
Summary. Leptin is a hormone that plays a central role
in the regulation of food intake and energy expenditure.
Originally discovered in mature white adipocytes, it was
subsequently isolated from the gastric mucosa. This
tissue contains a large number of epithelial endocrine
and exocrine cells secreting leptin in the blood stream
and in the gastric lumen, respectively. Light and electron
microscopy have shown that adipocytes and gastric
epithelial cells contain leptin along their rough
endoplasmic reticulum-Golgi-granules secretory
pathway. Both tissues synthesize a soluble form of the
leptin receptor that is secreted bound to leptin in the
blood and into the gastric juice. This soluble receptor
protect leptin and enhances its half-life. Despite the
similarities in the mechanisms of leptin secretion by
adipocytes and gastric epithelial cells, they are in fact
radically different. In gastric cells leptin follows a rapid
regulated secretion pathway whereas adipocytes secrete
leptin in a constitutive slow fashion. These differences
can be explained by the specific roles play by leptin
originating from these two different tissues. Gastric
leptin is involved in the short-term regulation of
digestion, including delay of gastric emptying,
absorption of nutrients by the intestinal wall and
secretion of gastric, intestinal and pancreatic hormones.
On the other hand, leptin secreted by white adipocytes
acts primarily on the hypothalamus for the long-term
regulation of food intake. Therefore, the coordination of
adipose and gastric leptins ensures the proper
management of food processing and energy storage.
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Introduction

In the 1950s, parasymbiosis experiments were
carried out by Jackson Laboratories on two species of
genetically obese rodents, the ob/ob and db/db mice.
Results suggested the existence of lipostatic factors,
hormones produced by white adipose tissue, that act on
the brain to regulate food intake and energy expenditure
(Kennedy, 1953; Hervey, 1959). This theory was
validated in 1994, when the team conducted by Jeffrey
Friedman identified the ob gene in rodent adipose tissue.
Its product, leptin, was named after the greek “leptos”
meaning “thin” (Zhang et al., 1994). Following this
discovery, specific leptin receptors were identified and
localized in areas of the hypothalamus involved in the
regulation of food intake and energy expenditure
(Tartaglia et al., 1995). The role of leptin as a lipostatic
factor was confirmed with the treatment of leptin-
deficient ob/ob mice that completely reversed their
hyperphagy and obesity, and increased their energy
expenditure. Further studies demonstrated that leptin is
also involved in a pleiotropic physiological
phenomenom, ranging from reproduction to immunity
(Himms-Hagen, 1999; Considine, 2005).

Structurally, leptin is a small non-glycosylated
peptide of 167 amino acids (146 without the signal
peptide). It possesses 4 α-helixes but is not classified as
a cytokine. It was rather included in the recently created
“adipokines” family that groups the wide variety of
peptides and hormones secreted by the white adipose
tissue. The leptin receptor belongs to the family of the
gp130 receptors (Tartaglia et al., 1995). Six isoforms
have been identified so far. Five of them are membrane-
bound and are expressed ubiquitously, OB-Ra and OB-
Rb being the most widespread. OB-Re is a soluble form
corresponding to the extracellular part of the receptor,
that binds leptin in circulation to enhance its half-life
(Huang et al., 2001; Lammer et al., 2001). All receptors
possess the same extracellular domain and the same
affinity for leptin, but differ by the size and amino acid
sequence of their transmembrane and cytoplasmic
domains (Liu et al., 1997). Each membrane-bound
receptor may therefore activate a different pattern of
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intracellular pathways, including STAT (Signal
Transducers and Activator of Transcription), JAK (Janus
Kinases), PI3K (PhosphoInositide 3-Kinase) and MAPK
(Mitogen-Activated Protein Kinase) (Ghilardi et al.,
1996; Vaisse et al., 1996; Fruhbeck, 2006).

White adipose tissue is not the only tissue secreting
leptin. Among others, the gastric mucosa has been
shown to contain numerous endocrine and exocrine cells
secreting leptin (Bado et al., 1998; Cinti et al., 2000;
Cammisotto et al., 2005a, b). Typical endocrine cells are
located in the gastric mucosa while epithelial Chief cells
do secrete leptin through an exocrine pathway into the
gastric lumen. These two secretions have fundamental
roles within the digestive tract, as membrane-bound
leptin receptors are present on apical and basal
membranes of intestinal enterocytes (Cammisotto et al.,
2005b).

White adipocytes and gastric epithelial cells are two
cell types the metabolism of which is closely linked to
food intake and energy storage. However, these two cell
types present different morphological characteristics,
different leptin secretory pathways and respond to
different stimuli. These characteristics are important for
the coordinated control of food intake and nutrient
absorption.

Leptin secretion by white adipocytes

White adipose tissue is disseminated inside the body.

Under basal conditions, each fat pad releases different
amounts of leptin (Zheng et al., 1996). In rat, epididymal
adipose tissue produces the highest quantities of leptin
(about 10 ng/million cells) whereas in human the
subcutaneous one displays these properties (Arner,
2001). Therefore, most work on leptin secretion in
rodents is based on epididymal adipocytes, but the
results were found qualitatively valid for the other fat
pads. When epididymal adipose tissue is examined by
light microscopy, leptin immunostaining is present in the
cytoplasm, around the nuclei and along the thin rim
surrouding the central lipid droplet (Fig. 1A)
(Cammisotto et al., 2006b). Adipocytes synthesize
several membrane-bound and soluble isoforms of leptin
receptor (Gallardo et al., 2005) and leptin is released
bound to its protective soluble receptor which is also
involved in interactions of leptin with other tissues
membrane bound-receptors (Yang et al., 2004). The
soluble isoform of the receptor is synthesized directly
from its specific mRNA, or may originate from the
proteolytic cleavage of the membrane bound receptors
OB-Ra (Gallardo et al., 2005). Expression of leptin
receptor (all isoforms) displays a cellular distribution
similar to that of leptin (Fig. 1B). Co-localization of both
proteins becomes evident by double immuno-labeling
experiments (Fig. 1C), which is particularly clear at the
level of the Golgi apparatus of the adipocytes (Fig. 1D).

Further examination of epididymal adipocytes by
electron microscopy using the immuno-gold labeling
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Fig. 1. Immunohistochemical staining of
leptin and its receptor in epididymal white
adipose tissue. Tissue sections (5 µm)
were incubated with a rabbit anti-leptin
and goat anti-leptin receptor antibodies,
and revealed respectively with an anti-
rabbit FITC- and an anti-goat TRITC-
conjugated secondary antibodies. Areas
close to the nucleus and the thin rim
surrounding the l ipid droplets show
positive staining for leptin (A, green
fluorescence) and for its receptor (B, red
fluorescence). Colocalization becomes
evident in figure C upon fusion of the
pictures (orange-yellow fluorescence).
Arrows point to brighter yellow areas
which could represent Golgi apparatus
(D).



approach (Bendayan, 1995) unravels the cellular
structures containing leptin (Fig. 2A-C) and its receptor
(Fig. 2D,E), namely the rough endoplasmic reticulum,
the Golgi apparatus and the numerous small vesicles
located close to the plasma membrane. Quantification of
immuno-gold labeling demonstrates an increasing
gradient of concentration for leptin along the
RER–Golgi-secretory vesicles pathway (Table 1) which
reflects processing and concentration of the protein
before its release.

Leptin secretion by the gastric mucosa

Early studies have found leptin mRNA in the gastric
mucosa, in human as well as in rodents (Bado et al.,
1998; Schneider et al., 2001). Light microscopy revealed
that cells on the lower half of the gastric mucosa fundus

are positive for leptin (Fig. 3A). This coincides with the
region of pepsinogen secreting cells (Fig. 3B) (Bado et
al., 1998; Cammisotto et al., 2005b). A closer
examination revealed the existence of two populations of
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Fig. 2. Ultrastructural localization of leptin
and of leptin receptor in white adipocytes.
Immunogold labeling was carried out on
ultra-thin sections of epididymal adipose
tissue. Gold particles (10 nm in size)
revealing the presence of leptin (A-C) and
of its receptors (D, E) are located over the
rough endoplasmic reticulum (RER), the
Golgi apparatus (G) and numerous
vesicles close to the membrane. No
labeling is present over the lipid droplets
(L), extracellular space (ES), mitochondria
(M) or nucleus (N).

Table 1. Quantitation of leptin immunolabeling in cellular compartments
of gastric epithelial Chief cells and white epidydimal adipocytes.

RER Golgi Secretory vesicles

Gastric mucosa Chief Cells 17.21±3.59* 27.95±3.36 69.64±5.70
Epidydimal white adipocytes 7.44±1.69 14.39±3.65 47.37±5.78
Control of specificity** 0.38±0.17 1.36±0.41 2.59±0.18

*: Labeling densities expressed as gold particles per µm2 (Mean values
± SEM). **: Control were carried out by using an antigen-adsorbed
antibody on Chief Cells.



gastric leptin containing cells: the Chief epithelial cells
that also secrete pepsinogen, and specific small
endocrine cells scattered between the gastric pits (Fig.
3C, D). Double immunolabelings of leptin and
pepsinogen, confirm the simultaneous secretion of
pepsinogen and leptin by the Chief epithelial cells (Fig.
3E). Electron microscopy revealed that leptin and
pepsinogen are simultaneously present in the rough
endoplasmic reticulum, the Golgi apparatus (Fig. 4A, B)
(Cammisotto et al., 2005b) and the secretory granules of
the Chief cells (Fig. 4C). On the other hand, the small
leptin endocrine cells located close to the blood
capillaries of the gastric mucosa, are negative for
pepsinogen, leptin being located along their RER-Golgi-
granules secretory pathway (Fig. 4D) (Cinti et al., 2001;

Cammisotto et al., 2005b). Similarly to white
adipocytes, quantification of gold particles in gastric
epithelial cells shows an increase in leptin labeling
density from the rough endoplasmic reticulum to the
secretory granules along a classical RER-Golgi-granules
secretory pathway (Table 1). Furthermore, quantitation
performed under control conditions demonstrates levels
of background labeling speaking in favor of the
specificity of the results (Table 1).

By western blot analysis, the presence of leptin in
the gastric mucosa and gastric juice was confirmed
(Cammisotto et al., 2006a) (Fig. 5A). This observation
raises however the serious concern of how such a small
peptide resists the harsh conditions of the gastric juice?
Indeed, leptin does display a remarkable resistance to
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Fig. 3. Localization of leptin and pepsinogen in the gastric mucosa. Tissue sections were incubated with rabbit anti-leptin (A) or goat anti-pepsinogen
(B) antibodies. Leptin antibodies were revealed with FITC-conjugated anti-rabbit IgG (green fluorescence) and pepsinogen antibodies with a TRITC-
conjugated anti-goat IgG (red fluorescence) secondary antibodies. Exocrine Chief cells are positive for both leptin and pepsinogen (C-E). Endocrine
cells are positive only for leptin (arrow) (E).



proteolytic conditions such as those found in the gastric
juice and duodenal fluid (Sobhani et al., 2002). Part of
the answer was provided when it was shown that gastric
leptin is bound to a protein of high molecular weight that
seems to play a protective role (Guilmeau et al., 2003).

We have recently identified this binding protein as the
soluble isoform of the leptin receptor that is released
upon proteolytic cleavage of the membrane-bound
isoform (Cammisotto et al., 2006a). Its structure and
molecular weight are similar to the soluble leptin
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Fig. 4. Ultrastructural localization of leptin and pepsinogen in the gastric mucosa. Ultra-thin sections were incubated with antibodies against leptin or
pepsinogen. Protein A-gold (10 nm) or anti-goat IgG gold (10 nm) were used. Pepsinogen (A) and leptin (B) were found within the granules of the
exocrine Chief cells. Double labeling demonstrates pepsinogen and leptin in the same granules, 10 nm gold particles revealing pepsinogen and 5 nm
gold particles revealing leptin (C). Endocrine cell secretory granules are positive only for leptin (D).



receptor molecule present in blood. The presence of
leptin bound to its soluble receptor in secretory exocrine
and endocrine cells was revealed by
immunocytochemistry (Figs. 6A-C) and electron
microscopy confirmed the presence of this leptin
receptor in endocrine and exocrine granules (Fig. 6D).
Interestingly, a closer examination revealed the presence
of the leptin receptor bound to the membrane of the
immature granules in exocrine cells. This membrane-
bound receptor gets distached from the membrane of the

immature granules by proteolytic cleavage as the granule
matures (Fig. 7A). Several proteases were revealed in
these granules, particularly the Proprotein Convertase 7.
The membrane-bound leptin receptor molecule
possesses several PC7-specific cleavage sites making it a
good target for this convertase (Cammisotto et al.,
2006a). Once released from the membrane, the
extracellular portion of the leptin receptor appears to
bind leptin inside exocrine Chief cell secretory granules
before release into the gastric juice (Fig. 7B). Similar
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Fig. 5. Immunoblot for leptin. Gastric mucosa
extract (G.M), gastric juice (G.J) and
recombinant leptin were separated on a 10%
acrylamide gel, transferred and revealed with
the anti-leptin antibody. Gastric mucosa and
juice display monomers (16 kDa) and dimmers
(32 kDa) of leptin. Recombinant leptin yields
similar bands (A). Soluble leptin receptor (MW
around 80 kDa) was found in the gastric juice
of the same samples using an antibody (K20)
directed against the extracellular portion of the
receptor (B).

Fig. 6. Detection of leptin and its receptor in
the gastric mucosa. Using specific antibodies,
leptin and its receptor were localized in the
gastric mucosa. Endocrine (arrow) and
exocrine cells display strong labelings for
leptin (A) and for its receptor (B).
Colocalization of the two proteins can be seen
in C. Electron microscopy confirms the
presence of leptin receptor in the Golgi
apparatus (G) and secretory granules of
exocrine (Exo) and endocrine (Endo) cells (D).



205

Adipose and gastric leptin

Fig. 7. Electron microscopy of leptin receptor in the gastric
mucosa. Labeling for membrane bound leptin receptors is
found associated to the limiting membrane of light grey
immature and dark grey mature secretory granules in
exocrine cells (arrows). Labeling is markedly reduced in
mature dark grey granules (A). In mature granules,
labeling for leptin is found associated with the labeling of
its soluble receptor (Circles), as shown respectively by
small (5 nm) and large (10 nm) gold particles (B).



observations were made for endocrine cells, the leptin-
leptin receptor complex being in this case secreted into
the interstitial space.

Secretory pathways

Cytochemistry has demonstrated that white
adipocytes as well as gastric Chief cells and gastric
endocrine cells secrete leptin and its receptors along the
RER-Golgi apparatus- secretory granules pathway.

Leptin secreted by adipocytes

The morphological approach has demonstrated the
presence of leptin-containing vesicles close to the
plasma membrane. On the other hand, in vitro studies on
isolated white adipocytes revealed the dynamics of
leptin secretion. In non-stimulated conditions,
adipocytes continuously synthesize and secrete leptin, so
that the intracellular leptin content remains constant at
all times. In the presence of stimulating agents, leptin
intracellular content and secretion increase in parallel
and become significantly different from basal values but
this occurs only one hour after stimulation (Cammisotto
et al., 2006b). No sudden release of leptin is observed
upon stimulation. De novo leptin synthesis is required to
observe the increase in discharge that occurs upon
stimulation. This was demonstrated by the drastic
inhibitory effects of cycloheximide and brefeldin A on
protein synthesis and secretion. Such observations go
along with the characteristics of a constitutive secretory
pathway.

Another support for the constitutive secretion of
leptin by adipocytes comes from a study on the role of
calcium on leptin secretion (Cammisotto and
Bukowiecki, 2004). In the classic model of regulated
secretion, sudden and potent entry of calcium triggers
fusion of secretory vesicles with the plasma membrane
followed by the immediate release of their content
(Lang, 1999). Stimulating leptin secretion from white
adipocytes does not require calcium entry (Cammisotto
and Bukowiecki, 2004). In fact, calcium has a
permissive role on leptin secretion, through its role on
glucose uptake. Indeed, glucose is needed as an energy
source for leptin synthesis (Whitehead et al., 2001;
Cammisotto and Bukowiecki, 2004). Moreover, forcing
calcium entry with ionophores does not stimulate leptin
release; on the contrary, it tends to inhibit stimulated
leptin secretion (Cammisotto and Bukowiecki, 2004).

Leptin secretion is stimulated by a wide range of
factors, particularly food intake which leads to an
increase in energetic substrates in the blood (such as
glucose, amino acids and fatty acids) and triggers the
release of several hormones including insulin (Havel,
1972). Glucose, at physiological concentrations, is
required to maintain basal leptin secretion but is not
sufficient to increase leptin secretion from white
adipocytes (Cammisotto et al., 2005b). On the other
hand, insulin is a potent stimulus for leptin synthesis and

secretion, with a half-effective concentration of about 1
nM, which is in the range of physiological
concentrations (Cammisotto and Bukowiecki, 2002;
Cammisotto et al., 2003). Most interestingly, amino
acids per se stimulate leptin synthesis and secretion, and
the addition of insulin further enhances this secretion
(Cammisotto et al., 2005a) indicating that insulin and
amino acids stimulation of leptin secretion are mediated
by different pathways. Plasma free fatty acids on the
other hand do not influence leptin secretion. However,
the release of intracellular fatty acids by stimulation of
lipolysis potently inhibits stimulated leptin secretion,
suggesting that endogenous free fatty acids in a situation
of stress (physical activity, lack of food) inhibits leptin
secretion (Cammisotto et al., 2003).

Secretion of gastric leptin

In contrast to leptin secretion by adipocytes, leptin
release by the gastric mucosa epithelial cells follows a
classic regulatory secretory pathway. In rats fasted for 18
hrs, onset of food intake triggers a rapid release of leptin
into the gastric lumen together with pepsinogen, while
leptin stores get almost completely depleted (Bado et al.,
1998; Pico et al., 2002). In parallel, plasma leptin
increases three fold (Bado et al., 1998). Feeding
stimulates leptin mRNA expression along with increase
of leptin synthesis followed by leptin secretion that takes
place upon depletion of leptin stores (Cinti et al., 2000).
Results have been found to be similar in rat and human
(Cinti et al., 2000). 

Similarly to white adipocytes, food composition
plays a major role in the secretion of gastric leptin.
Leptin mRNA expression in rat gastric mucosa is up-
regulated by sucrose-rich but not by fat-rich diets
(Lindqvist et al., 2005). Fasted rats refed with a
carbohydrate-rich diet have their gastric leptin synthesis
increased (Sanchez et al., 2004). Many hormones such
as cholecystokinin are involved in the secretion of
gastric leptin (Bado et al., 1998). Intravenous infusions
of pentagastrin or secretin cause an increase in
circulating leptin levels and leptin release into the gastric
juice (Sobhani et al., 2000, 2002). Insulin also triggers a
release of gastric leptin but this effect is dependent on
the integrity of the vagal nerve system (Sohbani et al.,
2002). Finally, leptin seems to downregulate its own
production in the stomach, as Zucker fa/fa rats with no
functional leptin receptor are characterized by an
upregulation of gastric leptin mRNA and gastric leptin
content (Pico et al., 2002).

Roles of adipocyte and gastric leptins

Leptins from adipocytes and gastric mucosa are
released at different times after the onset of food intake.
While the gastric mucosa secretes leptin within minutes
after the beginning of food intake, adipocytes need
several hours to release significant amounts of leptin.
These two pools of leptin serve different purposes.
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Gastric leptin is involved in the short-term regulation of
food absorption mostly at the level of the intestinal
mucosa, whereas leptin from white adipose tissue
controls satiety and energy storage at the long term.

Roles of adipocyte leptin

Leptin is a pleiotropic hormone, we will therefore
limit this section to its role on food intake and energy
expenditure. Leptin secreted by adipocytes is
vehiculated by the blood stream, and crosses the blood-
brain barrier by means of a saturable transporter
(Koistinen et al., 1998; Kastin et al., 1999). Its main site
of action is located in the hypothalamus particularly in
the arcuate nucleus which plays a central role in the
regulation of food intake (Mercer et al., 1996; Elmquist
et al., 1998; Schwartz et al., 2000). This nucleus contains
two populations of neurons expressing leptin receptors.
One contains the orexigen peptides NPY (Neuro-Peptide
Y) and AgRP (Agouti Related Protein) and leptin
decreases their expression (Kuhar and Vecchia, 1999).
The other population of neurons synthesizes the
anorexigen CART peptides (Cocaine Amphetamine
Related Transcript) and α-MSH (Melanocortin-
Stimulating-Hormone derivatives of POMC, Pro-Opio-
Melano-Cortin) and leptin increases their expression
(Hillebrand et al., 2002; Ellacott and Cone, 2004).
Neurons in the arcuate nucleus project towards the
paraventricular, lateral hypothalamic, ventromedial and
dorsomedial nuclei. These in turn project into the
brainstem and the dorsomotor nucleus of the vagus
nerves and activate the nervous system endings in
several tissues (Minokoshi et al., 1999; Satoh et al.,
1999). The overall effect is a feeling of satiety, an
increase in energy expenditure and an activation of the
sympathetic nervous system in different tissues.

Roles of gastric leptin

Gastric leptin exerts its function first on the digestive
tract. Leptin receptors mRNA are expressed by the
human gastric mucosa (Mix et al., 2000), and receptors
were reported on gastric mucosa cell membranes
(Morton et al., 1998; Breidert et al., 1999). Our team
found a precursor of the soluble receptor isoform along
the RER-Golgi-granules secretory pathway of the cells
(Cammisotto et al., 2006a). On the other hand, duodenal,
jejunal, and ileal enterocytes do express membrane-
bound leptin receptors on their apical microvilli and
baso-lateral membranes (Morton et al., 1998; Barrenexte
et al., 2002; Cammisotto et al., 2005b). The functional
long isoform leptin receptor (Ob-Rb) was also detected
in human colon at the apical plasma membrane of
colonocytes (Buyse et al., 2001). Thus, gastric exocrine
and endocrine secretions of leptin constitute a gastro-
enteric axis that coordinates the role played by leptin on
the digestive tract (Cammisotto et al., 2005b).

Exocrine luminal leptin has been shown to act
directly on intestinal cells through their specific

receptors present on enterocyte microvilli. It regulates
the transport of nutrients, enhances di- and tripeptides
uptake by increasing the number of PepT1 transporters
on microvilli (Buyse et al., 2001) and increases the
uptake of glucose while decreasing transport of
galactose (Lostao et al., 1998). Leptin also regulates
intestinal lipid transport (Morton et al., 1998; Buyse et
al., 2001; Doi et al., 2001; Stan et al., 2001). On the
other hand, luminal leptin administration to fasted rats
increases pancreatic enzyme secretion including amylase
(Nawrot-Porabka et al., 2004). Endocrine leptin also
regulates the secretion of several gastro-enteric
hormones; leptin inhibits dose-dependently the secretion
of the orexigenic gastric peptide ghrelin (Kojima et al.,
1999; Barazzoni et al., 2003; Kamegai et al., 2004).

Gastric leptin participates in satiety by acting on the
stomach. It potentiates the effect of cholecystokinin by
slowing gastric emptying and promoting gastric
distension (Moran and McHugh, 1982) without affecting
the central nervous system (Wang et al., 2000). Also,
leptin stimulates the production of Glucagon-like
Peptides 1 and 2 (GLP1 and GLP2) that inhibit gastric
emptying (Nauck et al., 1997; Naveilhan et al., 1999). 

Pathologies

Systemic leptin has been shown to have a central
role in obesity, diabetes, cardiovascular and
gastrointestinal diseases. In obese patients, subcutaneous
and visceral adipose tissue overexpress leptin mRNA
(Lonnqvist et al., 1995). In long term, hyperleptinemia
results in central and peripheric leptin resistance. Central
resistance leads to hyperhagia (Munzberg and Myers,
2005) while peripheral leptin resistance has been linked
to a decrease in glucose uptake, decrease in glycogen
synthesis and accumulation of intracellular lipids leading
to peripheric insulin resistance (Liu et al., 1997; Unger,
2004). Leptin is also involved in hypertension,
arteriosclerosis, cancer and eating disorders (Ramos et
al., 2004; Chan and Mantzoros, 2005; Luo et al., 2005;
Singhal, 2005).

Gastric leptin is involved in immunity and
inflammation of the digestive tract. Helicobacter pylori,
the major cause of chronic gastritis and peptic ulcer
diseases (Blaser, 1990), increases the expression of
leptin mRNA and leptin secretion by the gastric mucosa.
In turn, leptin could stimulate monocytes to produce
proinflammatory cytokines like IL-1, IL-6 and tumour
necrosis factor α (TNF-α) (Santos-Alvarez et al., 1999;
Nishi et al., 2005). In the intestinal mucosa, leptin
modulates the activation and proliferation of T
lymphocytes and redirects cytokine responses towards a
T helper 1 phenotype by enhancing production of IL-2
and interferon (Lord et al., 2002). This seems
particularly important in inflammatory bowel diseases
that are characterized by hyperleptinemia and over-
activation of the immune system. Indeed, mesenteric
adipose tissue gets hypertrophied in Crohn’s disease and
releases large amounts of leptin into the blood enteric
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circulation (Karmiris et al., 2005; Otero et al., 2005). In
ulcerative colitis, a certain population of colonic cells
differentiates into leptin-secreting cells which have been
shown to be involved in colonic inflammation
(Siegmund et al., 2004).

Perspectives

Alteration in leptin plasma levels and intracellular
signalling in obesity and diabetes have been extensively
studied. The role of leptin on gastric and intestinal
function is starting to be the focus of many studies
related to gut inflammation and dysfunction. In
particular, intestinal mucosa from diabetic patients is
characterized by increased glucose uptake, decreased
amino acids absorption and over production of
lipoproteins and lipogenesis (Haidari et al., 2002;
Zoltowska et al., 2003). Several diabetic rodents,
including the leptin deficient mouse ob/ob model,
present the same symptoms (Mayer and Yannoni, 1956;
Jiao et al., 1991). On the other hand, the increased
production of leptin by mesenteric white adipose tissue
in patients with Crohn’s disease and by colonic cells in
patients with ulcerative colitis point out an important
role for leptin in these pathologies (Sitaraman et al.,
2004; Karmiris et al., 2005). The near future will
probably see the development of extensive research on
the effects of mesenteric and gastric leptin on the gastro-
intestinal functions.
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