
Summary. Kidney neoplasms are classified by light
microscopy using the World Health Organization
(WHO) system. The WHO system defines
histopathologic tumor subtypes with distinct clinical
behavior and underlying genetic mutations. In adults, the
common malignant subtypes are variants of renal cell
carcinoma (RCC). Histopathologic classification is
critical for clinical management of RCC, but is
becoming more complex with recognition of novel
tumor subtypes, development of procedures yielding
small diagnostic biopsies, and emergence of molecular
therapies directed at tumor gene activity. Therefore,
classification systems based on gene expression are
likely to become essential for diagnosis, prognosis and
treatment of kidney tumors. Recent DNA microarray
studies have shown that clinically relevant renal tumor
subtypes are characterized by distinct gene expression
profiles, which are useful for discovery of novel
diagnostic and prognostic biomarkers. In this review, we
summarize the WHO classification system for renal
tumors, general applications of microarray technology in
cancer research, and specific microarray studies that
have advanced knowledge of renal tumor diagnosis,
prognosis, therapy and pathobiology.
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Introduction

Malignant kidney tumors are increasing in
incidence, accounting for 2-3% of human cancers today.
In adults, renal cell carcinomas (RCC) are the most

common kidney malignancies (Jemal et al., 2004). Most
renal carcinomas arise sporadically, although cases occur
in several hereditary cancer syndromes. In developed
societies, major risk factors include cigarette smoking,
obesity and hypertension (Parkin et al., 1994; Chow et
al., 2000). Localized RCC can be cured by surgery
(Homma et al., 1995). However, 25-40% of cases
present with extrarenal growth or metastases (Amin et
al., 2002), and one-third of apparently localized lesions
develop metastases postoperatively (Gieseg et al., 2002;
Zisman et al., 2002). Advanced RCC responds poorly to
systemic therapy and has a 5-year survival rate of less
than 10% (Zisman et al., 2001). The ability to predict
outcome after surgical or systemic therapy is limited,
underscoring the need for new approaches to clinical
management of these malignancies.

Renal neoplasms are classified into specific subtypes
using the World Health Organization (WHO)
histopathologic system. WHO classification is an
important predictor of clinical behavior (Moch et al.,
2000; Amin et al., 2002; Eble et al., 2004). In addition,
tumor variables (Fuhrman nuclear grade and TNM
stage) and clinical variables (including performance
status and perioperative thrombocytosis) are used as
prognostic factors (Motzer et al., 1999; Kattan et al.,
2001; Amin et al., 2002; O'Keefe et al., 2002). Using
WHO terminology, over 90% of clinically significant
adult lesions are diagnosed as a common subtype of
renal epithelial tumor: clear cell RCC (75% of surgically
removed renal tumors), papillary RCC (10%),
chromophobe RCC (5%) and renal oncocytoma (5%).
Angiomyolipoma is the most common adult
mesenchymal tumor (1%). The WHO system also
includes newly recognized, rare forms of renal
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malignancy, which are defined by clinical, morphologic
and genetic factors: examples include carcinoma of the
collecting ducts of Bellini, renal medullary carcinoma,
renal carcinoma associated with Xp11.2 translocations,
and mucinous tubular spindle cell carcinoma (Eble et al.,
2004). Nephroblastoma (Wilms tumor) is the most
common pediatric renal malignancy (Breslow et al.,
1993).

Each renal tumor subtype in the WHO system is
defined by specific pathologic criteria, which emphasize
growth pattern, nuclear morphology and cytoplasmic
features (Amin et al., 2002; Eble et al., 2004). Typical
examples of adult epithelial tumors are characterized as
follows: Clear cell RCC is a solitary infiltrating mass,
with solid, alveolar or acinar growth patterns, and
“clear” tumor cells associated with anastomosing blood
vessels. Papillary RCC is a circumscribed mass with
fibrous capsule, containing neoplastic cells in papillary
growth pattern, admixed with foam cells and necrosis.
Chromophobe RCC exhibits an alveolar or nested
growth pattern, with tumor cells containing irregular
nuclei, perinuclear halos, and clear or granular
eosinophilic cytoplasm. Oncocytoma is a circumscribed
mass (often with central scar), with nested or
tubulocystic growth of “oncocytes” containing round
nuclei and granular eosinophilic cytoplasm. In spite of
these gross and microscopic criteria, diagnosis is
difficult and subjective because many tumors are highly
variegated histopathologically. For example, adult renal
epithelial tumors of any subtype may exhibit solid,
alveolar or papillary growth patterns, contain neoplastic
cells with clear or granular cytoplasm, or display high-
grade, sarcomatoid (spindle cell) histology.

Clinical behavior and management

Clear cell RCC has the highest rate of local invasion,
metastasis and mortality of adult renal tumors (Moch et
al., 2000; Amin et al., 2002). Papillary and chromophobe
carcinomas are relatively indolent, but may metastasize
or transform to high-grade sarcomatoid malignancies. In
addition, papillary RCC has a higher rate of
multifocality and association with end-stage renal
disease than other RCC subtypes (Takahashi et al., 1993;
Amin et al., 2002). Oncocytoma is closely related to
chromophobe carcinoma (Tickoo et al., 2000), but is
consistently benign (Amin et al., 2002). Total
nephrectomy is the standard therapy for localized RCC.
However, small localized tumors (< 4 cm) are diagnosed
increasingly by routine abdominal studies (Homma et
al., 1995), spurring development of nephron-sparing
tumor resections and ablations, coupled with less-
traumatic laparoscopic surgery (Mabjeesh et al., 2004;
Novick, 2004). Based on different rates of extrarenal
growth or multifocality, the use of laparoscopic nephron-
sparing procedures may depend on prior histopathologic
subtyping of tumor biopsies (Uzzo and Novick, 2001).
For advanced-stage RCC, first-line systemic therapy
involves interleukin-2 and interferon-alpha. These

immunotherapies are more effective for clear cell RCC
than other subtypes (Motzer et al., 2002); however, most
clear cell tumors fail to respond markedly (Atkins et al.,
2004). Anti-angiogenic agents are under investigation
for clear cell RCC, targeting tumor vascularity (Gordon,
2004; Yang, 2004). Systemic therapy is not standardized
for RCC with non-clear cell histology (Stadler, 2004). 

Genetics

Renal tumor subtypes in the WHO system are
associated with distinct, reoccurring cytogenetic lesions
(Meloni-Ehrig, 2002) and hereditary cancer syndromes
(Takahashi et al., 2002), underscoring the significance of
tumor classification and the potential role of molecular
diagnostics in clinical management. Clear cell RCC is
strongly associated with von Hippel-Lindau (VHL)
disease, an autosomal dominant tumor susceptibility
syndrome. This disease is caused by germline loss-of-
function mutations of the VHL tumor suppressor gene
on chromosome 3p25. In addition, VHL loss-of-function
is the most common genetic defect in sporadic clear cell
RCC. These mutations promote tumor hypervascularity;
VHL protein functions in ubiquitinization and
degradation of hypoxia-inducible factor-1 alpha
(HIF1A), the primary positive regulator of angiogenesis
(Na et al., 2003). Rarely, clear cell RCC arises in other
hereditary conditions, such as the syndrome of
constitutional chromosome 3 translocations, which has
been mapped to various breakpoint sites distinct from
the VHL locus (Van Erp et al., 2003). Hereditary
papillary renal carcinoma (HPRC) is a rare autosomal
dominant syndrome caused by germline, gain-of-
function mutation of the hepatocyte growth factor
receptor gene (MET) on chromosome 7q31-34 (Schmidt
et al., 1998). Familial papillary RCC also occurs in the
hereditary leiomyomatosis and renal cell cancer
syndrome (HLRCC), caused by germline mutations in
the fumarate hydratase gene (FH) on chromosome
1q42.1 (Toro et al., 2003). In sporadic papillary RCC,
the most common mutations are trisomy 7 and 17, and
loss of chromosome Y (Kovacs et al., 1991; Moch,
2004). Chromophobe RCC and oncocytoma arise in
Birt-Hogg-Dubé syndrome, an autosomal dominant,
multi-organ system tumor syndrome mapped to
chromosome 17p12-q11.2 (Nickerson et al., 2002).
Other renal tumor subtypes, including clear cell RCC,
arise less frequently in this syndrome. The Birt-Hogg-
Dubé gene, termed folliculin, is of unknown function.
However, folliculin may be inactivated, either by loss of
heterozygosity or promoter hypermethylation, in
sporadic renal tumors of all histologic subtypes (Khoo et
al., 2003). In sporadic chromophobe RCC, the most
characteristic genetic lesion is loss of multiple
chromosomes, while sporadic oncocytoma tends to
exhibit different mutations (Kovacs and Kovacs, 1992;
Moch, 2004). Angiomyolipoma is associated with
tuberous sclerosis, an autosomal dominant disorder
caused by loss-of-function mutations in the TSC1 and
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TSC2 tumor suppressors on chromosomes 9q34 and
16p13, respectively (Fryer et al., 1987; Kandt et al.,
1992; Chen et al., 2003).

Although these genomic abnormalities are an
important component of the WHO classification system,
cytogenetic studies are not performed routinely on
clinical specimens, due to technical difficulty and
limited diagnostic sensitivity. Other approaches for
molecular diagnostics, such as genomic-scale expression
profiling, may provide new assays with greater clinical
utility. In the following sections, we describe current
technologies for gene expression profiling and general
applications of these technologies in cancer research. We
then emphasize the use of microarrays to develop novel
molecular systems for renal tumor classification.

Microarray technology

Several methods are available to profile mRNA
expression on a genomic scale, such as gene expression
microarrays, differential display and serial analysis of
gene expression; the latter two methods are described
elsewhere (Velculescu et al., 1995; Liang, 2002).
Expression microarrays are solid matrices containing
high-density arrays of nucleic acid hybridization targets.
Arrays are probed with labeled cDNA or cRNA, derived
from the mRNA of biological samples. Probed arrays are
scanned robotically for signal (usually fluorescence) at
each hybridization target – or “spot” – in order to
quantify expression of each gene. Two distinct
microarray platforms are widely available: 1) spotted
microarrays, containing purified cDNAs or
oligonucleotides printed robotically onto glass slides
(Schena et al., 1995; Hughes et al., 2001); and 2)
microarrays consisting of short oligonucleotides
synthesized directly onto solid substrates using
photolithographic or inkjet techniques. The
photolithographic approach has been pioneered by
Affymetrix (Lockhart et al., 1996; Hughes et al., 2001).
Spotted and Affymetrix microarrays can be designed to
profile thousands of genes (approximating the entire
expressed genome) in a single experiment, although each
platform has relative strengths and limitations. For
example, spotted arrays tend to be lower in cost, offer
greater flexibility in the choice of targets, and are
designed for co-hybridization with probes from
experimental and reference specimens, labeled with
distinct fluorescent dyes. Fluorescence ratios at each
spot correspond to differential expression of particular
genes. Based on direct co-hybridization, spotted arrays
provide excellent pair-wise comparisons of relative
expression in experimental versus reference specimens.
However, spotted arrays cannot determine absolute
expression levels. In contrast, Affymetrix arrays measure
absolute expression and require less input RNA, a
particular advantage when analyzing limited clinical
materials such as tumor biopsies. Affymetrix arrays are
synthesized at extremely high density with 25-mer
oligonucleotide targets from multiple locations of each

gene, and each target is paired with a control 25-mer
containing a single-base mismatch, in order to reduce
false positive interpretations. 

Expression profiling of clinical tumor specimens

Both spotted and Affymetrix microarrays have been
used to classify human cancers with respect to diagnosis,
prognosis or therapeutic response (Alizadeh et al., 2000;
Takahashi et al., 2001; Shipp et al., 2002; Schuetz et al.,
2005). In microarray studies of clinical tumors, variables
relating to the specimens themselves assume great
importance in experimental design. For example,
standard protocols require high quality input mRNA,
restricting most solid tumor studies to frozen tissue
specimens. Newer protocols are being developed for
paraffin-embedded tissue (Ma et al., 2004), which may
permit access to the much larger number of well-
annotated cases in pathology archives. Still, even in the
largest studies, the number of tumor samples is orders of
magnitude lower than the number of genes analyzed.
Thus, microarrays are expected to correlate many genes
with tumor subclasses purely by chance. To increase
statistical confidence, technical and biological replicates
are incorporated to the extent feasible. Technical
replicates are repeated measurements of the same
sample, while biological replicates are independent
measurements from a single sample class (e.g. different
samples of a particular tumor subtype). Biostatisticians
have proposed a minimum of 3 technical replicates per
specimen and 8-15 biological replicates per sample class
(Lee and Whitmore, 2002; Pavlidis et al., 2003).
However, few studies have met these criteria fully, due
to practical considerations such as numbers of banked
specimens and cost per experiment. To overcome these
limitations, differential expression must be validated for
selected genes using independent methods such as
quantitative RT-PCR or immunohistochemistry (Schuetz
et al., 2005; Yao et al., 2005). Validation is of particular
importance for solid tumors like RCC, which are
composed of heterogeneous cell populations; in many
studies, immunohistochemistry has served the dual
purpose of confirming differential expression and
localizing gene products to specific cell types (Young et
al., 2001; Higgins et al., 2003; Takahashi et al., 2003b;
Schuetz et al., 2005).

Computational data analysis

Most cancer-focused microarray studies compare
experiments from a series of tumors, in order to identify
common gene expression patterns among tumor
subgroups. Computational tools for microarray data
analysis can be categorized as supervised and
unsupervised algorithms. Unsupervised clustering
methods are well suited for class discovery (eg:
exploratory identification of novel diagnostic or
prognostic subtypes), while supervised methods are ideal
for class prediction (eg: classifying unknown tumors into
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previously established diagnostic subtypes) or
identification of novel biomarkers.

Unsupervised analysis

Average-linkage hierarchical clustering is the
dominant unsupervised analytical method in cancer
research. The algorithm in Cluster software (Eisen et al.,
1998) employs an iterated, agglomerative process to
group tumors and genes into hierarchies defined by
similarity in expression, as measured by Pearson
correlation. Expression hierarchies are visualized as
dendrograms. In a single iteration, the two most similar
data elements (ie: expression profiles of specific tumors
or genes) are joined by a dendrogram node, averaged

and replaced by a pseudoelement used in subsequent
iterations. The process is repeated until all elements are
joined in tumor and gene dendrograms. The algorithm
does not constrain dendrogram structures a priori; thus,
the number, composition and biological significance of
clusters is exploratory in nature. Hierarchically clustered
data are often displayed in color-coded grids, or “heat
maps”, which list individual tumors and genes in
columns and rows, with color indicating relative
overexpression or underexpression (see Figure 1).
Important limitations of hierarchical clustering must be
recognized. For example, large numbers of genes with
minimal variation can bias tumor clustering, and mask
biologically significant clusters that would be defined by
smaller gene sets. Thus, data are often filtered with fold-
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Fig. 1. Unsupervised hierarchical clustering of renal tumors. Similarity measurements are based on Pearson correlation. Median-centered differential
gene expression is shown in the color-coded grid, with columns representing individual tumors and rows representing individual genes. Red, green and
black indicate expression above, below and at the median of all tumors, respectively. Tumors were clustered into subgroups corresponding to clear cell
RCC (CC), papillary RCC (PAP), chromophobe RCC/renal oncocytoma (CHR, ONC) and angiomyolipoma (AML) based on gene expression profiles.
The sole outlier was a high-grade papillary RCC with sarcomatoid transformation, which was clustered with clear cell RCC. Roman numerals in the
tumor identifications indicate Fuhrman nuclear grade. Adapted from (Schuetz et al., 2005).



change expression cutoffs or statistical measures. In
addition, the clustering algorithm is not based on
probabilistic theory. Thus, even randomly generated data
will form hierarchical clusters, and statistical confidence
cannot be assigned to actual experimental results. In
contrast to hierarchical clustering, non-hierarchical
methods (eg: quality threshold clustering, k-means
clustering and self-organizing maps) predefine the
expected numbers of sample clusters; furthermore, the
quality threshold algorithm is non-agglomerative. These
methods are reviewed elsewhere (Heyer et al., 1999;
Quackenbush, 2001). No consensus has been reached on
approaches for unsupervised clustering, and many
studies use multiple algorithms and metrics to optimize
results.

Supervised analysis

In supervised clustering, tumors are classified a
priori, based on factors independent of the microarray
data (eg: diagnosis, therapy, clinical outcome). Various
methods are used to rank genes by correlation with the
supervised subclasses. The t test measures differences
between subclass means normalized by sample variation,
based on the assumption that both subclasses have
approximately normal distribution (Roberts et al., 2000).
However, this assumption may not hold for small sample
numbers. Thus, the SAM algorithm ranks genes by an
adjusted t statistic, in which a small positive constant is
added to the standard deviation in the denominator to
stabilize variance and minimize selection of low-
variance genes (Tusher et al., 2001). To estimate
statistical significance, SAM uses random sample
permutation to calculate a false discovery rate, defined
as a ratio of false to total significant genes, averaged
over all permutations. If, for example, the gene of a
given rank has stronger SAM statistic in the actual data
set than similarly ranked genes in all but five of 1000
permutations, the statistical significance could be
estimated at p=0.005. A powerful machine learning
method known as SVM is also appropriate for
supervised analysis (Brown et al., 2000). Results are
plotted in n-dimensional gene space (n=number of genes
on microarray), and SVM “finds” a hyperplane
separating two classes of data with the greatest margin.
A major advantage of SVM is ability to employ kernel
functions, to map data in different gene spaces for
optimum separation. The most basic kernel is linear, but
polynomial and radial basis kernels may also be
implemented with little effect on computation speed.

Supervised analyses such as SAM and SVM are
useful for defining smaller gene sets (“molecular
classifiers”) that correlate most strongly with tumor
categories and predict identity of unknown tumor
samples (Rosenwald et al., 2002; Shipp, et al., 2002). To
develop molecular classifiers, gene sets are varied
experimentally with respect to correlation rank cutoff
and relative weights of each gene for classification.
Potential classifiers are tested for predictive power using

computational methods such as “leave-one-out cross
validation”. Leave-one-out algorithms remove individual
tumors from the data set iteratively, and predict their
identity by expression of genes in candidate classifiers.
Molecular classifiers are optimized for rates of correct
classification of left-out samples, and may be tested
prospectively in an independent set of microarray data.

Knowledge-based analysis

Knowledge-based analysis frameworks (Brown et
al., 2000) are useful to correlate high-volume expression
data with knowledge from independent research. These
frameworks focus attention on data most likely to be
valid, and enhance discovery of novel relationships
among genes or specimens with similar expression
profiles. Comparison of independent microarray studies
has been facilitated by standardized protocols for
annotating and formatting data (Brazma et al., 2001;
Spellman et al., 2002), and creation of large public data
repositories (Edgar et al., 2002; Brazma et al., 2003; Ball
et al., 2005). Knowledge-based analysis is optimized by
detailed functional annotation of arrayed gene
sequences, using hierarchical controlled vocabulary
structures such as Gene Ontology (Ashburner et al.,
2000) or the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway database terminology (Kanehisa and
Goto, 2000). Several tools correlate functional
annotation with differential expression profiles from
microarray experiments. For example, GOStat
(Beissbarth and Speed, 2004) and GOMiner (Zeeberg et
al., 2003) use the Fisher exact test to determine if
expression profiles are significantly enriched or depleted
for genes with particular Gene Ontology terms. In
addition, several programs upload and analyze gene lists
for possible involvement of specific biochemical
pathways defined by KEGG (or similar terminology
systems). One commercial example is the Affymetrix
NetAffx tool at http://www.affymetrix.com/
analysis/index.affx.

Diagnostic classification of renal tumors

Diagnosis of renal tumors is becoming more
complex with the recognition of novel tumor subtypes
and the growing use of laparoscopic procedures, which
result in small, distorted tumor biopsies with limited
histopathologic information (Mabjeesh et al., 2004).
Several studies have explored the potential utility of
gene expression profiling as a complement to
histopathology for renal tumor classification (Boer et al.,
2001; Young, et al., 2001; Gieseg et al., 2002; Skubitz
and Skubitz, 2002; Higgins et al., 2003; Takahashi et al.,
2003b; Yamazaki et al., 2003; Furge et al., 2004;
Schuetz et al., 2005; Sultmann et al., 2005; Yao et al.,
2005). While these studies have varied with respect to
sample cohorts, microarray platforms and analysis
algorithms (Table 1), their principal findings have been
consistent. In particular, the major histopathologic
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subtypes of renal tumor have been distinguished
reproducibly by patterns of gene expression. The unique
expression profiles are relevant to tumor pathobiology
and potentially significant for clinical diagnosis and
management. In our recent study, for example, gene
expression was measured in clear cell RCC, papillary
RCC, chromophobe RCC, oncocytoma and
angiomyolipoma using Affymetrix oligonucleotide
microarrays (Schuetz et al., 2005). Unsupervised
hierarchical algorithms clustered the tumors into groups
that correlated strongly with histopathologic subtypes

(Fig. 1). Other researchers have reported similar findings
(Higgins et al., 2003; Takahashi et al., 2003b; Sultmann
et al., 2005). From study to study, individual genes
distinguishing the tumor subtypes have varied
substantially (Lenburg et al., 2003). However,
knowledge-based analyses have revealed consistent
themes. For example, supervised SAM analysis of our
microarray data, followed by functional classification
using GOStat, revealed that expression profiles of clear
cell RCC were markedly enriched for immune response
and angiogenesis genes, while those of chromophobe
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Table 1. Gene expression profiling studies of renal cell carcinoma.

STUDY SPECIMENS PLATFORM COMMENTS

(Young et al., 2001; 4 CC-RCC, 3 P-RCC, 2 CH-RCC, cDNA microarray Diagnostic classification; discovery
Young et al., 2003) 1 ONC, matched kidney (7000 clones) of immunohistochemical markers

(Takahashi et al., 2001) 29 CC-RCC, matched kidney cDNA microarray Prognostic classification
(22000 clones)

(Boer et al., 2001) 37 renal tumors, matched kidney Nylon cDNA microarray Diagnostic classification; correlation
(31500 clones) of gene expression with tumor stage

(Skubitz and 8 CC-RCC, 11 normal and Affymetrix U95 Expression patterns that discriminate RCC 
Skubitz, 2002) 8 diseased kidney, 256 other tissues (63000 probe sets) from non-neoplastic kidney and other tissues

(Gieseg et al., 2002) 9 CC-RCC, 2 CH-RCC, 1 UC, Affymetrix HuGene FL Diagnostic classification; discrimination
1 MA, 8 matched kidney (5600 genes) of RCC from non-neoplastic kidney

(Higgins et al., 2003) 28 conventional (CC-RCC), cDNA microarray Diagnostic classification; discovery
4 P-RCC, 3 CH-RCC, 2 ONC, 1 AML (23000 clones) of immunohistochemical markers

(Takahashi et al., 2003b) 39 CC-RCC, 8 P-RCC, 5 CH-RCC, cDNA microarray Diagnostic classification;
6 G-RCC, 5 S-RCC, 2 ONC, 3 UC, (23000 clones) prognostic classification; discovery
5 WT, non-neoplastic kidney. of immunohistochemical markers

(Lenburg et al., 2003) 18 CC-RCC, 9 matched kidney. Affymetrix U133A/B Discrimination of RCC from
(45000 probe sets) non-neoplastic kidney; comparison

with expression profiles from other studies

(Copland et al., 2003) Localized or metastatic RCC, Affymetrix U95A Discovery of aberrant transforming
matched kidney, RCC cell lines (10000 genes) growth factor beta signaling in RCC

carcinogenesis and progression

(Vasselli et al., 2003) 58 Stage IV RCC, 8 matched kidney. cDNA microarray Prognostic classification
(64000 clones)

(Yamazaki et al., 2003) 10 CC-RCC, 2 P-RCC, Affymetrix U95A Diagnostic classification; discovery
3 CH-RCC, matched kidney. (10000 genes) of immunohistochemical markers

(Liou et al., 2004) Pooled CC-RCC, pooled matched Affymetrix HuGene FL Discrimination of RCC
kidney, pooled RCC cell lines (5600 genes) from non-neoplastic kidney

(Furge et al., 2004) 60 CC-RCC, 5 P-RCC, cDNA microarray Diagnostic classification; inference
16 CH-RCC, matched kidney (23000 clones) of cytogenetic abnormalities

(Sultmann et al., 2005) 65 CC-RCC, 13 P-RCC, cDNA microarray Diagnostic classification; prognostic
9 CH-RCC, 25 kidney. (4200 clones) classification; correlation with cytogenetics

(Yao et al., 2005) 29 CC-RCC, 3 CH-RCC, Affymetrix U95A Diagnostic classification; discovery
1 WT, 9 kidney (10000 genes) of quantitative RT-PCR and

immunohistochemical markers

(Schuetz et al., 2005) 13 CC-RCC, 5 P-RCC, Affymetrix HG-Focus Diagnostic classification; discovery
4 CH-RCC, 3 ONC, 6 AML (8700 genes) of quantitative RT-PCR and

immunohistochemical markers

CC-RCC: Clear cell renal cell carcinoma (RCC); P-RCC: Papillary RCC; CH-RCC: Chromophobe RCC; G-RCC: Granular RCC; S-RCC: Sarcomatoid
RCC; ONC: Oncocytoma; AML: Angiomyolipoma; UC: Urothelial carcinoma; WT: Wilms tumor; MA: Metanephric adenoma.



RCC and oncocytoma were enriched for energy pathway
genes, including many genes associated with
mitochondrial biology (Schuetz et al., 2005). Angiogenic
gene expression is likely related to tumor vascularity in
clear cell RCC (Eble et al., 2004), while energy pathway
gene expression may correlate with the abundant
mitochondria in chromophobe RCC and oncocytoma
(Tickoo et al., 2000). As shown in Table 2, we obtained
very similar results using publicly available data from
Stanford University (Higgins et al., 2003). Other groups
have produced concordant findings (Takahashi et al.,
2003a,b; Sultmann et al., 2005).

Microarray data are consistent with current models
of renal tumor histogenesis. These models relate clear
cell and papillary RCC to proximal nephron epithelium,
and chromophobe RCC and oncocytoma to distal
nephron intercalated cells (Wallace and Nairn, 1972;
Ortmann et al., 1988; Storkel et al., 1989; Sultmann et
al., 2005). In our experiments, clear cell RCC
overexpressed the proximal nephron markers megalin
and cubilin; papillary RCC strongly overexpressed the
proximal nephron marker alpha methylacyl CoA
racemase; and chromophobe RCC and oncocytoma
overexpressed the distal nephron markers beta defensin-
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Table 2. Gene ontologies enriched in clear cell RCC and chromophobe RCC/oncocytoma.

SYMBOL UNIGENE GENE NAME SYMBOL UNIGENE GENE NAME

Clear cell RCC - GO:0006952 (Defense response)

C1QB Hs.8986 complement component 1q beta G1P2 Hs.458485 interferon alpha-inducible protein
(IFI-15K)

C1QR1 Hs.97199 complement component 1q receptor 1 GEM Hs.79022 GTP binding protein overexpressed in
skeletal muscle

C1S Hs.458355 complement component 1s HLA-DPB1 Hs.368409 major histocompatibility complex,
class II, DP beta 1

CD69 Hs.82401 CD69 antigen HLA-DRB5 Hs.534322 major histocompatibility complex,
class II, DR beta 5

CLECSF2 Hs.85201 C-type lectin, superfamily member 2 IFITM1 Hs.458414 interferon induced transmembrane
protein 1 (9-27)

CSF1R Hs.174142 colony stimulating factor 1 receptor IL4R Hs.75545 interleukin 4 receptor
(c-fms)

F8 Hs.413083 coagulation factor VIII ISGF3G Hs.1706 interferon-stimulated transcription
factor 3 gamma

FCER1G Hs.433300 Fc fragment of IgE receptor; gamma ITGB2 Hs.375957 integrin, beta 2 (CD18 antigen)
polypeptide

FCGRT Hs.111903 Fc fragment of IgG, receptor, RNASE6 Hs.23262 ribonuclease, RNase A family, k6
transporter, alpha

FOS Hs.25647 c-fos UBD Hs.44532 ubiquitin D

Chromophobe RCC/oncocytoma - GO:0006091 (Generation of precursor metabolites and energy)

ACO2 Hs.202505 aconitase 2, mitochondrial IVD Hs.410396 isovaleryl Coenzyme A dehydrogenase

ATP6V1A Hs.409131 ATPase, H+ transporting, NDUFS4 Hs.10758 NADH dehydrogenase
lysosomal 70kDa, V1 subunit A (ubiquinone) Fe-S protein 4

ATP6V1F Hs.78089 ATPase, H+ transporting, PFKM Hs.75160 phosphofructokinase, muscle
lysosomal 14kDa, V1 subunit F

BPGM Hs.198365 2,3-bisphosphoglycerate mutase PPARA Hs.534037 peroxisome proliferative
activated receptor, alpha

CKMT2 Hs.80691 creatine kinase, mitochondrial 2 PPARG Hs.387667 peroxisome proliferative activated
receptor, gamma

COX17 Hs.16297 COX17 homolog, cytochrome UQCR Hs.8372 ubiquinol-cytochrome c reductase
c oxidase assembly protein (6.4kD) subunit

COX7C Hs.430075 cytochrome c oxidase subunit VIIc UQCRB Hs.131255 ubiquinol-cytochrome c reductase
binding protein

IDH3A Hs.277543 isocitrate dehydrogenase 3
(NAD+) alpha

Data are from Schuetz et al, 2005 and Higgins et al, 2003 (granular RCC was not included). Differential expression was determined with SAM and
GOStat. Clear cell RCC overexpressed Gene Ontology GO:0006952 (Emory: p=4.04E-27; Stanford: p=3.85E-07). Chromophobe RCC/oncocytoma
overexpressed GO:0006091 (Emory: p=6.16E-42; Stanford: p=1.16E-02)



1, parvalbumin, chloride channel Kb, claudin-7, claudin-
8 and epidermal growth factor. These findings have been
validated in our laboratory by quantitative RT-PCR and
immunohistochemistry (Young et al., 2001, 2003;
Schuetz et al., 2005), and are consistent with research
from other laboratories (Martignoni et al., 2001;
Tretiakova et al., 2004). Thus, proximal and distal
nephron markers may be useful for diagnostic
classification of renal tumors.

To further develop microarray-based methods for
renal tumor classification, the group from Van Andel
Research Institute has developed an intriguing method
termed comparative genomics microarray analysis
(CGMA), which is used to infer cytogenetic
abnormalities from regional expression biases between
tumors and adjacent non-neoplastic tissue (Takahashi et
al., 2003a). In a recent study, abnormalities inferred by
CGMA correlated with recurring cytogenetic lesions in
renal tumor subtypes. In addition, molecular diagnostic
classification of clear cell, papillary and chromophobe
RCC was strengthened by combining CGMA data with
differential gene expression profiles (Furge et al., 2004).
The German Cancer Research Center group compared
gene expression profiles with direct cytogenetic data
from a large cohort of renal tumors, and confirmed that
expression levels of specific genes correlated with the
copy number of respective chromosomal arms
(Sultmann et al., 2005).

Unsupervised microarray analyses have potential to
discover novel renal tumor subclasses. The Stanford
University group described a subset of conventional
RCC with granular cytoplasm, which did not cluster
together or with any particular subtype in the overall
study cohort (Higgins et al., 2003). Similar findings
were obtained by the Van Andel Research Institute group
(Takahashi et al., 2003b). Historically, the term “granular
cell RCC” was used for high-grade tumors with
eosinophilic cytoplasm, and was intended to distinguish
these cases from conventional clear cell RCC. However,
it is now appreciated that some lesions with “granular
cells” are clinically and molecularly consistent with the
current concept of clear cell RCC, while other cases
should be diagnosed as papillary, chromophobe or other
types of RCC. Thus, the term granular cell RCC is not
included in the current WHO classification system (Eble
et al., 2004). Nevertheless, it remains possible that
certain granular tumors will eventually be classified as a
distinct RCC subtype by gene expression profiling.

Quantitative mRNA expression changes detected
with microarrays do not necessarily reflect changes at
the protein level. Also, microarrays do not detect post-
transcriptional modifications such as protein
phosphoryation. Therefore, characterization of RCC by
gene expression profiling will likely evolve toward
integrated analysis of the transcriptome and proteome. A
recent study identified differentially expressed proteins
in tissue and primary cell cultures derived from RCC
(clear cell and papillary) and matched non-neoplastic
kidney, using two-dimensional SDS-polyacrylamide gel

electrophoresis. Selected proteins were characterized by
liquid chromatography and mass spectroscopy (Shi et
al., 2004). The proteins overexpressed most consistently
in RCC were alpha-beta crystallin, manganese
superoxide dismutase and annexin IV. In the study
cohort, clear cell and papillary carcinomas were not
distinguished by expression of these gene products. In
addition, the biological significance of this expression
profile, or the relationship to mRNA data in RCC,
remains unclear.

Novel molecular assays for clinical diagnosis of
renal tumors

The United States Food and Drug Administration
has not yet approved microarrays for clinical use, largely
because methods for quality control and interpretation
have not been standardized (Hackett and Lesko, 2003).
Still, microarray analyses have produced a direct impact
on clinical diagnosis of RCC, through discovery of novel
immunohistochemical markers for each major tumor
subtype (Zhou and Rubin, 2001; Zhou et al., 2005).
Several candidate markers have been validated in
subsequent independent research (Young et al., 2003;
Pan et al., 2004; Tretiakova et al., 2004; Chuang et al.,
2005). Table 3 summarizes renal tumor immunomarkers
identified with microarrays. Continued work is needed to
combine these markers into panels, for diagnosis of renal
tumors that are difficult to classify by light microscopy.
For example, we have shown that a panel of beta
defensin-1, parvalbumin and vimentin is superior to any
single marker used alone for classification of clear cell
RCC, papillary RCC and chromophobe RCC/
oncocytoma (Young et al., 2003).

Quantitative RT-PCR is established in many clinical
diagnostic laboratories, and offers certain advantages
over immunohistochemistry, such as wider dynamic
range. We have developed assays for megalin, alpha
methylacyl CoA racemase, beta defensin-1 and other
markers; these assays distinguish the major subtypes of
renal tumor reliably and can utilize RNA from fixed
archival tissue (Schuetz et al., 2005). The German
Cancer Research Center group developed a promising
80-gene predictor for renal tumor classification from
their microarray data, and validated several genes by
quantitative RT-PCR (Sultmann et al., 2005). Larger
prospective studies are needed to establish the clinical
potential of RT-PCR for renal tumor diagnosis.

Prognostic classification of renal tumors

The group from University of Texas and MD
Anderson Cancer Center conducted microarray
experiments on patient-matched non-neoplastic kidney,
localized RCC and metastatic RCC (Copland et al.,
2003). Aberrations in the signaling pathway of
transforming growth factor beta were discovered, with
consistent loss of type III receptor (TBR3) expression in
all RCC samples, and further loss of type II receptor

332

Molecular classifications of renal tumors



(TBR2) expression in metastatic RCC. These findings
were confirmed in cell lines representative of metastatic
and nonmetastatic RCC. Furthermore, restoration of
TBR3 and TBR2 expression in metastatic cell lines
blocked cell proliferation and anchorage-independent
growth. The data suggested that RCC carcinogenesis and
progression might involve stepwise loss of TBR3 and
TBR2 expression, respectively.

The Van Andel Research Institute group analyzed 29
clear cell RCC and matched normal kidney, derived
from a patient cohort with extended clinical follow-up
(Takahashi et al., 2001). Unsupervised clustering
separated the cases into two main groups that correlated
with outcome. Supervised analyses revealed gene
subsets that correlated significantly with cause-specific
five-year survival, independent of histologic grade and
pathologic stage. Clinical simulation with a leave-one-
out algorithm showed that a 40-gene classifier predicted
outcome better than pathologic stage. In this classifier,
transforming growth factor beta and several of its
downstream effectors were underexpressed in the poor
outcome group, consistent with the University of Texas
study (Copland et al., 2003). Furthermore, the human
homolog of Sprouty (an angiogenesis inhibitor in fruit
fly) was overexpressed in the good outcome cohort,
suggesting that uninhibited angiogenesis may contribute
to the aggressive behavior in clear cell RCC. However,
patients were not stratified by known prognostic
indicators such as grade, stage or clinical performance
status in this study. The group from United States
National Cancer Institute examined 58 cases of stage IV
kidney cancer, all associated with good clinical
performance status (Vasselli et al., 2003). A 45-gene
signature correlated with poor outcome in this cohort,
based on supervised data analysis and leave-one-out
cross-validation. This signature did not overlap
significantly with prognostic markers identified by the
Van Andel Research Institute group. Vascular cell

adhesion molecule 1 was identified as a candidate
marker for good prognosis. Because this study grouped
clear cell, papillary, and unclassified stage IV RCC in
the prognostic classification model, the analysis could be
confounded by subtype-specific gene expression and
clinical behavior. The oligonucleotide arrays in our
recent study (Schuetz, et al., 2005) contained probes for
49 of the prognostic markers identified previously with
microarrays (Takahashi et al., 2001; Vasselli et al.,
2003). Based on expression of these 49 genes, clear cell
tumors were clustered into two major categories, one
consisting entirely of high-grade lesions (Fuhrman grade
III/IV). Long-term outcome data is not yet available for
these cases. The German Cancer Research Center group
identified genes correlating with metastasis and survival
in their study cohort, several of which have been
proposed as prognostic markers by other groups
(Sultmann et al., 2005). Overall, gene expression assays
seem likely to become an important tool for outcome
prediction in RCC, in conjunction with established
clinical and pathologic prognostic factors. However, the
molecular classifiers derived from microarray research
will need to be validated rigorously in prospective
studies on independent RCC case cohorts.

In studies from Wyeth Research (Twine et al., 2003;
Burczynski et al., 2005b), gene expression was analyzed
in peripheral blood mononuclear cells (PBMCs),
comparing healthy volunteers to advanced RCC patients
enrolled in a clinical trial of CCI-779, a mammalian
target of rapamycin inhibitor from Wyeth (Dutcher,
2004). Unsupervised clustering algorithms distinguished
the PBMCs of most RCC patients from those of healthy
volunteers. To rule out the possibility that shed,
circulating tumor cells confounded these results, the
investigators established that differentially expressed
genes in PBMCs did not correspond to genes
overexpressed commonly in renal carcinoma cells.
Supervised analysis was performed on a training subset
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Table 3. Renal Tumor Immunomarkers Identified with Microarrays.

MARKER SYMBOL FUNCTION LOCALIZATION REFERENCE

Markers for Clear Cell RCC
Vimentin VIM Cytoskeleton Cytoplasm (Young, et al., 2001; Young, et al., 2003)
Adipophilin ADFP Cell differentiation Cytoplasm (Yao, et al., 2005)
CD10 antigen CD10 Neutral endopeptidase Membrane (Avery et al., 2000; Higgins, et al., 2003)
Glutathione S-transferase alpha GSTA Cell detoxification Cytoplasm (Takahashi, et al., 2003b; Chuang, et al., 2005)
CD74 antigen CD74 Immune response Membrane (Saito et al., 1997; Young, et al., 2001)

Markers for Papillary RCC
Alpha methylacyl CoA racemase AMACR Peroxisomal enzyme Cytoplasm (Takahashi, et al., 2003b; Tretiakova, et al., 2004)
Cytokeratin 7 CK7 Cytoskeleton Cytoplasm (Higgins, et al., 2003)

Markers for Chromophobe RCC and Oncocytoma
Beta defensin-1 DEFB1 Antimicrobial/ antitumor agent Cytoplasm (Young, et al., 2001; Young, et al., 2003)
Parvalbumin PVALB Calcium-binding protein Cytoplasm (Martignoni, et al., 2001; Young, et al., 2003)
Stem cell factor receptor KIT Cell differentiation Membrane (Higgins, et al., 2003; Yamazaki, et al., 2003)
Carbonic anhydrase II CA2 Zinc metalloenzyme Cytoplasm (Takahashi, et al., 2003b)
Cytokeratin 7 CK7 Cytoskeleton Cytoplasm (Zhou, et al., 2005)
Claudin-7 CLDN7 Cell adhesion Membrane (Schuetz, et al., 2005)



of the study cohort, in order to develop an expression
classifier for distinguishing RCC patients from healthy
volunteers. This classifier was validated with leave-one-
out algorithms on the training subset, followed by
predictive assays on the remainder (testing subset) of the
study cohort (Twine et al., 2003). A similar approach
was used to identify gene expression markers for
predicting patient outcome after CCI-779 therapy
(Burczynski et al., 2005b). The performance of gene
expression was reported to be comparable or better than
standard methods for clinical risk classification (Motzer
et al., 1999). These studies included patients with
different subtypes of RCC; however, the ability to
predict tumor histology by PBMC gene expression was
not described. Nevertheless, this research highlights the
possibility of minimally invasive testing for RCC
diagnosis and therapeutic management, based on gene
expression profiling of peripheral blood specimens.

Therapeutic implications of gene expression
profiling

The preceding PBMC experiments illustrate a
potential role of microarrays in clinical trials for RCC
(Burczynski et al., 2005a). Also, many overexpressed
genes in RCC tumor tissue have therapeutic
implications. For example, immune response genes,
which distinguish clear cell RCC from other subtypes,
may be important for the relative responsiveness of clear
cell RCC to immunotherapy compared to non-clear cell
tumors (Motzer et al., 2002). Expression levels of
immune response genes vary among individual tumors
(Young et al., 2001), and future studies should determine
if variability correlates with response to immunotherapy.
Similarly, angiogenesis genes, which are overexpressed
in clear cell RCC, may be relevant to anti-angiogenic
therapies being evaluated in clinical trials (Gordon,
2004; Yang, 2004). Many overexpressed angiogenic
genes are regulated by HIF1A, itself activated by loss of
VHL in clear cell RCC (Na et al., 2003). Curiously,
expression levels of HIF1A and VHL have not varied
reproducibly in microarray studies, possibly due to post-
transcriptional regulation. Nevertheless, HIF1A-
dependent angiogenesis markers such as vascular
endothelial growth factor (VEGF) and endothelin-1,
which are overexpressed consistently in clear cell RCC
(Lenburg et al., 2003), may be useful for therapeutic
monitoring and outcome prediction. HIF1A and immune
response regulators both increase expression of carbonic
anhydrase IX, which is the target of G250 monoclonal
antibody therapy for RCC (Brouwers et al., 2003;
Mulders et al., 2004). In large microarray studies of
multiple cancers, it appears that RCC may be
distinguished from other tumor types by overexpression
of angiogenesis genes and coregulation of VEGF and
carbonic anhydrase IX (Amatschek et al., 2004; Jubb et
al., 2004). Microarray studies have established that stem
cell factor receptor (KIT) is overexpressed in
chromophobe RCC (Higgins et al., 2003; Yamazaki et

al., 2003), leading several experts to suggest tyrosine
kinase inhibitors such as Gleevec for advanced
carcinomas of this subtype (Potti and George, 2004; Rini
et al., 2004).

Microarray studies of renal development and tumor
biology

To study the effect of VHL expression and hypoxia
in RCC, microarray data were compared from a human
RCC cell line with mutant versus transfected wild-type
VHL, under hypoxic and normoxic conditions (Wykoff
et al., 2004). Significant concordance was observed in
the gene response to hypoxia and genes suppressed by
VHL. The gene most upregulated by hypoxia and VHL
mutation was cyclin D1.

Systematic microarray analyses of rat and mouse
kidney development have characterized expression
profiles in metanephric mesenchyme, embryonic and
adult kidney. Embryonic E12.5 kidney overexpressed a
large number of transcription factor, growth factor,
signal transduction and cell cycle genes (Stuart et al.,
2001; Schwab et al., 2003). Renal gene expression has
also been profiled in the Eker rat, which bears a
heterozygous germline mutation in one allele of the
tuberin (TSC2) tumor suppressor, and is predisposed to
spontaneous and chemical-induced RCC. In one study,
microarrays were used to compare non-neoplastic kidney
from TSC2 (+/-) and wild type TSC2 (+/+) rats (Sen et
al., 2004). Differentially expressed genes in this system
were related to the phosphatidyl inositol-3 kinase/AKT
pathway, cell cycle regulation, cell proliferation, cell
adhesion and endocytosis. Microarrays have also been
applied to chemically-induced neoplastic cells derived
from Eker rat renal epithelium (Patel et al., 2003).
Differential expression was pronounced in genes related
to signal transduction (protein kinases and ras-pathway
genes); electron transport and energy homeostasis
(cytochrome c oxidase subunits); stress response, tissue
remodeling, and DNA repair (glutathione-S-transferases;
plasminogen activator; tissue inhibitor of
metalloprotease 3). Interestingly, several of these genes
have been overexpressed in clinical microarray studies
of adult RCC. In a study of pediatric nephroblastoma
(Wilms tumor), tumor cells resembled an early
committed stage in metanephric development,
overexpressing transcription factors essential for cell
survival and proliferation at this stage (Li et al., 2002).
Based on expression profiles, Wilms tumor blastema
appeared to be arrested at a committed stage of
epithelial-mesenchymal transition. Expression databases
of normal human kidney development will be useful to
correlate this finding with Wilms tumor pathobiology.
Also, since epithelial-mesenchymal transition is critical
for neoplastic and non-neoplastic pathology of the adult
human kidney, as well as for the Eker rat model
(Rastaldi et al., 2002; Cook and Walker, 2004), this
research should help to elucidate the complex gene
expression profiles in adult RCC subtypes.
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Future directions

Microarray experiments have advanced the
understanding of renal tumor pathobiology considerably,
although need for further discovery clearly still exists.
Clinically, current trends point to an increased role of
expression profiling for diagnosis, prognosis and
treatment of RCC. For diagnosis, the growing frequency
of small tumor biopsies has underscored the need to
discover molecular markers that complement
histopathology. A critical challenge is classification of
tumors with granular eosinophilic cytoplasm (referred to
as oncocytic neoplasms), based on limited biopsy
material – particularly the related lesions chromophobe
RCC and oncocytoma (Abrahams and Tamboli, 2005).
Due to morphologic heterogeneity of renal tumors, and
the resulting concern of sampling bias, few urologists or
pathologists accept a benign diagnosis such as
oncocytoma from biopsies. Unfortunately, while benign
lesions might be managed appropriately by watchful
waiting in some patients, resections or ablations are
rarely deferred based on biopsy results, due to concern
over missed diagnosis of cancer. In our recent study, we
identified claudin-7 and claudin-8 (tight junction
proteins expressed normally in distal nephron
epithelium) as preliminary candidate expression markers
for chromophobe RCC (Schuetz et al., 2005).
Cytokeratin 7 and the RON oncogene product
(macrophage stimulating protein receptor) have also
been suggested as markers for chromophobe carcinoma
and oncocytoma, respectively (Rampino et al., 2003;
Zhou et al., 2005), although independent studies have
been inconclusive (Abrahams et al., 2004; Patton et al.,
2004). Due to the extreme similarity in gene expression
between chromophobe RCC and oncocytoma (Schuetz,
et al., 2005), the identification of reliable molecular
marker panels will likely be difficult. However, new
technologies for high-density microarray analysis of
fixed tissue (Ma et al., 2004), coupled with highly
quantitative RT-PCR or nanoparticle-based
immunoassays (Nie and Emory, 1997; Han et al., 2001;
Mulvaney et al., 2003; Schuetz et al., 2005), may allow
the precise study of sufficiently large sample cohorts to
develop methods with clinical utility. Similarly, these
new technologies should permit the study of well-
documented RCC patient cohorts with long-term
survival and therapeutic outcome data, in order to
develop novel assays for managing patients with these
very challenging cancers. Overall, molecular
classification is a very promising approach to improve
clinical diagnosis and treatment of renal tumors.
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