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Resumen

En el último lustro hemos sido testigos de un punto de inflexión fundamental en
la historia de la computación. Durante las últimas cuatro décadas, los avances en
la escala de integración han permitido doblar el número de transistores integra-
dos en un chip cada 18 meses, lo cual ha posibilitado un extraordinario aumento
en las prestaciones de los procesadores, cuyas aplicaciones han revolucionado
nuestra sociedad en menos de medio siglo. Por una parte, la progresiva miniatur-
ización de los transistores ha reducido su tiempo de conmutación, permitiendo
construir procesadores capaces de operar a frecuencias de reloj cada vez más altas.
Por otro lado, los arquitectos de computadores han empleado los transistores
adicionales disponibles en el chip para diseñar cauces de ejecución más y más
sofisticados, capaces de explotar el paralelismo a nivel de instrucción existente
en los programas secuenciales. Así, la combinación de los progresos tanto en el
proceso de integración como en la arquitectura de los procesadores ha sostenido
varias décadas de crecimiento exponencial en el rendimiento de los sistemas
informáticos, un logro sin precedentes en la historia de la tecnología que no
obstante ha tocado a su fin.

Las limitaciones impuestas por el consumo energético y la capacidad de
refrigeración del chip, unido a los crecientes costes de diseño y verificación
de arquitecturas monoprocesador cada vez más complejas, han provocado un
estancamiento en las mejoras de rendimiento de los sistemas monoprocesador en
los últimos años. La industria ha encontrado una salida a esta crisis por medio de
la fabricación de chips que incluyen más de un procesador por chip, los llamados
procesadores multinúcleo o CMPs. De esta forma, las hojas de ruta de la mayoría
de fabricantes proyectan un rápido aumento en el número de núcleos integrados
en un solo chip, con el propósito de incrementar las prestaciones mediante la
explotación del paralelismo a nivel de tarea. Este cambio de paradigma hacia
arquitecturas paralelas trae consigo nuevas oportunidades, pero también difíciles
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Resumen

retos que hacen de estos tiempos un momento apasionante para la investigación
en Arquitectura de Computadores.

El giro hacia las arquitecturas multinúcleo ha situado el problema de la
programación concurrente al frente de la investigación en computación, pues
la gran barrera que impide aprovechar plenamente la capacidad de cómputo
agregado de un CMP es precisamente su complejidad de programación. El auge
de los multinúcleos está haciendo que la programación paralela se generalice,
empujando a los programadores hacia un paradigma de programación poco
conocido. Desafortunadamente, la programación concurrente es una tarea más
compleja que la secuencial, pues un programa paralelo es indudablemente más
difícil de diseñar, escribir y depurar que su versión secuencial: Los diferentes
hilos de un programa paralelo necesitan comunicarse para llevar a cabo la tarea
de manera coordinada. En este escenario cooperativo, orquestar la ejecución de
los hilos con el fin de garantizar la corrección del programa al tiempo que se
consigue un alto grado de eficiencia y se mantiene una elevada productividad
de programación, supone un complicado reto. Los modelos tradicionales de
programación multi-hilo recurren a primitivas de bajo nivel como los cerrojos
para proteger las estructuras de datos compartidas, garantizando el acceso de
hilos en exclusión mutua. En este contexto, la complejidad de la sincronización
basada en cerrojos hace de la programación paralela una tarea propensa a errores,
especialmente cuando se utilizan cerrojos de granularidad fina con el fin de
extraer mayor rendimiento.

Sin lugar a dudas, el compromiso entre la facilidad de programación y
rendimiento impuesto por el modelo de sincronización basado en cerrojos sigue
siendo uno de los retos clave para los programadores y arquitectos de computa-
dores de la era multinúcleo. La Memoria Transaccional (TM) ha sido propuesta
como un modelo de programación conceptualmente más sencillo que puede ayu-
dar a incrementar la productividad de los programadores al eliminar la compleja
tarea de razonar sobre la corrección de un programa que usa cerrojos de grano
fino. Al utilizar transacciones para sincronizar el acceso a los datos compartidos,
los programadores no necesitan preocuparse por posibles entrelazados en la
ejecución de las secciones críticas que provoquen la aparición de interbloqueos o
den lugar a un resultado incorrecto. Así pues, TM aborda el compromiso entre
rendimiento y productividad: Desde el punto de vista del programador, TM
facilita la programación paralela al favorecer un estilo de sincronización de grano
grueso, manteniendo la promesa de que aún con dicho estilo es posible alcanzar
prestaciones comparables a las de los cerrojos de grano fino. El sistema TM
subyacente, por su parte, trata de sacar el mejor partido del paralelismo existente
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en la aplicación gracias a la ejecución especulativa de transacciones, utilizando los
mecanismos oportunos para detectar conflictos entre transacciones concurrentes,
con el fin de mantener en todo caso las propiedades de las transacciones.

Los sistemas TM pueden implementarse completamente en software, en hard-
ware o usando una combinación de ambos. Una aproximación software permite
la posibilidad de ejecutar aplicaciones transaccionales en sistemas existentes,
con un alto grado de flexibilidad a un bajo coste. Por contra, la implementación
de los mecanismos necesarios en software impone una sobrecarga demasiado
alta, provocando que las soluciones basadas en cerrojos todavía sean superi-
ores cuando el rendimiento es importante. A pesar de las ventajas del enfoque
software, es incuestionable la necesidad de implementaciones rápidas para que
el nuevo paradigma basado en transacciones alcance un uso generalizado. De
hecho, dada la abundancia de transistores disponibles en los chips actuales, uno
de los retos más importantes para los arquitectos de computadores hoy día es
entender qué abstracciones pueden mejorar la productividad del desarrollo de
software paralelo, y a partir de ahí introducir el soporte hardware apropiado
para realizarlo. Las transacciones son un buen candidato como abstracción en el
ámbito de la sincronización de programas de memoria compartida. Esta tesis se
centra en la implementación en hardware de los mecanismos que proporcionan
un control de concurrencia optimista con estrictas garantías de atomicidad y
aislamiento, con el objetivo de alcanzar altos niveles de rendimiento a un coste
razonable en términos de complejidad en el diseño global.

El trabajo recogido en esta tesis abarca diferentes aspectos dentro del espacio
de diseño de los sistemas hardware de memoria transaccional (HTM), en el
contexto de un procesador multinúcleo construido sobre una red de interconexión
escalable. Esta tesis identifica ineficiencias críticas que impactan el rendimiento
de los diferentes enfoques HTM, y propone mecanismos para solventar dichas
limitaciones. En esta disertación consideramos tanto sistemas HTM de política
ansiosa como aquellos diseñados bajo el enfoque perezoso, y afrontamos las
sobrecargas en el rendimiento que son inherentes a cada política.

Quizá la contribución más relevante de esta tesis es ZEBRA, un sistema HTM
de política híbrida que adapta su comportamiento en función de las características
dinámicas de la carga de trabajo. Gracias a la selección de una u otra política
en los mecanismos transaccionales básicos (gestión de versiones y resolución
de conflictos), ZEBRA consigue combinar las ventajas de los enfoques ansioso y
perezoso en un mismo diseño. Nuestra propuesta combina la buena concurrencia
en situaciones de contención inherente a la política perezosa, con los commits
completamente paralelos propios de la política ansiosa, y lo hace a un coste
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hardware reducido gracias a que trabaja con una granularidad semejante al de los
mecanismos básicos de TM: la línea de caché. Se trata de un diseño HTM híbrido
y adaptable que mejora en rendimiento a los enfoques estáticos y de políticas
prefijadas. En lugar de percibir la contención como una característica de una
transacción –i.e. bloque de código–, nosotros la entiende como una característica
de los datos accedidos dentro de cada transacción. Nuestra observación de que los
datos contendidos conforman una fracción relativamente pequeña del conjunto
de escritura de una transacción justifica la decisión de incorporar estructuras
hardware para gestionar de forma eficiente dichos datos en el caso común. En el
proceso, nuestra propuesta auna las bondades de ambas políticas tradicionales
de diseño HTM, con cambios muy modestos en la arquitectura y el protocolo
de coherencia. Así, ZEBRA soporta commits instantáneos para transacciones que
no acceden datos contendidos, y permite la compartición por parte de múltiples
lectores y escritores sobre datos contendidos. En esta tesis mostramos tanto
cualitativa como cuantitativamente que nuestro diseño puede aprovechar el
paralelismo existente mejor que los diseños de política invariable, igualando o
superando al diseño de política fija que mejor se adapta a las características de
cada carga trabajo: ZEBRA exhibe prestaciones similares a los de un sistema
HTM puramente ansioso en aquellos casos en los que la elevada tasa de commits
limita el rendimiento, al tiempo que supera claramente tanto a sistemas ansiosos
como a perezosos en aplicaciones donde la contención es un factor dominante. En
resumen, ZEBRA obtiene la menor desviación sobre el mejor rendimiento medido
para un conjunto diverso de cargas de trabajo, corroborando nuestra afirmación
de que es un diseño robusto y menos susceptible a condiciones patológicas.

En esta tesis abogamos por la adaptación de las políticas de gestión transac-
cionales a la naturaleza de los datos, ya que reconocemos que la asunción de
que todos los datos accedidos dentro de una transacción poseen las mismas
características conduce a soluciones sub-óptimas. No obstante, pese a que la
predeterminación de la política en tiempo de diseño puede resultar en un sistema
HTM que no rinde bien en ciertos rangos del espectro de cargas de trabajo, la
mayor sencillez de implementación de un sistema HTM de política fija hace
que sea importante considerar los problemas específicos de cada enfoque y en-
contrar técnicas para solucionarlos. Así pues, esta tesis investiga los factores
limitantes del rendimiento de aquellos sistemas HTM de política fija que utilizan
un protocolo de coherencia de directorio distribuido para detectar conflictos entre
transacciones sobre una red de interconexión escalable, y desarrolla soluciones
que evitan la degradación de prestaciones.

En lo que se refiere a los sistemas HTM ansiosos, proponemos una técnica que
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previene la formación de un cuello de botella en el mecanismo de detección de
conflictos, que tiene lugar en el controlador de directorio durante situaciones de
elevada contención en el acceso a un dato compartido. El esquema propuesto sep-
ara el mantenimiento de la coherencia y la detección de conflictos, permitiendo
que dicha detección también pueda ser realizada directamente por el directorio
y no exclusivamente por las cachés privadas, como viene siendo tradicional.
Nuestra propuesta solventa un escenario patológico que afecta los sistemas HTM
ansiosos, al conseguir una detección de conflictos independiente de los mecanis-
mos de coherencia y por tanto más rápida y con menores demandas sobre la red
de interconexión, lo que a su vez hace posible que el sistema pueda reaccionar
y resolver dichos conflictos con mayor celeridad. La evaluación experimental
muestra que gracias a nuestra técnica los sistemas HTM ansiosos también logran
comportarse de manera eficiente cuando la contención es alta en el acceso a un
mismo dato, conduciendo no solo a un menor número de transacciones abor-
tadas, sino también a una menor latencia de acceso a memoria a dichos datos
conflictivos. Nuestros experimentos muestran una reducción tanto del tiempo
de ejecución como del uso de la red con respecto a un sistema LogTM-SE con
firmas perfectas. En particular, la eliminación del cuello de botella en el directorio
es responsable de una ganancia en prestaciones muy significativa para aquel-
las cargas de trabajo que sufren mucha contención sobre un número reducido
de líneas de caché. Además, en comparación con sistemas tipo LogTM-SE que
utilizan firmas reales con un coste hardware similar al de nuestro diseño, éste
reduce la degradación de rendimiento causada por la aparición de falsos positivos
ya que prácticamente los elimina en su totalidad. Nuestro novedoso esquema
para el mantenimiento de los conjuntos de lectura y escritura transaccionales
aprovecha la naturaleza intrínseca del directorio para codificar de forma global
dichos conjuntos, asociando cada dirección de memoria con las transacciones
que la acceden, en lugar de mantener un conjunto de direcciones –a menudo
redundante– en cada núcleo de ejecución. Esto permite una codificación global
más eficiente y permite la eliminación de falsos positivos en los propietarios
transaccionales de un bloque, al utilizar la propia información de directorio
sobre los compartidores de dicho bloque. En definitiva, defendemos la idea de
que aumentar el rol del directorio para incluir la funcionalidad de detección
de conflictos es una evolución natural de sus responsabilidades dentro de un
sistema HTM ansioso.

En el dominio de los sistemas HTM con resolución de conflictos perezosa,
esta tesis presenta π-TM, un sistema HTM que aplica el concepto de invalidación
pesimista para conseguir combinar la detección temprana de conflictos con la res-
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Resumen

olución perezosa, sin necesidad de lastrar la ejecución transaccional común para
salvaguardar la corrección ante posibles condiciones de carrera. π-TM detecta
conflictos de forma ansiosa sin caer en la penalización de acceder al directorio
en el caso común para garantizar una ejecución correcta, y alcanza un esquema
de commits verdaderamente escalable al permitir que transacciones no conflicti-
vas puedan completar su ejecución exitosa de forma verdaderamente paralela.
En esta tesis mostramos como la información pertinente para la detección de
conflictos se encuentra disponible en el tráfico de coherencia generado durante
la ejecución de una transacción, y por tanto puede utilizarse para detectar con-
flictos antes de que la transacción llegue a su fin. Si se utiliza apropiadamente,
esta información posibilita un diseño sencillo que soporta commits paralelos de
transacciones no conflictivas, mientras mantiene el comportamiento optimista
de las transacciones perezosas que les permite continuar su ejecución más allá
de accesos conflictivos. Desafortunadamente, el trabajo previo en esta dirección
que encontramos en la literatura ha introducido otra forma de pesimismo en un
escenario más crítico si cabe, forzando que cada nuevo acceso transaccional a
una línea de caché deba pasar obligatoriamente por el directorio, lo cual supone
una degradación sustancial del rendimiento tal y como demostramos en nuestra
evaluación. El sistema π-TM, en cambio, se libra de esta penalización en la mayor
parte de escenarios, cuando resulta prudente hacerlo, recurriendo a una forma
de pesimismo mucho más liviana que no lastra la ejecución en el caso común.
Además, esta tesis también subraya la importancia de incorporar mecanismos
de adaptación en el diseño para tolerar características cambiantes en las cargas
de trabajo, como forma no sólo de obtener mayor rendimiento sino también de
conseguir un sistema más robusto.

Otra contribución importante de la tesis es nuestro análisis del impacto que la
utilización de búfers de escritura no coherentes tiene en los sistemas HTM, tanto
ansiosos como perezosos. Esta tesis demuestra que el uso de una optimización
estructural tan común como los búferes de escritura juega un rol primordial en el
rendimiento global de una implementación HTM, revelando que las diferencias
de rendimiento observadas entre sistemas con políticas ansiosas y perezosas
se reducen sustancialmente. La sorprendente convergencia de ambos enfoques
en términos de prestaciones desvelada en esta tesis desmitifica la percepción
generalizada de que los sistemas HTM perezosos son la elección más eficiente
desde el punto de vista del rendimiento. Con este trabajo demostramos las
ineficiencias causadas por el almacenamiento de los valores especulativos en
estructuras coherentes como las cachés privadas. Si bien no abogamos por el uso
de exclusivo de búferes de escritura para la gestión de versiones de datos en las
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transacciones –pues las restricciones de área y energía limitan severamente su
utilidad–, sí señalamos la importancia de disponer de este tipo de búferes para
dar un soporte TM eficiente en el caso común.
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Abstract

Owing to the incessant improvement in process technology, nowadays billions of
transistors can be integrated on a single die, providing computer architects with
huge amounts of silicon resources. Pressed by power and energy constraints,
and instigated by ever-increasing design and verification costs, microproces-
sor vendors have responded to the crisis of stalled sequential performance by
manufacturing chips that contain multiple processing cores, known as chip multi-
processors or CMPs. Most microprocessor road-maps today project rapid growth
in the number of cores integrated on chip in an attempt to provide increasing
performance through thread level parallelism.

The rise of multicores has brought the problem of effective concurrent pro-
gramming of such systems to the forefront of computing research, presenting both
immense opportunities and enormous challenges. Programmers must change
the way they create applications and turn their focus to multi-threaded appli-
cations which can take full advantage of the computational resources available
in multicore hardware. Unfortunately, concurrent programming is a far more
difficult task than sequential programming, because the different threads of a
parallel program need to communicate in order to cooperatively carry out the
task to completion. A key challenge is guaranteeing correctness while simultane-
ously maintaining high efficiency and productivity. Traditional multithreaded
programming models use low-level primitives such as locks to guarantee mutual
exclusion and protect shared data. In this context, the complexity of lock-based
synchronization makes parallel programming an error prone task, particularly
when fine-grained locks are used to extract more performance.

The trade-off between programming ease and performance imposed by locks
remains one of the key challenges to programmers and computer architects
of the multicore era. Transactional Memory (TM) is as a conceptually simpler
programming model that can help boost developer productivity by eliminating
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Abstract

the complex task of reasoning about the intricacies of safe fine-grained locking.
By using transactions to safely access shared data, programmers need not reason
about the safety of interleavings or the possibility of deadlocks to write correct
multithreaded code. Hence, TM addresses the performance-productivity trade-
off by not discouraging programmers from using coarse-grain synchronization,
since the underlying system can potentially achieve performance comparable to
fine-grained locks by executing transactions speculatively.

In spite of the advantages that software-based approaches to TM offer in
terms of overall system complexity, the reality is that fast implementations of
transactional programming constructs are necessary for TM to gain widespread
usage. Indeed, given the abundance of transistors available in today’s chips, one
of the priorities for computer architects today is to understand which abstractions
can enhance the productivity of parallel software development and then introduce
the appropriate hardware support to realize it. Transactions are a good candidate
for such an abstraction, and this thesis focuses on the hardware mechanisms that
provide optimistic concurrency control with stringent guarantees of atomicity
and isolation, with the intent of achieving high-performance across a variety of
workloads, at a reasonable cost in terms of design complexity.

This thesis identifies key inefficiencies that impact the performance of several
hardware implementations of TM, and proposes mechanisms to overcome such
limitations. In this dissertation we consider both eager and lazy approaches to
HTM system design, and address important sources of overhead that are inherent
to each policy. This thesis presents a hybrid-policy, adaptable HTM system that
combines the advantages of both eager and lazy approaches in a low complexity
design, by selecting the appropriate policy at the granularity of cache lines.

Furthermore, this thesis investigates the overheads of the simpler, fixed-policy
HTM designs that leverage a distributed directory-based coherence protocol
to detect data races over a scalable interconnect, and develops solutions that
address some performance degrading factors. For eager systems, we propose
a mechanism to prevent the directory controller from becoming a bottleneck
in the conflict detection mechanism during situations of high contention. For
lazy systems with early conflict detection, we present a solution that unburdens
transactional execution from the penalty of accessing the directory in the com-
mon case to guarantee correctness, while providing true commit parallelism
for non-conflicting transactions. It also demonstrates that common structural
optimizations such as store buffers play a major role in determining the overall
performance of an HTM implementation, bridging the performance gap between
eager and lazy designs.
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Chapter 1
Introduction

The 2000s have witnessed a major inflection point in the history of computing.
For the past four decades, Moore’s law has fuelled an extraordinary boost in
processor performance by doubling the on-chip transistor count approximately
every two years: smaller transistor feature sizes allowed higher and higher clock
frequencies, and computer architects made use of the newly available silicon
resources to design more and more sophisticated pipelines that better exploit the
instruction level parallelism (ILP) present in sequential programs. The synergistic
combination of advances in semiconductor technology and micro-architectural
techniques has sustained decades of exponential growth in uniprocessor perfor-
mance, an unprecedented achievement which has recently come to an end. A
fundamental paradigm shift towards parallel architectures is taking place in front
of our eyes, bringing about new opportunities and challenges that make this an
exciting time to be in Computer Architecture.

1.1 The Era of Multicores

Transistor scaling has been the leading force that has driven the rapid growth in
microprocessor performance for the past decades. In every technology generation,
transistor integration doubled, circuits were faster, and power consumption
stayed the same [24]. With twice as many transistors available on each new
generation, architects had plenty of resources to create more complex micro-
architectural techniques, include larger and more sophisticated cache hierarchies
as well as exploit transistor speed to increase frequency. Unfortunately, as
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transistors approach atomic dimensions, new challenges have appeared that
make it increasingly difficult to continue this virtuous trend. Despite continuing
miniaturization, issues such as increased threshold voltage to control leakage, and
limited supply-voltage scaling, decrease the performance benefits of transistor
scaling [48].

While Moore’s law is still alive and well [61, 111] –we can expect transistor
counts to keep doubling at least for a few more generations to come–, power
and cooling concerns have now become first-class limiting factors that restrict
further raises in the clock frequency. This has caused the abandonment of micro-
architectures with very-deep instruction pipelines [62]. Low power efficiency,
high design complexity and expensive verification costs have also brought to
a stop the efforts to design very aggressive wide issue superscalar processors
with large instruction windows, despite the fact that some amount of ILP still
remains to be exploited. Even the investment of the on-chip real state in ever
larger caches is reaching the point of diminishing return [42]. Consequently,
it has become increasingly difficult to continue to improve the performance of
sequential processors [131] due to what has become to be known as the three walls:
Power, Memory, and ILP Walls [12].

In response to stalled sequential performance, power and energy efficiency
constraints and sky-rocketing design and verification costs, industry has found
a way out of the looming crisis by manufacturing chips that include more than
one processor, connecting them through a shared memory [50]. These novel
single-chip, parallel computers are known as “chip multiprocessors” (CMPs)
or “multicore” systems1. IBM pioneered the release of a dual-core processor in
2002 [135], though it was not until 2005 when major vendors such as Intel and
AMD began introducing their multicore products into the personal computing
market [1, 66]. Most chip-makers today are producing microprocessors with two
to eighteen processing cores [23, 47, 125, 129]. In less than a decade, multicores
have become ubiquitous, powering a wide span of systems that range from
server [51], desktop, and laptop computers [2, 126], to gaming devices [76] and
smart phones [10]. Road-maps project rapid growth in the number of cores
integrated on chip in an attempt to provide increasing performance through
thread-level parallelism (TLP). Some researchers predict that future chips could
contain thousands of cores [12]. Furthermore, power and energy efficiency
constraints have not only been responsible for this transition to the multicore era,

1The term manycore is also employed when the number of processing cores is large.
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but are now also forcing hardware architects to move from complex multicore
processors to simplified manycore processors [84].

1.1.1 The Concurrency Revolution

This shift to mainstream parallel architectures has brought the problem of ef-
fective concurrent programming of such systems to the forefront of computing
research, presenting both immense opportunities and enormous challenges. The
rise of multicores is quickly making parallel programming become widespread,
pushing programmers towards an unfamiliar programming paradigm. Despite
the fact that multiprocessor systems have existed for a long time, multi-threaded
software development has not been much of a focus in mainstream software
development. Instead, multiprocessors were of interest only to the small commu-
nity of supercomputing, and so was parallel programming, which was mostly
ignored by software vendors, and not widely investigated nor taught. As a
matter of fact, most software development over time has been predicated on
single-core hardware, and the collective knowledge of software developers across
organizations has been based primarily on single processor hardware platforms.

Now that the free lunch is over [131], software developers must change the
way they create applications to fully leverage multicore hardware. By turning
their focus to multi-threaded applications, developers can take full advantage of
the newly available computational resources and deliver software that meets the
demands of the world. The problem is that writing efficient and correct parallel
code is a difficult task that involves orchestrating the concurrent execution of the
parts to improve performance while at the same time guaranteeing correctness.
Complex and hard-to-find, software defects unique to multi-threaded applications
such as race conditions and deadlocks can quickly derail a software project [31].
Software engineering tools have yet to simplify the programming for these shared-
memory architectures in order to make the new hardware resources accessible to
the common programmer. In order to avert a software crisis, developers must
adapt and improve such tools to make them better suited for parallel multicore
software development [144]. The reality is that software has not matured enough
to take advantage of the number of cores that are already available in today’s
systems, and the vast majority of applications are still single-threaded [54].
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1.2 The Challenges of Parallel Programming

Concurrent programming is a far more challenging task than sequential program-
ming: A parallel program is undoubtedly more difficult to design, write, and
debug than its sequential counterpart. Orchestrating the concurrent execution
of the parts to improve performance while at the same time guaranteeing cor-
rectness is by no means an easy task. Parallel software is harder to design than
sequential or single-threaded software because parallelism cannot be abstracted
away [8]: Parallelism is not a local property of software, but requires restructuring
code and data in often counter-intuitive ways. Designing algorithms that can be
split into parallel tasks, balancing the workload among the available processors,
or communicating and managing shared data between different processors are
only some of the many factors that make parallel programming a complicated
endeavour. Programmers need to reason carefully about possible interactions of
their threads when running concurrently, and not doing so may result in pro-
grams that are incorrect, perform poorly, or both. To add insult to injury, parallel
programs are very hard to debug due to the combinatorial explosion of possible
execution orderings: Parallel programs often produce non-deterministic results,
making it harder to prove programs correct, and their bugs are often elusive and
notoriously difficult to find and fix, because of the difficulty to reproduce the
exact same execution (i.e. interleaving of threads, etc.) that leads to a race.

The different threads of a parallel program need to communicate in order
to carry out the task cooperatively to completion. For this matter, two popular
types of general-purpose communication abstractions exist, which provide a link
between the software (programming model) and the hardware (physical imple-
mentation). Threads can exchange information by sending messages (message
passing model), or by merely accessing and modifying shared memory locations
(shared memory model). This thesis focuses on shared memory, as is widely re-
garded as a more intuitive model than message passing for the development of
parallel programs [72], and nowadays is the prevalent model in most CMPs [58].
By offering a single physical view of the memory to all processors, this model
makes the move into the parallel realm less daunting to sequential programmers,
as they are well accustomed to such abstraction.

In the context of shared memory architectures where concurrent tasks process
shared data, guaranteeing correctness while maintaining efficiency and produc-
tivity is one key challenge. Parallel thread execution requires synchronization for
accessing shared data. Programmers are responsible for ensuring that concurrent
accesses to shared data structures are correct, and often rely on mutual exclusion
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mechanisms to protect these critical sections, so that no more than one thread can
simultaneously enter the same critical section and access the same shared data.

1.2.1 Drawbacks of Lock-Based Synchronization

Traditional multi-threaded programming models use low-level primitives such as
locks to guarantee mutual exclusion. Unfortunately, the complexity of lock-based
synchronization makes parallel programming an error prone task, particularly
when fine-grained locks are used to extract more performance. At one end, heroic
programmers seeking performance try to minimize the amount of resources
(data objects) that are protected by the same lock, so that different threads
accessing different data do not have to serialize their execution unnecessarily,
thus enabling maximum concurrency. However, the use of fine-grain locks adds
more programming complexity, since programmers must be careful to acquire
them in a fixed, predetermined order so as to avoid deadlocks. At the other end,
common programmers seeking productivity (correctness) choose to reduce the
complexity of reasoning (i.e. likelihood of deadlock) by using fewer locks with
coarser granularity, where each lock is responsible for protecting larger critical
section, at the cost of sacrificing performance. Though programmers can also
include deadlock detection mechanisms in their programs, to try and recover
from deadlocks, this alternative also adds substantial complexity.

As if deadlocks were not enough, locking brings about other undesired
situations like priority inversion (when a high priority thread is unable to acquire
a lock because a lower priority thread is holding it), convoying (when a lock
holder is de-scheduled from execution, impeding others to progress) and lack of
fault tolerance (when a lock holder modifies data and then crashes, causing the
whole program to fail). Furthermore, locking break the abstraction principle, as
programmers using a module need to be aware of the locks it uses, to ensure that
the program still follows the predetermined locking order that prevents deadlock.
Therefore, locks jeopardize the code composability property, as two individually
correct modules can deadlock when combined together.

1.3 The Transactional Abstraction

The trade-off between programming ease and performance imposed by locks
remains one of the key challenges to programmers and computer architects
of the multicore era. Transactional Memory (TM) [57, 60] has been proposed
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as a conceptually simpler programming model that can help boost developer
productivity by eliminating the complex task of reasoning about the intricacies of
safe fine-grained locking. TM inherits the concept of transaction from the database
community, and applies it to the domain of shared-memory programming in
an attempt to simplify the task of thread synchronization. Transactions in the
multi-threaded programming world are blocks of code that are guaranteed to
be executed atomically and in isolation with respect to all other code. At a
high level, the programmer or compiler annotates sections of the code as atomic
blocks or transactions. The underlying system then executes these transactions
speculatively in an attempt to exploit as much concurrency as possible. TM
systems generally employ an optimistic approach to concurrency control in order
to let multiple transactions execute in parallel, while still preserving the properties
of atomicity and isolation. Therefore, the TM system attempts to make best use
of available concurrency in the application while guaranteeing correctness. By
using transactions to safely access shared data, programmers need not reason
about the safety of interleavings or the possibility of deadlocks to write correct
multi-threaded code. Hence, TM addresses the performance-productivity trade-
off by not discouraging programmers from using coarse-grain synchronization,
since the underlying system can potentially achieve performance comparable
to fine-grained locks by executing transactions speculatively. In addition to
addressing such critical trade-off, TM addresses other limitations of lock-based
synchronization. Transactional code is robust in the face of both hardware and
software failures, as the system can always rollback the speculative updates to its
pre-transactional state in case a thread crashes inside a transaction. Unlike locks,
transactions are composable, and they can be safely nested without any risk of
deadlocks [17].

1.3.1 High-Performance Transactional Memory

Transactions are a promising abstraction that could ease parallel programming
and make it more accessible to the common programmer. Transactional semantics
can be entirely supported in software, hardware, or using a combination of both.
According to this, we can classify TM systems into software transactional memory
(STM), hardware transactional memory (HTM), and hybrid transactional memory
systems. STM implementations [44, 59, 83, 120] allow running transactional
workloads on existing systems without requiring special hardware support,
providing a great degree of flexibility at little cost. Unfortunately, implementing
the necessary mechanisms entirely in software imposes too high an overhead
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and thus STM systems do not fare well against traditional lock based approaches
when performance is important. For this new paradigm to be a viable alternative
to locks, the key mechanisms that provide transactional semantics must be
implemented at the architectural level.

Hybrid TM systems [14, 26, 41, 75, 123, 134] attempt to combine both the
speed and flexibility by using simple hardware to accelerate performance-critical
operations of an STM implementation. In this way, hybrid implementations of TM
rely on some kind of software intervention to execute transactions, though they
minimize the overheads of providing transactional semantics in comparison to a
software-only solution. Hybrid TM models use the STM as a backup to handle
situations where the hardware cannot execute the transaction successfully [57].

Transactional semantics can also be supported largely in hardware [9,27,29,55,
88, 92, 153], allowing for good performance with varying degrees of complexity
which change considerably from one HTM proposal to another, depending on
what kind of transactions the TM system is capable of committing without resort-
ing to fallback mechanisms. Simple HTM schemes [30,36,60] adopt a “best-effort”
solution that cannot not guarantee that all transactions will eventually commit
successfully using hardware support alone, mostly because of the limitations
imposed by the hardware structures involved. More sophisticated HTM pro-
posals [9, 55, 92] address this limitation in transaction size, guaranteeing that
certain “bounded” transactions can be entirely executed in hardware, no matter
the transaction’s footprint. These proposals typically behave in the same way
as best-effort ones as long as hardware structures are sufficient, and then fall
back to additional hardware mechanisms to maintain transactional properties
on resource overflow. However, neither bounded nor best-effort solutions can
commit transactions that encounter events that are too complicated to handle in
hardware, like context switches, page faults, I/O, exceptions or interrupts [63],
and in such circumstances the transaction is invariably aborted. Even more
elaborated HTM schemes have been designed [9,107] to handle all transactions in
hardware, ensuring that the same transaction is not indefinitely aborted because
of its size, duration or other events it may encounter. Unfortunately, the com-
plexity of these “unbounded” HTM designs makes them too costly for processor
manufacturers to consider them in practice.
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1.4 Thesis Motivation and Contributions

In spite of the advantages that software and hybrid TM systems offer in terms of
overall system complexity, the reality is that fast implementations of transactional
programming constructs are necessary for TM to gain widespread usage. Some
processor manufacturers have already ventured into the inclusion of hardware
support for TM in their latest designs [30, 36, 47]. Though it never became com-
mercially available, the Rock processor [30] developed at Sun Microsystems was
the first general-purpose chip multiprocessor with best-effort HTM capabilities.
IBM has recently unveiled its Blue Gene/Q processor [47], which has become
the first commercial chip to ship with TM support. Indeed, given the abundance
of transistors available in today’s chips, one of the most important challenges
for computer architects is to understand which abstractions can enhance the
productivity of parallel software development and then introduce the appropri-
ate hardware support to realize it [42]. Transactions are a good candidate for
such an abstraction, and this thesis focuses on the hardware mechanisms that
provide optimistic concurrency control with stringent guarantees of atomicity
and isolation, with the intent of achieving high-performance across a variety of
workloads, at a reasonable cost in terms of design complexity. Some researchers
argue that, for TM to become a successful programming model, the best ap-
proach for implementing transactional memory is the hybrid approach that uses
a hardware-software solution [132]. The intent of this thesis is not to determine
which design point is preferable, whether best-effort, bounded, unbounded or a
hardware-software combination. Rather than determining the right degree of TM
support that should be placed in hardware, in this thesis we aim to investigate
the hardware mechanisms themselves, identify their limitations and propose
adequate solutions to overcome them while keeping complexity low. Our goal
is not to provide complete HTM solutions, but instead give important insights
on the performance implications that different design choices have, when critical
TM mechanisms are implemented in hardware.

This thesis identifies key inefficiencies that impact the performance of several
hardware implementations of TM, and proposes mechanisms to overcome such
limitations. In this dissertation we consider both eager and lazy approaches to
HTM system design, and address important sources of overhead that are inherent
to each policy. This thesis argues for a hybrid-policy, adaptable HTM design
that combines the advantages of both eager and lazy approaches, by selecting
the appropriate policy at the granularity of cache lines. We also investigate the
overheads of the simpler, fixed-policy HTM designs that leverage a distributed
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directory-based coherence protocol to detect data races over a scalable inter-
connect, and we develop solutions that address some performance degrading
factors. For eager systems, we propose a mechanism to prevent the directory
controller from becoming a bottleneck in the conflict detection mechanism during
situations of high contention. For lazy systems with early conflict detection,
we present a solution that unburdens transactional execution from the penalty
of accessing the directory in the common case to guarantee correctness, while
providing true commit parallelism for non-conflicting transactions. Furthermore,
we demonstrate that common structural optimizations such as store buffers play
a major role in determining the overall performance of an HTM implementation,
bridging the performance gap between eager and lazy designs.

The main contributions of this thesis are summarized next:

• A directory-based scheme for conflict detection that decouples conflict detection
from cache coherence at the directory level in order to overcome pathological
situations that degrade the performance of an eager HTM system in highly
contended workloads. In this work we demonstrate that the traditional
cache-based approach to conflict detection introduces several sources of
inefficiency when used in the context of a directory protocol, and show
how under situations of high contention the directory becomes a bottleneck.
Our alternative solution moves transactional bookkeeping from caches to
the directory, introducing separate hardware module that acts as conflict
controller and works independently of the coherence controller, leaving the
protocol largely unmodified. In comparison to state-of-the-art eager HTM
systems based on signatures, our proposal is not only capable of dealing
with contention more efficiently, but it also minimizes the performance
degradation of false positives for signatures of similar hardware cost, as
well as reduces the network traffic generated by conflict detection.

• A data-centric, hybrid-policy HTM design that introduces policy flexibility
in hardware, selecting the most appropriate policy on a per-cache-line
granularity. HTM systems, in prior research, had either fixed policies of
conflict resolution and data versioning for the entire system or allowed a
degree of flexibility at the level of transactions. Unfortunately, this resulted
in susceptibility to pathologies, lower average performance over diverse
workload characteristics or high design complexity. Recognizing the fact
that contention is more a property of data rather than that of an atomic
code block, we develop an HTM system that allows selection of versioning
and conflict resolution policies at the granularity of cache lines. We discover
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that this neat match in granularity with that of the cache coherence protocol
results in a design that is very simple and yet able to track closely or exceed
the performance of the best performing policy for a given workload. It
also brings together the benefits of parallel commits (inherent in traditional
eager HTMs) and good optimistic concurrency without deadlock avoidance
mechanisms (inherent in lazy HTMs), with little increase in complexity.

• An HTM design with pessimistic invalidation that enables scalable lazy commits.
In spite of allowing better utilization of available concurrency, lazy HTM
poses challenges at commit time due to the requirement of en-masse publi-
cation of speculative updates to global system state. Early conflict detection
can be employed in lazy HTM designs to allow non-conflicting transactions
to commit in parallel, though it has not been utilized effectively so far. Prior
work in the area burdens common-case transactional execution severely to
avoid some relatively uncommon correctness concerns. In this work we
explore this problem, quantify its severity and develop an early conflict
detection - lazy conflict resolution design. The design highlights how, with
modest extensions to existing directory-based coherence protocols, infor-
mation regarding possible conflicts can be effectively used to achieve true
parallelism at commit without burdening the common-case. We leverage
the observation that contention is typically seen on only a small fraction
of shared data accessed by coarse-grained transactions. Pessimistic invali-
dation of such lines when committing or aborting, therefore, enables fast
common-case execution.

• An analysis of the impact of store buffering techniques in HTM performance,
which shows how straight-forward optimizations that are commonly found
in modern processors play a major role in determining the overall perfor-
mance. HTM systems have been studied extensively along the dimensions
of speculative versioning and contention management policies. The relative
performance of several design policies has been discussed at length in prior
work, yet, the impact of simple structural optimizations like write-buffering
had not been investigated, and performance deviations due to the presence
or absence of these optimizations remains unclear. This lack of insight
into the effective use and impact of these interfacial structures between
the processor core and the coherent memory hierarchy forms the crux of
the problem we study in this work. Our study of both eager and lazy
conflict resolution mechanisms in a scalable parallel architecture notes a
remarkable convergence of the performance of these two diametrically op-
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posite design points when write buffers are introduced and used well to
support the common case. The insights, related to the interplay between
buffering mechanisms, system policies and workload characteristics, con-
tained in this work clearly distinguish gains in performance to be had from
write-buffering from those that can be ascribed to HTM policy.

• We have evaluated all the proposals presented in this thesis in a common
framework using full-system simulation on a set of transactional bench-
marks commonly employed in the TM literature. We have found that
our proposals improve the performance of transactional applications in
comparison to several state-of-the-art HTM designs.

All the contributions of this thesis have been published or are currently
being considered for publication in international peer reviewed conferences
[94, 95, 137–139, 141] and journals [136, 140].

1.5 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2 reviews the fundamentals of transactional memory, and explores
the previous work on hardware implementations of TM.

• Chapter 3 describes the methodology used in the evaluation of the different
approaches presented in this thesis. This chapter discusses the architecture,
tools, workloads and metrics used in the evaluation, as well as a thorough
performance characterization of the baseline HTM systems used throughout
the thesis.

• Chapter 4 presents a mechanism for the acceleration of eager HTM systems
that are built on top of a directory-based coherence protocol.

• Chapter 5 introduces a data-centric, hybrid-policy HTM design that neatly
combines the benefits of both eager and lazy approaches to HTM, at a very
modest cost in complexity.

• Chapter 6 describes a design that applies the idea of pessimistic invalidation
to enable scalable commits in a lazy HTM system that is capable of detecting
conflicts early.
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• Chapter 7 analyzes the implications of store buffering in the performance
of both eager and lazy HTMs.

• Chapter 8 summarizes the main conclusions of the thesis and points out
future lines of work.
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Chapter 2
Background and Related Work

2.1 Fundamentals of Transactional Memory

Transactional Memory (TM) [57, 60] has been proposed as an easier-to-use pro-
gramming model that can help developers build scalable shared-memory data
structures, relieving them from the burdens imposed by fine-grained locking.
Under the TM model, the programmer declares what regions of the code must
appear to execute atomically and in isolation (called transactions), leaving the
burden of how to provide such properties to the underlying levels. The TM system
then executes optimistically transactions, stalling or aborting them whenever
real run-time data conflicts occur amongst concurrent transactions. The TM pro-
gramming model thus replaces explicit synchronization mechanisms like locking
with a more declarative approach whose aim is to decouple performance pursuit
from programming productivity. The key abstraction that TM incorporates at the
programming language level is the atomic construct, which programmers use
to delimit critical sections (accesses to shared data), structuring their code into
atomic blocks or transactions. A transaction is said to commit when it completes its
execution successfully –confirming its speculative updates to shared memory–,
while it is aborted or squashed when some condition occurs –e.g. a race with a
concurrent transaction– that impedes its completion with success. To guarantee
race-free execution of a transactional multi-threaded application, TM implemen-
tations must satisfy two basic properties, namely atomicity and isolation, which
are inherited from the database domain.

The atomicity property dictates that a transaction is either executed to com-
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pletion or not executed at all. If the transaction successfully commits, all of its
changes are made globally visible at once. Otherwise, if the transaction aborts,
all its tentative updates are discarded in order to revert the machine to its pre-
transactional state, as if the transaction was never executed. To the outside world,
this means that a transaction appears as an indivisible operation that cannot be
partially executed. On its part, the isolation property requires that the intermedi-
ate (speculative) state of a partially completed transaction must remain hidden
from other code. By satisfying these properties, transactions appear to execute
in some serial global order, i.e. committed transactions are never observed by
different processors to execute in different orders. To provide these properties,
the TM system must implement two basic mechanisms, namely data version and
conflict management. The policy and implementation of these two mechanisms
constitutes the two fundamental dimensions of the TM design space.

Version management handles the simultaneous storage of both speculative
data (new values that will become visible if the transaction commits) and pre-
transactional data (old values retained if the transaction aborts). Only one of
the two values can be stored in-situ, i.e. in the corresponding memory address,
while the other needs to be placed somewhere else. The data versioning policy
dictates how the system handles the storage of both versions, and it constitutes
a major design point of the system. Depending on which value, old or new,
gets to stay “in place” during the course of the transaction, the data version
management policy can be classified as eager or lazy. Lazy versioning keeps old
values in-situ until the commit phase, buffering speculative updates “on the side”
in the meantime, as shown in Figure 2.1. Only if the transaction commits, old
values are overwritten with the new ones. Since the old values stay in place, a
system with lazy versioning can get rid of an aborted transaction quickly, simply
by discarding the speculative values. In contrast to the lazy policy, an eager
approach to versioning uses a per-thread transaction log to backup the old value
of a memory localtion prior to each write, and then updates the memory location
with the new value, as depicted in Figure 2.2. This policy makes commits fast
as new values are already “in place”, but leads to expensive aborts that require
unrolling the log in order to restore each tentatively modified memory location
with its original content.

When two concurrent transactions access the same memory location, and at
least one of the accesses is a write operation, we say that there is a conflict or race
between them. All TM systems implement a conflict management mechanism to
detect and resolve such conflicts. For this purpose, the data both read and written
by each transaction must be tracked. The set of data addresses that a transaction
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Figure 2.1: Lazy version management.

Figure 2.2: Eager version management.

modifies during its execution is known as write set. Similarly, the read set refers
to the group of memory locations read by the transaction. In these terms, a
conflict between two concurrent transactions happens when a transaction’s write
set overlaps with other concurrent transactions’ read or write set. Depending on
the meta-data information used for transactional book-keeping, conflict detection
can take place at different levels of granularity, from objects, to cache lines to
word or even byte-level addresses.

Strategies for conflict detection vary depending on when a processor examines
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Figure 2.3: Policies for conflict detection.

the book-keeping information of its read and write sets. Figure 2.3 shows the
two policies. In systems with eager detection –sometimes also referred to as
pessimistic–, conflicts are detected as soon as they happen, i.e. on every individual
memory access. In the opposite approach, called lazy or optimistic conflict
detection, this check is delayed until transaction commit, and the resolution is
generally on a committer-wins scheme. The committer transaction publishes
its write set to the rest of the system, so that every other transaction can check
against its read and write sets, and proceed to abort if necessary.

2.2 Cache Coherence Protocols

Cache coherence is a key hardware design concept and is a necessary part of our
intuitive notion of the shared-memory abstraction [39]. Memory provides a set
of locations where values are stored, and when a location is read it should return
the latest value written to that position. This is how a value is communicated
from the point in a program where it is calculated to other points where it is
used, whether it is by the same or other threads, in a single-threaded or in
multi-threaded program. It simply constitutes the fundamental property of the
memory abstraction.
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In shared-memory multiprocessors, communication amongst threads occurs
implicitly as a result of conventional loads and stores. All processing cores read
and write to the same shared address space and they eventually observe the
updates by other cores, according to a particular memory consistency model [3].
Although all processors logically access the same address space, each core in
a CMP usually contains one or several levels of private cache [112]. Cache
hierarchies are crucial to bridge the gap between processor and memory speeds,
reducing the average memory access time and bandwidth requirements by taking
advantage of locality in memory accesses. Caches work by keeping a local copy of
locations that the processor is likely to access soon, thereby saving the processor
from having to access main memory directly. Since processors store data in
their private caches to take advantage of the locality of memory accesses, several
copies of those memory blocks are held in different caches at the same time. In
these circumstances, if a processing core modifies a cache line stored in its private
cache without notifying other cores that may have a copy of the line, they could
be accessing different values for the same data, resulting in data incoherence.
This problem is shown in Figure 2.4.

Figure 2.4: The cache coherence problem [39].

The shared memory abstraction can be provided by hardware, software, or
some combination of both. One of the key mechanisms that support shared
memory at the hardware level is the cache coherence protocol, which is respon-
sible for tracking the multiple copies of each cache line that may exist in the
different private caches, and ensuring that all processors see a consistent view of
memory. Coherence protocols implemented in hardware make the existence of
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caches transparent to the software levels. The coherence protocol is responsible
for ensuring that writes to shared memory are eventually made visible to all
cores, and writes to the same memory location appear to be seen in the same
order by all processors [39]. There are several approaches to solve the cache
coherence problem in hardware [128]. Protocols that invalidate other cached
copies on a write are called invalidation-based protocols [52], while those that
propagate the result of the write operation to all the copies are called update-
based protocols [91]. The former are a more attractive choice for architects and
have been implemented in most modern cache-coherent multiprocessor systems,
as they place much lighter demands on the interconnect.

Up to now, proposed HTM systems rely on invalidation-based protocols in
order to detect conflicts, and therefore deserve further attention as they are an
important topic related to this thesis. Invalidation-based protocols enforce the
following invariant at any point in time [112]: A cache line can be written at most
by one core, or it can be read by multiple cores. This means that before a processor
can write a line in its private cache, first it must acquire write permissions for that
line. Because the coherence protocol only grants write permissions to one cache
at a time, this line has to be previously invalidated (revoking read permission)
from the other caches. Similarly, if a processing core wants to read a cache line
that is found in a remote cache with write permission, the coherence protocol
must previously revoke such exclusive rights before granting read-only access to
the new requester.

The coherence protocol design space spans several alternatives, depending on
the states of the lines stored in the private caches: Modified (M), Exclusive (E),
Shared (S) and Invalid (I). Each state represents different access permissions for
a line. The MESI states are most common in commercial multiprocessors [57].
However, some systems also support the Owned state (O). Coherence protocols
are named after the states that a cache line can be in: MESI, MSI, MOESI, etc.
Figure 2.5 shows the state transition diagram for the MESI cache coherence
protocol.

A line in M state can be both read and written by the local core, and it
indicates the data has been modified (i.e. the copy in the shared level is stale). A
line can also be in E state, which is similar to M in terms of permissions, with the
only difference that the data is clean (the copy in the shared level is not stale). If a
line is in E or M state in a given cache, no other caches can contain a copy of it, or
in other words, that cache has exclusive access to it. Lines in S state contain valid
data that has not been modified and can be read, allowing multiple S copies of
the line to coexist in different private caches with shared access, but no processor
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Figure 2.5: State transition diagram for a MESI protocol [112].

has permission to modify it. Finally, the data can be in I state indicating that the
processor must request both data and permissions before it can read or modify it.

Buses allow for the simplest solution to the cache coherence problem. Snooping-
based coherence protocols leverage the total order property of such kind of
interconnect to maintain coherence by extending the requirements on the cache
controller. As each device connected to the bus can observe every bus transaction,
a cache controller can snoop the memory transactions of others, and interpret
them so as to maintain its cache in a coherent state. Loads and stores are implicitly
used to keep the caches coherent, as the bus serializes requests from different
cores to the same cache line, maintaining consistency. Unfortunately, buses do
not scale in terms of both area requirements and power consumption, and other
solutions are necessary to maintain cache coherence over large-scale systems.

Systems with scalable, point-to-point interconnects, such as the many-core
tiled CMPs considered in this thesis, employ directory-based protocols to maintain
coherence over an unordered network. The coherence information (state, bit-
vector of sharers) of each privately cached line can be kept in a centralized
directory, or it can be distributed across the nodes of the system. In the context
of the multicore architecture assumed in this thesis, L1 private caches are kept
coherent through a distributed directory protocol. Each cache line is assigned a
home tile that keeps the directory entries for the lines mapped to its shared L2
cache bank. The directory acts as serialization point for the requests issued by
several cores for a given line. Cache misses are resolved by sending the request
to the corresponding home L2 cache bank, whose controller determines when it
must be processed and then performs the coherence actions that are necessary to
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satisfy the miss. These actions may involve forwarding the request to the cache
that must provide the data block, or sending invalidation messages to the sharers
in case of a write miss.

2.3 Basic Mechanisms in Hardware Transactional
Memory

HTM systems must identify memory locations for transactional accesses, manage
the read-sets and write-sets of the transactions, detect and resolve data conflicts,
manage architectural register state, and commit or abort transactions [57].

2.3.1 ISA Extensions

Identifying transactional boundaries is accomplished by extending the instruc-
tion set architecture (ISA). All HTM implementations introduce a pair of new
instructions, i.e. “begin transaction” and “commit transaction”, to delimit the
scope of a transaction. On the one hand, the execution of the “begin transaction”
instruction causes the processor to enter into “transactional mode” (usually set-
ting some bit in the status register) and perform some common actions related
to the initialization of the basic transactional mechanisms, like checkpointing
the architectural registers to a shadow register file. The architectural registers
and memory combined form the precise state of the processor, and therefore the
register state also needs to be restored to a known precise state in case of abort.
The operation of creating a shadow copy of the architectural registers at the
start of a transaction is rather straightforward and can often be performed in a
single cycle. On the other hand, the “commit transaction” instruction attempts to
confirm the speculative updates of the transaction by publishing them to the rest
of the system, and it returns the processor to non-transactional state if successful,
discarding the register checkpoint.

The most straightforward step to identify transactional accesses is to leverage
these two instructions that mark the beginning and end of a transaction, so that
all the loads and store instructions executed while in transactional mode are
implicitly considered transactional. This is the approach that most modern HTM
proposals follow, including the Rock processor [30] and the systems evaluated
thoughout this thesis [55, 143, 153]. Another option is to further augment the ISA
with explicit “transactional load” and “transactional store” instructions, separated
from their conventional counterparts. Though allowing a transaction to contain
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both transactional and non-transactional accesses may complicate things, this
provides increased flexibility and may aid programmers to reduce the pressure on
the underlying TM mechanisms, as non-transactional accesses do not participate
in data versioning nor conflict detection. The original HTM proposal by Herlihy
and Moss [60] as well as the AMD Advanced Synchronization Facility (ASF) [35]
are explicitely transactional designs.

Some proposed HTMs also include an “abort transaction” instruction to
explicitly roll back the tentative work of transaction. This is an example of
flexible design that may enable TM hardware to be applied toward solving
problems beyond guaranteeing mutual exclusion during the execution of critical
regions. Programmers using hardware transactions may find useful the ability to
explicitly rollback execution upon a certain condition, which need not necessarily
be a conflict with other transaction.

2.3.2 Transactional Book-keeping

HTM systems must track a transaction’s read and write set in order to detect data
races amongst concurrent transactions. Many HTMs extend the cache line meta-
data kept at the private cache level, with two new bits that record, respectively,
whether the line has been speculatively read (SR) and/or speculatively modified
(SM) during the ongoing transaction [55, 92, 143]. Such designs also support the
capability to clear all the read bits in the data cache instantaneously, an action
that is performed when the transaction commits or aborts. The private caches
serve as a natural place to track a transaction’s read and write sets, enabling
low overhead tracking, although they also constrain the granularity of conflict
detection to that of a cache line. Some systems propose the addition of “rename”
bits to reduce the granularity for tracking to that of words or even bytes [56].
Other proposals propose adding a separate transactional cache to track the read
and write sets [60]. There are also hybrid solutions that use the data cache to
track the read-set while using the store buffer to track the write-set [30].

All HTM systems that leverage the private level cache to perform transactional
book-keeping are susceptible of transactional overflows due to the cache’s limited
capacity or associativity. Best effort designs would automatically abort the
transaction if a cache line whose SR or SM bit is set is replaced, while bounded
schemes would resort to safety nets in order to keep tracking read and write
sets and detecting conflicts in the presence of spilled lines [56]. Some have
proposed the addition of a permissions-only cache to hold transactional metadata

51



2. Background and Related Work

for evicted lines [16], in order to support transactions of larger size before falling
back to serialization as a means to allow the overflowed transaction to commit.

An alternative scheme of transactional book-keeping which does not leverage
the private level cache is to use Bloom filters to conservatively summarize a
transaction’s data accesses into two fixed-size registers or “address signatures”
[27, 153] , one for each transactional set. This avoids modifying the cache design
and it is important because private caches are critical structures in the design of
high performance processors. The main disadvantage of hash encoding is that
false positives may signal spureous conflicts, this is, the signature may indicate
that an address belongs to the transaction read and write sets when in fact it
does not.

Hybrid combinations are also possible in transactional book-keeping: SR bits
in cache can be used to track speculatively read lines that remain cached, while
using signatures to conservatively encode only the addresses of those SR lines
that have been spilled from the cache. This mixed solution reduces the population
of the address signature and can help reduce the amount of false positives [96]
while allowing transactions of larger size.

2.3.3 Data Versioning

Besides keeping read and write set metadata, private caches can also buffer
speculatively written state in a natural way, since they are on the access path for
the local processor and thus can automatically forward the latest transactional
update to subsequent loads without special search. Write-back caches can be
easily modified to behave as write buffers that support lazy versioning. When in
transactional mode, the processor can speculatively modify a line with read-only
permissions, setting the SM bit and hiding the update from the rest of the system.
To the coherence protocol, the line is perceived as a shared copy of the data, and
thus multiple speculative writers of the same data are possible [29, 56, 143]. From
a coherence point of view, those speculative writes to a private copy of the cache
line without write permissions can be seen as writes “on the side” in spite of
being to the same memory location. The coherence protocol must be suitably
adapted to ensure a consistent copy of the data exist in the shared levels of the
memory hierarchy: If a transactional store targets a line that is already dirty, not
speculatively modified, the coherence protocol must first write back the line to
the shared levels and downgrade its access permissions to shared before allowing
the speculative write to proceed. Because coherence protocols generally support
silent invalidations of lines in shared state, the cache design can also be extended
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to support conditional invalidation of those lines whose SM bit is set, so that
the HTM system is able to instantaneously discard the speculative state in the
event of an abort. Figure 2.6 shows the additional circuitry (in black) required
to support flash-clear of SR and SM bits (left-most and middle cells) as well
as gang-invalidation of SM lines (right-most cell). On commit, the system still
needs to locate SM lines and publish their contents, and thus a buffer with the
write-set addresses is usually maintained [56]. HTM systems that perform lazy
versioning in cache are susceptible of transactional overflows due to the limited
capacity or associativity of the cache, or even the address buffer used to track the
write-set could fill up. In any case, speculatively written values cannot be spilled
from private structures, and the system needs to either abort the transaction or it
may enter a special mode of operation in an attempt to commit the overflowed
transaction [56].

Figure 2.6: SRAM cells augmented with circuitry for flash-clear and conditional
flash-clear [19].

For HTM systems with eager version management [92, 153], caches need no
changes in the coherence protocol in order to support versioning since the hard-
ware does not have any notion of speculative writes. All writes update memory,
whether they occur inside or outside a transaction, and it is the responsibility of
the coherence protocol to detect remote accesses to speculatively written data,
and ensure no other threads or transactions observe it. Because a per-thread log
in cacheable virtual memory replaces hardware buffers used in lazy versioning,
systems with eager versioning can accommodate transactions of a much larger
size without overflowing hardware structures. Unlike lazy systems, evictions of
speculatively written data from the private caches are tolerated, and they need no
special treatment from the point of view of the versioning mechanism. However,
specialized hardware is required to fill this virtualized log with the old value
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of each memory location that is being over-written inside a transaction. The
contents of the log are simply discarded on commit, by reseting the log pointer
to its initial position. On an abort, a software handler walks the log restoring the
original values into memory.

2.3.4 Conflict Detection

In order to detect data conflicts, HTMs leverage the invalidation-based cache
coherence protocols presented in the previous section. Cache coherence protocols
allow HTM implementations to detect conflicts among concurrently running
transactions at the granularity of cache lines. While unnecessary transactional
conflicts may arise as a result of false sharing, for most transactional workloads
this choice of granularity represents a good trade-off between design cost and per-
formance. Most HTM design proposals choose to leverage coherence mechanisms
for conflict detection.

The coherence protocol already provides mechanisms to locate the copies of
a requested cache line, and thus the detection of transactional conflicts can be
achieved with straightforward extensions. Let us assume for this elaboration the
directory-based MESI coherence protocol that is used throughout this thesis. In
such scenario, a local store to a line that is currently in S state results in a write
miss, since the protocol ensures that no cache can have permissions to write the
data at this point. A coherence message requesting exclusive access is sent to the
directory, which in turn sends invalidation messages to the current sharers of the
line (except maybe the requestor, if it is amongst the sharers). The sharers are
then able to check whether the requested address belongs to their read set –by
checking the SR bit in cache, the read signature, etc.– and appropriately detect
a write-read conflict. Similarly, a local load (store) to a line that is currently in
M or E state in a remote cache results in a read miss that results in a shared
(exclusive) coherence request being forwarded by the directory to the cache that
has the latest copy of the data, which then checks its write-set (read- and write-
set) metadata to determine if a read-write conflict (write-write conflict) exists.

In snooping-based protocols, all caches observe all coherence traffic for all
lines, allowing cache controllers to check for conflicts whenever a request is
observed on the bus. In directory-based protocols, cache controllers only observe
the coherence traffic corresponding to the lines that are currently privately cached,
and thus they need modest design extensions to support TM semantics. Evictions
of transactional data from private caches are possible in HTMs if the coherence
protocol is modified so that the cache continues receiving coherence traffic for the
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spilled line, and is then able to keep detecting conflicts on it. For speculatively
read lines, this is not an issue: Directory protocols usually already implement
silent replacements of lines in S state, allowing a private cache to simply replace an
S line without reporting to the directory. Upon a subsequent write attempt, the
cache receives an invalidation to a line that is no longer cached, and then it is
able to check its transactional metadata and infer if a conflict exist on the spilled
line. Overflows of speculatively modified data are possible in HTMs with eager
versioning. In this case the directory needs to be extended with a sticky-M state
to perform conflict detection even after replacing transactionally written data
from the cache [92].

As mentioned earlier, the coherence protocol needs minor modifications to
support lazy conflict detection HTM. First, the coherence controller needs to
allow transactional writes to S lines without having to request exclusive access,
as part of the support for lazy versioning. Furthermore, E and M lines must
be downgraded to S state before a transactional store can modify the line, not
only because the last consistent version of the data needs to be preserved in the
shared levels (M state), but also to resume conflict detection via commit-time
coherence invalidation messages. Revoking exclusive ownership to a line before
the first transactional write simplifies lazy conflict detection, as it always takes
place in the same fashion. A committing trasaction publishes its speculative
updates by issuing exclusive ownership requests for the lines in its write set.
Since all transactional accessors (whether readers or also writers) are marked
as sharers of the line, they eventually receive the corresponding invalidations
that are used for conflict detection. Downgrading lines in E state to S before a
transactional store is served also avoids adding extra complexity to the protocol,
since it enables transparent gang-invalidation of speculatively modified lines in
case of abort, which appears as an instananeous silent replacement of multiple
S lines. Otherwise, the protocol needs to be adapted in order to support silent
replacements of lines in E state.

2.3.5 Conflict Resolution

Once an HTM system detects a conflict, it must determine how to resolve it.
The conflict resolution policy constitutes another design dimension in HTM by
dictating which transaction wins the conflict and is granted access to the data.
The loser transaction can stall its execution, or it can be aborted: The alternatives
change depending on when the conflict is detected.

In HTMs with eager conflict detection, there are several policies for resolution:
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requester wins, requester aborts, or requester stalls using a scheme of conser-
vative deadlock avoidance. The implementation of the requester wins policy is
straightforward: The cache or caches that detect a conflict simply trigger abort
and yield to the requester. If the conflicted data was not speculatively modified
(write-read conflict), the loser responds with the appropriate invalidation ac-
knowledgement or data message. Otherwise, the response may be delayed until
the data is conveniently restored. The main drawback of this policy is that it can
produce livelock scenarios. The opposite option is to abort the requester. This
is acomplished by augmenting the coherence protocol with negative acknowl-
edgements (NACK) messages, so that a cache controller that detects a conflict
responds to a forwarded request or invalidation with a NACK message. On
reception of a NACK response, the requester knows it has lost the conflict and
can take the appropriate actions. The simplest alternative is to trigger its own
abort, but this can also result in livelock. A less draconian, livelock-free solution
is to stall the transaction and periodically retry the conflicting memory access
until a positive response (different from the NACK) is received. In this case,
cyclic dependencies amongst transactions can bring the system to a deadlock,
and so the system must have a way out such possible cycles. LogTM [92] uses
a simple timestamp-based scheme to conservatively detect cycles, aborting the
youngest transaction to break the possible cycle.

HTM systems with lazy conflict detection must resolve conflicts when a
committer seeks to commit a transaction that conflicts with one or more other
transactions. The resolution policy in this scenario can abort all others, or else
stall or abort the committer. In general, lazy HTMs follow a committer wins
policy [22, 56] that favours forward progress and is both deadlock- and livelock-
free. Unfortunately, the committer wins policy does not guarantee fairness and
can result in starvation for some transactions.

2.3.6 Transaction Commit

The execution of the “commit transaction” instruction attempts to make the
transaction’s tentative changes permanent and visible to other processors in-
stantaneously. Such publication is in itself a task that must occur atomically
and without interference from other processors. For most HTMs, publishing
speculative updates means obtaining exclusive ownership for all cache lines in
the write set, and then releasing isolation over both transactional sets at once.

The implementation of the commit instruction is a straightfoward operation
in eager HTMs, since writes were performed in place and therefore all write
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set lines are already held in exclusive ownership. Because no further commu-
nication is required to validate the consistency of the transaction, commit then
simply consists of releasing isolation over the read and write sets by clearing the
read/write bits or signatures used for transactional book-keeping. This allows
remote requests to fetch those cache lines that belonged in the transactional sets
of the committed transaction.

As for lazy HTMs, the requirement of en-masse publication of speculative
updates to shared memory at commit time poses more challenges. Committing
a lazy transaction means upgrading all the lines whose SM bit is set from S to
M state, issuing exclusive ownership requests for each line and waiting for the
invalidations of the copies in remote caches (and possible transaction squash).
This process involves global communication and is not instantaneous, and thus
the committing transaction must stall (e.g. respond with a NACK message) any
subsequent requests from other processors to lines that belong to its read and
write sets.

2.3.7 Transaction Abort

A hardware transaction may be implicitly aborted by the conflict resolution
mechanism, or the abort can be explicitely triggered from the program via an
“abort transaction” instruction. Aborting a transaction means discarding all its
tentative changes and return the state of the processor to the exact same state it
was right before the transaction began. Book-keeping information (SM and SR
bits, signatures, etc.) must always be cleared on abort, and the last step of the
abort process is the restoration of the architectural registers using the checkpoint
that was saved in the shadow register file at the beginning of the transaction.

Implementating the abort functionality is quite simple in lazy HTMs, since
speculative writes were performed “on the side” (in private structures local to the
core) and therefore the shared memory still contains consistent, pre-transactional
values. Therefore, flushing the contents of the write address buffer and gang-
invalidating the cache lines whose SM bit is set is sufficient to discard the updates.
This operations can usually be done in hardware and take no more than a few
cycles.

Eager HTMs, on the other hand, must restore each cache line in the write
set with the pre-transactional value that was backed up in the transaction log.
Except maybe for small transactions that write a very small number of lines, the
log unroll is generally done in software, by trapping to an abort handler that
accesses the log base and pointer registers, and walks the log in reverse direction
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–those entries that were added last must be processed first–. No transactional
conflicts should arise during this process, as the coherence protocol ensures that
the lines that belong to the write set of the aborting transaction are isolated and
cannot belong to any other transaction. Because aborting is an slow process in
eager HTMs, isolation over the read set is usually released as soon as the abort is
triggered, as it is safe for other transactions to access it while the log is unrolled.

2.4 An Overview of Hardware Transactional
Memory Research

Research in HTM design has been very active since the introduction of multicores
in mainstream computing. In the early nineties, Herlihy and Moss introduced
Transactional Memory [60] as a hardware alternative to lock-based synchroniza-
tion. Their main idea was to generalize the LL/SC primitives in order to perform
atomic accesses not to one but to several independent memory locations, thus
eliminating the need for protecting critical sections with lock variables. Almost a
decade later, architects began to recover their interest in transactions at a hard-
ware level. Rajwar and Goodman’s Transactional Lock Removal (TLR) [106] was
the first to apply the concept of transaction to the execution of lock-protected
critical sections, merging the idea of Speculative Lock Elision (SLE) [105] with a
timestamp-based conflict resolution scheme.

The early proposal by Herlihy and Moss was revived ten years later by Ham-
mond et al., who present Transactional Coherence and Consistency (TCC) [56] as a
novel coherence and consistency model that uses continuous transactional execu-
tion. The novelty of TCC stems from its “all transactions, all the time” philosophy,
where transactions are the basic unit of parallel work, synchronization, memory
coherence and consistency. TCC’s lazy approach contains speculative updates
within private caches and lazily resolves races when a committing transaction
broadcasts its write-set, employing a bus to serialize transaction commits.

In contrast to Stanford’s TCC, Wisconsin’s LogTM [92] explores the opposite
corner of the HTM design space. Moore et al. take a more evolutionary approach
to transactional memory in LogTM, combining transactional support with a
conventional shared memory model that enables a more gradual change towards
transactional systems. LogTM is a purely eager HTM system that leverages a
standard coherence protocol to perform conflict detection on individual memory
requests, and makes commits fast by storing old values to a per-thread log in
cacheable virtual memory, which is unrolled by a software handler in case of
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abort. Unlike TCC, LogTM can tolerate evictions of transactional data from
caches thanks to the log, and enables conflict detection on evicted blocks through
an elegant extension to the coherence protocol.

LogTM has been subsequently refined. Moravan et al. [93] introduce support
for nested transactions, enabling both closed nesting with partial aborts and open
nesting [97]. Open nesting is a programming language construct motivated by
performance, which can improve concurrency by relaxing the atomicity guarantee.
When an open nested transaction commits, the TM system releases its read and
written data so that other transactions can access them without generating
conflicts. Thanks to open nesting, otherwise-offending transactions can access the
exposed data after the nested transaction commits, while the outer transaction
still runs. This can enhance the degree of concurrency achieved by the flattening
scheme found in LogTM, which enforces isolation until the outermost transaction
commits. In [13], Baek at al. propose FanTM, a design that uses address
signatures in hardware [27] to efficiently support transaction nesting.

Later on, Yen et al. [153] decouple transactional support from caches, removing
read and write bits used for transactional book-keeping, and replacing them with
hash signatures. This latest improvement, called LogTM-SE (Signature Edition),
borrows the concept of Bloom filters [15] to conservatively encode a transaction’s
read and write set metadata. The idea of applying hash encoding towards
conflict detection/thread disambiguation was first introduced into the realm of
TM by Ceze et al. in [27] and [28]. The use of hash signatures for transactional
book-keeping has been further explored by several authors. In [116], Sanchez et
al. examine different signature organizations and hashing schemes to achieve
hardware-efficient and accurate TM signatures. Quislant at al. have also studied
signature organizations, basing their works in LogTM-SE. In [103], they show
that locality can be exploited in order to reduce the number of bits inserted in
the filter for those addresses nearby located, and reducing the number of false
conflicts. More recently, the authors have studied multiset signature designs [104]
which record both the read and write sets in the same Bloom filter. Yen at al.
developed Notary [154], which introduces a privatization interface that allows
the programmer to explicitly declare shared and private heap memory allocation,
which can be used to reduce the signature size as well as the number of false
conflicts arising from private memory accesses. Sanyal et al. exploit the same
concept in [117], proposing a scheme that dynamically identifies thread-local
variables and excludes them from the commit set, both reducing the presure on
the versioning mechanisms and improving the scalability of such phase in lazy
HTMs.
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In FASTM [80], Lupon et al. extend LogTM with a coherence protocol that
enables fast abort recovery in an otherwise eager HTM, by leveraging the private
cache to buffer speculative state, effectively avoiding traps to software handlers
that perform log unroll as long as speculatively modified data does not overflow
the private cache level. LogTM’s approximation of making commits fast has
also inspired OneTM [16] [18], which uses a cache to reduce the frequency with
which transactions overflow on chip resources, and proposes a simple irrevocable
execution switch to handle such overflows as well as context switches, I/O or
system calls inside transactions, at the cost of limited concurrency.

Bobba et al. propose TokenTM [21], another unbounded HTM design that uses
the abstraction of tokens [85] to precisely track conflicts on an unbounded number
of memory blocks and it handles both paging, thread migration and context
switching, but incurs high state overhead. In [69], Jafri et al. improve on TokenTM
and propose LiteTM, a design that maintains the same virtualization properties
of TokenTM while greatly reducing the state overhead, and without sacrifying
much performance. Support for transactions of unlimited duration, size and
nesting depth has also been considered by proposals such as UTM [9] [78] or
VTM [107], which focus on hardware schemes that provide virtualization of
transactions. However, both achieve this goal by introducing large amounts of
complexity in the processor and the memory subsystem. On its part, XTM [33]
implements transaction virtualization support in software, using virtual memory
and operating at page granularity. A similar approach is taken by Chuang et
al. [32] in PTM, a page-based, hardware-supported TM design that combines
transaction bookkeeping with the virtual memory system to support transactions
of unbounded size, as well as to handle context switches and exceptions.

While it is not an issue for eager systems like LogTM, parallelism at commit
is important for lazy systems when running applications with low contention
but a large number of transactions. Transactions that do not conflict should
ideally be able to commit simultaneously. The very nature of lazy conflict
resolution protocols makes it difficult since only actions taken at commit time
permit discovery of data races among transactions. Simple lazy schemes like
the ones employing a global commit token [22] or a bus [55] do not permit
such parallelism. The reason for limited parallelism at commit time is that the
committing transaction has no knowledge of which other concurrently running
transactions must abort to preserve atomicity. The TCC design [55] was later
extended to scalable DSM architectures using directory based coherence. This
proposal is called Scalable TCC (STCC) [29], and it employs selective locking
of directory banks to avoid arbitration delays and thereby improve commit
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throughput. Pugsley et al. [102] improve over STCC by proposing even more
scalable commit algorithms that reduce the number of network messages, remove
the need for a centralized agent, and tackle deadlocks, livelocks and starvation
scenarios.

Another approach to improve the scalability of the commit process in lazy
systems has been explored by EazyHTM [143]. Tomic et al. record the information
pertaining to potential conflicts, which is readily available from coherence mes-
sages during the lifetime of any transaction, and use this information at commit
time to allow true commit parallelism. All potentially conflicting transactions
that must be aborted would be known, and committers that have not seen races
can commit in a truly parallel fashion. FlexTM [122] also provides lazy conflict
resolution by recording conflicts as they happen, using this information to enable
distributed commits. Unlike EazyHTM, Shriraman et al. choose to do so in
software, sacrifying progress guarantees to gain greater parallelism. Performance
costs associated with software intervention and software verification challenges
without watertight forward progress guarantees could limit the value of this
approach. EazyHTM, on the other hand, provides parallel lazy commits in hard-
ware and ensures forward progress, but trades off common-case performance to
achieve it. FlexTM allows flexibility in policy but it does so by implementing crit-
ical policy managers in software. It provides a significant improvement in speed
over software TM implementations by proposing the use of alert-on-update hard-
ware, but the considerable cost of software intervention renders a comparison
with pure HTMs moot. In the context of HTM, Shriraman and Dwarkadas [121]
have also analyzed the interplay between conflict resolution time and contention
management policy. They show that both policy decisions have a significant
impact on the ability to exploit available parallelism and demonstrate that conflict
resolution time has the dominant effect on performance, corroborating that lazy
HTMs are able to uncover more parallelism than eager approaches.

With DynTM [81], Lupon et al. introduce a cache coherence protocol that
allows transactions in a multi-threaded application run either eagerly or lazily
based on some heuristics like prior behavior of transactions, at the cost of adding
extra complexity at level of the coherence controller. It works at the granularity
of a transaction and then develops a cache coherence protocol around it that
supports multiple ways to version the same shared memory block. LV* [96], a
proposal that utilizes snoopy coherence, allows programmer control over policy
in hardware but with the constraint that all transactions in an application must
use the same policy at any given time. The requirement of programmer-assisted

61



2. Background and Related Work

policy change is a drawback too since the same phase of an application can
exhibit different behavior with varying datasets.

The mitigation of the performance penalty associated with transaction aborts
has been of interest to the HTM community. Waliullah and Stenstrom study the
utility of intermediate checkpoints in lazy HTM systems [146, 148], as a means to
reduce the amount of work that is discarded on abort. In their scheme transactions
record conflicting addresses upon abort, and use this historical information to
insert a checkpoint before a memory reference predicted as conflicting is executed.
If the transaction is squashed, it is rolled back to the checkpoint associated with
the first conflicting access, rather than all the way back to the beginning. Reducing
the penalty of abort was also considered by Armejach et al. [11], who propose a
reconfigurable private level data cache to improve the efficiency of the version
management mechanism in both eager and lazy HTMs.

The applications of data forwarding and value prediction for conflict reso-
lution have also been explored in the context of eager HTM systems. Pant et
al. [99] [100] observe that shared-conflicting data is often updated in a predictable
manner by different transactions, and propose the use of value prediction in
order to capture this predictability and increase overall concurrency by satisfying
loads from conflicting transactions with predicted values, instead of stalling. In
DATM [108], Ramadan et al. investigate the advantages of value forwarding
for speculative resolution of true data conflicts amongst concurrent transac-
tions. DATM is an eager system that discovers and tracks the data dependencies
amongst concurrent transactions, allowing writer transactions to proceed in the
presence of other conflicting transactional accessors, and reader transactions
to obtain uncommitted data produced by a concurrent transaction, while still
enforcing a legal serialized order that preserves consistency.

Hardware TM systems can suffer a series of pathological behaviours that
negatively affect performance. Bobba et al. explore HTM design space, identi-
fying how some of these undesirable scenarios [22] affect each kind of system
depending on the choice of policies for version and conflict management. Some
pathologies such as starvation have been further analysed and resolved in other
subsequent works [147]. Other pathologies that affect HTM performance have
been the topic of several studies. Volos et al. [145] investigate the interaction
of transactional memory implementations and lock-based code, and discover
other problematic scenarios that may arise in these circumstances. False sharing,
another undesired situation that may arise in multi-threaded codes, becomes
even a bigger problem when it occurs in conjunction with hardware transactional
memory [92] due to the detection of conflicts at a cache line granularity. Tabba
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et al. [133] propose a mechanism that takes the concepts of coherence decou-
pling [65] and value prediction, and combines them to mitigate the effects of
coherence conflicts in transactions. The granularity of conflict detection in HTM
has also been the subject of the works by Khan et al. [70], whose HTM proposal
is able to detect conflicts at the level of objects –instead of cache lines–, which
leads to a novel commit scheme as well as an elegant solution to the problem of
version management virtualization.

Another kind of pathological behaviour affecting HTM performance happens
when concurrent operations on data structures that are not semantically conflict-
ing –such as two insertions in two different buckets of a hash table– result in
conflicting transactions because of updates on auxiliary program data –e.g. the
size field–. Inspired by instruction replay-based mechanisms [43], Blundell at al.
propose RetCon [20], a hardware mechanism that eliminates the performance
impact of such spureous transactional conflicts. RetCon tracks the relationship
between input and output values symbolically and uses this information to
transparently repair the output state of a transaction at commit.

Ramadan et al. have examined the architectural features necessary to support
HTM in the Linux kernel for the x86 architecture [109] [114]. They propose
MetaTM, an HTM model that contains features that enable efficient and correct
interrupt handling for an x86-like architecture. Using TxLinux –a Linux ker-
nel modified to use transactions in place of locking primitives in several key
subsystems– they quantify the effect of architectural design decisions on the
performance of such a large transactional workload. TxLinux, based on the Linux
2.4 kernel and thus characterized by its simple, coarse-grained synchronization
structure, is used by Hoffman et al. in [64] to show that a minimal subset of TM
features supported in hardware can simplify synchronization, provide compa-
rable performance to fine-grained locking and handle overflows. The challenge
of operating system (OS) support in HTM is also addressed Wang et al. [119]
and Tomic et al. [142]. DTM [119] proposes a hardware-based solution that fully
decouples transaction processing from caches, while HTM-OS [142] leverages the
existing OS virtual memory mechanisms to support unbounded transaction sizes
and provide transaction execution speed that does not decrease when transaction
grows. A related challenge that has been addressed in the HTM literature is the
support of input/output operations within transactions: Lui et al. [79] analyse
this problem and propose an HTM system that supports I/O within transactions
by means of partial commits, using commit-locks and blocking/waking-up of
transactional threads.

The applicability of hardware transactional memory (HTM) has also been
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considered in the context of dynamic memory management. Dragojevic et
al. [46] demonstrate that HTM can be used to simplify and streamline memory
reclamation for practical concurrent data structures. The use of HTM to aid
lightweight dynamic language runtimes in evolving more capable and robust
execution models while maintaining native code compatibility has been studied
too. Using a modified Linux kernel and a Python interpreter, Riley at al. [110]
explore the lack of thread safety in native extension modules and use features
found in an HTM implementation to address several issues that impede to the
effective deployment of dynamic languages on current and future multicore and
multiprocessor system.

Energy efficiency has been timidly considered in HTM research. Gaona et
al. [49] characterize the energy consumption of eager and lazy HTM systems in a
common framework. In [118], Sanyal et al. propose a clock-gating scheme that
turns off a processor dynamically when a transaction running on it is aborted.
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Chapter 3
Evaluation Methodology

In this chapter, we describe the experimental methodology used for evaluating
the proposals presented in this dissertation.

3.1 Simulation Tools

The methodology chosen for this evaluation is based on full-system simulation,
which gives us the ability to run realistic workloads on top of an actual operating
system. Unlike trace-based simulation, full-system simulation also enables the
introduction of random variability on the timing model, producing distinct thread
interleavings on different executions of the same program. This slight timing
variations can make threads take different code paths from run to run.

We use the Wisconsin General Execution-driven Multiprocessor Simulator (GEMS)
simulation environment [86], which is based on Wind River Simics [82]. Simics
is a full-system functional simulator of multiprocessor systems that supports
the SPARC instruction set architecture (ISA), amongst others. We use Simics to
boot an unmodified Solaris 10 box on which we run the transactional workloads.
Simics supplies an in-order processor model in which all instructions take one
cycle to execute. Simics then allows an external module to register with its timing
interface, so that the latency of memory access instructions can be modeled with
accuracy.

While Simics is responsible for the functional correctness of the simulation
framework, GEMS provides several timing modules that plug into Simics to
incorporate detailed models for the fundamental components of the system. As
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shown in Figure 3.1, GEMS comprises two main modules, namely Ruby and Opal:
The former models memory hierarchies and uses a domain-specific language
to specify coherence protocol, and the latter captures the temporal features of
an out-of-order processor. A third module called Tourmaline allows Simics to be
used as functional simulator for transactional applications, enabling near-Simics
execution speeds while preserving transactional semantics. For the evaluations
presented in this thesis, we model a chip-multiprocessor (CMP) composed by
simple in-order processing cores [84], and hence only the Ruby module was used.

Figure 3.1: Architecture of the Simics-GEMS simulation framework.

The Ruby module offers an event-driven framework to precisely simulate
a memory hierarchy that allows us to measure the effects of behavioural and
structural changes to the components that conform the memory subsystem,
namely L1 and L2 caches, and directory and memory controllers. Ruby models
the latency of each memory request received from the functional simulator
by stalling Simics until the memory hierarchy brings the requested data with
appropriate permissions to the requesting processor’s first level cache. As a
request travels across the memory subsystem, each component introduces a given
delay, measured from the moment the message is picked from its input port for
processing, until the component generates a response and injects it back into the
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network. All the components are connected using a detailed network model called
Garnet [4], which features a state-of-the-art interconnect that precisely models
the time required to deliver a message from one component to another. At the
heart of Ruby lays the Specification Language for Implementing Cache Coherence
(SLICC), a domain-specific language to describe the behaviour of coherence
protocols in terms of their state machine. SLICC has been used to implement
the cache and directory controllers for the different protocols discussed in this
thesis. Furthermore, Ruby also includes the transactional components required
to simulate hardware transactional memory (HTM) systems implemented on top
of a CMP architecture. Both eager- and lazy-policy HTM systems are supported
in the latest release of the simulator as of this thesis (2.1.1). A later subsection
describes these HTM systems in more detail, as representative points in opposite
corners of the design space.

Transaction boundaries (i.e., tx_begin and tx_end instructions) are delimited
through Simics magic instructions, a special assembly instruction with the effect of
a nop when executed on a real machine, but which is captured by Simics. Ruby
leverages these hooks to be informed about the occurrence of certain events, and
implements the functionality of the associated TM instruction. The macro-based
style of programming that the TM benchmarks are developed under facilitates
the insertion of the appropriate magic instructions that mark the borders of an
atomic block. Magic instructions are also used for a variety of purposes besides
wrapping the critical regions of the multithreaded program, like signaling the
beginning/end of the parallel phase in the program, measuring synchronization
overheads (i.e. barrier time), implementing other language-level constructs such
as early release [124], or temporarily disabling the timing module for given
regions of the code. For compiling our TM programs we use the widely available
GNU C compiler (gcc) and the -O3 optimization level.

3.2 Metrics and Methods

The evaluation of the designs presented in this dissertation focuses mostly in
two key aspects of a multiprocessor system: performance and network traffic.
Our main performance metric is the execution time of the complete parallel
phase in the transactional program, skipping the initialization phase (in which
per-thread data structures are set up). Execution time is measured as the number
of cycles counted from the instant the first thread leaves the initial barrier that
marks the beginning of the parallel phase, until the cycle at which the last thread
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reaches the final barrier that synchronizes them prior to join. Another metric
used throughout our evaluations is the accumulated cycle count, which equals to
the overall execution time multiplied by the number of threads that executed the
program. The accumulated cycle count is used to represent the execution time
divided into disjoint components, each one corresponding to sum of the cycles
spent by each thread in a given state during its execution. The typical categories
comprise barrier, non transactional, transactional useful, transactional aborted,
rollback, back-off and commit times. In some cases a given category may be
further split into finer-grain components. This execution time breakdown serves
as a general and intuitive picture about the characteristics of the multithreaded
application, and it also gives us some insights into the behaviour of the system.
Despite useful, this metric must be interpreted with caution as it does not reflect
by any means a breakdown of what the parallel application does as a whole in
each cycle.

Table 3.1: Components: Execution time breakdown

Component Description
barrier wait at barriers
non_txnal non-transactional execution (including supervisor code)
tx_useful successful transactional execution
tx_aborted aborted transactional execution
stall conflicting request retries (eager only)
backoff idle cycles after an abort
arbitration acquisition of lazy commit permission (lazy only)
commit cycles spent committing updates to shared memory (lazy only)
rollback cycles spent aborting transactions (eager only)

Metrics that show how the characteristics of a workload impact overall execu-
tion time are considered too. For instance, the number of aborts per commit acts
as a quantitative measurement of the amount of contention present in a given
application. Transaction-level statistics such as the read- and write-set sizes of
transactions are also relevant. Maximum and average occupation of key hardware
structures such as the write-buffer are of interest as well. Other metrics specific
to each chapter will be discussed where appropriate. We disregard a common
performance metric in uniprocessor architectures, instructions-per-cycle (IPC), as
it is not a representative measure of the amount of useful work performed by a
multiprocessor system when running a multithreaded application [6]. Despite
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the virtual removal of lock-based synchronization achieved by HTM systems,
other factors still exist –such as transaction aborts or synchronization at barriers–
that may artificially contribute to the IPC when indeed no progress is made,
hence rendering this metric useless.

Each simulation is pseudo-randomized by introducing a variation of ±5
cycles in the response time of the accesses to main memory. This captures the
non-determinism present in real systems [5] and produces runs with different
thread interleavings that help reveal the different paths that can be taken by the
application. In some cases, this variation in the interleaving of threads produces
a different –but still correct– solution to the program, as it is the case of one of
the benchmarks used. Multiple simulations are performed for each workload
and the average run-time is calculated with an arithmetic mean. Error bars in
our results approximate a 95% confidence interval.

3.3 Workloads

For evaluating the proposals presented in this thesis, we have selected seven
transactional applications from the STAMP suite [25]: genome, intruder, kmeans,
labyrinth, ssca2, vacation and yada. The program bayes was excluded since it
exhibits unpredictable behaviour and high variability in its execution time [45,96].
For kmeans and vacation, both high and low contention configurations were
used. Small input parameters, detailed in [25], were used for all applications. For
genome, intruder, ssca2 and yada, recommended medium-sized inputs were used
too, as they do not increase simulation times beyond excessive levels. In total, 13
benchmarks are used, whose inputs are summarized in Table 3.2. Configurations
that use medium inputs are marked with the plus symbol in Table 3.2 and
throughout this thesis. For vacation and kmeans, the medium size input was
deemed irrelevant and thus excluded, as it does not yield any additional results
of interest, mainly because these two benchmarks barely stress the performance
of the underlying TM system due to their particular characteristics.

genome. This benchmark implements a gene sequencing program that recon-
structs the gene sequence from segments of a larger gene. Given a large set of
DNA segments, the algorithm will try to construct the shortest gene that can
be made from them (i.e. the source genome) under the pairing constraints of
the nucleotides that conform the DNA segments, according to their nucleobase
(adenine, thymine, guanine and cytosine, or ATGC). Since there may be many
duplicates in the relatively large number of DNA segments, a first phase in
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Table 3.2: Benchmarks and inputs used in the simulations.

Benchmark Input
genome+ -g512 -s32 -n32768
genome -g256 -s16 -n16384
intruder+ -a10 -l16 -n4096 -s1
intruder -a10 -l4 -n2048 -s1
kmeans-low -m40 -n40 -t0.05 -i random-n2048-d16-c16
kmeans-high -m15 -n15 -t0.05 -i random-n2048-d16-c16
labyrinth -i random-x32-y32-z3-n96
ssca2+ -s14 -i1.0 -u1.0 -l9 -p9
ssca2 -s13 -i1.0 -u1.0 -l3 -p3
vacation-low -n2 -q90 -u98 -r16384 -t4096
vacation-high -n4 -q60 -u90 -r16384 -t4096
yada+ -a10 -i ttimeu10000.2
yada -a20 -i 633.2

Table 3.3: STAMP Workload Characteristics.

Workload Trans Size Contention Commit rate
genome Moderate Moderate Moderate
intruder Small High Moderate
kmeans Small Low Low
labyrinth Large Moderate Low
SSCA2 Small Low High
vacation Large Low Moderate
yada Large High Moderate

the algorithm utilizes a hash set to create a set of unique segments, using a
transaction to ensure atomicity during the insertion. Then threads carry out the
gene matching in the second step, by removing segments from the global pool
of unmatched segments and adding them to its partition of currently matched
segments. The removal from the global pool is also enclosed by transactions as
threads may try to remove the same segment. Compared to the locking approach,
transactions simplify the parallelization of this program by eliminating the need
for a deadlock avoidance in the reconstruction phase.

intruder. This benchmark emulates a network intrusion detection system
(NIDS), scanning packets for matches against a known set of attack signatures.
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Each processed packet subsequently goes through capture, reassembly, and
detection stages. A simple FIFO queue stores the captured packets, and then
threads extract one at a time (by means of a transaction) for processing. The
reassembly phase is also enclosed inside a coarse grain transaction, which protects
the access to the self-balancing tree that contains lists of packets that belong to
the same session. The code for each phase is as simple as that with coarse-grain
locks but hopefully achieves good performance through optimistic concurrency.

kmeans. K-means is an example of programs in which programmers do not
use transactions for its ability to exploit thread-level parallelism (TLP) out of
coarse-grained transactions, but simply to enforce mutual exclusion during the
update of a global vector that contains the result of the computations. Each
thread processes a partition of the objects iteratively, and transactions are used to
protect the update of the cluster center that occurs during each iteration, as well
as a global variable that controls the task queue. The result is that transactions
are very small and short running. Optimistic concurrency can be beneficial when
threads update different centers concurrently, although as the number of threads
grows, so does the probability of having two threads concurrently operating on
the same cluster center, hence creating frequent transaction conflicts.

labyrinth. Labyrinth implements a routing algorithm for solving the maze
problem [150]. For each pair of input points, the program finds the shortest
route that connects them in a three-dimensional uniform grid that represents the
maze. Following Lee’s algorithm, it uses a wave propagation style throughout the
routing space, so that in the n-th iteration the wave is expanded to all points that
can be reached in n steps from the source. When the target point is reached, the
expansion stops and the path is determined by backtracking from destination to
source. The main transaction of the program encloses the calculation of the path
and its addition to the global grid. The development of this program under the
TM programming model yields a simpler program that does not need deadlock
avoidance techniques required the lock-based approach. To avoid unnecessary
writes to the global grid during the expansion phase and reduce the chance for
conflicts, a privatization technique is employed. Each thread creates a local copy
of the global grid and uses it for the route calculation (expansion and trace-back
phases). In the process of creating a private copy of the grid, transactions add
the entire global grid to their read sets, causing conflicts whenever one of them
attempts to add its calculated path to the global grid. Despite this privatization,
this benchmark cannot exploit the available TLP effectively because, no matter
how many concurrent transactions are calculating paths in a given moment, only
one of them will be able to update the global grid, while the rest will have to
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rollback, even if their calculated paths do no overlap with the newly-committed
path. For this reason, and provided the underlying TM system supports it, the
benchmark can make use of the early release programming construct [124] to
remove the global grid from the transaction’s read set, after the grid copy has
completed. Releasing addresses from the read set requires the grid points along
the found path to be validated before the path is added, to make sure that none
of the selected points has become part of another path after the grid copy.

ssca2. The SSCA2 benchmark focuses on one of the four graph kernels from
the Scalable Synthetic Compact Applications 2. The selected kernel operates on
a large graph to create an efficient representation using adjacency arrays and
auxiliary arrays. Threads add nodes to the graph in parallel, using transactions to
protect accesses to the adjacency arrays. The optimistic approach to concurrency
control suits very well this code as the large number of graph nodes leads to
infrequent concurrent updates of the same adjacency list.

vacation. This application implements a travel reservation agency system
based on a 3-tier architecture, and whose designed is similar to the on-line trans-
action processing system of SPECjbb2000 [38], which emulates a very common
type of server-side Java application. The database is implemented as a set of
self-balancing trees that keep track of customers and their different booked items
(flights, cars, rooms). Threads emulate a number of client connections that inter-
act with the database server to reserve, cancel or update a booking. Each session
is enclosed in a coarse-grain transaction that ensures a consistent view of the
database, producing a parallel TM application that is very similar to its sequen-
tial counterpart. In comparison, a traditional lock-based parallelization would
require non-trivial efficient fine-grain locking schemes on the data structures that
conform the database, in order to exploit the large amounts of TLP available in
this program.

yada. This benchmark replaced an earlier implementation of Ruppert’s al-
gorithm for creating quality Delaunay triangulations. The algorithm takes a
planar straight-line graph and returns a conforming Delaunay triangulation of
only quality triangles. The data structures used for mesh refinement are a graph
where triangles are kept, a set that contains boundary segments, and a task
queue that holds the poor-quality triangles that need to be refined. Each iteration
removes a poor-quality triangle from the work queue and retriangulates on the
mesh, adding to the work queue any new skinny triangles that result from the
retriangulation. Transactions protect the removal and addition to the work queue,
as well as the refinement of each triangle on the global graph, in a similar way
to [74].
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3.3.1 Workload Characterization

Table 3.4: Count, read and write set sizes for the transactions in STAMP.

TID0 TID1 TID2 TID3 TID4
# R W # R W # R W # R W # R W

genome+ 2731 75 1 481 1 1 14911 15 4 481 12 3 879 5 2
genome 1366 66 1 241 1 1 3615 16 4 241 12 3 449 4 2
intruder+ 18307 3 1 18306 27 6 18306 2 1 - - - - - -
intruder 3754 3 1 3753 20 6 3753 3 2 - - - - - -
kmeans-high 6144 7 2 2046 1 1 3 2 1 - - - - - -
kmeans-low 8192 7 2 2728 1 1 4 2 1 - - - - - -
labyrinth 97 4 1 96 144 218 1 9 3 - - - - - -
ssca2+ 1 1 1 1 1 1 93683 3 2 - - - - - -
ssca2 1 1 1 1 1 1 47255 3 2 - - - - - -
vacation-high 3671 70 8 206 31 6 219 44 4 - - - - - -
vacation-low 4014 56 7 34 28 6 48 28 3 - - - - - -
yada+ 3149 8 3 3148 1 0 2449 172 75 2449 1 1 2449 6 1
yada 1322 7 2 1321 1 0 705 166 75 705 1 1 705 8 2

Table 3.4 presents a detailed characterization of the transactions in these
benchmarks, obtained from a single-threaded run. Transaction count (#) as well
as average read (R) and write (W) set sizes are shown for each atomic block in
the code –identified by a transaction ID or TID–. Read and write set sizes are
given in number of cache lines.

genome. This benchmark has three distinct phases of execution. TID0 cor-
responds to the first phase, and is a coarse grain transaction that protects the
elimination of duplicate elements from a hash table, implemented as a linked list.
Thus, it has a large read set (Rset) but only one line in the write set (Wset). This
phase dominates most of the parallel execution time of the workload. TID1 to
TID3 are part of the second step of the algorithm, and have much smaller data
sets. TID4 belongs to the third step. We stop simulation after this phase, before
the sequence string is built, as that task is performed only by one thread.

intruder. The three transactions of the benchmark are executed the same
number of times as part of a loop that iterates until no elements (packets) are left
for processing. TID0 is a small transaction used to extract elements from a queue.
TID1 is the main transaction of the benchmark, which protects the accesses to
shared data during packet processing using coarse grain synchronization, hence
its larger footprint (Rset and Wset sizes).

kmeans. Most of the runtime of this benchmark is non-transactional execution.
Small transactions are used inside worker threads for the computation of cluster
centers. TID0 protects the update of the new centers and accesses several lines
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for read and write, while TID1 only accesses one line in order to update the
index in the global task queue. TID2 is only executed when the worker function
is completed, to update the global delta that determines if another iteration of
the algorithm is performed.

labyrinth. TID0 extracts a pair of points from a global job queue, and then
TID1 attempts to find a route between the two. Virtually all the execution time
is spent inside TID1, which accesses a huge number of cache lines. This is due
to the privatization of the global data structure, which is copied into a local
matrix. As shown in Table 3.4, the Rset is lower than the Wset because read lines
belonging to the global matrix are released using the early release programming
construct. It should be noted that the algorithm exhibits divergent executions,
and depending on thread interleavings it can reach different solutions in each
run (i.e. a different number of paths routed) leading to substantial deviations in
execution times. Hence, improvements in its performance must be observed with
caution.

ssca2. After a significant amount of time in non-transactional execution, the
benchmark has a phase in which a small transaction such as TID2 is executed a
huge number of times. For this benchmark, we stop simulation after all adjacency
lists of all vertex have been inspected, as there are is no more synchronization
required in the remaining part of the parallel execution.

vacation. Each TID correspond to a type of database transaction. TID0 are user
queries that only perform reservations and do not update the tables, thus resulting
in read-only operations for the most part. TID1 correspond to the deletion of
a customer from a database table, while TID2 updates the corresponding table
with a new travel item, depending on its type. The size of the database makes
all three coarse grain transactions have a large Rset. Given the input arguments,
TID0 is the most frequent type of transaction in both cases, particularly in the
low contention configuration, while the high contention configuration executes
more instances of TID1 and TID2.

yada. This benchmark has a wide variety of transactions. TID0 removes an
element from a priority heap for processing, and thus it is a small transaction.
TID1 and TID3 are tiny transactions to handle the delayed de-allocation of
elements. TID2 constitutes the main transaction of the benchmark (triangle
refinement), which accounts for the majority of the execution time. We can see in
Table 3.4 how it has a huge Rset of over 150 lines, as well as a very large Wset of
75 lines, which gives an idea of its coarse granularity. In contrast, TID4 appears
as a transaction with small footprint, even though it wraps a loop that accesses
an array inside a coarse grain transaction. TID5, not shown in the table for clarity,
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is a small read-modify-write transaction which is only executed once per thread,
at the end of the parallel phase.

3.4 CMP Architecture
We choose a tiled CMP design as reference because its modular nature has made
it popular in several commercial many-core designs [51,67,68] and the availability
of reliable simulation models [86] makes comparison of various policies and
architectural features less daunting. The basic architecture comprises several tiles
overlaid over point-to-point interconnects forming a mesh-based network-on-chip.
This arrangement is depicted in Figure 3.2.

Figure 3.2: Organization of a tile and a 4×4 tiled CMP.

Each tile has a processing core, one level of private cache, a slice of the level-
two cache along with its directory entries, and some routing logic. Considering
that part of the appeal of CMPs is their ability to exploit TLP and provide higher
throughput than a wider-issue uniprocessor while consuming less energy per
operation, we have modeled the processing cores of our CMP architecture after
lightweight, in-order processors. Split instruction and data caches are available
at the private level, while the second level is unified, physically distributed but
logically shared amongst all processing cores. Private caches are kept coherent
across the unordered network through an on-chip distributed directory protocol.
The L1 caches maintain inclusion with the L2 cache, trading off some on-chip
capacity for lower design complexity in the coherence controllers. Each L2 bank
includes the directory entries to keep cache coherence for the lines that belong to
this tile. Each directory entry contains a full bit-vector to track the sharers of the
line.
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Table 3.5: System parameters.

Core Settings
Cores 16, single issue, in-order
CPI non-memory instr. 1 cycle

Memory Settings
Cache line size 64 bytes
L1 I&D caches Private, 32KB, 4-way, split
L1 cache hit time 1-cycle latency
Write Buffer Non-coherent, private, 128 bytes
L2 cache Shared, 8MB, 8-way, unified
L2 cache hit time 6(tags/directory) + 6(data) cycles
Memory access time 300 cycles
Page size 4KB

Network Settings
Topology 2-dimensional mesh
Link latency 1 cycle
Link bandwidth 40 bytes/cycle (between internal nodes)

160 bytes/cycle (to memory)
Message size 8 bytes (control) / 72 bytes (data)
Flit size 16 bytes
Routing Deterministic X-Y

3.5 Baseline HTM systems

The simulation infrastructure provides support for two generic designs that
explore opposite corners of the HTM design space: LogTM-SE [153] as the eager-
eager (EE) system of choice, and a global commit token-based, lazy-lazy (LL)
system as described by Bobba et al. in [22]. Figure 3.3 shows a hardware overview
of the simulated HTM systems. Common TM components to both EE and LL
systems are shaded in blue, while EE and LL-specific components are depicted
in yellow and orange, respectively.

3.5.1 Eager-Eager HTM Overview

The EE system is basically an extension to LogTM [92] in which Bloom filters
–referred to as address signatures– are used for transactional read and write-set
bookkeeping, instead of the traditional bits in private caches. LogTM performs
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Figure 3.3: Hardware overview of baseline EE and LL HTM systems.

in-place speculative updates and uses a per-thread log in cacheable virtual
memory to back-up the consistent values before the store completes. The logging
hardware is responsible for copying the value of each line to the address indicated
by the log pointer. A log filter maintains recently written addresses to minimize
redundant logging. The basic policy for resolving conflicts in LogTM is as
simple as stalling the requester, resorting to a conservative deadlock avoidance
mechanism based on timestamps. A processor sets the possible cycle bit if it sends
a negative acknowledgement (nack) to an older transaction upon detection of a
conflict. If in turn it receives a nack from an older transaction, this represents a
potential cycle and the transaction aborts. On abort it traps to a software handler,
which walks the transaction log restoring the consistent values into memory,
and finally restores processor state with the register checkpoint, pointing the
program counter back to the beginning of the transaction. A standard MESI-style
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coherence protocol is extended to support conflict detection despite evictions of
transactional data from L1 or even L2 cache. L1 cache transactional overflows
are elegantly handled by LogTM using sticky-states [92]. Nested transactions are
trivially handled by flattening, i.e. only committing transactional state when the
outer-most transaction commits, by simply keeping a counter with the current
nesting level. The more uncommon L2 cache transactional evictions entail the
loss of all coherence and directory information (sticky states) for the line, and
are handled by extending the protocol with a new filter check coherence request
message that is broadcast to all cores upon an L2 cache miss. Based on each core’s
response to the filter check, the directory is able to determine if the transactional
owner/sharers and properly rebuild the sharing code, in order to retain isolation
despite the L2 replacement.

3.5.2 Lazy-Lazy HTM Overview

The LL system in GEMS is modeled after designs such as Stanford’s Transactional
Coherence and Consistency (TCC) [56]. Unlike TCC –which is based on snoopy
coherence over a shared bus–, the LL HTM flavour of GEMS is implemented
on top of the tiled CMP architecture described in the previous section, and
hence it leverages distributed directory coherence over an unordered network
to detect conflicts. It reuses the same directory protocol and signature-check
logic as the EE system, but it models a lazy approach to version management by
incorporating a write buffer (see Figure 3.3) that sits between processor and L1
cache. All speculative updates are kept in this infinite-sized write buffer until
transactions are granted permission to commit, so that during the execution
of the transaction only loads are issued to the memory hierarchy. No space
virtualization mechanisms are used, as there are no overflows of transactional
data due to limited capacity or associativity of private hardware structures. The
LL system then resolves conflicts when a committing transaction broadcasts its
write-set. In its basic form it employs a bus to serialize transaction commits,
similar to TCC. Transactions arbitrate for a global commit token using a zero-cycle
bus. Once commit has been granted, a transaction issues exclusive coherence
requests for the lines in its write set, effectively publishing the new globally
visible values by invalidating all remote copies and aborting any transactional
readers. We then augmented the simulator framework with an implementation
of a more sophisticated commit scheme that closely follows the algorithm of
Scalable TCC (STCC) [29]. STCC employs selective locking of directory banks to
avoid arbitration delays and thereby improve commit throughput.
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3.6 Validation of Simulation Framework

In this section, we present a performance characterization of the baseline HTM
systems that will act as a reference points to measure the contributions presented
in this thesis. We identify several pathological interactions and provide solutions
to avoid the appearance of unacceptable levels of noise in our experiments.
Some important insights on the simulation framework that we have learned by
thorough experimentation and analysis of the obtained data are described. Our
findings reveal such situations that hinder application scalability, and explain
the causes of the unexpected performance degradation in the baseline HTM
architecture that we observe. During this process of simulator and workload
fine-tuning, we compared the results of our experiments to the STAMP suite
characterization paper [25] for validation. After the incremental adjustments
reported in the following paragraphs, our simulation framework was able to
exhibit workload scalability figures somehow similar to Cao Min’s study [25] as
well as other works found in the TM literature [20, 143]. The aim is to establish a
clear and reproducible simulation environment that yields the best performance
numbers for the well-known baseline HTM designs used throughout this thesis,
with the intent of validating the environment our proposals are evaluated upon.

3.6.1 Basic setup

Simics. We use Simics 3.0.31 to boot a Solaris 10 box with 16 processors and
4GB of memory, using the abisko target machine (Sun Fire 6800 server with
UltraSPARC-III Cu processors). Once the system boots, we switch it to single user
mode (runlevel 1) in order to reduce its load and keep the number of background
processes to a minimum, in order to avoid interference of other processes with
our experiments. Before the benchmark is executed, we use the command psrset

to create 15 processor sets, and then psradm to assign each processor to a different
processor set and disable interrupts (except for processor number 0).

Workloads. Following the workload setup guide found in the GEMS
documentation, during the initialization of the benchmark we use Solaris’
processor_bind to bind threads to the aforementioned processor sets, so as
to avoid thread-migration in our simulations. When compiling labyrinth, we
enable the use of the early release construct. Padding was added to some data
structures in the STAMP library files (lib/random.c) in order to avoid false shar-
ing between thread-local data. In vacation, for example, a data objects used
for random number generation that ought to be private to each thread fell in
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the same cache line due to consecutive malloc calls, creating false conflicts that
unfairly penalized performance. In genome, calls to glibc functions strcmp and
strncmp where replaced with our own thread-safe implementations, to stop lock-
related system calls (lwp_mutex_timedlock/lwp_mutex_wakeup) from suspending
the thread while inside the transaction.

GEMS. In order to isolate our performance measurements from the interfer-
ence of conflicts due to false positives inherent to hash-encoding, we use perfect
signatures – mere address lists – for the experiments presented in this thesis,
except where noted otherwise. The use of perfect signatures makes possible the
removal of a given address from the read set, enabling support for the early release
programming language construct in the simulated HTM system. This allowed us
to maintain the benchmark labyrinth as a relevant workload.
All simulated systems employ backoff to reduce contention after abort. In the
case of the EE system, we replaced the exponential back-off performed inside
the software handler (some dummy calculations on a local array) with a linear
back-off algorithm whose length is directly controlled by stalling the Simics pro-
cessor for the computed number of cycles, similar to the back-off implementation
of the LL flavour. The same linear back-off algorithm is then used for both EE
and LL systems, making the comparison between them fairer. Thanks to this
modification, the noise introduced in L1 hit rates due to software back-off is
removed: The original software-based back-off resulted in an artificial increase
in the number of cache hits that polluted our miss rate measurements of the
memory hierarchy.

3.6.2 Interference from the Operating System

Figure 3.4 shows the workload scalability of the LogTM-SE system for the STAMP
benchmark suite, for configurations from 2 to 16 threads, measured as speedup
over a single-threaded run. The 16-core CMP architecture described in the
previous section is used for all experiments. When the thread count is lower
than the number of available cores, we disconnect all unused processors (except
processor 0) from the timing module in order to speed up simulation time. We
verified the validity of this approximation by running experiments in which all
processors were simulated regardless of the number of threads, as we obtained
very similar results. Processor 0 is left idle (for OS usage) and the benchmark is
run in cores 1 to n, depending on the number of threads.

For 16-thread runs, all 16 cores are used to run the benchmark, including
processor 0. In certain occasions, the operating system interrupts the execution of
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Figure 3.4: Workload scalability on LogTM, with and without OS interference.

the benchmark and regains control over processor 0 to execute some completely-
unrelated code, degrading the performance of the application. As we can observe
in plots 16* of Figure 3.4, such is the case of vacation: The OS interrupt happens
in the middle of a transaction and takes much longer than the duration of the
benchmark itself, making all other threads wait at the final barrier for millions of
cycles, thus completely jeopardizing performance. For yada, the weight of the OS
portion is not as drastic but it still stops the benchmark from scaling as it should.

Undesired interference caused by the OS can be dealt with in a variety of
ways. Yen’s approach [152] to solve this problem was to reduce the thread count
to 15 when running the benchmarks on a 16-core system. We found a different
solution that allowed us to maintain the number of threads as a power of 2. We
decide to include an extra processor in the functional simulator, and reserve it
for the exclusive use of the operating system. Hence, when running 16-thread
configurations we boot Simics with not 16 but 17 processors, and then bind
our user threads to processors 1 to 16, leaving processor 0 idle and available
for the OS to run any service or attend any interrupt that may arise during the
execution of the benchmark. From the perspective of the memory subsystem,
however, we make it look as if there are still 16 cores (Simics processors 1 to 16),
while processor 0 is disconnected from the timing module. The results of this
modification to the initial simulation infrastructure is the complete removal of
OS-induced noise in our experiments, as we can observe in the green plots of
Figure 3.4. It is important to observe that in spite of these changes, execution in
supervisor mode is still properly simulated by the timing module on the cores
running the benchmark, as user threads still cause exceptions (i.e. TLB misses)
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and traps (i.e. system calls) that need OS support. For the remainder of this
chapter and throughout the thesis, the results shown for 16 threads use this
configuration with an extra idle core to avoid such OS interference.

3.6.3 Starvation of Writer Transactions

The basic conflict resolution policy of LogTM is susceptible to a type pathological
interaction amongst transactions referred to as starving writer [22]: When a writer
transaction attempts to acquire exclusive ownership over a line that is currently
in the read set other transactions, the readers can nack the requester regardless
of which transaction has higher priority –i.e. older timestamp–. The writer
may starve if new readers arrive before existing readers commit. The pathology
can still appear if existing readers abort instead of committing, if readers are
aborted one at a time: Before one reader has released read isolation over the
contended line, other readers may have restarted and read the line without
observing a conflict, continuously depriving the writer from the opportunity to
acquire exclusive ownership. A back-off scheme reduces contention and ensures
that readers eventually delay their retry long enough for the writer to complete its
exclusive request, and thus guarantees that the system makes forward progress.
Nonetheless, the drop in performance becomes significant as contention increases
with the number of threads. We observed this writer starvation in benchmarks
like intruder, yada or vacation, though the performance degradation is most
visible in the latter. For 16-thread configuration without interference of the OS
(green plots), Figure 3.4 shows a 4X performance drop in the speedup achieved
by vacation-high (8.6) in comparison to its low contention counterpart (13.3). This
difference is largely due to the appearance of the aforementioned pathology.

As proposed by Bobba et al. [22], this starvation scenario can be solved by
a hybrid conflict resolution policy that allows an older writer to simultaneously
abort a number of younger readers. In this case, the readers abort themselves
and immediately acknowledge the exclusive request, allowing the older writer to
proceed with its transactional execution. For all other conflicts, the resolution is
similar to the basic policy: stall the requester and rely on conservative deadlock
avoidance to ensure forward progress. The advantages of using this hybrid
resolution policy are shown in Figure 3.5. Comparing it to Figure 3.4 we can
observe how it greatly improves the scalability of vacation-low, rising it from 8.6 to
12.7 for 16-threads, hence closing the gap with the high-contention configuration.
All other benchmarks also benefit from this change of policy, although the
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Figure 3.5: Workload scalability on LogTM, without writer starvation.

improvement is most noticeable in yada+ (from 6.5 to 8.5 for 16 threads) or
intruder+ (from 3.4 to 5 for 8 threads).

3.6.4 Barrier Synchronization Overhead

In some of the STAMP benchmarks, the parallel computation is divided into
several phases by means of barriers: Such is the case of genome and ssca2. When
building the applications for its use with a simulator, binaries are compiled
by default using Pthread barriers (pthread_barrier_wait). We observe in our
simulations that resorting to a library call for barrier synchronization results
in expensive system calls (lwp_park) that introduce significant overheads: In a
sample 16-thread genome run, we observed barrier release latencies of between
70 and 130 thousand cycles for the first and last thread released the barrier,
respectively, measured from the cycle on which the last thread arrived at the
barrier. In a benchmark like genome, with frequent barriers and a total run-time
of under 3 million cycles (16 threads), a barrier latency in the order of hundred
thousand cycles makes this synchronization overhead have a significant weight
in the total execution time.

Since barrier performance is critical for the scalability of benchmarks like
genome, we decided to modify the simulation framework to eliminate this other
source of noise from our evaluations. After all, our research does not concern
barrier performance, and thus emulating ideal barriers is not only an acceptable
assumption, but also a desirable feature that help isolate our experiments and
performance analysis from interference that might unfairly hide the benefits
of a given design. We hence modify both simulator and workload in order to
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Figure 3.6: Workload scalability on LogTM, with ideal hardware barriers.

implement a zero-cycle hardware barrier. On the application side, we introduced
a Simics magic call that signals the arrival to the barrier, followed by an infinite
loop on which the thread is trapped and keeps spinning on a local register (l1).
On the simulator side, we capture the new magic call and simply keep track
of how many threads have reached the barrier so far. When the last thread
arrives, we write a non-zero value in the l1 register of each processor, releasing
all threads from the otherwise infinite loop.

Figure 3.6 shows the scalability of STAMP after replacing the call to
pthread_barrier_wait with a hardware barrier. The cumulative changes of
previous subsections are kept from one subsection to the next (OS interference,
hybrid policy). When compared to Figure 3.5, we can see how genome expe-
riences a spectacular performance gain (genome+ raises from 7.4 to 12.1 in 16
threads) whose reason is the drastic reduction in the barrier synchronization
overhead. The improvement in ssca2 is also noticeable (from 7.5 to 8.8).

3.6.5 Level-2 Cache Conflict Misses

Handling of system calls inside transactions is an open research topic [18,90,101],
as non-trivial issues arise from the interaction of the operating system with
transactions. Because system calls are executed in kernel mode and might modify
system state, user mode rollback handlers are not applicable. In our simulation
framework, all code executed in privileged mode is treated as non-transactional
and its effects cannot be undone if the transaction is deemed to abort. To isolate
applications from this intricacies, the STAMP benchmarks attempt to avoid
system calls from taking place inside transactions. With this intent, a very simple
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thread-local memory allocator is implemented in the STAMP library, whose
function is to service malloc-like calls in the parallel region, providing memory
from a thread-local pool without having to resort to the actual malloc call – and
thus avoiding mmap system calls–.

However, this simple memory allocator is responsible for some undesired
side-effects that can hurt performance as a result of the alignment of per-thread
memory pools. By default, a total of 256MB are allocated in the initialization
phase, and divided amongst threads. When 16 threads are used to run the
benchmark, the initialization of the memory allocator mallocs 16 blocks of 16MB
each. Since these memory blocks appear consecutively in memory, the initial
portion of each block is at n times 16 MB of distance from the beginning of every
other block. Regardless of the mapping policy the L2 cache, the result of this
alignment is that all addresses at a given offset k within each memory block
are mapped to the same set x of the same L2 cache bank b. When 16-thread
configurations are run, the associativity of the L2 cache (8 ways) is not enough
to contain the dynamically allocated lines for all threads, and L2 conflict misses
significantly penalize the performance of the application, increasing the number
of expensive accesses to main memory. For applications that make an intensive
use of the dynamically allocated memory, this kind of L2 conflict misses hinder
scalability to 16 threads, as is the case of labyrinth: Each thread works on a local
matrix of 12KB that is dynamically allocated, and all matrices are mapped to
the same (small) subset of the total number of L2 sets available across banks,
resulting in incredibly high L2 miss rates (over 40%).

Figure 3.7: Workload scalability on LogTM after solving L2 conflict misses.

To address this pathological behaviour in the simulation framework, we
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modify the memory management library of STAMP and increased the size of
each block allocated during the initialization by a small amount, in order to
avoid their alignment to 8MBs (the total size of the L2 cache in the modeled
architecture). Blocks were displaced by an offset of 13KB, specifically targeted
to avoid conflict misses amongst the local matrices used in labyrinth. With this
change, the number of L2 cache misses in labyrinth was reduced to less than one
fifth of its previous value, and its scalability was substantially improved, as shown
in Figure 3.7. The rest of benchmarks experience less relevant improvements after
addressing this issue.

3.6.6 Summary of Changes

Figure 3.8 summarizes the incremental changes made to the simulation frame-
work, in order to obtain the best-performing EE HTM which will be used as
baseline for comparison of the designs proposed in this dissertation. As we can
see it, removing the pathological disturbances from the OS permits to maintain
as part of our workloads a benchmark with long running transactions such as
vacation. Furthermore, the change to a hybrid resolution policy that addresses
the starving writer performance pathology allows vacation-high to reach its
full potential, and brings considerable benefits too for applications like intruder
and yada. The removal of the barrier synchronization overhead achieved by
modeling a hardware barriers allows genome to show its authentic scalability,
and also helps ssca2 to a lesser extent. Finally, solving the alignment problems in
the thread-local, dynamically allocatable memory largely eliminates L2 conflict
misses that penalized the scalability of labyrinth. Thus, the baseline EE HTM
system used as reference in the evaluation sections of the following chapters
includes all such changes.

3.6.7 Relative Performance of Lazy-Lazy HTM Systems

In the previous subsections we have focused on the performance of the EE
system, which represents one end of the design space in hardware transactional
memory. Now we present comparative performance numbers for the two LL
designs considered, which explore opposite policies for the two key HTM design
dimensions, version management and conflict resolution. The adjustments to the
simulation environment described so far are maintained when measuring the
relative performance of the LL systems, with the exception of the change in the
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Figure 3.8: Evolution of scalability for the baseline EE system.

conflict resolution policy, which is only applicable to EE systems (the LL system
always uses a committer-wins policy for resolving conflicts).

Figure 3.9: Relative workload scalability of both LL systems.

Figure 3.9 shows the speedup achieved by each considered HTM system,
running 16 threads. The plot LL-GCT corresponds to the LL system that employs
a global commit token for serializing commits, while the LL-STCC represents
a similar LL system with a sophisticated scheme that follows the algorithm of
Scalable TCC [29]. Results are normalized to the single-thread execution time of
the EE system. We see in the figure how there is not a clear winner, with both
policies performing similarly in most benchmarks, while outperforming each
other in two of the benchmarks.
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On the one hand, as exemplified by intruder, the LL approach is more efficient
at exploiting parallelism in situations of high contention, for several reasons.
First, resource acquisition (i.e. request of exclusive ownership over write-set
lines) happens once a transaction has executed till completion and it is sure to
commit its speculative updates to shared memory. Therefore, in a lazy system
lines are only blocked when useful work is made, whereas in the EE approach a
transaction can stop others from accessing its write set, without any guarantees
that stalling them will allow itself to commit. In fact, the EE approach of holding
state before commit leads to situations of unnecessary serialization, in which two
independent transactions T1 and T3 –without mutual data dependencies– cannot
execute in parallel because of eagerly-detected conflicts with a third transaction
T2 that connects them (T1�T2�T3). Another reason of why EE systems do not
perform well under contention is that there is no upper bound on the number of
aborts caused by each commit, while in the LL system a committing transaction
can only cause a maximum of n-1 aborts (n is number of threads).

On the other hand, for applications with a large number of small, low-
contended transactions like ssca2, the EE system defeats the lazy approach, as
transactions can commit instantly and in a completely local manner, without
having arbitrate for a commit bus. In this case, the simple scheme of using
a global token to serialize transaction commits results in a clear performance
bottleneck, as this mechanism does not allow parallel commits whatsoever. The
LL-STCC system employs selective locking of directory banks to avoid arbitration
delays and allows transactions to commit in parallel as long as their written lines
are mapped to disjoint sets of directory banks [29]. Nonetheless, STCC does not
perform much better than LL-GCT. mainly because of the mapping policy to L2
cache banks that we have assumed so far.

L2 Cache Mapping Policy. The L2 cache level in this thesis is modeled as a
Non-Uniform Cache Access (NUCA) design [71] in which are a set of cache banks
distributed across the chip and connected through a point-to-point network.
Although cache banks are physically distributed, they constitute a logically
shared L2 cache. As such, the mapping of memory blocks to cache entries is not
only defined by the cache set, but also by the cache bank. Most CMP architectures
that implement NUCA caches map lines to cache banks by taking some fixed
bits of the physical address of the block [71, 77]. This physical mapping spreads
blocks uniformly among cache banks, resulting in optimal utilization of the cache
storage. In this and all the above subsections, results were obtained using a a
coarse-grain interleaving of memory blocks to L2 banks –depicted in the left part
of Figure 3.10–, by taking the lowest bits of the physical address to select the
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L2 cache set. Under this mapping scheme, virtually every transaction in ssca2
writes to at least one common directory bank, rendering the more sophisticated
mechanism of STCC useless.

Figure 3.10: L2 bank mapping policies.

Commonly, the bits taken to select the cache bank for a particular block are
the less significant ones, leading to a fine-grained interleaving of lines across
L2 cache banks [112], as shown in Figure 3.10 (right). We thus adjust our
simulated CMP architecture according to this alternative mapping policy, in
order to observe the full benefits of the parallel commit scheme of LL-STCC.
Figure 3.11 shows the speedup of both EE and LL-STCC systems, using the
two alternative policies. Speedups are over the single-threaded execution on
EE, with the initial interleaving at a coarse granularity (L2 banks). Starred plots
correspond to the fine-grain interleaving configurations, EE? and LL-STCC?. For
the majority of the workloads, altering the distribution of data across the on-chip
storage only causes slight performance variations. In ssca2, on the contrary, we
observe that LL-STCC now clearly outperforms the LL-GCT, as a consequence of
the reduction in the commit arbitration delays achieved by the selective locking
of L2 banks, which in many cases allows transactions to commit in parallel.
Nevertheless, as the EE system introduces nearly no synchronization overhead
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(as commits are by far the common case outcome), it still proves to be more
efficient than LL-STCC, whose communication latencies with directory banks are
in the critical path and account for a significant portion of the total duration of
the transactions –given their small size–.

Figure 3.11: Performance of EE and LL-STCC systems with L2 mapping policies.

In summary, given the little impact that the L2 mapping policy has in the
performance of the EE system –shown in Figure 3.11–, a fine-grain interleaving
scheme is chosen in our evaluations for the remainder of this thesis, so as to
establish a fair comparison against the LL-STCC system.

3.6.8 Workload Speedup on Single Global Lock

In order to measure the degree to which the programmer’s effort is responsible
for the performance achieved by each application –and thus the role played
by the underlying TM system– in this subsection we measure the scalability of
these workloads in our simulation framework using a single global lock –and
not transactions– as synchronization method. To accomplish this, we simply re-
place tx-begin/tx-end instructions with pthread_mutex_lock/unlock calls, hence
keeping the programming effort and complexity of reasoning the same as when
transactions protect accesses to shared data. Figure 3.12 shows the scalability
measurements when transactions are replaced with a single global lock.

Unlike other benchmarks [151] whose transactified versions have been previ-
ously used to evaluate HTM proposals [29, 92], the STAMP applications were
developed while keeping in mind that the main appeal of TM for programmers
is the ability to write simple parallel code with frequent use of coarse-grain

90



3.6. Validation of Simulation Framework

Figure 3.12: Workload scalability using a single global lock for synchronization.

transactions that perform as well as code that has been carefully optimize to
use fine-grain locks. Figure 3.12 quantitatively shows that the underlying TM
system largely determines the performance and scalability of these workloads, as
opposed to other benchmarks [151] developed with fine-grain locking strategies,
which see little or no benefit when replacing lock-base synchronization with
transactions [92]. In summary, this reveals the idoneity of STAMP as the most
representative set of benchmarks on which we can evaluate the proposals of this
thesis.
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Chapter 4
A Directory-Based Scheme for

Detection of Transactional Conflicts

4.1 Introduction

The detection of conflicts amongst concurrent transactions is one of the key
aspects that any HTM system must address. The decision of when to detect and
how to resolve conflicts over the course of a transaction constitutes a major design
dimension of the TM system. The choice of one or other policy for managing
conflicts has broad implications in both performance and implementation costs
of adding TM support onto a tiled CMP substrate.

The check for conflicts can be done on each individual memory request or
it can be deferred until the end of the transaction. While the latter approach
opens up more opportunities for parallelism by allowing the coexistence of
multiple transactional reads and writes to the same line, the implementation of
lazy commits in hardware is not straightforward: The commit logic must retrieve
every address in the write set of the transaction and publish it –issuing coherence
requests to acquire exclusive ownership– to make the updates globally visible,
squashing any other concurrent accessor of the committed data.

Eager-eager (EE) HTM designs [92, 153], on the other hand, adopt a more
evolutionary step towards the adoption of hardware support for TM, at the cost
of sacrificing some concurrency. From the perspective of the cache controller,
memory accesses generated within a transaction –including writes– are no dif-
ferent from the rest: Just like in the non-transactional case, exclusive ownership
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must be acquired over a cache line before a transactional store can complete. In
turn, a cache controller simply needs to monitor the coherence traffic and check
against its local transaction’s read and write sets, in order to detect if a remote
transaction is attempting a conflicting memory reference. EE systems commonly
resolve conflicts by stalling the requester. The coherence protocol is augmented
with negative acknowledgement messages (nacks), sent in response to conflicting
requests. A nacked transaction is forced to stall while it retries the conflicting
memory access. Aborts are triggered when possible cyclic dependencies are
detected, to avoid deadlocks. In this way, once a transaction has written a line,
its access is blocked to others until commit or abort, ensuring that speculatively
written values remain hidden. Similarly, a transaction impedes others from
writing to lines that belong to its read set.

The eager approach to resource acquisition greatly simplifies the implementa-
tion of the commit instruction: Since all write set cache lines are acquired with
exclusive ownership prior to commit, the only step left to make the tentative
changes visible across the system is as simple as clearing the read and write set
meta-data. Unfortunately, this strategy of booking resources a priori –before the
transaction is certain to succeed– makes eager systems inherently less efficient at
exploiting parallelism than their lazy opponents. By holding state before being
guaranteed to commit, eager transactions create chains of conflicts through which
otherwise independent transactions become unnecessarily serialized due to the
transitivity of dependencies. In spite of this fundamental disadvantage, their
lower implementation complexity and the modularity of their components still
makes eager solutions an appealing choice. For instance, the applications of the
logging circuitry go beyond the scope of TM, and could be of use in diverse
domains such as fault tolerance [115].

Many HTM systems proposed to date implement eager policies [9,60,80,92,107,
153]. One common aspect of all these proposals is that they store the transactional
bookkeeping information in structures that are private to the processor running
the transaction. The meta-data is kept in places that are directly accessible
by the private cache controller, which is conveniently modified to interpret
such information and use it to check for data races. In other words, conflict
detection has invariantly been performed at the private cache levels of the memory
hierarchy, regardless of the bookkeeping scheme –bits in cache, signatures, etc–.
This makes the most sense when private caches are able to snoop on every
memory reference that takes place across the system. While this invariably
happens in bus-based systems [56], it constitutes an abnormal behaviour for a
directory-based protocol that maintains coherency over an unordered, point-to-
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point interconnect, as that of a tiled CMP. Despite this substantially different
scenario, eager conflict detection schemes for directory-based HTM systems have
so far implicitly inherited the same style of cache-level conflict detection [92, 153].

When directories are used to maintain coherence, a cache controller generally
receives requests only for those memory blocks of which it has a copy. Limited
cache capacity or associativity cause replacements of active transactional lines
that break the transactional status-cache residence connection upon which a basic
directory protocol relies to detect conflicts. To fully harness the advantages of
eager version management and enable transactions of larger footprints, previous
work proposes to augment a directory coherence protocol with sticky states [92],
so that transactions are still capable of retaining isolation over lines that are no
longer privately cached. While extending a directory-based system with sticky
states does not entail a substantial increase in complexity, it simply constitutes
a fix to help maintain the same strategy of cache-level conflict detection found
in bus-based systems. However, the particular characteristics of directory-based
systems have not been thoroughly analyzed in the context of an HTM design.

Previous work on directory-based eager HTM systems has not addressed
a major source of inefficiency that arises as a consequence of the directory’s
obliviousness to transactional status and priorities. Using the directory as a mere
router that simply forwards messages to the appropriate destinations, has the
implicit effect of restricting the throughput of conflict detection to the pace at
which the directory can process coherence requests. This means that an HTM
system can only resolve conflicts as fast as its directory can process the coherence
requests that create them. Since the directory acts as the serialization point for
the requests to a memory location, it cannot process new requests until it receives
confirmation that the previous one has completed. Although this limitation in
concurrency affects directory coherency in general, the situation is aggravated to
the point of pathological performance when transactions are introduced.

In this chapter, we propose a novel approach to eager conflict detection that
extends the directory logic in order to provide a fast detection scheme in tiled
CMP architectures. Where previous proposals had combined these two related
but distinct roles [92, 153], we propose to decouple conflict detection from cache
coherence at the directory level, in order to overcome pathological situations
that degrade the performance of an eager HTM system. We demonstrate that
traditional cache-based conflict detection introduces several sources of inefficiency
when used in the context of a directory protocol, and show how under situations
of high contention the directory becomes a bottleneck for the conflict detection
mechanism. We propose an alternative solution, a directory-based scheme, which
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moves transactional bookkeeping from caches to the directory. By comparing
our proposal with an HTM system such as LogTM-SE [153], we observe several
advantages of implementing conflict detection at the directory level instead of at
the cache level. These are the main contributions of our proposal:

Faster conflict detection with less traffic. Detection itself is accelerated, as
conflicts are mainly detected in one hop instead of two, and the number
of messages generated for the task of conflict detection is reduced. This is
important for eager systems that attempt to resolve conflicts through stalls
rather than aborts. If the system implements a simple retry scheme –as it is
the case of LogTM-SE– the savings in network traffic grow in significance
for workloads composed by coarse grain transactions with long run times.

Higher conflict resolution throughput during contention. While detecting
conflicts sooner does not directly imply that conflicting transactions will
serialize sooner, our design dispatches conflicting requests without forward-
ing additional coherence messages, and thus without blocking the directory.
This allows quicker reaction to high-contention scenarios in which the same
line is accessed by several conflicting transactions, and it has the potential
to avoid many aborted transactions, improving performance.

More efficient transactional bookkeeping. Having each tile track its transac-
tional addresses is not an efficient global encoding, as transactions often
access the same shared data and keep redundant meta-data on their read
and write sets, which in turn may lead to false positives if signatures are
used for transactional bookkeeping. In contrast, our scheme extends the
role of the directory not only to map addresses with cache residence, but
also with transactional ownership.

Modularity. The new functionality can be introduced as a separate hardware
module that acts as a directory-level conflict controller, capable of working
independently of the coherence controller. Hence, the coherence protocol
remains largely unmodified.

4.2 Motivation

In this section, we discuss a number of reasons that support our claim that the
directory is a well-suited location for the detection of transactional conflicts in
HTM systems that detect and resolve conflicts eagerly.
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4.2.1 Decoupling conflict detection from cache coherence

Maintaining coherence means guaranteeing that all processors see the writes
to a given location as having happened in the same order. In a bus-based
system, all accesses to any location are serialized by the order in which requests
appear on the bus. In a distributed system with coherent caching, such as the
baseline multicore architecture of this thesis, it is the directory that acts as the
serialization point for all the requests to the same memory location, since all
relevant operations first come to the home tile. A common solution to ensure
serialization to a location while keeping the complexity of the protocol low is to
use additional directory states called busy states [39]. In Figure 4.1 we can observe
a partial snapshot of the state machine implemented at the directory level in the
baseline CMP modelled throughout this thesis. Busy states are depicted in grey
colour.

Figure 4.1: Example of busy states in a directory protocol state machine.

In this protocol, cache misses must finish with the requesting tile sending
an unblock message to the home tile once data and acknowledgements have
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been obtained. This message notifies the home tile that the in-progress miss
has been completed, and allows it to process the subsequent requests for the
same block. Figure 4.1 also shows unblock cancel messages that indicate that the
coherence transaction has failed –the requestor could not obtain the appropriate
data and coherence permissions– due to a transactional conflict. In these cases,
the directory simply reverts the line to the initial base state. For clarity, those
unblock messages sent by a requestor after it has acquired exclusive ownership
are denoted as exclusive unblocks in the figure.

When a line is in a busy coherence state, subsequent requests that target
the same block must wait until an unblock message is received from the last
requestor, indicating the (perhaps unsuccessful) completion of the previous
coherence transaction. Only when the line returns to a base state is the next
queued request considered. The result of this serialization is that coherence
requests targeted to the same line can pile up in the input buffers of the directory
controller when a cache line experiences high contention. The situation is much
worse in the context of transactions, because the directory ignores whether a
given requests is conflicting, and is unaware of the priority scheme used by
transactions. Oblivious to the status of the transactions running on a given
moment, the directory always attends messages in a first-in-first-out (FIFO)
basis. As a consequence, undesired scenarios may arise during high contention:
low priority requests are serviced while high priority ones are sitting at the
input buffers, when indeed the former do not produce in any useful work since
their transactions will probably end up aborting as a result of the conflict. The
scenario is depicted in the left part of Figure 4.2. The figure shows a transactional
interleaving in which four transactions access the same cache line, which are
initially in the read set of transactions running in processors P0 and P1, whose
caches have shared copies of the line. We can see how a non-conflicting shared
request from P3 must wait for other conflicting requests that arrived earlier
at the directory, delaying unnecessarily the commit of the reader transaction.
Furthermore, the directory’s obliviousness to timestamps makes the high-priority
exclusive request from P0 wait for a lower priority request from P2, which does
not succeed in acquiring exclusive ownership.

In contrast to the behaviour of the cache-based approach to conflict detection
shown in left part of Figure 4.2, the directory could handle contention more
efficiently, provided it had information about the transaction’s timestamp and
read and write sets. In the right part of Figure 4.2 we see how a directory-
based scheme of conflict detection serializes more quickly the same transactional
interleaving described earlier. In this other case, the directory detects the conflict
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Figure 4.2: Cache-based vs. directory-based conflict detection.

itself using its own bookkeeping meta-data, and thus does not need to forward
coherence requests to the private caches that have a copy of the line. As a result,
the line does not need to go into a busy state and non-conflicting or high-priority
requests can be dispatched without having to wait for the completion of coherence
requests known not to make any useful work.

4.2.2 Reducing traffic generated during stalls

Eager systems generally attempt to resolve conflicts using a requester stalls policy
[22, 92, 153]. Unlike other resolution policies that always abort all but one of the
conflicting transactions –like requester wins–, the strategy of stalling the requester
tries to save the computations performed up to the conflicting memory reference.
Upon reception of a nack response indicating a conflict, the processor stalls, retries
its coherence operation, and aborts on a possible deadlock cycle. If no cyclic
dependencies are formed, this policy can successfully commit both transactions
in spite of the conflict, by serializing their execution after the conflicting point.
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The simplest way to implement this policy is simply to retry the conflicting
coherence request a few cycles after the nack response has arrived. From the per-
spective of the processor, the conflicting memory access appears as a long-latency
miss that takes hundreds of cycles to be serviced. The conflicting coherence
request is retried once and again and again, until it succeeds in bringing the data
with the right permissions, or until the deadlock detection mechanism indicates
the possibility of a cyclic dependency. This is the solution adopted by the popular
LogTM design. More sophisticated methods are possible, including trapping to a
software contention manager, using an adaptive back-off algorithm to calculate
the interval between retries, or even implementing a notification mechanism to
report transaction commit/abort to stalled requestors.

Figure 4.3: Messages generated on a write-read conflict in cache-based vs.
directory-based conflict detection.

The straightforward nack-and-retry scheme has the advantage of its simplicity,
but results in a substantial amount of network messages generated when we
consider the entire length of the stall, specially if the nacker is a long-running
transaction. This is particularly relevant for write-read conflicts, i.e. when a
transaction attempts to write a line that is in the read set of one or more concurrent
transactions. While on a bus-based system the number of bus transactions
generated in this case is always constant, in a directory-based system there is
an individual invalidation message sent from the home tile to each sharer of
the line, and one negative acknowledgement response for each invalidation. In
general, detecting a conflict on a cache-based approach to detection takes 2+2n
messages, where n is the number of bits set in the bit-vector kept at the directory.
Although all of them are control messages of small size (e.g. one flit), the scheme
of repeatedly retrying the conflicting request produces an amount of traffic in
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the interconnect that is not negligible. Figure 4.3 (left) illustrates all network
messages generated on a write-read conflict when a cache-based style of conflict
detection is employed. The tiles with a shared copy of the line are coloured in
green, while the home is shown in blue and the requester in red. A dotted line
differentiates the final unblock message from the initial request. On the right side
of Figure 4.3 we show how by detecting conflicts at the directory, the requester
transaction can observe the conflict after only two messages, independently of
the number of sharers –in fact, for type of conflict, not only write-read–. Thus, a
directory-based approach to conflict detection can also help address this source
of inefficiency at the interconnect.

4.2.3 Reducing false positives of signatures

One of the main advantages of eager-eager systems is their ability to accommo-
date transactions with large footprints. The versioning hardware takes care of
logging the old contents of the line before it is speculatively modified “in place”.
Therefore, evictions of both clean and dirty transactional data from the private
cache are tolerated, provided that the cache controller can detect conflicts on
spilled lines. The scheme to summarize overflowed addresses can vary from
a single bit [92] to a hash signature [96]. Systems that only use signatures for
bookkeeping do not need to make a distinction between cached and overflowed
lines [27, 153]. However, using signatures introduces the possibility of false
conflicts that arise as a consequence of their conservative encoding of addresses,
i.e. the signatures encode a super-set of the addresses in the read and write sets.
Address aliasing can hurt performance but does not affect correctness.

While signatures can be designed to minimize aliasing [103, 104, 116, 154], an
inherent limitation of cache-based conflicting detection is that the bookkeeping
meta-data is always recorded on a per-core basis. Each core keeps the set
of addresses that it has accessed in a transaction, regardless of the addresses
accessed by other cores. Using a data structure simile and observing the meta-
data from a global perspective, the typical organization resembles an array of
n hash tables, where n is the number of cores. Since the data accessed inside
transactions is often shared, we can expect the elements found in different hash-
tables to overlap to a certain extent. Given such locality, and considering that the
number of accessed addresses is commonly larger than the number of cores in
the system –specially for coarse grain transactions–, a more efficient encoding of
the meta-data would avoid having the same element repeated across different
sets. Instead, one hash table could track the union of all addresses, each one
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mapped to a bit-vector that indicates which cores are transactional accessors of
the address.

The aforementioned idea of tracking meta-data on a per-address basis can be
naturally applied at the directory level, enabling a conflict detection scheme that
also minimizes the impact of false positives due to its more efficient encoding.
The directory already acts as a hash table that maps addresses to presence bit-
vectors; extending it to track transactional ownership is straightforward. The
extra overhead of having a transactional directory is low since a small cache per L2
bank is generally sufficient to contain all the lines accessed inside transactions
which are mapped to that bank. This would remove signatures from the critical
path of an L1 cache miss and thus would help reduce the impact of false positives.

4.2.4 Avoiding broadcast on L2 misses

Cache controllers need to observe coherence traffic for all lines that belong to the
read and write set, even if they are no longer cached. This naturally happens
on a bus-based system, whereas directory protocols need to be extended with
sticky states [92,153] so that overflowed caches keep receiving coherence messages
for replaced lines, and detecting conflicts in spite of the eviction. Basically, the
solution of sticky states leverages the presence bit-vector kept at the directory
to forward coherence requests only to those caches that could potentially have a
conflict: The last exclusive owner of a speculatively modified line that was written
back, or the sharers of a line that was silently replaced by some transactional
readers. Once the line is written back to the shared level, the directory protocol
has no way to distinguish a transactional line from the rest.

The problem arises when the directory entry is lost due to the unlikely but
possible event of an eviction from the first level of shared cache. In the baseline
tiled CMP architecture of this thesis, tiles have a directory entry for each of the
cache lines in its L2 cache bank. When a line is replaced from L2, the associated
directory entry is lost. Since the L1 caches maintain inclusion with the shared L2,
an L2 replacement forces the invalidation of all L1 copies, rendering the directory
information useless. Unfortunately, the mechanism of sticky states leverages the
presence bit-vector to maintain isolation over lines that are no longer privately
cached. The easy way out this problem is a best-effort approach: Aborting all
possible transactional accessors of the line –as dictated by the bit-vector– before
it gets replaced. However, an unbounded design like LogTM-SE [153] is able to
tolerate the loss of the directory information that occurs on an L2 replacement.

LogTM-SE further extends the directory protocol in order to broadcast filter
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check messages to L1 caches on every L2 miss, and use the result of every signature
check to conservatively rebuild the directory information. Filter responses are
collected by the requestor, which reconstructs the presence bit-vector with the
results and piggybacks it on the unblock message sent back to the directory. For
every signature that signalled a conflict, the corresponding bit of the bit-vector
at the directory is set. From this point on, usual conflict detection is resumed
by forwarding coherence traffic to those caches whose signatures reported to be
transactional accessors of the line.

The solution adopted by LogTM-SE has a fundamental drawback: It burdens
common-case execution in order to solve a rare event such as an eviction of
transactional data from the on-chip storage. Each and every L2 miss causes a
broadcast of filter check messages in order to maintain transactional isolation
at all times. The overall latency of the miss is not generally affected because
these messages are broadcast in parallel with the request to the off-chip memory,
whose access time is generally much longer than the time it takes to deliver all
messages, access signatures and collect the responses. However, the solution is
not very efficient as it increases network traffic in all cases, even when running
non-transactional codes. The reason for such broadcast is that the bookkeeping
information required to detect conflicts is solely kept at the private cache level. A
directory-based scheme could easily avoid this broadcast by having each tile keep
summarized information about its overflowed lines. L2 misses are not a frequent
event, and thus L2 evictions of transactional data are an even more uncommon
situation –at least in the context of a CMP with a large, shared level L2 cache–
which could be handle with simplistic solutions. For example, a single bit-vector
would be enough to conservative track transactional accessors that have suffered
L2 evictions. The bit-vector would then be directly used as sharing code when a
new memory block is fetched to L2 cache, successfully retaining isolation over
L2-evicted transactional data without the need of expensive broadcasts.

4.3 Background on Conflict Detection

The early HTM proposal from Herlihy and Moss [60] added a separate cache to
track the transaction’s read and write sets. Adding a new transactional cache in
parallel with an ordinary data cache adds significant complexity to the optimized
performance-critical data path of modern microprocessors, as it introduces an
additional structure from which data may be sourced. When TM was revived
a decade later by Stanford’s TCC system [56], transactional bookkeeping was
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accomplished by augmenting the existing private caches with transactional status
bits associated to each entry. For bus-based systems like TCC, integrating the
conflict detection logic into the cache controller is undoubtedly the most natural
and straightforward solution because all cache controllers are able to snoop
all potentially conflicting memory references issued by remote transactions. In
systems of this type, coherence is maintained by having each cache controller
snoop the bus and monitor the transactions, taking action if a bus transaction
involves a memory block of which it has a copy in its cache. Cache is thus
invariably accessed on every bus transaction in order to check for a tag hit and
retrieve the coherence state bits that determine its actions. In such context, a
straightforward solution to conflict detection is to incorporate the transactional
status bits (SR and SM bits) along with the coherence state –as part of the cache
line meta-data– and modify the state machine to interpret those bits as well,
adapting the state machine behaviour (actions taken) if a conflict is detected: On
a bus write, a conflict is signalled if either transactional bit is set, while on a
bus read, a conflict is detected only if the transactional write bit is set. This is a
rather simple change in the internals of the coherence controller, and is enough
to detect conflicts on a best-effort HTM design which does not allow evictions of
transactional data.

4.3.1 Conflict Detection on Evicted Lines

A simple yet conservative solution upon spills of transactional data is to en-
force transaction serialization, letting the overflowed transaction write its results
directly to shared memory [56]. Nonetheless, transactions of larger footprints
can be accommodated without resorting to global serialization if the system is
capable of keeping track of overflowed addresses, even if it does it in a sum-
marized way. Replacements of read-set data can be tolerated regardless of the
version management policy used, whereas speculatively written lines can only
be spilled to the shared levels of the memory hierarchy if the system logs values
before they are speculatively written [92, 153]. To retain isolation on overflowed
lines, cache controllers need a way of determining if an address whose tag is
not found in cache indeed belongs to the read and write sets of its transaction.
The solution can be as simple as an overflow bit [92] which is set upon the first
transactional spill and cleared on commit/abort. After the overflow bit has been
set, any snooped bus transaction or incoming coherence message which does not
correspond to a cached line must be considered conflicting. To maintain isolation
after an evicted line has been re-fetched to the cache, line-fill operations always
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set both transaction status bits if the overflow bit is set. In bus-based systems
where all controllers observe all memory requests, this conservative solution
can lead to abundant false conflicts if evictions are common. In directory-based
systems, the directory acts as a filter so that not all cache controllers observe all
coherence traffic, thus lowering the number of false conflicts. This number can be
reduced by keeping more precise information about the spills, like an overflow
signature [96] or a permissions-only cache [16].

A different solution is to remove the transactional status bits from caches and
only use signatures for transactional bookkeeping [27,153]. In this case, the cache
controller operates in the same fashion regardless of the presence of the line in the
private cache, handling the detection of both cached and evicted lines altogether.
However, this uniformity comes at a cost, as both cache and signatures have to
be accessed for every bus transaction or incoming coherence request in order
to obtain the inputs to the cache controller –coherence state plus transactional
status–. Although the signature check can be performed in parallel with the
cache access, the more or less complex logic of hash encoding –depending on
the implemented scheme [116] – could make the signature response time exceed
that of the cache, and thus it may negatively affect the latency of misses. False
positives are another key disadvantage of hash-signatures, which arise as a
consequence of their conservative encoding of addresses. Addresses that do not
belong to the read and write set of the transaction may be considered as such
due to aliasing, and false conflicts can be signalled when none exists causing
unnecessary performance degradation. This poses a dangerous situation if the
ratio of false positives becomes significant as the transaction footprint grows,
as it may discourage programmers from using coarse grain synchronization,
somehow jeopardizing one of the main goals of TM. In spite of these drawbacks,
a signature-only scheme has two clear advantages. First, it eases the problem of
transactional virtualization, as all the bookkeeping information is summarized in
one large register that can be saved and restored by software, for example, in the
event of a context switch. And second, they allow the introduction of hardware
TM support while leaving private caches completely unmodified, an important
achievement since they are highly-optimized, performance-critical structures
whose design is tightly coupled with the processing core.

4.3.2 Silent Replacements and Sticky States

In a standard directory-based coherence protocol, the directory only forwards
coherence messages to those caches that have a copy of the line. Only if the
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protocol implements silent replacements of lines in shared state, may caches
receive an invalidation message for a line that is no longer cached. Existing
directory protocols commonly allow such an optimization, which directory-based
HTM designs leverage to enable the detection of write-read conflicts at the private
cache level at no extra cost. The case of read-write and write-write conflicts is
not as simple. To handle the eviction of a transactionally dirty line, the coherence
protocol must be augmented with a special write-back message so that the dirty,
speculative data gets written to the shared level while keeping the directory
pointed at the transactional owner, as if it still had the only copy of the line. This
solution is called sticky-M state [92], and basically uses the directory entry to
track the transactional owner in spite of the spill, so that it keeps forwarding
requests for that block to the overflowed cache. The overflowed cache is then
in the position to detect conflicting accesses that try to revoke its transactional
ownership. The sticky states at the directory are then lazily cleared after commit,
by means of a special clean message sent from the owner to the directory upon
reception of a forwarded request that no longer causes a conflict. Somehow, the
introduction of sticky states at the directory represents the fusion of coherence
maintenance and conflict detection support at the directory.

4.4 Directory-Based Conflict Detection

In this section, we describe how the directory is augmented with several compo-
nents in order to support the directory-level conflict detection introduced in the
previous sections.

4.4.1 Transactional status

Using the directory to check for conflicts over lines that remain cached by
transactional owners does not necessarily need any more information about a
block than what is already stored in its directory entry. For example, let W be a
transactional writer that locally caches a block B with exclusive ownership, and
let R be a reader that tries to acquire non-exclusive ownership of B. When R’s read
request arrives at the directory, the standard protocol dictates that the request
must be forwarded to W, which would then detect the conflict. However, if the
directory only knew that W is executing a transaction, forwarding the request to
W would be unnecessary; the directory itself could conservatively detect a conflict
on B and directly send a nack response to R. A simplistic solution is to extend the
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directory with a transactional status register that records which cores are executing
a transaction at the moment. This register could be kept updated by sending
explicit messages to all directories at transaction begin and commit/abort, and
waiting for the corresponding acknowledgement before resuming the execution.
Other schemes that avoid stalling the execution of the transaction and reduce the
number of contacted directories are discussed later in this section. For now, let
us assume the simplistic solution based on transaction begin/end reports.

Once the directory knows which cores are executing transactions in a given
moment, it can start detecting conflicts on their behalf. Again, the simplest
solution would be to perform the logical AND of the transaction status register
and the presence bit-vector of the requested line, and interpret the result as the
current transactional accessors of the line. Obviously, this would conservatively
consider as transactional all privately cached lines, and while it would suffice
to provide correct transactional semantics, it would result in a tremendous
amount of false conflicts. Hence, the directory needs some sort of transactional
bookkeeping to distinguish between cache residence and transactional ownership,
in order to detect conflicts more accurately.

4.4.2 Transactional meta-data

Transactional meta-data is kept at the directory by means of a small, set-
associative cache that we call the transactional directory (TXDIR). Just like the
regular directory tracks cache residence, the TXDIR tracks transactional owner-
ship. The TXDIR is accessed in parallel with the L2 directory, and the outputs
from both structures are provided to the module that contains the conflict de-
tection logic. This organization of the directory, including the newly added
components, is shown in Figure 4.4.

The internal organization of the TXDIR is detailed in Figure 4.5. We can
observe how it combines a cache-like structure that maintains precise meta-data
for a limited number of lines, with a set of small signatures (one per core)
which conservatively encode those transactional addresses that do not fit in the
aforementioned buffer. Along with the TxAccessors bit-vector, each entry includes
an additional TxWriter bit indicating if the line has been written (not shown in
the figure, for clarity); this bit is only meaningful when only one transactional
accessor exists. On each incoming request that arrives at the directory, the TXDIR
cache is accessed. If a tag hit is found, the transactional accessors and writer
status are taken from the entry. Otherwise, the result of the parallel signature
check is selected.
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Figure 4.4: Block diagram of the new directory organization.

The TXDIR cache has a special feature: It is augmented with circuitry for
flush-clearing the TxAccessors at the granularity of bits, as shown in Figure 4.6.
Individual bits can be flush-cleared in a single cycle by enabling the corresponding
clear signals, which are controlled by the conflict detection logic.

Though not shown in Figure 4.5, a fully-associative victim buffer can be
optionally incorporated to the TXDIR cache to reduce the overflows due to its
limited associativity. A small number of entries per TXDIR suffices to precisely
track the accessors for a large number of transactional lines. In our baseline
16-core tiled CMP, for example, a 32-entry TXDIR per bank would be able to book-
keep up to 512 different cache lines before resorting to a conservative scheme
based on signatures. Given the fine-grain mapping policy used throughout
this thesis (shown in Figure 3.11), consecutive line addresses are mapped to
subsequent banks, spreading read and write set lines across all directories with
the same probability. This distribution of the meta-data amongst the different
banks plays a key role in minimizing the frequency of meta-data overflows at the
transactional directory.

An inherent advantage of the directory-based bookkeeping is that, even when
the limited capacity or associativity of the TXDIR requires the use of signatures to
track transactional accessors, some false positives can be identified and properly
ignored: The use of sticky states at the directory ensures that every transactional
accessor is marked as a holder of the line in the presence bit-vector. Thus, the
opposite scenario –transactional accessor not in sharers– is clearly the result of
address aliasing and can be ignored. For this reason, a set of small, per-core
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Figure 4.5: Transactional directory internals.

signatures (64 bits each, 1 Kbit overall) suffices to support conflict detection over
an unbounded number of lines without introducing frequent false positives.

TxAccessor-0
clear-0

TxAccessor-1
clear-1

TxAccessor-n
clear-n

Figure 4.6: SRAM cells used to track transactional accessors in the directory
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4.4.3 Conflict detection logic

As shown in Figure 4.4, the module that performs the conflict detection takes as
inputs two bit-vectors –transactional accessors and sharers–, the coherence state,
the event –type of request– and the identity of the requestor. Its main output is a
no-conflict signal, which is in turn connected to the enable input of the coherence
controller module. This signal is usually asserted, allowing the coherence con-
troller to operate as usual. When a conflict is detected, the coherence controller is
disabled so that the line’s state and sharers remain unchanged, while the actions
taken by the directory are directly controlled by the conflict detection module.
Its simple logic is specified in Algorithm 1.

Algorithm 1 Conflict Detection Logic
con f lict← f alse
if TxAccessors(Address) 6= {Requestor} AND TxAccessors(Address) 6= {} then

if Event = Write then
if State(Address) = M then

con f lict← true
else

if Priority(Requestor) < HighestPriority(TxAccessors(Address)) then
con f lict← true

end if
end if

else
if Event = Read then

if State(Address) = M AND TxWriter(Address) then
con f lict← true

end if
end if

end if
end if

The conflict controller only attempts to detect a conflict if the line has at least
one transactional accessor different from the requestor. In that case, a conflict
is signalled if a write request finds a line that is exclusively owned by another
transaction (write-write or write-read conflict), as dictated by the M coherence
state. In any other state, a conflict is immediately detected if the requestor does
not have higher priority than the current transactional accessors. If it does, the
directory omits the detection of the conflict and forwards invalidations to the
sharers of the line, in order to support a hybrid resolution policy [22], similarly
to the baseline eager-eager system evaluated throughout this thesis. Finally,
shared requests cause a conflict if they find the line held in exclusive ownership
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whose writer status indicates that the only transactional accessor is indeed a write
transaction (read-write conflict). It should be noted that this detection logic is
able to process conflicting requests to lines in busy states, effectively decoupling
conflict detection from coherence maintenance.

4.4.4 Propagation and update of transactional meta-data

The fundamental drawback of detecting conflicts at the directory is that not all
memory references within a transaction must go through directory, but only
those that result in cache misses. Because the notification of a transactional load
or store hit to the directory cannot happen instantly, conflicts still need to be
temporarily detected at the cache level until the directory has knowledge of the
transactional access and can take over the task. Thus, transactional loads and
stores that hit in the private cache must notify the directory in order to update
the TXDIR meta-data. This communication takes place asynchronously –off the
critical path of the memory reference– by means of a special write-back message
we call txaccess. Note that this new type of message is not part of the protocol and
thus does not participate in the coherence mechanisms. Txaccess messages simply
update the meta-data kept at the directory, adding the sender as a transactional
accessor and appropriately setting the writer status bit (a write flag distinguishes
the type of access). For memory references that do go through directory, the
TXDIR must be updated after the cache miss has been successfully solved. In this
case the txaccess report is piggybacked as a couple of flags in the final unblock
message.

Since propagation of transactional meta-data happens asynchronously, caches
must be able to detect conflicts in those cases when a request reaches the directory
before it has been informed about a transactional hit at the L1 cache level. Once
the directory receives the corresponding txaccess report it resumes the task of
conflict detection, and the offended caches no longer observe conflicting traffic.
We discuss several alternatives for dealing with such racing requests in a later
subsection.

4.4.5 Awareness to priority and deadlock detection

As mentioned in Chapter 3, eager HTM systems that rely on a pure requester stalls
policy are susceptible to a pathology known as starving writer [22]. A priority
scheme is required to support the aforementioned hybrid resolution policy, which
resolves write-read conflicts in favour of the requester when the writer has higher
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priority than all readers. Timestamps transported in all coherence requests for
deadlock avoidance [92] are now also leveraged to support such hybrid policy
at the directory, which must keep a timestamp table and constantly update it by
snooping incoming requests.

Thanks to this timestamp table, the conservative deadlock avoidance mecha-
nism commonly employed by eager systems [92, 153] can be kept unmodified.
Negative acknowledgement messages are sent from the directory on behalf of
the eldest accessor of the line –including its timestamp in the response– so that
caches are oblivious to the fact that most of the nack responses they receive are
in fact sent by the directory, and not by other caches. This allows the resolution
scheme at the caches to remain unchanged: A transaction aborts if it is nacked
by an older transaction and it has its possible-cycle bit asserted. This bit gets set
when a transaction nacks a request from an older transaction. Because caches
no longer nack forwarded requests, the possible-cycle bit is set upon reception
of a new txnacked message: To emulate the original behaviour, the directory
sends a txnacked message to the eldest transactional accessor when an even older
requestor gets nacked on its behalf.

4.4.6 Clearing transactional meta-data

Transaction begin is implicitly communicated to each directory bank on the
first access to a line mapped to the bank, via txaccess (L1 hit) or a coherence
request (L1 miss). Each directory bank snoops these messages and updates its
transactional status register and timestamp table when it detects that a core has
entered transactional mode. Coherence request messages are guaranteed to arrive
in order, as guaranteed by an in-order processor model. Txaccess messages that
arrive out of order (e.g. that belong to the previous transaction) are detected by
observing their timestamp and properly discarded.

On the other hand, when a transaction ends –whether it is or not successfully–,
the transactional meta-data kept for it at the directory must be cleared in order
to release isolation over the lines in the read and write set. To this end, we
introduce a second protocol-independent message called txend, sent by cores
both at transaction commit or after the rollback has completed. When a txend
message from core k reaches the directory, flush-clears the k-th bit TxAccessors
of each entry in the TXDIR cache. The writer status flag of the entry is also
conditionally cleared (if the k-th bit is set). The transactional status bit and
overflow signature associated to the core are also cleared. Not all directory banks
need to be informed about the end of the transaction, but only those whose
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mapped addresses were part of the finished transaction. Thus, for every memory
reference performed during the transaction, each core records the directory bank
that the address is mapped to. This bit-vector of txaccessed directories is then used
at commit/abort time to selectively issue txend messages. The core can continue
its execution without delay, as txend messages do not need acknowledgement
because they carry the transaction’s timestamp, which is used in conjunction
with the internal timestamp table kept at the directory to handle cases in which
txend or txaccess messages arrive out of order.

4.4.7 Dealing with races

While a txaccess message traverses the network towards the directory after a cache
hit, the core must be able to detect conflicts on forwarded requests that reached
the home tile before the txaccess. Several solutions are possible to handle conflict
detection in these races. The most straightforward approach is to maintain
the typical transactional status bits in cache, which are used to detect conflicts
on such races, as well as to identify those lines whose transactional status has
been already reported to the directory –avoiding repeated txaccess messages
on subsequent hits–. For simplicity, this is the approach we use in our design,
but other solutions are possible too, since the directory already keeps accurate
information about the read and write sets, and therefore it is not necessary to
have such precise –redundant– meta-data at the cache level at all times. In this
case, replacement of transactional lines in S state cannot be silent, as conflicts
could go undetected if the L1 cache loses the transactional meta-data before the
corresponding txaccess reaches the directory. Hence, transactional S replacements
are treated much like M replacements, by sending a write-back message that
updates the TXDIR meta-data, and waiting for the acknowledgement to arrive
back to the L1 cache before finally de-allocating the line.

One way to detect conflicts at the cache level without having to add bits to
the private caches, is to use a small summary signature that encodes both read
and write sets, and then modify the conflict logic so that the signature is only
checked if there is a potential race, i.e. a txaccess message on-the-fly whose
destination is the same directory bank that forwarded this request. Thus, the
txaccessed directories bit-vector acts as a first filter to distinguish non-conflicting
from potentially conflicting requests. More accurate ways of filtering the check of
the signature require some kind of txaccess acknowledgement scheme from the
directory, which could be easily accomplished by means of serial numbers that
are piggybacked in existing messages.
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Another method consists in maintaining a separate txaddress buffer with the
most recently accessed addresses of the transaction. This scheme decouples
transactional bookkeeping from caches at the cost of increasing the amount of
network messages, as now txaccess messages need to be acknowledged before
an address can be de-allocated from the buffer. Addresses can be buffered
indefinitely in order to avoid redundant communications with the directory.
However, the buffer should be drained after a certain occupancy threshold in
order to leave room for new addresses. Performance can suffer if at some
point the buffer fills up completely, since the processor will stall on the next
memory reference that results in a cache hit until space becomes available, or
else violations of isolation would be risked.

4.4.8 Reducing meta-data propagation

Obviously, reporting every cache hit to the directory is an expensive solution
in terms of its traffic demands. However, the performance benefits of directory-
based conflict detection only apply to contended lines. Hence, it makes more
sense to propagate only those accesses to lines that have seen conflicts in the
past. We optionally introduce a conflict signature which is updated every time a
cache sends or receives a nack message for an address, and checked to determine
if a txaccess message needs to be sent. A txaccess is sent only for L1 hits to
lines whose transactional status is not yet set, whose address also belongs to
the conflict signature. Because the fraction of lines that experience contention
is usually small in comparison with the size of the transactional set, a small
signature should suffice to filter out most of the traffic that propagates meta-data
from the caches to the directory. As this optimization does not affect correctness,
the signature could be periodically cleared, although this could trade off some
performance for a reduction in traffic, when conflicts are forgotten and accesses
to contended data are not immediately reported to the directory. In our scheme,
the conflict signature is cleared from one phase of the execution to the next, i.e.
upon arrival to a barrier.

4.5 Evaluation

In this section, we evaluate the proposed scheme of directory-based conflict
detection, comparing it against several pertinent HTM design points.
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4.5.1 Experimental Setup

Table 4.1 lists all HTM configurations evaluated in this chapter. LogTM-SE [153]
acts as the eager-eager (EE) HTM system of reference, and all other HTM config-
urations are derived from it. The EE_base configuration uses perfect signatures to
perform transactional bookkeeping at the private cache level, and it implements
a hybrid resolution policy in order to avert the starving writer pathology, as
discussed in Chapter 3.

Table 4.1: HTM configurations evaluated in Chapter 4.

Configuration Description
EE_base The LogTM-SE design [153] with perfect signatures
EE_pred Idem. as EE_base, augmented with a write-set predictor [22]
BitSel_2048, H3_1024 Idem. as EE_base, with parallel Bloom signatures [116] of type and size
H3_2048, H3_4096 Types: bit-selection or high-quality hash function. Sizes: 1-4 Kbits
DirCD_Magic Idem. as EE_base, with magic conflict detection at the directory
DirCD_TxDir64 EE system with a 64-entry TXDIR for directory-based conflict detection

The EE_pred augments this baseline with a 256-bit, 256-entry write-set pre-
dictor, in order to also target the duelling upgrades pathology [22], by selectively
requesting exclusive permission for predicted loads. Our configuration is similar
to Bobba’s EEHP system, except for one detail: In our case, the block is not added
to the transaction’s write set until it is indeed written, as we observed that doing
so consistently results in worse relative performance than if only added to the
read set, for the benchmarks here considered.

We also evaluate the EE_base system using parallel Bloom signatures. All
four signature configurations considered use four hashes. One of them uses
bit-selection and 2Kbit signatures, while the other three have hardwired H3 hash
functions and signatures sizes of 1, 2 and 4 Kbits.

As for our design, we consider two systems. On the one hand, DirCD_Magic
acts as an upper bound of the performance achievable by a directory-based
conflict detection scheme. It is a modified version of the ideal EE_base (including
perfect signatures) in which the directory has instant access to any read or write
signature across the chip –without involving any message– and directly nacks
conflicting requests, while magically informing the nackers about the conflict –to
maintain deadlock detection–.

On the other hand, DirCD_TxDir64 is a detailed implementation of the scheme
described in previous section, which uses a TXDIR of finite size to perform
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transactional bookkeeping at the directory, and extends the protocol with txaccess,
txend and txnacked messages to propagate meta-data, communicate transaction
commit/abort and detect deadlocks, respectively. The specific parameters of this
configuration are shown in Table 4.2. In order to provide a fair comparison in
terms of network traffic, in the DirCD_TxDir64 system we adapted the amount
of cycles that a processor stalls after detecting a conflict –before retrying the
request–, so that both EE_base and our design have similar intervals of retry,
i.e. result in a similar number of reissued requests on a stall of the same length.
While EE_base retries after only 3 cycles, DirCD waits longer (50 cycles) before
reissuing the conflicting memory request, because it inherently detects conflicts
quicker. This implementation of DirCD extends each L1 cache entry with a
single transactional bit, used to detect conflicts on racing requests, as well as to
decide if a txaccess message needs to be sent to directory. When this tx bit is
asserted, the coherence state conservatively determines if the line belongs to the
read set (S or E states) or write set (M state). As for the ability to tolerate L2
evictions of transactional data, we model a single overflow bit-vector (one bit per
core) on each tile. Nonetheless, we have not experienced any such events in our
experiments, mainly due to the L2 cache’s fairly large size and associativity of
the CMP modelled throughout the thesis (512MB per tile, 8-way associative).

Table 4.2: Specific parameters of the DirCD system.

Directory-based Conflict Detection (DirCD)
Core Settings

Conflict-Retry interval 50 cycles
Conflict signature 256 bits

Memory Settings
L1D-cache 1 Tx bit per line

Directory Settings
TXDIR 64-entry, 8-way associative
TXDIR victim cache 8-entry, fully associative
TXDIR overflow signature 16 x 64-bit H3 parallel
L2 cache overflow 16 x 1 bit

Table 4.3: Inputs to the additional workloads used in Chapter 4.

Benchmark Input
vacation-vhigh -n2 -q1 -u1 -r128 -t4096
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Workloads. Regarding the benchmarks used in the evaluation carried out
in this Chapter, we have changed one of genome’s compile-time parameters
in order to use a larger chunk size in the first step of the algorithm. We have
increased chunk_step1 from its default value of 12 in the release of STAMP, to
36, so as to stress the bookkeeping mechanism of the evaluated HTM systems
–signatures– with transactions of a larger footprint. Yen adopts similar strategies
when evaluating signatures [152]. Furthermore, we excluded labyrinth because it
requires support for the early release construct in order to benefit from parallel
execution: Removing addresses from read sets is not possible in systems that use
real signatures, including our DirCD scheme, and thus the utility of labyrinth in
this evaluation is limited. To make up for the loss benchmark, we modified the
input parameters of vacation, as shown in Table 4.3, to create a new configuration
that exhibits very high levels of contention on transactions of a fairly large
footprint. While intruder also shows highly-contended transactions, they are
of a rather small size. Very high contention levels in vacation are achieved by
reducing the initial size of the database as well as the percentages of queried
relations and user (read-only) transactions. With the inclusion of vacation-vhigh,
we intend to observe how our scheme handles this type of scenario in comparison
to the baseline system.

4.5.2 Performance Analysis

4.5.2.1 Idealized Systems

Figure 4.7 shows the potential performance gains of a directory-based scheme
to conflict detection (DirCD), relative to the cache-based approach traditionally
used by EE systems. In comparison to EE_base, it shows how the "magic" DirCD
system greatly reduces the execution time of highly-contended applications such
as intruder and vacation-vhigh, in percentages that vary from 22% in vacation-
vhigh to roughly 50% in intruder+. This confirms that the directory indeed
creates a bottleneck in the conflict management mechanism in situations of high
contention affecting a few cache lines. DirCD_Magic anticipates the performance
gains that can be expected if detection is decoupled from coherence, i.e. if it can
be carried out without the need of request forwarding –thus without transitioning
to the line to a busy state–.

Figure 4.8 presents a breakdown of transactional cycles for the EE_base
system, compared to the realistic implementation of DirCD analyzed in the next
subsection. The total transactional time corresponds the sum of tx-useful and
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Figure 4.7: Relative performance of "magic" directory-based vs. ideal cache-based
conflict detection.

tx-aborted components of Figure 4.7. The figure divides transactional cycles
into tx-hit (non-memory or L1 hits) and cycles waiting for a memory request
to complete –excluding retried requests, which are accounted as stall time in
Figure 4.7–. Memory access time is in turn further broken into the time the
request was queued at the directory due to busy states (tx-busy-dir), and actual
miss time (tx-load-miss or tx-store-miss), which reflects the compulsory time taken
by coherence messages to travel across the interconnect, L2 cache access time,
etc. The figure demonstrates how the reductions achieved by our proposal in
the tx-useful and tx-aborted components of intruder and vacation-vhigh are due
to the removal of the bottleneck formed at the directory in the baseline system,
which limits its ability of resolving conflicts during contention.

intruder. Both DirCD and EE_Base systems suffer the aforementioned pathol-
ogy of duelling upgrades that leads to many aborts, shown in Table 4.4. The
improvement of DirCD with respect to the EE_Base is not so much due to the
reduction in the number of aborts –aborts of transaction with TID0 go down by
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Figure 4.8: Transactional cycle breakdown in baseline vs. directory-based
schemes.

Table 4.4: Number of aborted transactions for the three systems in Figure 4.7.

Total Aborts TID0 Aborts
DirCD EE_Base EE_Pred DirCD EE_Base EE_Pred

genome+ 1880 1841 31059 1146 1186 30535
genome 1267 1265 14714 759 784 14383
intruder+ 103431 133610 121074 71520 109076 150
intruder 22076 29668 20805 6057 14859 249
kmeans-high 679 598 8 473 426 2
kmeans-low 239 215 5 86 79 0
ssca2+ 258 190 64 14 13 13
ssca2 330 280 112 47 51 51
vacation-high 159 122 204 150 116 180
vacation-low 22 23 35 22 23 35
vacation-vhigh 8207 8132 7850 193 198 189
yada+ 6643 6520 16526 2066 2016 398
yada 3261 3312 8362 893 890 222

40 to 60%, as we can see in Table 4.4– as it is due to the higher throughput of
detected conflicts achieved by DirCD. TID0 corresponds to a queue pop operation
that first reads and then writes a highly-contended line. The detection at the
directory allows the highest priority writer to proceed quickly –since its write
request is processed immediately when it arrives at the directory, as it demon-
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strated Figure 4.8– causing the abort of the lower priority readers (upgraders).
The fact that lower priority conflicting transactions are aborted much faster in
DirCD is reflected in the radical decrease of the tx-aborted component seen in
Figure 4.7 when compared to EE_Base; the total number of aborts also decreases
and accounts for the shrinkage of the backoff component too. In comparison to
EE_Pred, the write-set predictor successfully averts the duelling upgrades and
almost completely removes all TID0 aborts by directly requesting the line for
exclusive access, as shown in Table 4.4. TID0 transactions serialize one after
another without incurring in the huge number of aborts seen in the other two
systems. However, the predictor does not represent a generalizable solution. For
the small input of this benchmark, we see how the total number of aborts is
decreased by around 1K, in spite of a reduction in TID0 aborts of almost 6K;
for the medium input, despite removing 110K TID0 aborts, the total number
of aborts goes up by 18K. This indicates that the write set predictor penalizes
transactional execution of other transactions of the program, mainly due to the
combination with a hybrid resolution policy: more write requests means more
(often unnecessary) aborts of concurrent reader transactions.

vacation-vhigh. This benchmark corroborates our observation that the per-
formance improvements seen in DirCD do not stem exclusively from a reduction
in the number of aborts, but rather from a reduction in the amount of cycles that
transactions waste while waiting for a conflicting request to be processed at the
directory, as shown in Figure 4.8. In both traditional EE systems, the directory
spends most of its time in a busy state while messages are forwarded to the
possible transactional owners of the line, which are responsible for the conflict
check. In DirCD, the directory spends much less time in busy states and thus
can attend and respond to messages immediately, which in turn is translated in
faster resolution of the conflict.

Other benchmarks. DirCD and EE_Base perform comparably for applications
whose transactions are either long running or not heavily contended. In these
cases, there is no performance advantage in detecting the conflict sooner, since the
resolution consists in stalling the requester the majority of the times. In regards to
EE_Pred, we observe that the effect of mispredicted upgrades becomes very acute
for benchmarks with large transaction footprints like yada and genome, which
experience severe performance drops that vary from around 2X slowdowns in
the case of yada, up to 5-6 times slower in the case of genome. We can see in
Table 4.4 how TID0 is the transaction responsible for the pathological behaviour
of the write-set predictor in genome, which is precisely the transaction with the
largest read and write sets.
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4.5.2.2 Realistic Systems
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Figure 4.9: Relative performance of realistic directory-based vs. cache-based
conflict detection.

Figure 4.9 shows the relative performance of our detailed implementation of
DirCD that uses a transactional directory, compared to an EE system that uses
Bloom signatures whose total size is comparable to the overhead of the structures
introduced by our scheme. Figure 4.10 presents performance numbers for four
EE systems that use real Bloom filters to track transactional read and write sets.
The results shown in both figures are normalized with respect to the EE_Base
configuration. We can see in Figure 4.9 how DirCD excels for applications with
high contention like intruder and vacation-vhigh, for the reasons discussed earlier.
Furthermore, DirCD closely tracks the performance of the EE system with perfect
signatures for workloads with large transactions like genome and yada. This
reveals that the number of false conflicts that arise in DirCD is very low, in spite
of its finite capacity to precisely track transactional meta-data. This is partly due
to its ability to identify and ignore some false positives signalled by the TXDIR
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overflow signatures, simply by performing a logical AND between the result of
the signature check and the corresponding bit in sharers.

DirCD consistently performs equally or better than the H3_2048 configuration,
which uses a total of 4Kbits to hash-encode both transactional sets (2048 bits each
signature). As it can be derived from Table 4.2, our detailed DirCD implementa-
tion spends a bit less than 5Kbits: 3Kbits (including tags and "data") in the TXDIR
and associated victim cache, an extra 1Kbit for the 16 overflow signatures of 64
bits, the 256-bit conflict signature and an additional 512 bits for the transactional
flag kept per L1 cache entry (although these bits are only maintained for dealing
with races as well as reducing redundant meta-data propagation). We choose
to compare DirCD against the H3 scheme of encoding, as it is more efficient
than bit-selection for same-sized signatures [116], as demonstrated by Figure 4.10.
For a similar meta-data storage capacity of less than 5Kbits per tile, our scheme
keeps the number of false positives to a minimum, demonstrating that storing
transactional accessors on a per-address basis at the shared cache level is a more
efficient encoding of transactional sets than tracking addresses on a per-core basis
using signatures. Using parallel H3 filters, it is necessary to increase their joint
size to 8Kbits in order to avoid most false positives that arise in benchmarks with
large-sized transactions like genome or yada, though it would still be of no help
for highly contended benchmarks like intruder or vacation-vhigh. Considering
that TM does not discourage programmers from using coarse grain transactions,
the efficient encoding of transactional addresses is an important point in HTM
design that is met by our proposed bookkeeping scheme.

4.5.3 Traffic Considerations

Figure 4.11 plots the network traffic results for the baseline EE system and our
detailed DirCD model. It shows both network message counts generated by each
system –broken down according to message type–, as well as the flit count. Both
measures are normalized to the data obtained for EE_base. As we can observe in
the average plots, DirCD generates between 25 and 35% less traffic (flits) than the
baseline system. The first relevant difference shown by the breakdown is how
DirCD completely eliminates filter check messages broadcast on every L2 miss,
as discussed in the motivation section. On average, filter checks approximately
account for 15% of all network messages generated, although they reach over
30% for workloads with large working sets like both original configurations of
vacation. The number of acknowledgement messages is also severely reduced
in DirCD, since each filter check is responded with an ack. Another difference
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Figure 4.10: Effect of false positives on performance for various signature schemes
and sizes.

is the removal of virtually all unblock-cancel messages, as the vast majority of
the conflicts are detected at the directory, which does not forward requests that
are known to be conflicting and thus does not enter a busy state. Formidable
reductions in the amount of invalidation messages achieved by DirCD indicate
that write-read conflicts are solved with a single nack message, avoiding both the
invs and the corresponding ack/nack responses, as described in Figure 4.3. For
contended workloads with long-running transactions like genome and yada, both
invs as well as requests forwarded to exclusive owners are significantly reduced,
which gives an idea of how DirCD allows the simple stall-and-retry resolution
policy of the baseline system, at a much lower cost in terms of the network traffic
generated by retries. The number of requests, data, unblock and nack messages
stays more or less constant across all benchmarks, for both systems.

DirCD achieves the above reductions in the network traffic associated to
conflict detection at the cost of introducing new messages that do not exist in the
baseline system. Their main purpose is to propagate (via txaccess messages) or
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Figure 4.11: Network message breakdown and network flits.

clear (via txend messages) the meta-data kept at the directory. The number of txend
and txaccess messages depends on the total number of transactions attempted
(both committed and aborted) as well as the transaction footprint –which is in
turn proportional to the number of different L2 banks accessed–. Therefore, they
grow proportionally to the level of contention, and much faster if contention
affects transactions of larger footprints. This explains why it is responsible for
around 20% of all messages in intruder (small transactions), while it can reach
almost 30% for vacation-vhigh (larger data set). For workloads with few large
transactions with moderate levels of contention like yada, the number of txend
and txaccess messages is almost negligible. In all other benchmarks, they account
for less than 5% of all messages, mainly due to the filtering effect of the conflict
signature used at the private cache level to avoid sending txaccess messages for
lines that have not seen conflicts recently. The role of conflict signature explains
the low number of txaccess messages in low contended benchmarks like vacation-
low and vacation-high, in spite of their large transaction size. For the same
reason, both ssca2 inputs should show much larger counts of txend as a result
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of the huge number of non-contended transactions executed, but the conflict
signature avoids them by filtering out most or all txaccess messages that would
have been sent to the directory otherwise.

In summary, despite the newly added messages, the significant reductions
in other types of messages associated to conflict detection still tips the scale in
favour of DirCD across all evaluated workloads, confirming that the extra cost of
detecting conflicts at the directory does not only pay off in terms of performance,
but it is also more efficient on its use of the interconnect.

4.6 Concluding Remarks

In this chapter, we have presented a new approach to conflict detection targeted
to eager TM systems which make use of a distributed directory to maintain
coherence over a point-to-point network, as it is the case of a tiled CMP ar-
chitecture. We have demonstrated that in traditional approaches, the directory
becomes a bottleneck in situations of high contention by limiting the throughput
of the conflict management mechanism. To this end, we have proposed a design
that decouples conflict detection from cache coherence in order to overcome
pathological situations that degrade the performance of an eager HTM system,
enabling quicker reaction to high-contention scenarios. Our experimental evalua-
tion has shown that our technique deals with contention more efficiently, leading
not only to fewer aborted transactions, but most importantly to a lower overall
latency of contended memory accesses within transactions. Our experiments
have shown average reductions in execution time of 6 to 10% with respect to a
LogTM-SE system with ideal signatures, while simultaneously decreasing its use
of the network by 30% on average. In particular, by alleviating the bottleneck
created at the directory, we have observed performance gains of up to 45% for
those workloads that suffer very high contention over a small number of lines.
We have also compared our work to systems that use signatures of equivalent
hardware cost at the cache level, and found that our scheme reduces the per-
formance degradation caused by false positives as it virtually removes all false
conflicts. Our novel bookkeeping scheme leverages the inherent characteristics of
the directory to globally encode all transactional sets by associating addresses to
transactional accessors, instead of redundantly tracking addresses in each core.
This allows for a more efficient global encoding, and enables the elimination of
some false transactional accessors –due to signature aliasing– by leveraging the
directory information itself. In summary, we claim that augmenting the role of
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the directory to include the conflict detection functionality is a natural evolution
in its responsibilities within a cache coherent HTM system.
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Chapter 5
ZEBRA: A Data-Centric,

Hybrid-Policy HTM System

5.1 Introduction

Fast implementations of transactional programming constructs that provide opti-
mistic concurrency control with stringent guarantees of atomicity and isolation
are necessary for TM to gain widespread usage. Software TM implementations
impose too high an overhead and do not fare well against traditional lock based
approaches when performance is important. Hardware TM (HTM) systems show
much greater promise. Yet, within the design space of HTM systems, there are
tradeoffs to be made among various pertinent metrics like design complexity,
speed and scalability. Early work on HTM proposals [56, 153] fixed critical TM
policies like versioning (how speculative updates in transactions are dealt with)
and conflict resolution (how and when races between concurrent transactions are
resolved). These designs choose a point in the HTM design space and analyze
utilization of available concurrency in multithreaded applications within that
framework.

Results in research so far do not show a clear winner or an optimal design
point. Lazy HTMs, which confine speculative updates locally and run past
data races until a transaction ends, do seem to be more efficient at extracting
concurrency [122] but require elaborate schemes [29, 102, 143] to make race free
publication of speculative updates (i.e. transaction commit) scalable. Eager
HTMs, which version data in place and resolve conflicts as they occur, make
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such publication rather trivial at the expense of complicating behavior when
speculative execution needs to be undone to resolve data races (i.e. transaction
abort). Eager HTMs fit very naturally into existing scalable cache coherent
architectures and can tolerate spills of speculative data into the shared memory
hierarchy, unlike their lazy counterparts. When comparing the performance of
the two such designs, a clear winner cannot be established. With workloads that
demand high commit throughput, eager systems perform substantially better,
while with high contention workloads lazy designs come out on top.

This reasoning suggests that a new HTM design that selects the best perform-
ing policy (eager or lazy) depending on workload characteristics would be close
to the most suitable HTM design for the scalable architectures under consider-
ation. A key factor would then be the complexity involved in realizing such a
design in hardware. Some solutions have been proposed that attempt to provide
a hybrid-policy HTM design. UTCP [81] is a cache coherence protocol that allows
transactions in a multithreaded application run either eagerly or lazily based on
some heuristics like prior behavior of transactions. Although it lays down an
interesting approach, We feel that the protocol is a significant departure from
existing cache coherence designs and the additional complexity involved for just
supporting TM represents too high a design cost. FlexTM [122] allows flexibility
in policy but it does so by implementing critical policy managers in software. It
provides a significant improvement in speed over software TM implementations
by proposing the use of alert-on-update hardware, but the considerable cost of
software intervention renders a comparison with pure HTMs moot. LV* [96], a
proposal that utilizes snoopy coherence, allows programmer control over policy
in hardware but with the constraint that all transactions in an application must
use the same policy at any given time. A scalable alternative has not yet been
proposed. The requirement of programmer-assisted policy change is a drawback
too since the same phase of an application can exhibit different behavior with
varying datasets.

In this chapter we propose a solution that is simple and yet powerful and
flexible. We recognize the fact that assuming all data accessed in a transaction
possesses the same characteristics can lead to sub-optimal solutions. Based on
our study of conventional HTM design points we infer that only a relatively
small fraction of data accessed inside transactions is actively contended. The
rest is either thread-private (stack or thread-local memory) or not actively con-
tended. Treating these two categories of data the same inside transactions leads
to inefficiencies –a prolonged publication phase at commit when using a lazy
design or increased contention leading to expensive aborts when using an eager
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approach–. Our work attempts to break this restriction by choosing a granularity
for data at which minimal changes are required in existing scalable architectures
–that of the cache line–. Efficient scalable cache coherence implementations exist
and have been extensively studied for a long time. Our design leverages these
by annotating cache lines as being either contended or not. Contended lines are
managed lazily thereby permitting greatest concurrency among transactions. It
should be noted that eager systems disallow reader-writer concurrency while in
lazy systems it can occur quite naturally if the reader commits before the writer.
All non-contended lines are versioned eagerly and thus, on transaction commit,
only contended lines need to be published. When contention is discovered (e.g.
when aborting or stalling) the offending cache line(s) is (are) marked as con-
tended. Over the course of execution of a workload, versioning of lines that are
contended transitions from eager to lazy. In the steady state we can expect only
the contended subset of the working dataset to be managed lazily. As we shall
show in the analysis presented here, substantial gains over existing fixed policy
HTM designs can be seen. The incremental cost of implementing this approach
is minimal since only very modest behavioral changes are required in the cache
coherence protocol. We call this hybrid-policy HTM protocol ZEBRA1.

Figure 5.1 depicts an interleaving of three concurrent transactions and high-
lights some important behavioural aspects of our proposal. In the eager case
(Figure 5.1-a), we see that although transactions T1 and T3 are independent, T3
is stalled because of a chain of dependencies created via transaction T2. This
does not occur in the hybrid-policy ZEBRA design (Figure 5.1-b) or the purely
lazy case (Figure 5.1-c) and in the example shown all three transactions commit
without conflicts. It should be noted here that in ZEBRA writes to A and B by
T2 and T3 are managed lazily, since the lines were annotated as contended at an
earlier stage of the execution. On the other hand, in the lazy case T2’s commit is
delayed because T1, having a relatively large write-set, has locked resources that
T2 needs to publish its updates. This in turn delays T3’s commit. With ZEBRA
T1 is able to perform an instant commit since none of the lines in its write-set are
contended and, hence, are managed eagerly, allowing T2 and T3 to proceed with
their commit operations without any delay on account of T1.

There are certain other benefits that stem from using such an approach.
Deadlock avoidance mechanisms are not required since contended lines are
eventually managed lazily, thereby guaranteeing forward progress. Significant

1An African folktale speaks of how the white zebra fell into a fire and burning sticks scorched
black stripes on its flawless coat. Here, transactions manage data purely eagerly (white) to begin
with but acquire lazy lines (black stripes) when they conflict (fall into a fire)
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Figure 5.1: Behavioral differences between different HTM design points.

reductions in transaction commit delays result in a major contraction of the
window of contention for concurrent transactions. The burden on lazy versioning
mechanisms is considerably reduced enabling much larger transactions to run
without resorting to safety nets (like serialization via a single global lock). This
effect combines synergistically with a coherence-decoupled lazy version buffer –
write-write conflicts, downgrade and abort misses (defined later) can be largely
eliminated, amplifying gains achieved from the central idea. Since the design
does not lock policy it can adapt to changing workload conditions and is resistant
to pathologies that fixed policy HTMs suffer from. Therefore, this proposal
touches upon a sweet spot in the HTM design space that offers both simplicity of
design and robust performance.

5.2 Background

Most HTM systems proposed to date implement fixed policies for version and
conflict management mechanisms. Fixed-policy HTM systems are faced with
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challenges that limit the concurrency of transactional workloads. Eager HTM
systems like LogTM [92] perform poorly when the frequency of conflicts is high,
yet they introduce minimal synchronization overheads when contention is low.
By hiding speculative updates from the rest of the system during transactional
execution, lazy HTMs [56] are more efficient at extracting concurrency in high
contention, but this in turn places significant pressure on the commit phase,
whose performance then becomes critical to the scalability of the system. Paral-
lelism at commit is important when running applications with low contention but
a large number of transactions: Transactions that do not conflict should ideally
be able to commit simultaneously. The very nature of lazy conflict resolution pro-
tocols makes it difficult since only actions taken at commit time permit discovery
of data races among transactions. Simple lazy schemes like ones employing a
global commit token do not permit such parallelism. Hence most lazy protocols
employ more complex approaches like finer-grained locks on shared memory [29],
optimizing certain safe interleavings [102] and early discovery of conflicts [143].
Eager schemes [92] do not suffer from this problem and allow truly parallel
commits thanks to their in-place updates and early detection of conflicts. Thus,
complicated protocol extensions to support higher commit parallelism are not
critical to improve common case performance for such workloads.

Sanyal et al. [117] proposed filtering of thread-private data with support from
the cores and the operating system. While this reduces pressure on versioning
mechanisms in HTMs, it does not separate contended data from non-contended
data. This separation is not as distinct as that between thread-private and shared
data and can only be known by runtime adaptability, as we propose in this work,
or by fine-grained profiling of application behaviour and access patterns. The
latter is not always feasible because of large variations due to different datasets
and thread interleavings.

Mixed-policy HTM designs like DynTM (UTCP) [81] and LV* [96] have been
introduced earlier. DynTM deserves further discussion since it chooses a different
dimension and granularity of data when compared to our work. It works at
the granularity of a transaction and then develops a cache coherence protocol
around it that supports multiple ways to version the same shared memory block.
This choice of granularity does not match that of the underlying coherence
infrastructure which works at the granularity of cache lines. The result is thus
increased complexity of design, which will be a significant criterion in any
decision to incorporate TM in silicon.

Both ZEBRA and DynTM are adaptive HTM designs. DynTM adapts based
on a history of past transactions, trying to figure out the best policy for each
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transaction. This is an inherently slow process. Switching entire transactions
from eager to lazy is cumbersome as well. ZEBRA, on the other hand, adapts
seamlessly. If a transactional reader exists for an eager line when a conflicting
write is issued, policy switch to lazy occurs without need for either stall or abort.
A stall can occur only if an eager writer exists and lasts until the writer commits
or aborts. Moreover, unlike DynTM, after a policy switch the behavior of a trans-
action does not change drastically. As ZEBRA discovers contention for shared
data a gradual shift in behavior occurs permitting fine-grained adaptability.

Work by Shriraman et al. (the FlexTM design [122]) allows flexibility in policy
by implementing managers in software, using simple hardware mechanisms
(like alert-on-update) to detect conflicting scenarios. The commit mechanism
relies on compare-and-swap hardware primitives and does not provide strict
forward progress guarantees. Although pathological scenarios might be rather
rare, they pose significant verification challenges to confirm that this is indeed
the case. While the use of hardware techniques to provide TM support speeds
up the FlexTM design making it substantially faster than software TM systems,
the need for frequent invocation of software handlers is indicative of a significant
performance shortfall when compared to HTM systems.

5.3 Design and Operation

5.3.1 Conceptual Overview

The ZEBRA system is built on top of the baseline tiled CMP architecture described
in Chapter 3. Figure 5.2 shows the salient features of the architectural framework.
Each tile comprises a processing core, a slice of a shared inclusive L2 cache and
corresponding directory entries. The tiles are interconnected by a mesh-based
routing network. Each processing core has private Level 1 instruction and data
caches. The directory keeps private caches coherent using a MESI protocol. In
this case, two single-bit speculative access annotations are maintained at the
private caches for each cache line - SR (for speculatively read lines) and SM
(for speculatively modified lines). Such annotations have been used by several
prior HTM proposals [56, 92] to track transactional reads and writes. Read set
signatures [27] are employed to permit speculatively read lines to be evicted from
private caches. Like other lazy HTM designs that leverage private caches for lazy
versioning, our design is capable of performing gang-invalidation of those lines
whose SM bit is set.
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In order to track contention in the ZEBRA HTM design, we extend per-cache
line metadata at the directory and at the private caches with just one additional
bit – "contended bit" – hereafter referred to as the C-bit. The C-bit is transported
with all coherence requests and data responses. A C-bit value of "1" indicates
that the line has experienced contention in the past. The bit is reset if a line is
flushed from the on-chip cache hierarchy or when a non-transactional update is
seen by the directory.

Figure 5.2: ZEBRA – Salient architectural features.

The number of contended lines accessed by a transaction is usually quite small
in the workloads we have experimented with. As will be shown in Chapter 7,
keeping such writes away from the cache improves performance by reducing the
number of contamination misses [149] – misses due to invalidation of speculatively
updated lines on aborts – and redundant permission downgrades from exclusive
or dirty state to shared state (which we term downgrade misses) that allow detection
of conflicts. Moreover, this also mitigates the effect of false writer-writer conflicts.
Therefore, we deemed it prudent to introduce a Lazy Write Buffer (LWB) to contain
speculative updates to contended lines. This buffer is sized to be large enough
to accommodate the contended fraction of the write set of a transaction in the
common case. We have found that a 32-word buffer is sufficient to handle most
commonly occurring cases. This buffer is drained when committing a transaction
and discarded when aborting. Writes buffered in this structure do not participate
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in coherence until the transaction starts commit. Occasional situations when the
buffer is completely filled up are handled by buffering subsequent contended-line
updates in the cache. Prior to such a cache line update, non-exclusive (shared)
access is acquired to the line (line-fill if not present; or downgrade to shared
with write-back if dirty) in order to preserve its old value. Figure 5.3 shows
how writes from the processor are dealt with by the private cache controller. To
minimize the possibility of spilling lazy speculative state from the L1 cache we
prioritize retention of such lines in the private cache and add a small (8 cache
lines) Lazy Victim Buffer (LVB) to contain rare spills due to limited associativity.
This approach works well for the workloads considered here. In the rare case of
spills of contended lines, we enforce serialization.

Updates to lines that are either non-contended or have unknown C-bit status
bypass this buffer (see Figure 5.3) . This can cause coherence requests to be issued
to the directory if L1 line-fill or write permissions are required. If the result of a
coherence operation indicates that the line is contended, the write is buffered in
the LWB. In either case, the line is allocated in the cache (if not already present)
and its C-bit state is updated. If the C-bit is not set, the update happens in
place and the old contents of the line are recorded in an Old Value Buffer (OVB)
or written to a thread-private log in virtual memory in case OVB capacity is
exceeded. This aspect of eager behavior is similar to that of LogTM [153].

A transaction with no updates to contended lines can commit without delay,
permitting true commit parallelism in such a case. If there are some lazy updates,
they must be validated and made globally visible. We adopt the simplest possible
approach to do so by having the committer acquire a global commit token.
Our results show that in workloads where lazy conflict resolution yields best
results we compete very well against or better the performance of the more
sophisticated scalable commit approach adopted by STCC [29]. While a more
scalable lazy commit scheme would further enhance our proposal, the design
choice is orthogonal to the key ideas described in this work. All writes in the
LWB are made globally visible at commit. All lines in the shared (S) state in cache
with SM indicator set are upgraded to modified (M) state after the directory
grants exclusive permissions to the line.

All coherence messages generated in response to speculative accesses by
the core are distinguished from ordinary ones by setting a special flag in such
messages. An abort occurs when any non-speculative coherence message hits a
line speculatively accessed by a transaction. It should be noted that invalidations
that result when lazily managed lines are committed are non-transactional. For
eagerly managed lines a requester-retry policy similar to the one adopted by
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Figure 5.3: Write handling at the private cache.

LogTM [153] is used. If a cyclic dependency on eager lines is detected (refer
usage of possible cycle flag in [92]) at one or more transactions in the dependency
chain, they abort to break the deadlock. No software intervention is required.
A unique aspect of our design is that offending cache lines will henceforth be
treated lazily during re-execution and, thus, will no longer have the potential to
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cause deadlock. This effect renders LogTM’s usage of TLR-like timestamps [106]
unnecessary for guaranteeing forward progress.

C-bits at the directory are set when unblock messages sent by cores to indicate
completion of in-flight coherence operations indicate contention. Contention may
be reported if a requester discovers a conflict with another transaction or when a
committer publishes its contended lines. The directory reports this status in all
subsequent coherence messages. The C-bit is cleared when a non-transactional
update to the line is completed allowing memory to be recycled without the old
C-bit value affecting behavior in the new usage context. In most applications it is
highly unusual to find non-transactional updates to a cache line interleaved with
transactional accesses. The C-bit is also cleared if a line must be evicted from the
directory.

5.3.2 Protocol behavior

Standard directory-based MESI cache coherence is employed for detecting and
managing conflicts. Coherence messages now contain two new flags - transac-
tional status and contended status. An additional flag, commit status is added to
UNBLOCK requests indicating whether they correspond to commit-time updates.
Figure 5.4 depicts key protocol actions that occur when contended lines are
accessed. All cache lines are managed eagerly by default.

Figure 5.4-b shows steps taken when a switch to lazy management occurs
on encountering contention on a cache line for the first time. The transaction
interleaving considered here is the one between transactions T1 and T2 shown
in Figure 5.4-a. Core 1 (running T2) initiates a write to line A (address 0x204,
step 1). The store misses in the private cache structures (step 2) and results in a
TGETX (GETX with transactional flag set) request to the directory (step 3). This
coherence request results in a TINV (transactional invalidation) being sent to
the reader, Core 0, and data being sent from the L2 to Core 1 (step 4). Core 0,
running transaction T1, on receiving TINV checks if it is currently managing
the line eagerly. It finds that it has only read the line transactionally (SR is set)
(step 5). Hence it is in a position to forward data to Core 1 for lazy management
(otherwise the requester would be stalled till T1 commits or aborts). It marks
the line as contended in its private cache (step 6) causing any future write from
Core 0 to be managed lazily. A acknowledgment with contended status is sent to
Core 1 (step 7). Core 1 on receiving such a response places the line in shared
state in its cache and sets the local C bit. The write, instead of updating the cache
line, is now buffered in the LWB (step 8). It then indicates completion of the
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Figure 5.4: ZEBRA – Key protocol actions.
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coherence operation by sending an UNBLOCK message with contended status to
the directory (step 9). On finding a contended status in the UNBLOCK message
the corresponding C-bit is set at the directory (step 10). The line will now be
managed lazily by all accessors until a non-transactional access causes a C-bit
reset.

Figure 5.4-c shows protocol actions that occur when lazily managed lines
are published upon commit. The details correspond to interactions between
transactions T2 and T3 in Figure 5.4-a. Core 2 (running T3) initiates a write to line
B (address 0x408, step 1). The line is found in cache with C-bit set. Hence, the
write is buffered in the LWB (step 2). When T3 commits (step 3), it first acquires
a global commit token. It then drains the LWB (step 4) acquiring exclusive
ownership over line B by sending a non-transactional UPGRADE request to the
directory (step 5).The directory responds by sending a INV (non-transactional
invalidation) set to Core 1 (step 6). T2 on Core 1 aborts when a non-transactional
invalidation conflicts with a speculatively accessed line (SR is set, step 7). Since T2
had the lone lazy write to A in its write set, no old value restoration is required.
LWB is reset and re-execution of T2 can start immediately or when deemed
right by a back-off algorithm. It should also be noticed that line C, also part
of T3’s write set, does not need to be published since it was managed eagerly.
Core 1 completes its upgrade operation by sending an UNBLOCK message to
the directory. This message has the commit flag set, causing the directory to
maintain a value of 1 for the C-bit. Ordinary requests for exclusive ownership
generated from non-transactional code result in UNBLOCK messages without
the commit-flag set and cause the directory to reset the bit.

Cache controllers at both L1 and the L2-directory now support a few new
transitions summarized in Figure 5.5. New transitions are represented by black
dotted lines in the figure, while transitions that already exist in the baseline MESI
protocol are shown in light grey. For clarity, only states and baseline transitions
that aid in illustrating the changes are shown. At the directory level, the behavior
of TGETX/TUPGRADE requests is similar to that of their non-transactional
counterparts, but the transactional variants can eventually result in the reception
of contended UNBLOCK messages that cause a transition to shared state (SS). For
example, a TGETX from Core 3 could cause a directory transition from SS@{1,2}
(shared by Cores 1 and 2) to SS@{1,2,3} if contention is detected. This permits lazy
versioning of contended data at the new requester while still allowing conflict
detection to happen. Similarly, the transition from MT@{2} (exclusive/dirty at
Core 2) to SS@{1,2} is supported when handling TGETX requests. Such a situation
might arise if Core 2 forwards a contended line to Core 1, behaving as if the
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Figure 5.5: Support for new transitions at L1 (left) and L2-directory (right)
controllers.

request had been a GETS (the line is also written back to L2). At the L1, we
support transitions to shared state on local write misses and upon receiving
TGETX or TINV requests from the directory. This allows coherence mechanisms
to be used to detect conflicts on such data after this event has occurred.

The examples above highlight key behavioral aspects of the ZEBRA protocol.
Other cases are handled in a similar fashion. If a transaction is managing a
line eagerly, it is given a chance to reach commit by permitting it to stall other
requesters. When such events occurred the C-bit for the line is set. This causes
the line to be managed lazily once the transaction commits or aborts. The risk of
deadlocks is avoided by using a LogTM-like possible-cycle bit, but in a different way.
The bit is set if the transaction has stalled a requester attempting to access eagerly
managed data. When a transaction is stalled by another, it checks if possible-cycle
flag is set. An abort is triggered if so. The eagerly managed line will henceforth
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be managed lazily and will no longer be able to cause deadlocks. Transaction
timestamps, employed by LogTM for conservative deadlock avoidance, are no
longer transported in coherence messages. However, care must be taken when
contended lines are evicted from the L2.

Coherence requests issued by non-transactional codes result in an abort if
they hit a transactionally accessed line. The flexibility to ask the requester to retry
such requests can be incorporated by transporting the commit status flag with
invalidation messages. This flag would be set for non-transactional invalidations
sent out when the lazy portion of a transaction’s write-set is being committed.
The receiver, if transactional, would then know that it cannot ask for a retry and
must abort if such an invalidation hits a speculatively accessed line.

5.3.3 Resetting C bits

The ZEBRA design also incorporates a mechanism to revert lazy lines back
to eager. This is useful for applications which show instances where a high
contention phase precedes a low contention phase, while operating on the same
data. If a lazy line is found to be present in L1 at commit with the requisite
permissions consistently, it is reasonable to assume that it is no longer actively
contended. The ZEBRA design tracks a limited number of such lazy lines,
recording their recent commit histories in a fully associative 16-entry structure
called STET (Switch-To-Eager Table). Each entry in the table consists of a cache-
line address, a 4-bit counter and replacement policy metadata. Entries are made
to STET when write-hits are encountered for lazy writes at commit time. Every
subsequent commit-time write hit increments an associated counter. When the
counter reaches a threshold value, the C-bit is reset both locally and at the
directory. In case STET becomes full replacements occur based on a least recently
committed strategy (which is implemented using an age-bits based pseudo-LRU
scheme). Entries are also removed when conflicts are detected on those lines.
Algorithm 2 summarizes key actions taken by the prediction logic.

5.4 Evaluation

5.4.1 Experimental Setup

Table 5.2 lists all HTM configurations evaluated in this work. GEMS simulation
infrastructure provides support for LogTM-SE [153] as the eager-eager (EE)
HTM system of reference, as well as an implementation of a global commit
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Algorithm 2 C-bit Reset Prediction Logic
if LazyWriteHit@Commit(A) then

if PresentInSTET(A) then
STET(A)← STET(A) + 1

else
InsertSTET(A)
STET(A)← 1

end if
if STET(A) > STETTHold then

ResetCbit(A)
RemoveSTET(A)

end if
else

if PresentInSTET(A) then
STET(A)← 0

end if
else

if Con f lict(A)andPresentInSTET(A) then
RemoveSTET(A)

end if
end if

token-based, lazy-lazy (LL) HTM system described by Bobba et al. [22]. We
extended this infrastructure with detailed implementations of STCC [29] and
ZEBRA, our hybrid-policy HTM protocol, allowing fair comparison of several
major HTM design points within the same architectural framework. While the
original implementation of the global commit token (LL-GCT) system models
a private, per processor infinite write buffer, we extended the simulator to
precisely model finite buffering for transactional writes. Furthermore, we have
also modelled an LL design with an idealized commit scheme (LL-ideal), in
which the commit arbiter magically detects conflicts against currently committing
transactions, allowing non-conflicting transactions to commit in a truly parallel
fashion. For the implementation of ZEBRA, special status bits are added to
coherence messages as described earlier, and the behavior of cache and directory
controllers is suitably modified. For all simulations we use an ideal bookkeeping
scheme to track read sets (perfect signatures) even when some speculatively read
lines have been evicted, in an attempt to isolate our study from the effects of false
conflicts arising from non-ideal signature schemes like bloom filters.

We simulate both small and medium datasets for workloads that exhibit
differences in transactional behavior across various design points. This not
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Table 5.1: Specific parameters of the ZEBRA system.

ZEBRA System
Memory Settings

Lazy Write Buffer Non-coherent, private, 128 bytes
Old Value Buffer 8 cache lines
Lazy Victim Buffer 8 cache lines

Table 5.2: HTM configurations evaluated in Chapter 5.

Configuration Description
EE The LogTM-SE design [153]
LL-GCT Global commit token design with finite buffering [22]
LL-ideal Lazy with idealized truly parallel commits
LL-STCC The Scalable TCC design [29]
ZEBRA The ZEBRA design

Figure 5.6: Relative sizes of conflict sets for STAMP applications.

only yields more credible statistics but also allows the hybrid design to achieve
steady-state performance.

5.4.2 Workload Characteristics

Conflict set sizes. To measure the proportion of contended data in a typical
transaction’s write set we define the conflict set of a transaction as the set of
lines that were written and managed lazily over the duration of execution of a
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transaction. Figure 5.6 shows the cardinality of the conflict set as a percentage of
the corresponding write set size averaged over an entire run. We see that even
in applications with moderate to high contention, like yada and intruder, the
conflict set is far smaller than the write set. Workloads like ssca2, that have both
high concurrency and a high commit rate, experience contention on less than 1%
of the write-set. Moreover, for longer running workloads (small to medium in
Figure 5.6), the ratio of the two set sizes drops even further. A common case size
of less than 20% of the write-set bears out our choice to the separately manage
the large non-contended fraction of the write set.

Figure 5.7: Proportion of C-bit lines over time.

Contention Characteristics. Figure 5.7 shows the proportion of contended data
as a fraction of the total number of cache lines written by an application at various
points during workload execution (only the parallel section is considered). The
data has been collected by running each workload on the ZEBRA configuration.
Each application shows a characteristic shape based on contention seen during
various application phases. Periods of rise indicate spreading contention. Periods
when the curve drops are indicative of transactional execution with relatively
low contention. Flat periods represent non-transactional execution or periods
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Figure 5.8: Contention over time.

when the level of contention is stable. More insight is gained when Figure 5.7
is interpreted in conjunction with Figure 5.8. Figure 5.8 shows the cumulative
number of aborts at various points during workload execution as a fraction of
the total number of aborts seen when the workload eventually completes. Rising
periods on this plot denote high contention phases.

For a high contention application like intruder we see that most contended
lines can be discovered early. The cumulative abort curve is close to linear
indicating uniform contention throughout the execution of the application. Yada
and labyrinth show uniform contention (with varying intensities), but, as can
be seen from Figure 5.7, the proportion of contended data shows a slow but
steady increase over most of the workload duration. Vacation shows low but
uniform contention. Ssca2, a low contention workload with tiny transactions,
shows two phases – a long low contention phase with few transactions that
only touch contended lines followed by a second low contention phase where a
substantial amount of non-contended transactional data is written. This second
phase accounts for 80% of the aborts seen. Genome passes through a distinct
high contention phase when it begins. This accounts for about 35% of the total
aborts seen. It then enters a long low contention phase which is followed by a
moderately contended phase (contributing 65% of aborts) where a lot of non-
contended data is also written. Kmeans (high contention Kmeans) begins with
a long (about 70% of execution time) no-contention phase. The last 30% of the
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application shows a sharp rise in contention, which occurs over a limited data set.
This is indicated by the contended fraction that reaches saturation rather quickly
around a value close to 1.

5.4.3 Performance Analysis
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Figure 5.9: ZEBRA vs. fixed-policy HTM designs.

Figure 5.9 shows the relative performance of ZEBRA and two basic HTM
designs – EE and LL-GCT (see Table 5.2). Figure 5.10 then compares the per-
formance of ZEBRA to that of three purely lazy designs – the basic LL-GCT
configuration, LL-ideal and LL-STCC. The average for long running workloads
(marked with the suffix +) has been calculated separately (appears as Average+).
Figure 5.9 shows that the ZEBRA design provides marked gain in overall perfor-
mance (18% over EE and 30% over LL-GCT). It closely tracks the performance
of the best policy for each workload and excels when applications show mixed
transactional behavior – having both contended and non-contended phases of
execution. Figure 5.10 highlights how ZEBRA can achieve performance at par
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Figure 5.10: ZEBRA vs. idealized lazy designs.

with that of the idealized LL design (LL-ideal) and is noticeably faster (8% overall)
than LL-STCC for long running workloads.

Figure 5.11 shows two measures – average deviation from the best observed
performance over all workloads and the standard deviation of performance

Figure 5.11: Deviation from best observed performance.
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normalized to the best across all workloads. The hybrid approach achieves by far
the lowest swings, implying consistent performance and robustness.

We have further investigated the behavior of the hybrid approach. Figure
5.12 shows the distribution of purely eager, partly-eager-partly-lazy (hybrid) and
purely lazy commits in each application. Table 5.3 shows utilization of LWB
and OVB by each transaction (identified by TID) in various STAMP benchmarks.
Write-set sizes (WS in the table) and OVB occupancy have been shown in cache
lines. LWB occupancy represents the number of bytes that were managed lazily
in the structure.

Figure 5.12: ZEBRA – Policy distribution at commit.

The discussion below highlights important observations and presents insights
gained from detailed study of interactions between HTM policies and the behavior
of individual workloads.
Genome. This workload exhibits a high contention phase early in its execution
where lazy designs outperform the EE system. This phase involves removal
of duplicates (hash-table insertions). Reader - writer conflicts dominate at the
beginning of the phase and lazy approaches inherently allow greater concurrency
in such a situation. ZEBRA quickly switches the management of contended
cache lines to lazy and completes the phase faster than EE, but a bit slower
than LL-GCT or LL-STCC. The second phase is dominated by transactions with
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moderate write-sets (3.4 cache lines on average) with accesses to predominantly
non-contended data and is the determinant of overall performance. The eager
approach proves to be the quickest here. ZEBRA runs most transactions in a
completely eager way and does not suffer from commit overheads seen in the lazy
designs. Occupation measurements of the OVB and LWB structures shown in
Table 5.3 confirm how the hybrid system adapts to the transactions of this second
phase: TID1 is always eagerly managed (OVB usage equals write-set size), while
TID2 and TID3 are purely eager in 70% and 80% of their commits, respectively.
No transaction in genome ever commits in a purely lazy fashion (contended lines
always comprise only a small fraction of the Wset), demonstrating the benefits
of the proposed data-centric approach for policy selection on a per-cache line
granularity. The third phase again exhibits low to moderate contention. Since the
application shows mixed behavior, our hybrid approach outperforms all others.
Overall, we find that this result demonstrates the efficacy of quick adaptability to
changing workload conditions in ZEBRA, achieving performance close to that of
the idealized lazy (LL-Ideal) configuration. Genome+ (genome with a medium
sized dataset) shows much less contention, thereby widening the gap between
the purely lazy and EE or ZEBRA configurations. As we show in Figure 5.12, in
ZEBRA almost 90% of commits happen eagerly for genome+.

Table 5.3: ZEBRA – LWB and OVB utilization.

TID0 TID1 TID2 TID3 TID4
Workload WS OVB LWB WS OVB LWB WS OVB LWB WS OVB LWB WS OVB LWB
genome+ 1.3 1.2 1.4 1.0 1.0 0.0 3.4 3.3 0.7 3.4 3.4 0.4 2.2 1.8 2.8
genome 1.3 1.1 1.6 1.0 1.0 0.0 3.5 3.1 1.9 3.5 3.3 0.6 2.5 1.4 6.1
intruder+ 1.0 0.0 4.0 5.7 4.5 7.1 1.2 1.0 0.9 - - - - - -
intruder 1.0 0.0 4.0 6.1 3.8 13 1.5 1.0 2.2 - - - - - -
kmeans-h 2.0 0.1 65 1.0 0.0 3.9 1.0 0.0 4.0 - - - - - -
kmeans-l 2.0 0.5 47 1.0 0.0 4.0 1.0 0.0 4.0 - - - - - -
labyrinth 0.9 0.1 3.1 217 8.0 41 3.8 2.9 4.1 - - - - - -
ssca2+ 1.0 0.1 3.6 1.0 0.0 4.0 2.0 1.9 0.2 - - - - - -
ssca2 1.0 0.1 3.8 1.0 0.0 4.0 2.0 1.8 0.7 - - - - - -
vacation-h 6.8 6.8 0.2 5.7 5.7 0.1 4.0 4.0 0.1 - - - - - -
vacation-l 6.1 6.1 0.1 5.3 5.3 0.1 2.5 2.5 0.0 - - - - - -
yada+ 2.5 0.0 11 0.0 0.0 0.0 70 8.0 18 1.0 0.8 0.7 1.3 0.3 5.1
yada 2.0 0.0 8.1 0.0 0.0 0.0 60 8.0 40 1.0 0.5 2.1 1.4 0.2 7.0

Intruder. This workload shows high contention, even with large input sizes.
Eager transactions acquire exclusive ownership to data before they are guaran-
teed to commit. This, in conjunction with a high probability of conflicts, leads
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to prolonged stalls and pathological cases where transactions form chains of
dependencies causing aborts. In this contended scenario, lazy systems are able to
exploit concurrency much better resulting in far fewer aborts. This workload has
3 transactions. TID0 extracts elements from a highly contended queue of packets,
causing the EE system to experience 15K aborts (out of total of 29K aborts overall).
Lazy designs reduce this number to 4K (13K aborts overall). ZEBRA quickly
discovers contended lines, and the conflicting location (pointer to the head of
the queue) becomes lazy (as indicated by an LWB occupancy of 4 bytes in this
transaction) decreasing the number of aborts when preforming transactional
dequeue operations to 3K (total of 11K). With ZEBRA, the largest transaction
(TID1) can commit eagerly 25% of the time on average, even though it accesses
relatively large amounts of contended data (see Figure 5.6). A large fraction
of TID1’s write set (6.1 lines) is still non-contended and thus an average of 3.8
lines are managed eagerly, as revealed by the OVB occupancy in Table 5.3. TID2
also exhibits a predominantly eager behavior, committing eagerly about 50% of
the time, with one eagerly managed write on average (out of 1.5 written lines).
Hence, it outperforms lazy approaches achieving close to ideal performance
(see Figure 5.10). Commit durations for TID1 and TID2 are significantly shorter
as a large number of the transactionally modified lines are not contended and,
therefore, committed instantly. We can see in Figure 5.10 how the overhead due
to the arbitration and commit is substantially lower in the hybrid system, in
comparison to both LL-GCT and LL-STCC systems.
SSCA2. It has a large number of tiny transactions that demand high commit
bandwidth. Inherently parallel commits in eager approaches serve this require-
ment very well. Lazy approaches suffer, even STCC, which has a degree of
scalability. This is clearly evident in Figure 5.9 where commit delays represent
the primary overhead in lazy designs (except LL-ideal where transaction commit
is not a bottleneck). ZEBRA is able to manage almost the entire write-set eagerly
for most transactions. This can be clearly seen in the high proportion of eager
commits (see Figure 5.12) and the low LWB utilization (see Table 5.3). Hence,
ZEBRA is able to match the performance of the EE design.
Yada. It has a rather large working set and exhibits high contention. The workload
traverses the dataset in a manner which makes it longer for ZEBRA to complete
the discovery of contended lines. A longer time to achieve steady state means
that in short duration runs we do not perform as well as the lazy systems. TID2,
the dominant transaction (see Table 5.3), exceeds OVB capacity. This coupled
with a relatively high fraction of contended data in the write-set (see Figure 5.6)
results in expensive software rollback operations that degrade performance of
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EE and ZEBRA. With longer runs we notice that the differences tend to become
less marked. The contention in this case is less severe (as is evident the higher
proportion of eager commits for yada+ in Figure 5.12) and the eager approach
regains lost performance.
Labyrinth. The results generated by this workload depend significantly on the
interleaving of threads resulting in marked variability in execution times (note
the error bars in Figure 5.9). The data presented thus should be viewed keeping
this fact in mind. The dominant transaction is TID1 as can be seen in Table 5.3. A
significant fraction of data is managed eagerly (see Figure 5.6) but OVB capacity
is exceeded since write-set sizes are large. Thus, relatively high contention results
in expensive rollback operations on abort (see Figures 5.9 and 5.10). Consequently,
lazy designs perform slightly better than the EE or ZEBRA.
Kmeans /Vacation. These applications are highly concurrent and do not show
major differences in execution times with changes in policies. Nevertheless, pro-
tocol efficiencies at commit in the EE and ZEBRA result in minor improvements
in performance.

5.4.4 Analysis of C-bit reversion mechanism

Data accessed in certain workloads exhibits a behavioral shift over time. For
example, an initial high contention phase might be followed by a long low or no
contention phase with a final moderately contended phase. In this case, relying
upon non-transactional updates or evictions from the on-chip hierarchy to reset
C-bits might result in lost performance. ZEBRA includes a mechanism that
allows reversion of policy from lazy back to eager as described in Section 5.3.3.
However, STAMP benchmarks do not include workloads that clearly highlight
such behavior and hence, do not stress this potentially important feature. We
believe that such behavior may not be that uncommon either. A typical example
could be a workload could spawn threads that do substantial work initially
creating global data structures (e.g. hashtables) in a highly contended manner.
When the data structure is large enough contention drop, as a result of increased
structure size or division of labor among threads.

To model such behavior and highlight the potential performance gain to
be had, we created a microbenchmark, key behavioural aspects of which are
described in Figure 5.13 (left). The benchmark operates on a large array of shared
data. Each phase is separated from the next by a barrier. The results gathered
have been averaged over several benchmark runs (with randomization enabled
within the benchmark). Four HTM configurations have been evaluated: EE, LL-
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Figure 5.13: Microbenchmark analysis.

GCT, ZEBRA-base (with reversion disabled) and ZEBRA-switch (with reversion).
As seen in Figure 5.14, the sharp drop in C-bit proportion (between 80% and
90% of application lifetime) results in dramatically improved performance for
the ZEBRA-switch configuration reflected in Figure 5.13 (right). The reversion
scheme makes ZEBRA almost 50% better than EE and about 20% better than
LL-GCT or ZEBRA-base. Phase 1 dominates application execution time (since it
includes large, highly contended transactions). ZEBRA configurations quickly
discover contention and are able to do better than lazy designs since they are
able to commit a certain number of lines eagerly. Phase 2 corresponds to the
sharp decline in C-bit proportion in Figure 5.14). The policy reversion mechanism
detects change in behavior of most lines, with C-bit fraction going down to
almost zero. Phase 3 and Phase 4 are responsible for improvements in execution
time over LL-GCT and ZEBRA-base, shrinking to 10% of total execution time in
ZEBRA-switch (which manages to commit most such transactions eagerly).
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Figure 5.14: C-bit microbenchmark analysis.
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Figure 5.15: Network traffic.

5.4.5 Traffic Considerations

Traffic generated by each HTM design when running STAMP applications is
shown in Figure 5.15, which shows traffic volumes in flits normalized to the
EE design. Figure 5.16 plots the distribution of various protocol messages
types transported through the network. In terms of traffic the hybrid approach
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performs well across all workloads and puts signficantly lower demands on
network bandwidth than LL-STCC.
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Figure 5.16: Normalized network message count.

LL-STCC shows remarkably high flit counts for several applications, which,
as can be seen in the traffic distribution plot, arises due to messaging for scalable
commits. In the experimental setup used for this study, large intra-chip com-
munication bandwidth is available as only 16 in-order cores run. The parallel
commit algorithm employed by the design is thus able to hide most of messaging
latency. In architectures that have a low peak bandwidth or run workloads that
impose high communication demands, this latency may not remain hidden and
LL-STCC protocol efficiency could suffer.

5.4.6 Key inferences

We would like to highlight the following key observations during the design and
analysis of ZEBRA:

• Freezing policy in hardware precludes several possible sources of per-
formance gains as the design is then biased towards or against certain
workload characteristics.
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• Working at the granularity of cache lines allows existing coherence protocols
to be leveraged easily with minimal changes in their behavior.

• Associating contention with data rather than code allows ZEBRA to achieve
more finely balanced operating points (partly eager - partly lazy transaction
commits), utilize resources better (reduced pressure on speculative data
storage) and permit hardware optimizations for speeding up common case
scenarios (LWB and OVB).

• Contention characteristics of data may change over time. This represents
an opportunity for speedup that would remain inaccessible to systems that
cannot adapt.

5.5 Concluding Remarks
In this chapter we have outlined a fresh approach to hybrid-policy HTM design.
Instead of viewing contention as a characteristic of an atomic section of code,
we view it as a characteristic of the data accessed therein. Our observation
that contended data forms a relatively small fraction of data written inside
transactions reinforces our decision to incorporate mechanisms that support
efficient management of such data in the common case. In the process, our
proposal – the ZEBRA HTM system – manages to bring together the good
aspects of both eager and lazy designs with very modest changes in architecture
and protocol. ZEBRA supports parallel commits for transactions that do not
access contended data and allows reader-writer concurrency when contention
is seen. We have shown, both qualitatively and quantitatively, that it can utilize
concurrency better and consistently track or outperform the best performing
scalable single-policy design – performing as well as the eager design when high
commit rates limit performance of lazy designs and, on average, substantially
better than both eager and lazy systems when contention dominates. On average,
it places lower demands on intra-chip communication bandwidth. It also achieves
the lowest deviation from the best measured performance over a diverse set of
workloads corroborating our claim that the design is robust and less susceptible
to pathological conditions. We hope this work would spur further efforts in
the area of low complexity hybrid-policy HTM systems. More research can
be done to develop designs that adapt to workload needs quicker and are still
cost-effective enough to attract the attention of computer architects.
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Chapter 6
π-TM: Pessimistic Invalidation for

Scalable Lazy HTM

6.1 Introduction

Committing a hardware transaction requires making all transactional updates
visible to other processors instantaneously. Depending on the choice of policy
for the conflict management mechanism, the complexity of the commit process
can range from a trivial local step in eager HTMs [92], to distributed algorithms
in lazy HTMs [29]. By leveraging coherence traffic to check for conflicts on each
individual load and store instruction, transactions in eager HTMs carry out the
detection of data races with other concurrent transactions as execution progresses.
As a result of this pessimistic approach, when an eager transaction reaches the end
of an atomic block and executes the “transaction commit” instruction, all conflicts
with other concurrent transactions have been detected and already resolved,
if any aroused. This makes the implementation of commits a straightfoward
operation in eager HTMs, since no further communication is required to validate
the consistency of the transaction and publish the speculative updates. Commit
then simply consists of releasing isolation over the read and write sets by clearing
the read/write bits or signatures used for transactional book-keeping, so that
remote requests can fetch those cache lines that belonged in the transactional sets
of the committed transaction. For this reason, eager HTM systems impose close
to zero synchronization overheads when running workloads that exhibit little
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contention and demand plenty of commit bandwidth, allowing transactions to
commit in a fully parallel fashion.

As discussed in Chapter 5, eager HTMs expose inherent problems when
extracting parallelism in situations of moderate to high contention, limiting
available concurrency and deteriorating performance. Resolving conflicts as
soon as they are detected leads to sub-optimal decisions about which transaction
is more likely to commit, because such judgement is made a priori when little
information about the involved transactions is available. Eager resolution of
conflicts leaves two alternatives: Either aborting one of the two transactions
–based on some priority scheme– or stalling the conflicting request with the hope
that the offended transaction will commit and then allow the offending one to
proceed. If directly aborting one of the transactions is a rather draconian solution
that can be susceptible to livelocks, stalling the requester brings in the possibility
of deadlocks when circular dependencies exist, and thus requires schemes to
detect and stop such cycles from forming.

Moreover, the conservative resource acquisition of eager HTMs allows a
transaction to hold state before it is known if it will successfully commit: When
conflicts are eagerly resolved by stalling the requester, each transaction blocks
those cache lines accessed during the course of its execution, impeding any
remote access to such lines if they can result in a potential race. In fact, even
when conflicts are successfully resolved through stalls (no cycles are formed),
eager HTMs create chains of conflicting transactions that, while stalling for the
access to a cache line, continue blocking data that may be necessitated by other
transactions to make progress. The result is that transactions that have no data
dependencies and could execute in parallel may not be able to do so because of
conflicts with other transactions that connect them through a chain of conflicts.

In contrast to the eager approach, lazy conflict resolution allows concurrency
in more scenarios. For instance, when a race exists between a reader transaction
and a writer transaction, execution of both transactions runs past the conflict
in a lazy HTM, thereby permitting the possibility of a safe interleaving when
the reader transaction commits before the writer transaction. On the contrary,
eager HTMs must adopt a conservative approach here, resolving the conflict
in favor of one of the transactions. Previous research has illustrated how lazy
conflict detection can allow more parallelism [22, 121]. Delaying the resolution of
conflicts to commit time avoids making the difficult decision of which is the best
transaction to abort.

While lazy HTMs are theoretically more efficient than eager designs (we will
discuss about this in the next chapter), the requirement of en-masse publication
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of speculative updates to shared memory poses challenges at commit time,
limiting the scalability of the lazy approach. Quite often several concurrent
non-conflicting transactions attempt to commit simultaneously. Simple schemes,
like the acquisition of a global commit token, take a conservative approach
and preclude simultaneous commits of such transactions. This severely limits
performance in workloads with light contention and a fairly large number of
transactions that demand a high commit bandwidth. More elaborate schemes
attempt to provide a degree of commit parallelism when transactions target
different directory banks [29,102]. Although they leverage the coherence protocol,
information in transactional coherence messages that may indicate contention is
not utilized, and only commit-time invalidations are relied upon to detect races
and abort conflicting transactions.

Early conflict detection can be employed in lazy HTM designs to allow non-
conflicting transactions to commit in parallel. Though this has the potential to
improve performance, it has not been utilized effectively so far [143]. Enabling
parallel lazy commits in hardware requires correct handling of all possible
interleavings of transactions. Figure 6.1-(a) shows what might happen if a
buggy early conflict detection protocol does not enforce atomicity correctly. A
transaction T1 that has updated cache lines A and B initiates commit operations,
aborting transaction T2 in the validation phase. T2 now restarts and reads the
new value of line A since T1 has acquired it exclusively. However, it is possible for
T2 to read the old value of line B and potentially commit this unsafe execution,
resulting in an atomicity violation. A trivial solution to overcome this issue
requires every transaction to send an indication to the directory whenever the
first read or the first write happens to a cache line, even though the line may be
present in the private cache. In the example above, as shown in Figure 6.1-(b),
T2 will send a message to the directory which will then be forwarded to the
committer, T1. T1 will then ask T2 to retry the access till it has acquired exclusive
ownership over line B. Thus every first read and first write to any cache line
accessed by a transaction is effectively a miss in the private cache hierarchy. This
turns out to be wasteful, particularly when contention is low or when large
coarse-grained transactions abound.

Some careful thought reveals that the trivial approach described above, fol-
lowed by EazyHTM [143], does not go far enough when utilizing the information
available from coherence messages regarding potential data races. Records of
conflicts are maintained only at the granularity of cores. Doing so leaves only
three ways of dealing with a transaction’s read set when aborting - first, wait for
lines to be invalidated; second, invalidate the entire read-set; third, as described
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Figure 6.1: Problems with detecting conflicts early in lazy designs.

above, requires protocol support for delaying the re-executing transaction so
that it is able to read the correct version of a conflicting cache line. The first
option demands communication between cores and extensive protocol support.
The second and third options are too conservative and represent equivalently
severe penalties in common-case scenarios, limiting scalability due to excessive
communication to the directory.

In this chapter we present π-TM, a novel solution that achieves scalable lazy
commits by detecting conflicts early and keeping track of contended lines to
perform self-invalidation at the end of the transaction. It consists of a few simple
extensions to a directory-based coherence protocol and uses mild pessimism in
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the uncommon case to keep common case transactional execution unencumbered.
As described later in Section 6.3, our proposal works by recording conflicts
at the granularity of cache-lines, simply by maintaining an additional single-
bit annotation, called the π-bit, at the private cache. On an abort, only those
cache-lines in a transaction’s read-set that have seen a conflict during the course
of its execution are invalidated along with speculatively updated lines. The
transaction can now immediately restart and can use private cache data without
any need to contact the directory. The committing transaction can now update
shared system state in a much simpler fashion since the protocol ensures that
no other private caches contain cache lines in its write-set. For safety, the
committing transaction also invalidates any contended lines in its read set. We
shall show later the number of lines that actually face contention in large, coarse-
grained transactions is far smaller than the total number of lines accessed in such
transactions. Moreover, the proposed method works equally well for small, fine-
grained transactions. We believe that this solution overcomes a major performance
bottleneck in scalable, lazy designs that make use of coherence protocols to detect
and resolve conflicts.

6.2 Background

Cache coherence protocols allow HTM implementations to detect conflicts among
concurrently running transactions at the granularity of cache lines. For most
transactional workloads this represents a good trade-off between design cost and
performance. Hence, it is no surprise that most scalable HTM design proposals
choose to leverage coherence mechanisms for conflict resolution. In particular,
eager conflict resolution protocols like LogTM [92, 153] fit very naturally onto a
cache-coherent CMP substrate, needing only modest design extensions to support
TM semantics.

Lazy conflict resolution protocols, however, require protocol extensions to
permit the existence of multiple speculative copies of a cache line while retaining
the ability to use coherence messages to detect conflicts. This can typically be
done in two ways. The first method involves containment of writes within the
private cache until commit. At commit time the writes are completed in shared
memory causing conflicts to be detected at all concurrently running transactions
that have accessed the line. The simplest way to do this is to allow only one
transaction to commit at a time through the acquisition of a global commit token
by the committing thread [56]. Scalable TCC [29] attempts to do better by letting
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commits targeting different directory banks proceed in parallel. This improves
performance to an extent, as we shall see later, but does not provide true commit
parallelism seen in designs like LogTM. This is rather pessimistic resulting in
marked performance degradation in scenarios when a large number of non-
conflicting concurrent transactions exist and compete for commit permission.

The reason for limited parallelism at commit time is that the committing
transaction has no knowledge of which other concurrently running transactions
must abort to preserve atomicity. Thus, either commits must proceed one by one
or complex commit protocols, like the one described by Pugsley et al. [102], must
be employed to provide a degree of parallelism. In a cache coherent design this
turns out to be inefficient. Information pertaining to potential conflicts is readily
available from coherence messages during the lifetime of any transaction suggest-
ing a second method of performing lazy conflict resolution. This information, if
retained over the course of execution of a transaction, can at commit time allow
true commit parallelism, since all potentially conflicting transactions that must be
aborted would be known. All committers that have no races among themselves
can then be sure that they can safely commit in parallel.

Designs like FlexTM [122] and EazyHTM [143] provide lazy conflict resolution
by recording conflicts as they happen, using this information to enable distributed
commits. FlexTM chooses to do so in software and sacrifices progress guarantees
to gain greater parallelism. Performance costs associated with software interven-
tion and software verification challenges without watertight forward progress
guarantees could limit the value of this approach. EazyHTM, on the other hand,
provides parallel lazy commits in hardware and ensures forward progress, but
trades off common-case performance to achieve it. EazyHTM uses a special
messaging protocol and hardware to indicate transactional accesses to cache lines
to all potential sharers. Every first read to a cache line in a transaction requires all
sharers be notified and any potential conflicts indicated before the transaction can
safely proceed. A similar action is required for every first write to a cache line.
It is quite clear that this action, although ensuring safety in the infrequent case
described in Figure 6.1, represents a heavy burden on common-case transactional
execution.
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6.3 π-TM: An Adaptable Lazy HTM Design with
Parallel Commits

Coherence messages carry information that can not only be used to detect which
core/transaction might be conflicting but also to figure out the cache line address
of the contended line. This information can be recorded using a single bit cache
line annotation in each private cache, which can later be used to resolve conflicts
in a far more efficient manner. To develop a framework for investigating this
idea further, in this section we describe in detail the implementation of a baseline
lazy HTM design that performs eager conflict detection, employing concepts
developed in [143]. We then extend this design with simple mechanisms to
record contention at cache line granularity and resolve conflicts safely without
burdening common-case transactional execution.

6.3.1 Baseline eager detection-lazy resolution

For detecting conflicts while a transaction runs, π-TM inherits most of the
conflict information flow between concurrent transactions from EazyHTM [143].
It maintains a bitmap of racers that tracks which transactions must be aborted on
commit to preserve atomicity. This list over-approximates the set of transactions
that need to be aborted, and it is sufficient to maintain correctness. False aborts
can happen if a conflicting transaction on another processor aborts, and a different
non-conflicting transaction starts in its place and then receives an abort request
that was intended for the previously aborted transaction. A second list of killers
is used so as to avoid these false-aborts, so that abort messages from cores not
indicated as killers in the killers-list are ignored. Every time a transaction observes
a remote access to a line that belongs to its read and/or write sets, it enables the
appropriate bits in its racers and killers corresponding to the remote accessor.

All concurrent transactions that might have written a line must be notified
when the line is read by a transaction. Similarly, when a line is written by
a transaction all sharers must be notified that a new potential conflict might
exist. The requester must also be made aware of which concurrently running
transactions have conflicts with it. If the new accessor is a writer, it is added to
the killers list of each existing transactional reader of the line. If it is a reader,
each existing transactional writer adds the new reader to its racers list.

Unlike EazyHTM, we choose to piggy-back the information about transac-
tional reader/writer status on usual coherence messages (TGET, TINV and vari-
ous ACKs) using two single-bit flags – txReader for transactional read, txWriter for
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transactional write. In our opinion, this is simpler than having a host of new mes-
sages exclusively to manage conflicts, as used in [143]. Our design thus leverages
the network-on-chip communication fabric for all information exchange, rather
than dedicating a special purpose core-to-core interconnect used only for conflict
management [143]. In our opinion, most TM use-cases do not justify investment
of hardware resources into ad-hoc communication mechanisms solely dedicated
to conflict detection. Moreover, because π-TM leverages the standard messages
of the coherence protocol to carry out conflict detection, such task involves the
usual 3-way communication: i) TGET (with txWriter/txReader)→ directory; ii)
TINV → sharers; and iii) acknowledgments from sharers → requestor. This is
different from EazyHTM, which needs 4-way communication for the same task: i)
TxMark→ directory; ii) TxAccess→ sharers; iii) TxReader/TxWriter/NonTxnal
status from sharers→ requestor; and iv) TxReader/TxWriter acknowledgments
from requestor→ sharers.

Figure 6.2: Key protocol action: Baseline eager conflict detection in lazy HTMs.

Figure 6.2 depicts how the baseline protocol operates. Transaction T1 on core 1
wishes to read cache line A (step 1) which is in "S" state in its private cache. Core
1 sets the SR flag for the line and sends a TGET(A), with txReader high, request
to the directory (steps 2,3). The directory finds the TD-bit not set and responds
with an ACK allowing T1 to proceed (step 4). Subsequently, transaction T2 on
core 2 attempts to write line A and sends a TGET(A) request, with txWriter set,
to the directory (steps 5,6). The directory sets the TD-bit for the line and sends
a TINV(A), with txWriter set, to core 1 (steps 7,8). Core 1 notices the conflict,
adds core 2 to the killer list and sends an INV_ACK acknowledgment to core 2
with the txReader flag set (steps 9,10). Core 2, on receiving the acknowledgment
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knows that T1 is a racer and adds core 1 to its racers list, completing the conflict
detection protocol. Before it publishes any of its updates on commit, T2 will abort
T1 by sending a TABORT message to core 1. The rare case of racing commits is
handled by using a unique core identifier as priority.

Next we describe our proposal to extend this design with simple mechanisms
to record contention at cache line granularity and resolve conflicts safely without
burdening common-case transactional execution.

6.3.2 π-TM: Pessimistic invalidation of contended lines

π-TM builds on the baseline eager detection-lazy resolution HTM system de-
scribed earlier, by adding a new π-bit to existing private cache lines. When a
transaction that has only read a line finds the line contended, it sets the corre-
sponding π-bit in its private cache. Lines with the π-bit set are invalidated when
the transaction commits or aborts. We term this as pessimistic invalidation (hence
the name π-TM) since all possibly conflicting lines are invalidated rather than
invalidating only those lines that are being written by the committing transaction.
The rationale behind this approach is that the number of such lines (speculatively
read and contended) is typically small and the cost of this minor pessimism is far
outweighed by performance advantages provided by unencumbered common-
case transactional execution. Invalidation of such lines at commit is required to
preserve atomicity. This prevents a subsequent transaction from reading an old
value from the contended line and newly committed value from a different line,
when both lines belong to the write-set of another committing transaction.

Invalidation of lines with π-bit set guarantees that all valid lines in the
private cache can be safely read by transactional code without contacting the
directory. Since lines that have not been accessed transactionally are invalidated
by incoming TINV messages, no unsafe accesses can be handled locally. Lines in
the read set could also be invalidated at the point when contention is noticed, as it
is simple to track the read set with a signature [27]. This invalidation is inefficient
as such lines could be accessed again in the transaction. More importantly, it just
tackles one part of the problem by ensuring safety only in the case where a line
is speculatively read before contention is noticed.

Figure 6.3 depicts key protocol actions when pessimistic invalidation is used.
Core 1 running transaction T1 reads a line, A, in its cache, setting the correspond-
ing SR-bit (steps 1,2). Note that no communication with the directory occurs. The
line is subsequently written by core 2 running transaction T2 which attempts to
acquire exclusive permission over the line by sending a TGET(A), with txWriter
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Figure 6.3: Key protocol actions: Conflict detection in π-TM.

set, to the directory (steps 3,4). The directory now sets the TD-bit and sends a
TINV(A), with txWriter set, to core 1 (steps 5,6). Core 1 recognizes the conflict
and adds core 2 as a killer setting the π-bit for the line (step 7). It then sends an
ACK to core 1 with txReader flag set, allowing core 2 to add core 1 to its racers list
(steps 8,9). This completes the π-TM conflict detection protocol in this example.

Now, two scenarios (shown in Figure 6.4) can arise based on whether or not
T1 commits before T2 aborts it. If T1 commits before T2 can abort it, the line
with the π-bit set is invalidated and the thread can continue further execution.
If T2 commits before T1, core 2 sends a TABORT message to core 1. Since
core 2 marked as a killer, T1 aborts and invalidates the contended line. In
any scenario, the possibility that core 1 later accesses line A, a contended line,
without communicating with the directory (thereby preventing conflict detection)
is eliminated. A key point to be noted here is that a speculatively written line
(with SM-bit set) may be read by the transaction without any communication to
potential killers. Thus, lines in the write-set are always reported as both read and
written when conflict detection acknowledgments are sent.

6.3.3 Adaptable π-TM

It is difficult to come across a one-size-fits-all HTM design. This is true both for
eager resolution designs that perform poorly when contention is high and for
lazy resolution designs that suffer when contention is low. Early conflict detection
tries to bring together the best of both worlds, but in doing so acquires a weakness
not found in other designs. This situation arises when small to moderate sized
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Figure 6.4: High level behavior of π-TM.

transactions see high contention on late accesses that occur shortly before commit.
In such cases the requirement to detect all conflicts before the transaction can
commit brings the latency for doing so in the critical path. We also note that lazy
conflict detection works well in this case since it can combine conflict detection
with write-set publication. This suggests a way to build in adaptability into
the system by detecting the condition and switching policy to achieve higher
performance. We choose the simplest lazy conflict detection protocol – the global
commit token (GCT) approach laid out in [22] – to evaluate the idea.

Each atomic block in a thread can operate in one of two modes – π-mode or
GCT-mode – independently of the rest. A simple algorithm, shown in Algorithm 1,
determines how transactional execution switches between operation modes. Since
both modes confine speculative updates within private caches the two protocols
can interact safely. A running GCT-transaction aborts when it receives a TABORT
message from a π-transaction. A committing GCT-transaction aborts a validating
π-transaction by responding to the TABORT message with NACK. Moreover, a
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GCT-transaction does not release its write-set until the entire commit is done,
thereby preventing unsafe interleavings from occurring. When threads operate
in mixed-mode, all π-transactions have accurate information regarding racers
(transactions that must be aborted before commit). However, a π-transaction may
not know all its killers, since killer GCT-transactions do not indicate conflicts
over their write-set. This is not a safety issue since such GCT-transactions will
cause any racing π-transactions to be aborted by non-transactional invalidations.

The algorithm for switching relies upon two pairs of thresholds to commute
between the two modes of opertation. In π-mode, stallCtr represents the time
between arrival at the end of a transaction and an abort before the initiation
of validation operations. Consistently high stall counts and subsequent aborts
indicate high contention and late conflicts – conditions which degrade early
conflict detection performance. In GCT-mode, stallCtr represents the time spent
in arbitrating for a global commit token before a successful commit. Consistently
high arbitration stalls preceding successful commits indicate low contention and
demand for commit bandwidth, i.e. conditions where π-mode works best. Since
latencies depend strongly on network topology and available on-chip bandwidth,
the two pairs of thresholds can be determined reasonably well at design time
and need not be learned online.

Figure 6.5 shows structures needed to support this adaptability. These re-
quirements are not very large. Transaction identifiers (e.g. instruction pointers or
sequence numbers assigned to "start-transaction" instructions) are mapped to one
of several predictors (we use 16 predictors). Hardware overheads are minor, as
can be inferred from the figure. It should be noted that the decision to switch
modes is taken entirely based on information locally available at each core.

Algorithm 3 Mode switch prediction logic.
if π-abort OR GCT-commit then

if stallCtr > stallThold(curMode[xid]) then
modeSwitchCtr[xid]← modeSwitchCtr[xid] + 1
if modeSwitchCtr[xid] > modeSwitchThold(curMode[xid]) then

f lipCurMode(xid)
modeSwitchCtr[xid]← 0

end if
else

modeSwitchCtr[xid]← max(0, modeSwitchCtr[xid]− 1)
end if

else
if π-commit OR GCT-abort then

modeSwitchCtr[xid]← 0
end if

end if
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Figure 6.5: Hardware structures that enable mode switches.

6.3.4 Protocol support for π-TM

Figure 6.6 summarizes new protocol transitions required at the private cache
controller. The diagram does not show the transitions for transactional loads
since they require no special treatment and are satisfied just like regular loads.
The grey transitions are part of the standard MESI coherence protocol. Grey
circles represent transient states for in-flight operations. No new coherence states
are needed. Those transitions depicted using dashed black lines allow pessimistic
invalidation of cache lines using the π bit. In the figure, those messages that have
at least one transactional status flag set –either TxReader or both TxReader and
TxWriter– are denoted with the T prefix.

Forwarded exclusive (GETX) requests to E/M lines, which are usually satisfied
by the invalidation of the line plus a cache-to-cache transfer of exclusive data
from the current owner to the requestor, behave in a slightly different fashion in
the transactional (TGETX) case, if the line has been accessed inside a transaction.
TINV or TGETX messages to lines that have not been accessed in a transaction (SR
bit not set) cause those to be invalidated, as usual. However, if the targeted E/M
line has the speculatively read (SR) bit set, the line is not immediately invalidated
by the current owner, but rather downgraded to S state, and marked with the
π bit. The new transactional writer then obtains a shared copy of the data that
it can use for lazy versioning in its private cache. Similarly, a transactional
reader/writer responds to transactional invalidation (TINV) requests with an
acknowledgement message –reporting its own status of transactional accessor–
but it does not invalidate the line in this moment, but simply sets the π bit. When
the line is shared amongst several transactional accessors, a transactional read
request TGETS obtains data from L2 but still needs to check the status of the
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current sharers, so the directory also forwards TINVs to the accessors as in a
TGETX request. The new transactional accessor always sets the π bit for the
requested line if any of the responses (i.e. at least one TINV acknowledgement,
or the TDATA message) has the TxWriter bit set.

Transitions in bold black lines in Figure 6.6 indicate the support for lazy
versioning in the standard MESI protocol, so that speculative writes can be
buffered in private-copy cache lines that appear as shared copies to the coherence
protocol. Unlike their non-transactional counterparts, transactional store misses
do not fetch exclusive data but instead can only complete if a shared copy (S) of
the line is present. Once the speculatively modified (SM) bit is set after the first
transactional write, the remaining write accesses are cache hits. If the targeted
line is in E or M state, a downgrade to S state (not shown in Figure 6.6) with
a possible write-back of dirty data is necessitated in order to write the last
committed value to the shared level, thus preserving memory in a consistent
state and retaining the ability to discard speculative updates on abort via silent

Figure 6.6: Supporting transitions at L1.
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invalidations of shared SM lines. If the line is already present in S state but
the SM bit is not set (first transactional store), the store cannot be immediately
performed in cache, because it still needs to check with the remaining sharers for
correct conflict detection. This is handled in a similar fashion to non-transactional
writes to S lines: an UPGRADE request is sent to the directory, which forwards
invalidation messages to all the sharers. These, in turn, respond with invalidation
acknowledgments. The main difference is that, in the transactional case, the
UPGRADE and INV requests have the TxWriter status bit set, as well as the
INV_ACK responses, leveraged by the sharers to report their transactional status
via the TxReader/TxWriter flags. In the case of a new transactional writer, an
UNBLOCK message is sent to the directory to indicate that the in-flight memory
operation has terminated, and the requestor has become a sharer. In the non-
transactional case, however, the requestor always becomes the exclusive owner
and the directory only expects EXCLUSIVE_UNBLOCK messages.

In order to guarantee strong atomicity [17], a π-TM transaction aborts when
it observes a non-transactional INV or forwarded GETX request that targets a
SR/SM cache line. Therefore, the protocol does not need any special behaviour
to correctly handle conflict detection between GCT- and π-mode transactions:
commit-time invalidations generated by GCT transactions appear as non transac-
tional and thus cause the abort of any other transactional accesor of the committed
data.

The coherence protocol also includes support for handling negative acknowl-
edgements (NACKs), which can be sent by transactions in certain situations. For
instance, when a transaction has entered the validation phase (has sent abort
requests to its racers, and it is collecting the responses), it responds with a NACK
message to any TINV or TGETX request that targets its read/write set lines.
This is because once validation has begun, the transaction does not accept new
racers nor killers. Similarly, requests to write set lines are nacked when a trans-
action has entered the committing phase, since π-TM does not implement the
critical-cacheline-first optimization proposed in [143].

Handling of accesses at the directory is summarized in Figure 6.7. The direc-
tory is capable of resolving the source for forwarded data in case of transactional
reads. This could be the L2 if the line is not modified at some core or the private
cache containing the consistent copy. At the Level 2 cache, a TD bit (transactionally
dirty) in maintained as proposed in [143], which when set indicates the presence
of one or more modified speculative versions of the line. It is used to avoid
unnecessary communication with sharers when no potential conflicts exist (i.e.
reader-reader scenarios). Obviously, the value of the TD bit is only meaningful
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Figure 6.7: Access handling at directory.

when the directory state for the line is SS (shared by zero or more caches), and
it is automatically reset to 0 when the state changes to MT (exclusively held
by one cache). The bit is set by TGET requests that have the TxWriter flag set,
before the message is considered by the coherence controller. The changes in the
directory controller to support π-TM are minimal, since no new states are needed.
The directory always copies the TxReader/TxWriter bits of incoming requests to
all outgoing forwarded requests, so that these status flags are piggy-backed in
regular coherence requests for correct conflict detection. Transactional requests
(TGET) are treated just like common GETX requests when the TD bit is set (i.e.
invalidations are sent to the sharers). When TD not set, the directory directly
provides the data to the requestor. The only relevant changes to the directory
controller are not specific to π-TM, but common to any directory-based MESI
protocol that supports lazy versioning of data in private caches: New transitions
are added so that a TGETX request can end up leaving the directory in shared
(SS) state, whereas a non-transactional GETX request always brings the line to
exclusive state (MT).
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6.4 Evaluation

The performance of several HTM design points is now evaluated and compared.
Four lazy HTM design points with early conflict detection are considered:

1. A baseline system with eager detection and lazy resolution, similar to [143],
described in Section 6.3.1.

2. π-TM, which builds on top of the previous baseline system, and augments
L1 caches with π bits so as to perform pessimistic self-invalidation of
contended lines. This system was presented in Section 6.3.2.

3. Adaptable π-TM, as described in Section 6.3.3, which combines eager (π-
style) and lazy (GCT-style) conflict detection policies in the same system,
and uses a predictor to select the appropriate operation mode on a per-
transaction basis.

4. Ideal π-TM. This is an idealized implementation of the π-TM system, in
which transactions magically check for conflicts with remote transactions
without any message exchange. On each memory access, a transaction
accesses the read and write sets of every other running transaction to
determine if a conflict exists, and accordingly updates both local and
remote lists of racers and killers. This system attempts to estimate an upper
performance bound for lazy HTM systems with eager conflict detection, by
reducing the latency of the conflict detection mechanism to zero.

Table 6.1: HTM configurations evaluated in Chapter 6.

Configuration Description
Base Baseline Early Conflict Detection [143]
PI-TM Basic π-TM scheme
aPI-TM Adaptable; can choose between π-mode or GCT mode
idealPI-TM Idealized π-TM scheme
LL-GCT Lazy conflict resolution using a global commit token [22]
LL-STCC Scalable TCC [29]
EE Eager conflict resolution based on LogTM [153]

These eager-lazy systems are compared against the three design points pre-
sented in Chapter 3: LogTM-SE [153], the global commit token (GCT) system [22],
and a detailed implementation of the Scalable TCC (STCC) design [29]. Similar
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to the GCT and STCC systems, the three lazy HTMs capable of early detection
rely on a dedicated write buffer of unlimited capacity for buffering of speculative
updates. Exclusive permissions over the associated written cache lines are ac-
quired on commit, before publishing updates to shared memory. All the design
points considered in this chapter are summarized in Table 6.1.
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Figure 6.8: A comparison of early conflict detection schemes.

6.4.1 Early Conflict Detection Performance

Figure 6.8 shows the relative performance of the three early conflict detection
designs – the baseline design, π-TM and adaptable π-TM. We can see that π-TM
is substantially (more than 10%) better than the baseline. The adaptable variant
(aPI-TM) performs the best, about 16% better than Base and about 25% better for
long running workloads.

In Figures 6.9 and 6.10 we see that π-TM achieves major reductions in network
traffic, both in terms of flit count (about 15% less) and number of messages
released into the network by the workload (about 20% less). In the CMP fabric
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used for simulations large on-chip communication bandwidth is available to each
in-order processor. In systems with limited bandwidth, it can be expected that
the lower demands of π-TM would translate into improved performance.
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Figure 6.9: Network messages.
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Figure 6.11 compares the miss-rates at the private caches over the duration of
execution of each benchmark. As we can observe, π-TM achieves important re-
ductions in the miss rate compared to Base, clearly showing how our approach of
pessimistic invalidation allows transactions to use privately cached data without
the need to contact the directory on every fresh access.

Figure 6.11: Miss rates.

Figure 6.12 shows the distribution of transaction handling modes (π or gct) in
different workloads for the adaptable configuration (aPI-TM). In this plot we see
how the adaptable version of our design switches to a different execution mode
for workloads with small, highly contended transactions. This mode change is
responsible for the significant performance improvement (up to 60% reduction in
execution time) achieved by aPI-TM in such kind of applications, in comparison
to our non-adaptable scheme, seen in Figure 6.8.

Table 6.2 presents numbers regarding contention in various STAMP workloads.
The number of lines that are invalidated pessimistically constitutes a very small
fraction of the read-set size for most applications, corroborating choices made
in the π-TM design. When transactions commit almost the entire read-set is
non-contended. When transactions abort the number of invalidations typically
amounts to less than 10% of the read-set size at commit. Only in the case of yada
about 48% of the read-set is invalidated on aborts. This still represents savings in
access time over the remaining 52% of the read-set.
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Table 6.2: Contention statistics.

π-lines π-lines Rset (#lines) π-lines (% Rset) Killers Killers Racers Racers
@abort @commit @commit @abort @commit @abort @commit @abort

genome+ 1.91 0.01 22.8 8% 0.01 1.91 0.07 1.17
genome 2.70 0.04 25.7 11% 0.03 2.87 0.18 2.23
intruder+ 0.32 0.03 11.2 3% 0.05 3.11 1.53 4.01
intruder 0.54 0.07 9.1 6% 0.09 3.18 1.39 3.98
kmeans-high 0.63 0 5.4 12% 0 1.12 0.22 0.98
kmeans-low 0.65 0 5.4 12% 0 0.94 0.04 0.79
labyrinth 1.31 0.08 71.1 2% 0.11 1.33 0.63 1.02
ssca2+ 0.07 0 3 2% 0 1.66 0 1.39
ssca2 0.11 0 3 4% 0 1.81 0.01 1.61
vacation-high 0.65 0.01 66.8 1% 0.01 0.97 0.03 0.03
vacation-low 0.60 0 53.9 1% 0 0.99 0.01 0.03
yada+ 16.27 0.23 33.8 48% 0.12 4.46 0.37 4.4
yada 13.31 0.48 27.5 48% 0.25 3.89 0.63 3.7

We now analyze individual workloads in detail highlighting aspects that
influence performance.
Genome, ssca2 and vacation. Communication overheads induced by baseline
early conflict detection mechanisms result in considerable degradation of private
cache performance as can be seen in Figure 6.11. This translates into slower
execution of transactions, a fact which is clearly highlighted by the significantly
(almost 40% for genome) higher useful transactional execution time (tx_useful)
component in the execution time breakdown shown in Figure 6.8. The perfor-
mance between the basic π-TM design and its adaptable variant is little. This is
because contention is relatively low for most of the application.

Table 6.3: Mode-switch threshold values.

Adaptable π-TM Thresholds
π → GCT 2 consecutive 512-cycle stalls
GCT → π 4 consecutive 256-cycle stalls

Intruder. Intruder exhibits high levels of contention. Small transactions with late
updates to shared data compete. Though the basic π-TM design shows some
improvement over the baseline on account of better cache performance, it suffers
from the pathology described in Section 6.3.3. The requirement to complete
conflict detection before commit operations can be initiated results in substantial
increases in aborted execution and backoff time. The adaptable variant is able
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Figure 6.12: Adaptable π-TM: Mode distribution for transactions

to switch policies quickly for offending transactions and avoids performance
degradation, showing a performance improvement of 40-60%. Figure 6.12 shows
how the switch to GCT-mode occurs with about 50-70% of the transactions
committing in the GCT-mode.
Kmeans. This application spends only a small fraction of its execution time
(<10%) executing transactions. Moreover, these transactions are tiny. Therefore,
we see no major deviations in performance although the two π-commit variants
perform approximately 2% better than the baseline.
Labyrinth. This application has very large transactions where write sets run
into hundreds of cache lines. Most such writes are also first accesses to lines,
targeting the local grid, and hence, cache performance is very good, even in
the baseline scenario. No major performance deviations are seen across all four
configurations.
Yada. This mesh refinement algorithm exhibits moderate to high contention
spread over a relatively large dataset. Although cache performance improves (by
50%, see Figure 6.11), this does not directly translate into improved performance
when using the small input set. Execution times vary by 30% across different
runs. When using the larger dataset, we see that the π-commit variants perform
marginally better than the baseline (by approximately 2%).
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6.4.2 Comparison with other designs

Figure 6.13 shows the relative performance of the adaptable π-TM design and
other pertinent design points. These include LogTM (shown as EE), a lazy
global commit token approach (LL-GCT) and the scalable TCC design (LL-STCC).
The execution times have been normalized to those achieved by the baseline
configuration.
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Figure 6.13: π-TM: Comparison with other designs.

All four designs perform better than the early conflict detection baseline
design. This is primarily because of the poor private cache performance of
the baseline. Furthermore, we note that adaptable π-TM achieves the best per-
formance overall. This design performs consistently well for all workloads,
indicating robustness and the ability to avoid pathological scenarios. The differ-
ence between the lazy conflict detection designs and the adaptable π-TM can
be seen in the reduced arbitration component. This clearly shows how parallel
commits can be effective in improving overall system performance.

We now present some important workload-specific observations gathered
from the data.
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Genome. This workload is interesting because π-TM performs significantly better
than other designs. As we have explained earlier, this is primarily due to benefits
of pessimistic invalidation under moderate contention and large transactions. As
a result of contention for commit permissions, LL-GCT shows a large arbitration
component in Figure 6.13 which is absent in the π-TM case. LL-STCC allows a
degree of commit parallelism, but commit-time communication to the directory
banks results in longer commit durations. This clearly highlights the efficacy of
parallel commits in π-TM. The EE design detects conflicts on memory stores as
they occur before proceeding with further execution. π-TM, on the other hand,
is able to run-ahead past potentially conflicting stores overlapping the line-fetch
with useful work.
Intruder. In this high contention application lazy designs come out on top.
The ability to commit in parallel does no bring much advantage here as most
transactions conflict. Early conflict detection mechanisms suffer from the pathol-
ogy mentioned in Section 6.3.3. However, the adaptable π-TM variant is able
to sidestep it by quickly switching pathological queue pop transactions to GCT-
mode. The design is about 5% faster than LL-STCC in long running simulations
(intruder+).
Ssca2. This application has very low contention but the very large number of tiny
transactions stresses commit bandwidth in each design. Both variants of π-TM
perform the best here, marginally (3-5%) better than the EE design. The reason,
as seen in the case of genome, is the lack of latency hiding capabilities for stores
in the EE design. Limited commit bandwidth when using a global commit token
results in pathological behavior. Scalable TCC mitigates this effect but is around
25% slower than LogTM or π-TM due to the commit-time communication with
the directory.
Yada. Yada exhibits moderate contention spread over a relatively large dataset.
The adaptable π-TM design performs as well as or marginally better than LL-
STCC, taking full advantange of both commit parallelism (Figure 6.12 shows no
GCT-mode transactions) and lazy execution. The EE design does not perform
well and turns out to be the slowest (40% slower for yada and about 10% slower
for yada+ when compared to the adaptable π-TM design). As we have seen
before, the EE design suffers due to exposed latency for stores.
Kmeans, labyrinth, vacation. These applications show no major deviation in
performance as transactions either contribute little to the overall execution cycles
(e.g. kmeans) or the contention is low (e.g. vacation) or the cache performance is
good (labyrinth).
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6.5 Concluding Remarks
The design space of scalable HTM systems has been investigated heavily in recent
research. Yet, the quest for true optimism has been thwarted by the inherent
pessimisms in different TM policies. Traditional lazy designs are pessimistic when
they attempt to commit. Eager designs are pessimistic when they detect conflicts.
Information regarding conflicts is readily available in the coherence traffic gen-
erated during transaction execution, and it can be used to detect conflicts prior
to commit. If properly used, this information can enable a simple design which
supports parallel commits of non-conflicting transactions, while maintaining the
optimistic behaviour that allows lazy transactions to run-ahead, past conflicts.
Unfortunately, early work in this direction has reverted to pessimism in another
form and in a rather more critical scenario – namely, every fresh transactional
access to a cache line might be contended. As our evaluation has demonstrated
this degrades performance very substantially. The π-TM design described in
this chapter drops this pessimism in most scenarios, where it turns out to be
prudent to do so, resorting to a far milder form of pessimism that leaves the
common-case unburdened. The chapter presents strong evidence which supports
this claim. We also underline the importance of incorporating adaptability in
design to changing workload characteristics as a way to not only achieve higher
performance but also have a more robust system.
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Chapter 7
Implications of Store Buffering on
the Performance of HTM Systems

7.1 Introduction

HTM systems must ensure that speculative updates made in a transaction are not
visible to the rest of the system until it commits. The two approaches –eager or
lazy– to satisfy this property are reflected in the policies that control the version
and conflict management mechanisms, and this choice largely shapes the design.
On the one hand, lazy HTM systems often rely upon thread-private structures like
private caches to contain transactional writes, impeding speculatively modified
lines from being written back to shared levels of the cache hierarchy. The possible
future values are thus confined in local structures and cannot be observed outside
the scope of the transaction, while the current, consistent values stay accessible
to others in shared memory. On the other hand, eager HTM designs make their
speculative updates directly to shared memory (“in-place”) and then rely on the
coherence protocol to ensure their isolation. Prior to the speculative update, a
copy of the cache line is added to a private log so that memory can be restored
to a consistent state if data-races cause the abort of the transaction. The choice of
version management policy largely determines that of conflict resolution. Eager
versioning of writes necessitates eager resolution of conflicts, as races must be
detected and resolved on individual memory references, particularly before an
in-place shared memory update is attempted. Lazy versioning, however, allows
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conflict resolution to be either eagerly performed or deferred until a transaction
tries to commit.

Regardless of the choice of version management policy, modelling the effects
of store buffers is particularly important in HTM research. Modern processors
implement a variety of techniques to hide or tolerate the latency of memory
accesses, and structures such as store buffers are typically employed to improve
performance by allowing the processor to continue executing instructions with-
out having to wait until a write is complete. Data forwarding mechanisms are
implemented so that a load instruction can obtain its data from a store instruction
located in the store buffer, this is, before the written data is presented to the mem-
ory hierarchy. Because store buffers lay at the interface between processor and
memory subsystem, they naturally appear as a possible candidate for buffering
of speculative updates when it comes to supporting TM in silicon. After all, the
role of store buffers in out-of-order microarchitectures is to contain values until
they are no longer speculative, keeping them away from memory until they are
written to L1 cache on retirement of the store instructions.

Considering the presence of store buffers is indispensable when designing
and evaluating HTM systems that opt for eager policies of conflict resolution and
version management. Typically, eager HTMs detect conflicts when a processor
write is received by the cache hierarchy. The core waits for the result and takes
corrective action if a conflict is signalled. With store-buffering, the processor
can continue execution past a potentially conflicting update, a feature found
typically in lazy HTM designs. In fact, as private structures to the processor,
using the store buffers to confine transactionally modified data introduces a
degree of laziness in the system. Figure 7.1 depicts the store-buffering model
considered in this chapter. In spite of the significant impact of these latency-
hiding effects, most of the HTM literature does not quantify how store buffers
affect the overall peformance of eager systems [80, 81, 92, 93, 100, 137–139, 153].
While the influence of policy is important, the implications of store-buffering need
to be considered when evaluating the performance of eager HTM designs. In
this context, this chapter presents some insights related to the interplay between
buffering mechanisms, system policies and workload characteristics.

For lazy HTMs, coherent storing of speculative updates in private L1 caches
leads to inefficiencies due to cache pollution. Transactional workloads that exhibit
relatively high contention suffer frequent aborts that cause repeated invalidations
of speculatively modified lines in the private cache. This situation is aggravated in
coarse grained transactions, precisely the style of synchronization expected in TM
applications developed under the principles of programming ease claimed by the
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Figure 7.1: Store buffer model from this chapter.

TM paradigm. In such transactions with larger footprints, only a small fraction
of the write set exhibits contention, in general. Although a large portion of the
updated lines may not be shared or concurrently accessed by several threads, the
entire write set gets discarded by gang-invalidating all the speculatively modified
lines in cache. Consequently, a restarted transaction encounters costly private
cache misses for every first access to such self-invalidated lines. Buffering of
transactional updates before they reach the private cache can largely eliminate
these misses, preserving the privately cached copies in their consistent state. In
this way, only lines that are actually contended are invalidated upon the reception
of coherence messages initiated by a committing transaction.

Many lazy HTM designs also employ a write-back commit scheme that defers
the write-back of committed data to shared levels until the line is requested by
another cache, or a new transactional store targets the dirty line. This is required
for the shared levels of the cache hierarchy to be updated with the last committed
value for consistency, as well as to resume the discovery of data races with new
accessors through standard coherence invalidations. In low-contended workloads
with high probability of commit, such coherence downgrade and subsequent
upgrade actions are redundant and inherently pessimistic, as they penalize the
common, non-contended case in order to correctly handle the unlikely case of
abort. This penalty can be circumvented by buffering transactional updates
emitted by the processor before they reach the coherent private cache, much like
out-of-order processors only release values to memory on retirement of store
instructions. Using store buffers, speculative updates would be released to the
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coherent cache hierarchy only when a transaction attempts to commit, or when
the buffer overflows. If conveniently sized, such structure can contain most trans-
actional updates in the common case, significantly reducing redundant protocol
actions. Moreover, the idea of using store buffers for containing transactional
updates can also be extended to multilevel private cache hierarchies, in which
first-level caches do not need to maintain coherence on transactionally updated
lines.

In this chapter we demonstrate that in both eager and lazy conflict resolution
schemes, store-buffering can achieve noticeable reductions in transactional exe-
cution times due to the interplay of conditions described above. When suitably
modified for containment of transactional updates, store buffers can provide
significant reduction in HTM protocol overheads. This, in turn, results in a
contraction of the window of contention for concurrent transactions, possibly
amplifying performance gains even further. While the utility and ubiquity of
store buffers in standard microprocessors is well recognized, their use and impli-
cations in the context of HTM have not been studied in depth in prior work. This
chapter shows how store buffers impact transactional behaviour of a diverse set of
workloads. We quantify the performance gains and reductions in redundant work
and stall times achieved by store-buffering for several pertinent design points.
Our study of both eager and lazy HTM flavours notes remarkable convergence of
performance of different TM design policies when such structures are introduced
and used well to support the common case. Eager designs can achieve good
performance even under high contention scenarios. The performance of lazy
designs is also improved due to mitigation of unnecessary actions at transaction
commit or abort. With well-balanced store buffers of modest sizes, eager systems
are as good as or better than lazy designs, in contrast to previous studies that
show how lazy systems are able to utilize concurrency more efficiently and
hence perform better. Additionally, this chapter underlines the importance of
modeling standard processor structures accurately after applying straightforward
optimizations in order to support transactional memory more effectively. Not
doing so can result in measurements that are substantially different from what
might be seen in real-world implementations and, more importantly, can lead to
erroneous biases in favor of or against certain design options.
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7.2 Background

Store buffers have been implemented in commercial processors for many years
now. To cite only a few cases, the Alpha 21264 microprocessor had a 32-entry
buffer that held stores until their data was sent to the L1 cache on retirement [89].
The Sun UltraSPARC-IIi had a similar buffer as part of its load/store unit [98].
More recent architectures like the Intel Core i7, i5, i3 processors have buffers
of 32 entries, while Intel Core 2 Duo processors have 20 entries [37]. In-order
execution cores like those in the Sun UltraSPARC T2 (Niagara 2) [71, 130] also
include an 8-entry store buffer per thread to hide the latency of write misses and
bypass data to subsequent loads directly from the buffer [7].

HTM design point studies have so far been primarily concerned with the
impact of TM policies on performance. While the influence of policy is important,
the effects of common structural optimizations that are present at the interface
between the processing core and the memory system must also be taken into
account. In this context, the implications of store-buffering on HTM performance
and its interactions with the conflict detection mechanism have not been analyzed
in the literature so far. Therefore, this study on the impact of store-buffering in
HTM systems encompasses insights that apply to a large body of work done
on the topic. One common characteristic in most studies is that they do not
investigate different speculative buffering mechanisms which, as we show in
this chapter, can cause significant variation in key performance metrics. Indeed,
these buffers are absent or not clearly described in the vast majority of the HTM
literature, leading to an over-simplified interface of the memory subsystem with
the in-order processor model commonly assumed. Considering the sensitivity
of performance to the structural optimizations highlighted in this chapter, as-
cribing improvements in performance metrics to changes in policy or high level
protocol design is fraught with the risk of imprecision and oversimplification.
This is of particular importance in scalable network-on-chip hierarchies where
communication delays can be the major determinant of performance. This work
hence emphasizes the importance of accurate modeling when considering the
complex interaction of multithreaded code with synchronization mechanisms in
hardware.

The most natural approach for systems that manage speculative data lazily
is to use on chip private caches for buffering speculative data [9, 29, 33, 56, 96,
102, 107, 143]. This allows speculative and non-speculative data to dynamically
share the storage capacity available in each processor and provides support
for fast associative searches [53, 73, 127]. On abort, cache lines that have been
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speculatively written need to be invalidated. Each cache line generally augmented
with a speculatively modified (SM) bit that is set by transactional stores and cleared
on commit/abort. When a violation is detected, a gang-invalidation operation
over all SM lines can be done in a handful of cycles using inexpensive custom
circuitry [87], making the actions required to discard speculative state a trivial
operation for lazy HTMs.

The TCC proposal [55, 56] implements coherent buffering in a private cache,
but it proposes a write-through commit scheme that greatly simplifies its coher-
ence protocol. A committing transaction writes back all its speculative updates to
the shared memory hierarchy using bus-based global commit arbitration. While
commit data packets place important demands on bus bandwidth, no upgrades
or downgrades of dirty data occur since the shared levels always have the up-to-
date version of the last-committed data. Arguing that programmers or compilers
could give hints about local-only data, Hammond et al. explicitely removed
stack references from the generated traces that were fed to their simulator, with
the intent of reducing commit bandwidth since thread-local stores that do not
need to be broadcast nor snooped by other processors. However, this study
does not quantify the reduction in the amount of committed lines achieved by
filtering thread-local data. Moreover, speculative updates to local data must still
be buffered and discarded on abort, and they cause invalidations whose effects
in cache performance were not considered in such analysis.

A later refinement of TCC [29] provides a scalable commit algorithm which
allows for considerable parallelism in directory-based DSM systems. It works by
dividing the directory into several banks. Transactions can commit in parallel
if they do not observe directory bank conflicts. Commit sequence numbers are
assigned to prioritize transactions when such conflicts occur. In EazyHTM [143],
Tomic et al. describe an eager conflict detection design that commits transactions
lazily, utilizing directory coherence in MESI based systems. Both Scalable-TCC
and EazyHTM incorporate multilevel private caches that make overflows due
to the limited speculative buffering hardware quite an unlikely situation [34].
While several mechanisms have been proposed to handle transactions of any
size [33, 107], the use of large private L2 caches for tracking transactional state
makes these overflows a rather uncommon case. In these designs that support
write-back commit [29, 143], standard invalidation-based coherence protocols are
leveraged so that dirty lines are allowed to be privately cached, thus reducing the
bandwidth requirements of commit. Negi et al. developed a broadcast-based lazy
commit protocol in [96] that eliminates the need for write-backs or cache-line
invalidation messaging at commit. However, none of these proposals quantifies
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the effects of misses on restarted transactions due to cache pollution, nor the
increased commit latencies and traffic caused by redundant downgrade/upgrade
coherence actions for thread-local or non-actively shared data written during a
transaction.

LogTM [153] describes a protocol where transactional stores update memory
in-place and store old values on the side, using a per-thread log in virtual memory
that is unrolled by a software abort handler in case of abort. The design leverages
coherence to implement conflict resolution and isolation. Later refinements of this
protocol include support for nesting [93] and Bloom filters that ease virtualization
of transactions [153]. One common characteristic in these proposals is that they
do not investigate the interplay of in-place speculative writes and store buffers,
and are thus oblivious to the performance implications of their latency-hiding
effects, which as we show in this chapter, can cause significant variation.

Bobba et al. [22] identify and analyze several pathologies that cause perfor-
mance differences between three HTM systems that explore different points of
the design space. One of the modelled systems, referred to as LL, uses both lazy
version management and lazy conflict resolution, and relies upon an indepen-
dent store buffer of unlimited size that contains all speculative updates until the
transaction commits. Therefore, LL does not suffer from cache contamination,
nor redundant coherence actions at commit time due to write-backs of dirty lines
targeted by transactional stores. The paper compares the performance of LL
against that of a purely eager system (EE), similar LogTM-SE [153]. However,
the modelled EE system does not include a store buffer, so that write misses
stall the execution until the line is fetched with the appropriate permissions.
In contrast to EE, stores in their LL system are always single cycle instructions.
While the authors do not attempt to determine which of these systems is best,
but rather seek to identify pathological execution behaviours, the inexistence of
a store buffer penalizes the eager design and results in an biased performance
comparison of design policies.

In [149], Waliullah et. al coin the term contamination miss as those cache misses
encountered by restarted transactions after a speculatively modified line was
gang-invalidated on the preceding abort. This study evalutes the frequency of
contamination misses as well as the loss in performance caused by this new class
of cache misses, yet it does not explore the opportunities presented by standard
store buffers to filter the amount of transactional updates that are received by the
private cache. In fact, systems that manage speculative data lazily using private
caches must have a mechanism for collecting all of its modified cache lines that
need publication. This can implemented as a FIFO address buffer that maintains
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a list of the line tags whose SM bit is set [29], though it is also possible to reuse
an existing structure such as the store buffer to maintain both data and addresses
completely separated from cache for those transactions whose footprint does not
exceed its capacity.

Shriraman et al. [121] performed a comparative study of contention manage-
ment policies in a hybrid FlexTM [122] based design. This study claims that
systems lazy contention management achieves higher performance better than
those with eager management. We would like to emphasize that conflict resolu-
tion policy is a factor that contributes towards overall HTM system performance
but it is not the sole one. Effective management of updates in store buffers can
tip the scales.

Sanyal et al. [117] proposed schemes, involving both paging hardware and
the operating system, to manage thread-local data separately to ease the burden
on speculative versioning mechanisms. In this work, store buffers can achieve
similar effects when they are large enough to capture most updates. Caches
are not contaminated by speculative updates and commits and aborts do not
penalize accesses to thread local data. Dahlgren et al. [40] analyzed the efficacy of
write caches in parallel architectures supporting relaxed consistency models and
demonstrated major improvements in miss penalties associated with coherence
misses. While the study is not directly related to TM, the results therein suggest
that transactional semantics permit flexibility in handling updates issued within
atomic code blocks.

7.3 Buffering speculative updates in L1 caches

This section discusses how speculative updates are buffered in coherent caches.
We look at both lazy and eager designs. Lazy designs need discussion since
they require modest deviations from the way coherence protocols typically
work. Eager designs do not require behavioural changes in the protocols to
support transactional updates but such updates have performance implications,
nevertheless.

7.3.1 Lazy HTMs

For lazy HTMs, the utilization of first-level caches as speculative store buffers
is a popular strategy, as private caches make a good place to maintain the
transactional bookkeeping information necessitated for conflict detection, and
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they generally have enough capacity and associativity to contain speculative
updates, in the common case. Furthermore, using private caches for transactional
buffering allows cache coherence protocols to be leveraged for the detection
of data races at the granularity of cache lines. To do so, however, requires
certain protocol actions be taken, actions that incur a cost in terms of latency
when they are performed, as well as the possibility of having to revert their
effect in the future. Since lazy HTMs must allow for the existence of multiple
uncommitted versions of the same data written by different transactions, utilizing
the private cache for buffering introduces a degree of incoherency in the memory
hierarchy. While multiple speculatively modified lines can coexist in different
private caches, the coherence protocol treats all such copies as sharers of the
last consistent state of the cache line, which is kept in the shared levels. When
a transaction attempts to commit and makes its updates globally visible, any
other transaction that has read such data must violate and abort. Committing
generally entails the acquisition of exclusive ownership over all lines in the write
set of a transaction. The coherence protocol ensures that all other shared copies
of the line are invalidated, and all other transactional accessors leverage these
invalidations to detect races and abort.

Downgrade misses. Rather than using a write-through approach to the
publication of values [56] at commit time, many lazy HTM designs employ a
write-back commit scheme that allows committed values to remain in private cache
after the transaction finished [22, 27, 29, 102, 143]. Although new values become
globally accessible once commit is complete, their write-back to shared levels is
deferred until one of two events occur: i) when the line is requested by another
cache, in which case a copy of the dirty line is sent to the directory besides
the cache-to-cache transfer –usual behaviour of the coherence protocol–; or ii)
when a new transactional store targets the dirty (or exclusively owned) line. In
the latter case, the coherence protocol must be explicitely adapted to support
lazy versioning, as a downgrade to shared state with a possible write-back of
dirty data is needed, for two important reasons. First, the shared levels of the
cache hierarchy must be updated with the last committed value for consistency,
and second, the discovery of data races with new accessors through standard
coherence invalidations must be resumed. In scenarios of low contention, where
the probability that a transaction will commit without aborting is high, such
coherence actions to enable conflict detection are redundant. In fact, it is quite
likely that, due to locality of reference, transactional updates hit lines that are
already dirty or exclusively owned by the private cache. Therefore, downgrading
these lines to shared state to correctly handle the unlikely case when a conflict
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might be seen on the lines is inherently pessimistic and penalizes the common,
non-contended case.

To buffer speculative data in private caches, per-cache line meta-data is
augmented with two bits, SR and SM, which indicate whether a line has been
speculatively read or speculatively modified, respectively. During the course
of execution of a transaction, writes appear as reads to the coherence protocol.
In order to preserve its last globally consistent value, a dirty (non-speculative)
line is written back to the shared memory hierarchy prior to the first speculative
update to it in a transaction, resulting in a downgrade of its coherence state from
M to S. Commits commonly imply acquisition of ownership over all lines with
SM set, while aborts imply invalidation of all such lines.

Figure 7.2: Downgrade miss: Redundant cache-state changes when a transaction
eventually commits.

Let us now consider the case presented in Figure 7.2. A line that is only
written by one transaction (it is either thread-private or not actively shared in
the current phase of the workload) might, in the steady state, be found with
high probability in M state in the private cache. To preserve the old content of
the line in the absence of non-coherent store-buffering, it must be written back
prior to the write, resulting in a transition to S, as shown in Figure 7.2 (step 9).
On commit we need to reacquire exclusive ownership to the line. Since such
a line will not have any sharers, this work (M−→S and S−→M) to ensure no
races exist is largely redundant. We refer to such events where unnecessary
work prolongs the commit phase of a transaction as a downgrade miss. Coarse
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grained transactions that have a relatively large fraction of the write set as private
data (stack, thread-local storage) are expected to show the most degradation
in performance. In Section 7.5 we examine in detail the impact of downgrade
misses and see that for some applications their elimination results in a significant
contraction of commit delays.

Downgrade misses could be avoided if speculative writes to E lines (clean)
were allowed, as the shared cache levels still retain the last committed value.
However, the changes in the coherence protocol to support speculative writes
to exclusively owned cache lines are rather complex: First, the exclusive owner
(speculative writer) would not be able to respond with a copy of the consistent
data upon a forwarded shared request from a new reader; the usual cache-
to-cache transfer in this case would need to be replaced with a more artificial
behaviour in which the requested data is supplied by the shared level and the
line is downgraded to shared by the exclusive owner. A second drawback of
this approach is that gang-invalidation of speculatively modified lines would no
longer be possible, as silent invalidations of E lines would leave the directory in
inconsistent state.

Contamination misses. In highly-contended scenarios, frequent aborts cause
repeated invalidations of speculatively modified lines in the private cache. Figure
7.3 depicts this case: A transaction speculatively updates a non-contended line
present in its cache and then aborts. The line would not be found in the private
cache on re-execution as all lines in the write-set have now been invalidated. Such
misses are referred to as contamination misses [149]. Workloads with large write
sets and high contention over small amounts of shared data would experience the
greatest drop in private cache hit rates. As Section 7.5 will show, elimination of
contamination misses using store buffers results in a marked overall improvement
in private cache hit rates.

Write-write conflicts. Lazy HTM systems possess the ability to overcome
write-write conflicts when speculative updates are performed in non-coherent
buffers. Multiple speculatively modified versions of the same data element
can exist in different transactions, and if no other races exist, transactions can
commit one after another, freely overwriting previously modified data in a
clearly sequenced manner, thus handling write-after-write dependencies in a
legal way. Unfortunately, this inherent property of lazy versioning is lost when
coherent caches are used for buffering speculative updates in invalidation-based
coherence protocols. Despite the fact that write-write conflicts are not true data
dependencies, transactions must violate and invalidate the conflicting cache lines.
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Figure 7.3: Contamination miss: Invalidations that could be avoided using a store
buffer.

7.3.2 Eager HTMs

Eager HTMs do not require special coherence actions to be taken when updating
lines. Yet, they require the old value of the line to be preserved in a special
undo-log, a part of which may exist as a hardware structure in the private cache
and a part implemented as a data structure in virtual memory. In the architectural
setup for this study, the cache has a small 8-cache-line old-value-buffer (OVB).
Overflows from the OVB are accommodated in the software log.

Before a transactional write can be performed, exclusive ownership permission
on the target cache line is required. Thus, for shared or absent cache lines the
write must be buffered in the standard miss state handling mechanism, MSHR. If
the old-value logging operation misses in the OVB an update to the software log
must also be initiated which can result in a second in-flight access being added
to the MSHR. The old value of the line must be preserved till the software-log
cache line is allocated in the cache. If a race with another transaction causes a
coherence request to be retried, the request can sit in the MSHR being sent out
periodically into the network.

Thus, it can be observed that a number of actions that operate on entire cache
lines may be invoked when a transactional store hits the coherent cache hierarchy
resulting in increased cache controller usage, traffic and even stalls when stores
are bursty.
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7.4 Use of store buffers

Store buffers are widely used in modern processors in order to hide latency for
completing updates to memory, effectively avoiding stalls when write misses are
encountered. If conveniently sized, the store buffer can contain most transactional
updates in the common case, significantly reducing redundant protocol actions.
The concept of store buffers can be extended to multilevel private cache hierar-
chies, in which first-level caches need not maintain coherence on transactionally
updated lines.

Private caches are present primarily to keep frequently used data close to
the processor core. Their use in buffering uncommitted data should be made
conservatively. Write-buffers between the core and the coherent first-level cache
can be used to prevent transactional updates from polluting the coherent cache
hierarchy. The idea can also be extended to inclusive two-level private caching
schemes, wherein the first-level private cache can be made non-coherent when
handling transactional updates.

This can be incorporated very simply into the design by capturing writes is-
sued by the processor and then releasing those to the private cache in a controlled
manner. In a lazy HTM, writes would be captured throughout the execution of a
transaction or as long as buffer capacity is not exceeded. On commit, the buffer
would be flushed causing all writes to enter the memory hierarchy as quickly as
possible. On abort, the buffer contents would simply be discarded. In an eager
HTM, such a buffer would obviously also participate in any store forwarding
mechanism. In fact, existing store-buffering schemes could be suitably modified
to enable such functionality.

It can be observed quite easily that unnecessary switches in coherence state
and invalidations of aborts can be completely eliminated if write-sets are fully
contained in store buffers. Since speculative data can be recorded in the store
buffer, we can eliminate write-backs and downgrades of M lines to shared (S)
state. On commit, since the line would likely be present in the cache in the
M state, it can simply be written into the private cache without any coherence
action. An abort results in the speculative contents inside the store buffer to
be discarded. No cache lines need invalidation and, thus, the transaction on
re-execution would still find such lines in the private cache. Writes contained
in the store buffer can be probed for cache-hits and if they are not found in the
cache a non-exclusive prefetch can be made. This is done in the expectation that
a long latency write-miss at commit can now be converted to a potentially less
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costly upgrade-to-exclusive request. Later in this study, we find that doing so
improves performance in most cases.

Eager HTMs also benefit from the reduction in the number of contamination
misses. Buffered writes can then be released in a controlled manner into the
private cache depending on the drainage policy. An in-place update in shared
memory is attempted in a non-blocking manner while the processor continues
to run ahead. Logging of old values in the undo-log as necessitated by eager
versioning is also taken out of the critical path. In case a conflict exists, the request
can be retried in the background while execution of the transaction continues.
Thus, transactional writes never stall execution on the core. They also benefit
from the largely hidden latencies for eager conflict detection on stores. When
executing transactions, there are several choices for store-buffer behaviour. This
relate to how buffered writes are drained into the coherent memory hierarchy.
We define immediate draining as issuance of the update into the coherent hierarchy
as soon as possible after the write has been buffered. Deferred draining delays the
issue till a later point in the execution of the transaction. This could be based on
criteria like the fraction of used entries in the store buffer being greater than a
certain threshold.

Another benefit of having store buffers is reduction in the number of write-
write conflicts, which are purely an artifact of using coherence messages to detect
modifications to (possibly different parts of) the same cache line. Confinement
of writes until commit avoids contamination of cache lines and hence result
in no ambiguities when the final cache line update occurs. Since store buffers
maintain the association between values and their exact addresses at word or byte
level-granularity, it is possible for two concurrent writer transactions to commit
one after another, subsequently merging their respective updates onto the same
cache line. In fact, store-buffering makes transactions appear as non-transactional
accessors for their write-only lines, so that coherence invalidations to such lines
are acknowledged without causing violations. The cache, when it does not buffer
any speculative updates, only records the read set of a transaction. Hence any
invalidations resulting from transaction commits result in aborts only when there
is a possible true data race –the write set of the committer conflicts with the read
set of the other– though the detection at the granularity of cache lines can still
provoke unnecessary aborts due to reader-writer false sharing.
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Table 7.1: Store buffer configurations.

Lazy
infWB infinite store buffer
noWB no store buffer
realWB finite store buffer
realWB_pf finite store buffer

with prefetch
realWB_pf_pc finite store buffer

with prefetch and parallel commit-time
write-set acquisition

Eager
EE_base GEMS baseline
EE_lw GEMS baseline

with lingering write optimization
EE_infWB infinite store buffer
EE_realWB_DD finite store buffer

with deferred draining
EE_realWB_ID finite store buffer

with immediate draining

7.5 Evaluation

In this section, we evaluate performance implications of both buffering in coherent
caches and store-buffering in several pertinent HTM design points.
Lazy designs. The lazy HTM system modeled in this evaluation is an extension of
the lazy system considered by Bobba et al. [22], available in the GEMS v2.1 release.
While Bobba’s LL system models a private, per processor infinite store buffer,
for this study we extended the simulator to precisely model finite buffering for
transactional writes. We limited the capacity of the non-coherent store buffer, so
that once it fills up, transactional stores happen in the private data cache. Unlike
writes to the L1 cache, which need the line present in cache to be able to complete,
writes to the store buffer allow the core to execute ahead. A non-blocking prefetch-
read for the line is sent to the L2 cache if the line is absent in the L1 cache. We
modified the replacement policy of the L1 data cache by giving the highest priority
to speculatively written lines, in order to minimize the number of transactional
overflows when executing large transactions. Nonetheless, we incorporate a
speculative victim buffer to avoid serialization penalty due to limited buffering
capacity, similarly to [22]. In our simulations only yada experiences a few such
evictions and a small victim buffer with 8 entries proves sufficient. We use an
ideal bookkeeping scheme to track read sets (perfect signatures) even when some
speculatively read lines have been evicted, in an attempt to isolate our study
from the effects of false conflicts arising from non-ideal signature schemes like
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bloom filters. A simple commit token algorithm is used to serialize transaction
commits: Transactions arbitrate for the token using a zero-latency broadcast bus.
Once the token is acquired, a transaction enters the commit phase and issues
coherence requests to gain exclusive ownership over all lines in its write set.
We later present results for the five lazy HTM configurations listed in Table 7.1.
Finite store buffers are 128 bytes in size and have word (32bit) granularity. The
last two configurations attempt non-exclusive prefetches on cache lines targeted
by writes if not already present in the cache. These prefetches do not block
execution on the core and are done in the expectation that it will help reduce the
quantity of data transferred at commit time. To perform a fair comparison with
eager HTM designs (Section 7.5.3), realWB_pf_pc attempts to speed up commits
by parallelizing issuance of writes into the coherent hierarchy at commit time.
Eager designs. The eager design is based on Log-TM [153]. We have introduced
a simple lingering-write optimization (referred to as EE_lw) in the basic eager
implementation. If writes are pending when a transaction aborts they are silenced
and completed in background, perhaps even after the transaction has restarted.
In fact, the in-flight access (i.e. the lingering write) often proves useful bringing
in data required during re-execution. This has two benefits: first, the silenced
write acts like an exclusive prefetch, and second, the transaction can now restart
earlier and has a better chance to use the cache line before it is invalidated due to
contention. This provides a significant boost in performance when contention
is high and transactions are small. This simple optimization results in a fairer
comparison of policies and effects of other structures. We felt it would be useful
for readers to see how this compares to the basic protocol available with GEMS.
Hence, results for eager HTMs also include the GEMS reference implementation
(EE_base).

The baseline system is then augmented with a finite store buffer. Transactional
execution on a core is now not stalled when an update requires coherence actions.
It is simply buffered in the store buffer. In contrast to lazy designs, where we
attempt to keep writes in the buffer for as long as possible, the eager design
drains buffered writes into the coherent hierarchy at some point before commit.
We model two configurations: EE_realWB_ID which implements immediate
draining, and EE_realWB_DD which implements deferred draining. Immediate
draining involves issuing writes into the buffer as soon as possible. Deferred
draining attempts to keep writes in the buffer until 80% of the buffer fills up. To
implement a limit study, we also model a configuration with an infinite store
buffer (EE_infWB) that does not drain until a transaction attempts to commit.
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7.5.1 Lazy HTM Results

In this section, we analyze the impact of the four buffering schemes with lazy
conflict resolution described earlier and quantify the effectiveness of store buffers
in improving cache performance and reducing the number of coherence actions
required on commit. Figure 7.4 shows the average miss rate of L1 data caches for
each STAMP benchmark. A dedicated store buffer reduces miss rate for almost
every benchmark. In Figure 7.5, we present the number of contamination misses
suffered on average by a transaction that restarted at least once. The same plot
also shows the average number of downgrade misses per committed transaction.
We see reductions in both metrics when buffer sizes are large enough to contain
most of the writes.
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Figure 7.4: Lazy design points: L1 data cache miss rates.

Figure 7.6 shows the execution time breakdown of all applications, normalized
to the execution time of the configuration with no store buffer, running 16 threads.
The execution time is broken down into eight components – barrier is a measure of
the time spent waiting at barriers; non-txnal corresponds to the number of cycles
spent executing non-transactional code; tx-useful and tx-aborted represent cycles
spent in transactional execution, split into useful and aborted cycles, respectively;
stall is the time a transaction spent stalled in a data access, because such data was
in the write set of a committing transaction; backoff represents the wait before
an aborted transaction restarts, determined using a linear-backoff algorithm;
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Figure 7.5: Lazy design points: Downgrade and contamination misses.

arbitration and acquisition represent the overheads experienced at commit time,
due to arbitration for the commit token and acquisition of exclusive ownership
over modified lines, respectively. The figure shows a consistent improvement in
performance when store buffers are present. Figure 7.7 zooms in on the commit
overheads, represented by the sum of cycles spent arbitrating for commit and
acquisition of the write set, imposed by various configurations.
Genome. This workload runs high contention transactions in its first phase.
Store buffers prove sufficient and are able to substantially mitigate contamination
misses, resulting in substantial improvements in L1 performance (seen in Figure
7.4). In the latter phases, contention is relatively low and reductions in downgrade
misses (see Figure 7.5) provide further performance boost. Prefetching lines
targeted by buffered speculative writes (realWB_pf ) also yields substantial benefits
(8-10%) by overlapping latency for data transfer with useful execution.
Intruder. The improvement in L1 cache performance is the most significant in
intruder – an application with high contention, a large number of transactions
and a medium-sized write set (about 50 bytes spread across 6 cache lines on
average for its main transaction). Here, the impact of contamination in the
private cache due to speculative writes is considerable. As described in Section
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7.4, repeated aborts cause invalidations of speculatively dirty data, which then
result in misses when the transaction re-executes. Figure 7.5 clearly shows the
number of contamination misses suffered by restarted transactions is significant
in intruder, with an average of 10 such misses until a (perhaps repeatedly)
restarted transaction eventually commits. This causes severe degradation in the
L1 cache miss rate. The use of a store buffer completely eliminates contamination
misses for this application, and effectively reduces its cache miss rate by 40%,
as shown in Figure 7.4, for both configurations with speculative store-buffering
enabled. The improvement in L1 cache performance shortens the duration of the
transaction and thus reduces its probability of conflicting with other concurrent
transactions. The nett effect is a substantial decrease of the number of aborted
transactions (from almost 14000 in noWB to around 12200 in realWB/idealWB).
This explains reductions in both tx-aborted and backoff components of the total
execution time.
Kmeans. This application spends little time executing transactions. Moreover
these transactions are tiny and behavioural variations between different config-
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urations do not substantially impact performance. Nevertheless, store buffers
achieve minor reductions in the number of contamination misses (see Figure7.5).
Labyrinth. In this benchmark, each thread replicates the global grid into its
thread-local memory, and then applies Lee’s routing algorithm on a local grid.
Every time a thread creates a copy of the global grid, the cache lines that contain
the local grid are likely to be still in modified state since the last commit, and thus
must be written back to the L2 as well as downgraded to shared state before being
speculatively modified again. At commit time, the writes to the local grid are
indistinguishable from those to the global structure, and hence result in a large
number of redundant coherence requests. Transactions here have extremely large
write sets running to several hundred cache lines. Finite buffers prove insufficient
and execution times remain largely independent of buffering configurations.
The same trend is seen in L1 cache performance and the number of abort and
downgrade misses. The idealized infinite store buffer configuration coupled with
extremely high L1 hit rate significantly reduces commit and arbitration delays as
seen in Figure 7.7.
SSCA2. This workload has a very large number of predominantly non-conflicting
tiny transactions that stress commit bandwidth. Thus, configurations that are
able to reduce communication at commit time perform far better (30%) . Since
contention is low, prefetching lines that would eventually be updated at commit
improves performance significantly (realWB_pf in Figure 7.6). Here, noWB

Figure 7.7: Lazy design points: Commit and arbitration delays.
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configuration is interesting too since it effectively behaves like the prefetch
configuration, reading in lines that would be eventually written.
Vacation. This workload shows little contention. Small improvements in per-
formance can be noticed due to reductions in abort and downgrade misses.
Prefetching also provides marginal improvements in performance.
Yada. Yada exhibits a high degree of cache contamination in the configuration
with coherent buffering, with 92 contamination misses per each commit of a
restarted transaction. However, its very large write set (60 cache lines on average
for its main transaction, with 2124 bytes written) makes it impossible for the
128-byte store buffer configuration to contain any substantial number of writes.
Yet, it can be seen that infWB and realWB configurations perform better than
others. This is because they are able to avoid, to a certain extent, interference
when write-write conflicts exist.

7.5.2 Eager HTM Results

Figure 7.8 compares execution times of the five eager configurations listed in Table
7.1. The first four components are as described earlier; stall_useful represents stalls
in cases when the transaction commits without aborting after the stall is released;
stall_aborted represents stalls in cases when the stalled transaction eventually
aborted; rollback represents cycles spent in restoring old values upon abort. The
figure shows store-buffering, and immediate draining in particular, improves
performance significantly. Figure 7.9 presents a breakdown of transactional cycles
spent waiting for memory accesses to complete. We discuss below important
insights for each benchmark gathered from the data.
Genome. The early high contention phase in genome benefits from store-
buffering. Transactions in this phase are relatively small so the size of the
buffer does not matter much. Infinite buffering and deferred draining show
marginal improvements over immediate draining (see Figure 7.8). This is indica-
tive of useful run-ahead execution past conflicts allowing readers to complete
without stalling. An overall speedup of about 7% over the baseline is seen.
Intruder. This application benefits the most (more than 50% for intruder+) from
introduction of store-buffering with immediate draining (Figure 7.8). This is
because conflicts are detected early resulting in stalls and consequently less
demand for otherwise highly contended shared memory resources. Furthermore,
immediate draining of writes behaves like prefetch of non-contended data. De-
ferred draining (and the infinite buffering case) causes injection of a lot of traffic
into the network when transactions commit. This chokes directory resources and
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Figure 7.8: Eager design points: execution time breakdown

is unproductive since a large number of concurrently running transactions are
conflicting. The overall impact of reduction in transactional execution time with
immediate draining is magnified as it results in a contraction of the window of
contention leading to greater concurrency. Cache performance is significantly
better too (see Figure 7.9). The lingering write optimization (EE_lw) also shows
significant improvements (20% for intruder and 38% for intruder+) over the
GEMS baseline implementation. Lingering writes are often re-activated when the
restared transaction performs a new write to the same location, and in some cases
effectively obtains lines in exclusive mode for transactional read-modify-write
operations to complete successfully.
Kmeans. The application (both high and low contention variants) shows no major
differences in execution time across different configurations. Transactions are tiny
and most of the application is non-transactional. Minor (3%) degradation is seen
with an infinite buffer or a finite deferred draining buffer when contention is
high. This is because of the lighter commit time operations due to prefetch effects
of immediate draining and reduced demands on directory banks at commit time.
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Figure 7.9: Eager design points: transactional time breakdown

Labyrinth. Finite buffering proves inadequate in this case. Deferred draining
and infinite buffering manage to avoid unnecessary interference during execution
time by mitigating write-write conflicts, achieving speedups of about 8-12%,
partly because commits are typically fast due to the good cache performance over
its write set (see Figure 7.9).
SSCA2. Eager designs in general perform well for SSCA2 because of extremely
low contention and high demands on commit bandwidth. Nevertheless, store-
buffering manages to hide store latencies (Figure 7.9 shows 50% reduction in
store miss times) and provides a 5% improvement that is consistent across all
three buffering configurations. Prefetch effects of immediate draining are not
visible because of tiny transactions.
Vacation. Its behaviour is similar to that of SSCA2, with the exception that
transactions are larger and fewer, and do not stress the system much. Write-
buffering obtains marginal improvements (2-3%) in execution times, shown in
Figure 7.8.
Yada. Yada, like intruder, also shows significant improvements (30%) when
store buffers are introduced. However unlike intruder, yada exhibits a significant
number of write-write conflicts. These are hidden entirely in the infinite buffering
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configuration and to a smaller extent in the deferred draining configuration.
Thus, these configurations perform 4-8% better than the immediate draining
configuration.

7.5.3 Eager vs. Lazy: Relative performance

Figure 7.10 compares the performance of three finite buffering configurations
– EE_realWB_ID, LL_realWB_pf and LL_realWB_pf_pc –. Overall we notice a
leveling out of performance. These configurations are the best performing ones
for each policy. Results in several previous studies consistently favor lazy designs.
Here, we show that with the right buffering mechanisms, which are not related
to TM policies at all, there is an equalization of performance. Lazy systems are
still better in a highly contended application like intruder (by about 35%), but
this is offset by significantly better performance by the eager design for SSCA2
(20-35% better). The eager design also shows substantial speedups over lazy for
yada (12-22%). Overall, we see that the eager design performs as well as the
lazy ones. This key insight highlights the importance of store-buffering in HTM
systems, and shows that it is as important a consideration in HTM design as
conflict resolution policy.
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Figure 7.10: Policy performance comparison: eager vs. lazy
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7.6 Concluding Remarks
In this chapter we have described and analyzed the inefficiencies that can be
caused by buffering of speculative writes in coherent structures like private
caches. While we do not recommend exclusive use of store buffers for managing
transactional data as area and power restrictions may severely limit its utility, the
importance of having such buffering to support the common case efficiently has
been underlined. The performance impact of store-buffering has been quantified
and shown to yield significant improvements in the set of benchmarks analyzed
here. The expectation is that TM programming constructs would eventually
enable workloads with coarse grained transactions, where non-contended data
could be written along with actively contended data. Without appropriate
store buffer support, in high contention scenarios contamination misses would
result in significant degradation of cache performance in both eager and lazy
designs. Under low contention but high commit throughput scenarios downgrade
misses might result in substantial slowdowns in lazy designs due to prolonged
arbitration. Moreover, when store buffers are present eager designs benefit
both from the capability to hide store latencies and reduced logging actions.
Shortened transactional execution times reduce the window of contention and
improve overall performance. Another interesting insight is that store buffers
bridge the performance gap between eager and lazy designs when contention
is high, thereby indicating possible routes for the development of a general
purpose, low complexity, high performance HTM architecture. We hope this will
serve as a useful guide to architects planning to integrate hardware support for
transactional memory in their designs.
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Chapter 8
Conclusions and Future Ways

8.1 Conclusions

Transactional Memory is a novel programming paradigm that addresses some of
the key challenges associated with concurrent programming. The performance of
sequential applications can no longer be expected to improve as we have grown
used to in the past decades, and programmers must consider parallel algorithms
as the most viable alternative to speed up their codes and solve ever more complex
tasks in reasonable execution times. In this context, transactions are an intuitive
abstraction that promises to simplify the way multiple threads synchronize their
accesses to data in a shared-memory environment. Software implementations
of TM impose significant performance overheads, thereby making the design
of high-performance HTM implementations necessary. In this thesis we have
investigated hardware techniques to incorporate TM support onto a tiled CMP
substrate. We have identified several inefficiencies that affect state-of-the-art HTM
designs, considering both eager and lazy approaches. We have found important
sources of overhead that are inherent to each policy, and we have proposed new
solutions that overcome such limitations.

The first conclusion inferred from this thesis is that no fixed-policy design
performs the best across the spectrum of transactional benchmarks that are
available. In response, this thesis presented a case for an adaptable, hybrid-
policy hardware transactional memory system, arguing that if transactional
memory is going to become a mainstream model, then it would require hardware
solutions that are capable of sidestepping pathological conditions and provide
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robust performance over a variety of transactional workloads. The ZEBRA
HTM design embodies the main contribution of this thesis. ZEBRA adapts its
behaviour depending on the characteristics of the data accessed by transactions,
providing significant gains in performance over existing designs, by combining
the advantages of both eager and lazy approaches in a low complexity design.
In this work we have outlined a fresh approach to hybrid-policy HTM design
that views contention as a characteristic of the data accessed within a transaction,
rather than of the transaction itself. From our observation that contended data
forms a relatively small fraction of data written inside transactions, we conclude
that purely lazy designs do not efficiently handle commit if they treat all the data
as having the same characteristics. Similarly, no purely eager design can perform
well if highly contended data is treated just like non-contended or private data,
due to the inherent concurrency limitations of a-priori resource acquisition. This
thesis proposes the techniques that manage to bring together the good aspects
of both eager and lazy designs with very modest changes in architecture and
protocol: ZEBRA supports parallel commits for transactions that do not access
contended data and allows reader-writer concurrency when contention is seen.
We have shown that ZEBRA utilizes concurrency better and consistently tracks
or outperforms the best performing scalable single-policy design.

In spite of the advantages of a hybrid-policy solution, the hardware require-
ments of ZEBRA are considerable, as it combines in the same design both logging
and in-cache versioning support. For that reason, this thesis has also focused on
addressing performance limiting factors that affect fixed policy designs, whose
implementation demands are lower than those of a hybrid scheme. In this thesis,
we have presented a new approach to conflict detection targeted to eager TM
systems which make use of a distributed directory. We have demonstrated that
the directory becomes a bottleneck in situations of high contention by limit-
ing the throughput of the conflict management mechanism. To this end, we
have proposed a design that decouples such basic TM mechanism from cache
coherence, enabling quicker reaction and lower penalties in highly-contended
workloads. Our experimental evaluation has shown that our technique deals
with contention more efficiently, leading to fewer aborts, lower overall latency of
cache misses and better use of the interconnect. We have found that our scheme
reduces the performance degradation caused by false positives, when compared
against systems that use signatures of equivalent hardware cost at the cache level.
While this technique does not completely bridge the gap between eager and lazy
systems for contended workloads, it does represent a considerable palliation of
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the inefficiencies caused by the eager approach in the context of a tiled CMP with
distributed directory coherence.

In this thesis we have also investigated the design space of lazy scalable HTM
systems. We have come to acknowledge that the lazy approach is most efficient at
extracting concurrency during contention, but their scalability in low contended
scenarios heavily depends on the ability to commit non-conflicting transactions in
parallel. When implemented on a coherent CMP substrate, information regarding
conflicts is readily available and, if used well, can lead to a design which comes
close to achieving the best of both worlds –parallel commits with optimistic lazy
run-ahead past conflicts–. We have discovered that this idea, while it has the
potential to improve the scalability of commits, it has not been utilized effectively
so far. Enabling parallel lazy commits in hardware requires correct handling
of all possible interleavings of transactions, and we observed that early work
in this direction reverted to pessimism in another form so as to provide correct
semantics in the event of some races. Our work in this topic manages to drop
this pessimism in most scenarios, resorting to a far milder form that leaves the
common-case unburdened. The conclusion that we draw from this work is that a
lazy HTM implementation should ideally perform some kind of eager conflict
detection –in order to record data races while the transaction progresses–, but
it must leverage the information contained in coherence requests properly to
successfully alleviate the pressure on the commit phase without encumbering
transactional execution in the common case.

Another relevant conclusion that we arrive at with this thesis is that the
performance implications of store-buffering have been underestimated in prior
HTM research. With our work, we have demonstrated that store-buffering can
achieve noticeable performance improvements in transactional execution times
by reducing HTM protocol overheads. While the utility and ubiquity of store
buffers in standard microprocessors is well recognized, we believe their use and
implications in the context of HTM have not been carefully considered in prior
work. We find particularly interesting the remarkable performance convergence
of eager and lazy TM design policies when such buffers are introduced. With
store buffers, eager designs can achieve good performance even under high
contention scenarios, while the performance of lazy designs is also improved
due to mitigation of unnecessary actions at transaction commit or abort. Our
work clearly reveals that obviating this common structural optimization from a
simulated HTM model can result in measurements that are substantially different
from what might be seen in real-world implementations and, more importantly,
can lead to erroneous biases in favour of or against certain design options. In fact,
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our in-depth study of the conflict detection mechanism in tiled CMPs further
demonstrated that the poor performance exhibited by eager HTM systems is in
partly due to the bottleneck formed at the directory. We conclude that coupling
coherence and conflict detection mechanisms in a directory protocol, while it
constitutes a natural and straightforward solution to detect data races, it is
susceptible to pathological situations that badly hurt eager HTM performance
during contention.

8.2 Future Ways
The results presented in this thesis open a number of interesting new research
paths. Amongst them, we have identified the following:

In regards to the hardware requirements of a hybrid-policy HTM design, we
find that they could be minimized by relying exclusively on the inherent
versioning capabilities of private caches, eliminating the logging circuitry.
This could enable a best-effort system that results more appealing to ar-
chitects, yet it is able to combine both eager and lazy approaches at a
cache-line granularity to simultaneously achieve parallel lazy commits and
instantaneous eager aborts [80], without a departure in terms of complexity.

We want to explore the implementation of the conflict detection mechanisms
using other novel cache coherence protocols for tiled CMP [113]. Better
coherence mechanisms may be able to mitigate the impact of high contention
on eager HTM performance. Direct coherence is a promising technique that
effectively avoids the indirection problems of a directory protocol. The idea
of adding an L1 coherence cache could be extrapolated to TM systems in
which a private cache did not only contain the read and write set meta-data
associated to its local transaction, but also tracked the remote transactional
accessors for its cached lines.

We find interesting to investigate how HTM hardware can be leveraged for
applications beyond synchronization, such as fault-tolerance [115]. Log-
based TM hardware has already been considered to this end, but the
benefits of lazy versioning provided by caches have not been considered in
the context of a fault tolerant system based on redundant execution. Using
a lazy approach, the memory could remain unmodified until a successful
verification, avoiding the use of other mechanisms to bypass memory values
between redundant threads.
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Similarly, the hardware support for TM discussed in this thesis could be of use
towards the facilitation of debugging and the detection of data races in both
transactional and non-transactional parallel programs.
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