ALGAS AEROFÍTICAS EPIPÉLICAS DEL MARJAL DE PEGO-OLIVA, ESTE DE LA PENÍNSULA IBÉRICA

M.E. FERNÁNDEZ-GARCÍA, M.I. SÁNCHEZ-LORENCIO y Marina ABOAL

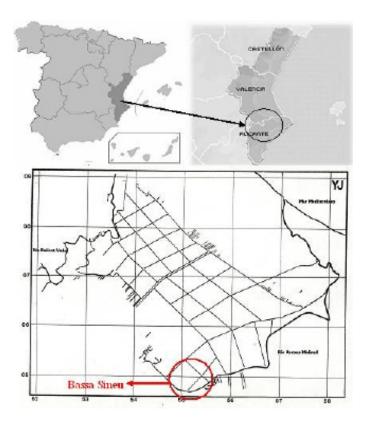
Aerophytic epipelic algae from Marjal Pego-Oliva, eastern Iberian Peninsula

Palabras clave: algas aerofíticas, marjales, Vaucheria, Botrydium, Península Ibérica

Keywords: aerophytic algae, saltmarsh, Vaucheria, Botrydium, Península Ibérica

Las algas aerofíticas han sido escasamente estudiadas en nuestro país. En algunos casos los datos florísticos se incorporan a trabajos ligados al biodeterioro de monumentos de sustratos rocosos (Rifón-Lastra 2000) y en otros, en cambio, se centran en comunidades de microalgas epipélicas (Aboal 1996).

La flora y distribución de las macroalgas epipélicas, muchas de ellas pertenecientes a las xantoficeas, permanece bastante desconocida. En los últimos años se han publicado escasas referencias sobre algunos géneros como *Vaucheria* (Aboal 1989, 2003; Calvo 2001) o *Botrydium* (Gil-Rodríguez et al. 2003) en áreas geográficas muy concretas.


En este trabajo se describen las comunidades de algas epipélicas del Marjal de Pego-Oliva y se aportan nuevas citas para la zona y para el territorio español. Dentro del marco de un proyecto de caracterización extensiva de la flora algal del Marjal se muestrearon las comunidades bentónicas de ríos (Bullent y Racons), surgencias de agua dulce y salobre, azarbes y arrozales. La localización exacta de las localidades en las que se recolectaron las especies aerofíticas se indica en la tabla 1. En el campo se realizó una caracterización limnológica general de todos los puntos de muestreo y se recolectaron muestras de agua para la cuantificación de los principales iones.

El material vegetal se transportó en frío hasta el laboratorio para su observación y, posteriormente, se fijó con formaldehído (<4%) y/o se prensó. Para la observación con microscopio óptico, cuando fue necesario, se trató el material con EDTA (5%). El material recolectado que no estaba fructificado se

Localidad	Coordenadas geográficas	Especies recolectadas	
Riberas del río Racons (R2)	N38°51.612'W0°04.403'	Botrydium granulatum, Vaucheria dillwynii, Vaucheria frigida	
Riberas del río Racons (R3)	N38°51.419'W0°04.139'	Vaucheria dillwynii, Vaucheria sessilis, Vaucheria geminata, Vaucheria frigida	
Riberas de la Bassa Sineu	N38°51.164'W0°03.415''	Vaucheria compacta	

Tabla 1. Localización de los puntos de muestreo y especies recolectadas.

Este trabajo ha sido financiado por el Ministerio de Educación y Ciencia (proyecto CGL 2086-09884).

Figua 1. Localización geográfica de la zona de estudio

mantuvo en semicultivo con agua del medio para inducir la reproducción.

Para la identificación de los especímenes se utilizaron los trabajos de Christensen (1995), John *et al.* (2002), Rieth (1980) y Venkataraman (1961).

El Marjal de Pego-Oliva es una de las zonas húmedas más importantes del litoral mediterráneo español y sirve de refugio a comunidades vegetales y animales muy amenazadas en otros lugares (Cantoral *et al.* 2001). El humedal se encuentra situado en la zona de mayor pluviosidad de la Comunidad Valenciana (fig. 1) y presenta una elevada temperatura, lo que explica el carácter subtropical de la flora (Carretero 1990). El grado de singularidad de este enclave se hace

patente al compararlo con el resto de humedales litorales de la vertiente española.

Su superficie se reparte entre los términos municipales de Oliva (en la provincia de Valencia) y de Pego, Denia y Vergel (en la provincia de Alicante). Presenta una forma alargada, paralela a la costa con unos 14 km² de superficie. El río Bullent recorre el Marjal por su flanco septentrional y recoge los aportes de diversos manantiales de agua dulce y de agua salada. Las precipitaciones en la zona suelen ser torrenciales, con máximos otoñales y primaverales y una acusada sequía estival.

Las precipitaciones de otoño de 2007 fueron las más intensas de los últimos veinte años en la zona del Marjal de Pego-Oliva (más de 400 litros por metro cuadrado en

Localidad	pН	Temperatura	Conductividad	Oxígeno disuelto	PRS	NID
		(°C)	(μS cm ⁻²)	(mg L ⁻¹)	(µmol L-1)	(µmol L-1)
Riberas del río Racons (R2)	7,6-8,2	16,8-21,7	2.630-3.600	5,6-8,2	0,13-0,27	171,42-220,12
Riberas del río Racons (R3)	7,5-8,4	16,6-29,1	1.970-3.350	5,8-15,4	0,15-0,22	271,57-628,13
Riberas de la Bassa Sineu	7,4-7,7	15,9-27,7	4.410-7.740	5,8-13,12	0,10-0,55	281,99-651,45

Tabla 2: Variación anual de las características físicoquímicas del agua en los puntos de muestreo.

unas cuantas horas), y elevaron el nivel de los ríos varios metros anegando gran parte del parque. El muestreo se realizó cuando las aguas volvieron a su cauce. La composición química de las aguas en el momento de la recolección se recoge en la tabla 2.

La comunidad se desarrollaba sobre terrenos arcillosos de las riberas del río Racons y en las inmediaciones de la Bassa Sineu formando un fieltro de coloración verdosa salpicado con vesículas verdeazuladas. Con anterioridad, en el Marjal se había citado únicamente Vaucheria dichotoma (L.) Martius, formando tapetes a veces bastante extensos en los arroyos (Cantoral y Aboal 2001). En esta ocasión este taxón no se recolectó fértil en el campo pero sí formó las estructuras de reproducción en el laboratorio. Todas las especies mencionadas en este trabajo son nuevas citas para el parque. Vaucheria compacta y V. dillwynii son nuevas citas para el levante español y V. compacta es nueva cita para el territorio español (Álvarez- Cobelas 1984; Calvo 2001).

O. VAUCHERIALES

Vaucheria compacta (Collins) Collins in Taylor (Fig. 2: 1-2)

Filamentos de 40-65 μm de diámetro. Dioica. Órganos sexuales en el extremo de cortas ramas que crecen en ángulo recto con el filamento vegetativo. Sólo se observaron pies femeninos. Oogonios globosos, obovoides, de apertura irregular. Oósporas, de 300-350 x 320-370 µm esféricas u oblongas, de paredes gruesas incoloras o amarillentas.

Forma tapetes sobre la tierra húmeda junto con otras especies. Tolera altas concentraciones salinas y es capaz de crecer también en aguas dulces (Christensen 1995). No se conocía en España pero se ha citado en Dinamarca, Francia y Estados Unidos (Venkataraman 1961, John *et al.* 2002).

Vaucheria dillwynii (Weber et Mohr) C. Agardh (=Vaucheria pachyderma Walz) Fig. 2: 3-4)

Filamentos de 60- $100~\mu m$ de diámetro. Monoica. Oogonios solitarios, de 80-150~x 80- $200~\mu m$, sésiles, truncados, erectos, con su eje longitudinal horizontal, con un pico reflejo. Las oósporas de 150~x $180~\mu m$, llenan por completo los oogonios y tienen una pared gruesa y ornamentada. Los anteridios de 25-30~x 50- $70~\mu m$ nacen en el extremo de una corta rama perpendicular al filamento y tienen de 0,2-0,6 espiras, frecuentemente junto a un oogonio, más raramente entre dos (Venkataraman 1961).

Convive con las especies precedentes. No se conocía en España pero se ha citado en aguas dulces y aguas salobres, de Europa y Estados Unidos (Venkataraman 1961, John *et al.* 2002, Wehr & Sheath 2003).

Vaucheria frigida (Roth) C. Agardh sensu T. A. Christensen (=Vaucheria terrestris sensu Götz non terrestris sensu de Candolle, V. hamata (Vaucher) de Candolle)

Filamentos de 500-100 μm de diámetro. Monoica. Anteridios y oogonios sobre ramas recurvadas. Anteridios de 25-35 x 65-90 μm, con 0,5 o 0,75 espiras. Oogonios de 90-120 x 90-135μm,

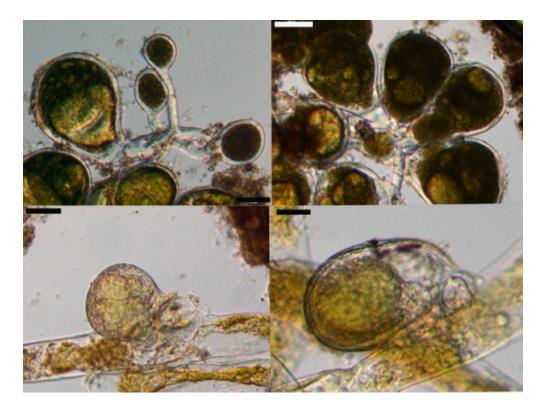


Figura 2. 1-2. *Vaucheria compacta*: detalles de las ramas con oogonios en distintos grados de maduración. 3-4. *Vaucheria dillwynii*: detalles en vista frontal y lateral del oogonio y el anteridio. La escala representa 50 µm.

ovoides, con una prominencia distal, solitarios o en parejas. Las oósporas negruzcas llenan por completo los oogonios y tienen las paredes gruesas.

Forma tapetes sobre la tierra húmeda junto con otras especies. Se había citado en Murcia (Aboal 1989) y otros puntos de España (Álvarez-Cobelas 1984, Calvo 2001) y está ampliamente distribuida por Europa, Asia y Australia (Venkataraman 1961, John *et al.* 2002).

Vaucheria geminata (Vaucher) de Candolle in Lamarck et de Candolle

Filamentos de 45-75 μ m de diámetro. Monoica. Anteridio en el centro de las ramas fértiles rodeado por dos oogonios y con 0,3 a una espira. Oogonio de 65-80 x 75-115 μ m, ovoides a reniformes, con una prominencia distal, con el eje longitudinal erecto a casi horizontal y poros dirigidos hacia arriba. Oósporas de 55-220 x 65-185 μ m de pared engrosada y llenando por completo el oogonio.

En las mismas condiciones que la especies precedentes. Citada para Murcia (Aboal 1989) y otros puntos de España (Álvarez-Cobelas 1984, Calvo 2001, está ampliamente distribuida por Asia, Australia, Europa o Estados Unidos (Venkataraman 1961, John *et al.* 2002).

Vaucheria sessilis (Vaucher) de Candolle in Lamarck (=Vaucheria bursata (O.F. Müller) C. Agardh) Filamentos de 45-120 μm de diámetro. Monoica. Anteridios de 20-29 x 50-75 μm situados entre dos oogonios, generalmente curvado en el plano vertical, con 0,3-0,7 espiras, en el extremo de un corta rama perpendicular al filamento. Oogonios normalmente en parejas, de ovoides a subesféricos, de 50-75 x 75-100 μm, sésiles y con un pico lateral o terminal muy característico. El poro se sitúa en ángulo agudo con el filamento y está generalmente girado en dirección al anteridio adyacente. Las oósporas de 50-70 x 75-95 μm, llenan por completo

los oogonios y tienen paredes gruesas, oscuras y ornamentadas.

En las mismas condiciones que la especies precedentes. Citada para Murcia (Aboal 1989) y otros puntos de España (Álvarez-Cobelas 1984, Calvo 2001, está ampliamente distribuida por Asia, Australia, Europa o Estados Unidos (Venkataraman 1961, John *et al.* 2002).

O. BOTRYDIALES

Botrydium granulatum_(L.) Greville

Talo versiculoso, de parte aérea esférica de hasta 5 mm de diámetro, de color verdeazulado o verde grisáceo, de paredes finas y frecuente incrustación de carbonatos. Rizoides subterráneos muy ramificados e incoloros.

Junto con las especies precedentes. Había sido citada en varios puntos de España (Alvarez-Cobelas 1984, Gil-Rodríguez *et al.* 2003) y es frecuente en suelos húmedos en la orilla de lagos, estanques y ríos, normalmente en primavera y otoño (John *et al.* 2002).

AGRADECIMIENTOS. Agradecemos al personal del Parque Natural del Marjal de Pego-Oliva, a Sergio Marco Castaño y a José Pedro Marín Murcia su apoyo en los trabajos de campo.

BIBLIOGRAFÍA

- ABOAL, M. -1989- Aportación al conocimiento de las algas epicontinentales del S. E. de España. V. Xantoficeas (Xanthophyceae P. Allorge ex Fritsch, -1935). Annuario da Sociedade Broteriana 62: 239-248.
- ABOAL, M. -1996- Epipelic algal assemblages in irrigation channels from Southeastern Spain. *Arch. Hydrobiol. (Algological Studies)* 82: 117-131.
- ABOAL, M. -2003- Vaucheria undulata Jao (Vaucheriaceae, Xanthophyceae), nueva cita para la flora algal epicontinental española. *Anales Jard. Bot. Madrid* 60(1): 215-216.
- ÁLVAREZ COBELAS, M. -1984- Catálogo de las algas continentales españolas, II. *Acta Bot. Malacitana* 9: 27-40. Málaga.
- BOURRELLY, P. -1981- Tome II: Les Algues jaunes et brunes. Chrysophycées, Phéophycées, Xanthophycées et Diatomées. En: Les Algues

- d'eau douce: algues jaunes et brunes. Initiation à la Systématique. Société Nouvelle des Éditions Boubée. Paris.
- CALVO MARTA, S. -2001- Algas bentónicas de marismas de Galicia: Flora y Vegetación. Tesis Doctoral, Universidade da Coruña.
- CANTORAL, E. A. y M. ABOAL -2001- El Marjal de Pego-Oliva: evolución temporal de la flora de macroalgas. *Limnética* 20 (1): 159-171.
- CANTORAL, E. A. y M. ABOAL-2010- Comunidades algales bénticas de algunas fuentes del Marjal Oliva-Pego, Comunidad Valenciana, España: implicaciones para la biodiversidad, control de calidad ambiental y manejo de cuencas en la región mediterránea. *Limnetica* (en prensa).
- CARRETERO, C. J. L. -1990- Macrófitos acuáticos de la provincia de Alicante. *Medi Natural* 2: 45-55.
- CHRISTENSEN, T. -1995- Volume 4: *Tribophyceae* (*Xantophyceae*). En: *Seaweeds of the British Isles*. The Natural History Museum. Londres.
- GIL-RODRÍGUEZ, M. C., A. LOSADA-LIMA y L. MORO-ABAD -2003- Botrydium granulatum (Linnaeus) Greville, primera cita del género en las Islas Canarias. *ALGAS (Boletín de la Sociedad española de Ficología) Número Especial en Homenaje al Dr. Seoane*: 23-24.
- JOHN, D. M., B. A. WHITTON & A. J. BROOK (Ed.). -2002- The Freshwater Algal Flora of the British Isles. An identification guide to freshwater and terrestrial algae. Cambridge University Press. Cambridge.
- LLIMONA, X. -1985- Plantes inferiors. En: Història Natural del Països Catalans. Tomo 4. Enciclopedia Catalana, S.A. Barcelona.
- RIETH, A. -1980- *Xantophyceae*. Gustav Fischer Verlag. Stuttgart.
- VENKATARAMAN, G. S. -1961- *Vaucheriaceae*. Indian Council of Agricultural Research. Nueva Delhi.
- WEHR, J. D. & SHEATH, R. G. (Ed.) -2003-Freshwater Algae of North America. Academic Press.

Dirrección de los autores. Laboratorio de Algología. Departamento de Biología Vegetal. Facultad de Biología. Universidad de Murcia. E- 30100, Murcia (España)