
Summary. Cell membrane-bound proteolytic enzymes
(ectopeptidases) are integral membrane proteins,
orientated asymmetrically with the catalytic site exposed
to the extracellular surface, which enables a versatile
range of physiological and pathological functions.
Ectopeptidases may regulate the release of many growth
factors and their receptors into the circulation, as well as
activating or inactivating circulating signalling
molecules, thereby regulating the availability of ligands
for the corresponding receptors. Additionally, many of
these ectopeptidases have functions not limited to
proteolysis, but are able in themselves to function as
receptors, transducing intracellular signals. A versatile
range of functions, such as the modulation of cell-
signalling, matrix degradation, cell adhesion and
migration, which are particularly important for tumour
cell growth and dissemination, are attributed largely to
the ectopeptidases. Even a minor disruption in the
normal proteolytic equilibrium can influence tumor
progression, and a range of ectopeptidases, including
neutral endopeptidase 24.11, aminopeptidase N,
dipeptidyl peptidase IV, angiotensin-converting enzyme,
and the disintegrin-metalloproteinases, have been shown
to be involved in tumour development and metastasis.
The ability to degrade and inactivate peptide hormones
and growth factors, with the resultant modulation of the
tumour-host interface, may play an important role in the
pathogenesis, development or progression of a range of
cancers, and the extracellular orientation of the
ectopeptidases makes them particularly accessible, and
therefore interesting, with regard to therapeutical
applications.
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Introduction

It has long been recognized that the expression
pattern of proteases may be changed in malignant
tumours, indicating a putative involvement in tumour
development and tumour growth. Their roles in cancer
progression and invasion are evidenced by the ability to
influence proliferation, angiogenesis, tumour cell
migration, and metastatic behaviour. Neutral
endopeptidase 24.11 (NEP, CD10), aminopeptidase N
(APN, CD13), dipeptidyl peptidase IV (DPIV, CD26)
and angiotensin-I converting enzyme (ACE, CD143),
and the disintegrin-metalloproteinases, ADAM9,
ADAM12 and ADAM15, belong to a large group of
multifunctional, extracellularly orientated, membrane-
bound proteolytic enzymes classified as ectopeptidases,
which have all been shown to participate in the post-
secretory processing of neuropeptides, peptide hormones
and growth factors. They are all widely distributed and
have been found in various different cell types of
different organs and tissues, including benign and
malignant tumours (Nanus et al., 1997; Antczak et al.,
2001). Each ectopeptidase has the potential to possess
proteolytic, adhesion, and signalling abilities, enabling a
versatile range of physiological and pathological
functions. Tumour cell growth, invasion, and metastasis
depend on timely balanced changes of proteolytic
activity and cell-cell and cell-matrix interactions, which
could be influenced by the activity of these
ectopeptidases. 

The ectopeptidases in tumour biology

The accumulation of mutations during
carcinogenesis results in six essential alterations in cell
physiology that collectively dictate malignant growth:
self sufficiency in cell growth, insensitivity to growth-
inhibitory signals, evasion of cell death, limitless
replicative potential, sustained angiogenesis, and tissue
invasion and metastasis (Hanahan and Weinberg, 2000).
Most of these alterations affect cell signalling pathways,
and the majority of oncogenes and tumour suppressor
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genes are integral components of cellular signalling
circuits, which are up-regulated or constitutively
activated in malignant cells. However, the true initiators
of these circuits are the extracellularly-derived signalling
molecules, which may be secreted by the host cells or
the tumour cell itself.

Autocrine, paracrine and juxtacrine modulation of
cell signalling by growth factors, cytokines, hormones
and signalling peptides plays a key role in the promotion
of proliferation, inhibition of apoptosis, and facilitation
of invasion and migration through tissues, as well as the
induction of angiogenesis. Synthesis and/or amplified
secretion of growth factors and regulatory peptides is
often a feature obtained during carcinogenesis, even of
non-endocrine tumours, and a single tumour may
express a number of different autocrine or paracrine
loops to maintain malignant growth. Both autocrine and
paracrine loops have been observed in most cancers, and
these cell signalling pathways are frequently composed
of three main aspects. Extracellular signalling molecules
bind to cell-surface receptors, which activate
intracellular circuits to initiate the cellular effect (Fig. 1).
Alterations in any of these pathway components may
give rise to tumour biology-relevant modifications in
cell signalling and affect the sensitivity of the tumour
cell to external stimuli: changes to the availability of
extracellular signalling molecules by increased or
decreased synthesis, to the transcellular transducers of
those signals, such as the receptor molecules, or to the
functioning of the intracellular circuits by structural
changes to molecular components.

While the majority of molecular analyses in cancer
searched for changes in the intracellular circuits, little is
known about the biological function of cell surface
molecules that modulate the immediate cellular

environment, such as the availability of the extracellular
signalling molecules. Many of these signalling pathways
involve the extracellular regulation of ligand availability
through proteolysis, which may be mediated by cell
membrane-bound proteolytic enzymes (ectopeptidases)
expressed on the surface of tumour or host cells.

Cell membrane-bound proteolytic enzymes
(ectopeptidases) are multifunctional membrane proteins,
which are widely distributed among various cell
systems. Ectopeptidases are integral membrane proteins,
orientated asymmetrically with the catalytic site exposed
to the extracellular surface, which enables a versatile
range of physiological and pathological functions,
ranging from proteolytic 'shedding' of signalling
molecules, degradation of the extracellular matrix and
tissue remodelling, to adhesion and cell migration, and
the transduction of specific intracellular signals and
involvement in inflammation. 

Proteases may regulate the release of many growth
factors and their receptors into the circulation, as well as
activating or inactivating circulating signalling
molecules. Additionally, many proteases have functions
not limited to proteolysis, but are able in themselves to
function as receptors, transducing intracellular signals.
The individual ectopeptidases are each able to perform
several, often overlapping functions, and, as a result, the
expression of each ectopeptidase must be precisely
regulated, in a tissue- and cell-specific manner. Even a
minor disruption in the normal proteolytic equilibrium
can influence the development of inflammatory and
autoimmune diseases (Bank et al., 2000). Functions,
such as cell-signalling, matrix degradation, cell adhesion
and migration, which are particularly important for
tumour cell growth and dissemination have been
reported for a number of ectopeptidases.
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Fig. 1. Ectopeptidase modulation of
signal transduction pathways.
Inactivation or activation of
extracellular signalling molecules by
ectopeptidases may modulate
intracellular signalling pathways by
regulating the availability of ligands for
their receptors, of which there may be
a varied range, often with more than
one subtype (modified from Ino et al.,
2004).



Neutral endopeptidase 24.11 (NEP)

Neutral endopeptidase 24.11 (NEP, neprilysin,
enkephalinase, CD10, EC 3.4.24.11) is a 90-110 kDa
zinc-dependent metallopeptidase belonging to the
gluzincin family of metallopeptidases. The type II
integral membrane protein is identical to the common
acute lymphoblastic leukaemia antigen (CALLA). The
80kb NEP gene is located on chromosome 3q21-27
(Barker et al., 1989), and the transcribed mRNAs range
from 2.7 to 5.7 kb and exhibit tissue-specific and
developmentally regulated expression (Li et al., 1995).
The encoded 749 amino acids are inserted
asymmetrically into the membrane, with the large
extracellular C-terminal catalytic domain anchored by
the 23 amino acid transmembrane region and the short
27 amino acid cytoplasmic N-terminal tail (Crine et al.,
1997). The human NEP sequence contains 12 cysteine
residues that may possibly form stabilizing disulfide
bridges in the active enzyme, and 5 glycosylation sites,
which are important for transport to the cell surface and
full enzyme activity (Lafrance et al., 1994). Usually
found in homodimeric conformation, NEP cleaves
peptide bonds on the amino side of hydrophobic
residues, but also has peptidyl-dipeptidase activity with
certain substrates (Roques et al., 1993). The endogenous
substrates of NEP include the enkephalins, atrial
natriuretic peptides, substance P, and other tachykinins,
as well as a wide range of other bioactive peptides
(Matsas et al., 1984; Kenny, 1993), such as somatostatin,
neurokinin, cholecystokinin-8, angiotensin I, angiotensin
II, bradykinin, gastrin-releasing peptide, calcitonin,
calcitonin gene-related peptide, interleukin-1, bombesin,
and endothelin-1. NEP is expressed in various tissues
(Kenny, 1993), including immune cells, the brush border
membranes of the kidney, intestine, and placenta, the
brain, thyroid, lung and prostate, where it regulates
proliferation and differentiation by degrading signalling
peptides (Crine et al., 1997). The association of NEP
with acute lymphoblastic leukaemia, Alzheimer’s
disease, multiple sclerosis, asthma, inflammation,
hypertension, and neoplastic transformation and
progression is assumed to be due to the deregulation of
peptide processing (Letarte et al., 1997; Sumitomo et al.,
2005).

Of the ectopeptidases, predominantly NEP has been
associated with peptide-mediated proliferation. There is
ample evidence for the growth retarding effects of NEP,
with the effect of NEP being mediated by regulatory
peptides and peptide hormones (Shipp et al., 1991a). In
the lung, NEP regulates growth and maturation by
inactivating the mitogenic activity of bombesin-like
peptides (King et al., 1993), and down-regulation of
NEP occurs frequently in lung cancer (Shipp et al.,
1991b). Furthermore, the expression of NEP correlates
inversely with tumour cell proliferation of small cell
(Shipp et al., 1991b) and non-small cell lung cancers
(Ganju et al., 1994). Similarly, in androgen-independent
prostate cancer, NEP inhibits cancer progression by

inactivating growth-promoting peptides (Papandreou et
al., 1998), promoting apoptosis (Sumitomo et al., 2000a)
and inhibiting migration (Sumitomo et al., 2000b).

Indeed, in the liver, the overall expression pattern of
NEP corresponds to proliferation and/or differentiation
of hepatocytes. NEP is generally expressed by bile
canaliculi in normal liver and many HCCs (Chu and
Arber 2000; Borscheri et al., 2001; Chu et al., 2002).
However, NEP is only occasionally expressed by foetal
hepatocytes (Röcken et al., 2004). The association
between proliferation and NEP expression in the liver
has been evaluated by comparing the proliferation
indices (number of Ki-67-positive nuclei) with
expression of NEP (Röcken et al., 2004), and it was
shown that, overall, the expression of NEP in non-
neoplastic and neoplastic hepatocytes correlates
inversely with their state of proliferation or
differentiation (Röcken et al., 2004).

Up-regulation of NEP has been reported in
melanomas (Carrel et al., 1993) and in gastric
adenocarcinomas (Carl-McGrath et al., 2004). This may
reflect a regulatory response to excessive growth,
resulting from exposure to trophic peptides (Letarte et
al., 1997). However, in vitro experiments have shown
that inhibition of NEP activity retards cell growth in
liver and gastric cancer cell lines (Carl-McGrath et al.,
2004; Röcken et al., 2004), contradicting the growth
inhibiting effect of NEP. Interestingly, NEP also exhibits
a preferentially cytoplasmic location in prostate cancer
cells (Renneberg et al. 2001) and diffuse-type gastric
carcinomas, which has been attributed to alterations in
intracellular targeting (Gomes et al., 2003). This may
indicate that the function of NEP in cancers is not only
related to its extracellularly-orientated peptidase
function.

Aminopeptidase N (APN)

Aminopeptidase N (APN, CD13, EC 3.4.11.2),
another member of the gluzincin family of metal-
dependent proteases, is an approximately 150 kDa type
II transmembrane protease encoded by the 35 kb APN
gene, located on chromosome 15q25-26 (Noren et al.,
1997). The 967 amino acid sequence contains a single 24
amino acid transmembrane segment near the 8-10 amino
acid cytoplasmic N-terminal. APN contains ten N-
glycosylation sites and exists as a homodimer. A 40
amino acid stalk connects the transmembrane segment to
the catalytic domain, which consists of two subunits.
The C-terminal subunit is assumed to bind substrates,
while the N-terminal subunit contains the HELAH zinc-
binding motif in the single catalytic site, preferentially
cleaving N-terminal unsubstituted neutral amino acids
from oligopeptides (Noren et al., 1997). APN cleaves
vasoactive peptides, such as angiotensin III and kallidin,
neuropeptides, such as enkephalins and endorphins, and
chemotactic peptides, such as MCP-1, as well as
neurokinin A, somatostatin, and interleukin-8, but is
unable to cleave bradykinin or substance P, which act as
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endogenous inhibitors. The broad substrate specificity
reflects its wide expression pattern (Noren et al., 1997).
APN is found in the brush border membranes of
intestine and kidney, on the synaptic membranes of the
central nervous system, and on the surface of
macrophages, granulocytes, and lymphocytes, as well as
on endothelial cells, smooth muscle cells, and
fibroblasts. In addition to its role in the regulation of cell
growth and differentiation by modulating local peptide
concentrations, APN is involved in antigen processing
and presentation (Larsen et al., 1996), serves as receptor
for the human coronavirus 229E (Yeager et al., 1992),
transduces intracellular signals via MAP kinases
(Lendeckel et al., 1998), and mediates invasion and
metastasis in a range of tumours and cell lines (Menrad
et al., 1993; Saiki et al., 1993; Fujii et al., 1995) via
initiation of collagen IV degradation (Saiki et al., 1993).
APN is also associated with neoangiogenesis (Pasqualini
et al., 2000; Bhagwat et al., 2001, 2003).

The expression and putative pathophysiological role
of APN has been studied in many different malignant
tumours (Mechtersheimer and Moller, 1990; Tokuhara et
al., 2001). APN is up-regulated in melanomas (Menrad
et al., 1993), colon cancer (Hashida et al., 2002) and
various tumour cell lines, including those obtained from
renal cell carcinomas (Gohring et al., 1998; Stange et al.,
2000), prostate cancer (Ishii et al., 2001b),
choriocarcinoma (Ino et al., 1994), melanoma (Menrad
et al., 1993), fibrosarcoma (Fujii et al., 1996),
osteosarcoma (Kido et al., 1999), and leukaemia
(Mishima et al., 2002). 

The expression of APN has been linked to tumour
cell proliferation, degradation of extracellular matrix and
metastatic behaviour (Menrad et al., 1993; Kido et al.,
1999; Ishii et al., 2001a; Hashida et al., 2002). Almost
all of these biological effects were attributed to the
ectopeptidase activity, and the deregulation of the local
balance of peptide and growth factor
activation/inactivation. APN may mediate its
pathophysiological effect by cleaving regulatory
peptides, such as bradykinin, enkephalins, or
somatostatin, so promoting tumour cell proliferation.
APN can have opposing effects on cell proliferation of
both hepatoma and gastric cancer cells, which may
reflect the involvement of APN in different pathways
(Carl-McGrath et al., 2004; Röcken et al., 2004).
Interestingly, previous reports have demonstrated that
APN also mediates IL-8-induced apoptosis of leukaemia
cell lines (Mishima et al., 2002). 

In addition to proliferation and apoptosis, APN has
been shown to be involved in invasion. The invasive
potential of rodent and human tumour cells could be
significantly inhibited by anti-APN antibodies or peptide
inhibitors of APN enzymatic activity (Menrad et al.,
1993; Saiki et al., 1993; Fujii et al., 1995; Kido et al.,
1999). These results were paralleled by anti-sense
strategies (Kido et al., 2003), and are believed to be due
to proteolytic degradation of and adhesion to the
extracellular matrix. In a study of gastric cancers, APN

was found in a majority of the lymph node metastases,
often demonstrating high intensity staining in over 50%
of the cells (Carl-McGrath et al., 2004). Although no
correlation was found with lymph node status of the
tumours in this study, the role of APN in metastasis is
supported by the results of various investigations. In
colon and pancreatic carcinoma patients, survival is
significantly lower in patients with APN-positive
tumours (Hashida et al., 2002; Ikeda et al., 2003),
especially in patients already exhibiting lymph node
metastasis (Hashida et al., 2002). These studies were
confirmed by clinical studies using Bestatin, an
aminopeptidase inhibitor, which has been shown in a
range of cell lines to inhibit proliferation and induce
apoptosis (Sekine et al., 2001). In the treatment of
stomach cancer (Niimoto and Hattori 1991), the cancer
patients receiving Bestatin showed higher survival rates
than the control groups, particularly in patients
exhibiting deeper tumour invasion. Additionally,
treatment with Bestatin reduced the incidence of
returning peritoneal dissemination. One of the factors
essential for successful distant metastasis is
angiogenesis, and APN has been identified as a specific
marker of neoangiogenic vasculature endothelial cells
(Pasqualini et al., 2000). Additionally, blocking APN
activity inhibited capillary network formation and
reduced tumour growth in animal models (Bhagwat et
al., 2001, 2003).

Dipeptidyl peptidase IV (DPIV)

Dipeptidyl peptidase IV (DPIV, CD26, EC 3.4.14.5)
is a multifunctional type II cell surface glycoprotein with
a molecular mass of approximately 110 kDa. The human
DPIV gene is located on the long arm of chromosome
2q24.2 and covers 82 kb (Gorrell et al., 2001). The
predicted protein of 766 amino acids, with six amino
acids in the cytoplasmic region and a 22 residue
hydrophobic transmembrane domain, contains nine
potential N-linked glycosylation sites, and has an α/ß
hydrolase domain and a seven-blade ß-propeller domain,
characteristic of members of the prolyl oligopeptidase
gene family. DPIV may be cell bound or soluble,
occuring in the serum (sDPIV). Cell-associated DPIV is
widely expressed on T cells, B cells, natural killer cells,
endothelial cells and epithelial cells. DPIV has three
different functions: adenosine deaminase (ADA)
binding, serine peptidase activity, and extracellular
matrix (ECM) binding. These different biological
activities of DPIV and its ubiquitous expression may
reflect its diverse, sometimes opposing functions in
physiological and pathological settings. 

It has long been recognized that the expression
pattern of DPIV is changed in malignant tumours,
indicating a putative involvement in tumour
development and tumour growth. DPIV was found to be
up-regulated in T-cell lymphoblastic lymphoma, thyroid
cancer, adenocarcinoma of the lung and basal cell
carcinomas of the skin, and to be down-regulated in
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malignant melanomas (Dang and Morimoto, 2002; Pro
and Dang, 2004). DPIV is also significantly up-regulated
on the mRNA and protein level in HCCs and is
expressed by two hepatoma cell lines (Röcken et al.,
2004). Serum levels of DPIV are increased in humans
and animals suffering from HCCs or hepatomas (Hanski
et al., 1986; Gorrell et al., 2001), and the expression
pattern of DPIV in HCCs and cirrhotic livers is different
from that of non-cirrhotic livers (Matsumoto et al., 1992;
Stecca et al., 1997). Serine peptidase activity of DPIV
reverses malignant transformation of malignant
melanomas (Wesley et al., 1999) and prolongs survival
and decreases invasive activity of ovarian carcinoma cell
lines (Kajiyama et al., 2003). The enzymatic activity
may contribute, but is not essential for DPIV-mediated
signal transduction (Morimoto and Schlossman, 1998;
von Bonin et al., 1998), and signal transduction via
DPIV affects proliferation of T-cell lymphomas (Kähne
et al., 1999), and influences hepatocarcinogenesis
(Gaetaniello et al., 1998), by activating tyrosine kinases
and thereby inducing apoptosis in hepatoma cell lines
(Gaetaniello et al., 1998). DPIV has been previously
detected in well- and moderately-differentiated gastric
cancers, but weakly or not at all in poorly differentiated
gastric cancers (Sakamoto et al., 1993), a finding not
confirmed by another study (Carl-McGrath et al., 2004).
Interestingly, DPIV inhibition significantly increased
gastric cancer cell proliferation (Carl-McGrath et al.,
2004), but unexpectedly retarded cell growth in
hepatoma cell lines (Röcken et al., 2004), which
suggests that DPIV may be involved in the pathology of
gastrointestinal carcinomas in different ways in different
tumours

Angiotensin-Converting Enzyme (ACE)

Angiotensin-converting enzyme (ACE, CD143, EC
3.4.15.1) is a 150-180 kDa type I integral membrane
protein with 17 potential N-linked glycosylation sites
(Soubrier et al., 1988). The human ACE gene covers 21
kb on chromosome 17q23, and encodes 1306 amino
acids, consisting of a 28 residue C-terminal cytoplasmic
domain, a 22 amino acid transmembrane anchor, and the
extracellularly-orientated carboxypeptidase domain.
ACE is a unique metallopeptidase in that it has two
functionally active catalytic sites (Soubrier et al., 1988),
probably due to gene duplication (Skidgel and Erdos,
1987). Each site displays differences in affinity for
substrates and inhibitors (Georgiadis et al., 2003). A
testis-specific soluble isoform of ACE, generated by
alternative splicing, has only one catalytic site, and
corresponds to the C-terminal region of full length ACE
(Ehlers et al., 1992). Both isoforms of ACE are
transcribed from the gene by two alternative promoters
(Howard et al., 1990; Hubert et al., 1991). Another
soluble form of ACE is derived from the membrane-
bound protein by proteolytic cleavage of the membrane-
inserted C-terminal stalk (Ehlers and Riordan, 1990),
and there is evidence for the secretion of an alternative

splicing variant lacking the transmembrane domain
(Sugimura et al., 1998). ACE is almost ubiquitously
expressed. Apart from being expressed on the luminal
surface of endothelial cells in vascular tissues (Igic and
Kojovic, 1980), ACE is also found on epithelial cells in
the brush border of the proximal tubule of the kidney,
the small intestine and the placenta (Igic et al., 1977;
Johnson et al., 1984), as well as in neuroepithelial and
vascular smooth muscle cells, and fibroblasts and
macrophages (Igic and Behnia, 2003). Considerable
amounts of ACE are expressed by epithelial cells in the
gastrointestinal tract, predominantly in the intestinal
mucosa, but also in the chief cells of the gastric foveolar
epithelium (Kobayashi et al., 1991; Laliberte et al.,
1991; Nonotte et al., 1993, 1995; Carl-McGrath et al.,
2004), where it may play a role in the metabolism of
gastrointestinal hormones and regulatory peptides
(Turner et al., 1987; Lendeckel et al., 2000). 

ACE plays a major role in the regulation of blood
pressure, cleaving angiotensin I to generate the
hypertensive angiotensin II, the major effector peptide of
the renin-angiotensin system, and inactivating the
hypotensive bradykinin (Re, 2004). Local angiotensin II-
generating systems are believed to be responsible for the
blood pressure-independent effects of renin-angiotensin
system inhibitors. Angiotensin II is involved in the
regulation of cell proliferation via its G-protein coupled
receptors (GPCR), type 1 (AT1) and type 2 (AT2) (de
Gasparo et al., 2000; Suzuki et al., 2003), and can induce
the metalloproteinase-mediated secretion of EGF-like
growth factors (Schafer et al., 2004), and the triple-
membrane passing signal for EGFR transactivation
(Mifune et al., 2005; Olivares-Reyes et al., 2005).

Upregulation of angiotensin II and its precursors has
been observed in connection with stress-induced ulcers
and gastric lesions (Seno et al., 1997; Yee et al., 1997;
Mou et al., 1998) and the inhibition of ACE in animal
models reduces the incidence and severity of stress-
induced gastric ulcers (Bailey et al., 1987; Bhounsule et
al., 1990; Bhandare et al., 1992; Ender et al., 1993;
Cullen et al., 1994; Rao et al., 1995; Uluoglu et al.,
1998). ACE cleaves several gastrointestinal regulatory
peptides and peptide hormones, and the secretion of
these signalling peptides is a necessary part of the
response to gastric mucosal damage. Many of these
peptides have been shown to alleviate or inhibit the
extent of stress-related gastric lesions (Hernandez et al.,
1983; Mercer et al., 1997; Brzozowski et al., 1999;
Konjevoda et al., 2001), and cleavage of these peptides
by ACE may result in attenuation of their bioactivity.

Being a relatively non-specific enzyme, ACE also
cleaves di- or tripeptides from a number of synthetic and
naturally occurring substrates, including substance P,
opioid peptides (Met-enkephalin-Arg6-Phe7,
heptapeptide, ß-neoendorphin, dynorphin1-8,
dynorphin1-6), neurotensin, chemotactic peptide,
luteinizing hormone releasing hormone,
cholecystokinin-8, [Leu15]gastrin11-17, and B-chain of
insulin. This wide range of substrates may explain the
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involvement of ACE in a variety of physiological and
pathological processes, such as neovascularization
(Volpert et al., 1996), fertilization (Krege et al., 1995),
atherosclerosis (Metzger et al., 2000), kidney and lung
fibrosis (Nguyen et al., 1994; Metzger et al., 1999;
Leehey et al., 2000), smooth muscle and myocardial
hypertrophy (Naftilan et al., 1989; Aceto and Baker,
1990), and inflammation and wound healing (Sun and
Weber, 1996). 

A polymorphism of the ACE gene, comprising an
insertion (I) or deletion (D) of a 287-bp DNA fragment
in intron 16, leads to variances in ACE expression and
activity in blood and tissues of affected individuals
(Rigat et al., 1990; Tiret et al., 1992; Villard et al.,
1996), with individuals harboring the DD genotype
exhibiting increased activity of ACE in blood and
tissues. Previous studies have linked this polymorphism
to various malignancies, including renal, prostate and
breast cancer (Usmani et al., 2000; Koh et al., 2003;
Medeiros et al., 2004). The ACE has also been shown to
play a role in the development of early gastric cancers
(Ebert et al., 2005). 

Observations made in retrospective cohort studies
suggested that ACE-inhibitors decrease the risk of
cancer (Lever et al., 1998), including those of the liver
(Friis et al., 2001). In addition to epidemiological studies
supporting the involvement of the angiotensin II system
in cancer progression (Lever et al., 1998), there is also
strong experimental evidence that this system plays an
important role in tumour biology, influencing tumour
cell proliferation (Reddy et al., 1995; Yasumaru et al.,
2003), the remodelling of the interstitial matrix (Suzuki
et al., 2003), the local peritumorous inflammatory
reactions (Smith and Missailidis, 2004), neoangiogenesis
(Yoshiji et al., 2001a, 2002b; Fujita et al., 2002), and
metastatic behaviour (Röcken et al. 2005). 

The local angiotensin system was shown to be
strongly involved in matrix remodelling. Both inhibition
of ACE activity by ACE-inhibitors and blockade of the
angiotensin-II type 1 receptor significantly attenuated
the development of liver fibrosis (Jonsson et al., 2001).
HCCs, in turn, often occur in cirrhotic livers and
progression requires degradation and remodeling of the
surrounding matrix (Theret et al., 2001). The binding of
angiotensin II to the angiotensin-II type 1 receptor has a
trophic and mitogenic effect on cell growth.
Angiotensin-II induces dose-dependent vascular
endothelial growth factor (VEGF), which in turn
correlates with tumour progression of HCCs (Torimura
et al., 1998). ACE may also be involved in tumour
progression through the conversion of angiotensin I to
angiotensin II, which induces neovascularization
(Tamarat et al., 2002), and inhibition of ACE activity by
captopril inhibits angiogenesis and slows tumour growth
in rats (Volpert et al., 1996). The function of ACE in
metastasis has generally been attributed to the promotion
of angiogenesis (Yoshiji et al., 2001b, 2002a; Fujita et al.
2002). However, the ACE insertion/deletion gene
polymorphism is also associated with nodal status in

gastric cancers (Röcken et al., 2005), with the DD
genotype being significantly correlated with a greater
number of lymph node metastases and advanced UICC
tumor stage than the ID or II genotype.

The ADAMs (A Disintegrin And Metalloproteinase)

Instead of degrading bioactive peptides and peptide
hormones, another group of ectopeptidases are better
known for their roles in the shedding of membrane-
bound growth factors or receptors. The ADAMs (A
Disintegrin And Metalloproteinase) are a family of
membrane-anchored, cell-surface glycoproteins,
containing pro-, metalloprotease, disintegrin (RGD-
binding motif), cysteine-rich, epidermal growth factor
(EGF)-like, transmembrane and cytoplasmic domains.
Removal of the prodomain occurs during transport
through the secretory pathways of the cell, with the
mature, proteolytically active form being expressed on
the cell surface. After removal of the prodomain and its
cysteine switch, the metalloproteinase domain is
proteolytically active, enabling the shedding or
degradation of a wide range of substrates. Both the
disintegrin and cysteine-rich domains bind adhesion
molecules, such as integrins and syndecans. The EGF-
like domain may play a role in the association between
the ADAM and the EGF-like ligands to be shed. The
cytoplasmic tail is involved in intracellular signalling via
Src-homology-3 (SH3) binding motifs.

ADAMs are able to modulate cellular adhesion to
adjacent cells and extracellular matrix by binding to
adhesion molecules - a prerequisite for expansion,
invasion and spreading of tumour cells. The presence of
an RGD motif in a ß-loop structure of the disintegrin
domain of ADAM9 and 15 facilitates binding to the
integrins α6ß1, α9ß1, αvß3, or αIIß3 (Tselepis et al.,
1997; Zhang et al., 1998; Nath et al., 1999, 2000; Eto et
al., 2002; Tomczuk et al., 2003), and ADAM-integrin
interactions have been implicated in tissue and matrix
remodelling (Arndt et al., 2002; Le et al., 2003).

In particular, the ADAMs metalloprotease activity
influences cell proliferation. In the stomach,
proliferation and migration of gastric epithelial cells, and
the cellular response to infection and mucosal injury are
regulated, in part, by the EGFR transduction pathway
(Miyazaki et al., 1996, 2001; Zushi et al., 1997; Keates
et al., 2001; Chen et al., 2002; Wallasch et al., 2002),
which plays a key role in tumour proliferation,
angiogenesis, invasion and metastasis (Jonjic et al.,
1997; Eccles, 2000; Fischer et al., 2003). Transactivation
of the EGFR by hormones and regulatory peptides that
are found in the gastrointestinal tract, such as gastrin,
angiotensin II, bradykinin, bombesin, or substance P, is
apparently mediated by disintegrin-metalloproteinase
shedding of EGFR-ligands (Tsutsui et al., 1997; Dong et
al., 1999; Miyazaki et al., 1999; Asakura and Kitakaze,
2002; Fisher et al., 2003; Schafer et al., 2004). Shedding
can be induced by various activating and pathological
stimuli, and the specific ligand released is defined by
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cellular context and stimulus. There is compelling
evidence that ADAM9, 12 and 15 can release some of
the transmembrane protein-derived EGFR ligands, such
as HB-EGF, amphiregulin, and TGFα (Izumi et al.,
1998; Asakura et al., 2002; Schafer et al., 2004). Up-
regulation of these ADAMs could increase ligand-
shedding, and thereby the availability of EGF-like
ligands for the EGFR, and, like overexpression of the
EGFR ligands (Ruck and Paulie 1997, 1998), promote
transformation and proliferation by autocrine
mechanisms.

ADAM9

ADAM9 (MDC-9, meltrin γ) is expressed in a wide
range of tissues (Weskamp et al., 1996). Shed substrates
include heparin-binding epidermal growth factor (HB-
EGF), ß-amyloid precursor protein, fibronectin, ß-
casein, gelatin, TNFα, p75 TNF receptor and c-kit
ligand-1 (Izumi et al., 1998; Roghani et al., 1999). The
ECD integrin binding motif within the disintegrin
domain mediates binding to integrin α6ß1, resulting in
enhanced cellular motility (Nath et al., 2000). The
disintegrin domain also mediates the binding of ADAM9
to another integrin, αvß5 (Zhou et al., 2001). The
cytoplasmic tail contains potential SH3-binding motifs,
to which the adaptor proteins endophilin I and SH3PX1
are assumed to bind (Howard et al., 1999). The
cytoplasmic tail can also be phosphorylated by protein
kinase Cδ, which may activate ADAM9-mediated HB-
EGF-shedding (Izumi et al., 1998; Gechtman et al.,
1999). Increased expression of ADAM9 has been
detected in breast cancer (O'Shea et al., 2003; Lendeckel
et al., 2005), in pancreatic ductal adenocarcinoma
(Grutzmann et al., 2003), gastric cancer (Carl-McGrath
et al., 2005), and liver cancer (Le et al., 2003; Tannapfel
et al., 2003). Interestingly, it has been suggested that
differential processing or post-translational modification
of the ADAM9 proteins may occur in breast carcinomas
compared to non-neoplastic tissue (O'Shea et al., 2003).
Expression of ADAM9 was also detected in prostate
adenocarcinomas and tumour cell lines (Karan et al.,
2003).

ADAM12

ADAM12 (meltrin α) is broadly expressed in a
variety of tissues. There are two alternate forms of
ADAM12, created by alternative splicing (Gilpin et al.,
1998). The longer form (ADAM12-L) produces a
transmembrane protein, whereas the shorter form lacks
the transmembrane and cytoplasmic domains
(ADAM12-S) and transits through the endomembrane
system to be secreted (Hougaard et al., 2000; Kadota et
al., 2000; Cao et al., 2002). In addition to the shedding
of HB-EGF (Asakura et al., 2002), soluble ADAM12
degrades insulin-like growth factor (IGF) binding
proteins 3 and 5, thereby increasing the available pool of
IGF-1 and -2 (Loechel et al., 2000). Although lacking a

defined integrin-binding motif within the disintegrin
domain, ADAM12 binds to α9ß1 integrin (Eto et al.,
2000), as well as regulating ß1 integrin function
(Kawaguchi et al., 2003). ADAM12 also supports cell
adhesion and migration through the interaction of its
cysteine-rich domain with syndecans (Iba et al., 2000;
Thodeti et al., 2003). The SH3-binding motifs in the
cytoplasmic tail of ADAM12 are assumed to mediate
binding to Src, Yes, and Grb2 (Kang et al., 2000; Suzuki
et al., 2000) and p85α, a regulatory subunit of PI 3-
kinase (Kang et al., 2001), indicating its role in the
activation of intracellular signalling pathways. In
keeping with its important role in myoblast fusion
(Yagami-Hiromasa et al., 1995), the cytoplasmic tail also
binds to the muscle specific actin-binding proteins, α-
actinin-1 and -2 (Galliano et al., 2000). Increased
expression of ADAM12 has been detected in giant cell
bone tumours (Tian et al., 2002), in breast cancers and
cell lines (Lendeckel et al., 2005), and in liver cancer
(Le et al., 2003; Tannapfel et al., 2003). Treatment with
anti-ADAM12 antibodies has been shown to enhance the
proliferation of gastric cancer cell lines (Carl-McGrath
et al., 2005). Interestingly, the level of expression of
ADAM12 was significantly lower in diffuse-type,
compared with intestinal-type gastric carcinomas.
Down-regulation of adhesion molecules has been
frequently observed in diffuse-type carcinomas (Tahara
2004), including syndecan-1 (Watari et al., 2004) and
ß1-integrin (Solcia et al., 1996), adhesion molecules
involved in ADAM12-mediated formation of focal
adhesions and cell spreading (Iba et al., 1999; Thodeti et
al., 2003). The lower expression of ADAM12 in diffuse-
type may reflect the different pattern of tumour-host
interactions that distinguishes diffuse- from intestinal-
type gastric cancers (Carl-McGrath et al., 2005).

ADAM15

ADAM15 (MDC-15, metargidin) also exhibits a
wide expression pattern. ADAM15 is involved in the
lysophosphatidic acid-induced EGFR transactivation
(Schafer et al., 2004), and mediates the shedding of
amphiregulin and TGFα (Schafer et al., 2004), as well as
being involved in the degradation of type IV collagen
and gelatin (Martin et al., 2002). ADAM15 is the only
member of the ADAMs family to contain the well-
known RGD-integrin binding motif within the
disintegrin domain, and can bind to αvß3 and α5ß1
integrins (Nath et al., 1999). Binding to integrin α9ß1
also occurs via the disintegrin domain, but in an RGD
independent manner (Eto et al., 2000, 2002). With SH3
binding motifs and potential phosphorylation sites in the
cytoplasmic tail, ADAM15 associates with the adaptor
proteins endophilin I, SH3PX1 and Grb2, and the
tyrosine kinases Src, Lck and Hck (Howard et al., 1999;
Poghosyan et al., 2002; Yasui et al., 2004). ADAM15 is
up-regulated in lung carcinomas (Schutz et al., 2005),
high expression levels of ADAM15 have been reported
in cell lines derived from haematological malignancies
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(Wu et al., 1997), and over-expression of ADAM15
reduces ovarian cancer cell adhesion and motility (Beck
et al., 2005). ADAM15 may also play a role in
pathological neovascularization (Horiuchi et al., 2003).
Additionally, elevated transcription of ADAM15
(Yoshimura et al., 2002) and upregulation on both RNA
and protein level (Carl-McGrath et al., 2005) has been
detected in gastric cancer compared with non-neoplastic
tissue. ADAM15 has also been shown to influence
gastric cancer cell proliferation (Carl-McGrath et al.,
2005).

Ectopeptidases as therapeutic targets

In summary, accumulating evidence associates a
differential expression of individual ectopeptidases with
various types of cancer on both the transcriptional and
protein level. There are various, often conflicting
explanations for the observed cancer-related up- or
down-regulation of these ectopeptidases, and differential
expression of the ectopeptidases may contribute to the
development and/or progression of cancers in different
ways. It has been demonstrated that the inhibition of the
ectopeptidase activity affects tumour cell proliferation in
different ways, being able to both activate and inactivate

in vitro proliferative processes. Ectopeptidases have
broad, partially overlapping substrate specificities, and
their expression pattern is not generally uniform, with
different ectopeptidases cleaving the same substrate at
different anatomical sites. The deregulation of the subtle
balance between interactions with adhesion molecules
and the extracellular matrix, and the shedding of surface
proteins including growth factors and their receptors,
affects inter- and intracellular signalling pathways.
Indeed, the maintenance of malignant growth is
dependent on an extremely complex system of
proteolytic regulation. In particular, the triple membrane
passing signal concept of EGFR transactivation, which
involves the GPCR stimulation of ADAMs-mediated
shedding of EGFR ligands, is becoming more and more
established (Wallasch et al., 2002). As shown in Figure
2, the ectopeptidases described here are involved in the
regulation of the local GPCR ligand concentration (NEP,
APN, DPIV, ACE), as well as regulating the release of
the EGFR ligands from the cell surface (ADAM9,
ADAM12, ADAM15).

The ability to degrade and inactivate peptide
hormones and growth factors, with the resultant
modulation of the tumour-host interface, may play an
important role in the pathogenesis, development or
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Fig. 2. The role of the ectopeptidases in epidermal growth factor receptor transactivation. The triple membrane passing signal concept of epidermal
growth factor receptor (EGFR) transactivation involves the stimulation of G-protein coupled receptors (GPCR) by GPCR ligands, which induces the
ADAMs-mediated shedding of EGFR ligands. Ectopeptidases are involved in the regulation of the local GPCR ligand concentration (NEP, APN, DPIV,
ACE), as well as regulating the release of the EGFR ligands from the cell surface (ADAM9, ADAM12, ADAM15) (modified from Fischer et al., 2003).



progression of a range of cancers. The extracellular
orientation of the ectopeptidases makes them particularly
accessible, and therefore interesting, with regard to
therapeutical applications. Ectopeptidase inhibitors have
been suggested as treatment for cancer (Antczak et al.
2001), and the aminopeptidase inhibitor, Bestatin, is
currently being studied in clinical trials (Ichinose et al.,
2003; Ota and Uzuka, 1992). ACE inhibitors and AT1
blockers are already used to treat hypertension.
However, although the deregulation of the
ectopeptidases leaves no doubt that they are important
for tumour cell biology, the use of ectopeptidase
inhibitors, particularly when orally administered, may be
contraindicated in some cancer patients. In those cancers
where the up-regulation of the ectopeptidases is an
internal response to uncontrolled growth, treatment with
ectopeptidase inhibitors may increase the proliferative
effect mediated by systemic neuropeptides and growth
factors.
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