The same rules as before apply to a−2L2[aχ] and then, because of the aforementioned theorem
on reparametrization field independence, each coeffcient in the a power expansion of the on-
shell S-matrix should be the same. Note that each of these coefficient-amplitude are calculated
with the same number of loops.

1.4 Standard form of nonlinear representations

Consider a connected, compact, semisimple Lie group G with n parameters, and a continuous
subgroup H ⊆ G whose generators anihilate the vacuum, H |0〉 = 0, eiViφi |0〉 = |0〉. Let

Vi, i = 1, . . . ,n− d (1.27)

be the generators of H and
Al, l = 1, . . . , d (1.28)

be the remaining generators of the group G. For the case of Chiral Perturbation Theory,
though it will be treated in detail later in Secs. 1.8–1.10, let us determine now the group G
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and the subgroup H. The massless QCD Lagrangian with Nf flavours has a global invariance
under the group SUL(Nf) ⊗ SUR(Nf) ⊗ UV (1) ⊗ UA(1). The UV (1) is exactly conserved and
its generator is the baryon number. The UA(1) symmetry is broken at the quantum level,
giving rise to the so called UA(1) anomaly. We identify G with the group of chiral transfor-
mations, G = SUL(Nf) ⊗ SUR(Nf). Chiral symmetry is spontaneously broken [9–14], and the
subgroup that remains unbroken is H = SUV (Nf) ≡ SUL+R(Nf), that originates the famous
eightfold way [15]. The lightest pseudoscalar mesons are the Goldstone bosons generated by
the spontaneous symmetry breaking of G into H.

Any element g ∈ G has the form g = eξ̄A+ūV , where ξ̄A means
∑d

i=1 ξ̄i · Ai ≡ ξ̄iAi,1

and analogously for ūV . With a suitable choice of parameters, this element can be uniquely
decomposed in a neighborhood of the identity element of G, denoted by e, as g = eξAeuV . We
now proof this latter statement.

For infinitesimal transformations, this is clear, since

g = eξ̄A+ūV ≃ e + ξ̄A+ ūV ≃ eξ̄AeūV , (1.29)

but we can show that this decomposition is more general than the restricted case of infinites-
imal transformations. If H is an invariant subgroup, then

g = eξ̄A+ūV = lim
N→∞

(
e +

ξ̄A

N
+
ūV

N

)N

=

= lim
N→∞

(gAhV )N = lim
N→∞

(
gAhV g

−1
A

) (
g2

AhV g
−2

A

)
. . .
(
gN

AhV g
−N
A

)
gN

A =

= h lim
N→∞

gA
N = heξ̄A = heξ̄Ah−1h = eξAh = eξAeuV (1.30)

gA = eξ̄A/N and hV = eūV/N are infinitesimal transformations because N → ∞. Use of the
invariance of H has been made to put gA

mhV gA
−m = h

(m)
V , where the last superscript means

that it is some element of H, depending of the power of gA in the left-hand side of the equation.
As H is a subgroup, the product of these h

(m)
V is again some element h ∈ H, and we write it as

h = euV . The orthonormal condition of the generators, Tr(ViAj) = 0,2 has been used to write
heξ̄Ah−1 = eξA for some new coordinates ξ. Let us calculate

Tr(VihAjh
−1) = Tr(h−1VihAj) = EikTr(VkAj) = 0 , (1.31)

where it was used that h−1Vih = EikVk because H is invariant. The above equation implies
that hAjh

−1 contains just A generators, otherwise the trace would be different from zero.
Thus,

heξ̄Ah−1 =
∑

n

1
n!
hξ̄jAjh

−1 hξ̄kAkh
−1 · · · =

∑

n

1
n!
Cjlξ̄j︸ ︷︷ ︸

ξl

Al · · · =
∑

n

1
n!

(ξA)n = eξA . (1.32)

So we have shown, in the case of H being an invariant subgroup, that

g = eξ̄A+ūV = eξAeuV = euV eξ̄A , (1.33)

1In the following, we use the sum convention of Einstein on repeated indices.
2This is the one that holds for chiral symmetry.
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without restricting to the case of infinitesimal transformations. The last equality follows from
one of the intermediate steps of Eq. (1.30). Finally, let us also note that the transformation
g = eξ̄A+ūV = eξAeuV induces a transformation of variables (ξ̄, ū) → (ξ,u), which has, for the
case g = e, a non-zero Jacobian, namely, J = 1. Thus, invoking continuity, the transformation
has a non-zero Jacobian in a neighborhood of the identity element of G, so the transformation
is valid, which is another proof.

Consider now the element g0e
ξA with g0 ∈ G. As shown, we can write

g0e
ξA = eξ′Aeu′V where ξ′ ≡ ξ′(ξ, g0) and u′ ≡ u′(ξ, g0) (1.34)

Let also be a unitary and linear representation h : ψ → D(h)ψ, with h ∈ H. To each element
g0 we assign a pair of transformations

g0 : ξ → ξ′

ψ → D
(
eu′V

)
ψ . (1.35)

These transformations give a non-linear realization of the group G. To show this, notice that

g0e
ξA = eξ′Aeu′V

g1e
ξ′A = eξ′′Aeu′′V

g1g0e
ξA = g1e

ξ′Aeu′V = eξ′′Aeu′′V eu′V = eχ′′Aeu′′′V ,

so that

g1g0 :ξ → ξ′′

ψ → D
(
eu′′′V

)
ψ = D

(
eu′′V eu′V

)
ψ = D

(
eu′′V

)
D
(
eu′V

)
ψ , (1.36)

which is the required composition rule:

ξ′′ = ξ′′(ξ′(ξ, g0), g1) , (1.37)

D(eu′′′V ) = D(eu′′V )D(eu′V ) . (1.38)

The matrices D(H) of a representation depend just on the elements of the group: this is
the case for the transformation on ξ under h ∈ H. However, the transformation on ψ depends
also on the ξ through u′, and thus this transformation is meaningful (and the equality in
Eq. (1.36) is true) only if considered together with that on ξ. In what follows, we will suppose
that D(h) is in its completely decomposed form, and we will call Eq. (1.35) our standard form
for a realization.

Let us see now that, when restricted to the subgroup H, the realization Eq. (1.35) becomes
a linear representation. First, we have:

heξA = heξAh−1h = eξ′Ah ≡ eξ′AeuV , (1.39)

and thus D(euV ) = D(h). As u is obviously independent of ξ, then this transformation is
linear. Second, ξ′ = D(b)(h)ξ, where D(b) is a linear representation of H. For example, If we
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have G = SUL(N) ⊗ SUR(N) and H = SUV (N), then D(b) is the adjoint representation of
SU(N):

ξ′
aAa = hξbAbh

−1 = ξbhAbh
−1 = D(h)abξb︸ ︷︷ ︸

ξ′
a

Aa ,

where D is the adjoint representation, which we call, from now on, D(b), and, as promised,

ξ′ = D(h)ξ .

There is a special case in which the form of the transformation of ξ can be further simplified,
namely, when the group G has an automorphism R : g → R(g) so that

Vi
R→ Vi

Al
R→ −Al

Chiral groups are within this case: the parity operator induces an automorphism that changes
the sign of the axial generators. Applying the automorphism to

eu′V = e−ξ′Ag0e
ξA

we get

eu′V = eξ′AR(g0)e−ξA

so that

e2ξ′A = g0e
2ξAR(g−1

0 ) . (1.40)

For chiral groups, one has g = gLgR, with gL = eϕλL and gR = eθλR . Then R(g) = eϕλReθλL ,
and

e2ξA = e2ξλRe−2ξλL

e2ξ′A = eϕλLeθλRe2ξAe−ϕλRe−θλL

= eϕλLe−2ξλLe−θλLeθλRe2ξλRe−ϕλR

thus

e2ξ′λR = eθλRe2ξλRe−ϕλR

e−2ξ′λL = eϕλLe−2ξλLe−θλL

Both results are consistent, for the generators λL and λR behave in their respective spaces
as Gell–Mann matrices, and so we can obtain the transformation law for e−2ξλL from that of
e2ξλR because

e−2ξ′λR = eϕλRe−2ξλRe−θλR

which is the same transformation for e−2ξλL with the change L ↔ R.
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1.5 Classification of all nonlinear realizations

In this section, we give the most general form of a nonlinear realization. It will be shown that
all of them can be brought into the standard form studied above, by a reparametrization of
fields, see Eq. (1.19) in Sec. 1.3.

This problem will be considered from a broader point of view. Let M be a n-dimensional
real differentiable manifold. Let G be a compact connected semisimple Lie group, used as a
transformation over M ,

g : x → Tgx x ∈ M , g ∈ G (1.41)

where x can denote both a point of M and a n-dimensional column vector in some coordinate
system. We suppose that Tgx is an analytic function both on g and x. Next we identify the
fields of the effective theory to be studied with some particular set of cordinates in M . Thus,
the problem of finding all field transformation laws under a group is equivalent to find all
possible ways of realizing a group in a differentiable manifold M .

It turns out to be advantageous to consider the problem in this manner, since going from
one set of fields to another just means a change in the coordinates of M , which has no
geometrical consequences, nor changes on the on-shell S-matrix elements. The analyticity
hypothesis is necessary due to the power series expansions we make in field theory, and also
because we want to preserve locality. However, the analogy is not complete, since in field
theory general coordinates transformations are not allowed, as seen in Sec. 1.3; rather, these
transformations must preserve the origin, according to Eq. (1.19). This leads us to suppose
that there exists a special point in the manifold M , that we call origin, and allow just for
coordinate systems that share the origin, i.e., systems in which the origin is represented by
the same point. There is no need to characterize globally the action of the group on the
manifold, but just in a neighborhood of the origin, because fields are ultimately used in a
power-series expansion. Also, for the usual properties of connected compact Lie groups, we
will pay attention only to a neighborhood of the identity element of G.

There can be elements of the group G that leave invariant the origin of M . These elements
form a subgroup H, H ⊆ G, called the origin stability group. It can consist of a single element,
the identity element of G, and could extend up to the whole group G. We will suppose that
H is continuous.

Summarizing, our problem can be stated as follows: given G and H, we want to find the
most general way of realizing them over the manifold M , with all the restrictions commented
above. This problem, as shown in what follows, is equivalent to that of finding all nonlinear
realizations of G that become linear when restricted to the subgroup H ⊆ G.

Theorem (Linearization theorem). Let G be a semisimple connected compact Lie group and

let H ⊆ G be the subgroup of all elements that leave invariant the origin so that, in these

coordinates,

Th0 = 0 ∀ h ∈ H

Then there exists a set of coordinates y in a neighborhood of the origin so that, in these new
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coordinates,

Thy = D(h)y ∀ h ∈ H , (1.42)

being D(h) a linear representation of H.

Proof. Given that Tgx is continuous in x and that Th0 = 0 it follows that, close to the origin,
there must exist a neighborhood which is invariant under the action of the subgroup H, because
the latter is continuous, compact and bounded. Thus, expanding Thx,

Thx = D(h)x+ O(x2) ,

being D(h) a linear realization of H. We define now n functions,

y =
∫

H
dh D−1(h)Thx , (1.43)

where dh is the invariant measure and the group integral is normalized to
∫
Hdh = 1. The

functions y are analytical in x and, in fact, we have

y = x+ O(x2) .

Whence the Jacobian determinant [∂y/∂x] is one in the origin, and so we can use the y as a
new system of coordinates around the origin. Under the action of an element h0 ∈ H,

h0 : y −→
∫

H
dh D−1(h)ThTh0x =

∫

H
dh D−1(h)Thh0x =

=
∫

H
d(hh0) D−1(hh0h

−1
0 )Thh0x =

= D(h0)
∫

H
d(hh0) D−1(hh0)Thh0x = D(h0)y ,

and this proves the theorem.

This theorem is useful as a simple test of linearizability, and also, if the transformation
law can be linearized, it provides a formula to obtain the new coordinates.

Let us proceed now to consider our main problem. Our complete set of orthonormal
generators is composed by Vi, the generators of H and Al, the rest of the generators of G. Let
us define the differentiable manifold N consisting of all the points of the form Tg0. We can
associate the coordinates ξl to the points of N through eξA0. As every transformation rule
can be written as g = eξAeuV in a neighborhood of the identity, it is clear then that in some
neighborhood of the origin we can write

∀ x ∈ N x = g0 = eξAeuV 0 = eξA0 , because euV 0 = 0

Therefore, in the aforesaid neighborhood there is a unique set of parameters ξl for each point
of N acting as coordinates for N in that neighborhood. Let us prove this last statement,
namely, that N = {eξA0 = eξAeuV 0 = g0 | g ∈ G} admits as a unique system of coordinates
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the parameters ξa, a = 1, . . . , d. Suppose that there exist two such sets, (ξ1)a and (ξ2)a,
a = 1, . . . , d. Then

eξ1A0 = eξ2A0 → e−ξ2Aeξ1A0 = 0 → e−ξ2Aeξ1A = euV ∈ H .

Performing a power expansion in the last equality,

−(ξ2)lAl + (ξ1)lAl − (ξ1)l(ξ2)mAlAm + · · · = uiVi + · · · ,

where the ellipsis indicate higher orders in the power expansion. In order to generate a V we
have to go to the AlAm product, so the u are O(ξ2) and the leading term of the left hand side
of the previous equation must be zero, so ξ1 = ξ2.

The transformation properties of N are now completely determined,

g(eξA0) = eξ′Aeu′V 0 = eξ′A0 .

Let us now introduce n − d coordinates in a real vector ψ. Then a point of M , in some
neighborhood of the origin has coordinates (ξ,ψ)∗. The origin 0 is now (0, 0)∗. Points of the
form (ξ, 0)∗ are in N , for:

g(ξ, 0)∗ = geξA(0, 0)∗ = eξ′Aeu′V (0, 0)∗ = eξ′A(0, 0)∗ = (ξ′, 0)∗ ξ′ ≡ ξ′(ξ, g) .

The representation of G is then reducible. From the linearization theorem above, it follows
that the coordinates (ξ,ψ)∗ can be chosen so that H acts linearly, since it leaves the origin
invariant. With a suitable choice of coordinates ψ, the representation, since H is compact,
becomes completely irreducible,

euV (ξ,ψ)∗ =
(
D(b)(euV )ξ,D(euV )ψ

)∗
,

and the ξ transform under the adjoint representation of G restricted to H, D(b), induced by

eξ′A = euV eξAe−uV

ξ′ = D(b)(h)ξ

We introduce new coordinates, that we call standard coordinates,

(ξ,ψ) = eξA(0,ψ)∗ , (1.44)

connecting the subspace of ξ = 0 with that of ξ. For ξ = 0, we have (0,ψ) = (0,ψ)∗, the
Jacobian is thus 1 and the transformation is allowed in a neighborhood of the origin. We can
work out the transformation of the new coordinates under the action of h ∈ H:

h(ξ,ψ) = heξA(0,ψ)∗ = eξ′Ah(0,ψ)∗ = eξ′A(0,D(h)ψ)∗ = (ξ′,D(h)ψ) , (1.45)

with ξ′ = D(b)(h)ξ. Whence, we have proven the following:

Lemma. Under the subgroup H the standard coordinates transform as (D(b)(h)ξ,D(h)ψ) with

the same linear representation as for the original coordinates.
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With the results gathered in this Section, we already know how a generic element g ∈ G

acts in the new coordinates. Let us see now that they transform like Eq. (1.35), i.e., like our
standard form:

g(ξ,ψ) = geξA(0,ψ)∗ = eξ′Aeu′V (0,ψ)∗ =

= eξ′A(0,D(eu′V )ψ)∗ = (ξ′,D(eu′V )ψ) ,

where the last step follows from the previous lemma. Therefore, we see that, as promised
in the beginning of this Section, the most general nonlinear realization of a group G with
a subgroup H that leaves invariant the origin reduces to the standard form after a suitable
change of coordinates in a neighborhood of the origin.

1.6 Covariant derivatives

Through Sec. 1.5 the transformation porperties of the fields were considered, and now the
transformations of their derivatives must be studied, since Lagrangian densities, used in quan-
tum field theories, are functions of the fields and their derivatives. In Sec. 1.5 a generic set
of coordinates was chosen and brought into an adequate form, called standard form. In this
Section, essentially the same procedure is followed, but with the derivatives of the fields. Of
course, the transformation properties of these derivatives are determined by those of the fields
themselves. Thus, the derivatives ∂µξ and ∂µψ are introduced as independent coordinates on
the manifold M :

(ξ,ψ, ∂µξ, ∂µψ)∗ . (1.46)

As we saw in Sec. 1.4, under the subgroup H, ξ and ψ transform linearly (under their respective
transformations), and the associated u′ are independent of ξ, and then

(ξ,ψ, ∂µξ, ∂µψ)∗ h−→ (D(b)(h)ξ,D(h)ψ,D(b)(h)∂µξ,D(h)∂µψ)∗ (1.47)

The derivatives, as said, are not in standard form, but as shown, they transform linearly under
H and they can be brought into standard form with a suitable change of coordinates. The new
coordinates, transforming in the standard way, are denoted with Dµξ, Dµψ, and are defined
as

(ξ,ψ,Dµξ,Dµψ) = eξA(0,ψ, ∂µξ, ∂µψ)∗ (1.48)

They are constructed so that they transform under G in a standard form, analogous to (1.35),

(Dµξ)′ = D(b)(eu′V )(Dµξ) (1.49)

(Dµψ)′ = D(eu′V )(Dµψ) . (1.50)

We consider now the following derivative:

∂µ(ξ(x),ψ(x)) = ∂µe
ξ(x)A(0,ψ(x))∗ . (1.51)

One has:
∂µe

ξ(x)A(0,ψ)∗ = eξ(x)A
[
e−ξ(x)A∂µe

ξ(x)A(0,ψ)∗
]

,
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and we define:3

eξ(x)A∂µe
−ξ(x)A ≡ pµA+ vµV . (1.52)

Inserting this above, we finally get:

eξ(x)A
[
e−ξ(x)A∂µe

ξ(x)A(0,ψ)∗
]

= eξ(x)A
(
e−ξ(x)A∂µe

ξ(x)A
)

(0,ψ)∗ + eξ(x)A(0, ∂µψ)∗

= eξ(x)A (pµA+ vµV + ∂µ) (0,ψ)∗ ≡ (ξ,ψ, pµ, (∂µ + vµT )ψ) , (1.53)

where in the last step we have added two extra coordinates, representing the covariant deriva-
tives of ξ(x) and ψ(x), given, respectively, by:

Dµξ(x) = pµ(x) , (1.54)

Dµψ(x) = (∂µ + vµV )ψ(x) . (1.55)

Let us now explicitly check the transformation rules for Dµξ and Dµψ, Eq. (1.49) and
Eq. (1.50). Let g ∈ G (recall that g is not space-time dependent). We have:

geξA = eξ′Aeu′V

g∂µe
ξA = (∂µe

ξ′A)eu′V + eξ′A(∂µe
u′V )

and thus, eliminating g,

g = eξ′Aeu′V e−ξA

eξ′Aeu′V e−ξA∂µe
ξA = (∂µe

ξ′A)eu′V + eξ′A(∂µe
u′V )

e−ξ′A∂µe
ξ′A = eu′V e−ξA(∂µe

ξA)e−u′V − (∂µe
u′V )e−u′V =

= eu′V e−ξA(∂µe
ξA)

︸ ︷︷ ︸
(vµV +pµA)

e−u′V + eu′V (∂µe
−u′V ) =

= eu′V (vµV + pµA) e−u′V + eu′V (∂µe
−u′V ) ≡

≡ v′
µV + p′

µA .

Identifying terms,

p′
µA = eu′V pµAe

−u′V (1.56)

v′
µV = eu′V (vµV )e−u′V − (∂µe

u′V )e−u′V . (1.57)

From the first of these equations, recalling that D(b)(h) is the representation induced by
heξAh−1 = eξ′A, we read that

p′
µ = D(b)(eu′V )pµ . (1.58)

We have to work out now the expression of (Dµψ)′,

(Dµψ)′ = ∂µψ
′ + v′

µV ψ
′ =

= (∂µe
u′V )ψ + eu′V ∂µψ + (eu′V vµV − ∂µe

u′V )e−u′V eu′V ψ =

= eu′V (∂µ + vµV )ψ = eu′VDµψ = D(eu′V )Dµψ ,

so that:
(Dµψ)′ = D(eu′V )Dµψ . (1.59)

3Notice that, for the explicit developments that follow, we should write the matrices representing the

generators Vi in some representation with a different symbol, Ti. However, since no confusion will arise, we

will make some notation abuse, and will denote them still by Vi.
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1.7 Gauge fields

Now we take one further step, considering that the transformations g depend of space-time.
In this case, ∂µξ and ∂µψ do not transform linearly under H, and thus gauge fields must be
introduced. We denote them by ρiµ and alµ associated with generators Vi and Al, respectively.
Their transformation laws are given by:

ρµV + aµA
g−→ ρ′

µV + a′
µA = g(ρµV + aµA)g−1 − f−1(∂µg)g−1 , (1.60)

being f a universal coupling constant of the gauge fields. Now, the fields aµ and vµ are
introduced through:

e−ξA (∂µ + f(ρµV + aµA)) eξA = vµV + pµA , (1.61)

which is the analogous to Eq. (1.52). In what follows, we take f = 1 for clearness and
conciseness.

Instead of ∂µψ, we have to consider now (∂µ+ρµV )ψ. This combination transforms linearly
under H, since, for g = h ∈ H,

ρ′
µV = hρµV h−1 − (∂µh)h−1 , (1.62)

so that: (
∂µ + ρ′

µV
)
ψ′ = h (∂µ + ρµV )ψ . (1.63)

Next we show the transformation law of Eq. (1.61). As geξA = eξ′Aeu′V , then eξ′A =
geξAe−u′V . Inserting this into the transformed version of (1.61),

v′
µV + p′

µA = e−ξ′A
(
∂µ + ρ′

µV + a′
µA
)
eξ′A =

= eu′V e−ξAg−1
(
∂µ + ρ′

µV + a′
µA
)
geξAe−u′V =

= eu′V e−ξA
(
g−1∂µg + g−1(ρ′

µV + a′
µA)g

)

︸ ︷︷ ︸
ρµV +aµA

eξAe−u′V +

+ eu′V e−ξA(∂µe
ξA)e−u′V + eu′V (∂µe

−u′V ) =

= eu′V
[
e−ξA (∂µ + ρµV + aµA) eξA

]

︸ ︷︷ ︸
pµA+vµV

e−u′V + eu′V ∂µe
−u′V =

v′
µV + p′

µA = eu′V (pµA+ vµV ) e−u′V + eu′V ∂µe
−u′V .

Whence, identifying terms:

p′
µA = eu′V pµAe

−u′V (1.64)

v′
µV = eu′V (vµV )e−u′V − (∂µe

u′V )e−u′V . (1.65)

Comparing with (1.56) and (1.57), we see that the transformation properties are the same
as in the global (instead of local) case, which drive to the wanted results for the covariant
derivatives.
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1.8 The chiral symmetry of the QCD Lagrangian

1.8.1 The Lagrangian

Quantum Chromodynamics (QCD) [1–7] is a non-abelian Yang-Mills theory [8] with gauged
color SU(3) symmetry. The Lagrangian density of QCD is:

LQCD =
∑

f

qf

(
i /D −mf

)
qf − 1

2
TrGa

µνGaµν ; (1.66)

Two shorthand are used here: /D = γµDµ, and q̄ = q†γ0, with γµ the Dirac matrices. The
flavors of the quarks are f = u, d, s, c, b, t, and each flavor contains three colors. The covariant
derivative is

iDµ = i∂µ − gAa
µ

λa

2
, (1.67)

where λa, a = 1, . . . , 8 are the SU(3) Gell-Mann matrices, acting in the color space, and Aa
µ

are the octet of color gauge vector bosons, gluons. The color field or strength field Gµν is

Ga
µν = ∂µA

a
ν − ∂νA

a
µ − gfabc

[
Ab

µ,Ac
ν

]
, (1.68)

so that the gluons are coupled among themselves with a universal coupling constant g. From
now on, we focus on the bilinear part of the QCD Lagrangian in the quark fields, since
obviously the strength part has no flavor content. We also use a matrix notation for the
quark flavours, as:

LQCD = q̄
(
i /D −M

)
q + · · · ,

q =




u

d

s




with M = diag(mu,md,ms), and we are anticipating here that we will restrict ourselves to the
so called light quarks, u, d and s. Heavier quarks are neglected in this effective Lagrangian
approach since we will restrict here to energies well below the production threshold of particles
involving these quarks.

1.8.2 Chiral symmetry

Chiral symmetry is a symmetry4 of the Lagrangian in the limit of massless quarks. Massless
here will be a good aproximation for the u, d quarks (SU(2) symmetry) having current masses
mu ∼ 5 MeV, md ∼ 10 MeV [48, 189, 190]. These are small compared to a ΛQCD ≃ 0.3 GeV.
For the s quark the situation is not so clear, because its mass is around a factor 1/3 of ΛQCD.

Let us introduce (helicity) projection operators,

P± =
I ± γ5

2
= P †

± , (1.69)

4We define symmetry as an operation made over an object that leaves it invariant. In this case, a transfor-

mation of the fields of the Lagrangian that leaves the equations of motion invariant.
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where I is the identity operator, and γ5, the chirality matrix, acting on Dirac space, is defined
as γ5 = iγ0γ1γ2γ3 = γ†

5, so that γ5 anticommutes with γµ,

{γ5, γµ} = 0 . (1.70)

The usual properties of Dirac matrices determine those of γ5, and from these we can show
that the operators defined in Eq. (1.69) are indeed projection operators,

P 2
± = P 2

± ,

P+ + P− = I , (1.71)

P±P∓ = 0 .

P+ and P− project into the positive and negative helicity eigenstates in the massless limit,
respectively, and they are also usually denoted by PR and PL (right-handed and left-handed).
We define right- and left- handed quark fields as

qR = P+q q̄R = q̄P− ,

qL = P−q q̄L = q̄P+ ,

so that q = (P+ + P−)q = qR + qL and q̄ = q̄(P− + P+) = qL + qR. Whence, the derivative
piece of the Lagrangian can be written as

q̄γµD
µq = q̄ ((P+ + P−)γµ(P− + P+))Dµq

= q̄


P−γµP+ + P+γµP− + P+γµP+︸ ︷︷ ︸

P+P−γµ=0

+ P−γµP−︸ ︷︷ ︸
P−P+γµ=0


D

µq

= q̄R /DqR + q̄L /DqL .

Proceeding in an analogous way, one has for the mass term:

− q̄Mq = −q̄RMqL − q̄LMqR , (1.72)

and chirality is mixed.

If we now set M = 0, massless quarks, the flavor independence of the Lagrangian makes
it invariant under global U(3)L ⊗ U(3)R transformations,

qL → exp

(
i

8∑

a=0

θL
a λa

)
qL (1.73)

qR → exp

(
i

8∑

a=0

θR
a λa

)
qR (1.74)

where λ0 =
√

2/3 I, as to enlarge the generators of SU(3) to complete the ones of U(3). The
associated Noether currents are:

Lµ
a = q̄Lγ

µλa

2
qL Rµ

a = q̄Rγ
µλa

2
qR a = 1, . . . , 8 (1.75a)

Lµ = q̄Lγ
µqL Rµ = q̄Rγ

µqR (1.75b)
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and the equations satisfied by these currents are:

∂µL
µ
a = −i

(
q̄L
λa

2
MqR − q̄RM

λa

2
qL

)
(1.76a)

∂µL
µ = −i (q̄LMqR − q̄RMqL) (1.76b)

∂µR
µ
a = −i

(
q̄R
λa

2
MqL − q̄LM

λa

2
qR

)
(1.76c)

∂µR
µ = −i (q̄RMqL − q̄LMqR) (1.76d)

which are zero in the case M = 0, as advanced, meaning that there would be a conserved
charge in that case. The divergence of the currents are proportional to the current quark mass
parameters. The charge operators are the integrals over full space of the µ = 0 component
(in Dirac space) of the currents, the charge densities,

QL
a (t) =

∫
d~x L0

a(~x, t) =
∫

d~x q̄L(~x, t)γ0λa

2
qL(~x, t) (1.77a)

QR
a (t) =

∫
d~x R0

a(~x, t) =
∫

d~x q̄R(~x, t)γ0λa

2
qR(~x, t) (1.77b)

QL(t) =
∫

d~x L0(~x, t) =
∫

d~x q̄L(~x, t)γ0qL(~x, t) (1.77c)

QR(t) =
∫

d~x R0(~x, t) =
∫

d~x q̄R(~x, t)γ0qR(~x, t) (1.77d)

Denoting by fabc the structure constants of SU(3) symmetry, such that
[

λa

2
, λb

2

]
= ifabc

λc

2
, the

algebra of the charges is:

[
QL

a ,QL
b

]
= ifabcQ

L
c (1.78)

[
QR

a ,QR
b

]
= ifabcQ

R
c (1.79)

[
QL

a ,QR
b

]
= 0 (1.80)

The last equation of the algebra reflects the fact that the charges L/R operate on different
spaces. The first two are obtained inserting the explicit expressions for QL,R

a in the commuta-
tors, and through the use of the equal time commutation relation of the quark fields and the
commutator of the Gell-Mann matrices.

So far, we have developed the algebra of the group SU(3)L ⊗SU(3)R,5 which is a subgroup
of the U(3)L ⊗U(3)R. However, the former is not realized (a la Wigner) in Nature, as we will
discuss below. Still, we can introduce a linear combination of left and right charges/currents
to obtain vector and axial charges/currents,

JµV
a = Rµ

a + Lµ
a → QV

a = QR
a +QL

a (1.81a)

JµA
a = Rµ

a − Lµ
a → QA

a = QR
a −QL

a (1.81b)

JµV = Rµ + Lµ → QV = QR +QL (1.81c)

JµA = Rµ − Lµ → QA = QR −QL (1.81d)

5In analogous way one could proceed for SU(2)L ⊗ SU(2)R.
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QV
a (t) =

∫
d~x q̄γ0λa

2
q(~x, t) (1.82a)

QA
a (t) =

∫
d~x q̄γ0γ5

λa

2
q(~x, t) (1.82b)

QV (t) =
∫

d~x q̄γ0q(~x, t) (1.82c)

QA(t) =
∫

d~x q̄γ0γ5q(~x, t) (1.82d)

[
QV

a ,QV
b

]
= ifabcQ

V
c (1.83)

[
QV

a ,QA
b

]
= ifabcQ

A
c (1.84)

[
QA

a ,QA
b

]
= ifabcQ

V
c (1.85)

∂µJ
µV

a = iq̄

[
M ,

λa

2

]
q (1.86)

∂µJ
µA

a = iq̄

{
M ,

λa

2

}
γ5q (1.87)

∂µJ
µV = 0 (1.88)

∂µJ
µA = 2iq̄Mγ5q +

3g2

32π2
ǫµνρσGa

µνGa
ρσ (1.89)

We will briefly discuss the singlet vector and axial charges/currents (the last two equations)
because we will not further refer to them. The singlet vector current, JµV = q̄γµq is conserved
(∂µJ

µV = 0) even when quarks are massive. This exact U(1)V symmetry implies baryon
number B conservation, thus leading to the organization of hadrons in mesons, B = 0, and
baryons, B = 1. The singlet axial current should be conserved from classical symmetry
considerations. However, it is not conserved at the quantum level, giving rise to the U(1)A

anomaly [191–193],6 which is indeed responsible for the appearence of the term involving the
tensor form in the last line.

From symmetry considerations of the Lagrangian, and thus, of the Hamiltonian, we would
expect the hadron spectrum to be composed of degenerate multiplets with quantum numbers
following the pattern of G = SU(3)L ⊗ SU(3)R. As QV

a and QA
a are linear combinations of

left- and right- handed charges, they commute with the Hamiltonian. They have opposite
parities, so one would expect the existence of degenerate multiplets with opposite parities
(parity doubling), but this is not seen in Nature. The argument would go as follows. Consider
a one-particle state, |α, +〉 such that it has definite parity (positive, in this case) and mass
(energy), i.e., it is an eigenstate of the Hamiltonian and of the parity operator:

H |α, +〉 = M |α, +〉
P |α, +〉 = + |α, +〉 .

6In the large NC (number of colors) limit, this symmetry is restored, since the divergence of the current is

proportional to g2 and this scales as N−1
C [194–196].
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Let us consider the state |Ωα,+〉, defined as:

|Ωα,+〉 = QA
a |α, +〉 ,

such that it has energy and parity given by

H |Ωα,+〉 = HQA
a |α, +〉 = QA

aH |α, +〉 = MQA
a |α, +〉 = M |Ω〉

P |Ωα,+〉 = PQA
a P

−1P |α, +〉 = −QA
a |α, +〉 = − |Ωα,+〉 ,

where we have used the fact that
[
QA

a ,H
]

= 0 and
{
QA

a ,P
}

= 0. This follows because QA
a

is a symmetry of the Hamiltonian, as stated before, and thus commutes with it, and because
QA

a is an operator with negative parity. Now, |Ωα,+〉 can be expanded in terms of negative
parity states,7

|Ωα,+〉 = QA
a |α, +〉 =

∑

α′
|α′, +〉

〈
α′, +

∣∣∣QA
a

∣∣∣α, +
〉

︸ ︷︷ ︸
0

+

+
∑

β′
|β′, −〉

〈
β′, −

∣∣∣QA
a

∣∣∣α, +
〉

≡
∑

β′
Ca

(β′,−),(α,+) |β′, −〉 , (1.90)

Now, if we assume that QA
a |0〉 = 0, we have:

|Ωα,+〉 = QA
a |α, +〉 = QA

a b
†
α,+ |0〉 =

[
QA

a , b†
α,+

]
|0〉 + b†

α,+Q
A
a |0〉

︸ ︷︷ ︸
0

=
∑

β′
Ca

(β′,−),(α,+) |β′, −〉 . (1.91)

where b† are creation operators. The last step follows from Eq. (1.90). Thus,
[
QA

a , b†
α,+

]
=
∑

β′
Ca

(β′,−),(α,+)b
†
β′,− . (1.92)

The key assumption here was QA
a |0〉 = 0. This is called a Wigner-Weyl realization of the

symmetry. The states |β, −〉 are states degenerate in mass with |α, +〉 and with opposite
parity, leading to a spectrum with parity doubling, as stated before. That is, there are
multiplets of SU(2)R ⊗ SU(2)L, in which the states transform one into another under the
action of the generators. As stated before, no such multiplets are seen in the spectrum.
But if QA

a |0〉 6= 0, which is called a Nambu-Goldstone realization of the symmetry, then this
argument does not follow. Indeed, if QA

a |0〉 6= 0, then this state is not even defined [197].

Actually, from the experimental point of view, no such parity doubling is observed, see
Fig. 1.1, i.e., comparing the sector JP = 0− with that of JP = 0+ we see that they are not
degenerate in mass, rather, the latter has resonances heavier than the particles found in the
former. Thus, the non-existence of parity doubling in the hadronic spectrum together with

7The fact that
〈
α′, +

∣∣QA
a

∣∣α, +
〉

= 0 can be shown by inserting the identity through the parity operator in

the right way,

〈
α′, +

∣∣QA
a

∣∣α, +
〉

=
〈
α′, +

∣∣P−1PQA
a P

−1P
∣∣α, +

〉
= −

〈
α′, +

∣∣QA
a

∣∣α, +
〉

= 0 ,

and analogously
〈
β′, −

∣∣QA
a

∣∣β, −
〉

= 0.
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Figure 1.1: Schematic representation of the hadronic spectrum. We show here the
hadrons considered in Figures 1.2, 1.3 and 1.4, in order to see how they organize
in approximately degenerate multiplets. Considering the multiplets JP = 0−

and JP = 0+, it is clear that no parity doubling is observed, as a Wigner-Weyl
realization of the symmetry would require.

the fact that it is still organized in multiplets points to SU(3)V and not SU(3)L ⊗ SU(3)R as
the approximate realization of the symmetry. And even more, we see also from Fig. 1.1 that
the JP = 0− masses are much smaller than the others,8 which leads us to think of them as
candidates for the Goldstone bosons that come out from the Goldstone theorem, which holds
if there are some generators that do not anihilate the vacuum. Thus, the chiral symmetry
seems to be spontaneously broken [9–14] down to SU(3)V . Let us also remark here that
global vector-like symmetries, as the former, cannot be spontaneously broken, according to
Vafa–Witten theorem [198,199].

On the other side, there is a theorem due to Coleman [200], that can be stated as:

Theorem (Coleman theorem). Let Q be a generator of a continuous symmetry group G,

8The fact that the mass of the pion, π, which is an isospin triplet, is much smaller than that of the other

pseudoscalars is due to the fact that the SU(2) symmetry, which would generate three pseudoscalar Goldstone

boson, is a better approximate symmetry than SU(3), which would generate eight of them.
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Figure 1.2: The lightest pseudoscalar meson octet, JP = 0− and B = 0 (left) and

the lightest baryon octet, JP = 1
2

+
and B = 1 (right).

defined through a space integral of the time component of a given current density Jµ(x), such

that it anihilates the vacuum (i.e., the vacuum is invariant under G.) Then the Hamiltonian

of the theory is invariant under the transformations of the field induced by G, and the current

is conserved.

The best summary of the theorem is given by the title of the original article: The Invariance
of the Vacuum is the Invariance of the World. The symmetry of the ground state thus
determines the symmetry of the spectrum. The spectrum thus is telling us the symmetry of
the ground state. Whence, we are lead to consider that:

QV
a |0〉 = QV |0〉 = 0 , (1.93)

QA
a |0〉 6= 0 . (1.94)

As stated before, the fact that the ground state is not invariant under the axial transfor-
mations naturally leads to the appearence of Goldstone bosons. To each axial generator QA

a

that does not anihilate the ground state there corresponds a massless Goldstone boson whose
quantum numbers are the same than those of the corresponding generator. In this case, the
Goldstone bosons, denoted by φa(x), are pseudoscalars, and transform one into each other
under the subgroup H = SU(3)V as an octet,

[
QV

a ,φb(x)
]

= ifabcφc(x) , (1.95)

corresponding to the adjoint representation of SU(3)V , see Eq. (1.45). Accordingly, the spec-
trum is organized into approximately degenerate multiplets of SU(3)V . In Figs. 1.2, 1.3 and
1.4 some of these multiplets, transforming under irreducible representations of SU(3), are
shown.

We are now in position to link the results of the first part of this chapter with the symmetry
group considered so far. The group G is SU(3)L ⊗ SU(3)R, and H = SU(3)V is the subgroup
that leaves invariant the vacuum or ground state, with

[
QV

a ,QV
b

]
= ifabcQ

V
c . This is the
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Figure 1.4: The lightest vector meson nonet, JP = 1− and B = 0 (left) and the
lightest scalar meson nonet, JP = 0+ and B = 0 (right) (See [53] and Chapters 3
and 5).

subgroup considered in the general analysis done at the begining of this chapter, so we identify
QV

a with the generators Vi in the general formalism. The rest of the generators are those that
do not anihilate the vacuum, i.e., the vacuum is not invariant under the group elements
generated by these generators, QA

a , which are thus identified with the Al considered in the
general formalism.

1.8.3 The Lagrangian with external sources

We want to construct the most general Lagrangian, with the following properties:

• It must be invariant under chiral transformations (see Subsection 1.9.1).
• It must be invariant under charge conjugation (1.9.2) and parity (1.9.5).
• It must be Lorentz invariant, i.e., scalar under Lorentz transformations (1.9.4).
• It must be Hermitean (1.9.3).
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In order to construct such a Lagrangian, we introduce in our original Lagrangian the couplings
of external sources s(x), p(x), vµ(x) and aµ(x) to quark currents and densities through [18]

Lext = −q̄s(x)q + iq̄γ5p(x)q + q̄γµvµ(x)q + q̄γµγ5aµ(x)q . (1.96)

We can then introduce the mass term in this Lagrangian as s(x) = M , and the electroweak
interactions through the substitutions

vµ = −eQAµ − g

2 cos θW

(
Q cos 2θW − 1

6

)
Zµ − g

2
√

2

(
T+W

+
µ + h.c.

)
(1.97a)

aµ =
g

2 cos θW

(
Q− 1

6

)
Zµ +

g

2
√

2

(
T+W

+
µ + h.c.

)
(1.97b)

Q =
1
3




2 0 0

0 −1 0

0 0 −1


 (1.97c)

T+ =




0 Vud Vus

0 0 0

0 0 0


 (1.97d)

Use of this substitution will be made latter in the discussion of the meaning of the constant
fπ, the pion decay constant. By now, we must discuss the transformation properties of
these external sources under Lorentz, parity, charge conjugation and, in particular, chiral
transformations.

1.9 Transformation properties of the building blocks

1.9.1 Chiral transformations

We want to impose gauge invariance under the SU(3) version of the chiral transformations in
Eqs. (1.73) and (1.74), which can be written as:

q′
R = VRqR q′

L = VLqL ,

where VR,L ≡ VR,L(x). From time to time, we will omit the space-time dependence of the
transformations VR and of the fields. The piece of Lext containing vµ and aµ plus the derivative
term of L0 can be written as:

Lext+der = q̄γµ (vµ + γ5aµ + i∂µ) q =

= q̄Rγ
µ (vµ + γ5aµ + i∂µ) qR + q̄Lγ

µ (vµ + γ5aµ + i∂µ) qL

Under the transformations, the Lagrangian reads

Lext+der = q̄Rγ
µV †

R

(
v′

µ + γ5a
′
µ + i∂µ

)
VRqR + q̄Lγ

µV †
L

(
v′

µ + γ5a
′
µ + i∂µ

)
VLqL +

+ iq̄Rγ
µ∂µqR + iq̄Lγ

µ∂µqL

Recalling the properties in Eq. (1.70) and Eq. (1.71), this can be cast as:

Lext+der = 1
2
q̄γµ

[
V †

R

(
v′

µ + a′
µ + i∂µ

)
VR + V †

L

(
v′

µ − a′
µ + i∂µ

)
VL

]
q +
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+1
2
q̄γµγ5

[
V †

R

(
v′

µ + a′
µ + i∂µ

)
VR − V †

L

(
v′

µ − a′
µ + i∂µ

)
VL

]
q + (1.98)

+iq̄γµ∂µq

Identifying terms, so that the Lagrangian becomes invariant, we have:

vµ =
1
2
V †

R

(
v′

µ + a′
µ + i∂µ

)
VR +

1
2
V †

L

(
v′

µ − a′
µ + i∂µ

)
VL (1.99)

aµ =
1
2
V †

R

(
v′

µ + a′
µ + i∂µ

)
VR − 1

2
V †

L

(
v′

µ − a′
µ + i∂µ

)
VL (1.100)

It is simpler to work in terms of the right/left fields, defined as:

rµ ≡ vµ + aµ = V †
Rr

′
µVR + iV †

R∂µVR , (1.101)

lµ ≡ vµ − aµ = V †
L l

′
µVL + iV †

L∂µVL , (1.102)

and invert these equations to get finally:

Chiral transformations
r′

µ(x) = VR(x) (rµ(x) + i∂µ)VR(x)† ,

l′µ(x) = VL(x) (lµ(x) + i∂µ)VL(x)† .

(1.103a)

(1.103b)

Completely analogous work can be done with s(x), p(x), where it is also convenient to work
with the linear combinations

χ = s+ ip (1.104)

χ† = s− ip (1.105)

and we get:

Chiral transformations
χ′ = VR χ V †

L ,

χ†′
= VL χ† V †

R .

(1.106a)

(1.106b)

For the external right/left fields, we can introduce the corresponding field strength tensors,

fR
µν = ∂µrν − ∂νrµ − i [rµ, rν ] , (1.107a)

fL
µν = ∂µlν − ∂νlµ − i [lµ, lν ] . (1.107b)

Under chiral transformations, Eq. (1.103), these tensors are transformed into

(fL
µν)′ = ∂µVL lνV

†
L︸ ︷︷ ︸

1©
+VL ∂µlν V

†
L︸ ︷︷ ︸

2©
+VLlν ∂µV

†
L︸ ︷︷ ︸

3©
+ i∂µVL ∂νV

†
L︸ ︷︷ ︸

4©
+i VL ∂µ∂νV

†
L︸ ︷︷ ︸

5©
− ∂νVL lµV

†
L︸ ︷︷ ︸

6©
−VL ∂νlµ V

†
L︸ ︷︷ ︸

7©
−VLlµ ∂νV

†
L︸ ︷︷ ︸

8©
− i∂νVL ∂µV

†
L︸ ︷︷ ︸

9©
− iVL ∂ν∂µV

†
L︸ ︷︷ ︸

10©

− i
[
VLlµV

†
L ,VLlνV

†
L

]

︸ ︷︷ ︸
11©

+
[
VL∂µV

†
L ,VLlνV

†
L

]

︸ ︷︷ ︸
12©

+
[
VLlµV

†
L ,VL∂νV

†
L

]

︸ ︷︷ ︸
13©

+i
[
VL∂µV

†
L ,VL∂νV

†
L

]

︸ ︷︷ ︸
14©
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Now, as
[
VL∂µV

†
L ,VL∂νV

†
L

]
= −∂µVL∂νV

†
L − ∂νVL∂µV

†
L[

VL∂µV
†

L ,VLlνV
†

L

]
= −∂µVLlνV

†
L − VLlν∂µV

†
L[

VLlµV
†

L ,VL∂νV
†

L

]
= VLlµ∂νV

†
L + ∂νVLlµV

†
L

then

4© + 9© + 14© = 0
1© + 3© + 12© = 0
6© + 8© + 13© = 0

5© + 10© = 0

so we are left with

2© + 7© + 11© = VL (∂µlν − ∂νlµ − i [lµ, lν ])V †
L .

Summarizing,

Chiral transformations
(fL

µν(x))′ = VL(x)
(
fL

µν

)
VL(x)† ,

(fR
µν(x))′ = VR(x)

(
fR

µν

)
VR(x)† .

(1.108a)

(1.108b)

We can proceed now with the chiral transformations of the Goldstone bosons, and exploit
the results of the first sections. Recall that we had (Eq. (1.34)):

geξA = eξ′Aeu′V (1.109)

and g = VLVR. It is perhaps more comfortable to write this, at least the first time, recalling
that G is a direct product, so g actually means g = VL⊗VR, and the last equation is, therefore,

(VL ⊗ VR)
(
e−ξλL ⊗ eξλR

)
=
(
e−ξ′λL ⊗ eξ′λR

) (
eu′λL ⊗ eu′λR

)
(1.110)

so that, for both sectors,

VRe
ξλR = eξ′λReu′λR , (1.111a)

VLe
−ξλL = e−ξ′λLeu′λL . (1.111b)

For the automorphism R we had, according to Eq. (1.40),

e2ξ′A = ge2ξAR(g−1) , (1.112)

and, if g = VL ⊗ VR, then g−1 = V †
L ⊗ V †

R and R(g−1) = V †
R ⊗ V †

L , because the automorphism
changes R ↔ L (corresponding to parity). Thus, the last equation means that

e−2ξ′λL ⊗ e2ξ′λR = (VL ⊗ VR)
(
e−2ξλL ⊗ e2ξλR

) (
V †

R ⊗ V †
L

)
(1.113)

e2ξ′λR = VRe
2ξλRV †

L (1.114a)
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e−2ξ′λL = VLe
−2ξλLV †

R (1.114b)

The matrix u(x) = eξλ is one of the basic objects. Denote h = eu′λ, and then Eq. (1.111a)
can be cast as

Chiral transformations
u′ = VRuh

† → u′† = hu†V †
R

u′† = VLu
†h† → u′ = huV †

L

(1.115a)

(1.115b)

From u(x) we define U(x) = u(x)u(x), and, using the last equations appropiately, it is seen
that U(x) transforms as

Chiral transformations U ′(x) = VRU(x)V †
L (1.116)

Notice that we could have defined directly U(x) instead of u(x) and read its transformation
properties from Eq. (1.114), that are seen to be consistent with Eq. (1.116).

We now proceed to calculate the covariant derivative of U(x), from the results of Sec. 1.6
and Sec. 1.7. Let us rewrite Eq. (1.61) as

e−ξA (∂µ − iρ̃µV − iãµA) eξA = −iṽµV − ip̃µA , (1.117a)

eξA (∂µ − iρ̃µV + iãµA) e−ξA = −iṽµV + ip̃µA , (1.117b)

where we introduced some i factors in the definitions of the fields for convenience, and took
advantage of the automorphism of chiral groups (recall that R ↔ L under a parity trans-
formation) to write the second equation. We have also introduced the fields with a tilde,
ṽ, ρ̃, ã and p̃ to avoid confussion with the external fields originally introduced in the QCD
Lagrangian. Indeed, they are the same external fields but rewritten in terms of the generators
V a and Aa for p̃µV and ãµA, respectively. From Eq. (1.117), we can obtain

−2iṽµV = u†∂µu+ u∂µu
† − iu† (ρ̃µV + ãµA)u− iu (ρ̃µV − ãµA)u† (1.118a)

=
[
u†, ∂µu

]
− iu†rµu− iulµu

† ≡ 2Γµ ,

Γµ =
1
2

([
u†, ∂µu

]
− iu†rµu− iulµu

†
)

, (1.118b)

−2ip̃µA = u†∂µu+ ∂µuu
† − iu† (ρ̃µV + ãµA)u+ iu (ρ̃µV − ãµA)u† = (1.118c)

= u† (∂µu u+ u∂µu− irµU + iUlµ)u† ≡ u†DµUu
† ≡ −iuµ ,

uµ = iu†DµUu
† , (1.118d)

DµU ≡ ∂µU − irµU + iUlµ . (1.118e)

DµU(x) is the covariant derivative of the Goldstone fields matrix U(x). Its transformation
can be deduced from Eqs. (1.64) and (1.115), because9

u′†DµU
′u′† = −2ip̃′

µA = eu′V (−2ip̃µA)e−u′V (1.119)

= hu†DµUu
†h† = u′†

(
VRDµUV

†
L

)
u′† (1.120)

9Notice that DµU
′ is a shorthand for (DµU)

′

.
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so that

Chiral transformations
DµU

′ = VRDµUV
†

L ,

u′
µ = huµh

† .

(1.121)

(1.122)

It is perhaps instructive to explicitly check the last transformation, and how the covariant
derivative is such that it compensates for the terms arising from derivatives. Proceeding,

DµU
′ = ∂µU

′ − i
(
r′

µU
′ − U ′l′µ

)
= ∂µVR U V †

L + VR ∂µU V †
L + VR U ∂µV

†
L−

− i
(
VRrµV

†
R + iVR∂µV

†
R

) (
VRUV

†
L

)
+ i

(
VRUV

†
L

) (
VLlµV

†
L + iVL∂µV

†
L

)
=

= ∂µVR U V †
L + VR ∂µU V †

L + VR U ∂µV
†

L − iVR rµ U V †
L+

+ VR ∂µV
†

R VRUV
†

L − iVRUV
†

LVLlµV
†

L − VRUV
†

LV
†

L ∂µV
†

L

and, as

VR ∂µV
†

R VRUV
†

L = −VRV
†

R∂µVRUV
†

L = −∂µVR UV †
L

VRUV
†

LVL∂µV
†

L = VRU∂µV
†

L

then
DµU

′ = VR (∂µU − irµU + iUlµ)V †
L = VR (DµU)V †

L , (1.123)

as expected.

We have, by now, worked out the transformation properties of all the basic ingredients we
can use to achieve our goal of building the most general chiral Lagrangians. However, some
additional definitions are customary in the literature, that ease the work. They are:

FL
µν = ufL

µνu
† , (1.124a)

FR
µν = u†fR

µνu , (1.124b)

χ± = 2B0

(
u†(s+ ip)u† ± u(s− ip)u

)
= 2B0

(
u†χu† ± uχ†u

)
(1.124c)

and B0 is a constant added for later convenience. Their transformation properties are

Chiral transformations

(
FL

µν

)′
= hFL

µνh
† ,

(
FR

µν

)′
= hFR

µνh
† ,

χ′
± = hχ±h

† .

(1.125)

(1.126)

(1.127)

The matrix u(x) = eξλ contains the Goldstone bosons fields, φa(x), which are identified
with the coordinates ξ, and the matrices λ → λa

2
are the Gell-Mann matrices for SU(3), or

λ → σi

2
, the Pauli matrices, for SU(2), so that10

u(x) = e
i

Φ(x)√
2f , (1.128)

U(x) = ei
√

2Φ(x)
f , (1.129)

10The
√

2 factors in the following definitions can vary through the literature; what must be the same in the

parametrization is the whole exponent within the exponential.
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where f is a constant11 to be specified later, and Φ is
√

2Φ(x) = φa(x)λa . (1.130)

The transformation (1.116), though simple in terms of the U(x) matrix, would be very com-
plicated in terms of the φa(x) fields, i.e., these do not have a simple transformation un-
der a generic element of the group G. However, when the transformation is restricted to
H = SUV (N), VR = VL = V , it implies

U = ei
√

2Φ
f → U ′ = V UV † = V ei

√
2Φ
f V † = eiV

√
2Φ
f

V †

so
Φ → V ΦV † .

which means that the φa(x) transform, under H, as an octet, because, parametrizing V =
eiθa

λa
2 , the last expresion can be expanded to get

φc
λc

2
→ (φc − θaφbfabc)

λc

2
,

which means that they transform under the adjoint representation, (Tc)ab = ifabc. Notice that
this result is in agreement with Eq. (1.95).

With these considerations, and by restricting the transformation V to be an isospin or an
hypercharge rotation, the quantum numbers of the different Goldstone bosons can be given,
and we can write Φ(x) as:

√
2Φ(x)

∣∣∣
SU(2)

=
3∑

i=1

φiσi =


 π0

√
2π+

√
2π− −π0


 , (1.131)

√
2Φ(x)

∣∣∣
SU(3)

=
8∑

i=1

φaλa =




π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η

√
2K0

√
2K− √

2K̄0 − 2√
3
η


 . (1.132)

1.9.2 Charge conjugation

Under charge conjugation C, a term containing quark spinors ψ(x) tansforms as

ψ̄(x)M(x)ψ(x) −→ Cψ̄(x)M(x)ψ(x)C−1 = ψ̄(x)C(M ′(x))T C−1ψ(x) (1.133)

where C = γ0γ2 is a matrix acting on Dirac space, M ′(x) denotes the transformed M(x)
under charge conjugation (because it will often contain fields in addition to Dirac and/or
flavor matrices) and AT denotes the transpose matrix. The matrix C can be shown to fulfill
the following properties:

C {γ5, γ5γ
µ}T C−1 = {γ5, γ5γ

µ} , (1.134)

11The fields φa(x) have energy dimensions, [φa] = E, which can be inferred from the fact that ∂µφa∂
µφa

must have dimension E4. Thus, in order to have a dimensionless argument in the exponential, we must have
φ
f with f a dimensionful constant, [f ] = E.
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C {γµ}T C−1 = − {γµ} . (1.135)

Consider the term q̄γµvµq. It transforms as

q̄γµvµq → q̄CγµT C−1v′
µ

T
q = −q̄γµv′

µ
T
q = q̄γµvµq (1.136)

where the last equality means that we impose invariance under charge conjugation. Thus,
under charge conjugation, vµ transforms as v′

µ(x) = −vµ(x)T . In a similar way, we can also
work out the transformation of aµ, s and p, and the results are:

Charge conjugation

v′
µ(x) = −vµ(x)T ,

a′
µ(x) = aµ(x)T ,

s′(x) = s(x)T ,

p′(x) = p(x)T .

(1.137)

(1.138)

(1.139)

(1.140)

From these relations, it is inmediate to obtain

Charge conjugation

r′
µ(x) = −lTµ ,

l′µ(x) = −rT
µ ,

χ′(x) = χT ,

χ†′
(x) = χ†T

= χ∗ .

(1.141)

(1.142)

(1.143)

(1.144)

The transformation of the field strength tensor is also straigthforward,
(
fR

µν

)′
= ∂µr

′
ν − ∂νr

′
µ − i

[
r′

µ, r′
ν

]
= −∂µl

T
ν + ∂νl

T
µ − i

[
lTµ , lTν

]

︸ ︷︷ ︸
−[lµ,lν ]T

=

= − (∂µlν − ∂νlµ − i [lµ, lν ])T

Thus,

Charge conjugation

(
fR

µν

)′
= −

(
fL

µν

)T

(
fL

µν

)′
= −

(
fR

µν

)T

(1.145)

(1.146)

The charge conjugation properties of the Goldstone bosons can be worked out from those
of the axial charges QA

a ,

QA
a (t) =

∫
d~x q̄γ0γ5

λa

2
q(~x, t) (1.147)

Thus we have to calculate

Cγ0γ5C−1λ
T
a

2
= γ0γ5

λT
a

2
(1.148)

which means that QA
a → Q′A

a = (QA
a )T . For completeness, we also give the transformation of

left/right and vector charges:

QL
a → Q′L

a = −(QR
a )T , (1.149)
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QR
a → Q′R

a = −(QL
a )T , (1.150)

QV
a → Q′V

a = −(QV
a )T , (1.151)

QA
a → Q′A

a = +(QA
a )T . (1.152)

As commented, the last transformation gives us, in turn, the transformation law for the
Goldstone bosons, and thus, Φ(x) → Φ′(x) = ΦT (x), which implies

Charge conjugation

Φ′(x) = ΦT (x)

u′(x) = u(x)T

U ′(x) = U(x)T

(1.153)

(1.154)

(1.155)

The covariant derivative, taking into account the transformation of r, l and U , is

(DµU)′ = ∂µU
T − ir′

µU
T + iUT l′µ = ∂µU

T + ilTµU
T − iUT rT

µ =

= (∂µU − irµU + iUlµ)T

so that:

Charge conjugation
(DµU(x))′ = (DµU(x))T

u′
µ(x) = uµ(x)T

(1.156)

(1.157)

The following transformations can also be derived:

Charge conjugation

(
FR,L

µν

)′
= −

(
FL,R

µν

)T

χ′
± = χT

±

(1.158)

(1.159)

A technical problem with charge conjugation is that, as seen, it gives A → A′ = (−1)cAAT

(recall that A are matrices in flavor space). Thus, when forming terms for the Lagrangian
from the product of two building blocks, A and B, it will transform as AB → (AB)′ =
(−1)cA+cBATBT instead of ∼ (AB)T , which makes it harder to check the invariance un-
der charge conjugation. If we have just the product of two terms, it is not a problem, for
〈ATBT 〉 = 〈AB〉. For products of more than two terms, the trick is to consider commutators
and anticommutators, so that

[A,B]′ = (−1)cA+cB [A,B]T , (1.160)

{A,B}′ = (−1)cA+cB+1 {A,B}T . (1.161)

1.9.3 Hermiticity

If we consider a term in the Lagrangian like q̄(x)M(x)q(x), its hermitian conjugate is

(q̄(x)M(x)q(x))† = q̄(x)γ0M †(x)γ0q(x) .

Thus, we need some properties of the Dirac matrices, namely:

γ0γµ†γ0 = γµ γ0γ5
†γ0 = −γ5 γ0γ†

5γ
µ†γ0 = −γ5γ

µ = γµγ5 .
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In order to ensure hermiticity, the external fields must be hermitean themselves:

Hermiticity

v†
µ(x) = vµ(x)

a†
µ(x) = aµ(x)

s†(x) = s(x)

p†(x) = p(x)

(1.162)

(1.163)

(1.164)

(1.165)

and thus

Hermiticity
r†

µ(x) = rµ(x)

l†µ(x) = lµ(x)

(1.166a)

(1.166b)

χ and χ† obviously transform one into each other. The field strength fR,L
µν also transform in

a simple way, since [rµ, rν ]† = − [rµ, rν ], and thus

Hermiticity
(
fR,L

µν (x)
)†

= fR,L
µν (x) (1.167)

The matrix Φ(x) is hermitian as well, as follows directly from its definition, Eq. (1.130):

Hermiticity Φ†(x) = Φ(x) , (1.168)

Applying this to U(x), it follows that:

U †(x) = e−i
√

2Φ†(x)
f = e−i

√
2Φ(x)

f = U−1(x) (1.169)

or

Hermiticity
U †(x) = U−1(x)

u†(x) = u−1(x)

(1.170)

(1.171)

The covariant derivative transforms as

DµU
† = ∂µU

† + iU †rµ − ilµU
† = −U †∂µU

† + iU †rµ − ilµU
† = (1.172)

= −U † (∂µU − irµU + iUlµ)U † (1.173)

so that

Hermiticity
DµU(x)† = −U(x)†DµU(x)U(x)†

u†
µ(x) = uµ(x)

(1.174)

(1.175)

Finally, with these results, the following transformations are easy to derive:

Hermiticity

(
FR,L

µν (x)
)†

= FR,L
µν (x)

χ†
±(x) = ±χ±(x)

(1.176)

(1.177)
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1.9.4 Lorentz transformations

Lorentz as well as parity transformations are somewhat different to the transformations dis-
cussed up to now, for they involve change in the space-time coordinates. Consider a La-
grangian density depending on a generic field ϕ(x). Thus, a transformation of the field will
be a symmetry if:

L(ϕ′(x′), ∂′
µϕ(x′)) = L(ϕ(x), ∂µϕ(x)) , (1.178)

that is, if the Lagrangian written in terms of the transform field ϕ′ at the transformed co-
ordinate x′ is the same as the original Lagrangian. Consider a proper, ortochronus, Lorentz
transformation Λ in Minkowski space:12

x′µ = Λµ
νx

ν . (1.179)

From a general point of view, Lorentz transformations on the fields can be described through
a unitary operator U(Λ) (acting on the operators, not on the coordinates), giving:

U−1(Λ)ϕ(x)U(Λ) = ϕ′(x) , (1.180)

whereas:
ϕ′(x′) = D(Λ)ϕ(x) , (1.181)

being D(Λ) a matrix of a representation of the Lorentz group acting on the space of the ϕ
fields indices. Then:

U−1(Λ)ϕ(x)U(Λ) = D(Λ)ϕ(Λ−1x) (1.182)

= ϕ′(x) . (1.183)

For a scalar field Φ(x), we have the simplest transformation possible, Φ′(x′) = Φ(x), or
Φ′(x) = Φ(Λ−1x) (that is, D(Λ) = 1). Its decomposition in creation and anhilation operators,
a† and a, respectively, is (up to irrelevant normalization constants):

Φ(x) =
∫

d4kδ(k2 −m2)θ(k0)
(
e−ikxa(k) + e+ikxa†(k)

)
. (1.184)

Under the transformation Eq. (1.180), one has:

U−1(Λ)Φ(x)U(Λ) =
∫

d4kδ(k2 −m2)θ(k0)
(
e−ikxU−1a(k)U + e+ikxU−1a†(k)U

)

= Φ(Λ−1x) =
∫

d4kδ(k2 −m2)θ(k0)
(
e−ik(Λ−1x)a(k) + e+ik(Λ−1x)a†(k)

)

p=Λk
=

∫
d4pδ(p2 −m2)θ(p0)

(
e−ipxa(Λ−1p) + e+ipxa†(Λ−1p)

)
, (1.185)

and then:

U−1(Λ)a(k)U(Λ) = a(Λ−1k) , (1.186a)

U−1(Λ)a†(k)U(Λ) = a†(Λ−1k) . (1.186b)

Acting on a one-particle state |Φ(k)〉 ≡ a†(k) |0〉, it is found:

U−1(Λ) |Φ(k)〉 = U−1(Λ)a†(k)U(Λ)U−1(Λ) |0〉
︸ ︷︷ ︸

|0〉

= a†(Λ−1k) |0〉 =
∣∣∣Φ(Λ−1k)

〉
, (1.187)

12Recall that Λµ
νΛµ

σ = δσ
ν = gσ

ν , and that
(
Λ−1

)µ

ν
= Λν

µ, so
(
Λ−1

)µ

ν
Λν

ρ = δµ
ρ .
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or
U(Λ) |Φ(k)〉 = |Φ(Λk)〉 . (1.188)

In terms of the operator U(Λ), the Lorentz invariance of the Lagrangian, Eq. (1.178), can be
recast as:

U−1(Λ)L(x)U(Λ) = L(Λ−1x) . (1.189)

Let us move now to the spinor case, to study the Lorentz transformation properties of the
fields in the external Lagrangian. The free Dirac Lagrangian density is:

L(ψ(x), ∂µψ(x)) = ψ̄(x) (iγµ∂µ −m)ψ(x) . (1.190)

A spinor ψ(x) transforms as:

ψ′(x′) = S(Λ)ψ(x) , (1.191)

ψ̄′(x′) = ψ̄(x)γ0S†γ0 . (1.192)

The transformed mass term is given by:

ψ̄′(x′)ψ′(x′) = ψ̄(x)γ0S†(Λ)γ0ψ(x) ≡ ψ̄(x)ψ(x) (1.193)

where in the last equality we impose the invariance as in Eq. (1.178). Then the matrices S(Λ)
must satisfy:

γ0S†(Λ)γ0 = S−1(Λ) . (1.194)

For the derivative term of the Lagrangian, we have:

ψ̄′(x′)γµ∂′
µψ

′(x′) = ψ̄(x)S−1(Λ)γµΛµ
ν∂νψ(x) ≡ ψ̄(x)γν∂νψ(x) . (1.195)

Here, the derivative ∂′
µ refers to the transformed coordinates, and thus ∂′

µ transforms as a
vector:

∂′
µ ≡ ∂

∂x′µ = Λµ
ρ∂ρ . (1.196)

From Eq. (1.195), it is deduced that:

S−1(Λ)γµΛµ
νS(Λ) = γν , (1.197)

S−1(Λ)γµS(Λ) = Λµ
νγ

ν , (1.198)

and thus the γν matrices are usually said to transform as vectors. Now, in the Lagrangian
with external fields, let us consider the term q̄(x)γµvµ(x)q(x), where the quark spinors are
denoted by q(x). The transformed Lagrangian is:

q̄′(x′)γµv′
µ(x′)q′(x′) = q̄(x)S−1(Λ)γµS(Λ)v′

µ(x′)q(x) ≡ q̄(x)γµvµ(x)q(x) (1.199)

which implies that vµ must transform as v′µ(Λx) = Λµ
νv

ν(x), or v′µ(x) = Λµ
νv

ν(Λ−1x).
Proceeding analogously with aµ, s and p, we get

Lorentz

v′
µ(x) = Λµ

ρvρ(Λ−1x)

a′
µ(x) = Λµ

ρaρ(Λ−1x)

s′(x) = s(Λ−1x)

p′(x) = p(Λ−1x) .

(1.200)

(1.201)

(1.202)

(1.203)
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Above, we also used that:
S−1(Λ)γ5S(Λ) = γ5 . (1.204)

Together with parity (as shown below), this means that vµ(x) is a vector, aµ(x) is an axial-
vector, s(x) is a scalar, and p(x) is a pseudoscalar. As there is no change of sign, we directly
get:

Lorentz

r′
µ(x) = Λµ

ρrρ(Λ−1x)

l′µ(x) = Λµ
ρlρ(Λ−1x)

χ′(x) = χ(Λ−1x)

χ′†(x) = χ†(Λ−1x)

(1.205)

(1.206)

(1.207)

(1.208)

The tensors fR,L
µν (x) have a derivative, that also transforms as a vector, thus

Lorentz f ′
µν

R,L(x) = Λµ
αΛν

βfR,L
αβ (Λ−1x) (1.209)

As usual, the axial charges will give us the transformation properties of the Goldstone bosons.
Thus,

Lorentz

Φ′(x) = Φ(Λ−1x)

φ′
a(x) = φa(Λ−1x)

U ′(x) = U(Λ−1x)

u′(x) = u(Λ−1x)

DµU
′(x) = Λµ

ρDρU(Λ−1x)

u′
µ(x) = Λµ

ρuρ(Λ−1x)

F ′
µν

R,L(x) = Λµ
αΛν

βFR,L
αβ (Λ−1x)

χ′
±(x) = χ±(Λ−1x)

(1.210)

(1.211)

(1.212)

(1.213)

(1.214)

(1.215)

(1.216)

(1.217)

The transformation of DµU as a vector is due to the fact that the three terms of DµU contain,
respectively, ∂µ, rµ, lµ, all of them transforming as a vector. The same argument applies to
uµ and FR,L

µν .

1.9.5 Parity

Let us consider parity transformations,

x′µ = P
µ

νx
ν = (x0, −~x) . (1.218)

The following properties of the Dirac matrices will be useful here:

γ0γ0 = 1 γ0γµγ0 = P
µ

νγ
ν (1.219)

γ0γ5γ
0 = −γ5 γ0γµγ5γ

0 = −P
µ

νγ
νγ5 (1.220)

Under parity transformations, a spinor of intrinsic parity ηS = ±1 transforms as:

ψ′(Px) = ηSγ
0ψ(x) , (1.221a)

ψ̄′(Px) = ηSψ̄(x)γ0 , (1.221b)
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or

ψ′(x) = ηSγ
0ψ(Px) , (1.222a)

ψ̄′(x) = ηSψ̄(Px)γ0 , (1.222b)

since P2x = x. In terms of a unitary operator, we have:

Upψ(x)U−1
p = ψ′(x) = ηSγ

0ψ(Px) . (1.223)

The different terms in the Lagrangian with external sources transform as:

q̄(x)M(x)q(x) → q̄′(Px)M ′(Px)γ0q′(Px) = q̄(x)γ0M ′(Px)γ0q(x) ≡ q̄(x)M(x)q(x) .
(1.224)

In general, there will be field and Dirac matrices in M(x). The transformation on M(x) is
thus:

M ′(x) = γ0M(Px)γ0 . (1.225)

Let us consider the term q̄γµγ5aµq. We must have:

γµγ5a
′
µ(x) = γ0γµγ5γ

0aµ(Px) = −P
µ

νγ
νγ5aµ(Px) , (1.226)

so that aµ transforms as a′
µ(x) = −Pµ

νaν(Px). For the rest of the external source, the
transformations are

Parity

s′(x) = s(Px)

p′(x) = −p(Px)

v′
µ(x) = Pµ

νvν(Px)

a′
µ(x) = −Pµ

νaν(Px)

(1.227)

(1.228)

(1.229)

(1.230)

The change of sign in aµ and not in vµ (in charge conjugation it was the opposite) induces a
change r ↔ l, and, in the same way ocurs with χ,

Parity

r′
µ(x) = Pµ

νlν(Px)

l′µ(x) = Pµ
νrν(Px)

χ′(x) = χ†(Px)

χ′†(x) = χ(Px)

(1.231)

(1.232)

(1.233)

(1.234)

In fR,L
µν we have two indices: the derivative changes under parity as vµ, and, again, there is a

change r ↔ l, which results in

Parity f ′
µν

L,R(x) = Pµ
α
Pν

βfR,L
αβ (Px) (1.235)

The parity transformations of the Goldstone bosons are derived from those of the charges
QA

a , which implies a change of sign because

γ0
(
γ0γ5

)
γ0 = −γ0γ5 , (1.236)
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whence, and as U(x) = exp i
√

2Φ(x)
f

,

Parity

Φ′(x) = −Φ(Px)

φ′
a(x) = −φa(Px)

U ′(x) = U−1(Px) = U †(Px)

u′(x) = u−1(Px) = u†(Px)

(1.237)

(1.238)

(1.239)

(1.240)

where we have used Eq. (1.170). For the covariant derivative, ∂, r and l give a common factor
Pµ

ν , so that:

DµU
′(x) = Pµ

ν

(
∂

∂(Px)ν
U †(Px) − ilν(Px)U †(Px) + iU †(Px)rν(Px)

)

= Pµ
ν(DνU(Px))† (1.241)

and we have used Eq. (1.166). Thus we can write:

Parity
DµU(x)′ = Pµ

νDνU
†(Px)

uµ(x)′ = −Pµ
νu†

ν(Px)

(1.242)

(1.243)

At last, for the fields defined in Eqs. (1.124), we can also derive the following transformations:

Parity
FR,L

µν (x)′ = Pµ
α
Pν

βFL,R
αβ (Px)

χ±(x)′ = ±χ±(Px)

(1.244)

(1.245)

1.9.6 Cayley–Hamilton theorem

The Cayley–Hamilton theorem is a useful tool to reduce the number of independent terms in
the Lagrangian. For our purposes, it can be stated as follows.

Theorem (Cayley–Hamilton). Let A be an square n × n matrix, and let p(λ) be its charac-

teristic polynomial,

p(λ) = det (A− λIn)

where In is the n× n identity matrix. Then,

p(A) = 0 . (1.246)

Notice that some abuse of notation has been made in the theorem, for p(λ) refers to a
polynomial in complex or real variable λ, thus being p(λ) itself a real or complex number, and
p(A) refers to the formal replacement of λ by A, thus p(A) is itself a matrix (the zero matrix,
in this case). We apply it for the two cases we could be interested, n = 2 or n = 3.
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n = 2 The polynomial can be written as

p(λ) = λ2 − 〈A〉λ+ detA

with 〈A〉 = TrA the trace of the matrix A. Thus,

p(A) = A2 − 〈A〉A+ detA I2 = 0

which allows to write detA in terms of traces of A and powers of it.

n = 3 We can write

p(λ) = λ3 − 〈A〉λ2 +
1
2

(
〈A〉2 − 〈A2〉

)
λ− detA

and thus
p(A) = A3 − 〈A〉A2 +

1
2

(
〈A〉2 − 〈A2〉

)
A− detA I3 .

Then, for both cases, we can write the determinant of the matrix in term of the traces, and
this will diminish the number of independent term in our Lagrangians (where, in fact, no
determinants will be present). One can also obtain relations between traces of monomials
involving different number of terms by multiplying p(A) by An, n > 1.

1.10 Chiral power counting and effective Lagrangian at O(p2)

1.10.1 Lowest order Lagrangian and Goldstone boson masses

If we set the quark masses to zero, M = 0, as well as the external field, vµ = aµ = p = s = 0,
every Lagrangian we could build would contain derivatives. Besides an unimportant term
UU † = I, the lowest order Lagrangian we can construct is

Leff ∼ 〈∂µU∂
µU †〉 (1.247)

where 〈· · ·〉 denotes the trace in flavour space. Let us assign to U the zeroth order, U ∼ O(p0).
We count the derivatives as O(p), since they tipically introduce an external momentum p. This
means that the previous Lagrangian Leff is O(p2). From the definition of DµU , which involves
rµ and lµ in the same foot that ∂µ, it seems to be convenient to count rµ, lµ as O(p), and
thus, DµU , uµ ∼ O(p). The χ building blocks will have inside the term s(x) = M + · · · , and
one could think that s(x) ∼ O(p). However, the term that involves χ would be 〈U †χ+ χ†U〉,
which, upon expansion, will give the standard mass terms of Klein–Gordon fields, L ∼ m2ϕ2,
so the correct chiral order of χ is χ ∼ O(p2). Another argument not to assign χ ∼ O(p)
is that, in that case, the leading order Lagrangian would be L ∼ 〈χ〉, thus no kinetic term
of the pseudoscalar Goldstone bosons would be present, because it enters through the term
〈∂µU∂

µU †〉. The assignments of the chiral order of the building blocks are summarized in
Table 1.1.

Given two matrices A and B transforming as A → VRAV
†

L and B → VRBV
†

L , we can
construct an invariant term as AB† → VRAV

†
LVLB

†V †
R = VRAB

†V †
R, which, due to the cyclical
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O(p0) O(p) O(p2)

U uµ,DµU fR,L
µν

rµ, lµ χ, χ±

Table 1.1: Chiral order of the building blocks.

property of the trace, 〈VRAB
†V †

R〉 = 〈V †
RVRAB

†〉 = 〈AB†〉, i.e., it is invariant under chiral
transformations. If, instead, we have two matrices C and D transforming as C → hCh† and
D → hDh†, then, 〈CD〉 → 〈hCh†hDh†〉 = 〈CD〉, which is automatically invariant.

The effective Lagrangian Leff will have an expansion in chiral powers as

Leff =
∑

d

L(d) (1.248)

As we have seen, the lowest possible order is O(p2). Given the transformation properties of
the building blocks we have discussed so far, the most general Lagrangian is

L(2) = a〈DµUD
µU †〉 + b〈χ+〉 (1.249)

Up to now, we have been solely guided by the light of symmetry arguments, but the values
of the constants will never be given by symmetry considerations.

The term 〈∂µU∂
µU †〉 gives the kinetic term. Expanding U in powers of Φ, we are left with

a〈∂µU∂
µU †〉 =

2a
f 2

〈∂µΦ∂µΦ〉 =

=
4a
f 2

(
∂µπ

0∂µπ0 + ∂µη∂
µη + 2∂µπ

+∂µπ
− + ∂µK

+∂µK
− + ∂µK

0∂µK̄
0
)

,

which gives the proper normalization of a kinetic term for a = f2

4
. For the mass term, take

s = M and p = 0 to get

b〈χ+〉 =b 2B0〈
(
U + U †

)
M〉 = −2b

f 2
2B0〈Φ2M〉 =

= − 4b
f 2

2B0

(
m̂ π02

+ 2m̂ π+π− +
1
3

(m̂+ 2ms) η2+

+ (m̂+ms)K+K− + (m̂+ms)K0K̄0

)
,

where we have taken M = diag(mu,md,ms) and mu = md = m̂, which means exact isospin
symmetry. The mass term for π0 is thus

−4b
f 2

2B0 m = −m2
π

The constant b can thus be absorbed into B0 with the definition b = f2

4
, and thus

m2
π = 2B0 m̂ , (1.250a)
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µ+

νµ

u

d̄

W+ π+

µ+

νµ

W+

Figure 1.5: Feynman diagrams for the pion weak decay constant, fπ..

m2
K = 2B0

(
m̂+ms

2

)
, (1.250b)

m2
η = 2B0

(
m̂+ 2ms

3

)
. (1.250c)

The most general effective Lagrangian at O(p2) is thus [16–19]:

L(2) =
f 2

4
〈DµUD

µU †〉 +
f 2

4
〈χ+〉 (1.251)

which depends upon two constants, f and B0, which is hidden in the definition of χ+. Even
without the (experimental) knowledge of these constants, we have achieved predictive power,
because, from relations Eq. (1.250), we have

3m2
η +m2

π = 4m2
K (1.252)

which is the well-known Gell–Mann-Okubo mass formula, which is satisfied within 10 %.

1.10.2 The weak decay constant of the pion at O(p2)

To obtain an experimental value for f , we calculate, from our Lagrangian, the lifetime τ of the
pion. The charged pion π+ decays mainly to µ+νµ through an intermediate W+, see the left
diagram of Fig. 1.5 for a very schematic plot, with a branching fraction of Γi/Γ ≃ 0.99. The
hadronic term of the amplitude, corresponding to the vertex π+ → W+, represented in the
right diagram of Fig. 1.5 by a blob, is given by the Lagrangian term contained in 〈DµUD

µU †〉,
with the substitutions of Eq. (1.97),

vµ = −aµ = − g

2
√

2

(
T+W

+
µ + h.c.

)

which results in the Lagrangian

LW φ = −gf

2

(
W+

µ 〈T+∂
µΦ〉 +W−

µ 〈T †
+∂

µΦ〉
)

=

= −gf

2

(
VudW

+
µ ∂

µπ− + V ∗
udW

−
µ ∂

µπ+
)

The leptonic vertex is taken from the standard electroweak Lagrangian, and the whole ampli-
tude is

M = −GFVudfū(νµ)/p(1 − γ5)v(µ+)
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where GF =
√

2g2

8M2
W

is the Fermi constant. Finally, the decay rate is

1
τ

=
G2

F |Vud|2
4π

f 2mπm
2
µ

(
1 − m2

µ

m2
π

)2

with the values τ ≈ 2.6 · 10−8 s, GF ≈ 1.17 · 10−11 MeV−2, mπ ≈ 140 MeV, mµ ≈ 106 MeV
and |Vud| ≈ 0.97, we get the value f ≈ 93 MeV. The meaning of this constant, which from
now on we call the pion weak decay constant, and denote with fπ, is thus clear: it gives the
strength of the weak decay of the charged pion (whence its name).

1.11 Chiral Lagrangians for SU(2) and SU(3) at O(p4)

In this Section, we give the NLO Lagrangians, considering first the SU(3) case and later
discussing the SU(2) ones.

1.11.1 SU(3) and standard power counting formula

With the techniques described so far, that lead us to the O(p2) Lagrangian in Eq. (1.249), one
can construct the most general Lagrangian up to O(p4), that is, a Lagrangian which includes
all the terms with O(p4) power counting and invariant under the symmetry of the theory. For
SU(3), this reads

L(4)
SU(3) = L1〈DµU

†DµU〉2 + L2〈DµU
†DνU〉〈DµU †DνU〉

+ L3〈DµU
†DµUDνU

†DνU〉 + L4〈DµU
†DµU〉〈χ†U + χU †〉

+ L5〈DµU
†DµU(χ†U + U †χ)〉 + L6〈χ†U + χU †〉2 + L7〈χ†U − χU †〉2

+ L8〈χ†Uχ†U + χU †χU †〉 − iL9〈fµν
R DµUDνU

† + fµν
L DµU

†DνU〉
+ L10〈U †fµν

R UfLµν〉 +H1〈fRµνf
µν
R + fLµνf

µν
L 〉 +H2〈χ†χ〉 (1.253)

The Li attached to each term of the Lagrangian are the so called low energy constants,
which we will discuss later on, in the context of the SU(2) Lagrangians. To reduce the number
of independent constants and thus have more predictive power, one should reduce the number
of independent terms of the Lagrangian to the minimum. This can be done through the use
of trace identities, like the ones shown in Subsec. 1.9.6, and the use of the classical equation
of motion of pions, derived from Eq. (1.249). If this is not done, one would have a correlation
between the different low energy constants attached to each term of the Lagrangian.

The chiral expansion is performed over a typical hadronic mass scale Λχ ≃ 1 GeV, which
roughly corresponds to the more massive states in the spectrum in Fig. 1.1, that are integrated
out, like the ρ, ω, etc.13 In this way, comparing the O(p4) and O(p2) Lagrangian, one has

Li ∼ f 2
π/4
Λ2

χ

∼ 10−3 . (1.254)

13The lightest scalar resonances, σ, κ, f0(980) and a0(980), require extra qualification that will be fully

discussed along this thesis.



1. Construction of effective Lagrangians. Chiral Lagrangians. 54

Also, from the unitary corrections, one can deduce [201]:

Λχ ≃ 4πfπ ≃ 1 GeV . (1.255)

The standard chiral power counting of a connected diagram, pD (where p is a generic small
momentum compared to Λχ ≃ 1 GeV), obeys the equation [18,221]

D = 2 +
∑

d

Nd(d− 2) + 2L . (1.256)

In this equation, d is the chiral dimension of a vertex, Nd the number of vertices with dimension
d and L is the number of loops. Each derivative increases the counting by one unit and the
lightest quark masses add two units to D. The O(p2) or leading order (LO) calculations have
D = 2 with no loops (L = 0) and involve only d = 2 vertices. For the O(p4) ones, or next-
to-leading order (NLO), D = 4, and one has diagrams with L = 1 that involve only d = 2
vertices. There are also diagrams with L = 0 with only one d = 4 vertex, with the rest of
vertices having d = 2.

1.11.2 SU(2) Lagrangian in O(4) notation

The original Lagrangians for SU(2) given by Gasser and Leutwyler [18] were written in terms
of invariant scalar products of O(4) vectors, instead of traces from SU(2), since these two
groups are isomorphic. In that notation, the SU(2) chiral Lagrangians at O(p2), L2, and
O(p4), L4, are:

L(2)
SU(2),GL =

f 2

2
∇µUA∇µUA + 2f 2(χAUA) (1.257a)

L(4)
SU(2),GL = l1 (∇µUA∇µUA)2 + l2 (∇µUA∇νUA) (∇µUB∇νUB) + l3 (χAUA)2

+ l4 (∇µχA∇µUA) + l5 (UAFµν,ABF
µν
BCUC) + l6 (∇µUAFµν,AB∇νUB)

+ l7 (χ̃AUA)2 + h1 (χAχA) + h2 (Fµν,ABF
µν
BA) + h3 (χ̃Aχ̃A) , (1.257b)

Above, uppercase subscripts denote the components of the O(4) vectors, A = 0, 1, 2, 3,
whereas, in the following, lowercase ones denote the last three components, i = 1, 2, 3. The
pion fields are included through the O(4) real vector field with components UA(x) of unit
length, UAUA = 1, as:

~U(x) ≡ (U1,U2,U3) =
~π(x)
f

=
1
f

(π1,π2,π3) (1.258)

U0(x) =
√

1 − ~U(x)2 = 1 − 1
2
~U2 − 1

8
~U4 − · · · (1.259)

The relation between the charged and Cartesian pion fields is given by:

π± =
π1 ∓ iπ2√

2
, π0 = π3 . (1.260)

The vectors χi(x), χ̃i(x), are proportional to the scalar and pseudoscalar sources,

χ0 = 2Bs0(x) , (1.261)
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χi = 2Bpi(x) , (1.262)

χ̃0 = 2Bp0(x) , (1.263)

χ̃i = −2Bsi(x) . (1.264)

The explicit chiral symmetry breaking due to the finite u and d quark masses enters through
the χ0 term, by putting χ0 = 2B(s0(x) + m̂). Here, 2Bm̂ = m2 is the pion mass at leading
chiral order. That is, in our notation m represents the pion mass at LO, i.e., the parameter
that appears directly from the Lagrangian, while mπ refers to the physical pion mass. We
consider exact isospin symmetry, so that m̂ is the algebraic mean of the u and d quark masses.
The fields s0(x) and pi(x) refer to the scalar and pseudoscalar c-number external sources, in
order. The parameter B is related to the value of the quark condensate in the chiral limit
〈q̄iqj〉 = −δijf 2B [18]. In this notation, the covariant derivative ∇µ is defined by:

∇µU0 = ∂µU0 + aµ,iUi (1.265)

∇µUi = ∂µUi − aµ,iU0 +
3∑

j,k=1

ǫijkvµ,jUk (i = 1, 2, 3) (1.266)

Finally, the tensor Fµν,AB is defined by:

(∇µ∇ν − ∇ν∇µ)UA = Fµν,ABUB (1.267)

It is customary to employ the finite and scale independent constants l̄i defined by

li = lri + γi
R

32π2
,

lri (µ) =
γi

32π2

(
l̄i + log

m2

µ2

)
,

hi = hr
i + δi

R

32π2
,

hr
i (µ) =

δi

32π2

(
h̄i + log

m2

µ2

)
,

R = µn−4
( 2
n− 4

− (log 4π + Γ′(1) + 1)
)

. (1.268)

Above, n → 4 is the dimension of the Minkowski space, and the quantity R is infinite. It is
cancelled with the infinities that originate from loops, through the loop functions calculated in
dimensional regularization, as seen in Appendix B for the case of ππ scattering in the presence
of a scalar source, studied in Chapter 5, or in Sec. 1.12, where the scalar pion form factor is
worked out as an example. The dependence on the renormalization scale µ is also reabsorbed
by the constants li. The l̄i are, up to a numerical factor, the renormalized coupling constants
lri at the scale µ = m ≃ mπ. In the chiral limit the l̄i are not defined as they are then divergent
quantities. We have also defined analogously the h̄i low energy constants. The needed γi, δi

coefficients are [18]:

γ1 =
1
3

, γ2 =
2
3

, γ3 = −1
2

, γ4 = 2 , γ5 = −1
6

, γ6 = −1
3

, γ7 = 0 . (1.269)

δ1 = 2 , δ2 =
1
12

, δ3 = 0 . (1.270)
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1.11.3 SU(2) Lagrangian in matrix notation

The Lagrangian written before can be put in the general matrix notation that has been worked
out up to now (as in the case of SU(3)). For that purpose, the U matrix is written in terms
of the components UA as [203]:

U(x) = U0(x) + i~τ ~U(x) , (1.271)

and then, the Lagrangians can be written as:

L(2)
SU(2) =

f 2

4
〈DµUD

µU †〉 +
f 2

4
〈χ+〉 , (1.272a)

L(4)
SU(2) =

l1
4

〈DµUD
µU †〉2 +

l2
4

〈DµUDνU
†〉〈DµUDνU †〉

+
l3
16

〈χU † + Uχ†〉2 +
l4
4

〈DµUD
µχ† +DµχD

µU †〉

+
l5
2

〈2fR
µνUf

µνU † − fL
µνf

µν
L − fR

µνf
µν
R 〉 + i

l6
2

〈fR
µνD

µUDνU † + fL
µνD

µU †DνU〉

− l7
16

〈χU † − Uχ†〉2 +
h1 + h3

4
〈χχ†〉 − 2h2〈fL

µνf
µν
L + fR

µνf
µν
R 〉

h1 − h3

16

(
〈χU † + Uχ†〉2 + 〈χU † − Uχ†〉2 − 2〈χU †χU † + Uχ†Uχ†〉2

)
, (1.272b)

and we have rewritten the leading order Lagrangian for reference easiness.

We finally note that for SU(2), alongside with the so called exponential parametrization,

U(x) = exp

(
i

√
2Φ
f

)
, (1.273)

where Φ is given by Eq. (1.131), there is also another frequently used one,

U(x) =
σ(x) + i~τ~π

f
σ(x) =

√
f 2 − ~π2(x) , (1.274)

related indeed to Eq. (1.271). All parametrizations must give the same results for on-shell
amplitudes or observables in general, but the relation of the parametrization in Eq. (1.274)
(for the Lagrangians in Eq. (1.272)) to that of Subsec. 1.11.2 is that both give the same results
also off the mass shell.

1.12 Self-energy, form factor and quadratic scalar radius of

the pion

In this Section, an explicit calculation from SU(2) ChPT is worked out, namely, the pion
scalar form factor and, from it, the pion quadratic scalar radius. In this way, through an
explicit example, we put in practice the previous theoretical formalism. As a by-product, it
also gives us an introduction to the renormalization procedure, the cancellation of divergences,
and all that. Finally, as we will have the opportunity to compute an observable quantity, that
can be compared with the experiments, we can have a first idea on the accuracy of ChPT.
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= +

−Σ(p2)

Figure 1.6: Diagrams for the one-loop calculation of the pion self-energy. Full
circles represent O(p2) vertices, while the empty ones correspond to the O(p4)
vertices.

1.12.1 Pion self-energy and O(p4) pion mass. Renormalization

The calculation of the pion self-energy, −iΣ(p2), is necessary in order to take into account
the renormalization of the wave function of the initial and final pions. It also defines the
physical mass, mπ, in terms of the bare mass, m. The diagrams that contribute to the pion
self-energy at O(p4) are depicted in Fig. 1.6. We use the O(4) form of the Lagrangian, with
the parametrization given in Eq. (1.259). There is a one-loop contribution from the O(p2)
Lagrangian, as well as a tree level contribution from the counterterms of the O(p4) Lagrangian.
One has:

Σ(p2) =
3m2A0(m2)

2f 2
+

2m4l3
f 2

− p2A0(m2)
f 2

. (1.275)

Notice that Σ(p2) is linear in its argument. The one-point function A0(m2) is given in
Eq. (B.2), Appendix B, together with the different n-point loop function used in this and
other chapters.

The pion bare propagator,14 ∆0(p2), is given by:

i∆0(p2) =
i

p2 −m2 + i0+
, (1.276)

where m2 = 2Bm, the pion mass at O(p2). The summation of the Dyson series, as seen in
Fig. 1.7, results in the appearence of the self-energy in the renormalized or dressed propagator,
∆R(p2),

i∆R(p2) = i∆0(p2) + i∆0(−iΣ)i∆0 + · · · = i∆0(1 − iΣ i∆R) (1.277)

so that:

i∆R(p2) =
i∆0(p2)

1 + i∆0(p2) iΣ(p2)
=

i

∆−1
0 (p2) − Σ(p2)

=
i

p2 −m2 − Σ(p2)
. (1.278)

If we make a Taylor series in Σ(p2) around p2 = m2
π, we have:

Σ(p2) = Σ(m2
π) + (p2 −m2

π)Σ′(m2
π) + · · · , (1.279)

and then we can write:

∆−1
R (p2) = p2 −m2 − Σ(p2) = (p2 −m2

π)(1 − Σ′(m2
π)) + (m2

π −m2 − Σ(m2
π)) . (1.280)

We impose now the condition that the dressed propagator has a pole for p2 = m2
π, the mass

of the pion at O(p4). Recall that, at O(p2), we have m2
π = m2. Then the mass of the pion at

O(p4) is given by the equation:

m2
π −m2 − Σ(m2

π) = 0 , (1.281)

14From now on, we ommit here the i0+ in the propagators, since it is not relevant for our discussion.
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= + + + · · ·

i∆R i∆0 i∆0 i∆0 i∆0 i∆0 i∆0

−iΣ −iΣ −iΣ

Figure 1.7: Dyson series for the propagator: the dressed propagator consists of
the sum of all possible insertions of self-energies in the bare propagator.

and the dressed propagator at O(p4) is written as:

i∆R(p2) =
i

(p2 −m2
π)(1 − Σ′)

≃ i(1 + Σ′)
p2 −m2

π

≡ iZ

p2 −m2
π

, (1.282)

where the constant Z is the so called wave-function renormalization constant:

Z = 1 + δZ = 1 + Σ′(m2
π). (1.283)

The bare propagator is defined in term of the bare field Φ0 as:

i∆0(p2) =
∫

d4xe−ipx 〈0 |T [Φ0(x)Φ0(0)]| 0〉 , (1.284)

whereas the dressed propagator reads:

i∆R(p2) =
∫

d4xe−ipx 〈0 |T [ΦR(x)ΦR(0)]| 0〉 , (1.285)

which means that the renormalized field is defined in terms of the bare one as ΦR = Z1/2Φ0.
Whence, in order to have a proper normalization in our amplitudes, when these have n external
legs, we have to multiply them by (Z1/2)n ≃ 1 + n

2
δZ. This procedure is called wave function

renormalization, since by means of this procedure the fields, i.e., the wave functions, are
renormalized.

Now we can calculate m2
π taking into account Eq. (1.281) and Eq. (1.275). We can write:

Σ(m2
π) =

4m4l3 +m2
πA0(m2)

2f 2
, (1.286)

and, as stated in Sec. 1.11, the li are defined such that the divergences of the loops (in this
case, A0) are cancelled. Thus,

4m4l3 +m2
πA0(m2) = − m4

π

16π2
l̄3 , (1.287)

which is indeed finite, and we have taken into account that m2 −m2
π = O(p4), as Eq. (1.281)

shows. This is an important result: the mass at O(p4) remains finite, and also independent
of the renormalization scale µ, and it is:

m2
π = m2

(
1 − m2

32π2f 2
l̄3

)
+ O(p6) , (1.288)

Notice also that, as one would expect, the masses of the Goldstone bosons go to zero when
the masses of the quarks go to zero (because m2 ∝ m̂).
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Figure 1.8: Diagrams for the coupling of a pion (solid lines) to the axial current
(wiggly lines), needed to calculate fπ at O(p4). Full and empty vertex are O(p2)
and O(p4), respectively. The leftmost diagram, which is O(p2), was included in
Fig. 1.5, whereas the other two are the O(p4) contributions.

In the same way that we have calculated the physical pion mass, we calculate the physical
weak decay constant of the pion, fπ, by repeating the calculation in Subsec. 1.10.2 at O(p4),
with the basic diagrams of Fig. 1.8. One finds that:

fπ = f

(
1 +

m2

16π2f 2
l̄4

)
+ O(p4) . (1.289)

1.12.2 Pion form factor and quadratic scalar radius

The diagrams that contribute the to pion form factor at O(p4) are depicted in Fig. 1.9. There
are contributions from the O(p4) Lagrangian and also from the O(p2) to one loop. As we shall
see below, the latter have infinities that can be derived with some renormalization method
(dimensional regularization here), and the former are defined in such a way that they cancel
these divergences (hence the name of counterterms). The different amplitudes, from left to
right and top to bottom in Fig. 1.9, read:

iT0 = −2Bi , (1.290a)

iT1 = −2Bi
l4q

2 + 4l3m2

f 2
, (1.290b)

iT2 = −5Bi
f 2

A0(m2) , (1.290c)

iT3 =
2Bi
f 2

(
A0(m2) +

(
q2 − m2

2

)
B0(q2,m2)

)
, (1.290d)

where the loop functions A0 and B0, as commented, are given in Appendix B. The infinite
and scale dependent terms arise from these loop functions and from the li, see Eq. (1.268),
namely:

A∞
0 = +

m2

16π2
R̃ , B∞

0 = +
1

16π2
R̃ ,

l∞3 = − 1
64π2

R̃ , l∞4 = +
1

16π2
R̃ , (1.291)

where R̃ = R + ln(m2/µ2), and R is given in Eq. (1.268), and the infinite terms add up to:

iT∞ = i
3∑

i=0

T∞
i = −2Bi

m2

16π2f 2
R̃ . (1.292)

The whole amplitude is then:

iTS = i(T0 + T∞ + Tfinite) . (1.293)
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Figure 1.9: Diagrams needed for the scalar form factor of the pion at O(p4). The
wiggly lines represent here an scalar source, whereas the solid ones denote the
pion. Full vertices represent O(p2) vertices, while the white ones are O(p4).

We will consider later Tfinite, the finite part of the O(p4) contribution to the amplitude. Now,
as seen in Subsec. 1.12.1, we have to multiply the amplitude by a factor (Z(1/2))2 = Z = 1+δZ,
with Z given in Eq. (1.283), and then:

iTSZ = i(T0δZ + T∞ + T0 + Tfinite) + O(p6) . (1.294)

Terms like T∞δZ and TfiniteδZ are neglected because this is an O(p4) calculation, and they
are O(p6) (δZ is O(p2) and T∞ and Tfinite are O(p4)). The important point to stress is that,
now,

T0δZ + T∞ = 0 , (1.295)

that is, the divergences cancel exactly. The final, finite result is:

Tfinal = T0 + Tfinite = T0 − 2B
16π2f 2

(
l̄4q

2 − l̄3m
2 −

(
q2 − m2

2

)
B̄0(q2,m2)

)
(1.296)

with B̄0 the finite and scale independent piece of B0 (cf. Appendix B).

Actually, the form factor is defined as Fπ(q2) = −m̂Tfinal = 2Bm̂(· · · ) = m2(· · · ). Ex-
panding m2 in terms of m2

π up to O(p4), and for low q2, one has:

Fπ(q2) = m2
π

(
1 − m2

π

32π2f 2
π

(
l̄3 − 1

)
+

q2

16π2f 2
π

(
l̄4 − 13

12

))

From this expansion, the quadratic scalar radius of the pion is defined as:

Fπ(q2) = Fπ(0)


1 +

1
Fπ(0)

∂Fπ(q2)
∂q2

∣∣∣∣∣
q2=0

+ · · ·

 = Fπ(0)

(
1 +

1
6

〈r2
π〉q2 + · · ·

)
,

so that it results:

〈r2
π〉 =

3
8π2f 2

π

(
l̄4 − 13

12

)
(1.297)

Just as an estimate, taking l̄3 = 2.9 ± 2.4 and l̄4 = 4.6 ± 0.9 [18], we get 〈r2
π〉 ≃ 0.6 fm2. For

more details on the issue of the quadratic scalar radius, see Ref. [149] and references therein.
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1.13 Including explicit resonances in the Chiral Lagrangians

So far, the interactions of the lightest hadrons have been derived as an Effective Field Theory,
resulting in a Quantum Field Theory given by the Lagrangians of the previous sections. In
Refs. [105, 106] an extension of this formalism is performed, allowing for the inclusion of
hadron states other than the lightest pseudoscalar mesons. At lowest order, these explicit
resonances include scalar (S1, JP C = 0++) and pseudoscalar (P1, 0−+) singlets, scalar (S8,
0++), pseudoscalar (S8, 0−+), axial (A, 1++) and vector (V , 1−−) octects. The kinetic part of
the Lagrangians is given by:

Lkin(R = V ,A) = −1
2

〈∇λRλµ∇νR
νµ − 1

2
M2

RRµνR
µν〉 (1.298a)

Lkin(R = S,P ) =
1
2

〈∇µR∇µR −M2
RR

2〉 +
1
2
∂µR1∂µR1 − 1

2
M2

R1
R2

1 (1.298b)

where R corresponds to octets of resonances, and R1 to the singlets. The covariant derivative
defined by ∇µR is given by:

∇µR = ∂µR + [Γµ,R] (1.298c)

Γµ =
1
2

(
u† (∂µ − irµ)u+ u (∂µ − ilµ)u†

)
. (1.298d)

The latter has already been introduced in Eq. (1.118b), but we include it here for reference
easiness. Since R is an octet, the action of the covariant derivative corresponds to the adjoint
representation. This is why it appears inside the commutator symbol.

The interaction Lagrangians are given by:

L1−− =
FV

2
√

2
〈Vµνf

µν
+ 〉 + i

GV√
2

〈Vµνu
µuν〉 , (1.298e)

L1++ =
FA

2
√

2
〈Aµνf

µν
− 〉 , (1.298f)

L0++ = cd〈S8uµu
µ〉 + cm〈S8χ+〉 , (1.298g)

L0++ = c̃dS1〈uµu
µ〉 + c̃mS1〈χ+〉 , (1.298h)

L0−+ = idm〈P8χ−〉 , (1.298i)

L0−+ = id̃mP1〈χ−〉 . (1.298j)

In the above Lagrangians, we have introduced one new notation,

fµν
± = F µν

L ± F µν
R , (1.299)

where the F µν
L,R are defined in Eq. (1.124). The different octets are given by:15

S8 =




a0√
2

+ f8√
6

a+
0 K∗

0
+

a−
0 − a0√

2
+ f8√

6
K∗

0
0

K∗
0

− K
∗
0

0 − 2√
6
f8


 , (1.300a)

15Note that, in P8 and P1, the fields π, K and η refer to particles different from those in the lightest

pseudoscalar nonet, but with the same quantum numbers.
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P8 =




π0√
2

+ η√
6

π+ K+

π− − π0√
2

+ η√
6

K0

K− K̄0 − 2√
6
η


 , (1.300b)

Vµν =




ρ0
√

2
+ ω8√

6
ρ+ K∗+

ρ− − ρ0
√

2
+ ω8√

6
K∗0

K∗− K
∗0 − 2√

6
ω8




µν

, (1.300c)

Aµν =




a0
1√
2

+ f1√
6

a+
1 K+

1

a−
1 − a0

1√
2

+ f1√
6

K0
1

K−
1 K1

0 − 2√
6
f1




µν

. (1.300d)

Above, the vector (Vµν) and axial–vector fields (Aµν) have been introduced as antisymmetric
tensor fields. Denoting both type of fields with Wµν , they are normalized such that, for a
state |W , p〉 with momentum p and polarization vector ǫ(p), one has:

〈0 |Wµν |W , p〉 =
i

MW

(pµǫν(p) − pνǫµ(p)) , (1.301)

and the propagator is given by:

〈0 |T {WµνWρσ} | 0〉 =
iM−2

W

p2 −M2
W + iǫ

(
gµρgνσ(p2 −M2

W ) − gµρpνpσ + gµσpνpρ − (µ ↔ ν)
)

.

(1.302)
For a formulation in terms of vector fields instead of tensor ones or a discussion on the
differences, see Refs. [106,204–206].

In subsequent chapters, we will use the Lagrangians for the scalar and pseudoscalar nonets.
However, when dealing with the vector and axial fields in Chapter 3, we will introduce an-
other formalism, in which they are considered as Yang-Mills fields, through minimal coupling,
identifying the classical external gauge fields rµ and lµ with the proper combinations of axial
and vector fields.
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2.1 Introduction

Unitarity is one of the cornerstones of quantum mechanics. In plain words, it is the statement
that the probability is conserved. It is difficult to overestimate its importance. Its fundamental
implications will be treated in Sec. 2.2, in the context of S-matrix theory. An introduction to
the formalism of partial waves is delivered to Sec. 2.3.

One of the most striking features of the strong interactions is the conspicuous apearence of

63
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peaks, dips and valleys when the results of experiments on cross sections are plotted versus the
energy of the particles involved. These peaks (sometimes dips) are evidence of intermediate
states or particles, called resonances, whose presence makes the reaction more likely, hence
increasing the cross section (or producing other effects in other observables). The difference
with elementary particles is just a matter of life time: resonances are much more short-lived.
Of course, the concept of isolated resonance is an ideal one. In most cases, what is seen in
the experiments is the superposition of several efects, as the presence of other resonances,
thresholds, and so on. An introduction to the appearence of resonances and bound states in
the context of one-dimensional Quantum Mechanics is found in Sec. 2.4. A general approach
to the appearence of resonances in the amplitudes will be given in Sec. 2.5.

When the amplitude for a given process is known mathematically for the physical region in
terms of a certain variable (usually, the center of mass energy squared, s), one can analitically
continue the amplitude to the complex plane of that variable. In this picture, the resonances
correspond to simple poles in the complex plane for that variable, being the pole position
related to the mass and width parameters of the resonance associated to. As the resonances
appear as simple poles in the so called unphysical Riemann sheet, in Sec. 2.6 we will treat the
topic of the Riemann sheets in detail.

Most of the content of this thesis is related, to a greater or lesser extent, to Unitarized
Chiral Perturbation Theory (UChPT), which is a non-perturbative scheme to be used together
with the perturbative results of Chiral Pertubation Theory. The master equation of UChPT
and its foundations will be studied in Sec. 2.7. Finally, a real example of the application
of UChPT as well as the other general results of this Chapter can be found in Sec. 2.8,
namely, the two-meson scattering in the channel IG(JP C) = 1−(0++) and the appearence of
the a0(1450) resonance.

2.2 S-matrix and unitarity

When dealing with S-matrix theory, we have to assume that the states are asymptotically
free. Given a system in an initial state |β〉, the probability amplitude of finding the system
in the final state |α〉 is given by the S-matrix element 〈α |S| β〉. For simplicity, let us assume
that the set of states {|n〉} forms a complete and orthonormal set of states,

〈m|n〉 = δm,n (2.1)∑

m

|m〉 〈m| = I (2.2)

i.e., they form a basis that allows one to express any state |φ〉 as a linear combination of
them, |φ〉 =

∑
n an |n〉, the coefficients satisfying

∑
n |am|2 = 1. Unitarity is the statement

that, given an initial state |φ〉, the probability that when, measured, it ends in some of the
basis state |m〉, is one. That is,

∑

m

|〈m |S|φ〉|2 = 1 =
∑

m

〈
φ
∣∣∣S†
∣∣∣m
〉

〈m |S|φ〉 =

=
〈
φ
∣∣∣S†S

∣∣∣φ
〉

=
∑

m,m′
a∗

m′am

〈
m′
∣∣∣S†S

∣∣∣m
〉
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As this must hold for any choice of the coefficients am, we must conclude that
〈
m′
∣∣∣S†S

∣∣∣m
〉

= δm,m′ S†S = I SS† = I (2.3)

where the last equality can be proved analogously.

Let |p〉 be the state of a spinless meson with four momentum p such that p2 = m2 = p02−~p2.
The normalization of these states is given by

〈p′| p〉 = (2π)32p0δ(~p− ~p′) (2.4)

and orthonormality can be expressed through

∫ (
|p′〉 d3~p′

2p′
0(2π)3

〈p′|
)

|p〉 = |p〉 (2.5)

Of course, these relations can be generalized to multiparticle states using the direct products
of monoparticle states.

Now, let us consider a two-particle scattering process |i〉 → |f〉,

a(p1) b(p2) → c(p3) d(p4) (2.6)

We can split the S-matrix as
S = I + iT (2.7)

explicitly separating the situation when the particles are widely separated in space and thus
not interacting at all. Due to energy conservation and translation invariance (the center of
mass motion does not affect the scattering amplitude) we can write:

〈f |S| i〉 = (2π)4δ(4) (Pf − Pi) 〈α |SP | β〉 (2.8)

The states |β〉 and |α〉 represent the same states than |i〉 and |f〉 once the center of mass motion
is removed, and then, the operator SP connects states with the same total four momenta.
Analogously, we can split the T -matrix, and define

SP = I + iTP (2.9)

The unitarity condition of the S-matrix translates into the T -matrix as

T − T † = iTT † (2.10a)

TP − T †
P

= iTPT
†
P

(2.10b)

and, by inserting a resolution of the identity operator in terms of the set of intermediate states
on the right-hand side of Eq. (2.10), we can write the latter equation as:

〈α |TP | β〉 −
〈
α
∣∣∣T †

P

∣∣∣ β
〉

= i
∑

a

∫
dQa

〈
α
∣∣∣TP

∣∣∣ a
〉 〈
a
∣∣∣T †

P

∣∣∣ β
〉

(2.11)

where the element of phase space is:

dQa =
∫ na∏

i=1

d3~pi(2π)4δ(P −
na∑

i=1

pi) , (2.12)
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being na the number of particles in the state a. For the two-particle case, the phase space is
given in terms of the center-of-mass variables,

dQa =
dΩ
4
√
s

|~p|
4π2

. (2.13)

Above, s the Mandelstam variable that represents the total center of mass energy squared,
and |~p| is the center of mass momentum.

2.3 Partial waves

In general, for a given two-spinless-particle scattering process like Eq. (2.6), it can be described
by the Mandelstam variable s and two polar angles, θ and φ. However, rotational invariance
ensures that the matrix elements are independent of the azimut φ. As a result, we can
always choose the coordinate axis with the z-axis pointing in the direction of the initial three-
momentum (the direction of the center of mass). We take profit of this fact to expand the
TP(s, θ) matrix elements1 in terms of Legendre polynomials2 PL(cos θ) as

TP(s, θ) =
∞∑

L=0

(2L+ 1)PL(cos θ)TL(s) , (2.14)

TL(s) =
1
2

∫ 1

−1
dcos θ PL(cos θ)TP(s, θ) , (2.15)

with cos θ = p̂·p̂′. The amplitude TL(s), called partial wave amplitude with angular momentum
L, depends now just on the variable s.

By inserting the partial wave expansion into the unitarity condition Eq. (2.11), the l.h.s.
side becomes:

〈α |TP | β〉 −
〈
α
∣∣∣T †

P

∣∣∣ β
〉

= 2i
∑

L

PL(cos θ)ImT (αβ)
L (s) , (2.16)

and the amplitudes on the r.h.s. give rise to:
〈
α
∣∣∣TP

∣∣∣ a
〉 〈
a
∣∣∣T †

P

∣∣∣ β
〉

=
∑

L,L′
T

(αa)
L (s)T (βa)

L

∗
(s)(2L+ 1)(2L′ + 1)PL′(cos θ′)PL(cos θ′′) . (2.17)

Taking into account Eq. (2.13) with dΩ = d cos θ′dφ′, and also the addition theorem for the
spherical harmonics [207, Sec. (3.7)]:

PL(cos θ′′) =
4π

2L+ 1

∑

M

Y ∗
LM(θ, 0)YLM(θ′,φ′) , (2.18)

1We do not distinguish here between the operator and the matrix elements since no ambiguity can arise in

what follows.
2Their normalization is given by:

1

2

∫ 1

−1

dcos θ PL(cos θ)PL′(cos θ) =
δL,L′

2L+ 1
.
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we have:
∫ 2π

0
dφ′PL(cos θ′′) =

4π
2L+ 1

∑

M

∫ 2π

0
dφ′Y ∗

LM(θ, 0)YLM(θ′,φ′) = 2πPL(cos θ)PL(cos θ′) . (2.19)

Then, the cos θ′ integral, given the Legendre polynomials normalization, can be performed
straightforwardly, and the final result is:

i
∑

a

∫
dQa

〈
α
∣∣∣TP

∣∣∣ a
〉 〈
a
∣∣∣T †

P

∣∣∣ β
〉

=
i |~pa|
4π

√
s

∑

L

(2L+ 1)PL(cos θ)T (αa)
L (s)T (βa)

L

∗
(s) . (2.20)

We end with the important result:

ImT (αβ)
L (s) =

∑

a

|~pa|
8π

√
s
T

(aα)
L (s)T (βa)

L

∗
(s)θ(s− sa

th) , (2.21)

where sa
th the s-value for the threshold of the state a. We can write the last equation (which

is a sum over open intermediate states) as a product of matrices, as

ImTL = TL ρ T †
L (2.22a)

where ρ is a diagonal matrix:

ρij =
|~pi|

8π
√
s
δij. (2.22b)

This equation can be written also as:

ImT−1
L = −ρ . (2.22c)

Let us consider an elastic reaction, which means that the process is ab → ab with no possi-
ble intermediate states other than the ab state itself. Then the matrices are one dimensional,
and T−1

L = ν − iρ so that TL = (ν + iρ)/(ν2 + ρ2), with ρ = |~p| /(8π√
s), so that, writting

ν =
√
ν2 + ρ2 cos δL, ρ =

√
ν2 + ρ2 sin δL, we have

TL =
8π

√
s

|~p| eiδL sin δL . (2.23)

The phase δL, which depends on s, is called the phase shift.3 We define the SL matrix element
for the elastic process as

SL = 1 + 2iρTL = 1 + i
|~p|

4π
√
s
TL = e2iδL (2.24)

and, of course, |SL|2 = 1.

The generalization to the inelastic case, when n coupled channels are involved, defines the
S-matrix with angular momentum L, SL, as:

SL = I + 2iρ1/2TLρ
1/2 , (2.25)

3From a wave function point of view, the only effect of elastic scattering on the asymptotic wave function

is the modification of the outgoing part of it by this factor e2iδL : the scattering shifts the phase.
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Due to Eq. (2.22a), SL satisfies:
SLS

†
L = S†

LSL = I . (2.26)

Unitarity imposes then that |Sii
L | ≤ 1, because, for n ≥ 2 channels,

(SLS
†
L)mm = 1 =

∣∣∣S1m
L

∣∣∣
2

+
∣∣∣S2m

L

∣∣∣
2

+ · · · + |Snm
L |2 = |Smm

L |2 +
n∑

i6=m

∣∣∣Sim
L

∣∣∣
2

.

For a two-particle scattering, the S-matrix can be parametrized in term of three real param-
eters as

SL =


 ηe2iδ1 i

√
1 − η2ei(δ1+δ2)

i
√

1 − η2ei(δ1+δ2) ηe2iδ2


 . (2.27)

For the nucleon-nucleon scattering, to be studied in detail in Chapter 7, one usually writes
η = cos ǫ, and ǫ is called the mixing angle.

2.4 Resonances: a first approach from Quantum Mechanics

In this section, a first approach to the general features of resonances is given from the point
of view of elementary, non-relativistic Quantum Mechanics. For that purpose, we consider an
example from one-dimensional quantum mechanics, which is rather simple, yet illuminating.
Let us consider the scattering of two particles in one dimension, interacting through a central
potential. The Hamiltonian of the system is given by:

Ĥsys(~r1,~r2) = − ~
2

2m1

~∇2
1 − ~

2

2m2

~∇2
2 + V (|~r1 − ~r2|) . (2.28)

Now, we separate the relative motion, ~r, from that of the center of mass (CM), ~R,

~r = ~r1 − ~r2 ,

~R =
m1~r1 +m2~r2

m1 +m2

,

M = m1 +m2 (total mass) ,

µ = m1m2/(m1 +m2) (reduced mass) . (2.29)

The inverse of the first two equations are:

~r1 = ~R +
m2

m1 +m2

~r ,

~r2 = ~R − m1

m1 +m2

~r . (2.30)

The relations between the gradients are:

~∇1 = +~∇r +
m1

m1 +m2

~∇R ,

~∇2 = −~∇r +
m2

m1 +m2

~∇R , (2.31)
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in an obvious notation. Hence,

− ~
2

2m1

~∇2
1 − ~

2

2m2

~∇2
2 = − ~

2

2M
~∇2

R − ~
2

2µ
~∇2

r (2.32)

Whence, we can write the wave function as Ψ(~r1,~r2) = ψCM(~R)ψ(~r), and the Schrödinger
equation can be separated:

ĤCM ψCM(~R) = ECM ψCM(~R) ,

Ĥψ(~r) = Eψ(~r) , (2.33)

being

ĤCM = − ~
2

2M
~∇2

R ,

Ĥ = − ~
2

2µ
~∇2

r + V (|~r|) . (2.34)

In words, we have reduced the movement of the system to that of the CM, behaving as a free
particle (because there is no potential in its Hamiltonian) of mass M , and that of the relative
movement, which is that of a particle of mass µ interacting through the potential V . Notice
that the center of mass momentum, ~P , and the relative one, ~p, are given by

~P = −i~~∇R = −i~
(
~∇1 + ~∇2

)
= ~p1 + ~p2 ,

~p = −i~~∇r = −i~
(

m2

m1 +m2

~∇1 − m1

m1 +m2

~∇2

)
=

m2

m1 +m2

~p1 − m1

m1 +m2

~p2 . (2.35)

Now we study the particular case of two identical masses, m1 = m2 = m, so that M = 2m,
µ = M/2, and the relative three-momentum is ~p = (~p1 − ~p2)/2. The relation to relativistic
kinematics, which is the usual one in this thesis, goes as follows. The four-momenta of the
two particles in their CM of mass frame is:

p1 =

(√
s

2
, +~p

)
p2 =

(√
s

2
, −~p

)
. (2.36)

Thus, ~p1 − ~p2 = 2~p. This momentum is related to the energy E as E = − ~p2

2µ
, so that

√
s

2
=
√
~p2 +m2 ≃ m+

~p2

2m
= m+

1
2m

2µE = m+
1
2
E , (2.37)

or √
s = 2m+ E , (2.38)

that is, the above threshold condition
√
s > 2m translates into E > 0.

We now turn our attention to the specific potential given in Fig. 2.1, specified by:

V (x)





0 for |x| > a+ b ,

V1 > 0 for a < |x| < a+ b ,

V0 < 0 for |x| < a .

(2.39)
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V1 V1

V0

x = −ax = −(a+ b) x = a x = a+ b
V = 0

L2 L1 LR R1 R2

Figure 2.1: The potential for the study of scattering, resonances and bound states.

The most general form of the wave function can be written as:

ψL2(x) = IL2e
ikx +OL2e

−ikx , ψR2(x) = IR2e
ikx +OR2e

−ikx ,

ψL1(x) = IL1e
ik2x +OL1e

−ik2x , ψR1(x) = IR1e
ik2x +OR1e

−ik2x , (2.40)

ψLR(x) = ILRe
ik1x +OLRe

−ik1x ,

with k, k1 and k2 given by the Schrödinger equation,

k =
√

2µE ,

k1 =
√

2µ(E − V0) ,

k2 =
√

2µ(E − V1) . (2.41)

We must obtain the coefficients of the exponentials in the wave function by imposing continuity
of the wave function and the first derivative in x = ±a and x = ±(a+b). The problem is easier
to solve by considering solutions with well-defined parity, since the potential is symmetric
under x → −x. Define functions ψ±(x) = ψ(x) ± ψ(−x), so that

ψ(+x) =
ψ+(x) + ψ−(x)

2
,

ψ(−x) =
ψ+(x) − ψ−(x)

2
, (2.42)

and with ψ±(x) = ±ψ±(x). We just need to consider the zones LR, R1 and R2,

ψ±
LR(x) = A±

(
eik1x ± e−ik1x

)
,

ψ±
R1(x) = B±e

ik2x + C±e
−ik2x , (2.43)

ψ±
R2(x) = D±e

ikx + P±e
−ikx .

The relation among the two set of coefficients is given by:

IR1 =
B+ +B−

2
OR1 =

C+ + C−
2

IR2 =
D+ +D−

2
OR2 =

P+ + P−
2
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OL1 =
B+ −B−

2
IL1 =

C+ − C−
2

OL2 =
D+ −D−

2
IL2 =

P+ − P−
2

ILR =
A+ + A−

2
OLR =

A+ − A−
2

(2.44)

The solution of the continuity conditions can be written in terms of A± as

2k2B±e
+ik2a = A±

(
eik1a(k2 + k1) ± e−ik1a(k2 − k1)

)

2k2C±e
−ik2a = A±

(
eik1a(k2 − k1) ± e−ik1a(k2 + k1)

)

4kk2D±e
+ik(a+b) = A±G±(E)

4kk2P±e
−ik(a+b) = A±F±(E) (2.45)

where the functions G± and F±, that play an important role in the following, are given by:

G±(E) = e+ik2be+ik1a(k + k2)(k2 + k1) ± e+ik2be−ik1a(k + k2)(k2 − k1)

+ e−ik2be+ik1a(k − k2)(k2 − k1) ± e−ik2be−ik1a(k − k2)(k2 + k1) (2.46a)

F±(E) = e+ik2be+ik1a(k − k2)(k2 + k1) ± e+ik2be−ik1a(k − k2)(k2 − k1)

+ e−ik2be+ik1a(k + k2)(k2 − k1) ± e−ik2be−ik1a(k + k2)(k2 + k1) (2.46b)

We will take, for the numerical examples in what follows, V0 = −800 MeV, V1 = +400 MeV,
a = 3 fm and b = 3 fm, and a mass m1 = m2 = m = 140 MeV, similar to that of the pion.

2.4.1 Bound states: V0 < E < 0

Let us consider first the case V0 < E < 0, which gives a discrete spectrum of bound states,
lying in the physical Riemann sheet of the momentum k, characterized by Imk > 0. By
putting k = iκ, we see that, in order to end with normalizable wave-functions, solutions of
the type e−ikx = eκx must be avoided for x > a+ b, and those e+ikx = e−κx for x < −(a+ b).
Thus, we must set IL2 = OR2 = 0, that is, P+ = P− = 0, which can be done simultaneously
only if F+ = A− = 0 or F− = A+ = 0.4 The first condition leads to even wave functions,
since A− = 0 implies B− = C− = D− = 0. Analogously, the condition F− = A+ = 0 leads
to odd wave functions. From their definitions, we see that the function F+ is purely real and
F− is purely imaginary for V0 < E < 0. This means that the conditions F+ = 0 or F− = 0
select eigenvalues for the energy E with V0 < E < 0, corresponding to bound states with
well-defined parity. The energy eigenvalues for the bound states of our numerical calculation
are given in Table 2.1, according to their parity. We also show the value

√
〈x2〉, which is

smaller for the ground state than for the others. This can be understood easily in terms of
the wave functions, because the ground state has an even wave function without nodes, that
is more peaked around zero. In general terms, odd wave functions, since they are zero for
x = 0, are spread all over the potential well.

2.4.2 Scattering and resonances: E > 0

The scattering problem consists in the study for E > 0 of this potential when there is an
incoming wave, for instance, from the left, x = −∞, and no incoming wave from the right. In

4Notice that, according to their definitions, it is not possible to simultaneously have F+ = F− = 0. On the

other hand, if A+ = A− = 0, the wave-function vanishes altogether.



2. Unitarity, resonances and UChPT 72

-800

-600

-400

-200

0

200

400

600

-8 -6 -4 -2 0 2 4 6 8

V
(M

eV
)

–
|ψ

(x
)|2

(a
.u

.)

x (fm)

1+
1−

2+

2−

3+

Figure 2.2: The modulus squared of the wave function, |ψ(x)|2, plotted for the
different states in Table 2.1.

terms of the coefficients, it means OR2 = 0, that is P+ = −P−, so that IL2 = (P+−P−)/2 = P+.
Thus, A+F+(E) = −A−F−(E). It is important here to study the transmission and reflection
coefficients, which are the ratios:

T =
IR2

IL2

R =
OL2

IL2

. (2.47)

In terms of the functions G± and F±,

T =
e−2ik(a+b)

2

(
G+(E)
F+(E)

− G−(E)
F−(E)

)
, (2.48a)

R =
e−2ik(a+b)

2

(
G+(E)
F+(E)

+
G−(E)
F−(E)

)
. (2.48b)

These satisfy the important relation |T |2 + |R|2 = 1, that is, the particle is transmited or
reflected. This fact is related to unitarity. When plotted against the energy E, as in Fig. 2.3
(solid blue line), the transmission coefficient shows an structure of peaks, that corresponds to
resonances. These have the form:

|T |2 ≃ (Γ/2)2

(E − E0)2 + (Γ/2)2
, (2.49)

which is called a Breit-Wigner amplitude. In Fig. 2.3 it is also plotted (dashed red line) an
incoherent sum of two such amplitudes corresponding to the resonances 2+ and 3− shown in
Table 2.1. These structures correspond to poles of T in the second Riemann sheet in the
E-complex plane at positions E = E0 − iΓ/2, and Γ is called the width of the resonance. It
is worth noticing that the condition for the poles to appear is then F+(E) = 0 or F−(E) = 0,
just as in the case of the bound state problem, giving rise to a coherent global picture of the
problem of resonances and bound states, that is, the problem of the spectrum of the theory.

In Fig. 2.2 the wave functions for the resonances are also plotted. However, since the
widths of both states 2+ and 3− are small, there is a fact that cannot be fully appreciated
there. In the region R2, the wave function is proportional to e+ikx, both for the case of a
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State (nP ) E (MeV) Γ (MeV)
√

〈x2〉 (fm)

1+ −743.5 1.3

1− −575.6 1.9

2+ −302.4 2.0

2− 59.4 0.4

3+ 442.7 28.9

Table 2.1: Bound states and resonances parameters for the potential studied,
V0 = −800 MeV, V1 = +400 MeV, a = 3 fm and b = 3 fm.
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Figure 2.3: Modulus squared of the transmission coefficient, |T |2. Resonant struc-
tures are around energies E = 60 MeV and E = 440 MeV. The solid blue line
represents the exact value, Eq. (2.48), whereas the red dashed line is the incoherent
sum of two Breit-Wigner amplitudes, Eq. (2.49), with the parameters of Table 2.1.
The first structure is reproduced with high accuracy, whereas for the second one
the agreement is worse because of interference with higher resonances not shown
here.

bound state and a resonance. For the latter, however, since k = kr − iki with ki > 0, the
wave function is eikrxekix. The first term gives an oscillating wave functions, with modulus
|eikrx| = 1, but the second term grows exponentially for x → +∞. A similar reasoning applies
in the case x → −∞. Thus, the wave function diverges and cannot be normalized, and mean
values of observables, such as 〈x2〉, cannot be calculated. This is a serious problem largely
studied in the literature. Some approaches to calculate normalizable wave functions have been
developed [208–216].

2.5 Resonances

We first discuss resonances in the elastic amplitude case, and then generalize the discussion
to inelastic transitions.
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2.5.1 Elastic case

In Sec. 2.1 it was stated that resonances appear as simple poles in the so called unphysical
Riemann sheets of the amplitude. We have also seen that this is the case in Quantum Me-
chanics in Sec. 2.4. In this Section we concentrate in the former point (the appearence of
poles), whereas the question of the Riemann sheet is delivered in Sec. 2.6. For this purpose,
suppose that the amplitude5 of an elastic channel has a pole at the position s0 = sR − iγ,

T (s) = − g2

s− s0

= − g2

s− sR + iγ
. (2.50)

The minus sign is an arbitrary convention. We suppose that γ is small enough (that is, the
resonance is narrow) for the following developments. For physical (real) s ≃ sR, one has

|T (s)|2 ≃ 1
4

|g|4 /sR

(
√
s−M)2 + Γ2

4

(2.51)

where M =
√
sR is the mass of the resonance, Γ = γ/M is its width, and the coupling of the

resonance to the channel is |g|. The previous equation is known as the Breit-Wigner resonance
formula. It is clear that the amplitude squared has a maximum at s = M2, and, since the
cross section is proportional to the former, it will have also a maximum when the center of
mass energy (E =

√
s) reaches the resonance mass M . In addition,

∣∣∣T
(
(M ± Γ/2)2

)∣∣∣
2

=
1
2

∣∣∣T
(
M2

)∣∣∣
2

, (2.52)

which can be used to estimate the width of a resonance, as it is done in Chapter 4, where
pseudoscalar resonances are studied.

Due to unitarity, some restrictions arise for the coupling g. For simplicity, let us consider
the case of the elastic scattering aa → aa. Then

|p(s)| =
√
s

4
−M2

a , (2.53)

where Ma is the mass of the a particle. Writing g2 = |g2| eiφ, one has:

− |g2|
T (s)

= (s− sR) cosφ+ γ sinφ+ i (γ cosφ− (s− sR) sinφ) , (2.54)

Close to the resonance mass, s ≃ sR = M2, we have

8πρ(s) =
|p(sR)|
M

+
M2

a (s−M2)
2M3 |p(sR)| + O((s−M2)2) . (2.55)

Imposing Im T−1(s) = −ρ, Eq. (2.22c), we get:

γ
cosφ
|g2| =

1
8π

|p(sR)|
M

,

sinφ
|g2| = − 1

8π
M2

a

2M3 |p(sR)| . (2.56)

5We disregard here the index in TL for clearness.
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These relations can be cast as

tanφ = − Γ
2M

1

|p(sR)/Ma|2
(2.57a)

∣∣∣g2
∣∣∣ = 8π

ΓM2

|p(sR)|
1√

1 + tan2 φ
(2.57b)

If we take the condition Γ ≪ M further, these equations reduce to tanφ = 0, and g2 is real
and positive (because cosφ > 0), so that

g2 = 8π
ΓM2

|p(sR)| (2.57c)

Now, coming back to T−1(s), its real part will go through zero near the resonance mass,
namely at s = sc,

sc = M2 − γ tanφ = M2

(
1 − Γ

M
tanφ

)
, (2.58)

and taking again the condition Γ ≪ M further, then sc = M2. If Re T−1(s) goes (quickly)
trhough zero, then the phase shift goes through an odd multiple of π/2, δ(sR) = (2n+ 1)π/2.

Thus, a resonance manifests in the amplitude as a simple pole, and in what refers to the
observables, if it is narrow enough, it will make the amplitude squared (and thus the cross
section) have a maximum and the phase shift go through (an odd multiple of) π/2.

2.5.2 Inelastic case

We will now generalize this discussion to the multichannel case.6 If the amplitude has a pole
at s = M2 − iΓM , then we can write s − M2 − iΓM = (E − M + iΓ/2)(E + M − iΓ/2),
neglecting the term with Γ2. Thus, a pole for

√
s = E, E = M − iΓ/2, arises. Then we can

write the S-matrix as
S(E) = S0 +

1
E −M + iΓ/2

R (2.59)

where S0 is the background matrix and R is the matrix of residues. In the discussion of the
elastic case we did not consider the background (that is, we set it to S0 = I). We set R as
a constant7 (in the elastic case, we considered its energy dependence) close to the resonance
E ≃ ER. Unitarity implies that:

SS† = I = S0S
†

0 +
1

(E −M)2 + Γ2

4

(
(E − ER)

(
RS

†
0 + S0R

†
)

− i
Γ
2

(
RS

†
0 − S0R

†
)

+ RR
†
)

and thus, the background must be unitary, S0S
†

0 = I, and, in addition, we have the following
conditions8 on R:

RS
†

0 + S0R
† = 0 , (2.60a)

6I will follow the lines of Weinberg, Ref. [217], p. 161-165, but see also [218].
7We are thus assuming that the width is small and that the resonance is far away from threshold.
8Note the erratum in Eq. (3.8.6) in Ref. [217].
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RR
† − i

Γ
2

(
RS

†
0 − S0R

†
)

= 0 . (2.60b)

By setting R = −iΓA S0, these equations are simply:

A = A
† , (2.60c)

A
2 = A , (2.60d)

which allows to write

S =

(
I − i

Γ
E −M + iΓ

2

A

)
S0 . (2.61)

The deep meaning of the Eqs. (2.60) is that, given a resonance, only the absolute value of the
coupling makes sense, since its phase is fixed by unitarity and the background, if present.

For the elastic case without background, Eqs. (2.60) reduce to the conditions Eqs. (2.57). In
this case, S0 = 1, and thus R = −iΓ. By comparing with T , we have R = −i |p| g2/(8πM2),
and then the condition Eq. (2.57c) is reached, and also g2 is found to be real and positive.

The condition for the matrix A implies that it can be written as [218]:

Aij = uiu
∗
j with

∑

i

|ui|2 = 1 , (2.62)

Considering the term between brackets in Eq. (2.61), which is the resonant S-matrix, SR, it
follows that:

SR,ij = δij − i
Γ

E −M + iΓ
2

uiuj
∗ . (2.63)

From the condition Eq. (2.62) we see that |ui|2 ≤ 1. We call the partial width to the product

Γi = Γ |ui|2 . (2.64)

By construction,
∑

i Γi = Γ. By comparing with the definition

Tii = − g2
ii

s− s0

≃ − g2
ii/(2M)

E −M + iΓ
2

, (2.65)

we reach the condition

Γi =
g2

ii |pi(sR)|
8πM2

, (2.66)

which is like Eq. (2.57c), but for the coupled channel case.

The couplings gij, related to the residues of the pole in the amplitude in the unphysical
Riemann sheet, can be obtained, for s ≃ s0, by:

Tij(s) = − gigj

s− s0

+ regular terms . (2.67a)

Numerically, it is usually better to obtain them through the Cauchy theorem:

gigj = − 1
2πi

∮

Γs0

Tij(s′)ds′ = − λ

2π

∫ 2π

0
eiθTij(s0 + λeiθ)dθ , (2.67b)
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s-plane

s1

s + iǫ

s− iǫ

TI(s + iǫ)

TII(s− iǫ)

(a) (b)

Figure 2.4: Complex s-plane, where the unitarity branch cut is shown, starting
at threshold, s = s1, and extending to infinity.

with λ → 0, and being Γs0 a counterclock closed path around enclosing s0 (but no other
poles).

Finally, we would like to end here with some remarks. The cases considered so far in this
Section are somewhat ideal, and the situation to disentangle the different resonances in a given
channel as well as their partial widths can be very involved. An example of this is the scalar
sector, to be studied in Chapter 3. Usually, resonances appear close to thresholds, and then
their shape can be rather distorted, due to the Flatté effect [219], first noticed in the scalar
sector for the case of the a0(980) resonance. Also, if the background is sizeable, the width
of the amplitude needs not to be the same width Γ deduced from the pole, nor the phase go
through π/2. Needless to say, if the width of the resonance is very large, this simple picture
does not embrace sufficiently the complexity of physical scattering in the energy region under
consideration.

2.6 Unitarity cut and Riemann sheets

The appearence of the unphysical Riemann sheets of an amplitude in two-body scattering
reactions is due to the presence of branch points sitting in the thresholds of the different
channels. Let us consider, for definiteness, an elastic amplitude, so that there is just one
threshold, s1. Due to the usual ±iǫ prescriptions in Quantum Field Theory, such an amplitude
is defined for s → s + iǫ. If we analytically continue the amplitude in the variable s, to the
upper half-plane, that is, for finite ǫ, s + iǫ → s + iγ, we are moving through the so called
physical sheet. The amplitude in the physical sheet is analytic except for the so called unitarity
or right hand cut,9 and thus, the lower half plane of the complex variable s can be reached by
moving from s+ iǫ to s− iǫ below threshold. This is the movement (a) in Fig. 2.4.

However, if we cross the unitarity cut, moving continuously to the lower half plane, as
indicated in Fig. 2.4 by (b), we reach the unphysical sheet. As it is connected continuously

9The presence of the crossed cuts, that arise from crossing symmetry has no influence on the following

discussion, so we will not refer to it.
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with the physical sheet in the real axis above threshold, s > s1, it must be that:

TI(s+ iǫ) = TII(s− iǫ) , (2.68a)

where TI(s) indicates the amplitude in the physical sheet and TII(s) the amplitude in the
unphysical or second Riemann sheet. Then, once TII(s) is defined, it can be analytically
continued to any region of the complex s-plane. Taking into account the Schwarz reflection
principle, TI(s∗) = TI(s)∗, the previous equation can be rewritten as:

TII(s− iǫ) = TI(s− iǫ) − 2iIm TI(s− iǫ) , (2.68b)

or, in a maybe more useful form,

T−1
II (s− iǫ) = T−1

I (s− iǫ) − 2iIm T−1
I (s− iǫ) = T−1

I (s− iǫ) + 2iρ . (2.68c)

The last equation applies for a partial wave amplitude, satisfying Eqs. (2.22), in the elastic
case, or as a matrix equation for the coupled channel case.

Given that an amplitude satisfies unitarity, Eqs. (2.22), then it cannot have poles on
the physical sheet on the real axis above threshold. From Eq. (2.22), it can be seen that a
cancellation ∞ = constant × ∞2, should occur, which is not possible. Alternatively, thinking
in terms of an elastic channel, the representation Eq. (2.23) for the amplitude TL(s) shows that
it must be finite in the physical region, so it cannot have a pole. Notice also that, since above
threshold and on the real axis the physical and the unphysical Riemann sheets of the amplitude
coincide, no pole can appear there neither in the unphysical Riemann sheet. Below the lowest
threshold it is possible to have a pole in the physical Riemann sheet, however, and this is
the case of a bound state. An example is the deuteron, a neutron–proton bound state in the
3S1 – 3D1 waves, which will be considered in Chapter 7. But note also that nothing prevents
a pole appearing on the real axis, below threshold, but on the unphysical Riemann sheet:
these are anti-bound or virtual states. We saw, in our simple problem of Quantum Mechanics
in Sec. 2.4, that bound states appear as real eigenvalues of the Hamiltonian for energy values
below threshold, as stated above. However, resonances appeared in the second or unphysical
Riemann sheet of the amplitude. This is because the eigenvalues of the Hamiltonian must
be real, but resonances correspond to complex eigenvalues. Whence, we can summarize the
appearence of poles as follows:

• On the real axis, below threshold, we can have poles in the physical Riemann sheet
(bound states) or in the unphysical Riemann sheet (antibound states).

• On the real axis, but above threshold, we cannot have poles (neither in the physical nor
the unphysical Riemann sheet), because of unitarity.

• On the complex plane, there can be poles in the unphysical Riemann sheet (resonances),
but not in the physical Riemann sheet (because the Hamiltonian eigenvalues must be
real).

2.7 Unitarized Chiral Perturbation Theory

We have seen in Chapter 1 that the spontaneous chiral symmetry breaking imposes strong
constraints in the interactions of the lightest scalar pseudoscalars. These interactions can
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thus be derived in the framework of an effective field theory: Chiral Perturbation Theory
(ChPT). Beyond its great success [220–223], we can point out some shortcomings in the range
of applicability of the theory. As seen in Chapter 1, it contains free parameters, not fixed
by the symmetries. The number of these parameters increases with the order of the studied
Lagrangians. At O(p2), beyond the masses of the lightest pseudoscalars, there is the weak
decay constant of the pion, fπ, but, at O(p4), several low energy constants appear, and,
at O(p6), this number increases up to about one hundred, so that its predictive power is
lost to a large extent with the chiral order. In addition, being a perturbative expansion,
it does not incorporate full unitarity, which is seen to be an important ingredient in strong
interactions. By including more and more orders (that include loop diagrams), unitarity
is perturbatively satisfied because of its nonlinear dependence on the scattering amplitude,
Eq. (2.10a). For the same reason, the perturbative character of the theory makes it impossible
to reproduce resonances, that are associated with poles in the amplitudes, and that appear
at masses already below 1 GeV. From the pointed drawbacks of the theory, it is clear that
non-perturbative schemes are, not just desiderable, but necessary in order to study hadron
physics comprising its full richness.

We will follow here the procedure of Ref. [39], where the most general structure of an
arbitrary partial wave when the unphysical cuts are neglected is given. It is then the zeroth
order approach to a partial wave when the unphysical cuts are treated perturbatively. The
amplitudes so obtained are then matched to the lowest order of ChPT and its extension to
include explicit resonances. A similar formalism, connected to the one presented here, is
obtained in Ref. [33], where it is related to the Bethe–Salpeter equation.

Besides the unitary or right hand cut, starting at threshold (denoted here with sth), a
partial wave T (s) has the so-called unphysical or crossed cuts, due to crossed channel dynam-
ics. For example, in nucleon-nucleon scattering, to be studied in Chapter 7, the left-hand
cut in the low energy extent is due to multipion exchange diagrams. Then, the cut starts at
s = sleft = −m2

π/4, and extends to s = −∞. For simplicity, from now on, we refer to the set
of different possible unphysical cuts as left-hand cut. Thus, for s < sleft, the left-hand cut is
given by:

T (s+ iǫ) − T (s− iǫ) = 2iIm Tleft(s) (2.69)

The standard way to simultaneously solve Eqs. (2.22) and (2.69) is the N/D method [38]
(Cf. also [224, Ch. 8]). For simplicity, let us consider the elastic case first. This method
rests on the separation of the unitary cut and the unphysical cuts, due to crossed channel
dynamics, by writting

T (s) =
N(s)
D(s)

(2.70)

where the function N(s) carries the left-hand cut and D(s) bears the right hand cut. The
explicit threshold behaviour of an l partial wave, T (s) ∝ (~p2)l ≡ νl, can be taken into account
by defining T ′(s) = T (s)/νl, and then

T ′(s) =
N ′(s)
D′(s)

(2.71)
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It is clear then that:

Im D′(s) =





Im (T ′(s))−1 = −ρ(s)N ′(s)νl , s > sth

0 , s < sth

(2.72a)

Im N ′(s) =





Im T ′
left(s)D

′(s) , s < sleft

0 , s > sleft

(2.72b)

As T ′(s) is determined by the ratio of N ′(s) and D′(s), we can multiply both by any arbitrary
real analytic function without changing T ′(s) nor the conditions Eqs. (2.72). If N ′(s) had
poles, we could apply this procedure to remove them, and so we consider in the following that
N ′(s) is free of them.

An n+ 1-subtracted dispersion relation for N ′(s) can be written down then as:

N ′(s) =
(s− s0)n+1

π

∫ sleft

−∞
ds′ Im T ′

left(s
′)D′(s′)

(s′ − s0)n+1(s′ − s)
+

n∑

m=0

ãms
m , (2.73)

and the n+ 1 subtractions are such that:

lim
s→∞

N ′(s)
sn+1

= 0 . (2.74)

If we neglect the left-hand cut, then N ′(s) is just a polynomial, and, as remarked before,
we can divide both N ′(s) and D′(s) by this polynomial, setting thus N ′(s) = 1 and obtaining
a dispersion relation for D′(s) that reads:

D′(s) = −(s− s0)l+1

π

∫ ∞

sth

ds′ νlρ(s′)
(s′ − s)(s′ − s0)l+1

+
l∑

m=0

ams
m +

ML∑

i=1

Ri

s− si

(2.75)

The last term accounts for the possible presence of Castillejo-Dalitz-Dyson (CDD) poles [185],
and, among other effects, it absorbs the zeroes of the polynomial used to set N ′(s) = 1. The
CDD poles will appear again in Chapter 7, when dealing with nucleon-nucleon scattering.

In order to proceed further, we will make some considerations about the NC → ∞ limit,
with NC being the numbers of colours in QCD.10 We split the subtraction constant into two
pieces,

am = aL
m + aSL

m (s0) , (2.76)

where the superscripts L and SL refer to leading and subleading order in the large NC limit,
respectively. As the meson-meson amplitudes scale as N−1

C [194,196], D′(s) and aL
m run as NC .

The integral in Eq. (2.75) is zeroth order in this counting. Its dependence on the subtraction
point s0 is reabsorbed in aSL

m (s0), which is of the same order in NC . Thus, in the limit
NC → ∞, D′(s) simplifies to:

D′∞(s) =
L∑

m=0

aL
ms

m +
M∞

L∑

i

R∞
i

s− si

, (2.77)

10As a funny anecdote, I remember that M. Scadron, in the SCADRON70 Workshop, at the occasion of

his 70th birthday, listening to a talk where the NC → ∞ limit was copiously considered, said to the speaker:

“You can talk about the large NC limit, but NC = 3 is its actual value!”.
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where the sum of poles now picks up just the relevant CDD poles in this limit, and R∞
i is also

the leading part of Ri. In the previous equation, the left and right pieces represent contact and
pole terms, respectively, that is, tree level amplitudes. The contact terms can be matched with
the standard lowest order ChPT amplitudes, and the pole terms, with the explicit interchange
of resonances in the s-channel (t- and u- interchanges are neglected, consistently with the
assumption that the left-hand cut is neglected). By denoting these contributions as T2 and
TR, respectively, one is lead to write:

T∞(s) ≡ T2(s) + TR(s) = νl(D′∞(s))−1 (2.78)

Finally, by defining the function gl(s) as

gl(s)νl =
L∑

m=0

aSL
m (s0)sm − (s− s0)l+1

π

∫ ∞

sth

ds′ ν(s)lρ(s′)
(s′ − s)(s′ − s0)l+1

, (2.79)

the final amplitude can be written as

T (s) =
(
(T∞(s))−1 + gl(s)

)−1
. (2.80)

In the previous equation, T∞ corresponds to the tree level amplitudes before unitarization is
accomplished, and then the latter is done through the gl(s) function.

This formalism can be generalized to the case of coupled channels straightforwardly. The
matrix T (s) will be given by the inverse of (T∞)−1 + G, where the matrix T∞ will have as
matrix elements the amplitudes of the different channels as given by ChPT plus the interchange
of resonances, and Gl(s) will be a diagonal matrix whose elements will be the gl(s) functions
with the integrand ρ(s′) particularized for each of the channels.

We can make and additional generalization, allowing also to include crossed channel con-
tributions in a perturbative manner [41,225], and keeping the matrix formulation for coupled
channels. For that purpose, we expand Eq. (2.70) (writting K instead of T∞, since it also
includes now subleading contributions in the NC expansion),

T =
(
K−1 +G

)−1
=
(
(K2 +K4 +K6 + · · · )−1 +G

)−1

= K2 +K4 −K2 G K2 +K6 −K4 G K2 −K2 G K4 +K2 G K2 G K2 + · · ·
= T2 + T4 + T6 + · · · , (2.81)

where in the last step we indicate that this expansion must be matched with the ChPT
perturbative calculation, and the chiral orders are indicated by the subscripts. The former
set of matrix equation can be solved (starting from the lowest order) to get:

K2 = T2 , (2.82a)

K4 = T4 + T2 G T2 , (2.82b)

K6 = T6 + T4 G T2 + T2 G T4 + T2 G T2 G T2 , (2.82c)

K8 = T8 + · · · . (2.82d)



2. Unitarity, resonances and UChPT 82

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

600 800 1000 1200 1400 1600 1800 2000
√
s (MeV)

|S11|

Figure 2.5: Absolute value of the matrix element S11, corresponding to πη with
IG(JP C) = 1−(0++).
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Figure 2.6: The two Riemann sheets of the function G(s) for the case of πη
scattering. The threshold is located at

√
s1 ≈ 690 MeV. The blue surface is the

physical Riemann sheet, whereas the red one is the unphysical Riemann sheet.

2.8 A detailed example: two-meson scattering in the IG(JPC)

= 1−(0++) channel

In this section we offer a detailed example in which all the subjects treated so far in this
Chapter can be seen at work. We will study the three-coupled channel with quantum numbers
1−(0++), given by the two-meson channels πη, KK̄ and πη′. We make use of the amplitudes,
formalism and fit to the data presented in Chapter 4 and in Appendix D, so that we do not
extend on these details. In this channel, the a0(980) resonance appears, but we will not focus
on it, but rather on the a0(1450) resonance, higher in mass, and not affected by the presence
of the nearby threshold of KK̄, which makes the discussion of the a0(980) more involved.11 It
should be remarked that we do not pursue here an accurate description of this resonance, but
just to present a realistic calculation which, at the same time, will allow us to put in practice
some of the concepts and ideas seen so far in this Chapter.

In Fig. 2.5 we show the absolute value of the matrix element S11. Up to the opening of

11For more details on this issue, see the introductory sections in Chapters 3 and 5.
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Figure 2.7: The amplitude |T33|2 is shown in the Riemann sheet where the pole
appears. The z axis range is arbitrarily cut, so the effects of the pole can be seen.
A contour plot is shown at the top where the location of the pole can be seen.

Channel Coupling Partial width

|gii| (GeV) Γi (MeV)

πη 1.26 18

KK̄ 2.46 61

πη′ 3.53 92

Table 2.2: Couplings and partial widths of the a0(1450) resonance.

the KK̄ threshold, at
√
s ≈ 1 GeV, the channel πη is elastic, thus satisfying |S11| = 1. Above

threshold, other channels open up and thus |S11| 6 1. The dip at above 1 GeV is characteristic
of the a0(980).

We have seen that the poles to which resonances are associated are located in the un-
physical Riemann sheet. Now we describe how to change from the physical to the unphysical
Riemann sheet in the context of UChPT. As we have seen in the previous Section, we can
write a partial wave amplitude as:

T−1(s) = V −1(s) +G(s) , (2.83)

where V (s) contains the dynamical information of the theory and is real on the real axis, and
G(s) is the matrix that contains the one-loop two-meson propagators, whose imaginary part
is

Im G(s) = −ρ(s) , (2.84)

thus satisfying unitarity, Eqs. (2.22). We consider, for definiteness, the elastic case. The G(s)
function is given in Eq. (4.12). As we have seen in Eq. (2.68c), the change of the Riemann
sheet of an amplitude concerns basically the piece in the last equation. Then,

GII(s− iǫ) = GI(s− iǫ) + 2iρ(s) , (2.85)

where, recall, ρ(s) =
√
~p2/(8π

√
s). A technical detail is that, in the previous equations, one

must take
√
~p2 such that Im

√
~p2 > 0. In Fig. 2.6 we see an example of the two Riemann

sheets, for the case of πη scattering, being the threshold at
√
s1 ≈ 690 MeV. We plot there
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the imaginary part of G(s). We see the unitarity cut, opening at threshold, and that one
can move to the lower half plane without changing the Riemann sheet, by moving around
threshold from below. It is also seen the condition Eq. (2.68a) over the real axis for s > s1.

As there are three channels, we have 23 posible Riemann sheets of the amplitudes. As
we have seen, the physical Riemann sheet has no poles. Usually the Riemann sheets that
must be inspected when searching for poles are those that are conected continuously with the
physical one, such as the example in Fig. 2.6. If we are looking for the a0(1450), well above
the highest threshold, √

sπη′ ≈ 1100 MeV, we must change to their respective Riemann sheets
all of the G(s) functions associated with each channel. The pole, shown in Fig. 2.7, is found
at

√
s0 = 1454 − i94 MeV. Thus, from Im

√
s0, we deduce Γ = 188 MeV. This compares well

with the PDG [48], that quotes M = 1474 ± 19 MeV and Γ = 265 ± 13 MeV. One should take
into account that we miss multiparticle states and that our calculated width should indeed
be smaller than the total one quoted in the PDG [48].

The couplings of the poles to the channels, obtained with Eq. (2.67), are given in Table 2.2,
together with their respective partial widths, as given by Eq. (2.66). From the partial widths,
calculated as in Eq. (2.66), we see that

∑
i Γi = 171 MeV, quite close to Γ = 188 MeV deduced

from the pole. The slight disagreement is due to the finite and not so small width, Γ/M ≃ 0.13.
Whence, there arise differences when formulas valid for Γ ≪ M are used.
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3.1 Introduction

One of the main features of strong interactions at low energy is the spontaneous breaking
of the chiral symmetry, which implies the existence of Goldstone bosons, to be identified in
SU(2) with the triplet of pions (which acquire mass due to the small, but finite, light quark
masses), and in SU(3) with the octet of the lightest pseudoscalars, JP C = 0−+, π, K and η.
In the limit of chiral symmetry restoration there should be scalars, 0++, degenerate in mass
with the pseudoscalars. As a result, one can also say that the appearance of 0++ mesons in
QCD is a benchmark characteristic of any theory of strong interactions and, furthermore, the
difference in mass between the pions and the σ is an order parameter of spontaneous chiral
symmetry breaking.1

An explicit realization of these considerations is the linear sigma model [226–232]. How-
ever, we have seen in Chapter 1 that the Effective Field Theory that takes into account
the consequences of the spontaneous breaking of chiral symmetry at low energy QCD, with
sufficient generality [233, 234], is Chiral Perturbation Theory (ChPT) [17–19], a non-linear
sigma model. In ChPT, however, due to its perturbative nature, the presence of the scalars
is not readily connected with the appearance and dynamics of the lightest multiplet of pseu-
doscalars. The tight relationship between the lightest pseudoscalars and scalars in ChPT was
recovered when resuming an infinite string of diagrams (related with unitarity) through the In-
verse Amplitude Method (IAM) [26,28–30,32], Bethe-Salpeter [33] and N/D frameworks [39].
From these analyses it was clear, as expected on general grounds and given the smallness
of the left-hand cut contributions in the resonance S-wave meson-meson amplitudes below√
s ≃ 1 GeV [39], that chiral symmetry, in terms of resummed ChPT, requires the presence of

light scalars in the spectrum of the strong interaction realm. These resonances correspond to
the σ or f0(500), κ, f0(980) and a0(980), which not by accident, due to their referred relation
with the lightest pseudoscalars, are also the lightest among the scalars. In Refs. [53–58] the
mixing between these resonances was considered. Other successful phenomenological approach
to study the lightest scalar resonances is based on meson-exchange models [59–61].

Crystal Barrel data at LEAR improved significantly the knowledge of the 0++ spectrum
above 1 GeV with the discovery or confirmation of the a0(1450), f0(1370) and f0(1500) [64].
BES Collaboration fixed the spin of the f0(1710) [65] and found a new resonance, f0(1790)
[66, 67]. There is some recent controversy on the existence of the broad f0(1370) [68] and
another state reported is the f0(2020) [69]. For more references on these states see e.g. [48,70].
All these resonances are specially relevant for another issue of great interest in the I = 0, 0++

spectroscopy, which is the identification of glueballs. Since QCD is a non-abelian Yang-Mills
theory, the gluons interact among themselves, a major difference with QED, where photons
do not couple each other. Whence, it is generally believed that QCD predicts the existence
of mesons without valence quarks (or with valence gluons, see a discussion in Ref. [82].) In
a pure Yang-Mills theory the identification of these states would be straightforward. In the
real world, however, they can be mixed with other non-glueball states of the Fock space.
Interest in the glueballs dates back to the early days of QCD [1, 6, 7] and was one of the
first issues of application of QCD sum rules [71,72]. This application however is not without
difficulties due to the strong coupling of the vacuum with the 0++ channel and the results

1In the study of Ref. [134] the σ was determined as the chiral partner of the π.
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are not conclusive yet [71–76]. In recent papers the role of instanton contributions has been
stressed [77,78]. Both papers agree with the presence of a glueball around 1.5 GeV but obtain
different conclusions about the existence of a lighter glueball around 0.5 GeV, depending on
how the instantons are treated. A glueball with a mass around & 1.5 GeV is also predicted
in several models [79–83].

The glueball spectrum in quenched lattice QCD is already established [84–87] and predicts
that the mass of the lightest 0++ glueball is 1660 ± 50 MeV (plus a 10% error in fixing the
physical scale due to the quench approximation). The main issue with these calculations is
that dynamical fermions are not included (infinitely heavy quarks) and hence the comparison
with experimental phenomenology is not straightforward. Since the seminal calculation by
the IBM group [88], a typical scenario for the identification of the lightest glueball consists
of mixing the latter with the nn̄ and ss̄ states closest in energy. The output resonances are
always the f0(1370), f0(1500) and f0(1710). Ref. [88] obtains that the f0(1710) is mainly a
pure glueball. Ref. [89] evaluated in quenched lattice QCD the decays of the latter resonance
to two pseudoscalars and calculated a pattern of decays in agreement with some reported data
on the f0(1710) [48].

This scheme has recently been confirmed in Ref. [91] (see also Refs. [92–94]) which finds
a chiral suppression in the way Γ(G0 → ss̄)/Γ(G0 → uū + dd̄) ≫ 1, with G0 the glueball.
However, the situation is not clear yet and different results are obtained in different works
[95–100], following the same idea of mixing of the glueball with the nearby nn̄ and ss̄ states.
On the other hand, the presence of the nearby f0(1790) [66,67] has not been taken into account
in all these studies and this could make some difference.

The mixing between quarkonia and glueballs sets up for the calculations of unquenched
lattice QCD with two flavours of dynamical fermions in Refs. [235–238]. The most recent
computations are Refs. [90, 239–241]. These studies find a low scalar singlet at energies that
follow the trend of the two pion threshold simulated in the lattice. On the other hand, they
also find a singlet resonance with a mass in the range of quenched results for the lightest
glueball.

In our study, published in Ref. [A], we consider the coupled channel 0++ scattering between
the two body I = 0 states made from the members of the lightest 0−+ and 1−+ multiplets from
ππ threshold up to 2 GeV. Thus, we consider the scattering between the ππ, KK, ηη, ηη′, η′η′,
ρρ, ωω, ωφ, φφ and K∗K∗ channels. In addition, we take into account the σσ channel. The σσ
and ρρ states play an important role to mimic the S-wave I = 0 4π channel. This multipion
channel plays a crucial role for energies somewhat above 1.2 GeV, see e.g. Ref. [64]. However,
the multipion channels do not give rise to any sign of specific branch cut near 0.56 GeV for
the 4π state nor around 0.84 GeV for the 6π one. This indicates, as signaled in Ref. [242],
that the production of four or six pions occurs mainly via intermmediate two resonance states
like σσ, ρρ and ωω. There are experimental evidences [243, 244] that the 2π in 4π clusters
around the masses of σ and ρ. We shall also explore the significance of the contribution from
the a1(1260)π and π(1300)π channels, although since the a1(1260) decays mainly to ρπ and
σπ [48], as probably for the π(1300), we expect that they are taken into account by the σσ
and ρρ channels already included. This will turn to be the case, as discussed below. We
also study simultaneously the I =1/2 and I =3/2 S-wave amplitudes following the scheme
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of Ref. [43, 44], so that we have more data to constraint our free parameters. Finally, let us
mention that we include in our amplitudes the contributions of s–channel exchange of octets
and singlets of scalar resonances, as discussed in Sec. 1.13. We consider many phase shifts,
elastic and inelastic cross sections that are fitted simultaneously.

To obtain the interaction kernel among the channels we employ chiral Lagrangians at O(p2)
(see Chapter 1), but with the SU(3) symmetry enlarged to U(3) so as to include the η′ meson.
No free parameters are present in the elementary kernels. This is due to the fact that the we
employ ChPT and the couplings involving vector resonances are obtained by minimal coupling
gauging chiral symmetry. To evaluate the σσ couplings we make use of UChPT (Chapter 2),
where the σ resonance appears as dynamically generated from the self interactions between
the pions in the scalar isoscalar pair of pions composing the resonance [33,39]. The interaction
kernels are then unitarized to resum unitarity and the analyticity requirements of the RHC,
following the scheme of UChPT [33,39,41,225].

Other hadronic studies in a similar energy region as ours interested in the S-wave I = 0
scattering are [68, 245–249]. Refs. [245–247] follow an scheme based on coupled channels, as
we also do here. But while these references only considers 3 or 4 channels we have included
many more, namely 13 coupled channels. Let us also mention that our interaction kernels
are calculated from chiral Lagrangians that establish constraints on the type of interaction
vertices allowed, while those of Refs. [245–247] are quite ad hoc. Refs. [68, 248, 249] follow a
different strategy, based on overlapping resonances employing the method of Dalitz-Tuan [250]
based on multiplying diagonally one-resonance S-matrices. The couplings of those resonances
are typically fitted and do not come either from any general Lagrangian. In addition these
references have a large number of free parametres, typically around 40, many more than the
13 ones we use here. In our study no form factors are included either, instead, we include
a subtraction constant for each channel, though some relations between the values of these
constants for different channels can be also established.

We pay special attention to the spectroscopical content of our fits, related to the poles in the
unphysical Riemann sheets of our solutions. In this way, we connect on the conflictive aspects
previously referred concerning the 0++ resonances. Many schemes have been implemented so
far that usually emphasize one aspect or the other of the 0++ dynamics [49–52, 116, 136, 137,
251–271].

This Chapter is organized as follows. Sec. 3.2 developes the formalism employed to cal-
culate the interaction kernels, paying special to the way used to include the vector-vector
(Subsec. 3.2.2) and the σσ (Subsec. 3.2.3) channels. In Sec. 3.3 these interaction kernels are
gathered to construct the unitary partial waves. In Sec. 3.4 we obtain the fits to the scat-
tering data. The relevant poles of our solutions and their connection with physical states are
discussed in Sec. 3.5, and more support to our spectroscopy is given in Sec. 3.6. One of the
main results of this work, the identification of the scalar glueball, is treated in Sec. 3.7. Our
summary and the conclusions are delivered in Sec. 3.8.
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3.2 Coupling the different channels

In order to obtain the coupling between the different channels we employ U(3) ChPT at the
lowest order including explict scalar resonances. Note that for I = 0 one needs to consider the
channels ηη, ηη′ and η′η′ so as to study energies up to s1/2 . 2 GeV, and hence U(3) symmetry
is invoked. We follow here a similar scheme to that already employed in Refs. [43, 44], where
the Kη and Kη′ were included so as to describe data up to similar energies. As commented
above, for the I = 1/2 and I = 3/2 S-wave we take the same formulae of Refs. [43, 44], but
now describing simultaneously the I = 0 S-waves.

3.2.1 Lagrangians

We need first to consider the extended version of SU(3) ChPT [19] to the U(3) case. In the
large NC limit, the singlet η1 field becomes the ninth Goldstone boson field and can then
be incorporated with an extended U(3)L ⊗ U(3)R chiral Lagrangian [101–104]. A consistent
counting that combines the chiral expansion in powers of momenta, quark masses and 1/NC

can be built, such that mq ∼ 1/NC ∼ O(p2) [272]. At the lowest order the extension to
U(3) is straightforward. We can employ the same Lagrangians for SU(3) ChPT [19] (given in
Sec. 1.10) and with resonances [105, 106] (see Sec. 1.13) but with U(x) being then the 3 × 3
matrix:

U(x) = exp

(
i

√
2Φ
f

)

Φ =
8∑

i=1

φi
λi√

2
+

1√
3
η1I ≡

8∑

i=0

φiλi

=




π0√
2

+ 1√
6
η8 + 1√

3
η1 π+ K+

π− − π0√
2

+ 1√
6
η8 + 1√

3
η1 K0

K− K
0 − 2√

6
η8 + 1√

3
η1


 , (3.1)

where f is the pseudoscalar weak decay couplings in the SU(3) chiral limit. We also have
φ0 = η1 and λ0 =

√
2/3 I. The corresponding Lagrangians are those given in Eq. (1.10) plus

the η1 mass term:

L2 =
f 2

4

{
〈DµU

†DµU〉 + 〈χ†U + χU †〉
}

− 1
2
M2

1 η
2
1 . (3.2)

Here, the covariant derivative is

DµU = ∂µU − irµU + iUlµ , (3.3)

with rµ and lµ the right and left external vector fields, respectively, introduced for gauging
the U(3)L ⊗ U(3)R chiral group, as seen in Secs. 1.6–1.7, and also Subsec. 1.9.1. The M1

is a term originating from the U(1)A anomaly, which is large though formally of O(1/NC).
It is responsible of the large mass of the η1, see e.g. [273]. The quark masses are included
in χ = 2B0M with M = diag(mu,md,ms), the matrix of the light quark masses. The
diagonalization of the mass term is achieved via the pseudoscalar mixing


 η′

η


 =


 cos θ sin θ

− sin θ cos θ




 η1

η8


 .
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For the numerical analysis that follows we take sin θ = −1/3 ≃ −20◦.

The other Lagrangians that we employ are the ones corresponding to the JP C = 0++

octet and singlet of scalar resonances, from the chiral invariant resonance Lagrangians of
Refs. [105, 106]. They were already introduced in Chapter 1, Sec. 1.13, but we include them
here for easiness of reference for the following discussions:

LS8 = cd〈S8uµu
µ〉 + cm〈S8χ+〉 ,

LS1 = c̃dS1〈uµu
µ〉 + c̃mS1〈χ+〉 ,

χ+ = u†χu† + uχ†u . (3.4)

Recall that S1 denotes a singlet and S8, whose form is given in Eq. (1.300a), an octet. In the
large NC limit one expects, because of the U(3) symmetry, that the S1 and S8 fields would
join in the 3 ⊗ 3 matrix S8 + S1/

√
3, analogously to Eq. (3.1). Then, a relation between the

singlet and octet couplings would arise, namely cd = c̃d/
√

3 and cm = c̃m/
√

3. In addition,
the mass of the S1 and that of the octet S8 would be the same [105, 106]. Nevertheless, in
the following we do not use these relations. In fact, the previous study in the meson-meson
I = 0 S-wave [39], the formalism of which we extend here (so that we include more channels,
simulating multipion states, and move to higher energies), indicates that this relation between
the couplings of singlets and octets can suffer of large deviations. We also point here that
similar values to those of cd and cm of Ref. [39], were also obtained in Ref. [43, 44] in a
detailed study of the I =1/2 and 3/2 meson-meson S-wave up to 2 GeV. In that reference
the previously mentioned U(3) relations among the couplings and masses of scalar octets and
singlets were used. Notice, however, that the I =1/2 and 3/2 S-waves are not directly sensitive
to the scalar singlets, as I =0 S-wave does, but only through to the bulk properties coming
from crossed channel exchanges. The same Lagrangians of Eq. (3.4) can be used repeatedly
when including more than one octet or singlet of scalar resonances. In this case, as it will
occur here, one must distinguish between the couplings and masses of the scalars according
to the multiplet that they belong to.

Our two body I =0 states are:

|ππ〉0 = − 1√
6

(
|π0(p)π0(−p)〉 + |π+(p)π−(−p)〉 + |π−(p)π+(−p)〉

)
(3.5a)

|σσ〉0 =
1√
2

|σ(p)σ(−p)〉 , (3.5b)

|KK〉0 = − 1√
2

(
|K+(p)K−(−p)〉 + |K0(p)K

0
(−p)〉

)
, (3.5c)

|ηη〉0 =
1√
2

|η(p)η(−p)〉 , (3.5d)

|ηη′〉0 =
1√
2

|η(p)η′(−p)〉 , (3.5e)

|η′η′〉0 =
1√
2

|η′(p)η′(−p)〉 , (3.5f)

|ρρ〉0 = − 1√
6

(
|ρ0(p)ρ0(−p)〉 + |ρ+(p)ρ−(−p)〉 + |ρ−(p)ρ+(−p)〉

)
, (3.5g)

|ωω〉0 =
1√
2

|ω(p)ω(−p)〉 , (3.5h)
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|K∗K∗〉0 = − 1√
2

(
|K∗+(p)K∗−(−p)〉 + |K∗0(p)K

∗0
(−p)〉

)
, (3.5i)

|ωφ〉0 = |ω(p)φ(−p)〉 , (3.5j)

|φφ〉0 = |φ(p)φ(−p)〉 , (3.5k)

|π(1300)π〉0 = − 1√
3

(
|π(1300)0(p)π0(−p)〉 + |π(1300)+(p)π−(−p)〉 + |π(1300)−(p)π+(−p)〉

)
,

(3.5l)

|a1π〉0 = − 1√
3

(
|a1

0(p)π0(−p)〉 + |a1
+(p)π−(−p)〉 + |a1

−(p)π+(−p)〉
)

. (3.5m)

Note the extra factors 1/
√

2 in the definition of the states |ππ〉0, |σσ〉0, |ηη〉0, |ηη′〉0, |η′η′〉0,
|ρρ〉0 and |ωω〉0. These are symmetry factors introduced because these states are invariant
under the exchange p ↔ −p. In this way, they can be treated on the same foot as the rest of
states, like e.g. the |KK〉0 one. For the I =1/2 states one has:

|Kπ〉1/2 =
1√
3

(
|K+π0〉 +

√
2|K0π+〉

)
,

|Kη〉1/2 = |K+η〉 , (3.6)

|Kη′〉1/2 = |K+η′〉 .

3.2.2 Two-vector resonance states

We take the two-vector resonance states ρρ, ωω, K∗K̄∗, ωφ and φφ. We note that the
threshold for such states is around 1500 MeV for the ρρ and ωω, 1800 MeV for the K∗K̄∗

and ωφ and 2000 MeV for φφ. These thresholds coincide with regions where resonance states
are expected as shown by experiment [48]. There are also phenomenological studies [243,244]
that indicate that the 4π state is accounted for as σσ and ρρ two body clusters, however
signals as π(1300)π and a1π are also reported [48]. These latter states are also included here,
as explained in Subsec. 3.2.4. Similar studies and other theoretical ones [274] indicate that
the ωω contributes very little to this partial wave. We shall see that we agree on that.

In order to include these two-vector resonance states we make use of the Lagrangians in
Eqs. (3.2) and (3.4), identifying the external classical gauge fields rµ and lµ with the proper
combinations of vector and axial-vector fields. In this way the couplings of the vector and
axial-vector are obtained through minimal coupling. This is a generalization of the way that
vector mesons are introduced in vector meson dominance attending the isospin, hypercharge
and baryon number currents [275,276] (see also [277].) The couplings of the vector and axial-
vector are calculated within the Extended Nambu-Jona-Laisinio model in Ref. [278], where
these resonances appear, except for a mass term, in the same way as through minimal coupling
at the level of the constituent chiral-quark Lagrangian.2 In this section we are only interested
in the vector ones and then we have:

rµ = g vµ , lµ = g vµ , (3.7)

2We thank the late J. Prades for a useful discussion on this issue.
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with g a universal proportionality constant and

vµ =




ρ0
√

2
+ 1√

6
ω8 + 1√

3
ω1 ρ+ K∗+

ρ− − ρ0
√

2
+ 1√

6
ω8 + 1√

3
ω1 K∗0

K∗− K
∗0 − 2√

6
ω8 + 1√

3
ω1


 . (3.8)

The coupling g in Eq. (3.7) is determined from the width ρ → ππ, with the result g = 4.3.
Making use of ideal mixing, one has φ = −

√
2
3
ω8 + 1√

3
ω1 and ω = 1√

3
ω8 +

√
2
3
ω1. As a

result, one can obtain from Eq. (3.8) and the Lagrangians Eq. (3.2) and Eq. (3.4) the different
amplitudes involving the two-vector resonances. In this way, the Lagrangians for the transition
of two-vector to two and four pseudoscalar are given by:

LV V Φ2 = g2〈vµv
µΦ2 − vµΦvµΦ〉 ,

LV V Φ4 = − g2

6f 2
〈vµv

µΦ4 − 4vµΦ3vµΦ + 3vµΦ2vµΦ2〉 . (3.9)

There is no transition at this order from the Lagrangians in Eq. (3.4) of the scalar res-
onances to V V . Note that the previous Lagrangians in Eq. (3.9) do not involve derivatives
on the pseudoscalar fields, as generally required by chiral symmetry. However, one should
take into account that the V V channel is only relevant for energies around and above its
threshold (always larger than 1.5 GeV) so that the two pseudoscalars are very energetic and
away from the soft chiral limit. In this way, the energy dependence that would be implied
by the momenta of the pseudoscalar due to derivatives is soft in the coupling of the V V with
PP (P referring to any pseudoscalar) and for practical purposes, Eq. (3.9) is a good approx-
imation. This is certainly not the case at low energies where the pseudo-Goldstone nature of
the pseudoscalar implies derivative couplings and this is essential to be kept.

For the projection of the V V system in I = 0 with J = 0 it is appropriate in our case to
work in the basis where the mono-particle state is defined in terms of the three-momentum
and the spin in its rest frame. In this way [217, 224], the total momentum ~J of a two-
vector resonance state is given by the sum of the orbital angular momentum ~L plus the
total spin ~S in the centre of mass frame, like in non-relativistic quantum mechanics. It is
a fact of the Lagrangian in Eq. (3.9) that the resulting amplitudes are directly in S-wave.
They are proportional to ǫµ(~p,λ1)ǫµ(−~p,λ2), with ~p parallel to the z-axis (initial state), and
ǫµ(~p,λ) is the polarization vector of V with λ the three component of the spin at rest. The
projection in S = 0 is straightforward. The only point is to write the polarization vec-
tor ǫµ(~p,λ) for ~p = ±|~p|ẑ in terms of the four-vectors in the rest frame, ǫµ

3 = (0, 0, 0, 1),
ǫµ

+ = −(0, 1, i, 0)/
√

2, ǫµ
− = (0, 1, −i, 0)/

√
2, with well defined third component of spin 0,

1 and −1, respectively. The polarization vectors with finite three-momentum ±pẑ are ob-
tained by performing a boost in the ∓ẑ direction, respectively, with velocity v = p/p0 and
p0 =

√
M2

V + ~p2. The resulting vectors are given by ǫµ
3(±|~p|~z, 0) = (±v, 0, 0, 1)/

√
1 − v2,

ǫµ
+(±|~p|~z, +1) = (0, 1, −i, 0)/

√
2, ǫµ

−(±|~p|~z, −1) = (0, 1, +i, 0)/
√

2. Thus, the S = 0 combina-
tion

∑
λ1

〈1λ1 1 − λ1|00 11〉ǫµ(p,λ1)ǫµ(p, −λ1) gives rise to the factor (3 + 2|~p|2/M2
V )/

√
3. The

I = 0 projection is straightforward taking into account the isospin states given in Eq. (3.5).
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3.2.3 Two-σ states

In this Subsection we discuss the calculation of the elementary amplitudes from the La-
grangians of Eqs. (3.2) and (3.4) involving the σσ state. The key point is to realize that,
according to the results of UChPT [33,39], the σ resonance is made up from the interactions
between two pions in I = 0 and S-wave. This will allow us to obtain the couplings involving
the σ meson without introducing any new free parameters. In order to obtain two-σ reso-
nances, one needs four pions grouped in two I = 0 S-wave ππ states. Let us denote by s1

and s2 the total CM energy squared of every of the two I = 0 ππ states. The desired transi-
tion amplitude is then obtained taking the limit s1, s2 → sσ, with sσ the σ pole position in
the sheet with the reversed sign for the pion CM three-momentum (second Riemann sheet).
This can be straightforwardly generalized to any number of σ mesons, e.g., for the transition
amplitude σσ → σσ one needs eight pions grouped in 4 sets of ππ in I = 0 and S-wave. For
ππ → σσ six pions are involved grouped in three sets and so on. Then, several si (with i
running from 1 up to the number of σ’s that scatter) are needed, and the limit si → sσ must
be finally taken.

For illustration let us show how to proceed for the calculation of |KK̄〉0 → (σσ)0. First,
from the Lagrangians of Eqs. (3.2) and (3.4) one calculates the amplitude |KK̄〉0 → |ππ〉0|ππ〉0,
which is given by the sum T

(2)

(KK̄)0→(ππ)0(ππ)0
+ T

(R)

(KK̄)0→(ππ)0(ππ)0
with:

T
(2)

(KK̄)0→(ππ)0(ππ)0
=

√
2

36f 4

(
5(s1 + s2) − 10m2

π

)
,

T
(R)

(KK̄)0→(ππ)0(ππ)0
=

∑

S8

α(KK̄)0
α(ππ)0(ππ)0

M2
S8

− s
+
∑

S1

β(KK̄)0
β(ππ)0(ππ)0

M2
S1

− s
. (3.10)

The superscript 2 means that the amplitude is calculated at lowest order in ChPT and the
superscript R indicates that this amplitude is due to the exchange of explicit scalar resonances.
The sums in S8 and S1 extend over the octets and singlets of scalar resonances, respectively.
The couplings αi and βi are given in Appendix A.

Now, every I = 0 S-wave ππ state, because of its rescattering, gives rise to a σ pole. Note
that in Eqs. (3.10) the I = 0 ππ pairs are already in S-wave and the angular projection is not
necessary. This also happens for the rest of transition amplitudes involving the σσ state. The
rescattering between the pions in a ππ pair is taken into account by multiplying Eqs. (3.10)
by 1/D(s1)D(s2) with

D(s) = 1 + t2 G(s) , (3.11)

where t2 = (s − m2
π/2)/f2

π , the I = 0 S-wave ππ amplitude at lowest in ChPT and G(s) =
(α + log m2

π

µ2 − σ(s) log σ(s)−1
σ(s)+1

)/(4π)2, σ =
√

1 − 4m2
π/s and s is the total CM energy squared.

The subtraction constant α is fixed such that t2/D(s) describes properly the I = 0 S-wave
ππ phase shifts in the elastic region [39], α ≃ −0.7 for µ = Mρ, with Mρ = 770 MeV (the
ρ mass.) The value of α depends on that of the renormalization scale µ, being the results
independent of the value taken for the latter. We follow Ref. [279] to treat the rescattering
between two pions in I = 0 and S-wave, similarly also as in Refs. [34, 40, 46, 280, 281]. From
Ref. [39] a general partial wave in the elastic case can be written as,

T = [I +N(s) ·G(s)]−1 ·N(s) . (3.12)
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The interaction kernel N is fixed by matching the previous general expression with the chiral
series order by order. For instance at leading order, N(s) = t2(s). Eq. (3.12) implies that once
the two pions in I = 0 and S-wave are produced from the primary vertex N , the rescattering
between them takes place according to the factor 1/D(s) and Eq. (3.12) arises. In the same
way here, the dressing of Eq. (3.10) by the I = 0 S-wave ππ rescattering in every I = 0
S-wave ππ subset implies then

T(KK̄)0→(ππ)0(ππ)0
= T

(2+R)

(KK̄)0→(ππ)0(ππ)0

1
D(s1)D(s2)

. (3.13)

In the previous equation the superscript 2 +R indicates that T (2+R)

(KK̄)0→(ππ)0(ππ)0
is given by the

sum of T (2) and T (R) in Eq. (3.10)).

The σ pole is contained in each of the factors 1/D(si) in the unphysical Riemann sheet on
which

G(s) ≡ GII(s) =
1

(4π)2

{
α+ log

m2
π

µ2
− σ(s)

(
log

σ(s) − 1
σ(s) + 1

+ 2iπ

)}
, Im(s) > 0 , (3.14)

and the complex conjugate of this expression for Im(s) < 0. In the subsequent the subscript
II means that the corresponding function is evaluated on the second ππ Riemann sheet. In
this way, when taking the limit s1, s2 → sσ in Eq. (3.13) one has,

lim
s1, s2→sσ

T(KK̄)0→(ππ)0(ππ)0
= N(KK̄)0→σσ

g2
σ(ππ)0

(s1 − sσ)(s2 − sσ)
, i = 1, 2 . (3.15)

where gσ(ππ)0 is the σ coupling to an I = 0 S-wave ππ state and N(KK̄)0→σσ is the transition
amplitude we are interested in. From this equation we can write,

N(KK̄)0→σσ = lim
s1, s2→sσ

(s1 − sσ)(s2 − sσ)
DII(s1)DII(s2)g2

σ(ππ)0

T
(2+R)

(KK̄)0→(ππ)0(ππ)0
. (3.16)

Note that the limiting factor limsi→sσ
(si − sσ)/(DII(s)gσ(ππ)0) always appears related with

every of the ππ I = 0 S-wave pairs and hence is worth calculating it once for ever. This can
be easily done by a Laurent expansion of DII(s) around sσ, as in Ref. [279],

lim
s1→sσ

s1 − sσ

gσ(ππ)0DII(s1)
= lim

s1→sσ

1
gσ(ππ)0t2(s1)

t2(s1)
DII(s1)

(s1 − sσ) = −gσ(ππ)0

t2(sσ)
. (3.17)

Above, we made use of the following Laurent series of the full amplitude:

t2(s1)
DII(s1)

=
t2(s1)

1 + t2(s1)GII(s1)
≃ −

g2
σ(ππ)0

s1 − sσ

+ regular terms . (3.18)

Now, the coupling g2
σ(ππ)0

can be retrieved from the derivative of the inverse of the elastic
amplitude,

1
g2

σ(ππ)0

= − d

ds1

(
t2(s1)−1 +GII(s1)

)
=

1
t2

2(s1)f 2
− dGII(s1)

ds1

∣∣∣∣∣
sσ

, (3.19)
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so that:
g2

σ(ππ)0

t2(sσ)2
= f 2 1

1 − dGII(s1)
ds1

∣∣∣
sσ

t2
2(sσ)f 2

≃ f 2
π ≃ 9 × 10−3 GeV2 . (3.20)

This factor f 2 is cancelled by the corresponding ones that appear when calculating multipion
tree level amplitudes as each pion field enters together with a 1/f factor. For explicit numerical
values,3

gσ(ππ)0

t2(sσ)
= f

1
(

1 − dGII(s1)
ds1

∣∣∣
sσ

t2
2(sσ)f 2

)1/2
= 98 − i 16 MeV ≃ f , (3.21)

for s1/2
σ = (0.46 − i 0.24) GeV. Note that the previous value is mainly a positive real number.

For our computation evaluations we employ finally the value 97.1 MeV, that corresponds to
the modulus of |gσ(ππ)0/t2(sσ)| with the values of Ref. [279]. As a result, from Eqs. (3.16),
(3.17) and (3.20), we obtain:

N(KK̄)0→(σσ)0
=

1√
2
T

(2+R)

(KK̄)→(ππ)0(ππ)0

(
−gσ(ππ)0

t2(sσ)

)2

≃ f 2

√
2
T

(2+R)

(KK̄)→(ππ)0(ππ)0
. (3.22)

The factor 1/
√

2 included above is a symmetry factor already introduced in the definition of
the I = 0 |σσ〉0 state in Eq. (3.5). In calculating the previous expression the variables si, in
virtue of the limit in Eq. (3.15), are placed at si = sσ. However, in doing this the elementary
amplitude N(KK̄)0→(σσ)0

develops an imaginary part, because sσ is complex (in Ref. [279] sσ

is given by sσ = (0.47 − i0.22)2 GeV2.) This is due to the finite width of the σ resonance to
two pions. The finite width of a resonance can also be interpreted as giving rise to a mass
distribution for the latter. We take this point of view and vary the mass for the σ resonance
in N(σσ)0→ℓ, as discussed below in Sec. 3.3.

3.2.4 The π(1300)π channel

We first discuss the evaluation of the elastic transition π(1300)π → π(1300)π. We make use
of the Weinberg-Tomozawa term for an octet of pseudoscalar resonances (see Sec. 1.13):

Lkin =
1
2

〈DµΠDµΠ〉 = 〈∂µΠ[Γµ, Π]〉 + . . . (3.23)

with Π an octet of pseudoscalar resonances including the π(1300). The covariant derivative
DµΠ is given by,

DµΠ = ∂µΠ + [Γµ, Π] ,

Γµ =
1
2

{
u†(∂µ − irµ)u+ u(∂µ − ilµ)u†

}
. (3.24)

From the Lagrangian in Eq. (3.23) one straightforwardly calculates

N12,12 =
1

2sf 2

[
2s(s−m2

π −M2
π∗) + s2 − (M2

π∗ −m2
π)2
]

, (3.25)

3Note that the sign given when taking the square root of this quantity is not relevant, since this factor

always appears squared, as can be seen in Eq. (3.22) below.
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with M∗
π = Mπ(1300) ≃ 1300 MeV [48].

For the evaluation of the rest of interacting kernels involving one π(1300)π state, either
as final or initial channel, we make use of the interaction Lagrangian from Ref. [105, 106], as
presented in Sec. 1.13, involving an octet of pseudoscalar resonances Π,

Lint = idm〈Πχ−〉 = − dm

3
√

8f 3
〈
(
Φ3χ+ χΦ3 + 3Φ2χΦ + 3ΦχΦ2

)
Π〉 (3.26)

with χ− = u†χu† − uχ†u. From this Lagrangian the transitions π(1300)π ↔ V V ′ are zero,
with V V ′ corresponding to any vector-vector state. The other non-vanishing elementary
transition amplitudes involving the π(1300)π channel are displayed in Appendix A. The
coupling constant dm, when this channel is included, is taken from the literature [105].

3.2.5 The a1(1260)π channel

For the introduction of the axial-vector field a1(1260), the external fields rµ and lµ appearing
in the Lagrangian of Eq. (3.2) are identified with λaµ and −λaµ, respectively, where λ is a
constant and aµ is an octet of axial-vector resonances with JP C = 1++.4 The constant λ is
evaluated from the decay width a+

1 → γπ+ with the value of 640 ± 246 KeV [48]. For this
transition one employs Eq. (3.2) keeping one pseudoscalar field and one photon, together with
the axial-vector field. The photon enters through the vector field eAµ = rµ = lµ [221]. The
resulting Lagrangian is

L(a1 → γπ) = −
√

2efπa
µ
1(1260)+π− , (3.27)

and the calculated width is given by

Γ(a1 → γπ) =
αf 2

πλ
2

M3
a1

, (3.28)

with Ma1 ≃ 1260 MeV the mass of the a1 axial-vector resonance [48]. From this equation one
gets λ = 5.8 ± 1.2.

Other amplitudes that can be derived from the Lagrangian of Eq. (3.2) involving the a1π
state are a1π ↔ a1π and a1π ↔ PQ, with P ,Q ∈ {π,K, η, η′}. The appropriate vertices are,
respectively,

La1π→aππ = λ2〈aµΦaµΦ − aµa
µΦ2〉 ,

La1π→P Q =

√
2λ

3f
〈aµ

[
Φ2∂µΦ + ∂µΦ Φ2 − 2Φ∂µΦ Φ

]
〉 . (3.29)

The transition amplitude a1π → σσ requires the Lagrangian of Eq. (3.2) with 5 pseudoscalar
fields,

La1π→σσ =

√
2

30f 3
〈aµ

(
4Φ∂µΦ Φ3 + 4Φ3∂µΦ Φ − 6Φ2∂µΦ Φ2 − ∂µΦ Φ4 − Φ4∂µΦ

)
〉 . (3.30)

4The charge conjugation transformation properties of this axial-vector field can be worked out from the

requirement that QCD is invariant under this transformation with aµ ∝ q̄γµγ5q, in standard notation.
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By incorporating the axial-vector fields in the Lagrangians involving the scalar resonance
multiplets S8 and S1, Eqs. (3.4), one can also evaluate the couplings of these resonances with
the a1π state. The resulting Lagrangians are:

LS8→a1π = −cd
2
√

2
f

〈aµ∂
µΦ + ∂µΦ aµ〉 ,

LS1→a1π = −c̃d
4
√

2
f

S1〈aµ∂
µΦ〉 . (3.31)

Total angular momentum and parity conservation require the state a1π to be in a P -wave
for the relative orbital angular momentum. The appropriate projected state for our porpuses
is given by:

|a1π; J = 0, ℓ = 1〉 =
1√
4π

∑

m

∫
dp̂Y m

1 (p̂)(mσ0|110) |a1π; ~p σ〉 , (3.32)

with the notation for the Clebsch-Gordan coefficients (m1m2m3|j1j2j3), for the composition
of spins j1 + j2 = j3. In the previous equation σ is the third component of spin of the a1

resonance in its rest frame.

Since the axial-vector state |a1; p1,σ〉 can be both in the final or initial state we give the
general expression for the polarization vector ǫ(p1,σ) for arbitrary p and σ,

ǫ(p, 0) =




γp cos θ/p0

(γ − 1) cos θ sin θ cosφ

(γ − 1) cos θ sin θ sinφ

1 + (γ − 1) cos2 θ




,

ǫ(p, +1) =
−1√

2




γp sin θeiφ/p0

1 + eiφ(γ − 1) sin2 θ cosφ

i+ eiφ(γ − 1) sin2 θ sinφ

eiφ(γ − 1) sin θ cos θ




and ǫ(p, −1) = −ǫ(p, +1)∗. In the previous equation p0 =
√

p2 +M2
a1

and γ = 1/
√

1 − p2/p2
0.

A technical point worth being mentioned is related to the time reversal invariance prop-
erties associated with the Lagrangians La1π→P Q, LS8→a1π and LS1→a1π. The issue is that the
amplitudes calculated from these Lagrangians, and also the projected partial waves, contain
explicitly a ±i factor whose sign depends on whether we take the a1π as initial or final state.
This i factor originates because the presence of just one derivative acting on the meson fields.
A general result is that partial waves are symmetric under this exchange because time reversal
invariance. However, the way a state transforms under time reversal is affected by an arbitrary
phase and it turns that depending on this phase the partial waves are or are not symmetric
under the exchange of the inital ↔ final states. As we make use later of this symmetry when
working out the coupled channel partial wave amplitudes, we have chosen the phase of the
a1(x) field so as the partial wave amplitudes are symmetric under such exchange. For that we
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use the fields,

a0
1(x) = +i

∫ d3p

(2π)22p0

[
c(p,σ)ǫ(p,σ)e−ipx − c†(p,σ)ǫ(p,σ)∗eipx

]
,

a+
1 (x) = −i

∫ d3p

(2π)32p0

[
a(p,σ)e(p,σ)e−ipx + b†(p,σ)ǫ(p,σ)∗eipx

]
,

a−
1 (x) = a+

1 (x)† . (3.33)

Note the multiplying factors ±i in front and our notation is such that [a(p,σ), a†(p′,σ′)] =
(2π)32p0δσσ′δ(p − p′). This phase selection also respects the isospin convention followed in
the construction of the states in Eq. (3.5). This fixes the +i sign in front of the a0

1(x) field
with respect to the −i in front of the a+

1 (x) field.

Due to the P -wave nature of the relative orbital angular momentum in the |a1π〉 state
each amplitude involving the a1π system is proportional to |p|n, with p the three-momentum
of the a1π state and n = 1 or 2 depending of whether the amplitude under consideration
involves one or two a1π states, respectively. This makes that such elementary amplitudes
grow as

(
M2

a1
/
√
s
)n

for s ≪ M2
a1

. Notice that such values of s are not physical at all for
the a1π state because they are much smaller than the threshold for such channel. In order
to avoid such behaviour we multiply the resulting elementary amplitudes by a decreasing
function exp (−|p|2/Λ2|), with Λ ≃ 1 GeV. The final results depend only marginally on the
precise value for Λ. Indeed, as we discuss later, the a1π channel has very small effects on the
physical final results.

3.3 Full amplitudes

We use here the general method of Ref. [39], exposed in Sec. 2.7 to obtain unitarized partial
waves by resumming the RHC [29, 30, 39, 41, 225]. The key point is the general expression,
now in coupled channels,

T = [I +N(s)g(s)]−1 N(s) , (3.34)

where N(s) is a n×n matrix (with n the number of channels) whose matrix elements are the
elementary amplitudes obtained from the previous sections. They can be found in Appendix A.
The function g(s) is a diagonal n×n matrix whose matrix elements correspond to the unitarity
bubbles, Fig.3.1. The latter are given by the once subtracted dispersion relation as explained
in Sec. 2.7,

gi(s) = gi(s0) − s− s0

π

∫ ∞

sth;i

ds′ qi(s′)/(8π
√
s′)

(s′ − s0)(s′ − s− iǫ)
, (3.35)

with s0 the subtraction point, which is convenient to take on the real axis below threshold
(sth;i). On the other hand, qi is the CM three-momentum for channel i. For completeness,
we give here the gi(s) function for the cases of equal and an equal masses of the intermediate
particles. If we denote by M1 and M2 the masses of the particles 1 and 2 in a channel, the
following explicit expressions for gi(s) result:

M1 = M2 = M

gi(s) =
1

(4π)2

(
αi + log

M2

µ2
− σ(s) log

σ(s) − 1
σ(s) + 1

)
, σ(s) =

√
1 − 4M2/s , (3.36)
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s ⇒ g(s)

Figure 3.1: The function g(s) as a loop in terms of Feynman diagrams.

M1 6= M2

gi(s) =
1

(4π)2

(
αi + log

M2
1

µ2
+
M2

2 −M2
1 + s

2s
log

M2
2

M2
1

− q(s)√
s

log
M2

1 +M2
2 − s+ 2qi

√
s

M2
1 +M2

2 − s− 2qi

√
s

)
.

The logarithm is taken such that log(−1) = iπ and αi is the subtraction constant for channel
i. Notice that the function gi(s) for two pions was already used in Subsec. 3.2.3 when the
function 1/D(s) was introduced.

Equation (3.34) is expanded in powers of Ng (numbers of unitarity loops), in order to fix
the matrix N(s),

T = N −NgN + . . . (3.37)

This expansion is matched with the elementary amplitudes calculated in Sec. 3.2 from the
Lagrangians of Eqs. (3.2) and (3.4) which do not involve loops. As a result Nij is directly
identified with the S-wave amplitudes given in Appendix A.

It is interesting to remark here that our unitarization scheme is not equivalent to the
Inverse Amplitude Method [29, 30] (IAM). The differences arise because in the IAM one
performs an extra chiral expansion of N−1 = N−1

2 −N−1
2 N4N

−1
2 + . . ., the subscript indicates

the chiral order. This further expansion is here avoided. Notice that this assumption does
not always hold even at low energies, as it is the case close to the Adler zeroes. In this case,
N2 vanishes around the Adler zero and hence |N4| is not longer smaller than |N2|. However,
in our approach we do not assume that |N4(s)| ≪ |N2(s)| for all values of s at low energies
but only at the level of the chiral expansion, similarly as in ChPT.5 We perform the previous
expansion at low energies, in order to match with the resonance ChPT results. The problem
of the IAM in conjunction with the Adler zeroes was discussed in detail in Refs. [282,283].

In applying Eq. (3.34) to the I = 0 S-wave one has to face the problem of the mass
distribution of the σ resonance because of its large width. Let us take first the Lehmann
representation for a propagator P (s):

P (s) =
−1
π

∫ +∞

sth

ds′ ImP (s′)
s− s′ + iǫ

. (3.38)

The so called spectral function ImP (s) is a priori unknown but as a first approach we take it
to be:

ImP (s′) = Im

{
1

s′ −m2
σ + imσΓσ(s′)

}
, (3.39)

with Γσ(s′) = Γσ (1 − 4m2
π/s

′)1/2/(1 − 4m2
π/m

2
σ)1/2, since the width must tend to zero as the

phase space of the two pions. On the other hand, mσ and Γσ are, respectively, the real and
5For example, it could occur that N2(s) = 0 but not N4(s). The point is that the latter must be sufficiently

small to be qualified as O(p4).
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minus twice the imaginary part of s1/2
σ . The latter was given above, although one can also

take mσ and Γσ from other references. We furthermore normalize Eq. (3.39) so as to always
have ∫ +∞

sth

ds′ ImP (s′) = 1 . (3.40)

Eq. (3.38) is specially suited for our purposes as it gives the propagator for the σ resonance
as a superposition in s′ of a standard one with mass square equal to s′. In this way, from
Eq. (3.36), we can express the g(s)4 function as,

g(s)4 =
∫ +∞

sth

ds′
1

∫ +∞

sth

ds′
2 ImP (s′

1)ImP (s′
2)g(s; s

′
1, s

′
2)4 , (3.41)

where s′
1 and s′

2 as arguments in g(s; s′
1, s

′
2)4 refer to the squared masses M2

1 and M2
2 with

which this function is evaluated according to Eq. (3.36). That is, the channel σσ can be
considered as a continuum set of channels with different masses squared s′

1 and s′
2, and a mass

distribution governed by ImP (s′
1)ImP (s′

2).

Because of this continuum of channels embedded in σσ, Eq. (3.34) is indeed an integral
equation. In order to solve it we discretize the mass distribution so that it is transformed in an
algebraic one that can be easily solved. We check then that for a sufficiently large number of
partitions the results are stable if further increased this number. In this way, the g(s) matrix
has diagonal matrix elements,

g(s)i , i 6= 4 , (3.42)

g(s; s′
1, s

′
2)4 ImP (s′

1)ImP (s′
2)∆1∆2 , (3.43)

Here, ∆1 and ∆2 are the steps in s′
1 and s′

2, respectively, that result from the discretization,
and s′

1 and s′
2 must be identified with M2

1 and M2
2 in Eq. (3.36). Similarly, the interaction

kernels N4,i = Ni,4 depend on s′
1 and s′

2 and N4,4 as well on s′
3 and s′

4, see Appendix A. These
variables run when multiplying N(s) with g(s). There is here a technicality due to the fact
that these interaction kernels increase power with s′

i (at most quadratically) and this causes
troubles in the convergence of the sum over s′

i. As a result we shall fix s′
i in N4,i = Ni,4 and

N4,4 to a given value. We have then checked that the results do not depend on this precise
value as long as the mass taken satisfies

√
s′

i . 500 MeV. This also implies that Eq. (3.34)
becomes finally an algebraic one with g(s)4 calculated as in Eq. (3.41) whithout folding with
the kernels N4i because now they are calculated with fixed values for the s′

i.

3.4 Results

3.4.1 Experimental data

In order to fix our free parameters we then fit a large amount of scattering data from the ππ
threshold up to

√
s . 2 GeV. Above this energy further channels are expected to be relevant,

e.g. f0(980)f0(980), a0(980)a0(980), etc, so that this extension to higher energies is left as
future work. We now list the different data used:

• I = 0 S-wave ππ elastic phase shifts, δ0
0(s). The low energy data come from Ke4

decays [284, 285] which are very precise but only span energies below the kaon mass.
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For 0.45 6
√
s 6 0.63 GeV. we take the data considered in Ref. [39], which is an average

between data of Refs. [286–290]. Above 0.63 GeV, the data taken are from Ref. [290]
alone since its analysis takes additionally into account the polarization of the proton
target. In Ref. [291] it was found that only the the so called “down-flat” solution of
Ref. [290] should be considered, while the “up-flat” solution can be rejected because
it is not compatible with ππ Roy equations. The upper energy limit of these data is√
s 6 1.6 GeV. Ref. [286] gives data up to higher energies, but we do not agree with

the steady increase of the data for energies above 1.4 GeV and this is why they have not
been included in the fit. Instead, our results generate a rapid upwards motion at around
1.4 − 1.5 GeV, similarly as in Ref. [290]. This behaviour was already found Ref. [274],
which can be considered as an indication of the scalar resonances f0(1370) and f0(1500).
These data and our results are shown in the upper part of Fig. 3.2.

• I = 0 S-wave elastic parameter η = |S11|. We employ the data of Refs. [289] and [290].
Given the large errors, both data sets are compatible. These data, as well as our results,
are shown in the bottom part of Fig. 3.2.

• I = 0 S-wave ππ → KK̄ phase shifts. Here we consider the data from Refs. [292, 293].
Ref. [292] provides data up to

√
s ≃ 2.4 GeV while Ref. [293] up to

√
s ≃ 1.6 GeV. As

shown in Fig. 3.3 the errors for the latter data are rather small and give a higher value
for the phase of the peak at ∼ 1.5 GeV.

• I = 0 S-wave ππ → KK̄ |S12|, the data are from the sames references as the previous
data, Refs. [292,293]. The data of Etkin et al. [292] are not normalized so that a global
constant is allowed to float when fitting them. The central value of this constant given
by our fits has been used to plot these data in Fig. 3.3.

• I = 0 S-wave ππ → ηη |S13|2. The data are not normalized and correspond to the S-
wave contribution separated out in Ref. [294]. A normalization constant is then included
as a free parameter.

• I = 0 S-wave ππ → ηη′ |S15|2. The data are from Ref. [295] and as in the ππ → ηη case
they are not normalized, so that a normalization constant is also included. The data for
ηη and ηη′ data are shown in Fig. 3.4.

• K−π+ scattering from Ref. [296], both the modulus of the amplitude, A0, and the phase,
φ0, are given and fitted. This scattering can be written in terms of the I = 1/2 and
3/2 amplitudes as in Ref. [43, 44]. In Fig. 3.5 we show the solution6 A of Ref. [296]. In
Ref. [43,44] it was shown that the solutions B and D of Ref. [296] are not physical because
they violate unitarity. The solutions A and C are indeed very similar for

√
s > 1.85 GeV,

and this is why only the solution A of Ref. [296] is shown. We also recall that for these
data we are using the same approach as in Ref. [43, 44], but now we simultaneously fit
the I = 0 S-wave previous data.

• We also fit the values of Ref. [297] a0
0 = 0.220 ± 0.005 and M2

πb
0
0 = 0.276 ± 0.006 for the

threshold parameters (see Chapter 5, Eq. (5.9) for their definition and a more accurate
determination and a discussion of these parameters.) Our results for these parameters
are a0

0 = 0.216 and M2
πb

0
0 = 0.277, in good agreement with the cited values.

6There is a four-fold ambiguity for energies above 1.85 GeV in Ref. [296].
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M (MeV) cd or c̃d ( MeV) cm or c̃m ( MeV)

S
(1)
8 1290 ± 5 25.8 ± 0.5 25.8 ± 1.1

S
(2)
8 1905 ± 13 20.3 ± 1.4 −13.9 ± 2.0

S
(1)
1 894 ± 13 14.4 ± 0.3 46.6 ± 1.1

Table 3.1: Parameters of the bare resonances included. We show in boldface the
parameters that have been fixed to previous works, as explained in the text.

3.4.2 Free parameters

We have performed two type of fits, with and without including the π(1300)π and a1(1260)π
channels. As commented in Sec. 3.1, the contribution to the observables of these channels is
found to be marginal, so we show our fit results without them.

Apart from normalization constants of the data (which cannot be considered as free param-
eters of our approach), we have the free parameters of the bare resonances and the subtraction
constants of the loop functions. The former are shown in Table 3.1. With our fits, we deduce
that two octets and one singlet of scalar resonances are needed. The mass and couplings of
the first octet are fixed to the values of Refs. [43,44], as well as the mass of the second octet.
The mass of the singlet is difficult to fix, because of its correlation to the couplings, that is,
similar results can be obtained with lower values of the mass altogether with higher values of
the couplings, specially for the coupling c̃m.

Regarding the subtraction constants, since the SU(3) breaking is softer in the vector sector,
and in order to reduce further the number of free parameters, we take one common subtraction
constant for every V V channel (recall that these comprise ρρ, K∗K̄∗, ωω, ωφ and φφ). Once
fixed, if we let them free, small variations are found. The subtraction constants are found
to be natural sized, which indicates that we are not generating poles in artificial ways. The
values of the subtraction constants are as follows: aππ = −1.36 ± 0.05, aKK̄ = −0.47 ± 0.04,
aηη = −0.96±0.06, aσσ = 1.54±0.08, aηη′ = 0.86±0.09, aρρ = −2.31±0.04 and aη′η′ = 6.0±0.3.

In total, we have 12 free parameters (15, when including a1π and π(1300)π channels), for
about 370 data points, for different observables, which come from different and independent
experiments, so that we perform a global description of the experimental results, which allows
in turn a global description of the spectroscopy. We want to stress that we employ standard
chiral Lagrangians to calculate the interaction kernels avoiding ad hoc parameterizations as
in other studies, which do not incorporate so many coupled channels as we do, see e.g. [248,
249, 274]. Refs. [248, 249] employ around 40 parameters, a number larger than we do here.
Refs. [245–247, 274] use also 13-14 free parameters (as we do) but only consider 3 coupled
channels at most.

3.4.3 Results for the observables

All the experimental data can be deduced from the S-matrix. With our normalization, its
matrix elements are given by:

Si,j = δij + 2i
√
ρi T

(I)
i,j

√
ρj , (3.44)
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Figure 3.2: Fit to ππ → ππ experimental data. In the upper panel, we show the
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ployed in Ref. [39], and for
√
s > 0.63 GeV, they are taken directly from Ref. [290].

The data of the low energy region,
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s 6 0.45 GeV, enlarged in the inset, are from

Refs. [284, 285]. In the bottom panel, we show the elasticity parameter η0
0. Blue

circles are from Ref. [290] and green diamonds, from Ref. [289].
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Figure 3.3: Fit to ππ → KK̄ experimental data. Blue circles are from Ref. [292]
and red diamonds from Ref. [293].

where ρi(s) = qi(s)/8π
√
s and qi(s) is the CM three-momentum for channel i.

Our results for the observables are shown throughout Figs. 3.2–3.5. The width of the
band around the curves takes into account two standard deviations from the χ2 resulting
from the central fit, denoted by χ2

1. Monte-Carlo samples for the values of the free parameters
(including those that have been fixed), have been generated allowing a large variation in the
values of the parameters derived from the central fit. For each sample a χ2 is calculated and



3. The Scalar Sector and the Scalar Glueball 106

0

0.1

0.2

1000 1250 1500 1750 2000

| S
1,

3
|2

√
s (MeV)

0

0.04

0.08

0.12

1500 1600 1700 1800 1900

∣ ∣

S 1
,5
∣ ∣

2

√
s (MeV)

Figure 3.4: Fit to ππ → ηη (left) [294] and ηη′ (right) [295] experimental data.
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Figure 3.5: Fit to K−π+ experimental data from Ref. [296], both phase (left) and
amplitude (right).

only those χ2 that satisfy

nσ > ∆χ2/(2χ2
1)

1/2 , (3.45)

are kept. Here nσ is the number of standard deviations, that we take equal to two. This
equation is derived from simple statistical considerations in appendix A of Ref. [292]. We find
a good overall agreement with data.

Regarding the ππ → ππ scattering data, we want to stress that we are able to accurately
reproduce the precise data from Ke4 decays without destroying the agreement with higher
energies, as can be seen in Fig. 3.2. One observes a rapid increase of the phases around
1.4 − 1.6 GeV in contrast with the steady increase of Ref. [286]. This increase is related with
the marked peak in the ππ → KK̄ phase shifts at

√
s ≃ 1.5 GeV, which is also connected

with the appeareance in our amplitudes of the f0(1370) and f0(1500) resonances.

For the ππ → KK̄ I = 0 S-wave phase shifts, shown in the upper panel of Fig. 3.3, our
curve follows better the data from Ref. [293]. These data show an even more marked peak in
the 1.5 GeV region than the [292] ones, as found in our results. Our curve also reproduces
closely |S1,2|, as shown in the bottom panel of Fig. 3.3. It is also interesting to observe the
good agrement with the ππ → ηη and ηη′ shown in the two panels of Fig. 3.4, even if they
contribute with a necessarily low weight in χ2 (this makes the error band much wider than in
other observables.)



107 3.5 Spectroscopy

PDG This work

Resonance M (MeV) Γ (MeV) I = 0 Poles (MeV) M (MeV) Γ (MeV)

σ ≡ f0(500) 456 ± 6 − i 241 ± 7

f0(980) 980 ± 10 40 − 100 983 ± 4 − i 25 ± 4 983 ± 4 50 ± 8

f0(1370) 1200 − 1500 200 − 500 fL
0 1466 ± 15 − i 158 ± 12 1370 ± 30 316 ± 24

f0(1500) 1505 ± 6 109 ± 7 fR
0 1602 ± 15 − i 44 ± 15 1502 ± 15 105 ± 30

f0(1710) 1724 ± 7 137 ± 8 1690 ± 20 − i 110 ± 20 1700 ± 20 160 ± 40

f0(1790) 1790+40
−30 270+30

−60 1810 ± 15 − i 190 ± 20 1810 ± 30 380 ± 40

PDG This work

Resonance M (MeV) Γ (MeV) I = 1/2 Poles (MeV)

κ ≡ K∗

0 (800) − − 708 ± 6 − i 313 ± 10

K∗

0 (1430) 1414 ± 6 290 ± 21 1435 ± 6 − i 142 ± 8

K∗

0 (1950) − − 1750 ± 20 − i 150 ± 20

Table 3.2: Pole content of our amplitudes, as compared with the PDG. Top: I = 0
poles. Bottom: I = 1/2 poles.

Regarding the K−π+ data, we also observe for the phase φ0(s) that our curve lies below
the rapid increase at 1.7 GeV. We recall here the discussion on this issue in Refs. [43,44], where
it was shown that unitarity requires that φ0 < 180o. Once those points with φ0(s) > 180o are
eliminated, the agreement is good.

3.5 Spectroscopy

Let us now focus on the spectroscopy that we can obtain from our amplitudes. We find poles
corresponding to the σ, f0(980), f0(1370), f0(1500), f0(1710) and f0(1790) for I = 0 and for
I = 1/2 we have the poles of the κ, K∗

0(1430) and K∗
0(1950). The pole positions are collected

in Table 3.2. However, the resonance spectrum cannot be understood by just quoting the pole
positions, and some further explanations will be given in this Section.

The poles appear in different Riemann-sheets of the many 2n Riemann sheets existing for
an n coupled channel problem. Here n = 11 or 13 depending of whether the a1(1260)π and
π(1300)π states are included or not, respectively. Along the real s−axis on the physical sheet,
there is always a non-physical Riemann sheet that matches with the physical one. Then one
has to study the poles in this non-physical Riemann sheet as they contribute to the behaviour
of the physical amplitudes between the opening of the previous and next Riemann sheets. Each
different sheet is characterized by the sign in front of the definition of the three-momentum
of chanenl i,

qi =

√
(s− (M1 +M2)2)(s− (M1 −M2)2)

2
√
s

, (3.46)

with M1 and M2 the masses of the two particles composing the channel i. In this way either
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f0(1370) (I = 0) K∗

0 (1430) (I = 1/2)

Coupling bare final Coupling bare final

gπ+π− 3.9 3.59 ± 0.16 gKπ 5.0 4.8

gK0K̄0 2.3 2.23 ± 0.18 gKη 0.7 0.9

gηη 1.4 1.70 ± 0.30 gKη′ 3.4 3.8

gηη′ 3.7 4.00 ± 0.30

gη′η′ 3.8 3.70 ± 0.40

Table 3.3: The couplings (in GeV) of the f0(1370) and K∗
0 (1430) resonances to

different channels, and the couplings of the bare octet, S
(1)
8 . Their similarities

show that the former are mainly an octet, not mixed with nearby resonances.

Im(qi) > 0 or Im(qi) 6 0. The physical sheet is that with the positive sign for all the channels.
For a given value of s along the real axis the non-physical Riemmann connected continuously
with the physical one is that sheet with Im(qi) 6 0 for all the channels i whose threshold,
sth,i, is sth,i 6 s. For σσ, ρρ, a1π and π(1300)π states, whose composite particles are one or
both resonances with a significant width and have a non definite threshold, the sign of qi is
changed for those values of

√
s′

1 +
√
s′

2 < Re
√
s, see Eq. (3.41) for the meaning of s′

1 and s′
2.

In this way the continuous extrapolation to the physical sheet is guaranteed.

Our description of the scalar isoscalar resonances below 1 GeV, the σ and the f0(980) for
I = 0 and the κ for I = 1/2, is in good agreement with previous works on the subject (see
references in Sec. 3.1), so we may focus on the more complicated region 1 GeV 6

√
s 6 2 GeV.

Four resonances with I = 0 are found there: f0(1370), f0(1500), f0(1710) and f0(1790), that
we discuss in the following. After the description of these resonances, we discuss altogether
those in the I = 1/2 sector.

3.5.1 f0(1370)

A pole is found at
√
s = 1466±15−i(158±12) MeV, which we denote by fL

0 . This pole can be
seen in Fig. 3.6 in the σσ → σσ amplitude. Though the mass deduced from the pole is found
to be closer to 1.5 GeV, in most of the amplitudes the peak is located at 1.37 GeV, which is
closer to its nominal mass. However, the value favored by the high statistics study of the Belle
Collaboration on γγ → π0π0 is 1.47 GeV, close to the mass deduced from the pole. It should
be noted that the PDG value has a large uncertainty, M = 1200 − 1500 MeV. Regarding its
width, we deduce Γ = 316 ± 24 MeV, also inside the PDG values, Γ = 200 − 500 MeV. It is
found to have a large width to ππ, Γ(4π)/Γ(2π) = 0.30 ± 0.12, in agreement with the interval
0.10−0.25 of Ref. [68]. In Table 3.3, we show the couplings of the f0(1370) and compare them
with those of the bare octet we have introduced, S(1)

8 (recall that it has M (1)
8 = 1.29 GeV, and

c
(1)
d = c(1)

m = 26 MeV), showing that they are indeed very similar. The same can be said of
the K∗

0(1430) in the I = 1
2

channel. From the similarities of the couplings of these poles with
respect to the bare ones we deduce that the first scalar octet is a pure one, not mixed with
the nearby resonances.
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Figure 3.6: We show the fL
0 ∼ f0(1370) pole effects in the σσ elastic amplitude.

In the upper plot, it is shown the pole in the complex s plane (actually, we use√
s). In the bottom left, a contour plot of the previous one is shown, where it

can be well appreciated that the gradient of the amplitude is not parallel to the
imaginary axis, giving rise to a shift in the peak of the amplitude, as can be seen
in the bottom right picture. The amplitude is finally peaked at 1.37 GeV.

3.5.2 f0(1500)

We find a pole located at 1602 ± 15 − i(44 ± 15) MeV, denoted by fR
0 , lying on the Riemann

sheet that connects with the physical one up to the ηη′ threshold,
√
s ≃ 1.5 GeV. Thus, it is

located 100 MeV above the maximum energy at which the two Riemann sheets are connected,
but, however, its influence on the physical amplitudes is large, as can be seen in Fig. 3.7.
The mass peak of the f0(1500) is thus at 1.5 GeV due to the ηη′ threshold. This is a similar
effect to the one relating a0(980) and KK̄ threshold, see Ref. [39]. In addition, we have the
nearby fL

0 pole. The width is Γ = 1.2 × 88 MeV = 105 ± 36 MeV, because a Breit-Wigner
at

√
s = 1.6 − i0.04 GeV is cut by ηη′ threshold. Summarizing, this is a complicated energy

region, where no simple approaches nor analysis without proper coupled channels mechanisms
should be employed. We have found three interfering effects giving raise to f0(1500), namely
(i) the fR

0 pole at
√
s = 1.6 − i0.04 GeV; (ii) the fL

0 ∼ f0(1370) pole, at 1.47 − i0.16 GeV; and
(iii) the nearby thresholds ηη′ and ωω.

3.5.3 f0(1710)

This resonance is given by a pole located at
√
s = 1690 ± 20 − i110 ± 20 MeV on a Riemann

sheet continuosly connected with the physical one at the real s axis. In Fig. 3.8 this pole is
shown in the η′η′ elastic amplitude. It can be seen there that the mass peak is slightly shifted
to

√
s ≃ 1.7 GeV. The effective width on this amplitude is Γ = 160 MeV, closer to the value

quoted by the PDG, Γ = 137 ± 8 MeV, than that deduced directly from the imaginary part of
the pole position, that would be Γ = 220 ± 40 MeV (yet not far to the PDG value.) However,
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Figure 3.7: We show the three interfering effects giving rise to the f0(1500) res-
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ηη′ threshold is also shown with a red line.

the effective width can depend on the process. In Table 3.4 we show some of the branching
ratios calculated from the residues and compare them with the PDG values, finding a very
good agreement.

An striking feature we find in our approach is that the f0(1500) and f0(1710) resonances
are tightly connected. The f0(1500) originates mainly from the fR

0 pole, but, if we continuosly
change from the Riemman sheet in which it is located to the one where the f0(1710) pole is
located, we see that the former continuosly moves to the latter. They are the same underlying
pole reflected in different Riemann sheets, and the origin of this pole is not the higher octet
we have introduced. However, the final pole position of fR

0 and f0(1710) and the effects they
produce are different enough to consider them as different resonances. The identification of
the f0(1710) resonance as mainly the lightest scalar glueball is treated in Sec. 3.7.

BR This work PDG

Γ(KK̄)
Γtotal

0.36 ± 0.12 0.38+0.09
−0.19

Γ(ηη)
Γtotal

0.22 ± 0.12 0.18+0.03
−0.13

Γ(ππ)

Γ(KK̄)
0.32 ± 0.14 0.41+0.11

−0.17

Γ(ηη)

Γ(KK̄)
0.64 ± 0.38 0.48 ± 0.15

Table 3.4: Branching ratios of the f0(1710)
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Figure 3.8: The f0(1710) pole in the η′η′ → η′η′ amplitude is shown. In the
picture of the pole in the complex plane, the shift of the mass peak towards higher
energies is shown. Over the real axis, the resonance appears narrower than what
can be expected from the pole position.

3.5.4 f0(1790)

It originates from a pole located at
√
s = 1810 − i(190 ± 20) MeV, but shows weak signals

on the real axis. It couples weakly to KK̄, a major difference with respect to f0(1710), as
also observed by BESII. It is the partner of the pole at

√
s = 1.75 − i0.15 GeV in I = 1/2,

and they originate from the dressing of the higher bare octet we have introduced, S(2)
8 , with

M = 1.9 GeV and couplings given by cd = 20 MeV and cm = −14 MeV.

3.5.5 I = 1/2

Concerning the I = 1/2 S-wave amplitudes we obtain the same resonances as in Refs. [43,44]
with pole positions for the κ, K∗

0(1430) and K∗
0(1950) given in Table 3.2. We recall here the

discussion in Subsec. 3.5.1 leading to deduce that f0(1370) and K∗
0(1430) are pure octets.

Note that now all these resonances in I = 1/2 have been obtained consistently witht the
spectroscopy content of the I = 0 S-wave.

3.6 WA102 and CBC data

In order to find further support to our approach and, specially, to our spectroscopy, we fit the
data from the WA102 Collaboration on pp → ppπ+π−, K+K− [298] and ηη at 450 GeV/c [299]
and those of the Crystal Barrel Collaboration (CBC) on pp̄ → π0ηη [300] and pp̄ → π0ηη′

[301]. These data are also very convenient theoretically as the two mesons produced interact
negligibly with the two protons because the latter are very energetic [302]. To fit the data we
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Figure 3.9: The f0(1790) pole is shown in the ηη′ → ηη′ amplitude, where it
appears as a dip in the real axis.

employ a coherent sum of Breit-Wigner functions and a non-resonant term, similarly as done
by the WA102 Collab. [298]:

A(
√
s)i = NR(

√
s)i +

∑

j∈A

aje
iθjgj;i

M2
j − s− iMjΓj

√
s 6 mη +m′

η (3.47a)

A(
√
s)i = NR(

√
s)i + ri +

∑

j∈B

aje
iθjgj;i

M2
j − s− iMjΓj

√
s > mη +m′

η (3.47b)

NR(
√
s)i = α(

√
s−mk −mℓ)βe−γ

√
s−δs (3.47c)

The subset of resonances A and B are given by

A =
{
σ, f0(980), fL

0 , fR
0

}

B = {σ, f0(980), f0(1710), f0(1790)}

The parameters aj and θj are the modulus and the phase of the production vertex of the
jth resonance, Mj, Γj and gj;i are, respectively, the mass, width and the coupling to channel
i of the same resonance. The mass Mj is determined from the pole position and the coupling
gj;i is given by the residue of the partial waves at the pole position. On the other hand, Γj

in Eq. (3.47) is the largest between its value from the pole position and the one calculated by
summing the partial decay widths Γj;i = θ(

√
s−mk −mℓ)λi|gj;i|2qi/(8πM2

j ), with λi = 1/2 for
identical particles. In addition, mk+ml is the threshold for the channel i and α, β, γ, δ are real
parameters. The form of the non-resonant term is taken from the WA102 Collaboration [298].
The constant ri is fixed so that the amplitude A(

√
s)i is continuous at ωηη′ ≡ mη + m′

η.
Equation (3.47) incorporates important new facts compared to the analyses of the WA102
Collaboration. First, the pole positions and couplings for the different resonances are those
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Figure 3.10: Fits to the data of WA102 and CBC Collaborations data. Prominent
peaks associated with the resonances described in this work are clearly seen.

already determined from our study of the scattering data. Second, the aj and θj parameters
are the same for all the WA102 reactions considered. On the other hand, Eq. (3.47) is a toy
model which shows in simple terms how the change of sheet at the ηη′ threshold takes place
with the corresponding change in the poles involved. Above wηη′ the σ and f0(980) give tiny
contributions. Our fitted curves correspond to the solid lines in Fig. 3.10, where they are
compared to the data. Prominent peaks associated with the f0(980), f0(1710) and f0(1500)
are observed. We also show our good reproduction of the CBC data for the ηη and ηη′ mass
projections from pp̄ annihilation into π0ηη and π0ηη′. We also use Eq. (3.47) but without the
non-resonant term, NR(

√
s).
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3.7 Identification of the scalar glueball

QCD, the theory of strong interactions, is a non-abelian Yang Mills theory so that gluons
carry colour charge and interact between them. It is generally believed that QCD predicts the
existence of mesons without valence quarks, the so called glueballs. Its confirmation in the
spectrum of strong interactions is then at the heart of the theory. In quenched lattice QCD
the lightest glueball has the quantum numbers JP C = 0++, with a mass of (1.66 ± 0.05) GeV
[85–87]. The closest 0++ scalar resonances to this energy range that are listed in the PDG
[48] are the f0(1500) and f0(1710). Some references favour the former as the lightest scalar
glueball [100], while others do so for the latter [89,91].

Let us now take a look at the couplings of the f0(1710) resonance, given in Table 3.5. This
pattern suggests an enhancement in ss̄ production. Indeed, in the following we show that
it corresponds to the chiral supression mechanism of the coupling of a scalar glueball to q̄q,
explained in Ref. [91] (see also Refs. [92–94]). According to this mechanism, this coupling is
proportional to the quark mass, thus implying a strong suppression in the production of n̄n
relative to that of s̄s. This mechanism is not in disagreement with the by now scarce results
in lattice QCD, as shown in Fig. 3.11.

Let us denote

ηs = ss̄ ηn =
uū+ dd̄√

2
, (3.48)

so that:

η1 =
uū+ dd̄+ ss̄√

3
=

√
2ηn + ηs√

3
(3.49)

η8 =
uū+ dd̄− 2ss̄√

6
=
ηn −

√
2ηs√

3
(3.50)

With a pseudoscalar mixing angle given by sin β = −1
3

for η and η′, we have

η = −ηs
1√
3

+ ηn

√
2
3

η′ = ηs

√
2
3

+ ηn
1√
3

By denoting the production of ηsηs, ηsηn and ηnηn by gss, gsn and gnn, respectively, we can
write:

gη′η′ =
2
3
gss +

1
3
gnn +

2
√

2
3
gns

gηη′ = −
√

2
3
gss +

√
2

3
gnn +

1
3
gns

gηη =
1
3
gss +

2
3
gnn − 2

√
2

3
gns

With these equations, we can solve for gss, gns and gnn, and the results, for fR
0 and f0(1710)

are shown in Table 3.6. The chiral supression mechanism implies then that |gss| ≫ |gnn|. Then
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Figure 3.11: Coupling of the scalar glueball to pseudoscalar pairs. The points
correspond to the quenched lattice calculations [89], whereas the line correspond
to a coupling proportional to pseudoscalar masses squared (that is, proportional
to quark masses), as predicted by the chiral supression mechanism [91].

the OZI rule together with this fact supress the coupling |gns|. Taking e.g. the couplings of
fR

0 one obtains gss = 11.5 ± 0.5, gns = −0.2 and gnn = −1.4 GeV, and the strong suppression
is clear.

|g| (GeV) f0(1370) fR
0 f0(1710)

|gπ+π− | 3.59 ± 0.16 1.30 ± 0.22 1.21 ± 0.16

|gK0K̄0 | 2.23 ± 0.18 2.06 ± 0.17 2.0 ± 0.3

|gηη| 1.7 ± 0.3 3.78 ± 0.26 3.3 ± 0.8

|gηη′ | 4.0 ± 0.3 4.99 ± 0.24 5.1 ± 0.8

|gη′η′ | 3.7 ± 0.4 8.3 ± 0.6 11.7 ± 1.6

Table 3.5: Couplings of the f0(1370), fR
0 and f0(1710) resonances to the different

pseudoscalar-pseudoscalar channels.

Coupling (GeV) fR
0 f0(1710)

gss 11.5 ± 0.5 13.0 ± 1.0

gns −0.2 2.1

gnn −1.4 1.2

gss/6 1.9 ± 0.1 2.1 ± 0.2

Table 3.6: Couplings of fR
0 and f0(1710) in terms of ηs and ηn.

We now consider the KK̄ coupling. A K0 in terms of valence quarks corresponds to∑3
i=1 s̄iu

i/
√

3, summing over the colour indices, and analogously for the K̄0. The production of
a colour singlet s̄s from theK0K̄0 requires then the combination s̄is

j = δj
i s̄s/3+(s̄is

j−δj
i s̄s/3),

and similarly for ūju
i. As the production occurs from the colour singlet s̄s source, only the

configuration s̄s ūu contributes, picking up a suppression factor of 1/3. In addition, the
coupling gss has an extra factor 2 compared to that of a s̄s ūu, because the former contains
two s̄s. One then expects for the coupling to K0K̄0 an absolute value gss/6, |gK0K̄0 | ≃ 2 GeV,
as can be seen in Table 3.5.
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Another resonance with a known enhanced coupling to s̄s is the f0(980). However, the
sizes of its couplings to ηη, ηη′ and η′η′ follow the opposite order to the f0(1710) and fR

0 cases
and all of them are much smaller than the coupling to KK̄.

It should be stressed that the chiral supression mechanism also implies that the glueball
should remain unmixed. This accurately fits with our previous result that both the fR

0 and
f0(1710) do not mix with the nearby fL

0 . In addition, the masses of the fR
0 and f0(1710) poles

are in excellent agreement with the quenched latticed QCD result [85–87].

One final remark is in order here. It should be noted that our work proceeds completely
independent of the chiral suppression mechanism of Chanowitz [91], that is, no hypothesis
about it is done to construct our amplitudes. Finally, when comparing our spectroscopy and
the pattern of the couplings and mixing, this mechanism naturally fits in our results.

3.8 Summary and conclusions

In this Chapter, we have studied the scalar sector (0++) of meson–meson interactions, with
a special focus on the isoscalar (I = 0) channels, within the framework of UChPT. Our
amplitudes are calculated from chiral Lagrangians, and then unitarized through the N/D
method. In the isoscalar channel, we have included almost all the relevant channels up to
a CM energy about

√
s ≃ 2 GeV. The pseudoscalar-pseudoscalar interactions include the η′

meson, through the extension of the SU(3) symmetry to U(3).

The 4π channels are effectively included by considering the σσ and ρρ channels. We have
followed a novel method to work out the amplitudes involving the σ meson, without includ-
ing any ad hoc parametrization, but directly from chiral Lagrangians. This can be done by
taking into account the nature of this resonance, which is a dynamically generated one in the
ππ scalar-isoscalar scattering. Whence we can determine its coupling, which appears in the
amplitudes, without introducing any free parameter. The desired amplitudes are obtained
by considering the σ-pole limit, s → sσ, in the amplitudes involving ππ channels. The ρρ
interactions (more generally, the vector-vector interactions), on the other hand, are intro-
duced through minimal coupling, identifying the external classical gauge fields in the chiral
Lagrangians with the appropriate vector and axial fields. In this way, up to a global coupling,
determined from the decay width of the ρ, these channels are introduced in a free-parameter
way. We have also considered the a1π and π⋆π channels, but these barely contribute to the
amplitudes. We have also considered for our amplitudes the s–channel interchange of scalar
resonances, determined from resonance chiral Lagrangians. The couplings and bare masses
are fitted then to experiment.

Our relatively small number of free parameters are fitted to a wide variety of meson-meson
scattering data (370 data points), consisting mostly of phase-shifts and amplitude intensities.
Our fits indicate the need of two octets at M ≃ 1290 MeV and M ≃ 1900 MeV and one singlet
at M ≃ 900 MeV in the scalar-isoscalar sector. Once our amplitudes are determined, we pay
special attention to the spectroscopic content of them. The scalar-isoscalar resonances listed
in the PDG up to

√
s ≃ 2 GeV are reproduced. We find the σ, f0(980) and κ pole positions in

agreement with previous works. Regarding the f0(1370), it originates from a pole, fL
0 , located
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at
√
s ≃ 1470 − i160 MeV. However, the amplitudes are peaked mostly at

√
s = 1370 MeV,

close to its nominal mass. We find that its couplings to pseudoscalar-pseudoscalar pairs are
very similar to those of a bare octet. Whence we conclude that it is a pure octet, which
does not mix with the nearby resonances. Similar conclusions can be drawn for the K∗

0(1430)
resonance in I = 1/2. In our approach, the f0(1500) resonance appears as an interfering
effect of the nearby ηη′ and ωω thresholds and the poles fL

0 and fR
0 , the latter located at√

s ≃ 1505 − i110 MeV. Though further study would be desiderable, what can be deduced
from our analysis is that no simple approach (as e.g. simple sums of Breit–Wigner amplitudes,
and so on) can be used in this complicated energy region. We also find a pole that can be
identified with the f0(1790), with a weak coupling to KK̄, as pointed out by the experiments.
We discuss about the f0(1710) at the end of this Section.

As further support to our spectroscopic study, we fit the data of the WA102 Collab. on
pp → ppPQ (PQ = π+π−, K+K− or ηη) and those of the CBC Collab. on pp̄ → PQ
(PQ = ηη, ηη′). This is done a posteriori, that is, we use the spectroscopic content of our
previous fits in the fits of these latter amplitudes, and we find an excellent agreement.

The f0(1710) is associated to the pole located at
√
s = 1690 − i110 MeV. It is striking

that, by continuosly changing from the Riemann sheet in which it is located to the one in
which the fR

0 is present, we move continuosly from one to another pole. That is to say, both
poles correspond to the same resonance but reflected on different sheets. From the pattern of
its couplings to pseudoscalar–pseudoscalar channels, we realize that it perfectly fits into the
chiral supression mechanism of Ref. [91] (deduced from QCD) for the glueball decay into these
channels. Besides, its mass is very close to the ones predicted by lattice QCD simulations.
Strikingly, we can conclude then that the f0(1710) can be identified with the lightest scalar
glueball. The latter should also reflect through the fR

0 pole in the behaviour of the physical
f0(1500) resonance. This could explain why some studies [100] also indicate this resonance as
a candidate for the lightest scalar glueball.
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4.1 Introduction: Pseudoscalar resonances above 1 GeV

As shown in Chapter 1, due to the spontaneous chiral symmetry breaking of strong interactions
[11–14] strong constraints among the interactions between the lightest pseudoscalars arise,
which are most efficiently derived in the framework of ChPT [16–19]. For the isospin (I)
I = 0, 1 and 1/2 channels, the scattering of the pseudoscalars in S-wave is strong enough to
generate dynamically the lightest scalar resonances, namely, the f0(980), a0(980), κ and σ,
as shown in Refs. [27, 29, 30, 33, 39]. Indeed, in Chapter 3, it was studied the spectroscopy
of the scalar resonances (including the above cited) up to

√
s = 2 GeV. Still one can make

use of the tightly constrained interactions among the lightest pseudoscalars in order to work
out approximately the scattering between the latter mesons and scalar resonances, as we
show below. We concentrate here on the much narrower resonances f0(980) and a0(980) and
consider their interactions with the pseudoscalars π, K, η and η′. If these interactions are
strong enough new pseudoscalar resonances with JP C = 0−+ would come up. This is the
case and the resulting pseudoscalar resonances have a mass larger than 1 GeV (this energy

119
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limit is close to the masses of the f0(980) or a0(980)), typically following the relevant scalar–
pseudoscalar thresholds.

The problem of the excited pseudoscalars above 1 GeV is interesting by itself. These
resonances are not typically well-known [48]. In I = 1/2 one has the K(1460) and K(1630)
resonances. The I = 1 resonances π(1300), π(1800) are somewhat better known [48]. They
are broad resonances with a large uncertainty in the width of the former, which is reported
to range between 200-600 MeV in the PDG [48]. Some controversy exists for interpreting
the decay channels of the π(1800) within a quarkonium picture [111, 303]. It was suggested
in [303] that, together with the second radial excitation of the pion, there would be a hybrid
resonance somewhat higher in mass [303–305]. The recent works in Refs. [114,115], studying
three-pseudoscalar systems by means of the Fadeev equations, obtained conclusions similar to
the ones reported below. The π(1300) resonance is obtained in πKK̄ when the KK̄ system
gets reorganized as f0(980), while the K(1460) is obtained in the KKK̄ system.

Special mention deserves the I = 0 channel where the η(1295), η(1405), η(1475) have
been object of an intense theoretical and experimental study. For an exhaustive review on
the experiments performed on these resonances and the nearby 1++ axial-vector resonance
f1(1420) see Ref. [107]. Experimentally it has been established that, while the η(1405) decays
mainly to a0π, the η(1475) does so to K∗K̄ + c.c [48, 107]. In this way, the study of the
ηππ system is certainly the most adequate one for isolating the η(1405) resonance because
both the f1(1420) and η(1475) have a suppressed partial decay width to this channel [48].
References [48,107] favor the interpretation of considering the η(1295) and η(1475) as ideally
mixed states (because the η(1295) and the π(1300) are close in mass) of the same nonet of
pseudoscalar resonances with the other members being the π(1300) and K(1460). All these
resonances would be the first radial excitation of the lightest pseudoscalars [303]. The η(1405)
would then be an extra state in this classification whose clear signal in gluon-rich process, like
pp̄ [306–309] or J/Ψ radiative decays [310, 311], and its absence in γγ collision [312], would
favor its interpretation as a glueball in QCD [108–110].

However, this interpretation opens in turn a serious problem because present results from
lattice QCD predict the lowest mass for the pseudoscalar glueball at around 2.4 GeV [84–86].
Given the success of the lattice QCD prediction for the lightest scalar glueball, with a mass
at around 1.7 GeV [A, 91, 93], this discrepancy for the pseudoscalar channel would be quite
exciting. QCD sum rules [76] give a mass for the lightest pseudoscalar gluonium of 2.05 ±
0.19 GeV and an upper bound of 2.34 ± 0.42 GeV. However, the η(1405) would fit as a 0−+

glueball if the latter is a closed gluonic fluxtube [313]. On the other hand, it has also been
pointed out that the mass and properties of the η(1405) are consistent with predictions for a
gluino-gluino bound state [110,314,315]. The previous whole picture for classifying the lightest
pseudoscalar resonances has been challenged in Ref. [111]. The authors question the existence
of the η(1295) and argue that, due to a node in the 3P0 wave function of the η(1475) [316],
only one isoscalar pseudoscalar resonance in the 1.4-1.5 GeV region exists. This node shifts
the resonant peak position depending on the channel, a0π or K∗K̄ + c.c. In turn, Ref. [112]
establishes a new mechanism, based on a K⋆KK̄ triangle loop, that could explain the shift
in the resonance peak position for the η(1405/1475) in terms of only one resonance in this
energy region.
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S2(p2)

p1 − ℓ p2 − ℓ

P1(k1) P2(k2)

Figure 4.1: Triangle loop for calculating the interacting kernel for S1(p1)P1(k1) →
S2(p2)P2(k2), where the four-momentum for each particle is given between brack-
ets. S1,2 represents the initial, final scalar resonances and similarly for P1,2 regard-
ing the pseudoscalar mesons.

It has been also recently observed by the BES Collaboration the resonance X(1835) with
quantum numbers favored as a pseudoscalar 0−+ resonance both in J/Ψ → γpp̄ [317] and in
J/Ψ → γπ+π−η′ [318]. For the former decay Ref. [319–321] offers an alternative explanation
in terms of the pp̄ final state interactions.

We consider in this Chapter the S-wave interactions between the scalar resonances f0(980)
and a0(980) with the pseudoscalar mesons π, K, η and η′. The approach followed is an
extended version of that of Refs. [322, 323] applied to study the S-wave interactions of the
φ(1020) with the f0(980) and a0(980) resonances, respectively. We show that the interactions
derived generate resonances dynamically that can be associated with many of the previous
pseudoscalar resonances listed above, namely, with the K(1460), π(1300), π(1800), η(1475)
and X(1835). In this way, new contributions to the physical resonant signals result from this
novel mechanism not explored so far. In addition, we also study other exotic channels and
find that the I = 3/2 a0K channel could also be resonant. The developments in this Chapter
were published in Ref. [B].

After this introduction we present the formalism and derive the S-wave scattering ampli-
tudes for scalar-pseudoscalar interactions in Sec. 4.2. The results are presented and discussed
in Sec. 4.3. Conclusions are given in Sec. 4.4.

4.2 Formalism. Setting the model

Our approach is based on the triangle diagram shown in Fig. 4.1 where an incident scalar
resonance S1 decays into a virtual KK̄ pair. The filled dot in the vertex on the bottom of
the diagram corresponds to the interaction of the incident (anti)kaon in the loop with the
pseudoscalar P1 giving rise to the pseudoscalar P2 and the same (anti)kaon. The out-going
scalar resonance is denoted by S2. The basic point is that this diagram is enhanced because the
masses of both the f0(980) and a0(980) resonances are very close to the KK̄ threshold. In this
way, for scattering near the threshold of the reaction, one of the kaon lines in the bottom of
the diagram is almost on-shell. Indeed, at threshold and in the limit for the mass of the scalar
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equal to twice the kaon mass this diagram becomes infinite. This fact is discussed in detail in
Ref. [322] where it was already applied for studying successfully the φ(1020)f0(980) scattering
and the associated 1−− Y (2175) resonance. The BABAR [324, 325] and BELLE [326] data
on e+e− → φ(1020)f0(980) were reproduced accurately, where a strong peak for the latter
resonance arises. An important conclusion of Ref. [322] is that the Y (2175) can be qualified
as being a resonance dynamically generated due to the interactions between the φ(1020) and
the f0(980) resonances, see also Ref. [327]. This work was extended to I = 1 in [323] for
studying the φ(1020)a0(980) S-wave. There it was remarked the interest of measuring the
cross sections e+e− → φ(1020)π0η because it is quite likely that an isovector companion of
the Y (2175) appears. In our present study, as well as in Refs. [322,323], one takes advantage
of the fact that both the f0(980) and a0(980) resonances are dynamically generated by the
meson-meson self-interactions [33,39,53]. This conclusion is also shared with other approaches
like Refs. [52, 251, 328]. In this way, we can calculate the couplings of the scalar resonances
considered to two pseudoscalars, including their relative phase. The coupling of the f0(980)
and a0(980) resonances to a KK̄ pair in I = 0 and 1, respectively, is denoted by gf0 and ga0 .
These states |KK̄〉I=0 and |KK̄〉I=1 are given by

|KK̄〉I=0 = − 1√
2

|K+K− +K0K̄0〉 ,

|KK̄〉I=1 = − 1√
2

|K+K− −K0K̄0〉 . (4.1)

In this way, the f0(980) couples to K+K−(K0K̄0) as − 1√
2
(− 1√

2
)gf0 while the a0(980) couples

as − 1√
2
( 1√

2
)ga0 .

Let us indicate by P the total four-momentum P = p1 + k1 = p2 + k2 in Fig. 4.1. This
diagram is given by g1g2LK , with g1 and g2 the coupling of the initial and final scalar resonance
to a KK̄ pair, respectively, and LK is given by

LK = i
∫ d4ℓ

(2π)4

T ((P − ℓ)2)
(ℓ2 −m2

K + iε)((p1 − ℓ)2 −m2
K + iε)((p2 − ℓ)2 −m2

K + iε)
. (4.2)

In this equation T ((P − ℓ)2) represents the interaction amplitude between the kaons with the
external pseudoscalars. Here, we employ the meson-meson unitarized scattering amplitudes
obtained in Ref. [39] but now enlarged (as in Chapter 3) so that states with the pseudoscalar η′

are included in the calculation of T ((P − ℓ)2). In Appendix D, we show these amplitudes and
how they are obtained from different fits. These amplitudes contain the poles corresponding to
the scalar resonances σ, κ, f0(980), a0(980) and other poles in the region around 1.4 GeV [39].
Their pole positions and relevant couplings are shown in the aforesaid Appendix, in Tables
D.2 and D.3, respectively.

In order to proceed further we have to know the dependence of T ((P−ℓ)2) on its argument
that includes the integration variable ℓ. This can be done by writing the dispersion relation
satisfied by T (q2) which is of the form:1

T (q2) = T (sA) +
∑

i

q2 − sA

q2 − si

Resi

si − sA

+
q2 − sA

π

∫ ∞

sth

ds′ ImT (s′)
(s′ − q2)(s′ − sA)

. (4.3)

1The T (q2) amplitude is on-shell because off-shell contributions would cancel propagators [33] in the loop

represented in Fig. 4.1 and the enhancements discussed above no longer take place. This is why we neglect

such off-shell contributions in T (q2).
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One subtraction at sA has been taken because T (q2) is bound by a constant for q2 → ∞, with
T (sA) the subtraction constant. Typically there are also present poles deep in the q2-complex
plane located at si whose residues are Resi. These poles appear on the first Riemann sheet
and are an artifact of the parameterization employed [39,190]. For q2 along the physical region
they just give rise to soft extra contributions that could be mimicked by a polynomial of low
degree in q2. Inserting Eq. (4.3) into Eq. (4.2), with (P − ℓ)2 = q2, one can write for LK

LK =

(
T (sA) +

∑ Resi

si − sA

)
C3 +

∑

i

C4(si)Resi

− 1
π

∫ ∞

sth

ds′ImT (s′)
[

C3

s′ − sA

+ C4(s′)
]

. (4.4)

Here we have introduced the three- and four-point Green functions C3 and C4(M2
4 ) defined

by

C3 = i
∫ d4ℓ

(2π)4

1
(ℓ2 −m2

K + iε)((p1 − ℓ)2 −m2
K + iε)((p2 − ℓ)2 −m2

K + iε)
,

C4(M2
4 ) = i

∫ d4ℓ

(2π)4

1
(ℓ2 −m2

K + iε)((p1 − ℓ)2 −m2
K + iε)((p2 − ℓ)2 −m2

K + iε)

× 1
((P − ℓ)2 −M2

4 + iǫ)
. (4.5)

Notice that M2
4 can be real positive (when M2

4 = s′ in the dispersion relation), but it could
also be negative or even complex when M2

4 = si from the poles. One has still to perform the
angular projection for C3 and C4(M2

4 ). Once this is done, Eq. (4.4) can still be used but with
C3 and C4(M2

4 ) projected in S-wave, as we take for granted in the following. These functions
and their S-wave projection are discussed in Appendix E. For S1(p1)P1(k1) → S2(p2)P2(k2)
we have the usual Mandelstam variables s = (p1 +k1)2 = (p2 +k2)2, t = (p1 −p2)2 = (k1 −k2)2

and u = (p1 − k2)2 = (p2 − k1)2 = M2
S1

+ M2
S2

+ M2
P1

+ M2
P2

− s − t, with the masses of the
particles indicated by M with the subscript distinguishing between them. The dependence on
the relative angle θ enters in t as t = (p0

1 −k0
1)2 −(p−p′)2 = (p0

1 −k0
1)2 −p2 −p′2 +2|p||p′| cos θ

with p and p′ the CM three-momentum of the initial and final particles, respectively.

Our basic equation for evaluating the interaction kernels is Eq. (4.4). One has only to
specify the pseudoscalars actually involved in the amplitude T (q2) according to the specific
reaction under consideration. We now list all the channels involved for the different quan-
tum numbers and indicate the actual pseudoscalar-pseudoscalar amplitudes required as the
argument of LK :

• I = 0, G = +1

TL(a0π → a0π) =
2g2

a0

3
LK [4T I=3/2

πK→πK − T
I=1/2
πK→πK ] ,

TL(a0π → f0η) = 2gf0ga0LK [T I=1/2
ηK→πK ] ,

TL(f0η → f0η) = 2g2
f0
LK [T I=1/2

ηK→ηK ] ,

TL(a0π → f0η
′) = 2gf0ga0LK [T I=1/2

η′K→πK ] ,

TL(f0η → f0η
′) = 2g2

f0
LK [T I=1/2

ηK→η′K ] ,
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TL(f0η
′ → f0η

′) = 2g2
f0
LK [T I=1/2

η′K→η′K ] . (4.6)

• I = 1/2

TL(f0K → f0K) =
g2

f0

2
LK [3T I=1

KK̄→KK̄ + T I=0
KK̄→KK̄ ] ,

TL(f0K → a0K) =

√
3gf0ga0

2
LK [T I=1

KK̄→KK̄ − T I=0
KK̄→KK̄ ] ,

TL(a0K → a0K) =
g2

a0

2
LK [3T I=0

KK̄→KK̄ + T I=1
KK̄→KK̄ ] . (4.7)

• I = 1, G = −1

TL(f0π → f0π) =
2g2

f0

3
LK [2T I=3/2

πK→πK + T
I=1/2
πK→πK ] ,

TL(f0π → a0η) =
2gf0ga0√

3
LK [T 1/2

πK→ηK ] ,

TL(a0η → a0η) = 2g2
a0
LK [T I=1/2

ηK→ηK ] ,

TL(f0π → a0η
′) =

2gf0ga0√
3

LK [T I=1/2
πK→η′K ] ,

TL(a0η → a0η
′) = 2g2

a0
LK [T I=1/2

ηK→η′K ] ,

TL(a0η
′ → a0η

′) = 2g2
a0
LK [T I=1/2

η′K→η′K ] . (4.8)

• I = 1, G = +1

TL(a0π → a0π) =
2g2

a0

3
LK [4T I=1/2

πK→πK − T
I=3/2
πK→πK ] . (4.9)

• I = 3/2

TL(a0K → a0K) = 2g2
a0
LK [T I=1

KK̄→KK̄ ] . (4.10)

In the previous equations the different scalar-pseudoscalar states are pure isospin ones
corresponding to the isospin I indicated for each item. This also applies to the pseudoscalar-
pseudoscalar states, with I as indicated in the superscript of T . The symbol G refers to
G-parity. On the other hand the I = 3/2 πK amplitude, being much smaller than the
I = 1/2 one, has negligible effects, although it has been kept in the previous expressions.

For each set of quantum numbers specified by the isospin I and G-parity G (if the latter
is not defined this label should be omitted) we join in a symmetric matrix TIG the different
TL(i → j) calculated above. Then, in order to resum the unitarity loops, as indicated in
Fig. 4.2, and obtain the final S-wave scalar-pseudoscalar T-matrix, TIG, we make use of the
equation

TIG = [I + TIG · gIG(s)]−1 · TIG . (4.11)

The general derivation of this equation, based on theN/D method [38], was given in Chapter 2.
See Refs. [39, 41] and Ref. [33], where it is connected with the Bethe-Salpeter equation. In
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g(s,MS,MP )

S ′

P ′

g(s,MS′,MP ′)

Figure 4.2: Iteration of the interaction kernels (blue triangles) by inserting scalar-
pseudoscalar intermediate states (red lines). Double lines denote the scalars,
whereas the single ones represent the pseudoscalars. The orange circles represent
thus the S → KK̄ coupling, and the green squares are the unitarized pseudoscalar-
pseudoscalar amplitudes.

Eq. (4.11) gIG(s) is a diagonal matrix whose elements are the scalar unitarity loop function
with a scalar-pseudoscalar intermediate state. For the calculation of gIG(s)i, corresponding
to the ith state with the quantum numbers IG and made up by the scalar resonance Si and
the pseudoscalar Pi, we make use of a once subtracted dispersion relation [39]. The result is

gIG(s)i =
1

(4π)2

{
a1 + log

M2
Si

µ2
− M2

Pi
−M2

Si
+ s

2s
log

M2
Si

M2
Pi

+
|p|√
s


log(s− ∆ + 2

√
s|p|) + log(s+ ∆ + 2

√
s|p|)

− log(−s+ ∆ + 2
√
s|p|) − log(−s− ∆ + 2

√
s|p|)





 (4.12)

with |p| the three-momentum of the channel SiPi for a given s and ∆ = M2
Pi

− M2
Si

. The

subtraction a1 is restricted to have natural values so that the unitarity scale [322] 4πfπ/
√

|a1|
becomes not too small (e.g. below the ρ-mass) so that |a1| . 3. In addition, we require the
sign of a1 to be negative so that resonances could be generated when the interaction kernel is
positive (attractive).

As already indicated in Ref. [323] to ensure a continuous limit to zero a0(980) width,
one has to evaluate TIG at the a0(980) pole position with positive imaginary part so that
p2

1,2 → Re [Ma0 ]2 + iǫ, in agreement with Eq. (4.2). Instead, in gIG(s)a0P , with P one of the
lightest pseudoscalars, Ma0 should appear with a negative imaginary part to guarantee that,
in the zero-width limit, the sign of the imaginary part is the same as dictated by the −iǫ
prescription for masses squared of the intermediate states. Such analytical extrapolations in
the masses of external particles are discussed in Refs. [329–331]. The same applies of course
to the case of the f0(980) resonance.

4.3 Results

In this section we show the results that follow by applying Eq. (4.11) to the different channels
characterized by the quantum numbers IG, as given in the list from Eq. (4.6) to Eq. (4.10).
As discussed after Eq. (4.12) we consider values for the subtraction constant such that they
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Figure 4.3: Modulus squared of the f0K → f0K (left) and a0K → a0K (right)
S-wave amplitudes for a1 = −0.5 . The points correspond to the energies where
the amplitudes have been actually calculated.

are negative and not very large in modulus (|a1| . 3). In this way, the resonances generated
might be qualified as dynamically generated due to the iteration of the unitarity loops. We
present the results for each of the channels with definite IG separately.

4.3.1 I = 1/2

First we show the results for the I = 1/2 sector that couples together the channels f0(980)K
and a0(980)K. We show the modulus squared of the f0K → f0K and a0K → a0K S-wave
amplitudes in the left and right panel of Fig. 4.3, respectively. We obtain a clear resonant
peak with its maximum at 1460 MeV for a1 around −0.5, that corresponds to the nominal
mass of the K(1460) resonance [48]. The results are not very sensitive to the actual value
of a1 but the position of the peak displaces to lower values for decreasing a1 and the width
somewhat increases. The visual width of the peak is around 100 MeV, although it appears
wider in a0K → a0K scattering. In Refs. [332, 333] a larger width of around 250 MeV is
referred. One has to take into account that the channel K∗(892)π is not included and it
seems to couple strongly with the K(1460) resonance [48]. It is also clear from the figure that
the peak is asymmetric due to the opening of the f0K and a0K thresholds involved. Taking
into account the relative sizes of the peaks in the left and right panels of Fig. 4.3 one infers
that the K(1460) couples more strongly to f0K than to a0K, with the ratio of couplings as
|gf0K/ga0K | ≃ (20.2

5.7
)1/4 ≃ 1.4 .
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Figure 4.4: Modulus squared of the a0η
′ → a0η

′ (left) and a0η → a0η (right)
S-wave amplitudes. For the former a1 = −1.3 and for the latter a1 = −2.0, see
the text for details. The notation is as in Fig. 4.3.

4.3.2 I = 1

We now consider the I = 1 case. As commented in the introduction two broad resonances are
referred in the PDG, the π(1300) and π(1800). In our amplitudes we find quite independently
of the value of a1 that the a0(980)η′ channel is almost elastic. This is due to the fact that
the interaction kernels T (a0η

′ → a0η) and T (a0η
′ → f0π) are much smaller than the rest

of kernels, typically by an order of magnitude. This happens because the kernels are domi-
nated by the threshold region. However, the threshold for a0(980)η′ is much heavier than the
thresholds for the other two channels. In this way, for the inelastic processes involving the a0η

′

channel, even at threshold for one of the channels, there is always a large three-momentum
for the other channel and the kernel is suppressed. Of course, this does not apply for the
a0η

′ elastic case where the kernel has a standard size and produces around 1.8 GeV a strong
resonant signal that could be associated with the π(1800) resonance. To reproduce the mass
value given in the PDG [48] for this resonance, 1816 ± 14 MeV one takes a1 for a0η

′ around
−1.3. The visual width of the peak is around 200 MeV, close to the width quoted in the
PDG [48] of 208 ± 12 MeV. The other two channels couple quite strongly between each other
and typically give rise to an enhancement between 1.2–1.4 GeV when varying a1 equal for each
of them, which could be associated with the π(1300). However, for |a1| between 1 and 1.8 a
too strong signal in the a0η threshold originates. For |a1| below 1 the resonant peak in the
|T (a0η → a0η)|2 lies around 1.4–1.5 GeV, somewhat too high for the π(1300) resonance [48].
This is why we show in Fig. 4.4 the modulus squared of a0η → a0η for a1 = −2 where a peak
close to 1.2 GeV is seen with a width of around 200 MeV. One can also see the strong effect
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Figure 4.5: Modulus squared of the f0η
′ → f0η

′ (left) and f0η → f0η (right)
S-wave amplitudes. For the former a1 = −1.25 and for the latter a1 = −0.8, see
the text for details. The notation is as in Fig. 4.3.

of the a0η threshold at around 1.52 GeV. Its size is rather sensitive to the actual vale of |a1|
when this lies between 1 and 1.8. There is the interesting fact, which is independent of the
value of a1, that there is no signal for π(1800) in the a0η system nor signal of the peak at
1.2 GeV in the a0η

′. We have also checked that this is also the case for the f0π state, that is,
it does not couple with the π(1800). This is another reflection of the fact that the a0η

′ tends
to decouple from the other states.

4.3.3 I = 0

We move next to the I = 0 system where the f0η, a0π and f0η
′ couple. Here occurs similarly

to I = 1, so that the much higher f0η
′ channel mostly decouples from the other two channels.

We then proceed similarly and distinguish between the subtraction constant a1 attached to
a0η

′ and to the other two channels a0π and f0η. For a1 around −1.2 one obtains a resonance
of the f0η

′ channel at a mass of 1835 MeV, in agreement with that quoted in the PDG for
the X(1835), 1833.7 ± 6.1 ± 2.7 MeV. This is shown in the left panel of Fig. 4.5 where the
modulus squared of the f0(980)η′ → f0(980)η′ S-wave amplitude is shown. The width of
the peak at half its maximum value is around 70 MeV, in good agreement with the width
given in the PDG for the X(1835) of 67.7 ± 20.3 ± 7.7 MeV. We consider next the other
two coupled channels, a0(980)π and f0(980)η. We obtain a clear resonant signal with mass
around 1.45 GeV for |a1| . 1. This is shown in the right panel of Fig. 4.5, where the modulus
squared of the f0(980)η → f0(980)η is given for a1 = −0.8. It is not possible to increase
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Figure 4.6: Modulus squared of the exotic I = 3/2 a0K → a0K S-wave amplitude
with a1 = −0.5. The notation is as in Fig. 4.3.

further the mass of this peak by varying a1. An important fact of this resonance is that it
does not couple to the a0π channel. For example, the analogous curve for the modulus squared
of the a0(980)π → a0(980)π S-wave in the 1.4 GeV region is absolutely flat (by considering
the inelastic process f0(980)η → a0(980)π we estimate a coupling to the latter channel more
than 14 times smaller than to f0(980)η.) Because the η(1405) resonance couples mostly to
a0(980)π [48] we then conclude that the generated resonant signal around 1.45 GeV should
correspond to the η(1475). Its form is rather asymmetric due to the opening of the f0(980)η
threshold, with a width at half the maximum of its peak of around 150 MeV. The width
quoted in the PDG [48] is 85 ± 9 MeV. It is also known that the η(1475) couples strongly to
K∗(892)K̄+c.c, a channel not included in our study. The threshold for this channel, at around
1.39 GeV at the decreasing slop of our present signal, should certainly modify its shape. For
higher values of |a1| the peak tends to become too light in mass compared with the η(1475).
For the a0(980)π → a0(980)π reaction one also appreciates a strong a0(980)π threshold effect
at around 1.16 GeV. No resonance around the mass of the η(1295) is observed.

4.3.4 Exotic channels

Regarding the exotic channel with I = 3/2 we find an interesting result. Our amplitude gives
rise to a clear resonant structure at around 1.4 GeV for |a1| . 1.5. We show the modulus
squared of T (a±

0 K
± → a±

0 K
±), because the a±

0 K
± states are purely I = 3/2, for a1 = −0.5

(the same value used before in Fig. 4.3 studying the I = 1/2 case) in Fig. 4.6. One also
observes that the shape of the resonance peak is asymmetric with a clear impact of the a0K
threshold. Our results for |a1| . 1 tends to confirm the predictions of Longacre [113] that
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Resonance I(G) Width (MeV) Properties

K(1460) I = 1
2 Γ & 100 |gf0K/ga0K | ≃ 1.4

π(1800) IG = 1− Γ ≃ 200 a0η
′ elastic

π(1300) IG = 1− Γ & 200 a0π, f0η coupled channels

X(1835) IG = 0+ Γ ≃ 70 f0η
′ elastic

η(1475) IG = 0+ Γ ≃ 150 f0η elastic

Exotic I = 3
2 Γ ≃ 200 a0K threshold

Table 4.1: Resonances resulting from our study. For more details see the discus-
sions of the results in the text.

studied the KK̄π and KK̄K system and concluded that the exotic I = 3/2 JP = 0− KK̄K
system was resonant around its threshold due to the successive interactions between a K, K̄
and a π. For |a1| & 1 we find that the resonance shape in |T (a±

0 K
± → a±

0 K
±)|2 progressively

distorts becoming lighter and flatter. Let us notice also that the a0K system was not isolated
in the two experiments quoted in the PDG where the I = 1/2 K(1460) was observed [332,333].

The other exotic channel with I = 1 and G = +1 involves the isovector a0π state. Whether
a resonance behavior stems at around 1.4 GeV depends on the actual value of a1. For |a1| . 1
the enhancement near 1.4 GeV is much weaker and is overcome by the cusp effect at the a0π
threshold. For larger values of |a1| the resonant signal is much more prominent. No such
resonance has been found experimentally, e.g. in peripheral hadron production [334], so that
|a1| . 1 should be finally taken.

In Table 4.1 we collect all the resonances found in our study for the different quantum
numbers discussed.

4.4 Summary and conclusions

In summary, we have presented a study of the S-wave interactions between the scalar res-
onances f0(980) and a0(980) with the lightest pseudoscalars (π, K, η and η′) in the region
between 1 and 2 GeV. The different channels studied comprise those alike the η, K and π,
and the exotic ones with isospin 3/2 and 1, the latter having positive G-parity. First, inter-
action kernels have been derived by considering the interactions of the external pseudoscalars
involved in the reaction with those making the scalar resonance. We take advantage here
of previous studies that establish the f0(980) and a0(980) as dynamically generated from
the interactions of two pseudoscalars, so that no free parameters are introduced in their cal-
culation. Afterwards, the final S-wave amplitudes are determined by employing techniques
borrowed from Unitary Chiral Perturbation Theory. Interestingly, we have obtained resonant
peaks that for the non-exotic channels could be associated with the pseudoscalar resonances
K(1460), π(1300), π(1800), η(1475) and X(1835), following the notation of the PDG [48].
The resonances that come out from this study can be qualified as dynamically generated from
the interactions between the scalar resonances and the pseudoscalar mesons. This establishes
that an important contribution to the physical signal of the resonances just mentioned has a
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dynamical origin. The exotic I = 3/2 channel could also exhibit a resonant structure around
the a0K threshold, in agreement with the behavior predicted by Longacre [113] twenty years
ago. However, larger values for the subtraction constant |a1| tends to destroy this resonant
behavior. No signal of the intriguing η(1405) resonance is obtained.

This approach should be pursued further by including simultaneously to the interaction
between the scalar resonances and the pseudoscalar mesons, considered here, those arising
from the lightest vector resonances with the same pseudoscalars in P -wave. In this way, both
pseudoscalar and axial resonances will be studied together.
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5.1 Introduction. History of the σ meson

The lightest resonance in QCD with the quantum numbers of the vacuum, JP C = 0++, is
the σ or f0(500) resonance [48]. Its connection with chiral symmetry has been stressed since
the sixties in the linear sigma model [227], while its tight relation with the non-linear sigma
model was realized in the nineties. In this respect there have been several papers that clearly
connect this resonance with chiral dynamics of the two-pion system. One has first to mention
the works of Truong and collaborators [22–24, 26] who first emphasized the important role
played by the null isospin (I) S-wave ππ final state interactions in several processes giving

133
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rise to a strong numerical impact on the estimations based on current algebra technique or
ChPT [18, 19, 220, 221, 223]. A notoriously improved comparison with experiment was then
obtained, e.g. for Kℓ4 decays [23], η → 3π [22], scalar and pion vector form factors [24]
and ππ scattering [26]. These works stress the role of the right-hand or unitarity cut and
make use of a method to resum unitarity based on the expansion of the inverse of a form
factor or scattering amplitude. This is the so called Inverse Amplitude Method (IAM), that
in the end is analogous to a Paddè method of resummation. Within this technique the
σ pole was first obtained in Ref. [28], together with the K∗ and ρ resonances in the P -
waves. However, due to the lack of coupled channels, no further light scalar resonances were
generated, in particular the f0(980) and a0(980). Independently, the σ resonance pole was also
obtained simultaneously in Ref. [33], together with the I = 0 f0(980) and a0(980) resonances.
The associated amplitudes were determined by solving the Bethe-Salpeter equation taking
as potential the lowest order ChPT Lagrangian. Only one free parameter (a natural sized
cut-off) was involved. Later on, when the IAM was extended to coupled channels [29], it was
possible to obtain in Refs. [29–31] the σ, f0(980), a0(980) and κ resonances altogether, that
is, the whole nonet of the lightest scalar resonances [39, 49, 51, 53, 54, 335], together with the
nonet of the lightest vector resonances.

The approach of Ref. [33], based on solving a Bethe-Salpeter equation, was put on more
general grounds in Ref. [39] by applying the N/D method [38], as exposed in Sec. 2.7 in
Chapter 2. In this way, it is possible to include higher orders in the chiral counting [41, 225]
as well as explicit resonant fields [105] and crossed-channel dynamics, if required. Later works
based on this scheme are Refs. [A, ii, B, 43]. With this approach [39] one builds a unitarized
meson-meson scattering amplitude by solving the N/D equations in an algebraic way so that
an approximate solution is obtained by treating perturbatively the crossed cuts. As a result,
the ChPT expansion is reproduced order by order, while the unitarity cut is resummed [41].
In this respect, one should stress that the crossed cuts can be treated perturbatively for the
isoscalar ππ S-wave. Its size was estimated to be smaller than 10% in Ref. [39] along the
physical region for energies up to around 1 GeV. Indeed, different approaches with various
degrees of sophistication provide very similar values for the σ pole resonance parameters, mass
and width. Either by employing just the leading order (LO) ChPT [33] (without left-hand
cut at all), next-to-leading order (NLO) [28] or next-to-next-to-leading order (N2LO) [283].
In these two later references the left-hand cut is included as calculated by ChPT at one and
two-loop orders, respectively. The fact that the results are very similar clearly indicates that
the left-hand cut is indeed a perturbation. The σ pole positions in

√
s, with s the total

center of mass energy squared, obtained in these works are:
√
sσ = 469 − i 194 MeV [33],

440 − i 245 MeV [28] and 445 − i 235 MeV [283]. In the following we identify the mass and
half width of the σ resonance from the pole position as Mσ − iΓσ/2 ≡ √

sσ.

More recently, Ref. [116], based on the solution of the Roy equations [336] and ChPT at
two-loops [297,337], obtained the value 445+16

−8 − i 272+9
−13 MeV. The Roy equations implement

crossing symmetry exactly, while the previous references [28, 33, 39, 283] do it perturbatively.
The fact that all these pole positions for the σ lie rather close to each other (particularly one
can say that convergence is reached very accurately for the real part) is another indication for
the correctness of treating crossed-channel dynamics perturbatively, as done in the framework
of Refs. [39,162] (see also [E,F,144].) Indeed, to our mind, both schemes are complementary
because the Roy equations need for their implementation of the knowledge of large amount
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of data in several partial waves up to high energies, which is affected by systematics errors
in experiments (many of them old ones) and also in theory (e.g. high energy extrapolations),
not always well under control. Let us also mention that all these analyses neglect altogether
the inelasticity due to the 4π channel in ππ S-waves so that, up to the opening of the KK̄
threshold at around 1 GeV, no inelasticity is assumed. The 4π channel was approached in
Ref. [A] as σσ and ρρ states (with their couplings to all the channels predicted from chiral
dynamics) and found the σ pole at 456±6−i 241±7 MeV.1 This pole position is quite close to
those in the previous references and compatible with the result 484±17− i 255±10 MeV from
Ref. [117]. Thus, since the pole positions of Refs. [A, 28, 33, 116, 117, 283] lie so close to each
other we could conclude that our present knowledge on the pole position of the σ resonance
is quite precise and, furthermore, we understand the underlying physics at the hadronic level.

Between earlier approaches to the previous discussed results based on ChPT concerning
the lightest scalars, we have Refs. [49, 50] within the MIT bag model that already in the
late seventies predicted a complete nonet of four-quark 0++ resonances (comprising the σ,
f0(980), a0(980) and κ), with Mσ = 660 ± 100 MeV and Γσ = 640 ± 140 MeV. The four-quark
nature of the lightest scalars is also favored in Refs. [122, 338–341] attending to scattering
and production data, including two-photon fusion, J/Ψ and φ decays, and in Refs. [139,267].
The important role played by two-meson unitarity for understanding the scalar sector for√
s . 1 GeV was also stressed in Ref. [51] (a similar approach was later followed in Ref. [259]),

employing a unitarized chiral quark model, and in Ref. [52], within the Jülich meson-exchange
models. Considerations based on increasing the QCD number of colors, NC , were exploited
in Refs. [39,136–139], showing that the σ resonance has a non-standard NC dependence. This
can be done more safely for NC & 3, not too large, while statements for NC ≫ 3 depend
much more on fine details of the approach [138, 140–146]. QCD sum rules were also applied
for the study of the lightest scalar meson, e.g. in Refs. [123–127]. It is argued too that the σ
resonance is the chiral partner of the pion [128–134] and the way in which the σ pole evolves
when approaching the chiral symmetry restoration limit is different according to the nature
of this resonance [135].

From an experimental point of view new interest is triggered on the σ resonance from
recent high-statistics results, e.g. J/Ψ → ωππ where a conspicuous peak is seen [118]. Indeed,
this decay mode was the first clear experimental signal of a σ resonance [119, 120]. Another
marked peak around the σ energy region is also observed in several heavy meson decays. E.g.
it was observed with high statistical significance in D → π+π−π+ [121]. Both types of decays
present a strong peak in the σ mass energy region because the absence of the Adler zero in
the pion scalar form factor, as explained in Refs. [279, 342].2 However, for the low-energy
scalar and isoscalar ππ scattering the presence of an Adler zero at s ≃ m2

π/2 requires of
a strong nonresonant background to cancel the pole contribution from the σ resonance, as
discussed in Ref. [279]. The role of this large nonresonant background, taking into account
the Adler zero constraint, was already stressed in Ref. [257] in order to understand S-wave
I = 0 ππ scattering. These results triggered other studies on the σ and κ resonances, e.g.,
Refs. [54,253,335,344–347]. Another field of increasing activity, both experimental [348–351]

1In addition this reference was able to reproduce simultaneously all the isoscalar S-wave resonances quoted

in the PDG [48] from ππ threshold up to 2 GeV. A coherent picture of the scalar sector dynamics and

spectroscopy then arose, including the identification of the lightest scalar glueball.
2One can explain consistently both types of decays in terms of the pion scalar form factors [279,280,343].
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and theoretical, concerns the fusion of two photons into a pair of pions and from there to
extract the width of the σ to γγ [34,352–359]. This is also expected to shed light on the nature
of the σ meson [353, 354], once nonresonant background effects are properly considered. At
this point, Refs. [353, 354] relies on the fact that nonresonant terms in the S-matrix mainly
affect the phases of residues but not their modulus for sufficiently narrow resonances [217],
which is arguable for the σ case [352,360].

The relative strength of the σ coupling to KK̄ compared to ππ is also taken as an impor-
tant property in order to disentangle between different models for the nature of the σ meson
(qq̄, four-quarks, glueball or ππ-molecule), as stressed in Ref. [123]. This reference points
out that the not so much suppressed coupling of the σ to K+K− (gσK+K−), as compared
with that to π+π− (gσπ+π−), |gσK+K−|/|gσπ+π−| = 0.37 ± 0.06 [123], is a key ingredient to
advocate for a gluonium nature of the σ meson. According to Ref. [123], a simple qq̄ inter-
pretation of the σ fails to explain the large width of the σ while a four-quark scenario has
difficulties to explain its large coupling to K+K−. It is then worth emphasizing that the
T -matrices obtained in Refs. [A, 33, 39] also predict a ratio for the σ couplings to K+K−

and π+π− in perfect agreement with the value above of Refs. [123, 124, 361]. Explicitly, we
have |gσK+K− |/|gσπ+π−| = 0.36 ± 0.04 from the average collected in Ref. [53]. However, in
our case this stems from the dynamical generation of the σ resonance from the Goldstone
boson dynamics associated to the strong scalar isoscalar ππ interaction. We also stress that
this approach has been confronted with a large amount of data from different reactions, both
scattering and production experiments, in most of the reactions already quoted in this in-
troduction. However, the extensive phenomenological studies of Refs. [339–341,362] obtained
much smaller values for the previous ratio of couplings.

In this Chapter we report on our work in Ref. [C]. One of the main aims here is to
show that the often identification of dynamically generated resonances from the interactions
of two mesons (pions in our case) as meson-meson molecules is misleading. As we show here,
depending on the meson mass, one can have situations where the size of a dynamically gen-
erated meson-meson resonance is certainly too small to be qualified as a two-meson molecule.
Indeed, its size could be as small as that of one of the mesons involved in their formation.
The fact that the σ is such a tight compact object clearly hints that the two pions pack so
much that it is not meaningful anymore to keep their identities separately. At this stage, a
four quark compact resonance seems a more appropriate picture. This is also supported by
the NC evolution of the σ-pole trajectory which is clearly at odds with the expectations for a
purely q̄q or glueball resonance, but in the lines of what it is expected for a meson-meson or
four quark resonance [138, 141–147]. However, by increasing the pion mass the σ resonance
pole tends to follow the two pion threshold, and when it is close to the latter its size increases,
becoming a spread object. This is a clear indication for the molecular character of the σ for
large enough pion masses, mπ & 400 MeV. In addition, let us also emphasize that our work
is the first calculation of the size of the σ resonance. This is a novel way to study its nature
in the literature.

The rest of the Chapter is organized as follows. In Sec. 5.2 we shall comment on the
Lagrangians to be used in the calculations. Next we dedicate Sec. 5.3 to evaluate ππ scattering
at one-loop order in Unitary ChPT. A wide set of data is fitted, including some recent lattice
QCD determinations as a function ofmπ. We pay special attention to the threshold parameters
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and the σ pole position. For these quantities we also compare with previous phenomenological
determinations and the lattice QCD results on the dependence of the σ pole mass as a function
of the pion mass. We dedicate Sec. 5.4 to the calculation of the scalar form factor of the σ
resonance. First pion scattering in the presence of a scalar source is discussed. The scalar form
factor of the σ is calculated from the double σ pole present in the amplitude for the previous
process, once ππ initial and final state interactions are taken into account. As a result, we
can determine the quadratic scalar radius of the σ and then have some information on the
size of this resonance. We stress that this radius is pretty small, around 0.5 fm, indicating
that the σ is a compact object. We also discuss the relation between the value of the σ
scalar form factor at the origin and the dependence of the σ pole with the pion mass, related
by the Feynman-Hellmann theorem. Both issues, the quadratic scalar radius of the σ and
the Feynman-Hellman theorem, are addressed in Sec. 5.5. Conclusions are given in Sec. 5.6.
Related to the calculations in this Chapter, we dedicate Appendix B to the loop functions
used throughout the amplitudes calculated, which are in turn given in Appendix C for pion
scattering in the presence of a scalar source.

5.2 SU(2) Chiral Lagrangians

We follow the standard ChPT counting, Eq. (1.256) and the processes under consideration,
the scattering of pions with and without the presence of a c-number external scalar source,
are calculated both at LO and NLO. The LO calculation has D = 2 with no loops (L = 0)
and involves only d = 2 vertices. At NLO, D = 4, one has diagrams with L = 1 that involve
only d = 2 vertices. There are also diagrams with L = 0 with only one d = 4 vertex, with
the rest of vertices having d = 2. Up to NLO, O(p4), one has to consider the SU(2) chiral
Lagrangians at O(p2), L2, and O(p4), L4, that we take from Ref. [18], as in Eq. (1.257).
The covariant derivative ∇µ reduces in the problem that we are studying to the standard
derivative, ∇µ → ∂µ, since we do not consider here external vector nor axial-vector currents.
We stress that, in the following, the pion propagators employed are i∆R(p2), Eq. (1.282), in
terms of the physical pion mass. This will make simpler the calculation of some diagrams for
the process ππs → ππ. Let us also mention that the amplitudes calculated are given in terms
of the physical mass and weak decay constant of the pion. The latter is given by Eq. (1.289).

5.3 ππ scattering and the σ meson

5.3.1 The ππ → ππ amplitude

The chiral Lagrangians exposed in Sec. 5.2 comprise four low energy constants (LECs), l̄i,
at O(p4). Additionally, our resummation procedure, explained below, includes a subtraction
constant through the two-meson unitarity one-loop function. Before considering the ππs → ππ
amplitude, we must fix these free parameters. This is accomplished by comparing our results
for the scalar ππ → ππ phase shifts with I = 0, 2 with experiment, and also other observables
with lattice QCD determinations.

We denote by χn(s, t) the I = 0 ππ scattering amplitudes calculated from Fig. 5.1 in ChPT
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Feynman diagrams for ππ scattering up to NLO. Full circles represent
O(p2) vertices, while the empty ones correspond to the O(p4) vertices.

at O(pn), with n = 2 or 4. Their projection in S-wave are indicated by ξn(s). Diagram a) is
the LO contribution, while the rest of diagrams are the NLO ones. The last two diagrams,
namely, e) and f) contribute to the wave-function renormalization of the pion external legs.
We introduce the usual Mandelstam variables s, t and u. The variable s corresponds to the
total energy squared of the two pions in their center of mass frame (CM), while the other two
are defined as:

t = −2p2(1 − cos θ)

u = −2p2(1 + cos θ)

s+ t+ u = 4m2
π

p2 =
s

4
−m2

π (5.1)

Here, p2 is the three-momentum squared of the pions in their CM and θ is the scattering
angle in the same reference frame. The amplitudes ξn(s) are then given by,

ξn(s) =
1
4

∫ −1

−1
d cos θ χn(s, t) . (5.2)

In the previous equation an extra factor of 1/2 has been included, in correspondence with the
so called unitarity normalization [33]. The I = 0 ππ state is symmetric under the exchange
of the two pions so that the unitarity normalization avoids having to take into account the
presence of the factor 1/2 whenever it appears as an intermediate state. In this way, the same
formulas as for distinguishable particles can be employed. In what follows, we employ the
unitarity normalization in all the isoscalar ππ matrix elements unless the opposite is stated.

Let us indicate by T (s) the scalar-isoscalar unitarized ππ partial-wave amplitude. Follow-
ing the unitarization method of Refs. [39,41], the right-hand cut or unitarity cut is resummed
by the master formula:

T (s) =
V (s)

1 + V (s)G(s)
. (5.3)

As shown in Chapter 2, this formula is deduced by solving algebraically the N/D method [38,
39], treating perturbatively the crossed cuts, whereas the unitarity cut is resummed exactly.



139 5.3 ππ scattering and the σ meson

Here, G(s) is the scalar two-point function,

G(s) =
1

16π2

(
a+ log

m2
π

µ2
− σ(s) log

σ(s) − 1
σ(s) + 1

)
, (5.4)

with chiral order p0. In the previous equation σ(s) =
√

1 − 4m2
π/(s+ iǫ). The interaction

kernel V (s) has a chiral expansion, V (s) = V2(s)+V4(s)+· · · , with the chiral order determined
by the subscript. The different chiral orders of V (s) are calculated by matching T (s) with its
perturbative expansion calculated in ChPT. In this way up to O(p4),

T (s) =
V (s)

1 + V (s)G(s)
= ξ2(s) + ξ4(s) + . . .

= V2(s) + V4(s) − V 2
2 (s)G(s) + . . . , (5.5)

where the ellipsis indicate O(p6) and higher orders in the expansion. It results then:

V2(s) = ξ2(s) ,

V4(s) = ξ4(s) + ξ2(s)2G(s) . (5.6)

The finite piece of the unitarity term in Fig. 5.1 (that is, the term of ξ4(s) that contains
the unitarity cut and is proportional to the unitarity two-point one-loop function) is given by:

ξU
4 (s) = −ξ2

2(s)B̄0(s) . (5.7)

Here, B̄0(s) is the two-meson loop in dimensional regularization, without the R+ log(m2/µ2)
piece (that cancels out with the other infinite and scale dependent terms, see Eqs. (B.5) and
(B.6) in Appendix B.) In this way, the kernel V (s) = V2(s) + V4(s) has no unitarity cut
because:

ξU
4 (s) + ξ2

2(s)G(s) = −ξ2
2(s)(B̄0(s) −G(s)) , (5.8)

and the cut cancels in the r.h.s. of the previous equation. The full unitarity cut arises from
the denominator 1 + V (s)G(s) in Eq. (5.3).

In this Section we have dealt with the I = 0 unitarized amplitudes but, needless to say, the
same formalism applies to the I = 2 ones, by just changing the kernel V (s). We additionally
note here that the same subtraction constant is used for both channels, as required by isospin
symmetry [47].

5.3.2 Fits and the σ meson

At LO, there is just one free parameter corresponding to the subtraction constant in G(s).
At NLO, there are, in addition, four LECs, l̄i, i = 1, 2, 3, 4. For I = 0, the phase shifts that
we fit contain the very precise data of Ke4 decays below

√
s = 400 MeV [285,363–366]. These

data are corrected for isospin breaking effects, as explained in Ref. [367]. Above that energy,
the data of Ref. [368] and the average of different experiments [287–290, 369, 370], as used
e.g. in Ref. [39], are taken into account. For I = 2, the data come from Refs. [371, 372].
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Figure 5.2: Comparison of our scalar ππ phase shifts to experimental data for
I = 0 (top panel) and I = 2 (bottom panel). The (red) dashed line shows our fit
for the LO case (V (s) ≡ V2(s)), whereas the (blue) solid one shows the NLO fit
(V (s) = V2(s) + V4(s)). The bands represent our uncertainties. The inset in the
top panel shows in more detail the low energy Ke4 decays data. The data for I = 0
are from the Ke4 decay data of Refs. [285, 363–366] (with isospin breaking effects
taken into account as in [367]) and other data from Refs. [287–290, 368–370]. For
I = 2 the phase shifts are from Refs. [371,372].

Table 5.1: Summary of our LO and NLO fits. In the last column the χ2 per
degree of freedom is given.

Fit a l̄1 l̄2 l̄3 l̄4
χ2

d.o.f.

LO −1.36 ± 0.12 - - - - 1.6

NLO −1.2 ± 0.4 0.8 ± 0.9 4.6 ± 0.4 2 ± 4 3.9 ± 0.5 0.7

The fits extended to a maximum energy
√
smax = 0.8 GeV at LO, both for I = 0 and I = 2,

whereas at NLO we extend this range up to
√
smax = 1 GeV for I = 2. This is not done for

I = 0 because of the related presence of the KK̄ threshold and the f0(980) resonance. The
phase shifts are denoted by δI

0 , with I = 0, 2. For our NLO fits we also fit recent lattice
QCD results as functions of the pion mass for fπ [373,374] and the isotensor scalar scattering
length, a2

0 [374,375].3 For the latter there are also the results of Ref. [376], that we show also

3We consider the spread of these lattice QCD results as a source of systematic error for our fits. The final

errors included in the fit are depicted by the dashed error bars in Fig. 5.3.
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Figure 5.3: Dependence of fπ (top panel) and a2
0 (bottom panel) with mπ as

compared with lattice QCD data. The (blue) solid line is given by our NLO fit,
whereas the band represents our estimated error. The data are from Refs. [373–
375]. For a2

0 we also show the data of Ref. [376], although we do not include them
in our fits.

in Fig. 5.3, though they are not included in our fits. The dependence of fπ with the pion mass
is calculated at NLO in ChPT, Eq. (1.289). The scattering length a2

0 is defined through the
threshold expansion in powers of p2 of our full results:

ReT I
0

16π
= aI

0 + bI
0p2 + O(|p|4) , (5.9)

that we extrapolate in terms of the pion mass squared.

The resulting values for the fitted parameters are given in Table 5.1. At LO the subtraction
constant for the G(s) function is a = −1.36 ± 0.12. Four LECs appear additionally to the
subtraction constant as free parameters at NLO. In order to avoid large correlation among
them, the subtraction constant at NLO is constrained to remain near its value at LO. This is
done by adding a new term to the χ2 taking into account the difference between the values of a
at LO and NLO, but enlarging its error at LO from 0.12 to 0.2, so that its contribution to the
resulting χ2 is tiny but enough to remove the large correlations that would appear otherwise
among the LECs and the subtraction constant. The parameters of both fits (LO and NLO)
are shown in Table 5.1, and the corresponding phase shifts are plotted in Fig. 5.2 with their
respective errors. The left panel is for I = 0 and the right one for I = 2. The (red) dashed
lines arise from our fit at LO (V (s) ≡ V2(s)), whereas the (blue) solid ones show the NLO
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Ref. l̄1 l̄2 l̄3 l̄4

[18] GL −2.3 ± 3.7 6.0 ± 1.3 2.9 ± 2.4 4.6 ± 0.9

[337] CGL −0.4 ± 0.6 4.31 ± 0.11 - 4.4 ± 0.2

[377] ABT 0.4 ± 2.4 4.9 ± 1.0 2.5+1.9
−2.4 4.20 ± 0.18

[378] PP −0.3 ± 1.1 4.5 ± 0.5 - -

[379] GKMS 0.37 ± 1.96 4.17 ± 0.47 - -

[380] BCT - - - 4.4 ± 0.3

[149] OR - - - 4.5 ± 0.3

[381] DFGS - - −15 ± 16 4.2 ± 1.0

[366] NA48/2 - - 2.6 ± 3.2 -

[382] RBC-UKQCD - - 2.57 ± 0.18 3.83 ± 0.9

[383] PACS-CS - - 3.14 ± 0.23 4.04 ± 0.19

[384] ETM - - 3.70 ± 0.07 ± 0.26 4.67 ± 0.03 ± 0.1

[385,386] JLQCD/TWQCD - - 3.38 ± 0.40 ± 0.24+0.31
−0 4.09 ± 0.50 ± 0.52

[387] MILC - - 2.85 ± 0.81+0.37
−0.92 3.98 ± 0.32+0.51

−0.28

This work 0.8 ± 0.9 4.6 ± 0.4 2 ± 4 3.9 ± 0.5

Table 5.2: Comparison of different phenomenological and lattice QCD determi-
nations of the LECs l̄i, i = 1, 2, 3, 4. Together with every reference, for an easier
comparison the initials of the authors or those of the collaboration are given.

fit (V (s) = V2(s) + V4(s)). In the inset of the upper panel the agreement of our results with
the lower energy data from Ke4 decay can be appreciated. We must stress that the difference
between LO and NLO manifests mostly in the I = 2 channel phase shifts, as can be seen
in Fig. 5.2. In this channel, the left-hand cut is more important, but our amplitudes only
incorporates the latter in a perturbative way, so that at NLO it is well reproduced, but it is
absent at LO. In Fig. 5.3 our results for fπ (left panel) and a2

0 (right panel) are shown, and
compared with the aforementioned lattice QCD results.

In Table 5.2 we collect some phenomenological [18, 149, 337, 377–381] and lattice QCD
[382–387] determinations of the LECs. For the latter the last values of each collaboration
are taken, and, in addition, the direct SU(2) fit results are selected if values for SU(2) and
SU(3) fits are offered. We have also included the range obtained for l̄3 from the data of
the NA48/2 Collaboration [366]. These determinations are compared graphically in Fig. 5.4,
where for every LEC the different results are compatible within errors. The lattice QCD
results concerning l̄1,2 are scarce. The JLQCD and TWQCD Collaborations [385] recently
reported l̄1 − l̄2 = −2.9 ± 0.9 ± 1.3, whereas, from our fit, we obtain l̄1 − l̄2 = −3.8 ± 1.3. For
the phenomenological determinations in Table 5.2, since l̄1,2 agree well between each other,
also the aforementioned difference between these LECs does. We finally note that from our fit
we obtain at NLO ChPT that f = 86.8 ± 0.8 MeV, so that fπ/f = 1.065 ± 0.010, compatible
with the estimate of lattice QCD results given in Ref. [388], fπ/f = 1.073 ± 0.015.

Our function G(s) stems from the calculation of a once-subtracted dispersion relation (see
e.g. Ref. [39].) If, instead, it is calculated approximately by employing a three-momentum
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Figure 5.4: Comparison of the different lattice QCD and phenomenological de-
terminations of the LECs collected in Table 5.2. The (green) diamonds are lattice
QCD determinations, and (red) circles are the phenomenological ones. The range
obtained for l̄3 by the NA48/2 Collaboration is represented by a (blue) triangle.
The (black) squares are our results. For an easier comparison, we have included a
shaded area that represents our results (except for l̄3.)

cut-off Λ, one has the following relation between the subtraction constant and Λ [30,41]:

a(µ) = −1 + log
eµ2

4Λ2
+ O

(
m2

π

Λ2

)
. (5.10)

Our values for the fitted subtraction constant gives a cut-off Λ ≃ 750 MeV ≃ Mρ, which is
quite a natural value. We will make use of these considerations based on Eq. (5.10) later on,
when dealing with the mπ dependence of the σ pole position.

Fit
√
sσ (MeV) a0

0 b0
0m

2
π

LO 465 ± 2 − i 231 ± 7 0.209 ± 0.002 0.278 ± 0.005

NLO 440 ± 10 − i 238 ± 10 0.219 ± 0.005 0.281 ± 0.006

Table 5.3: σ pole position and threshold parameters for the isoscalar scalar partial-
wave amplitude.

The σ pole appears in the second or unphysical Riemann sheet of the amplitude. This
sheet is reached by changing the function G(s) in the following manner [33]. For s real and
above threshold we have

GII(s+ iǫ) = GI(s+ iǫ) − ∆G(s) , (5.11)

where the subscript denotes the physical (I) or the unphysical (II) Riemann sheet. In the
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Figure 5.5: Montecarlo-like error analysis for the σ mass (Mσ ≡ Re
√
sσ) and

half-width (Γσ/2 ≡ −Im
√
sσ) and threshold parameters a0

0 and b0
0. The (blue)

error ellipses correspond to the NLO fit while the single (red) point with errors is
for the LO result.

previous equation, ∆G(s) is the discontinuity along the unitarity cut,

∆G(s) = GI(s+ iǫ) −GI(s− iǫ) = −i p(s)
8π

√
s

, (5.12)

with p(s) =
√

p2 =
√
s/4 −m2

π, the CM pion three-momentum, such that Im p(s) > 0. In
order to explore the unphysical Riemann sheet, one then makes the analytical extrapolation
in the cut complex s plane of Eq. (5.11).

In the second sheet the σ resonance is a pole in the I = 0 S-wave ππ amplitude,

TII(s ≃ sσ) = − g2
σ

s− sσ

+ · · · , (5.13)

being gσ the coupling to the ππ channel and the ellipsis indicate the rest of terms in the
Laurent series around sσ (with Imsσ < 0.) The pole position sσ is given in Table 5.3, together
with the resulting values for the threshold parameters of the scalar-isoscalar partial wave. The
σ pole position is used to define its mass and width, Mσ − iΓσ/2 ≡ √

sσ.

The error analysis for any quantities calculated here (e.g. the fitted values for the LECs,
σ pole position, etc) is performed by randomly varying our parameters around their fitted
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Ref. Mσ (MeV) Γσ/2 (MeV) a0
0 b0

0m
2
π

[389] 470 ± 50 285 ± 25 - -

[116] 441+16
−8 272+9

−13 - -

[117] 484 ± 17 255 ± 10 0.233 ± 0.013 0.285 ± 0.012

[A] 456 ± 12 241 ± 14 - -

[390] 463 ± 6+31
−17 254 ± 6+33

−34 0.218 ± 0.014 0.276 ± 0.013

[123] 452 ± 12 260 ± 15 - -

[391] 457+14
−13 279+11

−7 - -

[366] - - 0.222 ± 0.014 -

[297] - - 0.220 ± 0.005 0.276 ± 0.006

This work 440 ± 10 238 ± 10 0.219 ± 0.005 0.281 ± 0.006

Average 453 ± 5 258 ± 5 0.220 ± 0.003 0.279 ± 0.003

Mean 458 ± 14 261 ± 17 0.223 ± 0.007 0.280 ± 0.004

Table 5.4: Values of Mσ, Γσ/2, a0
0 and b0

0 extracted from the literature. The value
of Ref. [366] corresponds to the latest experiment on Ke4 decays (with the errors
added in quadrature for an easier comparison.)

values and accepting those values for the parameters which have a χ2 < χ2
min + ∆χ2. Here

χ2
min is the best value for the χ2. For the LO case, since there is just one free parameter, we

give our two-sigma confidence interval (otherwise the errors would be too small), given by
∆χ2 = 4. At NLO the one-sigma confidence interval corresponds to ∆χ2 = 5.9. The resulting
error ellipses are shown in Fig. 5.5 for the threshold parameters, upper panel, and for the σ
mass and width, lower panel. Notice that since there is only one free parameter at LO then
a curve results instead of an error ellipse as in NLO. This is why at LO we have just shown
the resulting value with its errors.

5.3.3 The σ meson. Comparison with other determinations

We compare now our results for the σ mass and width as well as for the threshold parameters
with other determinations from Refs. [A,116,117,123,389–391]. References [116,117] are recent
sophisticated determinations of the pion pole position claiming to be very precise. In Ref. [A]
(see Chapter 3) based on chiral Lagrangians and the implementation of the N/D method, a
detailed study of meson-meson scattering in the scalar sector up to around

√
s = 2 GeV was

performed. All the relevant channels were taken into account, even the 4π channel through the
σσ and ρρ channels whose interactions kernels were predicted making use of chiral symmetry
and vector meson dominance. A good description of the data considered was achieved, which
allowed a full description of the resonances experimentally seen up to that energy.4

The relevant quantities contained in those references are collected in Table 5.4, and com-
pared in Figs. 5.6 and 5.7 with our LO and NLO determinations. If all these determinations
can be considered as different measures of the same physical quantity, then they should be

4In Table 5.4 we double the errors of our previous determination [A], so as they have a similar size as those

from other calculations. In this way the weighted average is not so much biassed from just one determination.
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Figure 5.6: In this figure we show the values for the threshold parameters a0
0 and

b0
0 from different papers in the literature, as indicated in the plots. In the first two

panels, from left to right, the (dark gray) inner strip corresponds to the interval
covered by the weighted average whereas the (light gray) outer strip is for the
mean value, both given in Table 5.4. In the last panel, the rectangles correspond
to the aforementioned intervals in the a0

0–b0
0m

2
π plane. The references are: A [390],

B [117], C [297] and D refers to the NLO determination of this work.

compatible. A good check of their mutual compatibility is to determine whether they are
compatible within errors with their weighted average.5 These values are calculated and given
in Table 5.4.

The ideal situation is that for the threshold parameters a0 and b0, as can be seen by simple
inspection of Fig. 5.6, or directly from the values in Table 5.4. All values agree within errors
with their weighted average:

a0
0 = 0.220 ± 0.003 ,

b0
0m

2
π = 0.279 ± 0.003 . (5.14)

The latest NA48/2 Collaboration result [366] is a0
0 = 0.2220±0.0128stat ±0.0050syst ±0.0037th,

in good agreement with Eq. (5.14). For completeness we also report our result at NLO for
the I = 2 isoscalar scattering length:

a2
0 = −0.0424 ± 0.0012 . (5.15)

5For a given set of N independent measures xi with their errors σi, the (weighted) average is given by

x̄ =
(∑N

i=1 xi/σ
2
i

)
/
(∑N

i=1 1/σ2
i

)
and the standard deviation σ by 1/σ2 =

∑N
i=1 1/σ2

i .
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Figure 5.7: In this figure we show the values for the mass and width of the σ
resonance from different papers in the literature, as indicated in the plots. In
the first two panels, from left to right, the (dark gray) inner strip corresponds to
the interval covered by the weighted average whereas the (light gray) outer strip
is for the mean value, both given in Table 5.4. In the last panel, the rectangles
correspond to the aforementioned intervals in the Mσ–Γσ/2 plane. The references
are: A [116], B [117], C [391], D [390], E [123], F [389], G [A], and H refers to the
NLO determination of this work.

The last value fromKe4 decays of the NA48/2 Collaboration [366] is a2
0 = −0.0432±0.0086stat±

0.0034syst ± 0.0028th, whereas the precise determination of Ref. [297] gives a2
0 = −0.0444 ±

0.0010. At this point, it is worth stressing that our unitarized amplitudes with the kernels
calculated at NLO allow a good reproduction of the low energy behavior (Ke4 data and
scattering lengths) while keeping the agreement with the higher energy data.

The case of the σ mass and width is not so mild. In Fig. 5.7 one can see that the agreement
within errors of the different values with the weighted average starts at the level of (2 − 3)σ.
At this stage it is then preferable to take the mean of the different measures instead of the
weighted average. In this way we have:

Mσ = 458 ± 14 MeV ,

Γσ/2 = 261 ± 17 MeV . (5.16)

The resulting error is around 3 times bigger than that for the weighted average over the
different values considered. The different determinations agree within errors with the above



5. On the size and the nature of the σ meson 148

400

500

600

700

800

900

1000

1100

1200

0 100 200 300 400 500 600

M
σ

(M
eV

)

mπ (MeV)

Fu
IAM

LO
NLO

Dyn. n = 1
Dyn. n = 2
Que.n = 1
Que.n = 2

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Γ σ
/2

(M
eV

)

mπ (MeV)

IAM
LO

NLO

0

50

100

150

200

250

300

350

350 400 450 500 550 600

Γ σ
/
2

(M
eV

)

Mσ (MeV)

IAM
LO

NLO

(453−282i) MeV
(402−263i) MeV

(465−231i) MeV(440−238i) MeV

Figure 5.8: From top to bottom. First (second) panel: Mass (half width) of the
σ as a function of mπ. In the last panel we show the half-width as a function of
the mass of the σ while varying mπ. In the figures the (red) thinner and (blue)
thicker solid lines correspond to the LO and NLO results, respectively. In the
upper panel the (black) thin dot-dashed line represents the two-pion threshold,
2mπ. The larger circles in the last panel highlight the chiral limit and physical
case results, whereas the smaller circles represent 25 MeV steps in mπ, starting at
mπ = 50 MeV. The dashed, gray lines are the results of Ref. [154]. The squares in
the first panel correspond to the lattice QCD results of Ref. [392], while the rest
of points are taken from Ref. [153].

result, Eq. (5.16). It can be concluded that our present knowledge on the pole position of
the σ meson is quite precise, with the uncertainty of the order of few tens of MeV, lying in a
range much narrower than the values nowadays reported in the PDG.
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Figure 5.9: From left to right. In the first two panel we show sσ in units of the
pion mass squared as a function of mπ. The second panel shows in more detail
the region for mπ > 300 MeV. In the last panel g2

σ is depicted in the same units.
In the figure the (red) thinner solid lines are for the LO results, and the (blue)
thicker solid ones correspond to NLO. The solid lines correspond to the real part
of the quantity shown, whereas the dashed ones represent its imaginary part. We
indicate with arrows the points at which sσ = 4m2

π at LO and NLO.

5.3.4 Dependence with mπ of the σ meson mass and width

We can now study the evolution of the σ meson properties when the physical pion mass mπ

varies (e.g. by changing the current quark masses in QCD.) This is an interesting problem by
itself. It is also related to the form factor of the σ meson, Fσ(s), since dsσ/dm2

π and Fσ(0) are
proportional by the Feynman-Hellman theorem, as discussed below. At LO, the only changes
produced by varying m2

π are those occurring inside the kernel V2(s) and the loop function
G(s). At NLO, fπ varies with m2

π because of Eq. (1.289), and also the LECs because it follows
from Eq. (1.268) that:

l̄i
(
m2

π

)
= l̄i

(
m2

π, phys

)
− log

m2
π

m2
π, phys

. (5.17)

We can consider the subtraction constant a in the function G(s) as independent of mπ in view
of Eq. (5.10). With the above considerations one searches the σ pole position in the s-complex
plane, sσ, for different values of mπ, just as in the physical pion mass case. The coupling g2

σ



5. On the size and the nature of the σ meson 150

is also obtained by means of the Cauchy theorem.

Before discussing this evolution, it is useful to make some analytical derivations. Let us
consider the unitarized ππ amplitude, Eq. (5.3), as a function of both the Mandelstam variable
s and the pion mass squared, T (s,m2

π). In the second Riemann sheet it reads:

T (s,m2
π) =

V (s,m2
π)

1 + V (s,m2
π)GII(s,m2

π)
. (5.18)

This function has a Laurent series around sσ expressed in Eq. (5.13). Taking the derivative
of T (s,m2

π) with respect to m2
π in both sides of Eq. (5.13), and attending to the double-pole

terms, one obtains:

ṡσ(m2
π) = − g2

σ(m2
π)

V (sσ,m2
π)2

(
V̇ (sσ,m2

π) − V (sσ,m2
π)2ĠII(sσ,m2

π)
)

, (5.19)

where the dot denotes derivative with respect to m2
π. In the previous equation we have taken

into account that Eq. (5.18) requires that GII(sσ) = −1/V (sσ) at the pole position sσ.

Analogously, since gσ(m2
π)2 is minus the residue of the pole of the amplitude in the s

variable, one gets:

g2
σ(m2

π) =
V (sσ,m2

π)2

V ′(sσ,m2
π) − V (sσ,m2

π)2G′
II(sσ,m2

π)
, (5.20)

where the prime denotes a derivative with respect to the s variable. One should replace
GII(sσ,m2

π) by G(sσ,m2
π) (the function in the physical Riemann sheet) in Eqs. (5.19) and

(5.20) for the case when the σ pole becomes a bound state. From Eqs. (5.19) and (5.20),
given the knowledge of sσ and g2

σ in the physical case, the evolution of the pion pole and the
coupling with m2

π could be studied directly. We have checked that the numerical results are
the same as those obtained by looking for the pole in the complex plane for different pion
masses, as explained above.

The main features of the evolution of the σ meson with mπ can be grasped by the inspection
of Figs. 5.8 and 5.9. In Fig. 5.8 we show

√
sσ as a function of mπ, so that, Mσ is shown is

the upper plane, Γσ/2 in the middle one and the plane Mσ–Γσ/2 in the panel on the bottom.
The (red) thinner solid lines originate from the LO calculation, V = V2, and the (blue)
thicker solid ones from the NLO results, V = V2 + V4, Eq. (5.6). For the physical situation
(mπ ≃ 140 MeV), we have the case just described, that is, the σ meson is seen as a pole
in the unphysical Riemann sheet. As we increase mπ, the imaginary part of

√
sσ decreases,

becoming zero at mπ ≃ 310 MeV for LO and at mπ ≃ 330 MeV for NLO.6

In Fig. 5.9 we show sσ in units of the pion mass squared in the first and second panels
from left to right. In the latter the scale of the ordinate axis changes and is restricted to

6At this point another pole (not shown in the figures) starts to appear below the σ one. This is due to

the appearance of two real solutions for the equation 1 + V (s)G(s) = 0, since the imaginary part of sσ is

zero in this region. There is no need to consider further this pole since, irrespectively of whether it lies in the

same Riemann sheet than the higher pole, the effects of the latter overwhelmingly dominate over those of the

former. For smaller mπ, since the solutions are not real, the σ corresponds to two complex conjugated values.
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values slightly slower than 4m2
π, so that one can appreciate the evolution of the real part of

sσ and distinguish it from the line sσ = 4m2
π (which is difficult to realize from the first panel

for mπ > 300 MeV.) In the last panel we show g2
σ in the same units for varying mπ. For all

the panels the solid (dashed) lines are for the real (imaginary) part, and the thicker (thinner)
lines correspond to NLO (LO) results. Notice that both for LO and NLO, g2

σ diverges at the
point where sσ becomes purely real. Approaching this point from lower values of mπ, Im g2

σ

diverges, whereas, approaching it from higher values of mπ then Re g2
σ is the one that diverges.

This can be understood from the behavior of the derivative of sσ, that is not defined precisely
at this point, and in view of Eq. (5.19), where it is seen that ṡσ ∝ g2

σ.

For even larger values of mπ (mπ ≃ 370 MeV at LO and mπ ≃ 480 MeV at NLO), sσ

osculates the 2π threshold, while standing below it, and changes from the unphysical Riemann
sheet to the physical one, becoming a bound state. Since sσ ≃ 4m2

π close to this point, the
binding energy is small, and so is the coupling, becoming exactly zero when sσ = 4m2

π. These
points are indicated with arrows in Fig. 5.9. This behavior can be shown analytically. From
Eq. (5.20), one deduces that for sσ ≃ 4m2

π,

g2
σ = −η 64πmπ

√
|sσ − 4m2

π| , (5.21)

with η = +1 for the unphysical Riemann sheet (at the left of this point) and η = −1 for the
physical Riemann sheet (at the right.) Therefore, g2

σ = 0 for sσ = 4m2
π, as indicated by the

arrows in the rightmost panel of Fig. 5.9. However, it is worth noticing that from Eq. (5.21)
it follows that g2

σ/
√

|sσ/4 −m2
π| ≡ g2

σ/|pσ| is finite. On the other hand, the fact that the
pole changes from one Riemann sheet to the other in a continuous way can be understood in
terms of Eqs. (5.11) and (5.12). The difference between the G(s) function calculated in the
two Riemann sheets is given by a piece proportional to σ(sσ) =

√
1 − 4m2

π/sσ that vanishes
for sσ = 4m2

π. At this point, where the σ is a zero bound state, one also has an infinite value
for the scattering length.

The mere existence of this critical point can be examined analytically. For s = 4m2
π, the

function G(s) can be written as:

G(s = 4m2
π) =

a+ log m2
π

µ2

16π2
≡

log m2
π

µ2
a

16π2
, (5.22)

with µ2
a = e−aµ2 a new scale. If we concentrate on the simpler case of LO, V (4m2

π) = 7m2
π/2f

2
π ,

the equation for finding a pole at s = 4m2
π, V −1 +G = 0, can be cast as f(x) = 0, with

f(x) = 1 + αx log x , (5.23)

where

x = m2
π/µ

2
a (5.24)

and
α = 7µ2

a/(32π2f 2
π) > 0 . (5.25)

Since α > 0 a zero of the f(x) function is only possible for 0 6 x 6 1. Actually two zeros
of this function exists if the value of the function at its minimum x0 = e−1 is negative (see



5. On the size and the nature of the σ meson 152

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f(
x)

x

a ≥ a⋆

a ≤ a⋆

x = x0

Figure 5.10: Representation of the function f(x), Eq. (5.23), for two values of
a, a > a⋆ (upper line) and a < a⋆ (bottom line). The variable x is defined in
Eq. (5.24).

Fig. 5.10.) This condition in terms of the variable a requires that the latter is smaller than
the critical value a⋆,

a⋆ = −1 + log
7µ2

32π2f 2
π

. (5.26)

If this is the case there is a zero for 0 < x < x0 and another one for x0 < x < 1. For our
value of the renormalization scale, µ = 770 MeV, a⋆ ≃ −0.6, so that the fitted value a ≃ −1.4
given in Table 5.1 is much smaller than a⋆. We also have that our value for x0 corresponds
to mπ ≃ 900 MeV, then a pole with sσ = 4m2

π exists for 0 < mπ < 900 MeV. The solution of
Eq. (5.23) for the value of a fitted gives that this pole is located at mπ ≃ 370 MeV, as stated
above and indicated by the left most arrow in the panels of Fig. 5.9.

For the NLO case, the situation becomes somewhat more involved, and the function f(x)
is now:

f(x) = 1 + α(x)x log x
(

1 + α(x)β(x)x
)

, (5.27)

where α(x) is defined as in Eq. (5.25), but at NLO one has to take into account its implicit
dependence on x ∝ m2

π through fπ. On the other hand, β(x) is defined as

β(x) =
40
147

L− 2
7

log x ,

L = l̄p1 + 2l̄p2 − 3
8
l̄p3 +

21
10
l̄p4 +

21
8

+
189
40

log xp , (5.28)

where l̄pi ≡ l̄i(m2
π,phys) corresponds to the LECs calculated at the physical pion mass and

xp = m2
π,phys/µ

2
a . (5.29)

For the values collected in Table 5.1 we find that sσ = 4m2
π for mπ ≃ 480 MeV. Nevertheless,

this value is quite sensitive to the LECs, and it should be taken merely as indicative (for some
values of the LECs not far from the fitted ones the change from virtual to bound state does
not occur at all.) This sensitivity is illustrated by the error band in Figs. 5.8 and 5.9.
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In Fig. 5.8 our results on the pion mass dependence of the σ pole position, partially
presented in Ref. [v], are compared with other works. The (gray) dashed line, denoted by
IAM, gives the results of Ref. [154] in the framework of the IAM. The points shown come from
the lattice QCD studies of Refs. [153,392]. Interestingly, we find a remarkably good agreement
with the curve from the IAM results [154] for mπ . 400 MeV. As stated by the authors, the
point where sσ = 4m2

π, and thus the σ meson becomes a bound state, is mπ ≃ 460 MeV when
they employed the NLO ChPT amplitudes [393], whereas mπ ≃ 290–350 MeV when the N2LO
ChPT amplitudes were used. We show in Fig. 5.8 the curves of Ref. [154] corresponding to
this latter case.

A lattice QCD search of light scalar tetraquarks with JP C = 0++ (we focus here on the
I = 0 results) is performed in Ref. [153]. Along with the lowest π(p)π(−p) scattering state,
an additional lighter state is found. For the dynamical simulations of Ref. [153] the former
state is denoted in Fig. 5.8 with n = 1 (green filled circles) and the latter one with n = 2
(pink filled triangles). For the quenched simulations we use the (green) empty circles and the
(purple) empty triangles, in the same order as before.7 The points with n = 1 and 2 overlap
at each pion mass, and the quantitative agreement with our curves is satisfactory. However,
both our curves and the lattice QCD results of Ref. [153] do not agree with most of the points
of the lattice QCD calculation of Ref. [392] and, in addition, the tendency of the points is
qualitatively different to that for our results and those of Ref. [153].

For larger values of mπ we obtain values for the σ meson mass, both at LO and NLO,
that remain below but always close to the ππ threshold, in agreement with the lattice QCD
results of Ref. [153]. Note that this is not the case for the IAM calculation of Ref. [154] for
mπ & 400 MeV. The fact that the σ meson follows so closely the threshold for higher values
of mπ, both according to our calculation and to the lattice QCD calculation of Ref. [153],
clearly indicates that for such masses it is dynamically generated from the ππ interactions.
We elaborate further on the nature of the σ resonance below. However, one should keep in
mind that the σ meson becomes an anti-bound or virtual state between those pion masses in
which it has zero width and has not crossed to the physical Riemann sheet yet. In the bound
state case, an additional state appears in the energy levels spectrum in the box, whereas an
anti-bound state does not. In order to discern the latter situation one should look at other
computable quantities, such as the sign of the I = 0 S-wave ππ scattering length.

It is also interesting to study the chiral limit, mπ → 0. As can be seen in Fig. 5.9,
sσ/m

2
π → ∞, because sσ remains finite in this limit. Indeed, the values calculated for sσ near

the chiral limit behave as (for mπ 6 150 MeV),

sσ(m2
π) = sσ,χ + am2

π + bm2
π log

m2
π

M2
π,phys

, (5.30)

with the values of the σ pole position in the chiral limit given by √
sσ,χ = 453 − i 282 MeV

(LO) and √
sσ,χ = 402 − i 263 MeV (NLO), see Fig. 5.8.

7However, we must also point out that the lattice QCD simulations are performed for each pion mass at

a single volume and lattice spacing, so the continuum and infinite volume values of the σ meson mass in the

bound state case may differ from those values.
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H(q)

π(p1)

π(p2)

π(p3)

π(p4)

Figure 5.11: Kinematics of the ππ scattering process in the presence of a scalar
source, π(p1)π(p2)H(q) → π(p3)π(p4). Pions correspond to the solid lines and the
scalar source to the wavy one. The gray blob indicates the interactions involved.

5.4 The scalar form factor of the σ meson

We turn now our attention to the calculation of the scalar form factor of the σ meson, that is,
the interaction of the σ resonance with a scalar source (denoted in the following by H.) As
an intermediate step we calculate first the scattering of two pions in the presence of a scalar
source, from which we extract the scalar form factor of the σ. This can be done because the
σ originates as a pole in the interaction of a scalar isoscalar pair of pions, as discussed in
Sec. 5.3. We start by considering in Subsec. 5.4.1 the kinematics of the ππH → ππ reaction,
which is somewhat more complicated than the standard kinematics of a two-body reaction.
In Subsec. 5.4.2, we discuss the one-loop calculation of the amplitude ππH → ππ from the
chiral Lagrangians of Sec. 5.2. In terms of this amplitude one can derive the scalar form factor
of the σ meson, as performed in Subsec. 5.4.3. This is accomplished by taking into account
pion rescattering, similarly as done above for ππ scattering, with some modifications that are
carefully examined.

5.4.1 Kinematics

We are interested in pion-pion scattering with a scalar source, π(p1)+π(p2)+H(q) → π(p3)+
π(p4), Fig. 5.11. The overall center-of-mass frame, CM, is the same as the rest frame of
the final pions, while that corresponding to the initial ones is denoted by CMB. Due to the
presence of the scalar source CMB does not coincide with CM. In the CM one has

p3 =

(√
s

2
, +p

)
,

p4 =

(√
s

2
, −p

)
,

p2 =
s

4
−m2

π , (5.31)

and

p1 + p2 = −q

p0
1 + p0

2 =
√
s− q0

q ≡ (q0, q) . (5.32)
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θ

θ̃

φ̃
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p̃

p

x̂

ŷ

ẑ

q

Figure 5.12: The unit three-momenta in terms of the polar and azimuthal angles.

We denote by s and s′ the invariant masses squared for the final and initial pions, in order.
At the end of the calculation, the limit s, s′ → sσ is taken. It follows that

(p1 + p2)2 = s′ =
(√

s− q0
)2 − q 2 = s+ q2 − 2q0

√
s , (5.33)

and then,

q0 =
s− s′ + q2

2
√
s

,

q2 =
(s+ s′ − q2)2

4s
− s′ . (5.34)

Analogously, one has in CMB:

p1 =

(√
s′

2
, +p̃

)
,

p2 =

(√
s′

2
, −p̃

)
,

p̃2 =
s′

4
−m2

π ,

q̃0 =
s− s′ − q2

2
√
s′ ,

q̃2 =
(s+ s′ − q2)2

4s′ − s . (5.35)

In the following quantities with a tilde are expressed in CMB. Notice that p̃ is the three-
momentum of the first pion in CMB, while p refers to the three-momentum of the third pion
in CM.
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The final (initial) two-pion states are projected into S-wave in CM (CMB) because the σ
resonance is defined as a pole in the second Riemann sheet of the ππ isoscalar S-wave in CM
(CMB). The unit three-momenta (indicated with a hat) are given in terms of the polar and
azimuthal angles (see Fig. 5.12) as:

p̂ = (sin θ cosφ, sin θ sinφ, cos θ) ,
ˆ̃p =

(
sin θ̃ cos φ̃, sin θ̃ sin φ̃, cos θ̃

)
,

q̂ = (0, 0, 1) , (5.36)

where we have chosen the z-axis to be the direction pointed by q̂. We now work out the
Lorentz transformation from CMB to CM:

(p1 + p2)CMB =
(√

s′,~0
)

,

(p1 + p2)CM =
(√

s− q0, −q
)

= (
s+ s′ − q2

2
√
s

, −q ) . (5.37)

The transformation reads:

s+ s′ − q2

2
√
s

= γ
√
s′ ,

−q = −γ
√
s′v . (5.38)

It follows then that γ = 1/
√

1 − v2 and v are

γ =
s+ s′ − q2

2
√
s
√
s′ , (5.39)

v =
q

γ
√
s′ =

2
√
s

s+ s′ − q2
q . (5.40)

We further define the four-momenta Σ and ∆ given by

Σ ≡ (p1 + p2) ,

∆ ≡ (p1 − p2) . (5.41)

In the CM

Σ =
(√

s− q0, −q
)

. (5.42)

The momentum transfer ∆ has a simple expression in CMB where it is given by ∆ = (0, 2p̃).
We then perform its Lorentz transformation to CM, with the result

∆0 = −2
q · p̃√
s′ ,

∆ = 2p̃ + 2 (γ − 1) |p̃| (p̂ · q̂) q̂ . (5.43)

The problem has six independent Lorentz invariant kinematical variables.8 We define, in
analogy with two body scattering, the following six alike Mandelstam variables,

s = (p3 + p4)2 ,

8One the five four-momenta involved in the reaction is fixed by energy-momentum conservation. From the

other four ones we can construct 6 independent scalar products. Notice that p2
1 = p2

2 = p2
3 = m2

π and that q2

can be derived from Eq. (5.45) in terms of other Lorentz invariants.
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s′ = (p1 + p2)2 ,

t = (p1 − p3)2 ,

t′ = (p2 − p4)2 ,

u = (p1 − p4)2 ,

u′ = (p2 − p3)2 . (5.44)

These variables fulfill the relationship

s+ t+ u+ s′ + t′ + u′ = q2 + 8m2
π , (5.45)

which is the analogous one to s+ t+u = 4m2
π valid for two-pion scattering, Eq. (5.1). Though

q2 and the variables in Eq. (5.44) are not independent because of Eq. (5.45), it is convenient
to write the different amplitudes ππH → ππ in terms of all of them, given the symmetries
present in the calculation.

In virtue of the previously worked Lorentz transformation, Eq. (5.40), we have the four-
momenta properly defined in CM in terms of the key variables s, s′, q2 and the polar and
azimuthal angles in the two-pion center of mass frames (the Lorentz invariants only depend
on the difference between the azimuthal angles, see Eq. (5.47) below.) It is convenient to
express p1 = (Σ + ∆)/2 and p2 = (Σ − ∆)/2, with Σ and ∆ given in CM by Eqs. (5.42) and
(5.43). In terms of this set of variables, the Lorentz invariants of Eq. (5.44) are given by

t = 2m2
π − 2 (α+ A+B + C) ,

t′ = 2m2
π − 2 (α− A−B + C) ,

u = 2m2
π − 2 (α+ A−B − C) ,

u′ = 2m2
π − 2 (α− A+B − C) , (5.46)

where

α =
1
2

Σ0 · p0
3,4 =

1
8

(s+ s′ − q2) ,

A =
1
2

∆0 · p0
3,4 = −1

2
|q | |p̃|

√
s√
s′ cos θ̃ ,

B = −1
2
~Σ · p = +

1
2

|q | |p| cos θ , (5.47)

C = −1
2
~∆ · p = −|p||p̃|

(
p̂ · ˆ̃p +

(
√
s−

√
s′)2 − q2

2
√
s
√
s′ cos θ cos θ̃

)
.

In the previous equation the five kinematical variables, s, s′, q2, cos θ, cos θ̃ are used
together with the scalar product

p̂ · ˆ̃p = sin θ sin θ̃ cos(φ− φ̃) + cos θ cos θ̃ . (5.48)

In terms of the variables in Eq. (5.44) one can express the inverses of several pion propa-
gators that appear in many Feynman diagrams that contain the scalar source attached to an
external pion leg, cf. diagram (a.2) of Fig. 5.13. It results:

D1 = (q + p1)2 −m2
π = s + t′ + u′ − 4m2

π ,
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D2 = (q + p2)2 −m2
π = s + t + u − 4m2

π ,

D3 = (q − p3)2 −m2
π = s′ + t′ + u − 4m2

π ,

D4 = (q − p4)2 −m2
π = s′ + t + u′ − 4m2

π . (5.49)

Because of Eqs. (5.47), the angular dependence of these inverse propagators is rather simple:
D1 and D2 depend just on cos θ̃, while D3 and D4 do on cos θ. The propagating pion can
become on-shell for certain angles, giving rise to a pole in the propagators. These poles, when
the S-wave angular projections are performed, result in logarithmic divergences. In particular,
there is always a pole for q2 → 0. We treat this issue later on.

5.4.2 The ππH → ππ scattering amplitude

To determine the Feynman diagrams required for the ππ scattering in the presence of a scalar
source up to O(p4) in ChPT it is useful to have in mind first those diagrams of plain ππ
scattering in Sec. 5.3, Fig. 5.1. Now, one external scalar source has to be added in all the
possible ways to those diagrams. As deduced from the Lagrangians L2 and L4, Eqs. (1.257),
the scalar source can couple to any even number of pions. In Fig. 5.13 we show the diagrams
that must be calculated at the one-loop level, where the external scalar source is indicated by
a wiggly line. The LO diagrams correspond to (a.1) and (a.2).9 Diagrams (a.2), (e.1) and (f.1)
can be handled together because their sum corresponds to taking the full pion propagator in
between the external source and the four-pion vertex, Eqs. (1.282), (1.283) and (1.288). In
addition, all the diagrams on the bottom line of Fig. 5.13, namely, (ẽ.1)–(̃f.3), correspond to
the wave function renormalization of the LO ones. Both issues are derived to NLO from the
pion self-energy diagrams, Fig. 1.6, Eq. (1.288). Once the the renormalization of the pion
propagator and the the wave function renormalization are taken into account, as well as the
rest of diagrams diagrams in Fig. 5.13, one has the basic topologies shown in Fig. 5.14.

Compared with ππ scattering the presence of the c-number external scalar source H com-
plicates considerably the simple expressions for the former [18]. The calculation for each of
the diagrams in Fig. 5.14 is given in Appendix C. Specifically, we calculate the processes
π0(p1)π0(p2)H(q) → π0(p3)π0(p4) and π0(p1)π0(p2)H(q) → π+(p3)π−(p4), with the former
denoted by Tnn and the latter by Tnc. These two processes are considered in order to iso-
late the pion pairs with definite isospin (I) by taking the appropriate linear combinations.
The standard decomposition of the π0π0 and π+π− states in two-pion isospin definite states,
|ππ(II3)〉, being I3 the third-component of isospin, is

|π0π0〉 =

√
2
3

|ππ(20)〉 −
√

1
3

|ππ(00)〉 ,

|π+π−〉 = −
√

1
6

|ππ(20)〉 −
√

1
2

|ππ(10)〉 −
√

1
3

|ππ(00)〉 ,

where we have taken into account that |π+〉 = −|π; I = 1 I3 = −1〉, as follows from the
definition of the π+ field, Eq. (1.260). Because of isospin conservation (the scalar source H(q)

9Of course, the scalar source can be attached to any of the pion legs but for conciseness we draw explicitly

the attachment to only one. This should be understood in the following.
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(a.1) (a.2) (b.1) (b.2)

(f.3)

(c.1) (c.2)

(ẽ.1) (̃e.2) (̃e.3) (f̃.1) (f̃.2) (f̃.3)

(c.3)

(d.2) (d.3)(d.1)(f.2)(f.1)(e.2)(e.1)

Figure 5.13: Feynman diagrams for the ππ scattering amplitude in the presence
of a scalar source, ππH → ππ, at one-loop order in ChPT.

I II III IV V

VI VII VIII IX X

XI XII XIII

Figure 5.14: Final set of Feynman diagrams for the ππ scattering in the presence
of a scalar source, ππH → ππ, at O(p4) in ChPT omitting the pion propaga-
tor dressing and wave function renormalization of the leading order diagrams in
Fig. 5.13.

is isoscalar), the Wigner-Eckart theorem implies

〈π0π0|S|π0π0 s〉 = +
2
3

〈ππ(20)|S|ππ(20)H〉

+
1
3

〈ππ(00)|S|ππ(00)H〉 ,

〈π+π−|S|π0π0 s〉 = − 1
3

〈ππ(20)|S|ππ(20)H〉

+
1
3

〈ππ(00)|S|ππ(00)H〉 , (5.50)

with S the S-matrix. From this equation we can isolate the purely I = 0 matrix element,
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⇒

W(s, s′, q2)

1
1+ V(s′)G(s′)

1
1+ V(s)G(s)

gσ gσFσ(q2)

Figure 5.15: External scalar source coupled to a double σ pole in the ππH → ππ
process. The σ pole is originated by the resummation of pion re-scattering, as
indicated in the left diagram by the iteration of the unitarity two-point function.

A(s, s′, q2, θ, θ̃,φ, φ̃), corresponding to

A(s, s′, q2, θ, θ̃,φ, φ̃) ≡ 〈ππ(00)|S|ππ(00)H〉 . (5.51)

From Eq. (5.50), we have:

A(s, s′, q2, θ, θ̃,φ, φ̃) = 〈π0π0|S|π0π0 s〉 + 2〈π+π−|S|π0π0 s〉
= Tnn + 2Tnc . (5.52)

We are interested in this matrix element because the σ is isoscalar.

The σ is an S-wave resonance so that it is also required the S-wave angular projection of
the initial and final isoscalar pion pairs. This is straightforward for the final pions because
the CM coincides with its own rest frame, with the result:

|ππ; 00〉34 ≡ 1
4π

∫
dp̂ |π(p3)π(p4)(00)〉 . (5.53)

Regarding the initial pair of pions, its state is defined in CMB analogously as in the previous
expression. One has still to perform the Lorentz boost to the CM frame so that

|ππ; 00〉12 ≡ U(v)
1

4π

∫
dˆ̃p |π(

√
s′

2
, p̃)π(

√
s′

2
, −p̃)(00)〉 , (5.54)

where U(v) is the Lorentz boost operator from CMB to CM, with the velocity v given in
Eq. (5.40). When acting on the pion states (which have zero spin) the only effect is the
transformation of the four-momenta from CMB to CM. Then, we can also write Eq. (5.54) as

|ππ; 00〉12 =
1

4π

∫
dˆ̃p |π(p1(p̃))π(p2(p̃))(00)〉 , (5.55)

where p1 and p2 are written in terms of the four-momenta in CMB. From Eq. (5.41), p1 =
(Σ + ∆)/2, p2 = (Σ − ∆)/2 with Σ and ∆ given in Eqs. (5.42) and (5.43), in order, as a
function of the CMB kinematical variables.

Employing the states projected in S-wave, Eqs. (5.53) and (5.55), we are then ready to
calculate the required matrix element in ChPT, ϕ(s, s′, q2):

ϕ(s, s′, q2) ≡ 1
32π2

∫
d2Ω A(s, s′, q2, θ, θ̃,φ, φ̃) . (5.56)
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Note that the extra factor 1/2 in Eq. (5.56) arises because of the unitary normalization, as
explained after Eq. (5.2). In the last equation, the double solid angle integration is

∫
d2Ω =

∫ 1

−1
d cos θ

∫ 1

−1
d cos θ̃

∫ 2π

0
dφ
∫ 2π

0
dφ̃ . (5.57)

One linear combination of azimuthal angles, φ and φ̃, is a spare variable, and then one in-
tegration in Eq. (5.57) is trivial. This is so because they appear just through the expres-
sion cos(φ − φ̃), as explained above, Eq. (5.47). In fact, for any periodic angular function,
f(γ) = f(γ + 2π), one has:

∫ 2π

0
dφ
∫ 2π

0
dφ̃ f(φ− φ̃) = 2π

∫ 2π

0
dγ f(γ) . (5.58)

5.4.3 Scalar form factor

Once the perturbative amplitude for the process ππH → ππ is calculated, we proceed by
taking into account pion rescattering, similarly as was done for ππ → ππ, see Eqs. (5.3)-
(5.6). The resulting amplitude is denoted by TS(s, s′, q2), and following the same unitarization
method as in Sec. 5.3 from Refs. [39,41], it can be written as:

TS(s, s′, q2) =
W (s, s′, q2)

(1 + V (s)G(s)) (1 + V (s′)G(s′))
. (5.59)

This is the analog to Eq. (5.3) but now for the process ππH → ππ, with the new kernel
W (s, s′, q2) instead of V (s) in Eq. (5.3). It is important to stress the presence of two factors
1 + V G in the denominator of Eq. (5.59). This is so because in ππH → ππ the presence of
the scalar source H(q) makes necessary to resum the unitarity loops corresponding to both
final and initial state interactions.

The kernel W (s, s′, q2) is obtained in a chiral expansion by matching Eq. (5.59) order by
order with its perturbative calculation. The chiral expansion of the kernel is

W = W2 +W4 + O(p6) , (5.60)

where we omit the dependence on the arguments s, s′ and q2 for easy reading. The subscripts
in Eq. (5.60) refer to the chiral order. Then, the amplitude Eq.(5.59) is expanded, as it was
done in Eq. (5.5), so that one has:

TS(s, s′, q2) =W2 +W4

−W2V2(s)G(s) −W2V2(s′)G(s′) + O(p6)

=ϕ2 + ϕ4 + O(p6) , (5.61)

where ϕn(s, s′, q2) is the O(pn) contribution to ϕ(s, s′, q2) defined in Eq. (5.56). The kernels
Wn(s, s′, q2) are determined by matching the above expressions order by order, so that:

W2(s, s′, q2) = ϕ2(s, s′, q2)

W4(s, s′, q2) = ϕ4(s, s′, q2) + ϕ2 ξ2(s)G(s) + ϕ2 ξ2(s′)G(s′) , (5.62)
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where it was used that V2(s) = ξ2(s), Eq. (5.6).

The form factor of the σ meson, Fσ(q2), can now be extracted from TS(s, s′, q2), employing
W = W2 + W4 in Eq. (5.59). For that one has to isolate the double σ pole present in
TS(s, s′, q2), as drawn on the right-hand side of Fig. 5.15. The double σ-pole contribution can
be written as:10

Fσ(q2) g2
σ

(s− sσ)(s′ − sσ)
= lim

s,s′→sσ

W (s, s′, q2)
(1 + V (s)G(s)) (1 + V (s′)G(s′))

(5.63)

Expanding the r.h.s. of the above equation around s, s′ → sσ, and equating the double-pole
term, the result is:

Fσ(q2) =
g2

σ

V (sσ)2
W (sσ, sσ, q2) . (5.64)

In determining the kernels Wn(s, s′, q2), we have followed the master guidelines of pure
ππ scattering procedure to take into account the rescattering of the pions given in Sec. 5.3.1.
However, some modifications are needed in our case because of the presence of the pion
propagators in the external pion legs attached to a scalar source, see Fig. 5.14. Let us focus, for
clearness, in the LO amplitudes ϕ2(s, s′, q2), corresponding to the diagrams I and II in Fig. 5.14
(the amplitudes are given in Appendix C). Before the angular projection in Eq. (5.56), one
has

A2(s, s′, q2, θ, θ̃,φ, φ̃) = −2B
f 2

π

(
1 − 2

4∑

i=1

si −m2
π/2

Di

)
, (5.65)

where the subscript in A refers to the chiral order, s1,2 = s′ and s3,4 = s, and the Di are the
inverse of the pion propagators given in Eq. (5.49). These contributions proportional to the
propagators stem from the piece of diagram II in which the on-shell part of the 4π vertex is
retained, so that the pion propagator is not cancelled out by an off-shell part from the 4π
vertex (cf. Ref. [33]). Considering, for conciseness, the case s = s′ (the one interesting for the
σ scalar form factor for which s = s′ = sσ), these propagators can be written as:

1
D1

=
1

q2

2
− 2|p||q| cos θ̃

, (5.66)

and similarly for the other Di. It should be noted that for certain values of q2 and s, these
propagators can have a pole in the variable cos θ̃. In particular, for q2 → 0 this is always the
case. Upon angular integration, this contribution gives rise to an imaginary part that diverges

as 1/
√

|q2| for q2 → 0−. As shown below, this limit is the one that matters in order to calculate
the quadratic scalar radius of the σ, but this divergence would lead to an undetermined value
for it. This fact is not acceptable and indicates a deficiency in the procedure followed up to
now.

Let us clarify this important technical point and the way it can be solved. The term of
the amplitude A2(s, s′, q2, θ, θ̃,φ, φ̃) in Eq. (5.65) that is proportional to the pion propagators,

10Because of invariance under temporal inversion the amplitudes for ππ → σ and σ → ππ are equal.
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⇒

Figure 5.16: String of unitary diagrams to be resummed when the scalar source is
attached to an external leg. On the right, the resulting single σ pole contribution
is depicted.

that we denote by A2,prop,11 can be written as:

A2,prop = ξ2(s)
4∑

i=1

4B
Di

, (5.67)

where we have taken into account that ξ2(s) = (s−m2
π/2)/f2

π . Once A2,prop is projected in the
S-waves for the initial and final pion pairs, Eq. (5.56), we end with the contribution W2,prop to
the kernel W (s, s, q2) in Eq. (5.59). Keeping in this resummation only terms up to one-loop,
and hence proportional to G(s), one obtains TS2,prop given by

TS2,prop = −2ξ2(s)G(s)W2,prop(s, s, q2) , (5.68)

where the expansion

1
(1 + ξ2(s)G(s))2

=
∞∑

n=0

(−1)n(n+ 1) (ξ2(s)G(s))n , (5.69)

is employed.12

However, the result of the one loop calculation in ChPT of the diagram VIII, once properly
projected in isospin and S-waves as discussed above, gives half of the amplitude in Eq. (5.68).
Whence Eq. (5.59) is double counting this kind of terms at the one-loop level. Analogously,
it can be seen in the n-loop terms of the resummation that the contribution of the kernel
proportional to W2,prop is counted n + 1 times, Eq. (5.69). This is so because we are missing
the proper combinatoric factors as an on-shell factorization scheme for unitarizing is employed.
Thus, instead of resumming these terms with 1/(1 + V G)2, they should be resummed with
just 1/(1 + V G) in order to give the proper diagram counting. Notice that in this case they
do not contribute to the double-pole term needed for Fσ(q2), as can be seen from Eqs. (5.63)
and Eq. (5.64). This is also shown schematically in Fig. 5.16. Had we considered an integral
equation for the resummation procedure instead, this kind of contributions would be integrated
giving terms proportional to the three-point function C0(s, s′, q2), in which the scalar source
interacts with intermediate pions, like the terms appearing in the diagram X of Fig. 5.14. This
is not a shortcoming of our approach, because this kind of diagrams are properly included
when the kernel W (s, s′, q2) is calculated at higher orders in the chiral counting, as can be
seen in Fig. 5.14. E.g. at the one-loop level calculation of W (s, s′, q2) one has the diagram X
of Fig. 5.14, that arises from iterating once the pion-propagator contributions at tree level.

11Recall that we are interested in the s = s′ case.
12Recall that V (s) in Eq. (5.59) is ξ2(s) because we are unitarizing a one-loop ChPT calculation for ππH →

ππ.
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From the previous discussion we remove the terms of the amplitudes with the external
scalar source coupled to initial or final asymptotic pion legs from the kernel W (s, s′, q2) in
Eq. (5.59), as they do not contribute to the scalar form factor of the σ. The latter requires the
coupling of the external scalar source to intermediate pions and vertices. Now the question
arises of how to remove properly the terms arising from the Feynman diagrams with the
scalar source attached to a pion propagator in an external pion leg. We cannot simply drop
these diagrams because the pion propagator between the source coupling and a pure pionic
vertex in an external pion leg may be cancelled by off-shell terms from the ππ interaction
vertex [33]. Indeed, such contributions are required in order to have results independent of
pion field redefinitions that mix diagrams with different number of pion propagators. Rather,
a procedure based on the full on-shell amplitude calculated in ChPT up to some order, which
is independent of the former redefinitions, must be given.

Let us consider the general case, and write these contributions as:

f(x, y)
x− x0

, (5.70)

where x = cos θ̃ and x0 = q2/(4|p||q|).13 Here we have collected in y the rest of the variables.
In order to subtract the pure pole contribution in Eq. (5.70) we subtract from the numerator
above the residue of the pole,

f(x, y) − f(x0, y)
x− x0

. (5.71)

In the LO case, in view of Eq. (5.65), this amounts to removing the whole term proportional to
the propagator, since it just depends on s (or s′) and not on θ̃ (or θ), that is, ∂f(x, y)/∂x = 0.
This subtraction procedure is independent of pion field redefinition because in f(x0, y) all
the pion lines are put on-shell so it cannot contain any off-shell remainder that could be
counterbalanced by other off-shell parts coming from other vertices, and giving rise to possible
pion field redefinition dependences.

With this procedure we are then ready to calculate Fσ(q2). For that we define the new
amplitude B(s, s′, q2, θ, θ̃,φ, φ̃) obtained from the original A(s, s′, q2, θ, θ̃,φ, φ̃), Eq. (5.52), by
removing the contributions with the scalar source attached to an external pion leg, following
the procedure in Eq. (5.71). In terms of the former we calculate its angular projection as in
Eq. (5.56), obtaining the new amplitude Φ(s, s′, q2):

Φ(s, s′, q2) =
1

32π2

∫
d2Ω B(s, s′, q2, θ, θ̃,φ, φ̃) . (5.72)

Then, the final expression for the interaction kernel, that we now denote by W(s, s′, q2), is
(cf. Eq. (5.62))

W = W2 + W4 ,

W2 = Φ2 ,

W4 = Φ4 + Φ2 ξ2(s)G(s) + Φ2 ξ2(s′)G(s′) , (5.73)

13We are considering again the case in which the scalar source is attached to π(p1), since the argument for

the the other cases is analogous.
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with the subscripts indicating the chiral order as usual.

The scalar form factor of the σ is finally given by

Fσ(q2) =
g2

σ

V (sσ)2
W(sσ, sσ, q2) . (5.74)

For definiteness let us explicitly give the expressions at LO and NLO for Fσ(q2) from the
previous equation:

F LO
σ (q2) =

(gLO
σ )2

V2(sσ)2
W2(sσ, sσ, q2) ,

FNLO
σ (q2) =

(gNLO
σ )2

(V2(sσ) + V4(sσ))2

×
(
W2(sσ, sσ, q2) + W4(sσ, sσ, q2)

)
. (5.75)

With

(
gLO

σ

)2
= lim

s→sLO
σ

(sLO
σ − s)

V2(s)
1 + V2(s)G(s)

,

(
gNLO

σ

)2
= lim

s→sNLO
σ

(sNLO
σ − s)

V2(s) + V4(s)
1 + (V2(s) + V4(s))G(s)

, (5.76)

where sLO
σ and sNLO

σ are the σ pole positions at LO and NLO, respectively, given in Table 5.3,
and for V2 and V4 see Eq. (5.6).

One technical detail is in order. The σ resonance is a pole in the second Riemann sheet
of ππ scattering for the physical pion mass. As we have seen in Sec. 5.3.4 when increasing
the pion mass above some value the σ meson becomes a bound state and moves into the first
Riemann sheet (the corresponding pion mass value is indicated by the arrows in Fig. 5.6).
Then, Eq. (5.74) has to be understood in the same Riemann sheet as the σ pole happens.
This requires the evaluation of W(s, s′, q2) in Eq. (5.73) either in the first or second Riemann,
according to the value taken for the pion mass.14

We now discuss the analytical continuation of the loop function C0(s, s, q2) to the second
Riemann sheet (we take from the beginning in the present discussion that s′ = s), where it is
denoted by C0;II(s, s, q2). The function C0(s, s′, q2) corresponds to the three-point one-loop
function of diagram X in Fig. 5.14 and its calculation is discussed in Appendix B. In order to
proceed with the analytical continuation we first evaluate the difference

∆C(s, q2) = C0(s+ iǫ, s+ iǫ, q2) − C0(s− iǫ, s− iǫ, q2) (5.77)

for s and q2 real and q2 < 4m2
π.15 The second Riemann sheet in ππ scattering is reached by

crossing the real s-axis above threshold, s > 4m2
π, and so we have to consider Eq. (5.77) for

14This qualification is only relevant for W4(s, s, q2).
15For q2 > 4m2

π the opening of the 2π production process introduces additional complications that we skip

now since we are mostly interested to values of q2 around zero, used below to calculate the quadratic scalar

radius of the σ resonance. The whole region q2 < 4m2
π is of interest and considered by us as well.
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Figure 5.17: The normalized scalar form factor of the σ meson calculated at NLO
for the physical case with

√
sσ given in Table 5.3. The range in q2 extends from

q2 ≃ −0.6 GeV2 ≃ −30m2
π up to q2 ≃ 0.08 GeV2 ≃ 4m2

π.

the same values of s. It turns out that a cut in s extends for s > 2m2
π +mπ

√
4m2

π − q2 ≡ src

for which ∆C(s, q2) is non-zero (the same expression for the cut also occurs for s < 2m2
π −

mπ

√
4m2

π − q2). When q2 → 0+ (this limits gives the same value for the quadratic scalar radius

as q2 → 0−) to cross the real axis for s > 4m2
π implies to consider ∆C(s, q2) given by the

mentioned cut for C0, s > src, corresponding to ∆bC0 in Eq. (B.17). Once this discontinuity
is evaluated we continue it analytically in s and q2 and subtract it to C0(s, s, q2) (calculated
in the first Riemann sheet), as done above to determine GII(s), Eq. (5.11). It results,

C0;II(s, q2) = C0(s, q2) − ∆C(s, q2) . (5.78)

Notice that for calculating W4, Eq. (5.73), it is not necessary to use GII(s) when the σ pole
remains in the second Riemann sheet. This is due to the fact that Φ4 contains the two-point
one-loop function B0(s), evaluated in Appendix B, so that the discontinuity when crossing
the unitarity cut above threshold cancels mutually between these two functions.

We show in Fig. 5.17 the modulus squared of Fσ(q2) normalized to Fσ(0) for q2 < 4m2
π

calculated at NLO with the physical value of mπ. We observe a monotonous increasing
function with q2. The LO result is just a constant because Φ2 is so and is not shown in the
figure (it would be just 1.)

5.5 Quadratic scalar radius of the σ meson and the Feynman–

Hellman theorem

The quadratic scalar radius of the σ resonance, 〈r2〉σ
s , is related to the scalar form factor of

the σ by a Taylor expansion around q2 = 0,

Fσ(q2) = Fσ(0) +
∂Fσ(q2)
∂q2

∣∣∣∣∣
q2=0

q2 + · · ·
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= Fσ(0)

(
1 +

q2

6
〈r2〉σ

s + · · ·
)

, (5.79)

where the ellipsis indicate higher powers of q2 in the Taylor expansion. In this way,

〈r2〉σ
s =

6
Fσ(0)

∂Fσ(q2)
∂q2

∣∣∣∣∣
q2=0

. (5.80)

Notice that, since the form factor reduces to a constant (independent of q2) at LO, we find
that 〈r2〉σ

s = 0 for this case, similarly as the case for the quadratic scalar radius of the pion [18]
within standard ChPT. Whence, the quadratic scalar radius must be calculated at least at
NLO. Before discussing the results for the physical pion mass case, we study the dependence
of 〈r2〉σ

s with the pion mass. We show the square root of the quadratic scalar radius of the

σ,
√

〈r2〉σ
s , in the upper panel of Fig. 5.18 as a function of mπ, with its real part given by

the (blue) solid line and its imaginary part by the (red) dashed line. It diverges in the chiral
limit (mπ = 0) and where the σ pole coincides with the two-pion threshold (indicated by
the rightmost arrow in Fig. 5.9.) The latter point corresponds to a zero energy bound state
and as such it must have infinite size, as dictated by elementary quantum mechanics. On
the other hand, in the chiral limit 〈r2〉σ

s also diverges as logmπ, similarly as the quadratic
scalar or vector radius of the pion [18], because the infinite size of the pion cloud around the
bosons. It is relevant to note that the imaginary part of this quantity, despite the σ meson
has a width larger than 200 MeV for pion masses up to around 300 MeV, as shown in Fig. 5.8,
is much smaller than its real part, which makes its interpretation easier. In the lower panel of
the same figure we depict the real (blue solid line) and imaginary (red dashed line) parts of
the quadratic scalar radius of the σ, 〈r2〉σ

s . It is notorious that in most of this range of pion
mass values the square root of 〈r2〉σ

s is around 0.5 fm quite independently of the width of the
σ meson.

For the physical pion mass we find the values

〈r2〉σ
s = (0.19 ± 0.02) − i (0.06 ± 0.02) fm2,

√
〈r2〉σ

s = (0.44 ± 0.03) − i (0.07 ± 0.03) fm , (5.81)

with the errors calculated as explained in Sec. 5.3. This value is almost the same as the
corresponding quadratic scalar radius for Kπ, 〈r2〉Kπ

s = 0.1806 ± 0.0049 fm2 [189], for which
the scalar resonance κ (or K∗

0(800)), tightly related to the σ resonance by SU(3) symmetry
[39, 49, 51, 53, 54], plays a leading role [43, 44]. For comparison, the quadratic scalar radius of
the pion is 〈r2〉π

s = 0.65 ± 0.05 fm2 [149].16 It is notorious that the value determined for the
scalar radius of the σ resonance is smaller than that for the pion. It is even smaller than the
measured quadratic electromagnetic pion radius, 〈r2〉π±

V = 0.439 ± 0.008 fm2 [394]. However,
〈r2〉σ

s is similar to the measured K± quadratic charge radius [150], 〈r2〉K±
V = 0.28 ± 0.07 fm2.

Scalar glueballs are expected to have even smaller sizes, 0.1–0.2 fm [395,396].

The value obtained for 〈r2〉σ
s in Eq. (5.81) implies that the two scalar isoscalar pions

generating the σ resonance are so tightly packed that the σ resonance becomes a compact state.

16A recent lattice QCD determination [385] gives 〈r2〉π
s = 0.617 ± 0.079 ± 0.066 fm2, or, adding the errors

in quadrature, 〈r2〉π
s = 0.6 ± 0.1 fm2, in good agreement with the value given in Ref. [149].
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Whether the two pairs of color singlet valence quarks q̄q in the two-pion state recombine giving
rise to combinations of other possible QCD states as e.g. q2q̄2 [49,50,54,58,126,267,397–405],
glueball, etc is beyond the scope of our study based on hadronic degrees of freedom. In this
respect the large NC evolution of the σ pole position [39, 136–139, 148] is enlightening and
clearly indicates that the σ resonance is not dominantly a glueball or a q̄q resonance. In
Refs. [138, 148] it was found that this large NC behavior is compatible with the fact that
this resonance owes its origin to ππ interactions becoming a ππ resonance. This large NC

behavior is also compatible with a (qq̄)2 state that fades away as two qq̄ mesons as expected
in the large NC limit [147]. This picture on the dynamical generation from ππ interactions
of the σ meson is also supported by the nontrivial simultaneous fulfillment [148] of semi-local
duality [148,406] and scalar, pseudoscalar spectral function sum rules [148], both for NC = 3
and varying NC .

On the other hand, for larger values of mπ, the σ meson closely follows the 2π threshold,
as demonstrated in the previous section, and its size is then large. Thus, in this range of pion
masses, the σ meson progressively becomes a two-pion molecule and its nature is then much

more clear and simple (for mπ & 400 MeV it follows from Fig. 5.18 that
√

〈r2〉σ
S > 1.5 fm).17

This can also be related to the behavior of the quantity g2dG/ds evaluated at s = sσ (and
G evaluated in the Riemann sheet in which the pole appears). This quantity is close to one
for a composite meson [215, 216, 411–414]. We have checked that for the large values of mπ

in which the σ meson is a bound state, we have g2dG/ds & 0.8, which points to a molecular
nature. For values of the pion mass close to the physical one, we have instead g2dG/ds ≃ 0.

Another interesting point is to consider the relation between Fσ(0) and the derivative of
the σ pole with respect to the quark mass. According to the Feynman-Hellmann theorem
[151,152], one has the relation:

dsσ

dm2
= −Fσ(0)

2B
. (5.82)

Notice that Fσ(0) is proportional to B and precisely their ratio is not ambiguous. On the
other hand, dsσ/dm

2
π is given in Eq. (5.19). Then we can write:

dsσ

dm2
= − g2

σ(m2
π)

V (sσ,m2
π)2

(
V̇ (sσ,m2

π) − V (sσ,m2
π)2ĠII(sσ,m2

π)
)

×dm2
π

dm2
. (5.83)

The dependence of m2
π on m2 is worked out up to O(m4

π) in Eq. (1.288) from where one
obtains:

dm2
π

dm2
= 1 − m2

π

16π2f 2
π

(
l̄3 − 1

2

)
+ O(m4

π) . (5.84)

We show our results for −Fσ(0)/2B at NLO and compare them with dsσ/dm
2 in Fig. 5.19, so

as to check Eq. (5.82). In the upper two panels we show the real part and in the bottom one the

17A similar value was obtained for the size of the Λ(1405) resonance in Ref. [407], which is also a resonance

that qualifies as dynamically generated form the meson-baryon interactions [35,41,47,408,409]. In Ref. [410]

the matter or scalar form factor for this resonance was studied.
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Figure 5.18: Top: the square root of the quadratic scalar radius of the σ as a
function of mπ is shown for 0 < mπ < 600 MeV. Bottom: the quadratic scalar
radius is represented in the range 0 < mπ < 350 MeV. In both panels, the (blue)
solid lines represent the real part of each quantity, whereas the (red) dashed line
is the imaginary part. The points over the curves represent our results for the
physical case with their statistical errors, Eq. (5.81). Due to the scale used they
cannot be appreciated in the upper panel.

imaginary part. The agreement is certainly remarkable for mπ . 300 MeV, at the level of just
a few percents of difference. This range of pion masses is highlighted in the second and third
panels, from top to bottom. Let us note that in Eq. (5.82) we are comparing two quantities
that are obtained from the chiral expansion of two different interacting kernels. The expansion
is not performed on the full amplitudes and this is why there is not a perfect agreement, as it
is the case in the standard perturbative calculations of ChPT [18, 19]. In our case the factor
V (sσ,m2

π)2 multiplying ĠII(sσ,m2
π) in the right-hand side of Eq. (5.83) is equal to (V2 +V4)2,

while Φ4 from Eq. (5.72) only contains V 2
2 , because it is a ChPT one-loop calculation at

O(p4).18 Thus, the differences correspond to higher order terms in the calculation of Fσ(0),
beyond the O(p4) or NLO calculation of the kernel W(s, s′, q2), Eq. (5.73), performed in the
present work.

Another point also worth mentioning is the fact that the left-hand side of Eq. (5.83) does

18Notice that the derivative with respect to m2
π of the function G(s,m2

π) is proportional to C0(s, s,m2
π).
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Figure 5.19: Feynman-Hellmann theorem: comparison between dsσ/dm
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−Fσ(0)/2B, Eq. (5.83), as a function of the pion mass. The (blue) thick solid
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2 at NLO, Eq. (5.19), whereas the (red) dot-dashed
lines are evaluated at LO, where dsσ/dm

2 = dsσ/dm
2
π. The (green) dashed lines

are −Fσ(0)/2B. From top to bottom, in the first panel the real part of the quanti-
ties are represented in the range mπ, 50 < mπ < 600 MeV. In the second panel, the
same is shown for 50 < mπ < 300 MeV. The bottom panel shows their imaginary
part.
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not involve any contribution with pion propagators in the external legs but the derivative acts
on the vertices and intermediate pion propagators in loop functions. This is also the case in
Fσ(0) once the pion propagators in the external legs are removed as explained in Sec. 5.4.3.

5.6 Summary and conclusions

In this Chapter we have discussed the nature of the σ resonance (nowadays also called f0(500)
in the PDG [48]) by evaluating its quadratic scalar radius, 〈r2〉σ

s . This allows one to have a
quantitative idea of the size of this resonance.

There are many studies since the nineties based on supplementing Chiral Perturbation
Theory with non-perturbative S-matrix methods, that clearly indicate a dynamical origin for
the σ resonance due to the isoscalar scalar ππ strong self interactions [22–24, 26, 28, 29, 33].
More recent studies based on the dependence with NC of the σ pole [39, 136–138, 144] also
corroborate that this resonance cannot be qualified as a purely q̄q or glueball, with the pole
trajectories compatible with the expectations for a meson-meson dynamically generated object
or a four-quark state. In the large NC limit it is well known that loops are suppressed so
that the ππ rescattering vanishes away and then the σ resonance pole disappears according
to Refs. [39, 138, 148]. These results have been strongly supported recently [148] by the
simultaneous fulfillment of semi-local duality [148,406] and scalar, pseudoscalar spectral sum
rules [148], both for NC = 3 and varying NC .

The next question is whether the two pions are loosely distributed, so that the σ meson
might be qualified as molecular or, on the contrary, they overlap each other giving rise to a
compact object of a size comparable or even smaller than that of its constituents. A proper way
to answer this question is to determine quantitatively the size of the σ resonance. For that we
calculate in this work the quadratic scalar radius of this resonance obtaining the value 〈r2〉σ

s =
(0.19 ± 0.02) − i (0.06 ± 0.02) fm2. Despite the σ has a large width the resulting value for the
quadratic scalar radius is almost a real quantity, which makes easier its physical interpretation.
This value is very close to the Kπ quadratic scalar radius, 〈r2〉Kπ

s = 0.1806±0.0049 fm2 [189],
similar to the measured K± quadratic charge radius [150], 〈r2〉K±

V = 0.28 ± 0.07 fm2, and
smaller than the quadratic scalar radius of the pion, 〈r2〉π

s = 0.65 ± 0.05 fm2 [149]. This
means that the σ is certainly a compact object. The square root of its quadratic scalar radius

is
√

〈r2〉σ
s = (0.44 ± 0.03) − i (0.07 ± 0.03) fm.

We have further tested our result for the size of the σ by considering the dependence of
〈r2〉σ

s on the pion mass. As mπ rises the σ meson mass follows the 2π threshold. This fact has
been recently observed in the lattice QCD calculation of Ref. [153], and was pointed out much
earlier in Refs. [39,53] as well as in the more recent work [154]. In such situation, with a small
binding energy, the expected size of the σ resonance should be definitely larger than that of
a hadron. We obtain a quadratic scalar radius that increases rapidly as soon as the width
of the σ meson tends to vanish, which for our present NLO fit occurs for pion masses above

≃ 330 MeV. In this way, already for pion masses around 370 MeV,
√

〈r2〉σ
s is larger than 1 fm

and diverges for mπ ≃ 470 MeV, precisely the value at which the σ resonance becomes a zero
binding energy bound state. In this case, a molecular or ππ bound state image is appropriate
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for the σ meson. For even higher pion masses, the binding energy is still small which gives rise
to large sizes for the σ. Nevertheless, we observe a steady (albeit weak) tendency to increase
the binding energy for higher pion masses so that its size tends to dismiss progressively, but
for the mass range explored in this work it is always & 1.5 fm. The clear tendency of the σ
resonance to follow the two-pion threshold is a manifest indication for this resonance being a
meson-meson dynamically generated one. For smaller pion masses between 50 and 300 MeV
the square root of the quadratic scalar radius of the σ meson is rather stable with a value
around 0.5 fm, independently of its width.

The value of the scalar form factor of the σ resonance at q2 = 0, Fσ(0), is related via the
Feynman-Hellmann theorem with the derivative of the σ pole position with respect to the
pion mass. Within uncertainties, we have checked the fulfillment of such relation.

We have studied ππ scattering in NLO SU(2) Unitary Chiral Perturbation Theory as
well. We obtain a good reproduction of ππ phase shifts for I = 0 and I = 2, and also for
lattice QCD results of the I = 2 scattering length a2

0 and fπ. We have offered a detailed
comparison between different precise determinations in the literature, including our present
calculation, of the σ meson mass and width, and of the threshold parameters a0

0, b
0
0. The

resulting average values are a0
0 = 0.220 ± 0.003 and b0

0m
2
π = 0.279 ± 0.003. For the σ meson

pole parameters we take the mean of the different values with the result Mσ = 458 ± 14 MeV
and Γσ/2 = 261 ± 17 MeV. Our own determinations obtained here at NLO in Unitary ChPT
are a0

0 = 0.219 ± 0.005, b0
0m

2
π = 0.281 ± 0.006, Mσ = 440 ± 10 MeV and Γσ/2 = 238 ± 10 MeV.
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6.1 Introduction

One of the aims in present lattice QCD calculations is the determination of the hadron spec-
trum and many efforts are devoted to this task [153, 239, 415–437]. A recent review on the
different methods used and results can be seen in [155]. Since one evaluates the spectrum for
particles in a finite box, one must use a link from this spectrum to the physical one in infinite
space. Sometimes, when it rarely happens, an energy level in a finite box rather independent
of the volume is taken as a proof that this is the energy of a state in the infinite volume
space. In other works the “avoided level crossing”, with lines of spectrum that get close to
each other and then separate, is usually taken as a signal of a resonance, but this criterion
has been shown insufficient for resonances with a large width [158,438,439]. A more accurate
method consists on the use of Lüscher’s approach, but this works for resonances with only
one decay channel. The method allows to reproduce the phase-shifts for the particles of this

173



6. Finite volume treatment of ππ scattering 174

decay channel starting from the discrete energy levels in the box [156, 157]. This method
has been recently simplified and improved in [158] by keeping the full relativistic two-body
propagator (Lüscher’s approach makes approximations on the real part, cf. Eqs. (6.30) and
(6.31) below). The work of [158] also extends the method to two or more coupled channels.
The extension to coupled channels has also been worked out in [440–442]. The work of [158]
presents an independent method, which is rather practical, and has been tested and proved
to work in realistic cases of likely lattice results. The method has been extended in [443]
to obtain finite volume results from the Jülich model for the meson-baryon interaction and
in [444] to study the interaction of the DK and ηDs system where the D∗

s0(2317) resonance
is dynamically generated from the interaction of these particles. The case of the κ resonance
in the Kπ channel is also addressed in [445] following the approach of Ref. [158]. It has also
been extended to the case of interaction of unstable particles in [446], to the study of the DN
interaction [447], the ππ interaction in the ρ channel [448] and to find strategies to determine
the two Λ(1405) states from lattice results [449].

In Ref. [158] the problem of getting phase-shifts and resonances from lattice QCD results
(“inverse problem”) using two coupled channels was addressed. Special attention was given
to the evaluation of errors and the precision needed on the lattice QCD calculations to obtain
phase-shifts and resonance properties with a desired accuracy. The derivation of the basic
formula of [158] is done using the method of the chiral unitary approach [42] to obtain the
scattering matrix from a potential. This method uses a dispersion relation for the inverse of
the amplitude, taking the imaginary part of T−1 in the physical region and using unitarity
in coupled channels [39, 41]. The method does not integrate explicitly over the left-hand
cut (LHC) singularity. Nevertheless, the latter might lead to interesting problems in finite
volume calculations because in field theory, loops in the t− or u−channel that contribute to
crossed cuts, are volume dependent. There is no problem to incorporate these extra terms into
the chiral unitary approach by putting them properly in the interaction kernel of the Bethe
Salpeter equation or N/D method [39, 138], or using the Inverse Amplitude Method (IAM)
[23, 25–28, 30]. However, the method of [158] to analyze lattice spectrum and obtain phase-
shifts explicitly relies upon having a kernel in the Bethe Salpeter equation which is volume
independent. The same handicap occurs in the use of the standard Lüscher approach, where
contributions from possible volume dependence in the potential are shown to be “exponentially
suppressed” in the box volume. Yet, there is no way, unless one knows precisely the source of
the volume dependent terms, to estimate these effects and determine for which volumes the
“exponentially suppressed” corrections have become smaller than a desired quantity. This is
however an important information in realistic calculations. The purpose of the work in this
Chapter is to address this problem in a practical case, the scattering of pions in S-wave. For
that we determine the strength of these volume dependent terms as a function of the size of
the box and the impact of these effects in the determination of the phase-shifts in the infinite
volume case.

The problem of ππ interaction in the lattice using the Lüscher approach has been studied
for the case of I = 2, where one has no coupled channels and is technically easier for lattice
calculations [374, 450, 451]. Along these lines in [452] a pioneer work is done of the problem
that we address here performing a perturbative calculation at threshold for the case of I = 2.
Our approach is technically different, non perturbative, can be used for scattering energies
and to evaluate phase shifts and is done for I = 0 and I = 2.
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We report here the results obtained in our paper, Ref. [D]. The contents of this Chapter
are as follows. After this introduction, we summarize in Sec. 6.2 the three models used to
evaluate ππ scattering in the infinite and finite volume case. We then follow by studying the
dependence on the lattice size of the box L of the resulting phase shifts in Sec. 6.3. Conclusions
are collected in Sec. 6.4.

6.2 The ππ scattering in the finite box

In this section we explain the three models that we are going to consider in the present work
to evaluate the ππ scattering within the chiral unitary approach: lowest order Bethe-Salpeter
(BS), N/D and IAM. The latter two provide contributions to the LHC of the scattering
amplitude while the BS does not. After summarizing the models for the infinite volume, we
explain for each of them how to evaluate the scattering in a box of finite size L. We study
the scalar channel up to total energies of about 800 MeV for both the I = 0 and I = 2 cases.
The former is relevant for the lattice QCD studies of σ (or f0(500) [48]) meson resonance,
while for the latter the LHC is more relevant (see below). Up to those energies the KK̄ and
ηη channels in the I = 0 case are negligible, hence, we deal here only with the ππ channel.
The 4π channel, although open at lower energies around 555 MeV, is also neglected. Their
effects were included in Chapter 3 (see Ref. [A]) and the resulting inelasticity was negligible
up to energies above 900 MeV. This extra intermediate state gives rise to L dependence that is
not exponentially suppressed but, since phenomenologically is negligible in the energy range
considered here, we do not expect any significant effects from this side. This channel was
also neglected in the previous study of ππ scattering at threshold in finite volume [452] and
its calculation is beyond our present aim. The 4π channel gives rise to a three-loop or O(p6)
contribution to the interaction kernel in ChPT, while here we restrict ourselves to the one-loop
or O(p4) calculation of the interaction kernel. Indeed, any other volume dependence effect
not considered by us in our present research is at least part of a two-loop calculation of the
interaction kernel in ChPT.

6.2.1 Lowest order Bethe-Salpeter approach

In the chiral unitary approach the scattering matrix can be given by the Bethe-Salpeter
equation in its factorized form [33]

T = [1 − V G]−1V = [V −1 −G]−1 , (6.1)

where V is the ππ potential, V = − 1
f2

π
(s − m2

2
) for I = 0 and V = 1

2f2
π
(s − 2m2) for I = 2,

which are obtained from the lowest order chiral Lagrangians [18], with m the pion mass and
fπ = 92.4 MeV. In Eq. (6.1) G is the loop function of two meson propagators, which is defined
as

G = i
∫ d4p

(2π)4

1
(P − p)2 −m2 + iǫ

1
p2 −m2 + iǫ

, (6.2)

with P the four-momentum of the global meson-meson system. This function has already
appeared in several of the preceeding chapters. Nonetheless, since it will be often refer-
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enced in the following, we include it here again. Note that Eq. (6.1) only has right-hand cut
(RHC), unlike the other two approaches discussed in the next subsections. We must note that,
throughout this Chapter, the amplitude has a different normalization convention with respect
to the one of the preceeding chapters. In particular, the amplitude here has an additional
minus sign, which, in turn, makes the chiral amplitudes to have the same additional minus
sign.

The loop function in Eq. (6.2) can be regularized either with dimensional regularization
or with a three-momentum cutoff. The connection between both methods was shown in
Refs. [30, 41]. In dimensional regularization1 the integral of Eq. (6.2), GD, is evaluated and
gives for the ππ system [41,453]:

GD(E) =
1

(4π)2



a(µ) + log

m2

µ2
+ σ log

σ + 1
σ − 1



 , (6.3)

where σ =
√

1 − 4m2

s
, s = E2, with E the energy of the system in the center of mass frame,

µ is a renormalization scale and a(µ) is a subtraction constant (note that only the combi-
nation a(µ) − log µ2 is the relevant degree of freedom, that is, there is only one independent
parameter).

The loop function G can also be regularized with a three momentum cutoff pmax and, after
the p0 integration is performed [33], it results

G(s) =
∫

|~p|<pmax

d3~p

(2π)3

1
ω(~p)

1
s− 4ω(~p)2 + iǫ

,

ω(~p) =
√
m2 + ~p 2 . (6.4)

Let us now address the modifications in order to evaluate the ππ scattering in a finite
box following the procedure explained in Ref. [158]. The main difference with respect to the
infinite volume case is that instead of integrating over the energy states of the continuum
with ~p being a continuous variable as in Eq. (6.4), one must sum over the discrete momenta
allowed in a finite box of side L with periodic boundary conditions. We then have to replace
G by G̃, where

G̃ =
1
L3

|~p|<pmax∑

~p

1
ω(~p)

1
s− 4ω(~p)2

,

~p =
2π
L
~n , ~n ∈ Z

3 (6.5)

1In our context we refer to the G function given in Eq. (6.3) as calculated in “dimensional regularization”.

Of course, with the latter procedure the result is infinite. The infinite is removed by the subtraction constant

a(µ). A more accurate formulation can be given in terms of dispersion relations, see Sec. 2.7 and references

therein.
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For the sake of comparison with the other models considered in the present work, where
dimensional regularization is always done, we use the procedure of [444] in order to write the
finite volume loop function G̃ in terms of the infinite volume one GD evaluated in dimensional
regularization:

G̃D = GD + lim
pmax→∞


 1
L3

pmax∑

~pi

I(~pi, s) −
∫

p<pmax

d3~p

(2π)3
I(~p, s)


 , (6.6)

where I(~p, s) is the integrand of Eq. (6.4),

I(~p, s) =
1

ω(~p)
1

s− 4ω(~p)2
. (6.7)

Note that G̃D of Eq. (6.6) depends on the subtraction constant a instead of the three-
momentum cutoff pmax. The dependence on the latter cancels in the difference between the
two terms in the square brackets of Eq. (6.6).

In the box the scattering matrix reads

T̃ =
1

V −1 − G̃D
. (6.8)

The eigenenergies of the box correspond to energies that produce poles in the T̃ matrix, which
corresponds to the condition G̃D(E) = V −1(E). Therefore for those values of the energies,
the T matrix for infinite volume can be obtained by

T (E) =
(
V −1(E) −GD(E)

)−1
=
(
G̃D(E) −GD(E)

)−1
. (6.9)

The amplitude is related to the phase-shifts by

T (E) = −8πE
p

1
cot δ − i

, (6.10)

where p = E
2

√
1 − 4m2

s
is the CM momentum.

Eq. (6.9) is nothing but Lüscher formula [156, 157] except that, as shown in Ref. [158],
Eq. (6.9) keeps all the terms of the relativistic two-body propagator, while Lüscher’s approach
neglects terms in Re I(p) which are exponentially suppressed in the physical region, but can
become sizable below threshold, or in other cases when small volumes are used or large energies
are involved.

We would like to make the following observation here. Let us consider Eq. (6.9) in the
cutoff regularization procedure. We would obtain

T (E) = (G̃−G)−1 (6.11)

with G and G̃ given by Eqs. (6.4) and (6.5) respectively. In the application to Quantum
Mechanics of Lüscher formalism, the cutoff would be playing the effect of a finite range.
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However, one should note that the difference G̃−G has a finite limit when the cutoff goes to
infinity and this is what the Lüscher formalism assumes. Note that the difference of the part
of the sum and integral from pmax to infinity goes rapidly to zero as pmax increases, leading
to terms exponentially suppressed in L. So, to make the limit of pmax infinite in Eq. (6.11)
is within the usual assumptions in the derivation of Lüscher formula and makes the results
cutoff independent. Then Eq. (6.11) in the limit of pmax → ∞ is exactly Lüscher formula,
up to the relativistic corrections that we have mentioned. On the other hand, in lattice
QCD calculations the information on pmax does not exist since the cutoff is implicitly infinite
and divergences of the theory are reabsorbed in some physical observable. In this sense a
rederivation of the improved Lüscher formula, Eq. (6.9), without invoking cutoffs is advisable
and this is done in [444] (Eqs. (11) to (17) of that paper), with the dimensional regularized
G functions. This is what we have used in Eq. (6.6) and throughout this Chapter.

6.2.2 Chiral amplitude at O(p4) in a finite volume

Both in the IAM and the N/D methods (explained below) the dependence with the finite
size of the box enters through the chiral amplitude A4(s, t,u), which is used to calculate the
partial waves at O(p4), denoted by T4. The Feynman diagrams involved in its calculation
were shown in Fig. 5.1, in Chapter 5 (since in the first part of Chapter 5 we dealt with
ππ scattering at NLO). This amplitude receives contributions from loop diagrams, whose
momentum integrals should be replaced by discrete sums over the allowed momenta in the
finite box. In particular, these contribution come from s–, t– and u–channel loop diagrams,
and also from tadpole diagrams. Note also that, as in Chapter 5, we write the amplitudes in
terms of the physical pion mass mπ and decay constant fπ, so that the NLO contributions
(tadpole loop-functions in the finite box) to them are included as O(p4) terms in the amplitude
T4. The O(p4) ππ scattering amplitude A4(s, t,u) can be generically written, both for I = 0
and I = 2, in terms of only two one–loop functions G and H:

A4(s, t,u) = PL + PHH(m2) + PG,sG(s) + PG,tG(t) + PG,uG(u) , (6.12)

where PX are polynomials of the Mandelstam variables. In particular, the LECs appear only
in PL. In the above equation, H and G(P 2) are the one– and two– point one loop functions2

respectively:

G(P 2) =
∫ d3~q

(2π)3

ω~q + ω~P −~q

2ω~q ω~P −~q

1
(P 0 − ω~q − ω~P −~q)(P

0 + ω~q + ω~P −~q)
, (6.13)

H =
∫ d3~q

(2π)3

1
2ω~q

, (6.14)

and P is the four–momentum entering the loop so that G(s), G(t) and G(u) in Eq. (6.12) arise
from the s–, t– and u–channel loops (6.13) with P 2 = s, t and u respectively. In dimensional
regularization and after the divergences and scale dependencies are absorbed in the LECs [18],
the loop functions then read

GR(P 2) =
1

16π2

(
−1 + σ(P 2)log

1 + σ(P 2)
1 − σ(P 2)

)
, (6.15)

2Recall that these functions were used in Chapter 5, with the notation A0 and B0. The notation in this

Chapter for these functions is the one used in the original paper, [D].
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with σ(P 2) =
√

1 − 4m2
π/P

2. On the other hand, because of the regularization approach

followed, we have HR = 0. The partial waves T4 are then obtained by projecting the I = 0 or
I = 2 amplitude A4 on angular momentum J .

The chiral amplitude in finite volume is calculated replacing T4(s) with T̃4(s), which is the
S-wave projection of the I = 0 or I = 2 ππ scattering amplitude in finite volume Ã4(s, t,u).
The latter is obtained from Eq. (6.12), but replacing the loop functions in Eqs. (6.13) and
(6.14) with their finite volume counterparts, G̃R and H̃R. Following again the procedure
in [444] (see also the discussion at the end of subsection 6.2.1), we obtain the finite volume
loop functions from the infinite volume ones as

G̃R(P ) = GR(P 2) + lim
qmax→∞


 1
L3

qmax∑

~qi

I(~qi,P ) −
∫

q<qmax

d3~q

(2π)3
I(~q,P )


 , (6.16)

H̃R = HR + lim
qmax→∞


 1
L3

qmax∑

qi

1
2ω~q

−
∫

q<qmax

d3~q

(2π)3

1
2ω~q


, (6.17)

where I(~q,P ) is the integrand of Eq. (6.13),

I(~q,P ) =
ω~q + ω~P −~q

2ω~q ω~P −~q

1
(P 0 − ω~q − ω~P −~q)(P

0 + ω~q + ω~P −~q)
. (6.18)

Note that the box breaks Lorentz symmetry and fixes the reference frame to the center of
mass frame of the initial pions. For this reason we have used P as the argument of G̃R in
Eq. (6.16) instead of P 2.

In the case of the s–channel loop, where ~P = 0 so that (P 0)2 = P 2 = s, we obtain G̃R(P )
as in Eqs. (6.6) and (6.7), but with GD replaced by GR. Note that G̃R(P ) in this case only

depends on P 2 = s. For the t–channel loop, where P 0 = 0 so that P 2 = −~P 2 = t, the
integrand I(~q,P ) reduces to

I(~q,P ) = − 1
2ω~q ω~P −~q (ω~q + ω~P −~q)

, (6.19)

but now, contrary to the s–channel case, G(P ) not only depends on P 2 = t, but also on
~P and its relative orientation respect to the cubic lattice of allowed momenta in the box,
{~qi}. In the end this translates into a dependence on the scattering angle θ, already present
in t = −2(s/4 − m2

π)(1 − cos θ), but also on the azimuthal angle φ, and this also happens
with the u–channel case. Thus, when projecting into S-wave, T (s) = 1

2

∫
d(cos θ)A(s, cos θ),

we should now also integrate on φ, T (s) = 1
4π

∫
dφ
∫
d(cos θ)A(s, cos θ,φ). Finally, H̃R can

be evaluated using the Poisson resummation formula (see e.g. [452]) and taking into account
that HR = 0 we obtain

H̃R =
mπ

4π2L

∑

06=~n∈Z3

1
|~n|K1(|~n|mπL), (6.20)

where K1 is the Bessel function.

The s–channel loops, though treated in different ways by the IAM and N/D methods,
are responsible for the right unitarity cut, and contain the most important L dependence
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of the amplitude. This L dependence coming from the unitarity cut is the one used by the
Lüscher/chiral unitary approach method to obtain the phase-shift from the energy levels in
a finite volume. However, the t– and u–channel loops (which give rise to the LHC when
projecting into partial waves) and the tadpoles, give an extra dependence on L (polarization
corrections in the terminology of Ref. [157]) that is neglected in the Lüscher/chiral unitary
approach method since it is exponentially suppressed.

6.2.3 The IAM approach

We consider now the elastic IAM [24–28], which we briefly review in this section and describe
how to extend it to consider scattering in a finite box.

The elastic IAM makes use of elastic unitarity and Chiral Perturbation Theory (ChPT) [18]
to evaluate a dispersion relation for the inverse of the ππ scattering partial wave of definite
isospin I and angular momentum J , T IJ (in the following we drop the superscript IJ to
simplify notation). The advantage of using the inverse of a partial wave stems from the fact
that its imaginary part is fixed by unitarity,

Im T = − σ

16π
|T |2 ⇒ Im T−1 =

σ

16π
. (6.21)

Thus, the RHC integral can be evaluated exactly in the elastic regime and the obtained
partial wave satisfies unitarity exactly. The partial wave amplitudes calculated in ChPT
cannot satisfy unitarity exactly since they are obtained in a perturbative expansion T =
T2 + T4 + O(p6), where T2 = O(p2) and T4 = O(p4) are the Leading Order and Next–to–
Leading Order contributions in the chiral expansion of T , respectively. However, unitarity is
satisfied in a perturbative way,

Im T2 = 0, Im T4 = − σ

16π
T 2

2 , · · · . (6.22)

These equations allow us to evaluate the dispersion relation and obtain a compact form for
the partial wave as we show below.

We write then a dispersion relation for an auxiliary function F ≡ T 2
2 /T , whose analytic

structure consists on a RHC (RC) from 4m2
π to ∞, a LHC from −∞ to 0, and possible poles

coming from zeros of T ,

F (s) = F (0) + F ′(0)s+ 1
2
F ′′(0)s2 +

s3

π

∫

RC
ds′ Im F (s′)

s′3(s′ − s)
+ LC(F ) + PC , (6.23)

where we have performed three subtractions to ensure convergence. In the above equation
LC(F ) stands for the integral over the left-hand cut, and PC stands for possible poles con-
tributions, which are present in the scalar waves due to the Adler zeros. Using Eqs. (6.21)
and (6.22) we can evaluate exactly in the RHC integral Im F = −Im T4, and obtain for the
RHC RC(F ) = −RC(T4). The subtraction constants can be evaluated with ChPT since
they only involve amplitudes or their derivatives evaluated at s = 0, F (0) ≃ T2(0) − T4(0),
F ′(0) ≃ T ′

2(0) − T ′
4(0), F ′′(0) ≃ −T ′′

4 (0). The LHC can be considered to be dominated by
its low energy part, since we have three subtractions, and it is also dumped by an extra
1/(s′ − s) when considering physical values of s. Then, we evaluate it using ChPT to obtain
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LC(F ) ≃ −LC(T4). The pole contribution is formally O(p6) and we neglect it (this causes
some technical problems in the subthreshold region around the Adler zeros which can be easily
solved, but they do not affect the description of scattering or resonances, for details see [282]).
Taking into account all the above considerations we arrive at

T 2
2 (s)
T (s)

≃ T2(0) + T ′
2(0)s− T4(0) − T ′

4(0)s− 1
2
T ′′

4 (0)s2

−RC(T4) − LC(T4) = T2(s) − T4(s) ,
(6.24)

where in the last step we have taken into account that T2(s) is just a first order polynomial
in s so that T2(s) = T2(0) + T ′

2(0)s, and that the remaining piece in the middle member of
Eq. (6.24) is a dispersion relation for −T4(s). Then one obtains the simple IAM formula,

T IAM =
T 2

2

T2 − T4

. (6.25)

This formula can be systematically extended to higher orders by evaluating the subtraction
constants and the LHC in the dispersion relation to higher orders. Note that the full one–loop
ChPT calculation is used, so the IAM partial waves depend on the chiral Low Energy Con-
stants (LECs), that absorb the loop divergences through their renormalization and depend on
a renormalization scale µ. Of course, this µ dependence is canceled out in physical observables.
In the case of ππ scattering there appear four LECs, denoted lri (µ), i = 1...4. These LECs
are not fixed from symmetry considerations and their value has to be determined from exper-
iment. For the IAM calculations here we take the values used in [393]: 103lr1 = −3.7 ± 0.2,
103lr2 = 5.0 ± 0.4, 103lr3 = 0.8 ± 3.8, 103lr4 = 6.2 ± 5.7, at µ = 770 MeV, which give a good
description of phase-shift data.

Now, the energy levels in the box are obtained from the poles in the scattering partial wave,
Eq. (6.25), or equivalently, the zeros of T2(s)−T̃4(s). From these energy levels at several values
of L one can re-obtain the phase-shifts for the infinite volume with the Lüscher/chiral unitary
approach method, and compare them with the exact infinite volume result to quantify the
effect of neglecting the L dependence coming from the crossed channel loops and tadpoles.

6.2.4 The N/D method

The case presented in Subsec. 6.2.1 can be put in the more general framework of the N/D
method. This was already explained in Sec. 2.7, and it was applied later in different chapters.
In particular, the case of ππ scattering at NLO was treated in detail in Sec. 5.3. We recall the
main results therein, with the proper sign and notation of this Chapter (recall the different
normalization of the amplitude in this Chapter). We have:

V2(s) = T2(s) ,

V4(s) = T4(s) − T2(s)2GD(s) . (6.26)

Since it will be useful some lines below, we also recall here that there is no RHC in the chiral
amplitude V4, because, as seen in Eq. (5.8),

TU
4 (s) − T2(s)2GD(s) = T2(s)2(GR(s) −GD(s)) , (6.27)
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where we have adopted the sign conventions of this Chapter.

For the free parameters (l̄i = 1, . . . , 4 and a subtraction constant a) we take the values of
the fit in Chapter 5, Sec. 5.3, collected in Table 5.1.

In order to study the finite volume scattering, the same replacements as in the IAM and
BS methods must be done. In particular, in the kernel V (s) → Ṽ (s) no change is needed in
V2(s), whereas V4(s) is changed to Ṽ4(s),

Ṽ4(s) = T̃4(s) − T2(s)2G̃D(s) . (6.28)

Notice that, in view of Eq. (6.27), there is no finite volume effect in the s-channel contributions
to the kernel Ṽ (s). The volume dependence enters then in the kernel through the t- and u-
channel loop functions and tadpoles evaluated as discussed in Sec. 6.2.3. The s–channel
volume dependence enters then at the denominator of the amplitude:

T̃ (s) =
Ṽ (s)

1 − Ṽ (s)G̃D(s)
(6.29)

through the function G̃D(s) in its version of Eq. (6.6), which gives the most important con-
tribution to the aforementioned dependence, as in the case of the IAM method. The change
in the values of the subtraction constant a with L is not considered because this is accounted
for by employing G̃D(s), Eq. (6.6).

6.3 Results

As already explained, the main aim of the present work is to quantify the effect of the de-
pendence of the different potentials considered on the size of the box, L. Hence, we are going
to compare the L dependence of the N/D and the IAM methods with that of the BS, which
kernel does not depend on L. We discuss first the results for the I = 0 case and later those
of the I = 2 case.

First we show in Fig. 6.1 (left panel) the results for the ππ phase-shifts in S-wave and
I = 0 for the three different models in infinite volume. Note that in the present work we
are not interested in a detailed description of scattering data, but on the effects of ignoring
the exponentially suppressed dependence on the box size when using Lüscher’s or the chiral
unitary approach to obtain the scattering phase-shifts from the energy levels in finite volume.
The IAM and N/D results (solid and dashed lines, respectively) are the fits explained in
the previous section and the BS (dot-dashed line) is fitted in this work to the experimental
data [284–286,289,290,364] shown in the figure up to 800 MeV. The IAM and N/D approaches
are essentially equivalent at low energies but differ slightly as the energy increases. Thus the
difference between the IAM and N/D phase shifts is mainly due to the different set of data
used in the fit and it also gives an idea of the theoretical uncertainty. The BS approach
produces a curve in between the other two, closer to the N/D at low energies and to the IAM
at higher energies. In any case, the different models are compatible within the experimental
uncertainties. Let us note that what matters for the discussions in the present work is not
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Figure 6.1: S-wave, ππ → ππ phase-shifts for the three different mod-
els considered: solid, dashed and dot-dashed lines correspond to IAM, N/D
and BS, respectively. Left: I = 0 case. The experimental data are from
Refs. [284–286, 289, 290, 364]. Right: I = 2 case. The experimental data are
from Refs. [371,372].

the actual values of the phase-shifts at infinite volume but the relative change when going to
the finite box.

In Fig. 6.2 (left panel) we show the energy levels for different values of the cubic box
size, L, for the different models which have been obtained from the poles of the scattering
amplitudes in the finite box as explained in the previous section. The dotted lines represent
the free ππ energies in the box, while the other lines correspond to IAM, N/D and BS as in
Fig. 6.1.

The differences are very small for the largest values of L shown in the plot but are more
important for smaller L, specially between the N/D and IAM methods. The BS approach
produces a curve in between the other two, closer to the N/D. The IAM and BS are more
similar for larger values of energies as can also be seen in the phase shifts, Fig. 6.1. As an
example of small L, we note that for L = 1.7m−1

π the difference between N/D and IAM is
about 30 MeV.

An actual lattice calculation would provide some points over analogous trajectories in
the E vs. L plots. The “inverse problem” is the problem of getting the actual scattering
amplitudes (and hence by-product magnitudes like phase-shifts) in the infinite space from
data produced by lattice QCD consisting of points in plots of E vs. L over the energy levels in
the box. For points in these levels the amplitude in the infinite volume can be extracted from
the generalization of the Lüscher formula, as explained in the previous sections, see Eq. (6.9).
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Figure 6.2: The first energy levels as a function of the cubic box size L for the
three different models considered. The dotted lines indicate the free ππ energies
in the box. The rest of the lines correspond to IAM, N/D and BS as in Fig. 6.1.
Left: I = 0 case. Right: I = 2 case.
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Figure 6.3: Solution of the inverse problem for the IAM and N/D methods. The
BS result is the same as in the infinite volume case and thus we do not show it in
the figure. Left: I = 0. Right: I = 2. We show the results obtained only from
level 2 (I = 0) or levels 1 and 2 (I = 2) of Fig. 6.2 since the results with levels
above these ones almost overlap with the infinite volume line. For the meaning of
each line consult the inset in the figure.
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In Fig. 6.3 (left panel) we show the phase-shifts obtained for the different methods imple-
menting the “inverse problem” analysis (or “reconstructed” results) with Eq. (6.9) and from
the E vs. L plot. For the BS model the results are independent of the level used for a given
E, since the potential does not depend on L, and they are equal to the infinite volume result.
Therefore we do not show the BS result since it is the same as in Fig. 6.1. For the IAM and
N/D methods the results depend on the level chosen for a given E since the potentials depend
on L as explained in the previous sections. Actually, for levels above the second one of Fig. 6.2
the results are almost equal to the infinite volume results and hence we do not show them
in the figure since they would almost overlap with the infinite volume line. This is because,
as seen in Fig. 6.2, for the higher energies these levels imply large values of L. Indeed, for
energies below 800 MeV this implies values of L higher than about 3m−1

π . For the results
obtained with level 2, the phase-shifts differ in about 5% of the result in the infinite volume
at the higher energies considered. For E ∼ 800 MeV this implies L values slightly smaller
than 2m−1

π , as can be seen in Fig. 6.2. It is worth noting that the effect of the dependence
on L of the models with LHC go in the same direction and are of similar size in spite of the
different models used. This gives us confidence that the actual L dependence of the LHC cut
is properly considered and the real effect of any realistic model would be of the order obtained
in the present work. An analysis with Eq. (6.9) applied to actual lattice results of E versus L
levels would neglect the possible L dependence of the potential and hence the errors from the
L dependence of the LHC would be of the order of the differences shown in the figure. Note
also that the L dependence of the results are smaller than the initial difference between the
N/D and IAM themselves and also lower than the experimental uncertainties. Therefore, an
actual lattice calculation should care about this L dependence only if it aims at getting errors
smaller than the effect obtained in the present work.

Let us now discuss the results for I = 2. In the right panels of Figs. 6.1, 6.2 and 6.3 we
show for the I = 2 case the same results that were shown in the left panels for I = 0. In
Fig. 6.1 we see that the IAM and N/D methods provide very similar results and compatible
with the experimental data while the BS approach gets worse phase-shifts. This is because in
the IAM and N/D the LHC is included perturbatively order by order, unlike the BS model,
and in this channel the LHC cut is more relevant. In Fig. 6.2 (right panel) we show the energy
levels in the box for this channel.

Now both IAM and N/D provide similar results. In Fig. 6.3 (right panel) we show the
solution of the inverse problem for the phase-shifts. We see that the N/D method provides a
higher L dependence for large values of the energies, unlike IAM. At 800 MeV the difference
is about 10% for the N/D and 2% for the IAM. The difference in the phase-shifts between the
two approaches is large in spite of the energy levels being very similar. This is because the
energy levels are very close to the free case, unlike the I = 0 case, and then the G̃ function is
very steep. This makes that small variations in E provide large variations in G̃.

In usual inverse problem analysis from actual lattice results, it is common to use the
Lüscher formula [156, 157] which, as explained in section 6.2.1, is an approximation to that
used in the present work, Eq. (6.9). Therefore it is worth studying what is the error made
in the reconstructed phase-shifts if one uses the Lüscher equation instead of the exact one.
In Ref. [158] it was shown that the Lüscher method can be reproduced if in Eq. (6.7) one
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substitutes

I(p, s) =
1

ω(~p)
1

s− 4ω(~p)2
. (6.30)

by

I(p, s) =
1

2
√
s

1
p2

ON − ~p 2
. (6.31)

where pON = E
2

√
1 − 4m2

s
.

In Fig. 6.4 we show the effect in the I = 0 phase-shifts of using the pure Lüscher method,
Eq. (6.31), instead of the exact one, Eq. (6.30). (For the I = 2 case the effect is small and
thus we do not show any plot.) The difference is significant only for phase-shifts extracted
from level 2 of the left panel of Fig. 6.2 since the difference is only relevant for small values
of L. Therefore we only plot results extracted from level 2. The difference between the exact
method and the Lüscher one is similar for all the three different models for the potential. The
size of the difference is similar to the one from the L dependence of the potential discussed
above, and goes in the same direction, so that the effect is magnified.
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6.4 Summary and conclusions

In this Chapter we have faced the problem of the presence of the LHC of the ππ amplitude
for the evaluation of phase-shifts from lattice QCD results using Lüscher’s approach. The
nonperturbative approach, the study for energies different than threshold and the study of
the I = 0 ππ system are done in the present work for the first time in the literature. The t−
and u−channel terms can be taken into account in a field theoretical approach by means of the
IAM, or NLO N/D methods, leading to good reproductions of the scattering data. Results
from lattice QCD should contain all the dynamics and, as a consequence, should account for
these effects too. However, the method to go from the discrete energy level in a box from
lattice simulations to the phase shifts for scattering in the infinite volume case requires the use
of Lüscher’s approach, or its improved version of [158], both of which rely upon the existence
of a volume independent potential. Yet, the terms contributing to the LHC, containing loops
in the t− and u−channels, are explicitly volume dependent. In this work we have investigated
the errors induced by making use of [156] or [158] in the reproduction of phase-shifts from the
energy spectrum of lattice calculations in the finite box by evaluating the volume dependence
of the ππ scattering amplitude in one-loop ChPT. The latter is then implemented in non-
perturbative methods to extract the final partial wave amplitudes. We have found that in the
case of ππ scattering in S-wave, both for I = 0 and I = 2, the effect of the L dependence
in the potential is smaller than the typical errors from the experimental phase-shifts or the
differences between the three models that we have used, the IAM, N/D NLO and BS LO.
This is good news for lattice calculations since one of the warnings not to go to small values of
L was the possible L dependence of the potential which in some cases, like in the present one,
we know that exists. We found that it is quite safe to ignore this dependence for L > 2.5m−1

π ,
and even with values of L around 1.5 − 2m−1

π the errors induced are of the order of 5%.

On the other hand we have quantified the error made by using the pure Lüscher formula
instead of the exact one, Eq. (6.9). The difference in the phase-shifts between this approxi-
mation and that of Eq. (6.9) has a similar size as the difference between the latter and the
infinite volume case, and goes in the same direction, so that the effect is magnified.

All these findings, together with the use of the approach of Ref. [158] that also eliminates
L depended terms (exponentially suppressed) from the Lüscher’s approach, can encourage the
performance of lattice calculations with smaller size boxes with the consequent economy in
the computing time.
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7.1 Introduction

The Nucleon-Nucleon (NN) interaction is a basic process whose understanding is necessary
for the study of nuclear structure, nuclear reactions, nuclear matter, neutron stars, etc [159–
162, 183, 184]. Since the early nineties [163–165] the low energy Effective Field Theory of
QCD, Chiral Perturbation Theory (ChPT) [18, 19], has been applied to NN scattering in a
large number of studies, see e.g. [163–169, 454–465]. Further references can be found in the
above reviews. A sophisticated stage has been reached where the NN potential is calculated
in ChPT up to N3LO [458,462].

However, as the NN interaction is nonperturbative, the chiral NN potential must be

189
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iterated. It was proposed by Weinberg in his seminal papers [163, 164] to solve a Lippmann-
Schwinger equation in terms of the calculated chiral NN potential, which can be improved
order by order. Since the chiral potential is singular at the origin a regularization method,
typically a three-momentum cut-off Λ [166,167,458–460,462], should be introduced for solving
the Lippmann-Schwinger equation.

Despite the great phenomenological success achieved by the NN chiral potentials in de-
scribing NN scattering data [458,462], it was shown in the literature [170–176] that the chiral
counterterms introduced in the NN potential following naive dimensional analyses are not
enough to renormalize the resulting NN scattering amplitude. In Ref. [170] one countert-
erm is promoted from higher to lower orders in the partial waves 3P0,

3P2 and 3D2. As a
consequence, stable results are achieved, independent of cut-off in the limit Λ → ∞, when
the LO one-pion exchange (OPE) potential is employed. Similar conclusions are drawn in
Ref. [470]. However, this promotion implies a violation of the standard ChPT counting and of
the low energy theorems relating the parameters in the effective range expansion. The works
in Refs. [177, 180], following the ideas of Refs. [181, 182], stress that the cut-off Λ should not
be taken beyond the breakdown scale of the EFT, typically around 1 GeV. If no higher-order
counterterms are introduced when the cut-off is taken to infinity the mixing between the S
and D waves in the 3S1–

3D1 system vanishes and one has a strong cut-off dependence of the
tensor force from the non-local OPE potential so that it vanishes for Λ → ∞ [466]. One
should be aware that when Λ → ∞ a more involved counting emerges [171,178,179,466–468].
The extension of these ideas to higher orders in the chiral potential is not straightforward
and cannot avoid cut-off dependence up to now [469,470]. On the other hand, the application
of Weinberg’s scheme has given rise to a great phenomenological success in the reproduction
of NN phase shifts if the cut-off is fine-tuned in a region around 600 MeV, not beyond the
breakdown scale of the effective field theory (EFT) (see e.g. [456–460, 462–464]). Of course,
the cut-off dependence is not removed then.

Partial wave amplitudes with larger orbital angular momentum ℓ, ℓ > 3, can be calculated
in Born approximation with sufficient accuracy [178, 179, 454, 467, 468]. Then, they do not
pose a problem for renormalization, making use of standard perturbative renormalization. It
is also argued in the same Ref. [170] that higher orders terms in the chiral NN potential
could be treated perturbatively. Ref. [170] was extended along these lines to subleading two-
pion exchange (TPE) in Ref. [469]. The promotion of higher orders to lower ones due to
nonperturbative renormalizability is studied in detail in Ref. [178, 179, 467, 468] by making
use of the regularization group equations (see also Refs. [171–173] for a coordinate space
renormalization by imposing appropriate boundary conditions).

In this Chapter, we report on our papers [E, F]. We shall employ the N/D method [38]
for studying NN interactions, for both uncoupled and coupled1 partial waves. The N/D
method was exposed for the case of meson-meson partial waves in Sec. 2.7. We just recall
here that it is based in the splitting of the left-hand cut (LHC) and the right-hand cut (RHC)
in two different functions, N and D, respectively. A linear integral equation then results for

1Some words regarding our terminology are in order. NN spin-triplet (S = 1) partial waves can mix

(except for the 3P0, see Appendix F.) Then, we call them coupled or uncoupled, depending on the case.

The term inelastic, as opposed to elastic, refers in NN interactions terminology to processes in which other

particles are produced, e.g., NN → NNπ (which is the lowest threshold inelastic process).
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determining the NN partial waves. The input is given by the discontinuity of the partial wave
along the LHC due to multi-pion exchanges, the lightest one being just OPE. The well known
behavior of a partial wave near threshold, that vanishes like |p|2ℓ, with |p| the center of mass
(CM) three-momentum and ℓ the orbital angular momentum, is not automatically fulfilled for
ℓ > 2 in the N/D method [329, 471, 472]. As first shown in Ref. [E], one can accomplish the
right threshold behavior solving the N/D method in the presence of ℓ− 1 constraints. These
are satisfied by introducing ℓ − 1 Castillejo-Dalitz-Dyson (CDD) poles [185], as we discuss
below.

In the past Refs. [473–477] applied the N/D method to study quantitatively NN scatter-
ing. Ref. [473] was restricted to the S-waves and took only OPE as input along the LHC.
Refs. [474,475] included other heavier mesons as source for the discontinuity along the LHC in
line with the meson theory of nuclear forces, so popular at those days. A more modern work,
Ref. [476], modeled the LHC discontinuity by OPE and one or two ad-hoc poles. We stress
that we present here a novel way to introduce the N/D method in harmony with the modern
perspective of EFT. In this way, we show that one can calculate systematically within ChPT,
according to the standard chiral counting, the discontinuity along the LHC that is the basic
input for the N/D method. This allows one to systematically improve the results order by
order, which is not the case by applying previous schemes [477]. In addition, the threshold
behavior of partial waves with orbital angular momentum (ℓ > 2) is satisfied within our ap-
proach by including CDD poles, as we show below. However, in the previous works [474,475]
the correct threshold behavior was achieved in an ad-hoc way by including a fictitious pole
below threshold, with the subsequent dependence of the results on its location that was fitted
to data. Furthermore, in our results we always respect unitarity (for both the coupled and
the uncoupled waves cases), which was not the case in Refs. [473–476].

After this Introduction we discuss the N/D method for calculating the NN uncoupled
partial waves in Sec. 7.2. Special attention is paid to derive the constraints needed to meet
the threshold behavior for a partial wave with ℓ > 2 and how to fulfill them. The results
for the uncoupled partial waves are discussed in Sec. 7.3. We present the generalization
of the method to the case of coupled channels in Sec. 7.4, where the corresponding three
linear integral equations needed for each set of coupled partial waves are derived. The results
obtained with this formalism are given in Sec. 7.5. We consider in some detail the important
case of the 3S1–

3D1 waves, Subsecs. 7.5.1–7.5.2, whereas the higher coupled partial waves are
treated in Subsec. 7.5.3. Conclusions are given in Sec. 7.6. The OPE amplitudes used in this
Chapter are contained in Appendix F. Appendix G contains the technical way used to solve
numerically the integral equations. In Appendix H the cancellation of a potential divergence
in a function involved in our equations is treated.

7.2 The N/D method for NN uncoupled partial waves

7.2.1 NN partial waves cuts

We consider the nucleon-nucleon (NN) scattering

N(p1;σ1α1)N(p2;σ2α2) → N(p′
1;σ

′
1α

′
1)N(p′

2;σ
′
2α

′
2)
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whose scattering amplitude in the center-of-mass frame (CM) is indicated by

〈p′,σ′
1α

′
1σ

′
2α

′
2|Td||p|ẑ,σ1α1σ2α2〉 .

Here the initial momentum p = |p|ẑ is along the z-axis and the final one corresponds to p′.
Its decomposition in partial waves is discussed in detail in Appendix A of Ref. [162], to which
we refer for further details. We denote a NN partial wave by TJIS(ℓ′, ℓ; |p|2) being ℓ′ the final
orbital angular momentum and ℓ the initial one, while J , S and I stand for the total angular
momentum, spin and isospin of the reaction, respectively:

TJIS(ℓ′, ℓ; |p|2) =
Y 0

ℓ (ẑ)
2J + 1

∑
(σ′

1σ
′
2s

′
3|s1s2S)(σ1σ2s3|s1s2S)(0s3s3|ℓSJ)(m′s′

3s3|ℓ′SJ)

× (α′
1α

′
2i3|τ1τ2I)(α1α2i3|τ1τ2I)

∫
dp̂′ 〈p′,σ′

1α
′
1σ

′
2α

′
2|Td||p|ẑ,σ1α1σ2α2〉Y m′

ℓ′ (p′)∗ . (7.1)

In this equation, the Clebsch-Gordan coefficients for the couplings of two angular momentum
j1, j2 to j3 is indicated by (m1m2m3|j1j2j3), with m1, m2 and m3 the corresponding third
components.

A NN partial wave amplitude has two cuts [224], RHC for 0 < p2 < ∞, due to unitarity,
and the LHC for −∞ < p2 < L with L = −m2

π/4, due the crossed channel dynamics. Both
cuts are depicted in Fig. 7.1. The upper limit for the latter is given by the OPE, as the pion
is the lightest particle that can be exchanged in the t- and u-channels. Because of unitarity,
a partial wave amplitude satisfies in the CM frame above the elastic threshold and below the
pion production one, the relation

ImTJIS(ℓ′, ℓ; |p|2)−1 = −m|p|
4π

δℓ′ℓ , (7.2)

with m the mass of the nucleon. In our normalization, the S-matrix is given by:

SJIS = I + i
m|p|
2π

TJIS .

As shown in Ref. [162] one can calculate perturbatively in ChPT ImTJIS along the LHC,
since this imaginary part is due to multi-pion exchanges. The infrared enhancements asso-
ciated with the RHC, see Fig. 7.2, are absent in the discontinuity along the LHC because,
according to Cutkosky’s theorem [478, 479], it implies to put on-shell pionic lines. Within
loops the pion poles are picked up making that the energy along nucleon propagators now
is of O(p), instead of a nucleon kinetic energy. In this way, the order of the diagram rises
compared to that of the reducible parts and it becomes a perturbation. At leading order (LO),
according to the counting developed in Refs. [162, 183] (that for two nucleon irreducible dia-
grams coincides with the standard chiral counting [163–165]), the only contribution to ImTJℓS

along the LHC is OPE.

7.2.2 S- and P -waves (ℓ = 0, 1)

In the following we take the uncoupled channel case for which ℓ′ = ℓ = J (except for the
3P0.) An scheme of the different waves that are coupled or not in NN scattering can be found
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ǫ → 0

R → ∞
CII

−m2
π
4

LHC
RHC

ǫ → 0

R → ∞

CI

Figure 7.1: The thick lines correspond to the RHC and LHC, from top to bottom.
In the same figure the integration contours CI and CII for evaluating DJℓS(A) and
NJℓS(A), respectively, are shown. One has to take the limit ǫ → 0+.

Figure 7.2: RHC enhancements. Left: reducible diagram. No pion lines are
put on-shell. The intermediate states are NN , so that typical energies go like
1
q × mN

q ≫ 1
q , and this gives an enhancement of this diagram on the RHC. Right:

irreducible diagram. Pionic lines are put on-shell. The intermediate states are
NNπ, so that typical energies are ≃ 1

q , thus no enhancement is present.

in Appendix F. The N/D method [38], as explained in Subsec. 2.7, rests on the separation
between the RHC and LHC. In this way, a partial wave TJℓS(A) is written as:2

TJℓS(A) =
NJℓS(A)
DJℓS(A)

. (7.3)

The function NJℓS(A) has only LHC while DJℓS(A) has only RHC. Taking into account elastic
unitarity, Eq. (7.2), one can write:

ImDJℓS(A) = −NJℓS(A)
m

√
A

4π
, A > 0 . (7.4)

Along the LHC, from Eq. (7.3), one also has:

ImNJℓS(A) = DJℓS (A) ImTJℓS(A) , A < −m2
π/4 . (7.5)

We first write down a dispersion relation (DR) for DJℓS(A) and NJℓS(A) taking as integration
contours CI and CII in Fig. 7.1, respectively. The integration along the circle at infinity

2We replace the subscript I by ℓ when denoting a partial wave. The former can be deduced from ℓ and S,

because of the rule ℓ+ S + I = odd and I = 0 or 1.
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vanishes, if necessary, by taking the sufficient number of subtractions. For the case of a
once-subtracted DR the following expressions result:

DJℓS(A) = 1 − A−D

π

∫ +∞

0
dq2 ρ(q2)NJℓS(q2)

(q2 − A)(q2 −D)
, (7.6)

NJℓS(A) = NJℓS(D) +
A−D

π

∫ L

−∞
dk2 ∆JℓS(k2)DJℓS(k2)

(k2 − A)(k2 −D)
. (7.7)

Here we have indicated by ρ(A) the non-relativistic phase space, for A > 0:

ρ(A) = m
√
A/4π , (7.8)

and, for A < L = −m2
π/4, whe have defined:

∆JℓS(A) = ImTJℓS(A) . (7.9)

For physical scattering, A → A + iǫ . The subtraction constant in DJℓS(A) has been fixed
to 1 because, according to Eq. (7.3), only the ratio between NJℓS(A) and DJℓS(A) matters
for determining TJℓS(A). In this way one has the freedom to fix the value of DJℓS(A) at one
point. The key difference with Sec. 2.7 is that here we do not neglect the LHC and we do not
set N(A) = 1.

Asymptotically, for p2 → −∞, OPE tends to constant, so that, according to the Sugawara
and Kanazawa theorem [329, 480] one subtraction is necessary for the DR of NJℓS(A), even
though ∆JℓS(A) → 1/A in the case of OPE. On general grounds, a partial wave amplitude is
bound by a constant because of unitarity for A → +∞ and the same theorem then requires
that at least one subtraction is necessary.

An integral equation for DJℓS(A) results by including the DR for NJℓS(A), Eq. (7.7), into
that of DJℓS(A), Eq. (7.6):

DJℓS(A) = 1 −NJℓS(D)
A−D

π

∫ +∞

0
dq2 ρ(q2)

(q2 − A)(q2 −D)

− A−D

π2

∫ +∞

0
dq2 ρ(q

2)
q2 − A

∫ L

−∞
dk2 ∆JℓS(k2)DJℓS(k2)

(k2 − q2 − iǫ)(k2 −D)
. (7.10)

We now introduce the function g(A,C) defined as:

g(A,C) =
1
π

∫ +∞

0
dq2 ρ(q2)

(q2 − A)(q2 − C)
, (7.11)

In terms of this function, Eq. (7.10) can be written as:

DJℓS(A) = 1 − (A−D)NJℓS(D)g(A,D) +
A−D

π

∫ L

−∞
dk2 ∆JℓS(k2)DJℓS(k2)

k2 −D
g(A, k2) . (7.12)

This is a linear integral equation for DJℓS(A). Its linearity is an important fact because it
allows one to take more subtractions and still being amenable for an iterative solution. We
take as a convenient subtraction point D = 0. In the case of the S-waves, this relates the
subtraction constant, NJℓS(0), to the corresponding scattering length, as, through:

NJℓS(0) = −4πas

m
(7.13)
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The only uncoupled S-wave is the 1S0, and the scattering length for this wave is as = −23.758±
0.04 fm. Finally, we can write an integral equation for the DJℓS function for an S-wave as:

DJℓS(A) = 1 − ANJℓS(0)g(A, 0) +
A

π

∫ L

−∞
dk2 ∆JℓS(k2)DJℓS(k2)

k2
g(A, k2) (7.14)

This is an integral equation for DJℓS(A) with A on the LHC, and it can be solved with
the method exposed in Appendix G. Once DJℓS(A) is solved from Eq. (7.14) one can then
calculate NJℓS(A) by inserting the former into Eq. (7.7), with D = 0, which now reads:

NJℓS(A) = NJℓS(0) +
A

π

∫ L

−∞
dk2 ∆JℓS(k2)DJℓS(k2)

k2(k2 − A)
. (7.15)

For a P -wave, the same equations hold with NJℓS(0) = 0 because a P -wave amplitude
vanishes at threshold as |p|2, and DJℓS(0) = 1.

7.2.3 Higher waves (ℓ > 2)

Eqs. (7.14) and (7.15) can be readily applied to S- and P -wave scattering. However, these
equations do not guarantee that the resulting partial wave amplitude has the correct behavior
as Aℓ for A → 0, with ℓ > 2, because of the full implementation of rescattering in Eq. (7.12).
At LO ∆JℓS ≡ ∆1π

JℓS gives rise to OPE through the dispersive integral:

T 1π
JℓS(A) = T 1π

JℓS(0) +
A

π

∫ L

−∞
dk2 ∆1π

JℓS(k2)
k2(k2 − A)

, (7.16)

with T 1π
JℓS(0) a subtraction constant. As discussed above, since the OPE amplitude [162] tends

to constant for A → ∞, the Sugawara and Kanazawa theorem requires that one subtraction
is needed. The fact that for ℓ > 0 a partial wave vanishes as Aℓ for A → 0 makes that
T 1π

JℓS(0) = 0 when ℓ > 0. This behavior also implies that ∆1π
JℓS must fulfill the set of ℓ − 1

sum-rules (constraints):

∫ L

−∞
dk2 ∆1π

JℓS(k2)
k2λ

= 0 , (7.17)

with λ = 2, 3, . . . , ℓ and ℓ > 2. These constraints are obtained straightforwardly by performing
the power expansion of Eq. (7.16) and imposing that TJℓS(A) → Aℓ for A → 0.

Let us now consider again Eq. (7.7). As DJℓS(A) → 1 for A → 0 then TJℓS(A) → NJℓS(A)
in this limit. The expression for NJℓS(A), Eq. (7.7), is similar to Eq. (7.16). Indeed, they
would be the same equation if DJℓS(A) were replaced by 1 in Eq. (7.7) (and with ∆JℓS(k2)
evaluated at LO). As a result, NJℓS(A), determined by implementing Eq. (7.12) into Eq. (7.7),
does not vanish as Aℓ for A → 0, because of the departure from 1 of DJℓS(A).

It is then convenient to proceed in such a way that the right behavior of TJℓS(A) around
threshold is incorporated explicitly. For that purpose we consider the N/D equation for
TJℓS(A)/Aℓ, instead of that for TJℓS(A), Eq. (7.3). For that purpose, we consider the N/D
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equation for TJℓS(A)/Aℓ instead of TJℓS(A). The quotient TJℓS(A)/Aℓ has no pole at A = 0
because TJℓS(A)→Aℓ when A → 0. Notice also that because of unitarity TJℓS(A)/Aℓ → 0 for
A → +∞ so that, according to the Sugawara and Kanazawa theorem [329,480], no subtraction
are needed for the DR of NJℓS(A) for ℓ > 0. EFT results do not always share the right high
energy behavior so that subtractions will be certainly necessary for a higher order calculation
of ∆JℓS(A). At LO this is not the case because ∆1π

JℓS → 1/A for A → ∞. We then have
(ℓ > 0):

TJℓS(A) = AℓNJℓS(A)
DJℓS(A)

, (7.18)

NJℓS(A) =
1
π

∫ L

−∞
dk2 ∆JℓS(k2)DJℓS(k2)

k2ℓ(k2 − A)
, (7.19)

DJℓS(A) = 1 − A

π

∫ ∞

0
dq2ρ(q

2)q2(ℓ−1)NJℓS(q2)
q2 − A

= 1 +
A

π2

∫ L

−∞
dk2 ∆JℓS(k2)DJℓS(k2)

k2ℓ

∫ ∞

0
dq2 ρ(q2)q2(ℓ−1)

(q2 − A)(q2 − k2)
, (7.20)

where the subtraction has been taken at threshold.

The previous equation for DJℓS(A) is not satisfactory for ℓ > 2 because the last integration
on the r.h.s. of Eq. (7.20) is divergent. In this way, by applying theN/D method to TJℓS(A)/Aℓ

we have changed the problem of the bad behavior of TJℓS(A) around threshold into a high
energy problem in the form of divergent integrals. To end up with a convergent DR for
DJℓS(A) in Eq. (7.20) it is necessary that NJℓS(A) vanishes at least as:

NJℓS(A) → 1/Aℓ for A → ∞ . (7.21)

However, NJℓS(A) from the DR in Eq. (7.19) vanishes only as 1/A, independently of ℓ. The
set of constraints needed to satisfy the asymoptic behavior in Eq. (7.21) can be deduced by
performing in Eq. (7.19) a high energy expansion of NJℓS(A) in powers of 1/A. It results in:

∫ L

−∞
dk2 ∆JℓS(k2)DJℓS(k2)

k2λ
= 0 , (7.22)

with λ = 2, 3, . . . , ℓ and ℓ > 2. These sum rules generalize the ones fulfilled by ∆1π
JℓS(A) in

Eq. (7.17).3

The usefulness of the ℓ− 1 restrictions in Eq. (7.22) can be well appreciated by rewriting
NJℓS(A) in Eq. (7.19) as:

NJℓS(A) = − 1
π

ℓ−2∑

m=0

1
Am+1

∫ L

−∞
dk2 ∆JℓS(k2)DJℓS(k2)

k2(ℓ−m)
+

1
πAℓ−1

∫ L

−∞
dk2 ∆JℓS(k2)DJℓS(k2)

k2(k2 − A)
. (7.23)

The last term on the r.h.s. of the previous equation vanishes explicitly as 1/Aℓ for A → ∞,
while the terms in the sum on m of the r.h.s. are zero once the constraints of Eq. (7.22) are
fulfilled. In this way, inserting this expression for NJℓS(A) in Eq. (7.20), one has:

DJℓS(A) = 1 +
A

π

∫ L

−∞
dk2 ∆JℓS(k2)DJℓS(k2)

k2
g(A, k2) , (7.24)

3Eq. (7.21) is a consequence of Eq. (7.18) because for A → +∞, due to unitarity, the ratio TJℓS(A)/Aℓ

tends to 1/Aℓ+1/2 while DJℓS(A) → A1/2 (when only one subtraction is taken.)
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and a convergent DR integral equation for DJℓS(A) results.

It should be stressed that Eqs. (7.18), (7.19), and (7.24) lead to the same equations as
for the case of a P -wave amplitude, ℓ = 1, cf. Eqs. (7.3), (7.14) and (7.15).4 In the case of
a P -wave, no constraints are needed because the right behavior near threshold is obtained
straightforwardly. On the other hand, Eq. (7.24) can be readily applied to S-wave by just
adding the term proportional to NJℓS(0) present in Eq. (7.14). One subtraction should be
taken in Eq. (7.19) in order to transform it as Eq. (7.15) for ℓ = 0.

Now, let us address the way to solve the N/D method, Eqs. (7.18), (7.19) and (7.24),
in the presence of the constraints Eq. (7.22). It is well known [224, 329] that the function
DJℓS(A) in the N/D method is determined modulo the addition of Castillejo-Dalitz-Dyson
(CDD) poles [185]. These are associated to specific dynamical features of the interaction
that arise independently of the LHC discontinuity, ∆JℓS(A), and unitarity. Typically, the
addition of CDD poles corresponds to the existence of pre-existing resonances or to Adler
zeros [33,38,41,43,44]. Both features are indeed absent in the low-energy NN scattering [186].
We exploit this ambiguity in the DJℓS(A) function and include ℓ − 1 CDDs at infinity so as
to satisfy Eq. (7.22):

DJℓS = 1 +
A

π

∫ L

−∞
dk2 ∆JℓS(k2)DJℓS(k2)

k2
g(A, k2) +

ℓ−1∑

i=1

A

Bi

γi

A−Bi

. (7.25)

The last term in the r.h.s. corresponds to adding ℓ − 1 CDDs. The factor A/Bi in front of
every CDD arises because the function DJℓS(A) is normalized to 1 for A = 0 and it has the
residue γi at A = Bi. The sum of the CDDs gives rise to a rational fraction Qℓ−1/Pℓ−1, where
the subscript in Q and P indicate the degree of the polynomial in A. Since the only relevant
fact at low energies is the ratio γi/B

2
i we take at the end the limit Bi → ∞ with γi/B

2
i not

vanishing. The ℓ− 1 CDD poles are gathered at the same point B and we write:

ℓ−1∑

i=1

A

Bi

γi

A−Bi

→ A
∑ℓ−2

n=0 cnA
n

(A−B)ℓ−1
. (7.26)

The coefficients ci are finally determined by requiring that the set of ℓ − 1 constraints in
Eq. (7.22) are satisfied (this is done in Appendix G). The calculation is performed in terms of
finite but large B, and one has to check that the results are stable by taking B arbitrarily large.
At the level of low-energy NN scattering we have modified DJℓS(A) by adding a polynomial
of degree ℓ− 1 with fixed coefficients.

We end with the following expressions

TJℓS(A) = AℓNJℓS(A)
DJℓS(A)

, (7.27)

NJℓS(A) =
1
π

∫ L

−∞
dk2 ∆JℓS(k2)DJℓS(k2)

k2ℓ(k2 − A)
, (7.28)

DJℓS(A) = 1 +
A

π

∫ L

−∞
dk2 ∆JℓS(k2)DJℓS(k2)

k2
g(A, k2) +

A
∑ℓ−2

n=0 cnA
n

(A−B)ℓ−1
, (7.29)

4It is equivalent to have the explicit factor A in TJℓS , Eq. (7.18), or included in the definition of NJℓS ,

Eq. (7.15).
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and the constraints
∫ L

−∞
dk2 ∆JℓS(k2)DJℓS(k2)

k2λ
= 0 , λ = 2, 3, . . . , ℓ , ℓ > 2 . (7.30)

The previous formalism is also meaningful for the case in which ∆JℓS(A) → C, with C a
constant, as A → ∞. We do not discuss in this work its extension to the case when ∆JℓS(A)
diverges for A → ∞ as we are interested now only in LO NN scattering. This generalization
of our formalism, left as a future work, will be discussed when considering higher orders in
the chiral expansion of ∆JℓS(A), which include the important TPE contributions [481,482].

Summarizing the results of this Section, we have presented a general approach based on
the N/D method to construct NN scattering partial waves amplitudes. For ℓ = 0, 1 one
employs Eqs. (7.14) and (7.15), being the amplitude TJℓS given by Eq. (7.3). For ℓ > 2,
one has Eqs. (7.27)-(7.29), that must be solved in the presence of the constraints given in
Eq. (7.30). In Appendix G the solution of this integral equation subject to the constraints is
studied.

7.3 Results for uncoupled partial waves

In this Section we present our results for the phase shifts, δ, of the uncoupled partial waves
with ℓ 6 5 obtained by applying the N/D method as explained in Sec. 7.2. We compare them
with the Nijmegen partial wave analysis (PWA) [186]. Our results, shown in Figs. 7.3–7.5,
are represented with a black line, and the Nijmegen data with a red one, unless otherwise is
stated. We show the results up to |p| = 300 MeV. Notice that at |p| ≃ 360 MeV the pion
production threshold opens and three-momenta are no longer small, |p| ≃ √

mmπ ≫ mπ.

In Fig. 7.3 we show the lowest elastic waves, namely, 1S0,
1P1,

3P1 and 3P0, whose am-
plitudes do not contain CDD poles because ℓ < 2. The agreement in 1P1 and 3P1 is quite
satisfactory. For the 1S0 it is known that a higher order chiral counterterm is needed to re-
produce the large effective range and thus improve the agreement with the data [170]. In the
case of the 3P0 wave, large corrections stem from TPE. Since this is a LO calculation, none
of these corrections is included. But we want to stress an important point. In this Chapter
what we present is a novel method to study the NN interactions. A regulator independent
(thus cut-off independent), unitary description of the NN interaction with the right analytical
properties, is reached. The inclusion of just OPE, that is, the LO in the calculation, is, of
course, just a first step. The agreement with the data can be improved by including higher
orders in the LHC.

For the 1S0 and 3P0 waves we have also tried with a relativistic calculation of the function
g(A, k2) Eq. (7.11), since these are the waves for which the discrepancies with the data are
larger. In this approach, the ρ(q2) function is replaced in the S-matrix and in the integrals
where it is involved by its relativistic counterpart:

ρ(q2) =
√
q2m

4π
→ ρ(q2) =

√
q2m

4π
m√

q2 +m2
.

The results with this relativistic phase-space improvement are represented by the dashed
(black) lines in Fig. 7.3. Though the corrections are in the right direction, the discrepancies
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Figure 7.3: Comparison of the 1S0, 3P0, 1P1 and 3P1 waves phase shifts with the
Nijmegen PWA. The solid black line represents the results of this work, while the
red one represents the Nijmegen PWA [186]. For the 1S0 and 3P0, the dashed black
line corresponds to the relativistic version of this work, see the text for details.

are still large. As expected, relativistic corrections are small in the energy range shown,
though noticeable for the 3P0 partial wave for |p| & 200 MeV.

For higher waves one needs to include ℓ− 1 CDD poles in order to fulfill the constraints in
Eq. (7.30), and guarantee that partial waves have the right behavior at threshold vanishing
as |p|2ℓ. Our results are shown in Figs. 7.4 and 7.5, and good agreement is found, except for
the 1D2 wave. Our curves are quite similar compared with the LO results of Ref. [170]. This
reference offers an approach with cut-off independent results with the NN potential (VNN)
given by OPE. The largest discrepancy concerns to the 3P0 partial wave where in Ref. [170] a
counterterm is promoted from higher orders so as to achieve cut-off stable results for Λ → ∞
due to the attractive 1/r3 tensor force in OPE. As a result, their agreement with data is
much improved. The main difference between our approach and that of Ref. [170] concerns
the treatment of the LHC. Namely, for the 3P0 wave the iteration of the NN potential is
responsible for the need of this extra counterterm. The first iteration VNNGVNN (with G
the unitary two-nucleon reducible loop function) is a new source of LHC discontinuity [483]
containing contributions from TPE and iterated OPE. The real part stemming from the former
is divergent. Within our approach the sources of LHC discontinuity from VNNGVNN are NLO
according with the standard chiral counting. At that order new subtractions are required
(as discussed in Subsec. 7.5.2.) which will mimic the role of the extra counterterm taken in
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Figure 7.4: Comparison of the 1D2, 3D2, 1F3 and 3F3 waves phase shifts (black
solid line) to the Nijmegen PWA (red solid line).

Ref. [170]. While our method is based on the calculation of ∆JℓS(A) perturbatively along
the LHC, the application of a Lippmann-Schwinger equation with the chiral NN potentials
is based on the perturbative calculation of the latter [163–165]. In both cases the diagrams
required for the calculation of ∆JℓS and VNN are two-nucleon irreducible, in the sense that no
intermediate two-nucleon state arises, which justifies its perturbative treatment [162–165,183].
In both cases as well the RHC is exactly resummed, as required because of the enhanced two-
nucleon reducible diagrams. This resummation is performed in terms of the interaction kernel,
∆JℓS or VNN , depending on the approach. The N/D method respects the LHC discontinuity
so that ∆JℓS is the same as in the final partial wave amplitude. For a Lippmann-Schwinger
equation this is not the case as new sources of imaginary parts along the LHC result from the
iteration of VNN [483]. It is also worth stressing that our approach based on the N/D method
is a dispersive one offering results that by construction are cut-off independent, while this is
still an issue in the application of the Lippmann-Schwinger (or Schrödinger) equation to NN
scattering with VNN calculated from ChPT [170,177,180,469].

For the 1S0 and 1D2 partial waves, for which we do not have good agreement at LO with
data [186], our results are indeed very similar to those of Ref. [170], too. In the case of the
1P1 partial wave our phase shifts run closer to data at low energies than those of Ref. [170].

In order to show the independence of our results with the value of B, the position of
the CDD poles, once this value is large enough, we show in Fig. 7.5 for the 3G4 partial wave
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Figure 7.5: Comparison of the 1G4, 3G4, 1H5 and 3H5 waves phase shifts (black
solid line) to the Nijmegen PWA (red solid line). The lines in 1H5 are almost
overlapping.

different lines corresponding to B = 10nm2
π for n = 2, 3, 4, 5, and 6. A narrow band is obtained

despite the large variation in the values of B considered.

7.4 The N/D method for NN coupled partial waves

In this Section, the generalization of the method of Sec. 7.2 for the uncoupled partial waves
to the case of coupled channels is developed. For the spin triplet NN partial waves with
total angular momentum J one has the mixing of the orbital angular momenta ℓ = J − 1 and
ℓ′ = J + 1 (except for the 3P0 partial wave.) Each set of coupled partial waves is determined
by the quantum numbers S, J , ℓ and ℓ′, where S is the total spin. In the following for
simplifying the notation we omit them and indicate the different partial waves by Tij, with
i = 1 corresponding to ℓ = J−1 and i = 2 to ℓ′ = J+1, a convention that we adopt from now
on. As a result, a two coupled channel T -matrix results. In our normalization, the resulting
S-matrix reads

S(A) = I + i2ρ(A)T (A) =

=


 cos 2ǫ e2iδ1 i sin 2ǫ ei(δ1+δ2)

i sin 2ǫ ei(δ1+δ2) cos 2ǫ e2iδ2


 , (7.31)
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such that δ1 refers to the phase shifts for the channel with ℓ = J − 1 and δ2 to that with
ℓ′ = J + 1. The non-relativistic phase space is given by ρ(A), defined in Eq. (7.8). Along
the RHC, the unitarity of the S-matrix, SS† = S†S = I , can be written in terms of the
(symmetric) T -matrix as ImT−1(A) = −ρ(A) I. In the following, the imaginary parts above
threshold of the inverse of the T -matrix elements, denoted by tij(A), play an important role,

Im
1

tij(A)
≡ −νij(A) ,A > 0 . (7.32)

Employing the relationship between the T - and S-matrices, Eq. (7.31), we can express the
different νij in terms of phase shifts and the mixing angle along the physical region above
threshold. In this way, one can write the diagonal partial waves as tii = (e2iδi cos 2ǫ− 1)/2iρ,
while for the mixing amplitude t12 = ei(δ1+δ2) sin 2ǫ/2ρ. From these expressions it is straight-
forward to obtain for A > 0:

ν11(A) = ρ(A)

[
1 −

1
2

sin2 2ǫ
1 − cos 2ǫ cos 2δ1

]−1

, (7.33)

ν22(A) = ρ(A)

[
1 −

1
2

sin2 2ǫ
1 − cos 2ǫ cos 2δ2

]−1

, (7.34)

ν12(A) = 2ρ(A)
sin(δ1 + δ2)

sin 2ǫ
. (7.35)

Although not explicitly indicated, it should be understood that the phase shifts and the mixing
angle depend on A. Eq. (7.32) generalizes that of an uncoupled partial wave, Eq. (7.2),
employed in Sec. 7.2. Indeed, if we set ǫ = 0 in ν11(A) and ν22(A), the uncoupled case is
recovered. Note also that νii(A)/ρ(A) > 1.

We apply the N/D method to solve our equations for the T -matrix. As has been previously
shown, in the N/D method a partial wave tij is written as the quotient of a numerator function
Nij(A) and a denominator one Dij(A). The function Nij only has a LHC while the function
Dij has only a RHC. In Refs. [484, 485], a straightforward generalization of the one-channel
N/D method of Chew and Mandelstam [38] was given by writing T = N · D−1 in matrix
notation. This T -matrix would be symmetric, as it is required by temporal inversion, only
under the assumption that DT (T T − T )D vanishes for A → ∞ [485], where the superscript
T indicates the transpose of the corresponding matrix. However, this is not the case for the
chiral potentials, even at LO, e.g., in the 3S1–

3D1 coupled partial waves. This condition is
then too restrictive for its application to chiral EFT where different numbers of subtractions
are taken in the different partial waves involved, whose number also varies according with
the chiral order considered in the calculation of the imaginary part of the NN partial wave
amplitude along the LHC. Whence, our generalization to the coupled partial waves case must
follow other guidelines.

In what follows, we generalize the procedure of Sec. 7.2 to the coupled case. Instead of
making use of a matrix notation as in Refs. [484, 485], we write down three N/D equations,
one for each of the three independent partial waves tij, as in Ref. [477],

tij(A) = Aℓij
Nij(A)
Dij(A)

. (7.36)
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The factor Aℓij guarantees the proper threshold behavior with ℓ11 = ℓ, ℓ22 = ℓ′ = ℓ + 2 and
ℓ12 = (ℓ + ℓ′)/2 = ℓ + 1. As stated above the splitting of the tij(A) function is such that Nij

bears the LHC and Dij the RHC, and then:

ImDij(A) = −Nij(A)Aℓijνij(A) , A > 0 , (7.37)

ImNij(A) = Dij(A)∆ij(A)/Aℓij , A < L , (7.38)

with Imtij ≡ ∆ij along the LHC. The imaginary parts of Dij and Nij are zero elsewhere along
the A-real axis.5 As argued in Ref. [162] and in Sec. 7.2, ∆ij can be calculated perturbatively
in ChPT along the LHC, since it originates from multi-pion exchanges putting on-shell pion
propagators. The intermediate states require then at least one pion so that we apply ChPT
always to irreducible N -nucleon diagrams, responsible for the discontinuity along the LHC.

Two DRs can be written for the functions Dij and Nij, employing the contours CI and
CII in Fig. 7.1, respectively. The integration along the circle at infinity vanishes, if necessary,
by taking sufficient number of subtractions. At LO in the chiral counting [162, 183], the
only contribution to ∆ij along the LHC is OPE. Asymptotically, for p2 → −∞, OPE tends to
constant, so that, according to the Sugawara and Kanazawa theorem [329,480] one subtraction
is necessary for the DR of Nij(A) in S-wave, even though ∆ij(A) → 1/A in the case of OPE.
On general grounds, a partial wave amplitude is bounded because of unitarity by constant/

√
A

for A → +∞ so that tijDij(A)/Aℓij tends to constant for S-wave and zero for any other partial
wave.6 As a result the same theorem then requires that at least one subtraction is necessary
for the S-waves:

Dij(A) = 1 − A

π

∫ +∞

0
dq2νij(q2)Nij(q2)q2ℓij

q2(q2 − A)
, (7.39)

Nij(A) = N0 +
A

π

∫ L

−∞
dk2 ∆ij(k2)Dij(k2)

k2(k2 − A)
, ℓij = 0 , (7.40)

Nij(A) =
1
π

∫ L

−∞
dk2 ∆ij(k2)Dij(k2)

k2ℓij (k2 − A)
, ℓij 6= 0 . (7.41)

The subtraction point is taken at threshold. One subtraction is taken for the Dij(A) function
which is fixed to 1, as in the uncoupled case. For ℓij = 0, S-wave, one subtraction is taken in
Nij(A), as just discussed. In this Section, dedicated to the NN coupled partial waves, this is
the case only for the 3S1 channel. The subtraction constant N0 is the amplitude at threshold,
T11(0) = N0, and then it can be fixed in terms of the 3S1 scattering length, at:

N0 = −4πat

m
, (7.42)

with the value at = 5.424 ± 0.004 fm. The former equation is then just like Eq. (7.13), but for
the 3S1 case. Below in Sec. 7.5.1 we also fix N0 in terms of the experimental deuteron binding
energy.

An integral equation for the function Dij(A) would result by inserting Eq. (7.40) or
Eq. (7.41) into Eq. (7.39). However, as argued in detail in Sec. 7.2, divergent integrals appear

5Because the Schwartz reflection principle is satisfied by tij , Dij and Nij the discontinuity across the RHC

or LHC is given by 2i the imaginary part of the function, just as in the uncoupled case.
6Here we are taking that Dij diverges as

√
A for A → ∞ as in the uncoupled case. This is consistent with

the results obtained explicitly in this work.
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for ℓ > 2 unless a set of ℓ − 1 constraints are satisfied by Dij(A). The generalization of the
sum rules of Sec. 7.2 to the coupled channel case is:

∫ L

−∞
dk2 ∆ij(k2)Dij(k2)

k2λ
= 0 , λ = 2, 3, . . . , ℓij > 2 (7.43)

Expanding the denominator inside the integral of Eq. (7.41), Nij(A) can be written as:

Nij(A) =
1

πAℓij−1

∫ L

−∞
dk2 ∆ij(k2)Dij(k2)

k2(k2 − A)
− 1
π

ℓij−2∑

m=0

1
Am+1

∫ L

−∞
dk2 ∆ij(k2)Dij(k2)

k2(ℓij−m)
(7.44)

and the terms within the sum vanish if the constraints of Eq. (7.43) are fulfilled. This guar-
antees that Nij(A) vanishes as 1/Aℓij which ensures the convergence of the resulting integral
equation for Dij(A).

Let us take first ℓij 6= 0. By inserting the non vanishing piece of Nij into Eq. (7.39), once
the constraints Eq. (7.43) are satisfied, we find the following integral equation for Dij(A):

Dij(A) = 1 +
A

π

∫ L

−∞
dk2 ∆ij(k2)Dij(k2)

k2
gij(A, k2) , (7.45)

gij(A, k2) =
1
π

∫ +∞

0
dq2 νij(q2)

(q2 − A)(q2 − k2)
. (7.46)

The functions gij(A, k2) are the generalization of g(A, k2) given in Sec. 7.2 for the uncoupled
case. An important technical detail is discussed in Appendix H. We show there how the
constraints in Eq. (7.43) guarantee that the functions gij(A, k2) are finite curing a potential
divergence for ij = 22 in the q2 → 0 limit. This divergence was noticed in Ref. [477] but no
procedure was given there to remove it.

The N/D method in the presence of the constraints Eq. (7.43) was solved in the uncoupled
channel case by means of the insertion of CDD poles. This idea is generalized to the case of
coupled channels, and the following equations are then obtained:

Nij(A) =
1
π

∫ L

−∞
dk2 ∆ij(k2)Dij(k2)

k2ℓij (k2 − A)
, (7.47)

Dij(A) = 1 +
A

π

∫ L

−∞
dk2 ∆ij(k2)Dij(k2)

k2
gij(A, k2) +

A
∑ℓij−2

n=0 cnA
n

(A−B)ℓij−1
. (7.48)

The coefficients ci, specific for each wave although not explicitly indicated, are determined in
such a way that the constraints in Eq. (7.43) are satisfied, as in the uncoupled case.

Notice that for the P -waves (ℓij = 1) (we have in our present study the mixing partial
wave in the 3S1–

3D1 system and the 3P2 in 3P2–
3F2 scattering), no constraints are needed,

so that the sum over the CDD poles is dropped and the same formalism applies. This is also
clear because for this case Eq. (7.41) vanishes as 1/A so that there is no room for restrictions.

Let us take now the case ℓij = 0, that only occurs for the 3S1 wave. Since a subtraction is
needed in N11, Eq. (7.40), one should change Eq. (7.48) in two ways as there is no sum over
CDD poles and one has to include an extra term associated with the subtraction in Nij(A) for
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this case. It is straightforward to obtain by inserting Eq. (7.40) into Eq. (7.39) the appropriate
integral equation for D11(A) for the 3S1 partial wave:

D11(A) = 1 − AN0g11(A, 0) +
A

π

∫ L

−∞
dk2 ∆11(k2)D11(k2)

k2
g11(A, k2) , (7.49)

with g11(A, k2) given by Eq. (7.46). Notice also that from Eq. (7.40) it is clear that Nij(A)
tends to constant for ℓij = 0 and A → ∞, so that there is no need for constraints. This is
why no sum over CDD poles is present in the previous equation.

To obtain the final amplitudes, the Dij(A) functions are obtained along the LHC (A <
−m2

π/4) by solving the integral equations in Eq. (7.48) or Eq. (7.49). Next, the functions
Dij(A) are obtained along the RHC (A > 0) from the same equations because the integrand
is known. To obtain the functions Nij(A), since the constraints in Eq. (7.43) are obeyed, one
can use for ℓij 6= 0 either Eq. (7.47) or the first term on the right hand side of Eq. (7.44)
(but the former is more suitable numerically, since it converges faster.) For the 3S1 wave,
one should use Eq. (7.40). The partial waves tij(A) are obtained by employing the resulting
Dij(A) and Nij(A) functions in Eq. (7.36).

Summarizing, up to now, we have repeated the steps followed in the construction of the
partial waves in the uncoupled channel case. The main difference with respect to the uncoupled
case treated in Sec. 7.2 is that now one has to solve simultaneously three N/D equations for
ij=11, 12 and 22 with the functions gij(A, k2) linked between each other. They depend
on the phase shifts δ1 and δ2 and on the mixing angle ǫ, defined in Eq. (7.31), which are
also the final output of our approach. Thus, we employ an iterative procedure (similar to
Ref. [477]) as follows. Given an input for δ1, δ2 and ǫ, one solves the three integral equations
for Dij(A) along the LHC, and then the amplitudes for the RHC can be calculated. The phase
shifts δ1 and δ2 are reobtained from the phase of the S-matrix elements S11 and S22, while
sin 2ǫ = 2ρAℓ12N12/|D12|. In this way a new input set of νij functions, Eqs. (7.33)-(7.35),
is obtained. These are used again in the integral equations, and the iterative procedure is
finished when convergence is found (typically, the difference between one iteration in the three
independent Dij functions along the LHC is required to be less than one per mil.) As the
initial input one can use the results given by UChPT [162], or some put-by-hand phase shifts
and mixing angle, and we find no dependence of our final unitary results with the input
employed.

It can be shown straightforwardly that unitarity is fulfilled in our coupled channel equa-
tions, solved in the way just explained, if |S11(A)|2 = |S22(A)|2 = cos2 2ǫ for A > 0. From the
fact that Imt12 = ν12|t12|2, as follows from Eq. (7.32), and sin 2ǫ = 2ρ|t12| (the latter equality
is valid only when convergence is reached), it follows that the phase of t12 is δ1 +δ2, as required
by unitarity, Eq. (7.31). By construction the phase shifts are equal to one-half the phase of
the S-matrix diagonal elements when convergence is achieved.

7.5 Results for coupled partial waves

We now present the reproduction of the phase shifts and mixing angles for the NN coupled
partial waves with J 6 3 comparing with the data from the Nijmegen PWA [186]. We pay
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special attention to the 3S1–
3D1 system and the deuteron, which is treated in Subsec. 7.5.1. An

extension of our formalism for this wave to include more subtractions in the DR is presented
in Subsec. 7.5.2, which allows a better description of the phase shifts and the properties of
the deuteron. Higher partial waves are treated in Subsec. 7.5.3.

7.5.1 3S1–
3D1 coupled waves

Now we discuss our results for the 3S1–
3D1 coupled waves. Previous papers applying the

N/D method to adjust NN scattering are Refs. [473–476]. We already commented about
Ref. [473, 476]. The other two works by Wong and Scotti, Refs. [474, 475], include together
with OPE other heavier mesons, η, ρ, ω, and the φ is also included in Ref. [475]. Then,
these works follow the basic ideas of meson theory of nuclear forces, that were also used
for the construction of NN potentials (See Ref. [486] and references therein for a historical
perspective). There are some approximations in Refs. [473–475] that we avoid in our work.
E.g. only elastic unitarity is used in Refs. [473, 474] neglecting the mixing between coupled
partial waves. Ref. [475] considers the mixing only for the 3S1–

3D1 coupled partial waves. In
addition, in order to satisfy the threshold behavior for partial waves with ℓ > 2, so that they
vanish as Aℓ, Refs. [474,475] make use of a rather ad-hoc formula. This method was criticized
in Ref. [487] because it includes an unphysical pole for every partial wave at a CM squared
energy s1, somewhat below 4m2 (the threshold for NN scattering). In addition, Refs. [474,475]
also have a cut-off dependence in the way the vector resonance exchanges are damping to avoid
their divergences at infinity. Though the results of Refs. [473–475] are interesting and obtain
typically a good reproduction of data at the phenomenological level, we offer here a novel
way of employing the N/D method in the light of EFT. We then present the method ready
to be used in a systematic way by improving order by order the discontinuity of the partial
wave amplitudes along the LHC since it involves only NN irreducible diagrams, as discussed
above [162]. We satisfy exact unitarity for all the partial waves as well. It is also important
to stress that the N/D method for coupled channels is now presented in a way ready to be
used at any chiral order, without being constrained to satisfy the too demanding Bjorken-
Nauenberg condition [485] in order to end with symmetric partial waves. We accomplish the
right threshold behavior for ℓ > 2 by adding CDD poles at infinity, which is always legitimate
in the N/D method if there are good reasons for including them (which have been offered
before, see Sec. 7.2, [E].) Thus, we do not need to modify the right analytical properties of
partial waves by including a fictitious pole in s1 which is then fine tuned to data, as done in
Refs. [474,475].

The deuteron (d) is a neutron-proton (np) bound state with total angular momentum
J = 1 and spin S = 1 (and isospin zero.) As such, it is seen as a pole below threshold
(|p|2 < 0), in the physical Riemann sheet in the 3S1–

3D1 coupled partial waves. The binding
energy of the deuteron, Ed (defined positive), is given by

Ed = −k2
d

m
, (7.50)

where k2
d is the three-momentum squared at which the pole is located, so that it is negative.

Specifically, in our approach it appears as a zero in the functions Dij(A). From the amplitudes
calculated in Sec. 7.4 we find the deuteron at the position k2

d = −0.08m2
π in the 3S1 amplitude,

corresponding to Ed ≃ 1.7 MeV. The experimental value is Ed ≃ 2.2 MeV. Recall that
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the subtraction constant N0 appearing in the 3S1 partial wave is determined by fixing the
3S1 scattering length to its experimental value, Eq. (7.42). There is still a remnant input
dependence for the 3S1–

3D1 coupled partial waves in our unitary solutions that we fix by
requiring that the deuteron pole position is the same in the 3S1 and in the mixing partial
wave. Independently of the input we do not find any pole in the 3D1 partial wave. Indeed, if
we disregard the coupling between 3S1 and 3D1 and use the method of Sec. 7.2 (Ref. [E]) for
uncoupled waves, the pole appears in the same position in 3S1 and, again, it does not appear
in 3D1. However, the pole should be located at the same energy in every channel, but this is
not the case because we are not using a matrix formalism but solving independently the three
linked N/D equations. Notice also that the deuteron is found mainly in a 3S1 state, and thus
the coupling to 3D1 is very weak.

In order to cure this deficiency and having the right pole structure guaranteeing the pres-
ence of the deuteron pole in 3D1, we write down a twice subtracted DR for the 3D1 partial
wave, such that the function D22(A) has a zero at a given k2

d. The DR reads:

Dij(A) = 1 − A

k2
d

− A(A− k2
d)

π

∫ +∞

0
dq2 νij(q2)Nij(q2)q2ℓij

q2(q2 − A)(q2 − k2
d)

, (7.51)

written in a way that is valid for both the 3D1 partial wave (ij = 22) and for the mixing
partial wave (ij = 12), although we do not use it for the latter. By inserting the expression
for Nij(A), Eq. (7.41), into the previous equation, we end up with the following integral
equation:

Dij(A) = 1 − A

k2
d

+
A(A− k2

d)
π

∫ L

−∞
dk2 ∆ij(k2)Dij(k2)

k2ℓij
g

(d)
ij (A, k2) , (7.52)

where g
(d)
ij (A, k2) is a generalization of the functions gij(A, k2) of Eq. (7.46),

g
(d)
ij (A, k2) =

1
π

∫ +∞

0
dq2 νij(q2)q2(ℓij−1)

(q2 − A)(q2 − k2)(q2 − k2
d)

. (7.53)

For the 3S1–
3D1 waves, we have ℓ = 0 and ℓ′ = 2, so that ℓ12 = 1 and ℓ22 = 2, and the previous

integrals are convergent because of the extra subtraction taken. Recall that, in the formalism
first presented in Sec. 7.4, one must take into account a constraint for the D22(A) partial wave
in order to end with a convergent integral equation. Note that from Eqs. (7.52) and (7.53)
the high-energy behavior of the functions Dij changes, now diverging as A3/2, instead of A1/2

as in Sec. 7.4, stressed before for the uncoupled case. As a result the criterion of imposing
that Nij → 1/Aℓij for A → ∞, the one used in the uncoupled case to deduce the need of
constraints, does not hold now because of the extra subtraction.7 The price to pay for having
included a second subtraction is the need for an input value for k2

d, which has to be provided.
It is then more natural for the 3S1–

3D1 system to fix the binding energy of the deuteron to
its experimental value than the scattering length, as we do below.

As stated in Sec. 7.4, an iterative procedure is followed in order to obtain our final results
for the phase shifts and the mixing angle from the three N/D equations coupled. For every

7From Eq. (7.41) it follows immediately that N22 → 1/A which is the behavior required for N22 =

T22D22/A
2, taking into account the high-energy behavior of D22(A) just discussed.
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Figure 7.6: Comparison of our results for the 3S1 and 3D1 phase shifts and the
mixing angle ǫ1 to the Nijmegen PWA [186], shown by the dot-dashed (red) lines.
The solid (black) lines correspond to fixing the 3S1 scattering length to experiment,
while the dashed (blue) lines in addition fix the deuteron pole position in 3D1 at
the same value as that in 3S1. On the other hand, the double dotted (green) lines
stem by fixing the deuteron pole position in the 3S1 partial wave at its experimental
value. The dash-double-dotted (cyan) lines correspond to having additionally fixed
the deuteron pole in the 3D1 partial wave at the same point as in 3S1.

iteration along that procedure, one obtains from the 3S1 wave amplitude the deuteron pole
position, k2

d. This is the value used as an input for the function D22(A) at every step. In
this way it is not fitted as a free parameter in order to fix the deuteron binding energy, but it
comes out in a natural way from 3S1 and the coupled channel mechanism. The results that we
obtain with this approach are shown in Fig. 7.6 by the dashed (blue) lines, while those obtained
when there is no deuteron pole in 3D1, using Eq. (7.48) instead of Eq. (7.52) with ℓij = 2,
correspond to the solid (black) lines. The results are compared with the Nijmegen PWA [186]
given by the dash-dotted (red) lines. For the 3S1 phase shifts both lines are very similar. The
differences are larger for the 3D1 phase shifts, which are then quite sensitive to reproducing
correctly the deuteron pole also in the 3D1 partial wave. Indeed, the result without imposing
the deuteron in this partial wave is very similar to that obtained from perturbative OPE [454].
Differences are rather small for the mixing angle ǫ1. As the main contribution to the deuteron
comes from 3S1, its position remains almost unchanged compared with the uncoupled case,
with a value obtained for the binding Ed ≃ 1.7 MeV, once the experimental scattering length
is fixed. This corresponds to an effective range r ≃ 0.46 fm, which is much smaller than the
experimental value r = 1.749 fm, the difference being around a 70%. This fact is already
well documented in the literature [488]. Indeed, Ref. [473] shows that when the N/D method
is used with only OPE as the source of the imaginary part along the LHC one needs to fit
two experimental inputs for every NN S-wave in order to reproduce the scattering length
and effective range. For 3S1 the scattering length and the deuteron binding energy are taken
(we take the same input in Sec. 7.5.2 below), while for 1S0 two well measured phase shifts at
different energies are employed. This result from Ref. [473], and our own ones presented below
in Sec. 7.5.2, makes us confident that a NLO study in ChPT with the N/D method will be
phenomenologically successful because a new counterterm enters at this order multiplying an
energy dependent monomial. The authors of Ref. [473] make the approximation of considering
only elastic unitarity for 3S1, neglecting its coupling with 3D1, while our treatment is exact.

It is also interesting to fix the subtraction constant N0 in terms of the deuteron binding
energy and then compare with our previous results when the scattering length was fixed.
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Imposing D11(k2
d) = 0 from Eq. (7.49) and solving for N0 one has

N0 =
1 +

k2
d

π

∫ L

−∞
dk2∆11(k2)d11(k2)g11(k2, k2

d)/k2

k2
d (g11(k2

d, 0) + G(k2
d))

, (7.54)

where we have first split

D11(A) = d11(A) − k2N0g11(A, 0) , (7.55)

from where the function d11(A) is defined. We have also introduced in Eq. (7.54) the function
G(A) given by

G(A) =
1
π

∫ L

−∞
dk2∆11(k2)g11(k2, 0)g11(A, k2) . (7.56)

The integral equation for d11(A) can be obtained from that in Eq. (7.49) taking into account
Eq. (7.55) and replacing N0 by its expression Eq. (7.54). It results

d11(A) = 1 +
A

π

∫ L

−∞
dk2 ∆11(k2)d11(k2)

k2

{
g11(A, k2) (7.57)

− g11(k2, k2
d)G(A)

g11(k2
d, 0) + G(k2

d)

}
− A

k2
d

G(A)
g11(k2

d, 0) + G(k2
d)

.

As in the previous case we fix the dependence on the input by requiring that the deuteron
pole in the mixing wave is located at the same position as in the 3S1 wave, at the k2

d cor-
responding to the binding energy Ed = 2.2 MeV. Regarding the 3D1 partial wave no pole
position is found unless one imposes it in the D22(A) function, making use of Eq. (7.52), hav-
ing then the right pole structure. Once the deuteron pole is imposed the value that we obtain
for the 3S1 scattering length is 4.6 fm and for the effective range 0.41 fm. The latter is indeed
very similar to the values obtained before when the scattering length was taken as input. The
resulting scattering length is around a 15% lower than its experimental value. We show in
Fig. 7.6 by the dash-double-dotted (cyan) lines the results obtained when the deuteron pole is
imposed in the 3S1 and 3D1 partial waves, while the double-dotted (green) line is for the case
when the deuteron pole position is imposed only in the former. The results are rather similar
to the case when the scattering length was fixed. The most sensitive observable is the mixing
angle ǫ1 where the largest difference happens in the peak, somewhat less than 1 degree.

It is worth comparing our results with the pionless effective field theory. In this case pions
are integrated out as heavy degrees of freedom. We can reach this limit by taking gA → 0 in
our results, which implies ∆ij = 0. Only the term proportional to N0 survives in Eq. (7.49)
and N11(A) = N0 from Eq. (7.40). We can determine N0 by fixing the experimental scattering
length, Eq. (7.42), or by reproducing the deuteron binding energy N0 = −4π/

√
m3Ed. The

former case is given by the solid (black) line and the latter by the double-dotted (green) one
in Fig. 7.7. For comparison we also show the lines corresponding to our full results, obtained
by fixing the scattering length and the deuteron binding energy to their experimental values.
The former case corresponds to the dashed (blue) line and the latter to the dash-double-dotted
(cyan) line, as already shown in Fig. 7.6. One observes that the inclusion of pions significantly
improves the phase shifts and make also the results more stable independently of whether the
scattering length or the deuteron pole are adjusted.
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Figure 7.7: Comparison between the results obtained for the theory without pions
and our full results at LO. The Nijmegen PWA [186] corresponds to the dot-dashed
(red) lines. When the 3S1 scattering length is fixed one has the dashed (blue)
line for the pionfull case and the solid (black) line for the pionless one. When the
deuteron binding energy is fixed the dash-double-dotted (cyan) line for the pionfull
theory and the double-dotted (green) line for the pionless case result.

7.5.2 One extra subtraction

Now we impose that the 3S1 partial wave reproduces at the same time both the experimental
values for the 3S1 scattering length, at, and the deuteron binding energy, Ed. Similar re-
strictions were already imposed in Refs. [473, 476]. To accomplish it we introduce one extra
subtraction constant in the D11(A) function by taking one more subtraction in the disper-
sion relation. In this way we enhance the role played by the low energy region because the
extra subtraction gives more weight to the low energy part of the integrand in the dispersion
relation, so that it vanishes faster as A → ∞. The new dispersion relations for N11(A) and
D11(A) read:

N11(A) = N0 +
A

π

∫ L

−∞
dk2 ∆11(k2)D11(k2)

k2(k2 − A)
,

D11(A) = 1 − A

k2
d

− A(A− k2
d)

π
N0

∫ ∞

0
dk2 ν11(k2)

(k2 − A)(k2 − k2
d)k2

+
A(A− k2

d)
π

∫ L

−∞
dk2 ∆11(k2)D11(k2)

k2
g

(d)
11 (A, k2) , (7.58)

with

g
(d)
11 (A, k2) =

1
π

∫ ∞

0
dq2 ν11(q2)

(q2 − k2)(q2 − A)(q2 − k2
d)

. (7.59)

By construction D11(k2
d) = 0 in Eq. (7.58), which guarantees the presence of the deuteron in its

experimental position. Having the right value for the 3S1 scattering length fixes the constant
N0 to Eq. (7.42). The extra subtraction taken in D11, Eq. (7.58), will be also necessary when
considering the NLO ChPT contribution to the discontinuity across the LHC because then
the resulting ∆ij(A) diverges as A for A → ∞.

The deuteron pole is also imposed in the 3D1 partial wave by employing Eq. (7.52) so that
the right pole structure is accomplished. The input is fixed such that the resulting deuteron
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Figure 7.8: From left to right we plot our results, solid (black) curves, for the 3S1

and 3D1 phase shifts and the mixing angle ǫ1, when the experimental 3S1 scattering
length and deuteron binding energy are imposed. The Nijmegen PWA [186] data
are shown by the dot-dashed (red) lines.

pole position in the mixing partial wave 3S1-
3D1 is located in the same position as for the

other two coupled partial waves, as already discussed above.

In Fig. 7.8 we show from left to right the 3S1 and 3D1 phase shifts and the mixing angle
ǫ1 resulting from Eq. (7.58), in that order. A clear improvement as compared with Fig. 7.6 is
observed, so that now the resulting curve run closer to the Nijmegen PWA [186] for the 3S1

phase shifts. An improvement also happens for the mixing angle ǫ1 which now overlaps better
with the Nijmegen results for three-momentum up to around 100 MeV and later the trend
of the curve tends to follow that of the Nijmegen PWA. Let us also stress that the failure to
reproduce ǫ1 in the Kaplan-Savage-Wise scheme [174, 175] was the main reason to conclude
that its perturbative treatment of pion exchange was not appropriate [489]. In contrast,
our LO reproduction of ǫ1 in Fig. (7.6) is already quite close to the Nijmegen results [186]
and improves when considering the extra subtraction, as shown in Fig. 7.8. This is a clear
indication that ǫ1 will be also properly reproduced at NLO in the calculation of ∆ij(A).

Next we evaluate the three independent deuteron parameters that can be calculated from
NN scattering [490]. The first quantity is the binding energy of the deuteron that is fixed
to its experimental value as input. The second quantity that we consider is the asymptotic
D/S ratio η. For that we make use of the Blatt and Beidenharn parameterization [491] and
diagonalize the 3S1–

3D1 S-matrix, S1, by an orthogonal real matrix O,

S1 = O S1;diag O−1 , O =


 cos ǫ1 − sin ǫ1

sin ǫ1 cos ǫ1


 ,

S1;diag ≡

 S0 0

0 S2


 . (7.60)

In terms of ǫ1 one can write for the asymptotic D/S ratio η as [490,492]

η = − tan ǫ1 . (7.61)

The third quantity that we calculate is i times the residue of the eigenvalue S0 at the deuteron
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pole position α ≡
√

−k2
d,

S0 =
N2

p

α+ i|p| + regular terms . (7.62)

We should remark that since we do not employ NN potential to study NN scattering we
cannot compute the wave function of the deuteron and in terms of it evaluate straightforwardly
(in the simplest approximation) other quantities like e.g. the deuteron electric quadrupole
moment Q or the mean-square deuteron radius 〈r2〉1/2. This does not mean that we cannot
obtain such observable quantities from our T -matrix but simply that we should consider other
processes beyond pure NN scattering. For instance, in order to calculate the mean-square
deuteron radius 〈r2〉 we should proceed like done in Chapter 5 to calculate the same quantity
but for the f0(500) or σ resonance, where ππ scattering in the presence of a scalar source was
calculated. Similarly, we should study here NN scattering in the presence of a scalar source
giving rise to the matter form factor of the deuteron. This is beyond the present study and
requires an independent study by itself.

The resulting values that we obtain are:

η = 0.028 , N2
p = 0.74 fm−1. (7.63)

Our results compare well with the experimental determinations η = 0.0271(4) [493, 494] and
η = 0.0263(13) [495]. They also are close to those evaluated in Nijmegen PWA 1993 [186]:

η = 0.02543(7) , N2
p = 0.7830(7) fm−1 . (7.64)

Thus, once we reproduce simultaneously the NN scattering length and the 3S1 scattering
length, the deuteron properties that can be extracted from scattering compare well with the
values determined in partial wave analyses or experiment. We obtain the following value for
the effective range r:

r = 1.56(3) fm , (7.65)

where the error is just statistical by fitting the low-energy phase shifts generated by our
own amplitudes. This number is quite close to the Nijmegen PWA 1993 [186] result, r =
1.753(2) fm.

In Ref. [496] the OPE potential from ChPT is employed in a LS equation solved by
making use of an interesting method based on identifying the input with the T -matrix deep
in the LHC, writing in terms of it the potential. Their results for η and r are very similar
to ours in Eqs. (7.64) and (7.65), obtaining the intervals of values η = 0.0281–0.0293 and
r = 1.36–1.58 fm. Their results for the elastic 3S1 phase shifts are also quite similar to ours,
though for 3D1 they are closer to Nijmegen points [186]. Regarding the mixing angle ǫ1,
Ref. [496] obtains that for a large renormalization scale µ the resulting curves depart from
Nijmegen data [186] by an absolute amount similar to ours for |p| & 100 MeV (our results
lie above while theirs lie below). One should keep in mind that we have taken the scattering
length and the binding energy as input for our calculations, while Ref. [496] only adjusts the
scattering length.

It is well known since the sixties that for the 3S1–
3D1 coupled partial waves solving a LS

equation in terms of the OPE potential gives a significantly better phenomenology than solving
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the N/D method taking for ∆ij(A) the discontinuity along the LHC induced by OPE [487].
However, it is worth keeping in mind that [496], as well as [170], obtain phase shifts for
1S0 which are very similar to ours in Sec. 7.3. It is known that the 1S0 phase shift data of
Nijmegen [186] are reproduced quite closely [458] once TPE contributions and NLO LECs in
the four-nucleon Lagrangian are included. In our novel theory, that calculates the NN partial
waves from ChPT by employing the N/D method, there is no reason to expect that the phase
shifts should be reproduced at LO worse in the 1S0 partial wave than in the 3S1–

3D1 coupled
waves (which results strictly correspond to Fig. 7.6 in terms of only one needed subtraction).
In this respect, it is rewarding that by considering NLO contributions to the NN potential
in the standard Weinberg approach [458] one can obtain good results for 1S0. This should be
also expected for the 3S1–

3D1 case within our approach. Indeed, we have already seen that
by including one extra subtraction the reproduction of phase shifts (particularly for the 3S1)
and mixing angle clearly improves. When considering two-pion exchange at NLO some extra
counterterms are needed because ∆ij(A) diverges as A for A → −∞ along the LHC.

Solving a LS equation with OPE for the 3S1–
3D1 system is much more successful phe-

nomenologically than for the 1S0 case. One should be aware that this is something that is
checked a posteriori and is not rooted in the chiral counting (in which our approach, as well
as the calculation of the potential in ChPT, is based). From our point of view the ladder
resummation in the LS for the 3S1–

3D1 case is providing higher orders terms to ∆ij(A) in the
right direction. However, this improvement should come out when applying the N/D method
to (just a few) higher orders, because along the LHC ∆ij(A) is perturbative and amenable
to a chiral expansion as discussed. For 1S0 the higher orders in ∆(A) provided by the LS
equation are not the important source of dynamics and one has really to consider the full ma-
chinery in order to incorporate at higher orders TPE with the associated chiral counterterms.
It is our aim to develop in the time being a NLO (NNLO) study of NN scattering with our
approach based on the N/D method and the ChPT calculation of ∆(A) in order to definitively
settle this important issue. We would like to stress once more that at this stage our study is
mostly exploratory and not competitive with the nowadays sophisticated potentials [186] or
calculated at higher orders from ChPT [458,462].

The set of works [171,497–499] gives rise to a remarkable description of deuteron properties
employing the NN potential given by OPE in a LS equation, e.g. Ref. [171] achieves for many
observables a 2 − 3% of deviation with respect to the experimental values. But this is not
the only aim of an EFT. That is, one does not expect such a high degree of convergence
by taking only the LO ChPT NN potential. This is more a matter of phenomenological
success and not rooted in the chiral EFT. For baryon ChPT the expansion scale is not so
great, Λ ≃ 12π2f 2

π/g
2
Am ≃ 500 MeV [162, 500], and such a great precision is then difficult to

understand from the ChPT expansion. We want to emphasize this point (consider e.g. the
not so great achievement for the 1S0 case) and develop a formalism where contributions to a
given process can be obtained order by order systematically in the chiral EFT expansion of
∆(A).

7.5.3 Higher partial waves

Finally, we present the results for the spin triplet waves with total angular momentum J =
2 and 3, obtained with the formalism derived in Sec. 7.4. They are shown by the solid (black)
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Figure 7.9: Comparison of our results for the 3P2, 3F2, 3D3 and 3G3 phase shifts
and the mixing angles ǫ2 and ǫ3, shown by the solid (black) lines, to the Nijmegen
PWA [186], represented by the dot-dashed (red) lines.

lines in Fig. 7.9, where they are compared with the Nijmegen PWA [186] (dash-dotted (red)
lines).

We see already a good agreement with data for 3F2 and 3G3 as well as for the mixing
angles ǫ2 and ǫ3. The lower partial waves 3P2 and 3D3 are not well reproduced with only
OPE yet. This fact for the 3D3 partial wave was already observed in Ref. [454], where OPE
was treated perturbatively. In this reference 3D3 is also obtained with opposite sign to data.
The same behavior is observed in Ref. [489] at NLO (but not at NNLO). In Ref. [170], with
one counterterm promoted to LO for the 3P2 wave, the situation is similar. The 3P2 and 3D3

phase shifts are not well reproduced at LO, while the others compare well with data. We
expect to restore the agreement with experiment at higher orders in the application of our
method to 3P2 and 3D3.

7.6 Summary and conclusions

We have applied the N/D method to NN scattering from ChPT. In this method the two cuts
present in a NN partial wave, the RHC and LHC, are separated in two functions, DJℓS(A) and
NJℓS(A), with A the center-of-mass three-momentum squared. While DJℓS(A) has only RHC,
the function NJℓS(A) has only LHC. The NN partial waves, TJℓS = NJℓS/DJℓS (ℓ = 0, 1)
and AℓNJℓS/DJℓS (ℓ > 2), are determined in terms of their discontinuity along the LHC cut
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due to multi-pion exchanges, ∆JℓS(A). At leading order, considered in this work, only OPE
contributes. For D- and higher partial waves, with orbital angular momentum ℓ > 2, one has
to impose the proper behavior of a partial wave at around threshold, such that it vanishes as
Aℓ for A → 0. This gives rise to ℓ−1 constraints, for ℓ > 2, in the form of sum rules involving
the functions ∆JℓS and DJℓS, that must be fulfilled when solving the N/D method. Since the
function DJℓS(A) is determined modulo the addition of CDD poles (that corresponds to zeros
of the NN partial waves along the real axis) we have then added ℓ−1 of such poles at infinity
in DJℓS for ℓ > 2. By sending such poles to infinity we do not include any zero of any NN
partial wave at finite energies. In addition, the residues of these poles in DJℓS are fixed once
the sum rules are satisfied, so that no new parameters are included. At low energies the CDD
poles behaves like adding a polynomial of degree ℓ − 2 to DJℓS. This method is presented
in a novel way, adequate to improve the results order–by–order, both for the uncoupled and
the coupled channel case. This should be accomplished by taking higher orders in the chiral
expansion of the calculation of the discontinuity of the partial wave amplitudes along the
LHC, ∆ij(k2).

The resulting NN partial waves do not contain any regulator. A subtraction constant is
required for the 1S0 partial-wave (and for the 3S1 partial-wave, once the formalism is general-
ized to coupled partial waves) that is fixed by reproducing the experimental scattering length.
Our results are very close to those of Nogga, Timmermans and van Kolck [170] that provide
cut-off independent NN partial waves with OPE as potential. The only noticeable difference
concerns the 3P0 partial wave for which Ref. [170] promoted a higher-order counterterm to
leading order so as to achieve cut-off stable results. In our approach there is no special treat-
ment to the 3P0 partial wave compared to others and our results are a prediction for the 3P0

phase shifts at leading order. For the 1P1 partial wave our phase shifts run closer to data than
those of [170].

Later, we have extended our method to the case of uncoupled partial waves. This extension
is accomplished by providing three N/D equations for each set of partial waves coupled. The
solution is obtained in an iterative and self-consistent way. The correct solution satisfies
coupled channel unitarity, and also the right threshold behavior, by fulfilling sum rules that
are a generalization of those of the uncoupled case.

We have studied the 3S1–
3D1 coupled waves either by fixing the resulting subtraction

constant to the experimental value of the scattering length or the deuteron binding energy.
We find that the 3D1 phase shifts are the most sensitive to this choice. As expected, in all
the cases the triplet S-wave effective range comes out much smaller than experiment. We
have also considered the pionless case and compared with our full results that include OPE.
It is then seen that the results clearly improve for the latter case. For the waves with orbital
angular momentum ℓ > 1 at LO there is no subtraction constant and the results are parameter
free. The resulting phase shifts and mixing angles agree well with the Nijmegen partial wave
analysis results, except for the 3P2 and 3D3 partial waves.

Certainly, including OPE as the only source of discontinuity along the LHC is phenomeno-
logically just a first step and a NLO calculation should be undergone to establish the capability
of the method to reproduce properly NN scattering data. However, one should stress at this
point that our approach based on the N/D method offers a way to calculate NN scattering
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independently of any explicit cut-off, because only convergent integrals appear, while keeping
the chiral power counting. The dispersive integrals are convergent by taking the appropriate
number of subtractions with the related subtraction constants fixed to experimental data.
This method allows one to perform calculations systematically, order by order in ChPT.
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Conclusions

In the following lines, we give a succinct summary of the main achievements within this work,
both regarding theoretical methods and practical results.

In Chapter 3 we studied the scalar sector, focusing mainly on the isoscalar part. We used
the N/D method and Chiral Lagrangians for such purpose. A useful method was developed
there to treat scattering amplitudes involving states that contain scalar mesons (the σ meson in
this case, but it can be easily generalized to other cases) that are dynamically generated from
the interactions among the lightest pseudoscalars. With this method, one can calculate such
kind of amplitudes directly from Chiral Lagrangians, without introducing any free parameter,
and without using ad hoc parameterizations. Moreover, we could also include amplitudes
involving vector fields by considering the latter as gauge fields of the chiral symmetry. From
the point of view of the results, our study is quite global because all the relevant channels,
to which the resonances can decay as reported in the PDG [48], up to the maximum energy
considered (

√
s ≃ 2 GeV), were included. In this way, we have extended several former (and

pioneer) works that studied the scalar sector, also based on the joint implementation of chiral
symmetry and unitarity constraints (see Ref. [42] for an early review). We were able to provide
a global description of many scattering observables, as well as of the hadronic spectrum in
the considered sector. Besides the lightest scalars, we can describe all the resonances listed
by the PDG in the isoscalar–scalar sector: f0(1370), f0(1500), f0(1710) and f0(1790). With
these resonances, once their pole positions and residues are known by our study of scattering
data, we find also agreement with data of the CBC and WA102 Collaborations in which
these channels can be observed. This point is non–trivial, since our description of these data
proceeds a posteriori, from the resonances we find in our amplitudes without fitting them to
these data. The f0(1370) resonance turns out to be an almost pure octet, hence not mixed
with the resonances close in energy. The same can be said about the K0(1430) in I = 1/2. We
must stress that, from our study, we can undoubtedly state that this energy region requires a
careful study including all the relevant coupled channels, a point frequently underestimated.
The main result of our study of the scalar sector regards the f0(1710) resonance. We can
identify it as the lightest scalar glueball, by the comparison of the couplings of this resonance
with those predicted by the chiral suppression of the couplings of a glueball to q̄q, as predicted
by QCD [91], also supported by lattice QCD calculations. In addition, the mass that we find
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for it is close to that predicted by quenched lattice QCD [84–89]. This work had some impact
in our community. Some of the branching ratios we find for the f0(1710) are indeed cited by
the PDG, and Ref. [A] (in which this Chapter is based) is cited in the PDG “Note on scalar
mesons” as a support for the scenario in which the f0(1710) is identified with the glueball.

In Chapter 4 we studied the interactions between the lighter and narrower scalar reso-
nances (f0(980) and a0(980)) and the lightest pseudoscalars, in order to explore the possible
dyanmical generation of heavier pseudoscalar resonances. We take advantage of the fact that
these scalars are dynamically generated in the interactions of pseudoscalars, so that we can
calculate the desired amplitudes directly from the Chiral Lagrangians, similarly as done for
the σ in the previous chapter. We find that these interactions are very rich, and strong enough
to generate pseudoscalar resonances as K(1460), π(1300), π(1800), η(1475) and X(1835), the
former with η–quantum numbers, also. There is an open controversy about the possible exis-
tence of three η states in a narrow window of mass: η(1295), η(1405) and η(1475). There are
suggestions that the latter two could be the same state η(1440). We do not find any signal
for the η(1295), and find just one resonant state that we tentatively identify with the η(1475)
because of its coupling pattern. This work, which has found some relevance in the community
and published in Ref. [B], has already supposed some advance in this issue. We could shed
some further light by including other channels (with vectors) in our approach.

The nature of the σ meson is discussed in detail in Chapter 5 by calculating its quadratic
scalar radius, 〈r2〉σ

s , so as to have an estimate of its size. We find this size to be small, roughly√
〈r2〉σ

s = 0.45 fm, similar to the K± quadratic charge radius, 〈r2〉K±
V = 0.28 ± 0.07 fm2, and

smaller than the quadratic scalar radius of the pion,
√

〈r2〉π
s = 0.81 fm. This leads us to

conclude that the σ meson is a rather compact object, in which the two pions (from which it
is dynamically generated) are strongly overlapping. Thus, a four–quark picture seems more
appropriate than a ππ molecule. These results are in agreement with other works that rule
out the possible q̄q or glueball nature of the σ, but leave open the question of wether it is
a pionic molecule or a four–quark object. This is the main result of our work. We have
also studied in detail the ππ scattering amplitudes in SU(2) UChPT, by fitting the LECs
appearing in the Lagrangian to different data and lattice results. We have obtained values
compatible with other phenomenological as well as lattice results. Our values are l̄1 = 0.8±0.9,
l̄2 = 4.6±0.4, l̄3 = 2±4 and l̄4 = 3.9±0.5. We also find a sensible result for the σ pole position,√
sσ = Mσ − iΓσ/2, with Mσ = 440 ± 10 MeV and Γσ/2 = 238 ± 10 MeV. A comparison with

other determinations of the σ pole by other groups is offered, finding a general agreement
between a large number of different works. Our average values from this comparison are
Mσ = 458±14 MeV and Γσ/2 = 261±17 MeV. In this respect, it is good news that the PDG
has changed the name of the σ meson (f0(600) is now named f0(500)) but, most importantly,
has considerably reduced the uncertainties quoted on its mass and width. This reflects the
fact that, due to the work of a large number of people working in the field, our knowledge
of the σ pole position is quite precise, lying in a range of tens of MeV and, furthermore, we
understand the underlying hadronic physics.

The quark mass dependence of the size of the σ as well as its mass and width is considered as
well. The latter ones are compared with lattice QCD results [153] and theoretical calculations
obtained within the IAM [154], in remarkable agreement. The fact that the mass of this
resonance tends to follow the threshold of two pions is another clear indication that this
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resonance is a dynamically generated meson-meson resonance. We find that, for a pion mass
large enough (mπ & 450 MeV), the σ meson becomes a spread ππ bound state. Studying
the dependence of 〈r2〉σ

s with the pion mass is also useful to understand its physical meaning.
For those pion masses in wich the σ meson is a bound state, we find a larger value for 〈r2〉σ

s .
This value, indeed, becomes infinite when the σ is a zero binding energy bound state, which
agrees with what is expected on Quantum Mechanics grounds. In these situations, hence, a
molecular picture is more appropriate. Finally, we have studied the dependence of the σ form
factor Fσ(q2) (from which 〈r2〉σ

s is extracted) for zero–momentum transfer, q2. This is related
to the dependence of the σ meson pole with mπ through the Feynman–Hellmann theorem,
and a good agreement is found. To our mind, this also supports our treatment of the σ. All
these studies were published in Ref. [C].

In Chapter 6 we investigate the ππ interactions in a finite volume, for the cases of isospin
I = 0 and I = 2. This is an important task, that should be useful for the advances of lattice
QCD calculations, which has become a powerful and widespread tool to study the strong
interactions and, in particular, the hadronic spectrum. In Lattice QCD, through the path
integral formalism, one studies the interactions of quarks and gluons in a lattice box of finite
volume. But one needs to link the results thereof obtained to the real world interactions, which
take place in a continuum and infinite space. In our work, we have studied the corrections
that are due to the finite volume in these interactions, by implementing these corrections (that
arise due to the crossed loops and tadpoles in a field theoretical approach) into the formalism
of Ref. [158], which is an improvement of the Lüscher method [156, 157]. The former is
based in UChPT, and assumes a calculated kernel which is volume independent. The latter
also neglects finite volume corrections, since these are exponentially supressed. Yet, there is
no way, unless one knows precisely the source of the volume dependent terms, to estimate
these effects and determine for which volumes the “exponentially suppressed” corrections have
become smaller than a desired quantity. This is however an important information in realistic
calculations. Our calculation, thus, estimates the size of these supressed contributions. We
conclude that for ππ phase-shifts in the I = 0 channel up to 800 MeV this effect is negligible
for box sizes bigger than 2.5m−1

π and of the order of 5% at around 1.5 − 2m−1
π . For I = 2

the finite size effects can reach up to 10% for that energy. We also quantify the error made
when using the standard Lüscher method to extract physical observables from lattice QCD,
which is widely used in the literature but is an approximation of the one used in the present
work. We must stress that the nonperturbative approach, the study for energies different than
threshold and the study of the I = 0 ππ system are done in the present work for the first time
in the literature. All these findings, published in Ref. [D], are of relevance in the lattice QCD
community because, together with the use of the approach of Ref. [158] that also eliminates
L depended terms (exponentially suppressed) from the Lüscher’s approach, it can encourage
the performance of lattice calculations with smaller size boxes with the consequent economy
in the computing time.

The topic of Chapter 7 is the study of NN interactions. This is a crucial process both for
applications in nuclear physics and for a deeper understanding of the strong interactions. This
problem is usually studied following the Weinberg proposal [163–165] of solving a Lippmann–
Schwinger equation in terms of the calculated chiral NN potential in ChPT (which consists
of contact terms and irreducible multi–pion exchange diagrams.) Many advances have been
done in the last two decades in this issue. There is, however, some controversy about a
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possible inconsistency in the Weinberg scheme of solving the Lippmann-Schwinger equation
from the ChPT calculated potential. Our method is based in solving the N/D method, taking
as the input for the N/D equation the discontinuity due to multi–pion exchanges along the
left-hand cut. This discontinuity is adequate for a chiral power counting as discussed in
Refs. [162,183,184]. Whence, this is an interesting method, because in this way we can avoid
the aforementioned consistency problems of the Weinberg scheme. Without entering in the fine
details of the approach, we must state that it can be applied to uncoupled as well as coupled
channel partial waves. For partial waves with orbital angular momentum ℓ > 2, in order to
satisfy the right threshold behavior, our method requires the presence of some constraints in
the functions of the N/D method. These constraints are satisfied by means of CDD poles.
We obtain a general agreement for the phase shifts and mixing angles of the partial waves
that we calculate, which are compared with the Nijmegen partial wave analysis [186]. When
discussing the 3S1–

3D1 case, we made some extension of the dispersion relations involved in
the N/D method. This also lead us to be confident regarding future improvements of our
method, when calculating the left-hand cut discontinuity in higher orders. Let us remark that
our method is a novel one, and that, at present, it has been worked out just at leading order,
where the discontinuity along the left-hand cut is given by just one-pion exchange. Hence its
predictions are not as precise as those of other methods that offer higher order calculations.
We must stress, though, that this method can be improved order by order, by considering
higher order pion exchanges in the calculation of the left-hand cut discontinuity, and also that
it is based in Chiral Lagrangians, in harmony with the modern persepectives of Effective Field
Theories. Our work in this Chapter is given in Refs. [E,F].
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A
Elementary amplitudes for the scalar

sector

In the following, in order to make notation simpler, we enumerate the channels as follows:
(1)(ππ), (2)(KK̄), (3)(ηη), (4)(σσ), (5)(ηη′), (6)(ρρ), (7)(ωω), (8)(η′η′), (9)(K∗K

∗
), (10)(ωφ),

(11)(φφ), (12)(π∗π) and (13)(a1π).

From the Lagrangians of Eqs. (3.2) and (3.4) one can calculate the interaction kernels
Ni,j = Nj,i, which are symmetric due to time reversal invariance.1 In the following equations,
we give the matrix elements Ni,j with the understanding that those not shown are zero. On
the other hand, the octet and singlet scalar resonance couplings, αi and βi, respectively, are
given below, and the vanishing couplings are not shown. For the I = 1/2 and 3/2 S-waves,
involving the Kπ, Kη and Kη′ channels, we take directly the formulae from Refs. [43, 44],
where they can be found.

N1,1 =
s−m2

π/2
f 2

+
∑

S8

α2
1

M2
S8

− s
+
∑

S1

β2
1

M2
S1

− s
, (A.1)

N1,2 =

√
3s

4f 2
+
∑

S8

α1α2

M2
S8

− s
+
∑

S1

β1β2

M2
S1

− s
, (A.2)

N1,3 = − m2
π√

3f 2
+
∑

S8

α1α3

M2
S8

− s
+
∑

S1

β1β3

M2
S1

− s
, (A.3)

N1,4 =





−75m2
π + 20(s+ s1 + s2)

18
√

3f 4
+
∑

S8

α1α4

M2
S8

− s
+
∑

S1

β1β4

M2
S1

− s





(
α0

gσ(ππ)0

)2

, (A.4)

N1,5 = − m2
π√

3f 2
+
∑

S8

α1α5

M2
S8

− s
+
∑

S1

β1β5

M2
S1

− s
, (A.5)

1For the a1π state one has to choose conveniently the phase of the state so that this result holds for those

transition amplitudes involving this channel.
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N1,6 =
4g2

√
3

(
3 +

s/2 − 2M2
ρ

M2
ρ

)
, (A.6)

N1,8 = − m2
π

2
√

3f 2
+
∑

S8

α1α8

M2
S8

− s
+
∑

S1

β1β8

M2
S1

− s
, (A.7)

N1,9 =g2

(
3 +

s/2 − 2M2
K∗

M2
K∗

)
, (A.8)

N1,12 = − 10dm

3f 3
m2

π , (A.9)

N1,13 = − 4G
f

pa1

√
s

Ma1

+
∑

S8

α1α13

M2
S8

− s
+
∑

S1

β1β13

M2
S1

− s
, (A.10)

N2,2 =
3s
4f 2

+
∑

S8

α2
2

M2
S8

− s
+
∑

S1

β2
2

M2
S1

− s
, (A.11)

N2,3 = − 2(3s− 2m2
η −m2

K)
9f 2

+
∑

S8

α2α3

M2
S8

− s
+
∑

S1

β2β3

M2
S1

− s
, (A.12)

N2,4 =





5(s1 + s2) − 10m2
π)

36f 4
+
∑

S8

α2α4

M2
S8

− s
+
∑

S1

β2β4

M2
S1

− s





(
α0

gσ(ππ)0

)2

, (A.13)

N2,5 =
3s−m2

η −m2
η′ − 3m2

π + 2m2
K

9f 2
+
∑

S8

α2α5

M2
S8

− s
+
∑

S1

β2β5

M2
S1

− s
, (A.14)

N2,6 =g2

(
3 +

s/2 − 2M2
ρ

M2
ρ

)
, (A.15)

N2,7 = −
√

2
3
g2

(
3 +

s/2 − 2M2
ω

M2
ω

)
, (A.16)

N2,8 = − 32m2
K + 3s− 2m2

η′ − 6m2
π

36f 2
+
∑

S8

α2α8

M2
S8

− s
+
∑

S1

β2β8

M2
S1

− s
, (A.17)

N2,9 =
4g2

√
3

(
3 +

s/2 − 2M2
K∗

M2
K∗

)
, (A.18)

N2,10 =
2g2

√
3

(
2 +

s−M2
φ −M2

ω

2MφMω

)
, (A.19)

N2,11 = − 2g2

√
3

(
3 +

s/2 − 2M2
φ

M2
φ

)
, (A.20)

N2,12 = − dm√
3f 3

(3m2
K +m2

π) , (A.21)

N2,13 = −
√

3G
f

pa1

√
s

Ma1

+
∑
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α2α13

M2
S8

− s
+
∑
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β2β13

M2
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− s
, (A.22)

N3,3 =
2m2

K +m2
π

9f 2
+
∑
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α2
3

M2
S8

− s
+
∑

S1

β2
3

M2
S1

− s
, (A.23)

N3,4 =



− 5m2

π
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+
∑
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S8

− s
+
∑
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M2
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− s





(
α0

gσ(ππ)0

)2

, (A.24)
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N3,5 = − 4(m2
K −m2

π)
9f 2

+
∑

S8

α3α5

M2
S8

− s
+
∑

S1

β3β5

M2
S1

− s
, (A.25)

N3,8 =
4m2

K −m2
π

9f 2
+
∑
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α3α8
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− s
+
∑
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β3β8
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, (A.26)

N3,9 = − 8g2
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3
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)
, (A.27)
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(A.29)
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∑
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, (A.30)

N4,6 =

{
40g2

9f 2
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, (A.31)
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
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∑
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)(
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gσ(ππ)0
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α0

gσ(ππ)0
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, (A.34)
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
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∑
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)
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4dmm

2
π√

3f 3
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, (A.42)
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π∗ −m2
π)2
)

, (A.43)
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+
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α1 =
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Loop functions

In this Appendix, we give the loop functions used through the thesis, mainly in Chapters 5
and 6. We start with the scalar one-, two- and three-point one-loop scalar integrals, denoted
by A0, B0 and C0, respectively, and depicted in Fig. B.1. The vector and tensor integrals,
defined later, can be cast in terms of the former. Special attention is dedicated to the case
of the three-point function, whose cuts are also calculated since they are needed in order to
calculate the scalar form factor of the σ meson. Notice that all the internal masses are equal,
as we only have pions as degrees of freedom. For this reason, we do not include the dependence
on the internal mass M2 in the following (except for the case of the function A0, which does
not depend on any external momenta).

B.1 Scalar loop integrals

The simplest one is the one-point loop integral, given by:

A0(M2) = i
∫ d4k

(2π)4

1
k2 −M2 + iǫ

. (B.1)

In dimensional regularization, it results:

A0(M2) =
M2

16π2

(
R + log

M2

µ2

)
, (B.2)

with

R = µn−4
( 2
n− 4

− (1 + Γ′(1) + log 4π)
)

, (B.3)

and n → 4.

The two point function is:

B0(P 2) = i
∫ d4k

(2π)4

1(
k2 −M2 + iǫ

)(
(k − P )2 −M2 + iǫ

) , (B.4)
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k

P

k

P − k

P
A0(M2) B0(P2,M2)

p1

q = p2 − p1

p2

k

p1 − k p2 − k

C0(p2
1, p

2
2, q

2,M2)

Figure B.1: Diagrams for the one-loop functions A0, B0 and C0 (from left to right
and top to bottom, respectively).

and analogously, in dimensional regularization,

B0(P 2) =
1

16π2

(
R + log

M2

µ2
− 1 − σ(P 2) log

σ(P 2) − 1
σ(P 2) + 1

)
, (B.5)

with σ(P 2) =
√

1 − 4M2/P 2. Since the function is divergent and µ-dependent, we define the

subtracted function, B̄0(P 2),

B̄0(P 2) = B0(P 2) −
R + log

M2

µ2

16π2
. (B.6)

This is the function that will appear in the amplitudes, since the piece that we have subtracted
cancels out with the alike terms in the loops and the chiral counterterms. The same procedure,
applied to A0(M2), gives

Ā0 = A0(M2) − M2

16π2

(
R + log

M2

µ2

)
= 0 , (B.7)

this is why in the amplitudes of Appendix C there is no dependence on Ā0.

The three-point function is defined by:

C0(p2
1, p

2
2, q

2) = i
∫ d4k

(2π)4

1
k2 −M2 + iǫ

× 1(
(k − p1)2 −M2 + iǫ

)(
(k − p2)2 −M2 + iǫ

) , (B.8)
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and it depends on the three scalar p2
1, p

2
2 and q2 ≡ (p1 − p2)2. It is finite and after lengthy

calculations [501], it can be cast in integral form:

C0(p2
1, p

2
2, q

2) =
1

16π2λ(p2
1, p2

2, q2)1/2

{

∫ 1

0
dz

log f(p2
1, z) − log f(p2

1, z1)
z − z1

+

+
∫ 1

0
dz

log f(p2
2, z) − log f(p2

2, z2)
z − z2

+

+
∫ 1

0
dz

log f(q2, z) − log f(q2, z3)
z − z3

}
, (B.9)

where we have defined:

f(p2, z) = p2z(z − 1) +M2 − iǫ , (B.10)

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2bc− 2ac , (B.11)

z1 =
1
2

(
1 +

p2
1 − p2

2 − q2

λ(p2
1, p2

2, q2)1/2

)
, (B.12)

z2 =
1
2

(
1 +

p2
2 − p2

1 − q2

λ(p2
1, p2

2, q2)1/2

)
, (B.13)

z3 =
1
2

(
1 +

q2 − p2
1 − p2

2

λ(p2
1, p2

2, q2)1/2

)
. (B.14)

The usefulness of Eq. (B.9) lies in the fact that it is well suited for its analytical continuation
to the complex plane, which is needed in our case, since the cases p2

1 = p2
2 = sσ are studied.

Notice that the residues of the integrals when z → zi are zero because of the form of the
numerators, and also that, since z(z − 1) > 0 for z ∈ [0, 1], the arguments of the logarithms
do not cross any cut.

On the other hand, since the pole of the σ resonance appears in the unphysical Riemann
sheet, we need to calculate the amplitudes ππH → ππ in this sheet. This involves the function
C0(s, s, q2) in this sheet,1 and this is not so trivial as in the case of the function G(s) (see
Eqs. (5.11) and (5.12)). For that purpose, we calculate the discontinuity along the unitarity
cut of the function C0(s, s, q2):

∆C0 = C0(s+ iǫ, s+ iǫ, q2) − C0(s− iǫ, s− iǫ, q2) , (B.15)

for s > 4M2. This can be obtained directly from the integral representation in Eq. (B.9), and
the result depends on the value of q2. We are interested mainly in the case q2 6 0, and we
find two cases:

∆aC0 =
i

4πλ(s, s, q2)1/2
log

(
z− − z1

z+ − z1

)
for q2 6 q2

an , (B.16)

∆bC0 =
i

4πλ(s, s, q2)1/2
log

(
1 − z1

−z1

z− − z1

z+ − z1

)

1Notice that we have already considered s = s′, since this will be the case in the σ form factor, because

s = s′ = sσ.



B. Loop functions 230

+
i

8πλ(s, s, q2)1/2
log

(1 − z3

−z3

)
for q2

an 6 q2 6 4M2 , (B.17)

where we have defined z± = 1
2
(1 ± σ(s)). In the previous equation q2

an is the so called
anomalous threshold, given by M2q2

an = −s(s − 4M2) 6 0, where the last inequality follows
from s > 4M2. The case that connects continuously with q2 = 0 is the one denoted by ∆bC0,
which is the one involved in the calculation of the quadratic scalar radius, for which we take
q2 → 0−.

As a cross-check of the validity of our procedure, let us note that the function C0 is
related for q2 = 0 to the derivative of the function G(s) with respect to M2, denoted by
dG(s,M2)/dM2 = Ġ. Indeed, one has

2C0(s, s, 0) = Ġ(s) =
1

8π2sσ(s)
log

σ(s) − 1
σ(s) + 1

. (B.18)

In the calculation of the scalar form factor C0 appears, while in the derivative of the σ pole
position, ṡσ, one has Ġ. Both are related through the Feynman-Hellmann theorem, Eq. (5.82),
and thus, the unphysical Riemann sheet for the function C0 must be related to that of the
function G(s). When the pole is in the unphysical Riemann sheet, we have:

ĠII(s) = ĠI(s) − ∆̇G(s) = ĠI(s) − i

4πsσ(s)
. (B.19)

If we now calculate the value ∆bC0(s, s, 0), we find:

∆bC0(s, s, 0) =
i

8πsσ(s)
, (B.20)

so that

C0;II(s, s, 0) = C0;I(s, s, 0) − ∆bC0(s, s, 0)

= C0;I(s, s, 0) − i

8πsσ(s)
, (B.21)

which implies, as stated, 2C0;II(s, s, 0) = ĠII(s).

B.2 Vector and tensor loop integrals

Vector and tensor loop integrals appear throughout the amplitudes in Appendix C. We reduce
them to the scalar ones by means of the Passarino-Veltman method [502]. We start with the
two-point vector and tensor integrals, defined by

B{µ;µν} = i
∫ d4k

(2π)4

{kµ; kµkν}(
k2 −M2 + iǫ

)(
(k − P )2 −M2 + iǫ

) . (B.22)

On Lorentz-invariance grounds, we can write

Bµ = −P µB11(P ) , (B.23)
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where the minus sign is introduced for convenience, and, performing the contraction P µBµ, it
can be shown that:

B11(P 2) = −1
2
B0(P 2) . (B.24)

Analogously, the tensor integral can be decomposed as:

Bµν = PµPνB20(P 2) + gµνP
2B21(P 2) , (B.25)

and the following results, by the appropriate contractions, are obtained:

P 2B20(P 2) =
A0(M2)

3
− M2 − P 2

3
B0(P 2) +

1
48π2

(
M2 − P 2

6

)
, (B.26)

P 2B21(P 2) =
A0(M2)

6
+

4M2 − P 2

12
B0(P 2) − 1

48π2

(
M2 − P 2

6

)
. (B.27)

For the three-point vector and tensor integrals, we define:

C{µ;µν} = i
∫ d4k

(2π)4

{kµ; kµkν}
k2 −M2 + iǫ

(B.28)

× 1(
(k − p1)2 −M2 + iǫ

)(
(k − p2)2 −M2 + iǫ

) ,

and

Cµ = −pµ
1C11 − pµ

2C12 , (B.29)

Cµν = pµ
1p

ν
1C21 + pµ

2p
ν
2C22 + (pµ

1p
ν
2 + pν

1p
µ
2)C23 + gµνC24 , (B.30)

where for simplifying the writing we have omitted the arguments in Cij(p2
1, p

2
2, q2). The results

for these functions are:

C11 =
(
p2

2B0(p2
2) − p1p2B0(p2

1) − (p2
2 − p1p2)B0(q2)

−p2
2(p

2
1 − p1p2)C0(p2

1, p
2
2, q

2)
)
/(2 det H) , (B.31)

C12 =
(
p2

1B0(p2
1) − p1p2B0(p2

2) − (p2
1 − p1p2)B0(q2)

−p2
1(p

2
2 − p1p2)C0(p2

1, p
2
2, q

2)
)
/(2 det H) , (B.32)

C24 = − 1
64π2

+
M2

2
C0(p2

1, p
2
2, q

2)

+
1
4

(
B0(q2) + p2

1C11 + p2
2C12

)
, (B.33)

C21 =
(
p2

2Ra − p1p2Rc

)
/ det H , (B.34)

C22 =
(
p2

1Rd − p1p2Rb

)
/ det H , (B.35)

C23 =
(
p2

1Rc + p2
2Rb − p1p2(Ra +Rd)

)
/(2 det H) , (B.36)

with

H =


 p2

1 p1p2

p1p2 p2
2


 , (B.37)
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and

Ra =
1
4
B0(q2) − 1

2
p2

1C11 − C24 , (B.38)

Rb =
1
4
B0(q2) − 1

2
p2

1C12 − 1
4
B0(p2

2) , (B.39)

Rc =
1
4
B0(q2) − 1

2
p2

2C11 − 1
4
B0(p2

1), (B.40)

Rd =
1
4
B0(q2) − 1

2
p2

2C12 − C24 . (B.41)

Analogously to the scalar loop integrals, we define the subtracted functions B̄ij and C̄ij

by substituting in their expressions given above A0 → Ā0 and B0 → B̄0. The amplitudes
ππH → ππ in Appendix C are then written in terms of finite and scale independent functions.



C
ππH → ππ amplitudes

In this Appendix, the amplitudes ππH → ππ are given for completeness. We follow the
nomenclature given in Fig. 5.14. We give the finite contributions to each amplitude once the
infinite and scale dependent terms are cancelled among them. In this way, the amplitudes are
written in terms of the finite and scale independent constants l̄i as well as the subtracted loop
functions defined in Appendix B, B̄0, etc... The diagrams denoted in Fig. 5.14 by VI, XI and
XII, both in the case of π0π0 H → π0π0 and π0π0 H → π+π−, are proportional to the tadpole
function, A0(M2), so they do not contribute to the finite amplitude, as explained before.

In the subsequent, unless the opposite is stated, the subscript i = 1, . . . , 4 indicates the
pion leg with four-momentum pi to which the scalar source is attached. The functions Di,
corresponding to the inverse of the pion propagators when the scalar source is attached to
the ith external pion leg, are used through this Appendix. These functions were defined in
Eq. (5.49).

C.1 Diagrams I

C.1.1 π0π0H → π0π0

T (LO) = −6B
f 2

π

, (C.1)

T (NLO) = −3B
f 4

π

m2
π

4π2
l̄4 . (C.2)

C.1.2 π0π0H → π+π−

T (LO) = −2B
f 2

π

, (C.3)

233
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T (NLO) = −B

f 4
π

m2
π

4π2
l̄4 . (C.4)

The NLO result corresponds to the LO diagram I multiplied by 2δZ, with the latter given
in Eq. (1.283). In addition m2, f 2 are expressed in terms of the physical values mπ and fπ

according to the expansions of Eqs. (1.288) and (1.289).

C.2 Diagrams II

C.2.1 π0π0H → π0π0

T (LO)

1 =
2B
f 2

π

(
1 +

m2
π

D1

)
,

T (LO)

2 =
2B
f 2

π

(
1 +

m2
π

D2

)
,

T (LO)

3 =
2B
f 2

π

(
1 +

m2
π

D3

)
,

T (LO)

4 =
2B
f 2

π

(
1 +

m2
π

D4

)
. (C.5)

T (NLO)

1 =
B

f 4
π

{
l̄4m

2
π

4π2
+
m4

π

D1

4l̄4 − 3l̄3
16π2

}
,

T (NLO)

2 =
B

f 4
π

{
l̄4m

2
π

4π2
+
m4

π

D2

4l̄4 − 3l̄3
16π2

}
,

T (NLO)

3 =
B

f 4
π

{
l̄4m

2
π

4π2
+
m4

π

D3

4l̄4 − 3l̄3
16π2

}
,

T (NLO)

4 =
B

f 4
π

{
l̄4m

2
π

4π2
+
m4

π

D4

4l̄4 − 3l̄3
16π2

}
. (C.6)

C.2.2 π0π0H → π+π−

T (LO)

1 =
2B
f 2

π

s −m2
π

D1

,

T (LO)

2 =
2B
f 2

π

s −m2
π

D2

,

T (LO)

3 =
2B
f 2

π

s′ −m2
π

D3

,

T (LO)

4 =
2B
f 2

π

s′ −m2
π

D4

. (C.7)
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iT (NLO)

1 =
B

f 2
π

m2
π

D1

4l̄4(s −m2
π) − l̄3m

2
π

16π2
,

iT (NLO)

2 =
B

f 2
π

m2
π

D2

4l̄4(s −m2
π) − l̄3m

2
π

16π2
,

iT (NLO)

3 =
B

f 2
π

m2
π

D3

4l̄4(s′ −m2
π) − l̄3m

2
π

16π2
,

iT (NLO)

4 =
B

f 2
π

m2
π

D4

4l̄4(s′ −m2
π) − l̄3m

2
π

16π2
. (C.8)

The NLO results are obtained by multiplying the LO ones by 3δZ and withm2, f 2 re-expressed
in terms of the physical m2

π and f 2
π , respectively, according to Eqs. (1.288) and (1.289). Notice

that in addition to the factor Z2 from the wave function renormalization of the external pion
legs there is an extra factor Z from the renormalized pion propagator, Eq. (1.282).

C.3 Diagrams III

The diagrams III and higher in numeration are purely NLO contributions. To simplify writing
we then omit the superscript NLO in the corresponding amplitudes.

C.3.1 π0π0H → π0π0

T = −3B
f 4

π

l̄4
8π2

q2 . (C.9)

C.3.2 π0π0H → π+π−

T = −B

f 4
π

l̄4
8π2

q2 . (C.10)

C.4 Diagrams IV

C.4.1 π0π0H → π0π0

T1 =
B

f 4
π

l̄4q
2 − l̄3m

2
π

8π2

(
1 +

m2
π

D1

)
,

T2 =
B

f 4
π

l̄4q
2 − l̄3m

2
π

8π2

(
1 +

m2
π

D2

)
,

T3 =
B

f 4
π

l̄4q
2 − l̄3m

2
π

8π2

(
1 +

m2
π

D3

)
,
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T4 =
B

f 4
π

l̄4q
2 − l̄3m

2
π

8π2

(
1 +

m2
π

D4

)
. (C.11)

C.4.2 π0π0H → π+π−

T1 =
B

f 4
π

l̄4q
2 − l̄3m

2
π

8π2

(
s −m2

π

D1

)
,

T2 =
B

f 4
π

l̄4q
2 − l̄3m

2
π

8π2

(
s −m2

π

D2

)
,

T3 =
B

f 4
π

l̄4q
2 − l̄3m

2
π

8π2

(
s′ −m2

π

D3

)
,

T4 =
B

f 4
π

l̄4q
2 − l̄3m

2
π

8π2

(
s′ −m2

π

D4

)
. (C.12)

C.5 Diagrams V

C.5.1 π0π0H → π0π0

T1 = −B

f 4
π

l̄1 + 2l̄2
24π2

(
D1 + 2m2

π − s 2 + t′2 + u′2 − 4m4
π

D1

)
,

T2 = −B

f 4
π

l̄1 + 2l̄2
24π2

(
D2 + 2m2

π − s 2 + t 2 + u 2 − 4m4
π

D2

)
,

T3 = −B

f 4
π

l̄1 + 2l̄2
24π2

(
D3 + 2m2

π − s′2 + t′2 + u 2 − 4m4
π

D3

)
,

T4 = −B

f 4
π

l̄1 + 2l̄2
24π2

(
D4 + 2m2

π − s′2 + t 2 + u′2 − 4m4
π

D4

)
. (C.13)

C.5.2 π0π0H → π+π−

In these amplitudes, we define:

P (s, t,u) = 4m4
π(l̄1 + 2l̄2) + l̄1s

2 + l̄2(t2 + u2)

− 2m2
π(2l̄1s+ 2l̄2(t+ u)) (C.14)

T1 = − B

24π2f 4
π

(
l̄1s + l̄2(t′ + u′) − 2m2

π(l̄1 + 2l̄2) − P (s , t′,u′)
D1

)
,

T2 = − B

24π2f 4
π

(
l̄1s + l̄2(t + u ) − 2m2

π(l̄1 + 2l̄2) − P (s , t ,u )
D2

)
,

T3 = − B

24π2f 4
π

(
l̄1s

′ + l̄2(t′ + u ) − 2m2
π(l̄1 + 2l̄2) − P (s′, t′,u )

D3

)
,
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T4 = − B

24π2f 4
π

(
l̄1s

′ + l̄2(t + u′) − 2m2
π(l̄1 + 2l̄2) − P (s′, t ,u′)

D4

)
. (C.15)

C.6 Diagrams VII

C.6.1 π0π0H → π0π0

T1 = −B

f 4
π

{
2q2 +D1 +m2

π

2q2 −m2
π

D1

}
B̄0(q2) ,

T2 = −B

f 4
π

{
2q2 +D2 +m2

π

2q2 −m2
π

D2

}
B̄0(q2) ,

T3 = −B

f 4
π

{
2q2 +D3 +m2

π

2q2 −m2
π

D3

}
B̄0(q2) ,

T4 = −B

f 4
π

{
2q2 +D4 +m2

π

2q2 −m2
π

D4

}
B̄0(q2) . (C.16)

C.6.2 π0π0H → π+π−

T1 = −B

f 4
π

(
s −m2

π

){
1 +

2q2 −m2
π

D1

}
B̄0(q2) ,

T2 = −B

f 4
π

(
s −m2

π

){
1 +

2q2 −m2
π

D2

}
B̄0(q2) ,

T3 = −B

f 4
π

(
s′ −m2

π

){
1 +

2q2 −m2
π

D3

}
B̄0(q2) ,

T4 = −B

f 4
π

(
s′ −m2

π

){
1 +

2q2 −m2
π

D4

}
B̄0(q2) . (C.17)

C.7 Diagrams VIII

C.7.1 π0π0H → π0π0

s-channel diagrams:

T1 = −2B
f 4

π

{
m2

π

2
+

3
2
m4

π + s 2 − 2s m2
π

D1

}
B̄0(s ) ,

T2 = −2B
f 4

π

{
m2

π

2
+

3
2
m4

π + s 2 − 2s m2
π

D2

}
B̄0(s ) ,

T3 = −2B
f 4

π

{
m2

π

2
+

3
2
m4

π + s′2 − 2s′m2
π

D3

}
B̄0(s′) ,

T4 = −2B
f 4

π

{
m2

π

2
+

3
2
m4

π + s′2 − 2s′m2
π

D4

}
B̄0(s′) . (C.18)
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t-crossed diagrams:

T1 = −2B
f 4

π

{
m2

π

2
+

3
2
m4

π + t′2 − 2t′m2
π

D1

}
B̄0(t′) ,

T2 = −2B
f 4

π

{
m2

π

2
+

3
2
m4

π + t 2 − 2t m2
π

D2

}
B̄0(t ) ,

T3 = −2B
f 4

π

{
m2

π

2
+

3
2
m4

π + t′2 − 2t′m2
π

D3

}
B̄0(t′) ,

T4 = −2B
f 4

π

{
m2

π

2
+

3
2
m4

π + t 2 − 2t m2
π

D4

}
B̄0(t ) . (C.19)

u-crossed diagrams:

T1 = −2B
f 4

π

{
m2

π

2
+

3
2
m4

π + u′2 − 2u′m2
π

D1

}
B̄0(u′) ,

T2 = −2B
f 4

π

{
m2

π

2
+

3
2
m4

π + u 2 − 2u m2
π

D2

}
B̄0(u ) ,

T3 = −2B
f 4

π

{
m2

π

2
+

3
2
m4

π + u 2 − 2u m2
π

D3

}
B̄0(u ) ,

T4 = −2B
f 4

π

{
m2

π

2
+

3
2
m4

π + u′2 − 2u′m2
π

D4

}
B̄0(u′) . (C.20)

C.7.2 π0π0H → π+π−

In the t and u channels amplitudes, we define:

Q(s, t,u) =
(s+ u− 2m2

π)(m2
π − t) +m2

πt

2
B̄0(t)

+ t(s+ u− 4m2
π)B̄20(t) + 2t(u− 2m2

π)B̄21(t) (C.21)

s-channel diagrams

T1 = −B

f 4
π

(s −m2
π)

(
1 +

s +m2
π

D1

)
B̄0(s ) ,

T2 = −B

f 4
π

(s −m2
π)

(
1 +

s +m2
π

D2

)
B̄0(s ) ,

T3 = −B

f 4
π

(s′ −m2
π)

(
1 +

s′ +m2
π

D3

)
B̄0(s′) ,

T4 = −B

f 4
π

(s′ −m2
π)

(
1 +

s′ +m2
π

D4

)
B̄0(s′) . (C.22)

t-crossed diagrams

T1 = −2B
f 4

π

Q(s , t′,u′)
D1

,
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T2 = −2B
f 4

π

Q(s , t ,u )
D2

,

T3 = −2B
f 4

π

Q(s′, t′,u )
D3

,

T4 = −2B
f 4

π

Q(s′, t ,u′)
D4

. (C.23)

u-crossed diagrams:

T1 = −2B
f 4

π

Q(s ,u′, t′)
D1

,

T2 = −2B
f 4

π

Q(s ,u , t )
D2

,

T3 = −2B
f 4

π

Q(s′,u , t′)
D3

,

T4 = −2B
f 4

π

Q(s′,u′, t )
D4

. (C.24)

C.8 Diagrams IX

In these amplitudes, the scalar source s can be attached to one of the two four pion vertex
(recall Fig. 5.14), which we denote here by the subscript i = 1, 2.

C.8.1 π0π0H → π0π0

s-channel diagrams:

T1 =
B

f 4
π

(
2s +m2

π

)
B̄0(s ) ,

T2 =
B

f 4
π

(
2s′ +m2

π

)
B̄0(s′) . (C.25)

t-crossed diagrams:

T1 =
B

f 4
π

(
2t +m2

π

)
B̄0(t ) ,

T2 =
B

f 4
π

(
2t′ +m2

π

)
B̄0(t′) . (C.26)

u-crossed diagrams:

T1 =
B

f 4
π

(
2u +m2

π

)
B̄0(u ) ,

T2 =
B

f 4
π

(
2u′ +m2

π

)
B̄0(u′) . (C.27)
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C.8.2 π0π0H → π+π−

s-channel diagrams:

T1 =
B

f 4
π

(
4s − 3m2

π

)
B̄0(s ) ,

T2 =
B

f 4
π

(
4s′ − 3m2

π

)
B̄0(s′) . (C.28)

t-crossed diagrams:

T1 = −B

f 4
π

(
t − 2m2

π

)
B̄0(t ) ,

T2 = −B

f 4
π

(
t′ − 2m2

π

)
B̄0(t′) . (C.29)

u-crossed diagrams:

T1 = −B

f 4
π

(
u − 2m2

π

)
B̄0(u ) ,

T2 = −B

f 4
π

(
u′ − 2m2

π

)
B̄0(u′) . (C.30)

C.9 Diagrams X

C.9.1 π0π0H → π0π0

s-channel diagrams:

T = −2B
f 4

π

{(
2(s−m2

π)(s′ −m2
π) +m4

π

)
C0(s, s′, q2)+

+m2
π

(
B̄0(s) + B̄0(s′) + 2B̄0(q2)

)
+
s+ s′ − q2

2
B̄0(q2)

}
(C.31)

t-crossed diagrams:

T = −2B
f 4

π

{(
2(t−m2

π)(t′ −m2
π) +m4

π

)
C0(t, t′, q2)+

+m2
π

(
B̄0(t) + B̄0(t′) + 2B̄0(q2)

)
+
t+ t′ − q2

2
B̄0(q2)

}
(C.32)

u-crossed diagrams:

T = −2B
f 4

π

{(
2(u−m2

π)(u′ −m2
π) +m4

π

)
C0(u,u′, q2)+

+m2
π

(
B̄0(u) + B̄0(u′) + 2B̄0(q2)

)
+
u+ u′ − q2

2
B̄0(q2)

}
(C.33)
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C.9.2 π0π0H → π+π−

s-channel diagrams:

T = −2B
f 4

π

(
(ss′ −m4

π)C0(s, s′, q2) + (s+ s′ − 2m2
π)B̄0(q2)+

+ (s′ −m2
π)B̄0(s′) + (s−m2

π)B̄0(s)

)
(C.34)

t-crossed diagrams:

T = − 2B
f 4

π

(
(2m2

π − t)(2m2
π − t′)

2
C0(t, t′, q2)+

2m2
π − t

2

(
B̄0(q2) + B̄0(t)
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u-crossed diagrams:

T = − 2B
f 4

π

(
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π − u)(2m2
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2
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(
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)
+
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+
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(C.36)

C.10 Diagrams XIII

C.10.1 π0π0H → π0π0

T =
B

f 4
π

(
25m2

π + 8q2
)
B̄0(q2) . (C.37)

C.10.2 π0π0H → π+π−

T =
B

f 4
π

(
5(s+ s′ −m2

π) + q2
)
B̄0(q2) . (C.38)





D
Unitarized meson–meson amplitudes

for scalar–pseudoscalar scattering

We use UChPT (see Sec. 2.7) to unitarize the different isospin channels amplitudes for meson–
meson scattering, which are fitted to data, and then used in the vertex of the triangle loop.
From these amplitudes, once fitted, the position of the poles can be found (we use here the
f0(980) and a0(980), but we also check for the appearance of the other scalars, σ and κ). As
mentioned, the amplitudes are unitarized through

TI = (1 + VI ·G)−1 · VI , (D.1)

which is analogous to eq. (4.11) but now for the pseudoscalar-pseudoscalar scattering. The
symmetric matrix VI (the analogous one to TIG in eq. (4.11)) collects the S-wave pseudoscalar-
pseudoscalar tree-level amplitudes obtained from the lowest order Chiral Lagrangians includ-
ing resonances as well. The matrix G is a diagonal matrix that contains the meson–meson
loop propagator (the same expression as given in eq. (4.12) can be used with the appropriate
replacement for the masses involved.)

The lowest order chiral Lagrangian at leading order in large NC which also includes the
η1 was given in Subsec. 3.2.1, and also the treatment of the η–η′ mixing was given there.
As in Chapter 3, the explicit exchange of JP C = 0++ scalar resonances is incorporated and
calculated from the leading order chiral Lagrangians, see Sec. 1.13. The interaction kernels
obtained from all those Lagrangians can thus be written as:

Vij = V
(C)

ij + V
(R)

ij , (D.2)

V
(R)

ij =
αiαj

M2
R − s

,

where C means contact term and R resonance exchange. This is represented diagrammatically
in Fig. D.1.

In what follows, we give explicit formulae for the contact kernels from the chiral La-
grangians for the different isospin channels. We also give the couplings αi for each scalar
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= +

Vij V
(C)
ij

αi αj

Figure D.1: Eq. (D.2) in terms of Feynman Diagrams

resonance. For I = 0 we include the superscript (8) or (1) in αi to distinguish between
the octet and singlet contributions, respectively. For the rest of isospins there is no singlet
contribution.
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• I = 1/2
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• I = 1
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• I = 3/2
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K −m2
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2f 2
π
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Parameter Value

c̃d (MeV) 18 ± 1

c̃m (MeV) 23 ± 4

M1 (MeV) 1100 ± 20

aππ −0.98 ± 0.10

aKK̄ −1.00 ± 0.20

aηη +0.04 ± 0.22

aKπ +0.17 ± 0.05

aKη′ −3.53 ± 0.13

aπη −2.55 ± 0.37

Table D.1: Fitted parameters for the main fit. The χ2/d.o.f. is 0.96. The fits are
obtained employing the program MINUIT [503].
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Figure D.2: Experimental data and our fits, as explained in the text.

With the amplitudes calculated for meson–meson scattering, we perform several fits, e.g.
by changing the value of the highest

√
s fitted from 1.2 to 1.4 GeV and by imposing that

several subtraction constants for the pseudoscalar–pseudoscalar channels are equal, so that
we can calculate the pseudoscalar–scalar kernels with different inputs, and then check the
independence of our results. We only show our main fit since all the other fits that we
obtained give rise to similar results that would not change our conclusions. In this fit the
highest value of

√
s considered is 1.4 GeV. For the octet of scalar resonances we take the

values of the parameters cd, cm and M8 from Ref. [43], where M8, the mass of this octet,



247

Resonance Re
√
s (MeV) Im

√
s (MeV)

σ 466 235

κ 698 294

f0(980) 987 18

a0(980) 1019 33

Table D.2: The pole positions of the scalar resonances obtained from the main fit
are given.

Resonance gKK̄ (GeV) |gKK̄ (GeV)|
f0(980) −3.72 + 1.18i 3.90

a0(980) −4.11 + 1.59i 4.41

Table D.3: Couplings of the f0(980) and a0(980) resonances to KK̄ (with definite
isospin). These couplings are calculated from the residues of the corresponding
pole.

is around 1.3-1.4 GeV. For definiteness, cd = cm = 22.8 MeV and M8 = 1.4 GeV. The
parameters for the singlet resonance exchange, c̃d, c̃m and M1 are left free, with the latter
the mass of the singlet scalar resonance. Regarding the subtraction constants in the unitarity
loop function of the different channels (they play the analogous role of a1 in eq. (4.12) but
for pseudoscalar-pseudoscalar scattering), we take the most general situation compatible with
isospin symmetry. Adopting the same argument as in the appendix A of ref. [47] from SU(3)
to SU(2), the subtraction constants corresponding to the same pair of pseudoscalars should
be the same in the different isospin. In this way, the subtraction constant for KK̄ both in
I = 0 and I = 1 is taken with the same value. On the other hand, for a given isospin, we also
put constraints on the subtraction constants associated with non-relevant channels. In this
way, the Kη subtraction constant in I = 1/2 is kept equal to that of Kπ and, similarly, for
I = 1 the πη′ subtraction constant is put equal to that of πη.1 Of course, we have checked
that smoothing these constraints does not affect the results of the fit. In this way, we finally
have six independent subtraction constants for ππ, KK̄, ηη, Kπ, Kη′ and πη. There is also
a normalization constant for the data on an unnormalized πη event distribution around the
a0(980) resonance that is required for each fit. The results of the fit compared to experimental
data are shown by the solid line in Fig. D.2 and the values of the fitted parameters are given
in Table D.1.

The set of experimental data included in the fits for I = 0 comprises the elastic ππ
phase shifts, δππ→ππ, from Refs. [287, 288, 290, 368, 370, 504], the phase shift for ππ → KK̄,
δππ→KK̄ , and (1 − η2)/4 from refs. [292, 293], where η is the elastic parameter for the ππ →
ππ I = 0 S-wave. With respect to I = 1/2 we fit the elastic πK phase shifts, δKπ→Kπ,
from refs. [296, 505–507]. Finally, we include an event distribution of πη around the a0(980)
resonance mass from the central production of ππη, Ref. [508], fitted like in Refs. [29,30].

Once the fits are performed we look for the poles of the scalar resonances σ, κ, f0(980)

1We have checked that the πη′ channel tends to decouple of the πη and KK̄ channels in I = 1 in the region

of the a0(980).
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and a0(980) in the unphysical Riemann sheets continuously connected with the physical
one. Notice that only the f0(980) and a0(980) poles are actually required for evaluating
the pseudoscalar–scalar scattering kernels in Sec. 4.2. The σ and κ are given for complete-
ness. They are related to the f0(980) and a0(980) resonances giving rise to a nonet of light
scalar resonances [53]. Other poles around 1.4 GeV also appear that we do not include here.
The pole positions are given in Table D.2. The couplings of the f0(980) and a0(980) to KK̄,
used in this work, are collected in Table D.3.



E
S-wave projection of C3 and C4(M

2
4)

The three- and four-point Green functions C3 and C4(m2
4) are defined in Eq. (4.5). Here, we

consider the more general case with arbitrary internal masses and from the very beginning
the S-wave projection is worked out. Both functions are finite.

ℓ+ p1

ℓ+ p1 + p2ℓ

p4 p3

p1 p2 p1 ℓ+ p1 p2

ℓ ℓ− p3 − p4

p3p4
ℓ− p4

Figure E.1: Feynman diagrams for C3 (left) and C4(m2
4) (right).

We first consider C3, left diagram of Fig. E.1, and follow its notation with t = (p1 + p2)2

(note that all four-momenta are in-going). We also introduce two Feynman parameters u1

and u2 and the relative angle θ between the initial and final pseudoscalars, so that

C3 =
i

2

∫ +1

−1
d cos θ

∫ d4ℓ
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1 − 2p1p2)u2 +m2
3 + iε

]−1
. (E.1)

Then, cos θ is introduced by taking into account that p1p2 = (t − p2
1 − p2

2)/2 with t = q2
0 −

|p|2 − |p′|2 + 2|p||p′| cos θ, with q0 = p0
1 − p0

2, the difference of energies between the initial and
final scalar resonances. We perform the angular integration and introduce the parameter ξ2

as u2 = u1ξ2, so that

C3 =
1

64π2|p||p′|
∫ 1

0

du1

1 − u1

∫ 1

0

dξ2

ξ2

[log(1 + ψ) − log(−1 + ψ)] , (E.2)
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where

ψ =
1

2|p||p′|(1 − u1)u2

[
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2u
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. (E.3)

For the four-point function C4(m2
4), right diagram of Fig. E.1, one has

C4(m2
4) =

i

2

∫ +1

−1
d cos θ
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4)

. (E.4)

In this case there is no ambiguity if instead of performing the cos θ integration one di-
rectly calculates the related integration over t = (p3 + p4)2 by taking into account that
dt = 2|p||p′|d cos θ (ambiguities could arise for s such that the product |p||p′| becomes com-
plex. The particular integration to be performed here is not affected by such problem, see
below.) We also introduce three Feynman parameters u1, u2 and u3 so that

C4(m2
4) =

−1
64π2|p||p′|
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. (E.5)

In terms of the variable t the previous integral is of the from
∫
dt/(at + b)2 so that the t-

integration can be done straightforwardly without problems in its analytical extrapolation.
The resulting u3-integration is of the form

∫
du3/[u3(u2

3 + βu3 + γ)] that can also be done
straightforwardly by factorizing the second-order polynomial in the denominator. Our final
expression for C4(m2

4) is
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where
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The S-wave projection of the three- and four-point functions C3 and C4(m2
4) was also

obtained for some kinematical regions and values of m2
4 from Ref. [509], wherever the latter

could be applied. In such cases our results and Ref. [509] agree.



F
One pion exchange nucleon-nucleon

partial waves

In this Appendix, we list the NN partial wave amplitudes for OPE used in Chapter 7. We
use the notation SℓJ , where S is the total spin, J is the total angular momentum and ℓ is
the orbital angular momentum. Recall that the isospin I can be retrieved from the former
quantities because ℓ + S + I = odd. Actually, the functions ∆ used in Chapter 7 are the
imaginary parts of the amplitudes, ∆ = ImT for p2 + iǫ with p2 < m2

π/4. These are easily
obtained from the amplitudes, since they are written always as:

T = K

(
P1 + P2 ln

m2
π

m2
π + 4p2

)
, (F.1)

so that:
∆ = −πKP2 (F.2)

We also give in Fig. F.1 the scheme of the mixing of the different NN partial waves.

The one pion exchange nucleon-nucleon partial waves T (SℓJ) (not mixing different values
of ℓ) are:
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The one pion exchange nucleon-nucleon partial waves T (SℓJ ,S ℓ′
J) (mixing different values

of ℓ) are:
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Figure F.1: Mixing of NN partial waves.



G
Solving the integral equation for

D(k2)

In this appendix, we focus on the solution of the integral equation (7.29) subject to the
constraints (7.30). For simplifying the discussion we drop the subscripts JℓS. The integral
equation Eq. (7.29) can be written in a compact way as

D(A) = 1 +
A

π

∫ L

−∞
dk2 ∆(k2)D(k2)

k2
g(A, k2) + h(A) , (G.1)

where g(A, k2) is defined in Eq. (7.11) and

h(A) =
A

(A−B)ℓ−1

ℓ−2∑

i=0

ciA
i . (G.2)

Let us introduce the function d(A) as D(A) = d(A) +h(A), that is, d(A) is the piece of D(A)
that does not contain the CDD poles. As a first step, we write the coefficients ci in terms of
the d(A) function. This is done by writing the sum rule constraints Eq. (7.30) in terms of
d(A), giving rise to

Ii =
∫ L

−∞
dk2 ∆(k2)d(k2)

k4k2i
= −

∫ L

−∞
dk2 ∆(k2)h(k2)

k4k2i
=

ℓ−2∑

j=0

cjmij , (G.3)

mij ≡ −
∫ L

−∞
dk2 ∆(k2)k2j

k2k2i(k2 −B)ℓ−1
, (G.4)

where we have shifted λ = i + 2, so that i runs from 0 to ℓ − 2. Note that the mij integrals
can be calculated directly for a given ∆(A) in terms of B because the unknown function d(A)
is not necessary in their calculation. Thus,

ci =
ℓ−2∑

j=0

m−1
ij Ij , (G.5)

255



G. Solving the integral equation for D(k2) 256

being m−1 the inverse of the matrix whose elements are mij. Next, we rewrite the integral
equation Eq. (G.1) in terms of d(k2), and insert the expressions (G.5) for the coefficients ci of
the function h(k2) involved. It results

d(A) = 1 +
A

π

∫ L

−∞
dk2 ∆(k2)d(k2)

k2
g(A, k2)+ (G.6)

+
A

π

∫ L

−∞
dk2 ∆(k2)g(A, k2)

(k2 −B)ℓ−1

ℓ−2∑

i,j=0

k2im−1
ij

∫ L

−∞
dq2d(q

2)∆(q2)
q4q2j

. (G.7)

Now, by interchanging the dummy integration variables k2 and q2, we can finally write

d(A) = 1 +
A

π

∫ L

−∞
dk2d(k

2)∆(k2)
k2

(
g(A, k2) + ḡ(A, k2)

)
, (G.8)

ḡ(A, k2) =
ℓ−2∑

i,j=0

1
k2k2j

m−1
ij

∫ L

−∞
dq2 ∆(q2)g(A, q2)q2i

(q2 −B)ℓ−1
.

We have now an integral equation for the d(k2) function that depends on known functions. It
can be written in a compact way as

d(A) = 1 +
∫ L

−∞
dk2f̃(A, k2)d(k2) . (G.9)

It is convenient to perform a change of integration variable so that one ends with a finite
integration domain, e.g. with x = 1/k2. In this way

d(A) = 1 +
∫ x2

x1

dx f(A,x) d(A(x)) . (G.10)

This is an inhomogeneous Fredholm integral equation. We solve it numerically by dis-
cretizing the integral on it,

d(Ai) = 1 +
∑

j

f(Ai,xj)ω(xj)d(A(xj)) , (G.11)

where the ω(x) function is the weighting function taken for the integration. By calling
d(A(xi)) ≡ di, f(Ai,xj)ω(xj) ≡ ηij, this equation can be cast as

∑

j

(δij − ηij)dj = 1 , (G.12)

which is a linear equation, that can be solved by standard methods, giving the desired function
d(A). To obtain the needed function D(A), the function h(A) must be added, but this is also
a direct task, since the ci coefficients can be calculated once d(A) is known, Eq. (G.5). Of
course, if no constraints must be satisfied, as it is the case for S- and P -waves, the same
formalism with the corresponding simplifications should be used.



H
The gi j(A, k

2) functions

On general grounds, the following threshold behaviors are found for the νij(A) functions:

ν11(A) ∝ A1/2 ν12(A) ∝ A−1/2 ν22(A) ∝ A−3/2

This can also be seen by inserting the low energy behavior of δ1 (∝ Aℓ+1/2), δ2 (∝ Aℓ′+1/2) and
ǫ (∝ A(ℓ+ℓ′+1)/2) in the explicit expression for νij(A), Eqs. (7.33)–(7.35). No problem occurs in
the integrands for the functions g11(A, k2) and g12(A, k2), when this low energy behaviors are
inserted, but the divergence in ν22(A) could lead to a divergence in the function g22(A, k2).
This was already pointed out in Ref. [477], as a potential source of divergences, but no hints
for a solution were given. However, a more careful analysis shows that this divergence vanishes
due to the sum rules, Eqs. (7.43). For the g22(A, k2) integral one has

g22(A, k2) =
1
π

∫ +∞

λ→0
dq2 ν22(q2)

(q2 − A)(q2 − k2)

=
2ν0

πAk2
√
λ

+ regular terms

where ν22(A) = ν0A
−3/2 for A → 0. In the previous equation the regular terms refer to the

rest of the contributions to the integral, which do not diverge for λ → 0. The divergent term
in the previous equation enters into the integral Eq. (7.48) through the function g22(A, k2),
giving rise to a term proportional to

∫ L

−∞
dk2 ∆22(k2)D22(k2)

k4
= 0,

that is zero due to the constraints of Eq. (7.43). Notice that every channel in which g22(A) is
involved has ℓ′ > 2 (the lowest value for ℓ′ corresponds to the 3D1 wave), and thus the sum
rule above applies. The constraints Eq. (7.43) show then a new important facet beyond the
original motivation for their introduction.
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Resumen en Español

Hasta donde la ciencia alcanza a conocer, el Universo está compuesto de partículas, espacio–
tiempo y las leyes que dictan sus interacciones. Una de estas interacciones es la fuerza fuerte,
de la cual emergen, a su vez, las fuerzas en el interior de los núcleos de los átomos. Las
partículas que sufren dichas interacciones fuertes se denominan hadrones. La cromodinámica
cuántica [1–7] (QCD por sus siglas en inglés) es la teoría que describe las interacciones fuertes.
Es una teoría cuántica relativista, no abeliana y Yang–Mills, en la que los quarks y los gluones
son los grados fundamentales de libertad (los campos cuánticos de la teoría). Los quarks son
partículas masivas, y los gluones son aquellas que transportan dicha interacción. Es una teoría
bella y exitosa, una de las piedras angulares del mayor modelo científico que jamás se haya
concebido: el Modelo Estándar. QCD describe con gran éxito una gran variedad de fenómenos
físicos.

Sin embargo, tal cual se formula, esto es, con quarks y gluones como sus grados de libertad
dinámicos, solo puede ser utilizada en régimen de altas energías, situación en la cual, debido a
la libertad asintótica predicha por QCD, los quarks se manifiestan como partículas puntuales
que interactúan debilmente y, por lo tanto, pueden utilizarse métodos perturbativos, tal y
como se hace, por ejemplo, en Electrodinámica Cuántica (QED, por sus siglas en inglés). En
el caso opuesto de interacciones a bajas energías, el comportamiento complementario al citado
anteriormente, denominado esclavitud infrarroja, apunta al confinamiento de los quarks en el
interior de los hadrones. Sin embargo, el confinamiento es todavía un punto oscuro, no com-
prendido completamente en QCD, aunque el formalismo de QCD en el retículo (lattice QCD,
en inglés) ofrece nuevos puntos de vista acerca de este problema. Con todo, en el espectro
hadrónico de QCD encontramos un hecho remarcable: la aparición de un triplete de isoespín
de mesones pseudoescalares, los piones (π+, π−, π0), cuya masa es mucho más pequeña que
el resto. Esta característica es clave y permite deducir que una bien conocida simetría aproxi-
mada de QCD, la simetría quiral, SU(2)L ⊗ SU(2)R, se rompe espontáneamente [9–14] en
SU(2)L+R ≡ SU(2)V , mientras que los restantes generadores de la simetría darían origen a un
triplete de partículas sin masa, los bosones de Goldstone. Como la simetría no es exacta, sólo
aproximada, a causa de la masa no nula de los quarks, los bosones de Goldstone no tienen
una masa nula, pero sí muy pequeña. Son llamados, por tanto, pseudo–bosones de Goldstone.
Hemos hablado de la simetría quiral en términos de SU(2), que da lugar a un triplete de
isoespín, los piones, pero si extendemos estas consideraciones al grupo SU(3) encontraremos
entonces otros pseudoescalares ligeros, los mesones K (K+, K−, K0 y K̄0) y η, dando lugar,
junto a los citados π, a un octete de SU(3). Los hadrones se organizan por tanto en multipletes
de SU(3), en el esquema de las “Ocho maneras” (Eightfold way, en inglés) [15]. A partir de
las consideraciones anteriores, uno podría intentar construir una teoría cuántica de campos
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efectiva, en la que los grados de libertad dinámicos no sean los quarks y gluones, sino los piones
(o, más genéricamente, el octete de pseudoescalares mencionado). Dicha idea se ha llevado a
cabo, emergiendo así una teoría, la teoría quiral de perturbaciones (ChPT, por sus siglas en
inglés) [16–19]. Esta teoría es, por tanto, la teoría efectiva de QCD a bajas energías, que puede
ser tratada perturbativamente, es decir, permite un desarrollo sistemático en potencias de los
momentos de los pseudoescalares involucrados en los estados inicial y final de una determinada
reacción y en potencias de masas de quarks. En el Capítulo 1 estudiaremos la construcción
formal y rigurosa de ChPT, mediante el formalismo genérico de construcción de Lagrangianos
efectivos [20, 21], que revisaremos en primer lugar, y la aplicación de la ruptura espontánea
de la simetría quiral de las interacciones fuertes.

∗ ∗ ∗

Junto a sus grandes logros, ChPT tiene un rango de aplicabilidad muy limitado. Por un la-
do, no es capaz de reproducir el abundante comportamiento resonante del espectro hadrónico.
Siendo un desarrollo perturbativo, no puede generar los polos en las amplitudes de dispersión
a los que están asociadas las resonancias. Por otro lado, el poder predictivo de la teoría se
pierde progresivamente conforme se va incrementando el orden de las expansiones, debido a
la aparición de las llamadas constantes de baja energía (LECs, por sus siglas en inglés), que
guardan información de la teoría subyacente, QCD, y que no están fijadas, por tanto, por
las simetrías. Estas carencias hacen que el empleo de métodos no perturbativos sea necesario
como una herramienta complementaria para usar junto a la información perturbativa que
pueda extraerse de ChPT. Entre estos métodos no perturbativos, en el sector de interacciones
mesón–mesón o mesón–barión, pueden citarse el método de la amplitud inversa (IAM, por sus
siglas en inglés) [22–32], el método basado en la ecuación de Bethe–Salpeter (BS) [33–37] y
el método N/D, propuesto originalmente en [38], pero cuya conexión con la dinámica quiral
no se produjo hasta décadas después [39–47]. Hablaremos de varios de estos trabajos poste-
riormente, al introducir los capítulos dedicados al sector escalar y al mesón σ (denominado
actualmente como f0(500) por el Particle Data Group (PDG) [48]). Gran parte de esta tesis
está relacionada, de un modo u otro, con la aplicación de uno de estos métodos, el método
N/D, por lo que nos referiremos a dicho método, en tanto que aplicado a la dinámica quiral,
como teoría quiral de perturbaciones unitaria o unitarizada (UChPT, por sus siglas en inglés).
Estudiaremos este formalismo brevemente en el Capítulo 2. Primero, introduciremos un con-
cepto fundamental, la unitariedad, intentando extraer parte de sus consecuencias. También
introduciremos de forma concisa los conceptos de amplitudes de dispersión y ondas parciales.
Veremos, desde un punto de vista general, la aparición de resonancias a partir de polos en las
hojas de Riemann no físicas de las amplitudes de dispersión. Convencidos de la importancia
de la unitariedad, revisaremos la aplicación del método N/D para deducir la estructura más
general posible de una onda parcial cuando se desprecian, en primera aproximación, los cortes
no físicos de las amplitudes [39]. El método N/D es un método de unitarización, que separa
las contribuciones del corte de unitariedad y los cortes no físicos en dos funciones distintas, D
y N , respectivamente. También intentaremos explicar cómo introducir en el método los cortes
no físicos de un modo perturbativo.

En la Parte I, por tanto, derivaremos el marco teórico básico en el que se inserta esta
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tesis, que será aplicado a varios problemas en la Parte II. En los siguientes párrafos, tratamos
de comentar los diferentes problemas que estudiaremos en el cuerpo principal de esta tesis.
Intentaremos dar una perspectiva general de la situación experimental y teórica de cada uno
de las casos, motivando por tanto nuestro estudio. Se dan también algunos detalles de los
métodos adicionales utilizados y un avance de los principales resultados, tratando de conec-
tarlos con trabajos anteriores.

∗ ∗ ∗

Empezaremos en el Capítulo 3 con el estudio del sector escalar de las interacciones mesón–
mesón. En ChPT, debido a su carácter perturbativo, la aparición de los mesones escalares (con
números cuánticos JP C = 0++) no es directa. Los más ligeros entre estos escalares (con masas
por debajo de 1 GeV) son los mesones σ, κ, f0(980) y a0(980). Su conexión con la dinámica de
los pseudoescalares ligeros (los grados de libertad dinámicos en ChPT) y su relación con uni-
tariedad o interacciones de estado final fue descubierta a lo largo de varios trabajos. Respecto
a las interacciones ππ específicamente, han de citarse en primer lugar los trabajos de Truong
y colaboradores [22–27] que enfatizaron por primera vez el importante papel que juegan las
interacciones de estado final entre piones en onda S con isoespín I = 0, originando el formalis-
mo IAM. Mediante éste, el polo del mesón σ se obtuvo por primera vez en la Ref. [28], junto a
las resonancias K⋆ y ρ en onda P . A causa de la falta de canales acoplados en el IAM, no fue
posible obtener otras resonancias escalares ligeras como la f0(980) y la a0(980). Simultánea-
mente, en la Ref. [33], mediante el empleo del método BS, se obtuvo también el polo del mesón
σ, junto a los polos de f0(980) y a0(980). El esfuerzo conjunto de varios de los autores de estas
últimas referencias llevó a la extensión del IAM a canales acoplados [29], obteniéndose así el
nonete de escalares ligeros completo, junto al nonete de vectores. Además, el formalismo de la
Ref. [33] fue derivado en base a un formalismo teórico más solido en la Ref. [39], mediante el
método N/D (a partir del cual uno puede derivar también las ecuaciones del IAM). Desde un
punto de vista teórico, dejando aparte sus resultados prácticos, la mayoría de estos trabajos
ponen de manifiesto la importancia del corte derecho o de unitariedad, relacionado con las
interacciones fuertes de estado final, y también muestran que los cortes cruzados o no físicos
pueden ser tratados perturbativamente al estudiar las resonancias escalares. Mencionemos fi-
nalmente que las posiciones del polo de σ obtenidas en las Refs. [28], [33] y [30], son, en este
orden, 440 − i 245, 469 − i 194 y 442 − i 227 MeV. Los trabajos [33,39] muestran claramente
que la resonancia σ es generada dinámicamente por las interacciones pión-pión.

Otros estudios del problema del sector escalar pueden verse en [49–52]. De hecho, los
trabajos en [49,50], en el marco del modelo de quarks en una bolsa del MIT (MIT bag model,
en inglés), predecía ya a finales de los setenta un nonete de escalares ligeros compuesto de
anchas resonancias de cuatro quarks, con masas (en la notación moderna empleada para estos
estados) Mσ ∼ 650 MeV, Ma0 = Mf0 ∼ 1100 MeV y Mκ ∼ 900 MeV. En las Refs. [53–58]
la mezcla entre estas resonancias fue estudiada. Otros exitosos estudios fenomenológicos de
las resonancias escalares más ligeras se basan en modelos de intercambio de mesones [59–61].
Recientemente, en las Refs. [62,63] se estudió la posibilidad de construir un Lagrangiano quiral
con un campo escalar singlete explícito.
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También estudiaremos en esta tesis resonancias escalares más pesadas. En particular, en el
sector escalar–isoescalar y con masas por debajo de 2 GeV, se encuentran en el PDG [48] las
resonancias f0(1370), f0(1500), f0(1710) and f0(1790). La colaboración experimental Crystal
Barrel (veáse [64] para una revisión exhaustiva de sus resultados) mejoró el conocimiento
acerca del espectro hadrónico en el sector escalar, confirmando o descubriendo las resonancias
a0(1450), f0(1370) y f0(1500), mientras que la colaboración BES [65–67] confirmó la asignación
de espín J = 0 para la f0(1710) y encontró otra resonancia, f0(1790). Posteriormente, a lo
largo de esta tesis, discutiremos con mayor detenimiento sobre resultados y posibles contro-
versias acerca de estas resonancias una vez presentemos nuestros propios resultados, citando
por ahora, para el lector interesado, los artículos de revisión en las Refs. [64, 68]. Más allá
del interés general que pueden tener estas resonancias a la hora de determinar el espectro
hadrónico, son relevantes por otra cuestión de bastante interés, a la sazón, la identificación de
las glubolas (glueballs, en inglés). En QED, los fotones no llevan carga eléctrica y, por tanto,
no interactúan entre ellos directamente. En QCD, por contra, los gluones transportan carga
de color e interactúan directamente entre ellos, debido a la naturaleza Yang–Mills de la teoría.
Por tanto, con generalidad se cree que QCD predice la existencia de mesones sin quarks de
valencia, las así llamadas glubolas. La confirmación de su existencia está, pues, en el corazón
de la propia teoría. El interés por las glubolas empezó a la par que QCD, y su estudio fue una
de las primeras aplicaciones de las reglas de suma de QCD [71, 72]. Debido al fuerte acoplo
del vacío con el canal 0++, los resultados no son concluyentes aún [71–78]. En general, todos
estos trabajos suelen coincidir en la presencia de una glubola alrededor de 1.5 GeV, aunque la
existencia de otra en torno a 0.5 GeV también es discutida. Una glubola con masa & 1.5 GeV
también entra dentro de las predicciones de muchos modelos [79–82]. En el espectro calculado
en QCD en el retículo en la aproximación de quarks de valencia [84–89] (valence approximation
o quenched approximation) la masa predicha de la glubola más ligera es M = 1660 ± 50 MeV,
cercano al valor de las masas de las resonancias f0(1500) y f0(1710), lo que convierte de forma
inmediata a estas resonancias en candidatas para tener una fuerte componente de glubola. En
la Ref. [88] se obtiene que la f0(1710) es, mayormente, una glubola pura. La Ref. [89] evalúa,
en la antedicha aproximación a QCD en el retículo, las desintegraciones de f0(1710) a dos
pseudoescalares, obteniendo un patrón en acuerdo con algunos datos obtenidos para dicha
resonancia [48]. Estudios con quarks dinámicos, mediante la mezcla de glubolas y quarkonios,
están todavía en una etapa preliminar (veáse la Ref. [90] y las referencias ahí citadas, así como
las referencias en la Sec. 3.1). En la Ref. [91] (veánse también las Refs. [92–94]) se encontró
un mecanismo de supresión quiral de los acoplos de una glubola escalar, G0, para la desin-
tegración G0 → q̄q, en la forma Γ(G0 → ss̄) ≫ Γ(G0 → uū + dd̄), en buen acuerdo con los
resultados obtenidos en la Ref. [89] en QCD en el retículo. Este mecanismo también implica
que la glubola escalar no debería mezclarse. Sin embargo, la situación no está del todo clara
aún, y se obtienen resultados diferentes en varios trabajos [95–100], siguiendo la misma idea
anterior de mezclar las glubolas con los estados nn̄ y ss̄ cercanos.

Para estudiar el sector escalar, calculamos las amplitudes de I = 0 en onda S para trece
canales acoplados, ππ, σσ, KK̄, ηη, ηη′, η′η′, ρρ, ωω, K∗K

∗
, ωφ, φφ, a1π y π∗π. La simetría

SU(3) es aumentada hasta U(3), de modo que sea posible incluir las interacciones del mesón
η′ [101–104]. Los estados multipiónicos son simulados de forma efectiva mediante los canales
de dos resonancias, σσ, ρρ, a1π y π∗π, aunque llegaremos a la conclusión de que la inclusión
de estos dos últimos canales no es relevante. Simultáneamente, estudiaremos también la am-
plitud en onda S del proceso K−π+ → K−π+, que involucra I = 1/2 y I = 3/2, con los
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canales acoplados Kπ, Kη and Kη′, en la línea de las Refs. [43, 44]. Los potenciales (kernels,
en inglés) de interacción entre los diferentes canales se obtienen a partir de los Lagrangianos
quirales. La simetría quiral es considerada como una simetría de contraste (gauge symme-
try, en inglés), así que los vértices de las amplitudes que involucran resonancias vectoriales
se calculan mediante acoplamiento mínimo. Para la resonancia σ, aprovechamos el hecho de
que ésta se genera dinámicamente en UChPT, como se comentó anteriormente, debido a las
interacciones en estado final de dos piones. Esto nos permite fijar los elementos de matriz de
las amplitudes elementales a otros canales sin incluir ningún parametro libre adicional. Tam-
bién consideramos el intercambio de resonancias desnudas [105,106] en el canal s. Deducimos
que, para describir correctamente los datos, son necesarios dos octetes (con masas en torno a
1300 MeV y 1900 MeV) y un singlete (con una masa M ≃ 900 MeV). Con este formalismo,
somos capaces de describir una gran cantidad de datos, que incluyen desfasajes y secciones
eficaces inelásticas hasta una energía en el centro de masas

√
s ≃ 2 GeV. Puede estudiarse en-

tonces el contenido espectroscópico de nuestras amplitudes, encontrando polos que dan lugar
a un amplio conjunto de resonancias: σ, f0(980), f0(1370), f0(1500), f0(1710) y f0(1790) en
I = 0, y κ, K∗

0(1430) y K∗(1950) en I = 1/2. Estudiamos tanto los polos como sus acoplos más
relevantes. Se comprobará que el polo al que está asociado la resonancia f0(1370) es un octete
puro, no mezclado con los estados más proximos, y lo mismo puede decirse de su acompañante
en I = 1/2, la resonancia K0(1430). Posteriormente, identificamos la resonancia f0(1710) así
como una contribución importante a la f0(1500) como una glubola no mezclada. Esto se basa
en una comparación bastante buena de nuestros resultados con las antedichas predicciones de
QCD en el retículo [89] y el mecanismo de supresión quiral de la desintegración a q̄q de una
glubola escalar [91].

∗ ∗ ∗

Otro problema interesante es la presencia de pseudoescalares excitados, con números cuán-
ticos como los de los pseudo–bosones de Goldstone, pero más masivos (con masas en una región
entre 1 GeV y 2 GeV), que abordaremos en el Capítulo 4. En I = 1, se encuentran las resonan-
cias π(1300) y π(1800), y en I = 1/2 están K(1460) y K(1630). Quizá el caso más interesante
aquí sea el de I = 0, donde, según el PDG [48], hallamos tres resonancias en un estrecho
rango de masas, η(1295), η(1405) y η(1475). Una detallada revisión de la situación experi-
mental puede encontrarse en la Ref. [107]. Una de estas resonancias sería un estado extra si se
ordenan los pseudoescalares más cercanos en esta región en un nonete. Dada la clara señal de
η(1405) en procesos ricos en gluones, v.g., desintegraciones radiativas de J/Ψ, esta resonancia
se convierte en una candidata ideal para ser la glubola pseudoescalar más ligera [108–110]. Sin
embargo, la predicción de QCD en el retículo para tal estado es aproximadamente 2.4 GeV,
una discrepancia interesante. Este esquema de clasificación de estos estados ha sido criticado
en [111], donde se pone en duda la mera existencia de η(1295), y se argumenta que, en reali-
dad, η(1405) y η(1475) no son sino un mismo estado, η(1440). Recientemente, esta posibilidad
ha recibido respaldo en la Ref. [112]. Otra resonancia, llamada X(1835), ha sido observada
recientemente, y los análisis sugieren que sus números cuánticos son IG(JP C) = 0+(0−+).

Si, como hemos comentado, los escalares más ligeros se generan dinámicamente en las in-
teracciones entre los pseudoescalares más ligeros, es cuando menos sugerente pensar que estos
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pseudoescalares más masivos se generen dinámicamente en las interacciones de los escalares
con los pseudoescalares más ligeros. Para tratar de arrojar algo de luz acerca de los pseu-
doescalares con masas por encima de 1 GeV, estudiamos las interacciones entre las resonan-
cias escalares f0(980) y a0(980) y los pseudoescalares más ligeros. Primeramente, obtenemos
las amplitudes elementales de interacción, o potenciales de interacción, sin introducir ningún
parámetro libre ad hoc. Esto se consigue utilizando, de nuevo, el hecho de que estas resonan-
cias escalares se generan dinámicamente. Posteriormente, los potenciales de interacción son
unitarizados con el formalismo de UChPT, obteniéndose finalmente las amplitudes en onda
S deseadas. Encontramos que estas interacciones son muy ricas, y generan un gran número
de resonancias pseudoescalares que pueden asociarse a K(1460), π(1300), π(1800), η(1475)
y X(1835). Podemos decir, por tanto, que una importante contribución a estos estados es
de origen dinámico. También consideramos los canales exóticos de estas interacciones (es de-
cir, con números cuánticos que no pueden obtenerse por combinaciones q̄q), con I = 3/2 e
I = 1, el último con G–paridad positiva. Nuestros resultados muestran que aquí también hay
una resonancia, en acuerdo con una predicción de hace dos décadas [113]. Trabajos más re-
cientes [114,115], estudiando sistemas de tres pseudoescalares por medio de las ecuaciones de
Fadeev, también obtienen algunas de las resoncias citadas, concretamente, K(1460) y π(1300).

∗ ∗ ∗

La naturaleza del mesón σ se estudia en detalle en el Capítulo 5. Es la resonancia más ligera
con los números cuánticos del vacío, JP C = 0++. Su historia es larga e interesante, aunque ya
comentamos algo acerca de ella con anterioridad, al referirnos a los trabajos que, juntando la
dinámica quiral de los pseudoescalares más ligeros (piones, en el caso de σ) y los efectos de
unitariedad, obtuvieron por primera vez el polo de σ. Más recientemente, la Ref. [116], basada
en la solución de las ecuaciones de Roy y ChPT a O(p6), obtuvo el valor 445+16

−8 −i 272+9
−13 MeV.

Las ecuaciones de Roy implementan la simetría de cruce de forma exacta, mientras que los
trabajos relacionados con IAM, N/D y BS lo hacen perturbativamente. Otra determinación
precisa reciente [117], basada en relaciones de dispersión, arroja un valor de 484±17− i 255±
10 MeV. Mencionemos también que todos estos cálculos no tienen en cuenta la inelasticidad
debida al canal de 4π en las ondas S de la interacción ππ, mientras que nuestro estudio
mencionado arriba acerca del sector escalar tiene en cuenta dicho efecto mediante los canales
σσ y ρρ. El hecho de que las posiciones del polo obtenidas mediante estos diferentes esquemas
(estos trabajos recientes y los citados con anterioridad) sean similares (particularmente para
la parte real) es otra indicación de que el tratamiento de la dinámica de canales cruzados
puede hacerse adecuadamente de forma perturbativa. Podemos concluir, por tanto, que nuestro
actual conocimiento del polo de la resonancia σ es bastante preciso y que, además, se entiende
bien la dinámica hadrónica subyacente. Desde un punto de vista experimental, se ha suscitado
un nuevo interés en el mesón σ a partir de recientes resultados con gran estadística, por
ejemplo, en J/Ψ → ωππ, donde se observa una señal prominente [118]. Otro pico muy marcado
en la región de la σ se observa también en desintegraciones de mesones pesados; por ejemplo,
fue observada con gran significación estadística en D → π+π−π+ [121].

Más allá del polo y los acoplos de esta resonancia, la siguiente cuestión que surge es su
naturaleza: qq̄, tetraquark, molécula de dos piones, glubola, etc... Como comentamos antes,
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las Refs. [49,50] favorecen una naturaleza de tetraquark, ya que se predice un nonete de tales
estados con masas y anchuras compatibles con las de σ, κ, f0(980) y a0(980). La naturaleza de
tetraquark también es preferida en otros trabajos, por ejemplo, Ref. [122]. El acoplo de σ a KK̄
comparado con el de ππ también suele considerarse como una característica importante para
discernir entre diferentes modelos para la naturaleza de la σ, como se resalta en la Ref. [123].
Este trabajo señala el hecho de que el acoplo de σ a K+K− comparado con el de π+π− no está
muy suprimido, lo cual es un factor para considerar una naturaleza gluónica para el mesón
σ. Según dicho trabajo, una interpretación q̄q de esta resonancia falla al tratar de explicar su
gran anchura, mientras que un escenario en el que la σ sea un tetraquark difícilmente explica
su gran acoplo a K+K−. Merece la pena destacar, en este punto, que las amplitudes obtenidas
en trabajos como Refs. [33, 39] y similares (así como en el Capítulo 3) también predicen una
ratio similar para los acoplos a K+K− y π+π− del mesón σ, en acuerdo con los expuestos
en [123]. Sin embargo, en este caso este comportamiento surge de la generación dinámica
de dicha resonancia a partir de las interacciones de estado final (escalares e isoescalares) de
ππ. También se han aplicado reglas de suma de QCD al estudio de la σ [123–127]. En las
Refs. [128–134] se argumenta que la σ es la compañera quiral del pión, y que el modo en
que evoluciona el polo al tomar el límite de restauración de la simetría quiral varía según la
naturaleza de aquélla [135].

Estudios basados en la dependencia del número de colores en QCD,NC , pueden encontrarse
en las Refs. [39, 136–139], donde se demuestra que el mesón σ no tiene una dependencia
estándar respecto a NC . Dichas consideraciones pueden hacerse sin problemas para NC & 3,
pero no muy grande, ya que para NC ≫ 3 las conclusiones dependen fuertemente de los
detalles exactos del procedimiento [138, 140–146]. La evolución con NC del polo de σ está en
claro desacuerdo con lo que se esperaría para un estado q̄q o una glubola; más bien, está en la
línea de lo que uno esperaría para una molécula de dos piones o un tetraquark [138,141–147].
En el límite NC grande, es bien sabido que los bucles (loops, en inglés) están suprimidos, de
modo que los efectos de interacción de estado final en ππ desaparecen, y con ellos, el polo de
la resonancia σ [39, 136–138,148].

En este Capítulo investigamos más a fondo la naturaleza del mesón σ evaluando su radio
cuadrático escalar, 〈r2〉σ

s , lo que permite tener una estimación cuantitativa del tamaño de esta
resonancia. En nuestro estudio, la σ aparece como una resonancia dinámicamente generada a
partir de las interacciones pión–pión. Esto permite obtener su factor de forma escalar a partir
de los Lagrangianos quirales, y, a partir de aquél, su radio cuadrático escalar. Obtenemos que
la σ es un objeto compacto, con 〈r2〉σ

s = (0.19 ± 0.02) + i (0.06 ± 0.02) fm2 [149]. El valor
del radio cuadrático escalar del pión es 〈r2〉π

s = 0.06 ± 0.02 fm2. Otro ejemplo es el valor del
radio cuadrático de carga de K±, 〈r2〉K±

V = 0.28 ± 0.07 fm2 [150]. Por comparación con el
valor del radio cuadrático escalar del pión, llegamos a la conclusión de que la imagen de un
tetraquark es más adecuada que la de una molécula de piones. Nuestro resultado se relaciona
en este sentido con los trabajos mencionados anteriormente, que también apuntan hacia una
naturaleza no estándar de la σ, a la vez que satisfacen fuertes restricciones de QCD. También
estudiaremos como se satisface el teorema de Feynman–Hellman [151, 152] que relaciona las
masas de la σ y del pión a través del factor de forma escalar de aquella.

Ofrecemos también, en este capítulo, un detallado estudio de las amplitudes de dispersión
ππ en onda S, utilizando UChPT con las amplitudes quirales calculadas en SU(2) a O(p4).
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A partir de estas amplitudes, obtenemos valores para los parámetros de la amplitud en el
umbral, para las LECs, y también para la posición del polo de la σ. Nuestros resultados
son:

√
sσ = 440 ± 10 − i 238 ± 10 MeV y a0

0 = 0.219 ± 0.005, b0
0M

2
π = 0.281 ± 0.006.

Comparando nuestros resultados con varios resultados de otros trabajos, obtenemos unos
valores promedio bastante precisos,

√
sσ = 458 ± 14 − i 261 ± 17 MeV y a0

0 = 0.220 ± 0.003,
b0

0 = 0.279 ± 0.003 M−2
π , que también están de acuerdo con nuestros propios valores. También

obtenemos valores adecuados para las LECs de los Lagrangianos quirales en SU(2) a O(p4),
a saber: l̄1 = 0.8 ± 0.9, l̄2 = 4.6 ± 0.4, l̄3 = 2 ± 4 y l̄4 = 3.9 ± 0.5. Estos resultados se comparan
también con los de otros trabajos, tanto fenomenológicos como resultados obtenidos mediante
QCD en el retículo.

Finalmente, en este Capítulo también se considera la dependencia del tamaño de la σ,
así como de su masa y su anchura, con la masa de quark. Estas últimas se comparan con
resultados obtenidos a través de QCD en el retículo [153], y también con cálculos teóricos
obtenidos con el formalismo IAM [154], encontrándose un acuerdo general. El hecho de que
la masa de la σ tienda a seguir el umbral de dos piones, como se observa también en lattice
QCD, es otra clara indicación de su origen dinámico. Encontramos que, para valores de la
masa del pión suficientemente grandes (Mπ & 470 MeV a O(p4) y Mπ & 370 MeV a O(p2)),
la σ se convierte en un estado ligado ππ. La dependencia de 〈r2〉σ

s también se estudia. Para
mayores masas de pión, en las que la σ es un estado ligado, encontramos valores más grandes
de 〈r2〉σ

s . En estas situaciones, por tanto, es más apropiado asignar una naturaleza molecular.

∗ ∗ ∗

Ya hemos señalado con anterioridad el carácter no perturbativo de las interacciones fuertes.
Por esta razón, el formalismo de QCD en el retículo se ha convertido en una herramienta útil
para estudiar dichas interacciones y, en particular, el espectro hadrónico. En [155] puede en-
contrarse un artículo reciente que revisa métodos y resultados (excluyendo, sin embargo, la
cuestión de las glubolas). En QCD en el retículo, a través del formalismo de integrales de
caminos, se estudian las interacciones de quarks y gluones en un red discretizada (retículo)
y de tamaño finito, en el interior de una caja. Por tanto, resulta necesario conectar los re-
sultados así obtenidos con el mundo real, que es infinito y continuo. El método estándar de
Lüscher [156, 157] proporciona tal conexión y es el método más usado. Sin embargo, recien-
temente en [158] se propuso una mejora del método de Lüscher. La derivación del método
de [158] se realiza mediante UChPT, asumiendo un potencial independiente del volumen de
la caja. Análogamente, el método de Lüscher desestima las contribuciones dependientes de
volumen, pues están exponencialmente suprimidas con L, el tamaño de la caja. Sin embar-
go, las amplitudes con bucles en los canales cruzados t y u sí dependen de volumen en un
cálculo realizado mediante Teoría Cuántica de Campos. Más aún, los diagramas renacuajo
(tadpole diagrams, en inglés), que contribuyen directamente a la amplitud, pero también a
través de los valores físicos de mπ y fπ, también dependen del volumen. Lo que pretendemos
en el Capítulo 6 es investigar estas contribuciones para las interacciones de ππ en onda S,
para los dos casos posibles de I = 0 e I = 2. El primero, como ya sabemos, es relevante para
estudiar el mesón σ, mientras que en el segundo caso se sabe que los canales cruzados t y
u tienen mayor importancia. Compararemos aquí los resultados obtenidos con tres métodos
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diferentes: BS, N/D e IAM. El formalismo BS puede considerarse como una versión O(p2) del
método N/D. Teniendo sólo contribuciones a nivel árbol (es decir, no tiene contribuciones de
bucles), no tiene dependencia en volumen. Por contra, IAM y N/D incluyen las amplitudes
quirales a O(p4), que sí dependen explícitamente de volumen. Derivaremos, por tanto, las
modificaciones de las amplitudes en volumen infinito necesarias para usarlas en un volumen
finito. Esencialmente, estas modificaciones consisten en una adecuada sustitución de integrales
en cuadrimomentos por una suma sobre los valores discretos permitidos en una caja. Cuan-
tificaremos el error cometido al despreciar las contribuciones exponencialmente suprimidas
cuando se extraen valores de magnitudes observables a partir de los espectros obtenidos con
QCD en el retículo. Concluímos que, para desfasajes de ππ en I = 0 hasta 800 MeV, los efectos
son despreciables para tamaños de la caja superiores a 2.5m−1

π , y son de un 5 % para valores
1.5 − 2m−1

π . Para I = 2, los efectos de tamaño finito pueden llegar hasta un 10 % para esa
energía. También estudiamos el error que se comete cuando se utiliza el método de Lüscher
para obtener observables a partir de QCD en el retículo, método ampliamente utilizado pero
que es una cierta aproximación del que se utiliza en este trabajo.

∗ ∗ ∗

En los capítulos anteriores hemos trabajado exclusivamente con interacciones entre mesones.
En el Capítulo 7 tratamos la interacción nucleón–nucleón (NN). Este es, sin duda, un proceso
básico, cuya comprensión es necesaria en un amplio rango de problemas físicos, que abarca
desde la estructura nuclear hasta las estrellas de neutrones. Recientes trabajos de revisión–
introducción, desde el moderno punto de vista de las Teorías de Campo Efectivas, pueden
encontrarse en las Refs. [159–162]. Fue Weinberg quien propuso [163–165], a principios de los
años noventa, aplicar ChPT al estudio del potencial de interacción NN . Es decir, estudiar
este proceso a partir de los Lagrangianos quirales más generales, en términos de los grados
de libertad explícitos, que son piones y nucleones. En este punto, merece la pena señalar la
ironía de volver a la teoría de Yukawa (intercambios de piones entre nucleones) aún cuando
y a pesar de que conocemos la teoría verdadera subyacente, QCD. La clave está, claro, en
que ahora sabemos desarrollar dicha teoría en términos de la simetría quiral (que, por cierto,
también se descubrió antes que la propia QCD).

Siendo la interacción NN no perturbativa, es necesario iterar el potencial quiral para NN .
Fue también Weinberg quien sugirió resolver una ecuación tipo Lippmann–Schwinger (LS)
en términos de dicho potencial. Sin embargo, éste es singular en el origen, por lo que algún
tipo de regulador es necesario para las integrales con bucles, típicamente un corte Λ (cut-off,
en inglés) en los valores de trimomento. Este programa fue desarrollado inicialmente en las
Refs. [166–169]. Se han realizado muchos trabajos siguiendo estas líneas maestras; para una
completa bibliografía al respecto, dirigimos al lector a los artículos citados inicialmente en el
párrafo anterior, así como a la introducción del Capítulo 7.

A pesar del gran éxito fenomenológico de este enfoque, varios trabajos en la literatura
científica [170–176] sugirieron que los contratérminos quirales que aparecen en el Lagrangiano
de ChPT siguiendo el contaje estándar no son suficientes para renormalizar las amplitudes,
esto es, para absorber la dependencia en Λ de la ecuación LS. Así pues, varios investigadores
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propusieron promocionar algunos contratérminos desde órdenes superiores a órdenes inferiores
(quizá uno debería decir entonces degradar). Haciendo esto, en la Ref. [170] se obtienen resul-
tados estables en el límite Λ → ∞. Sin embargo, debe tenerse en cuenta que esto implica una
violación del contaje estándar de ChPT, pero también de algunos teoremas de bajas energías
que relacionan parámetros de la expansión de rango efectivo [177]. Aún más, hay que señalar
que en dicho límite emerge un contaje más complicado [178, 179]. En el otro lado de esta
discusión se encuentran trabajos como las Refs. [177, 180] que, siguiendo los argumentos de
las Refs. [181, 182], muestran que el corte Λ en trimomento no puede considerarse más allá
de la escala a la que la teoría efectiva deja de funcionar, típicamente por debajo de 1 GeV.
Discutiremos más sobre este asunto a lo largo de este Capítulo. Una panorámica adecuada de
la situación puede encontrarse también en la Sección 4.5 de la Ref. [159].

En el trabajo que aquí presentamos, consideramos las interacciones NN a partir de ChPT.
Aplicaremos el método N/D a ondas parciales de NN tomando como entrada (para las ecua-
ciones integrales que aparecen) la discontinuidad a lo largo del corte izquierdo. Esta discon-
tinuidad se debe a intercambios multipiónicos. A orden dominante, sólo contribuye el inter-
cambio de un pión (OPE, one–pion exchange, en inglés). Esta discontinuidad es adecuada para
un contaje quiral, tal y como se discute y aplica en las Refs. [162,183,184]. En la primera parte
del capítulo, nos ceñiremos a ondas parciales no acopladas con otras. Aplicando el método
N/D, obtenemos una ecuación integral lineal para cada una de dichas ondas. Para ondas S y
P (con momento angular orbital ℓ 6 1) nuestro método puede aplicarse de forma directa. Para
ondas D y superiores (ℓ > 2), las ecuaciones integrales requieren una serie de restricciones
(ℓ − 1 para cada onda) para garantizar el comportamiento adecuado de las ondas parciales
en el umbral. Esto se consigue mediante la introducción de polos de Castillejo–Dyson–Dalitz
(CDD) [185], algo que permite el método N/D. Posteriormente, generalizamos nuestro forma-
lismo al caso de canales acoplados, discutiendo con algo más de profundidad el caso 3S1–

3D1,
que es relevante por la presencia del deuterón en dichas ondas. Nuestros desfasajes y ángulos
de mezcla se comparan con los resultados del grupo de Nijmegen [186], fruto de un análisis
en ondas parciales de los datos experimentales. Llegados a este punto, debemos destacar que
lo que aquí se presenta es un método nuevo para estudiar las interacciones NN , en el que las
ondas parciales se calculan en base a relaciones de dispersión y Lagrangianos quirales, y que
no dependen de reguladores explícitos. Inicialmente, nuestro cálculo se realiza a orden domi-
nante y, por tanto, no es comparable en cuanto a precisión con cálculos actuales realizados a
órdenes superiores. Sin embargo, lo que queremos enfatizar es que este método puede ser mejo-
rado de forma sistemática, orden a orden, y que se parte de Lagrangianos quirales. Estas dos
características están en armonía con los modernos enfoques de las Teorías de Campo Efectivas.

∗ ∗ ∗

Después de haber tratado todos estos tópicos en el cuerpo de esta tesis, intentamos extraer
unas conclusiones globales en el Capítulo 8, señalando básicamente los principales logros de
esta tesis. Para facilitar la lectura de esta tesis, hemos dejado para el final algunos apéndices
en la Parte III, que tratan aspectos más técnicos. Las referencias citadas a lo largo de la tesis
se muestran al final, incluyendo de forma separada aquellas publicaciones que han surgido
fruto del trabajo de esta tesis: [A,B,C,D,E,F, i, ii, iii, iv,v].
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