
Summary. Increased microvessel density (MVD) has
been observed in the bone marrow (BM) of patients with
multiple myeloma (MM), acute lymphoblastic
leukaemia, acute myeloid leukaemia, and
myelodysplastic and myeloproliferative syndrome. The
MVD is the net result of cumulative phases of
angiogenesis and angio-regression and is as such not an
indicator of the ongoing angiogenesis at the time of
biopsy. There is, therefore, a need for additional methods
that allow the estimation of ongoing angiogenesis.
Double immunostainings for CD34 and Ki-67 can be
used on paraffin-embedded tissue to determine the
endothelial proliferation fraction. The BM endothelial
cells, as a component of the BM stroma, have a close
interaction with the malignant cells. In MM, for
example, they are involved in the specific homing and
are a source of paracrine growth factors. Targeting the
BM microvessels will not only influence the nutrient and
oxygen supply, but will in addition reduce the growth
stimuli provided by the EC. 
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Introduction

More than a century ago the surgeon Stephen Paget
(1898) suggested that the site of metastasis depended on
the affinity of the tumour for the micro-environment
with his seed and soil hypothesis. Currently, it is evident
that for the study of the pathophysiology of tumour
growth all components of the microenvironment should
be considered (Compagni and Christophori, 2000;
Bissell and Radisky, 2001; Almholt and Johnsen, 2003;
Christofori, 2003). For haematological malignancies
there is clear evidence of an intimate interaction between

tumour cells and stromal cells (Hideshima and
Anderson, 2002). The microvasculature is an active
component of the stroma. This vasculature is responsible
for the appropriate oxygen and nutrient supply and the
removal of waste products. It provides a route for
homing and metastasis, and, last but not least, the bone
marrow endothelial cells (BMEC) are also involved in
autocrine interactions and paracrine interactions with
tumour cells. For instance, BMEC secrete vascular
endothelial growth factor (VEGF), basic fibroblastic
growth factor (bFGF), matrix metalloproteinase-2
(MMP-2), MMP-9, monocyte chemoattractant protein-1
(MCP-1), which are growth factors, and invasive factors
for themselves and for multiple myeloma (MM) cells.
On the other hand, VEGF secreted by the MM cells can
induce secretion of stem-cell factor (SCF), Flt-3 ligand,
granulocyte-macrophage colony-stimulating factor (GM-
CSF), IL-6 and IL-7 (Yamaguchi et al., 1996; Fiedler et
al., 1997; Bellamy et al., 1999; Bertolini et al., 2000;
Dankbar et al., 2000) by the BMEC which will again
stimulate the MM cells.

The process of new vessel formation from pre-
existing vessels is called “angiogenesis”. The regulation
of angiogenesis is dependent on several angiogenic
pathways. The unravelling of these pathways opens the
possibilities for the development of new therapeutic
agents. The balance in secretion of angiopoietin-1 (Ang-
1), angiopoietin-2 (Ang-2) and of VEGF is important in
this process. Ang-1 is the major physiological ligand for
the Tie-2. Vessel integrity is preserved in mature vessels
by activation by Ang-1 of Tie-2 present on the EC
(Maisonpierre et al., 1997). Ang-2 competes with Ang-1
for the binding to the Tie-2 which leads to loosening of
vessel structures and dissociation of pericytes (Holash et
al., 1999), which makes the EC highly responsive to
VEGF.

TGF-ß1 is both pro- and anti-angiogenic: the TGF-
ß1-ALK1 pathway induces EC migration and
proliferation, whereas the TGF-ß1-ALK5 pathway is a
positive regulator of vessel maturation. The balance
between both pathways is orchestrated by endoglin, a
TGF-ß-binding protein (Goumans et al., 2002).
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The activators and inhibitors of angiogenesis act at a
local level and serum and/or plasma levels will not
always reflect the situation in the compartment of
interest. The circulating levels are not only influenced by
the amount produced, but are also dependent on their
half-life. Moreover, angiogenic factors are also produced
by cells other than tumour cells, such as stromal cells,
EC, osteoclasts, macrophages, mast cells (Ribatti et al.,
2001), immune cells, platelets and MKC (Chou et al.,
2002). MMP-9, for example, is secreted by neutrophils
(Takafuji et al., 2003), macrophages and mast cells
(Kanbe et al., 1999). MMP themselves can liberate
angiogenic factors from the extracellular matrix or from
the basement membrane. Circulating VEGF is produced
by tumour cells, but it can also be released by
granulocytes, monocytes, mast cells, thrombocytes
(Salgado et al., 2000) and megakaryocytes (Benoy et al.,
2002). Mast cell counts are higher in patients with active
MM than in non-active MM and MGUS (Vacca et al.,
2001). The number of mast cells correlates with BM
angiogenesis in B-chronic lymphocytic leukaemia (CLL)
(Ribatti et al., 2003a) and in myelodysplastic syndrome
(MDS). In the latter both MVD and mast cell counts
correlate with tumour progression (Ribatti et al., 2002).

It is clear that angiogenic stimulation is dependent
on several factors (Orpana and Salven, 2002) and it is
therefore unlikely that the measurement of a single
angiogenic factor reflects the entire angiogenic process.
It is more likely that every disease has a peculiar
angiogenic profile (Di Raimondo, 2003).

Hypoxia as a driving force for angiogenesis

Once a solid tumour exceeds a volume of more than
2 mm3 the simple diffusion of oxygen and nutrients will
be inadequate to fulfil the metabolic needs. For further
expansion the tumour can rely on several mechanisms:
1) use of the pre-existing vasculature (co-option)
(Holash et al., 1999); 2) development of new vessels
from pre-existing vessels (angiogenesis); therefore, BM-
derived EC precursors can or cannot be recruited
(postnatal vasculogenesis) (de Bont et al., 2001a; Pelosi
et al., 2002); 3) tumour cells can mimic the activities of
EC and participate in the formation of new vessels
(mosaicism) (Chang et al., 2000); and 4) fluid-
conducting, matrix-rich meshworks (vasculogenic
mimicry) (Hendrix et al., 2003) can develop between the
tumour cells.

It is the type of tumour, the growth pattern and the
microenvironment which will determine the mechanisms
to be used. For instance, in one of the three growth
patterns observed in liver metastases of colorectal
adenocarcinoma, the hepatocytes of the liver plates are
replaced by tumour cells with total conservation of the
supportive blood vessels. In this so-called replacement-
type of growth pattern the nutritional supply is entirely
provided by the pre-existing sinusoids (co-option). The
liver metastases with a desmoplastic growth pattern are
highly angiogenic (Vermeulen et al., 2001). Angiogenic-

independent growth has also been observed in lung
tumours (Pezzella et al., 1997).

Hypoxia in the tumour is one of the main driving
forces of angiogenesis. Two molecular pathways are
involved in this hypoxia-driven angiogenesis: the
hypoxia-inducible factor (HIF) pathway and the NFκB
pathway. Both pathways may interact to provide (under
physiological conditions) tight control of angiogenesis
(Royds et al., 1998).

HIF pathway

HIF is a key transcriptional regulator of angiogenic
growth factors via an oxygen-sensing process (Semenza,
1999). HIF is also a key regulator of a broad range of
cellular and systemic responses to hypoxia (Harris,
2002; Semenza, 2003): genes involved in glycolysis,
glucose uptake, metabolism, pH, neurotransmitters,
stress-response pathways, cell adhesion, extracellular
matrix, cytoskeleton and proteases, oxygen and iron
metabolism. One of the genes activated by HIF is the
gene for carbonic anhydrase isoenzyme 9 (CA IX). This
transmembrane protein is involved in the acid-base
homeostasis and counteracts the intracellular acidity
accumulating under hypoxic conditions (Wykoff et al.,
2000). This CA IX expression has been used as a
surrogate marker of tumour hypoxia (Stewart et al.,
2002; Swinson et al., 2003). Carbonic anhydrase
isoenzyme 2 (CA II), which is also involved in the
generation of a pH gradient between extracellular and
intracellular compartments, has been shown to be
expressed in most patients with myeloid as well as
lymphoid leukemic blast cells (Leppilampi et al., 2002).

HIF-1 is a αß-heterodimer. There are several
isoforms of both subunits. HIF-1ß is constitutively
expressed in the nucleus, whereas the HIF-1α subunit is
under the influence of hypoxia; HIF-1α and HIF-2α are
closely related and both interact with the hormone-
responsive elements to induce transcriptional activity. In
an oxygen-rich environment two prolyl residues of HIF-
1α are hydroxylated by iron-dependent oxygenases. The
hydroxylated HIF will be targeted to the von Hippel-
Lindau (VHL) E2 ubiquitin ligase complex resulting in
proteasomal destruction of HIF-1α. In a hypoxic state
HIF-1α is not degraded and can form a heterodimer with
HIF-1ß resulting in the transcription of several genes
(Wang et al., 1995) (cfr. supra). Qian et al. (2001)
detected high levels of HIF-1α mRNA in BM stromal
cells after prolonged exposure of the BM to hypoxia.

The HIF system can also be induced or amplified by
oncogenic pathways (insulin-like growth factor-1,
epidermal growth factor, mutant Ras and v-scr kinase
pathways) (Jiang et al., 1997; Pal et al., 2001) and
supressor mutations (PTEN, p53, p14ARF, pVHL)
(Maxwell et al., 1999, 2001; Zundel et al., 2000; Ravi et
al., 2000; Fatyol and Szalay, 2001; Wiesener et al.,
2001). The mechanisms of oncogenic and growth factor
stimulation can act at the level of transcription,
translation, stabilisation and activation of the HIF-1α
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protein. MM cells also constitutively express HIF-1
protein under normoxic conditions (Feinman et al.,
2003). Chronic myeloid leukaemia-(CML) associated
onco-protein bcr/abl induces HIF-1α and VEGF gene
expression (Mayerhofer et al., 2002). Hypoxia further
increases HIF-1α protein levels in several MM cell lines
as well as HIF-1-dependent transcriptional activity in
ARP-1 cells. Treatment of MM cells with IGF-1 and IL-
6, induced HIF-1 DNA binding and HIF-1α protein
levels in several MM cell lines. The induction of HIF-1
by IGF-1 and IL-6 is via the AKT/PI3-K and MAP
kinase pathways.

HIF is involved in a multitude of pathways in which
the components can undergo mutations and clonal
selection (Semenza, 2000). Clonal selection of one of the
components will inevitably result in co-selection of other
components linked to that pathway. This process of
clonal selection results in a heterogeneous tumour cell
population with a heterogeneously distributed HIF
overexpression. This uncoordinated HIF overexpression
in space and time will result in an inefficient and
disorganised angiogenesis, which contrasts to the co-
ordinated physiological angiogenesis observed in
processes like wound healing.

Studies with solid tumours have provided evidence
indicating that HIF-1 mediates resistance to
chemotherapy and radiation (Aebersold et al., 2001;
Unruh et al., 2003). Inhibitors of HIF-1 could therefore
represent an important new class of therapeutic agent
(Semenza, 2003).

NFκκ−−B

NFκ-B is the second hypoxia-responsive pathway
(Royds et al., 1998). Most of the angiogenesis-related
genes (VEGF, bFGF, TNFα) have a NFκ-B binding site
in or near their promoters. NFκ-B can rapidly transduce
hypoxic signals. NFκ-B is a dimer that is inactivated by
the formation of a trimer with IκB. This inactive
cytoplasmically-located trimer can, under the influence
of stimulatory signals, undergo phosphorylation, poly-
ubiquination and proteasomal degradation of IκB,
thereby liberating the NFk-B dimer. This dimer will be
translocated to the nucleus and bind DNA. Alternatively,
the inhibitory activity of IκB can be abolished by
tyrosine phosphorylation, a process independent of
proteasomal degradation. This tyrosine phosphorylation
of IκB is the ultimate step of a hypoxia-response cascade
for the NFκ-B activation: scr activation, occurring
within 15 minutes of cellular exposure to hypoxia, leads
to ras and raf-1 kinase activation and ultimately to
tyrosine phosphorylation of IκB with subsequent NFκ-B
activation. Genes regulated by NFκB are those for the
cell adhesion molecules VCAM-1, ICAM-1 and E
selectin, the cytokine/growth factors IL-2, IL-6, IL-8, G-
CSF and the proto-oncogene c-myc, matrix proteins,
matrix-degrading enzymes and genes modulating
apoptosis such as p53 (Royds et al., 1998).

In response to environmental non-genotoxic stress

such as hypoxia, TNFα is produced by macrophages,
binds to its receptor and induces apoptosis. TNFα
activates NFκ-B by the raf-1 pathway and promotes
binding of NFκ-B to the promoter of p53. p53 has an
anti-angiogenic effect by inducting thrombospondin-1
and inhibiting VEGF. Mutations in p53 are widespread.
Mutant p53 confers a growth advantage for cells under
hypoxic conditions. p53 will accumulate in the nucleus
under low oxygen tension. Due to hypoxia, tumour cells
with a reduced apoptotic potential (those with a mutation
of p53) undergo positive selection. Tumour cells with
mutant p53 are able to sustain a longer period of cellular
proliferation in hypoxic conditions. Finally the p53-
mutated cells will become the dominant clone. Those
tumour cells able to survive at low oxygen tension are
also more resistant to radio- and chemotherapy. Tumours
with mutant p53 elicit a stronger angiogenic response
since the mutant p53 has lost its ability to up-regulate the
anti-angiogenic agent thrombospondin-1 (Dameron et
al., 1994) and as a consequence, the transcriptional
activation of the VEGF gene is not blocked anymore
(Mukhopadhyay et al., 1995). It has furthermore been
shown that p53 targets HIF-1α to degradation via mdm-
2. Conversely, upon loss of p53, HIF-1α is no longer
degraded, thus supporting tumour angiogenesis together
with tumour growth (Ravi et al., 2000).

The tumour-associated vessels are different from
normal microvessels

Normal vessels are composed of a monolayer of
firmly attached EC in close contact with the vascular
basement membrane and surrounded by pericytes
(smooth-muscle cells). During physiological
angiogenesis the vessels quickly reach full maturation
and become stable (quiescent). This process is tightly
regulated by the balance between angiogenic factors
such as VEGF, bFGF, placental growth factor (PlGF),
PDGF, Ang-1, Ang-2 and Tie-2 (tyrosine kinase with Ig
and EGF homology-2) (Jain and Munn, 2000). In normal
vasculature pericyte association reduces EC proliferation
and decreases their dependence on VEGF. In tumours
the balance between pro- and anti-angiogenic signals is
less tightly regulated (Jain, 2003) and the tumour-
associated vessels never reach a quiescent stage. In
tumour vessels the pericytes are decreased and are more
loosely associated with the vascular basement membrane
due to the action of Ang-2 on the Tie-2 receptor (Jones
et al., 2001; Vajkoczy, 2002). The EC of tumour vessels
have a reduced level of adhesion molecules resulting in a
loosening of the cell-cell adhesion and of the adhesion to
the extracellular matrix (Dejana, 1996). The EC of
tumour vessels are abnormal in shape: they have an
increased permeability due to widening of intercellular
junctions, a discontinuous basement membrane,
transcellular holes, vesicles and fenestrae (Hashizume et
al., 2000). They are irregular and tortuous resulting in a
turbulent, oscillating blood flow (Mollica et al., 2003)
and may become hypoxic because of aberrant oxygen
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supply. Tumour cells can be incorporated into the blood
vessel lining (Chang et al., 2000).

Such disturbed architecture of the microvasculature
has been observed in solid tumours (Jain, 2003) as well
as in haematological malignancies. Lundberg et al.
(2000) studied the microvessel architecture by the use of
serial sections and confocal microscopy: the
microvessels in polycythaemia vera (PV) were relatively
straight, but more branched than vessels in the BM of
normal patients; in chronic myelocytic leukaemia (CML)
the BM microvessels were relatively straight with
numerous branches; and in idiopathic myelofibrosis
(IMF) the microvessels were arranged in vascular nests
with numerous short vessels that were highly branched
and tortuous. In the blastic transformation of CML the
calibre of the microvessels was smaller compared to the
chronic phase (Korkolopoulou et al., 2003). In BM of
patients with myelodysplastic syndrome (MDS), the
refractory anaemia with excess of blasts (RAEB)
subgroup had microvessels with a smaller calibre than
the refractory anaemia (RA) and refractory anaemia with
ring sideroblasts (RARS) subgroups (Korkolopoulou et
al., 2001). Perez-Atayde et al. (1997) used a computer-
aided three-dimensional reconstruction model of BM
vascularity in BM biopsies of newly diagnosed cases of
acute lymphoblastic leukaemia (ALL) and they found
complex, arborising of microvessels in the leukaemic
specimens compared with single, straight microvessels
without branching in controls. 

All tumour vessels are not equal in their ability to
provide oxygen and nutrients to the tumour cells they
support. Within a tumour there is an unevenly distributed
tumour cell population with a varying resistance to
hypoxia and with a heterogeneous ability to up-regulate
HIF or to secrete angiogenic factors. This is reflected in
an unevenly distributed vasculature.

Vacca et al. (2003a) studied genotypic and antigenic
differences between MM-associated BM EC and the
quiescent human umbilical vein (HUVEC) EC. The
MM-endothelial cells highly expressed VEGFR-2, Tie-2
and CD105 (endoglin) (involved in vessel sprouting),
CD34 and CD133 (suggesting recruitment of BM
endothelial progenitor cells), bFGFR-2 (bFGF is
secreted by MM cells and stromal cells), and aquaporin
1 (hyperpermeability) in comparison to HUVEC.

Since tumour cells can constitutively secrete
angiogenic factors without physiological feed-back
control, the vascularisation of the tumour may become
greater than is necessary for the metabolic need (over-
vascularisation) (Hlatky et al., 2002). This can have
therapeutic consequences since reducing redundant
microvessels with anti-angiogenic therapy will probably
have less effect in reducing tumour mass. 

The EC are an active component of the
microenvironment and as such are involved in several
steps of the homing of MM cells. For the specific
homing, the MM cells have to be attracted to the bone
marrow. Arriving in the sinusoids of the BM, they have
to be arrested on the endothelial lining of the sinusoids.

Subsequently they have to migrate through the EC and
the basement membrane in order to arrive into the
extravascular compartment. In this compartment they
have to adhere to extracellular matrix proteins and
stromal cells in order to receive the appropriate growth
stimuli. Murine BMEC produce MCP-1, which after
binding on CCR2, present on both 5T2 and 5T33MM
cells (this murine MM model is discussed later), induces
chemo-attraction to the BM (Vanderkerken et al., 2002).
Once the MM cells are attracted to the BM they have to
adhere to the BMEC. Murine 5TMM cells preferentially
adhere to BM EC via CD44v10 expressed on MM cells
(Asosingh et al., 2001). Contact with BMEC causes up-
regulation of key molecules such as CD44v6 (adhesion
to BM stroma), IGF-1R (chemotaxis to the BM,
migration of MM cells,) and MMP-9 (infiltration
through the basement membrane) by the MM cells on
5TMM cells (Van Valckenborgh et al., 2002; Asosingh et
al., 2000a; Menu et al., 2003). In the human, the up-
regulation of MMP-9 in the MM cells has been
demonstrated to be mediated by hepatocyte growth
factor (HGF) secreted by the BMEC (Vande Broek et al.,
2003).

There is recent evidence that murine BMEC express
RANKL (receptor activator of NFκB) and produce
osteoprotegerine (OPG) (De Leenheer et al., 2003). The
RANKL/OPG system plays an important role in the
development of normal osteoclasts and the system is
abnormally regulated in MM resulting in bone
destruction (Croucher et al., 2001; Vanderkerken et al.,
2003a). MM cells decrease OPG production by the EC
(De Leenheer et al., 2003).

How to measure angiogenesis in trephine biopsies

The quantification of angiogenesis in solid tumours
is extensively discussed in an international consensus
report (Vermeulen et al., 2002). We here address some of
the methods applicable for trephine biopsies which could
be used in routine work. Other non-invasive functional
methods to assess the vascularity such as Doppler
sonography, positron emission tomography and contrast-
enhanced dynamic magnetic resonance imaging will not
be addressed here, but are extensively reviewed
elsewhere (Mc Donald and Choyke, 2003).

Microvessel density

Determining the microvessel density (MVD) has a
prognostic value in a wide range of tumours such as
invasive breast cancer (Acenero et al., 1998), colorectal
cancer (Gallego et al., 2000), prostate cancer (Weidner et
al., 1993), urinary bladder (Chaudhary et al., 1999),
oesophageal and gastro-intestinal carcinoma, and
malignant melanoma (Graham et al., 1994). 

The MVD is the net result of cumulative phases of
angiogenesis and angioregression. It is a misconception
to assume that the MVD is a measure for the angiogenic
activity at the time of biopsy (Hlatky et al., 2002).
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Measuring the MVD is subjected to important factors
which can cause confusion: 1) sample size; inadequate
sampling can be an important source of error since the
microvessels are heterogeneously distributed within the
BM; 2) non-tumour related causes of angiogenesis e.g.
infection, healing (previous biopsy), hypoxia from
systemic origin (haemorrhagic shock); 3) type of fixative
used, the process of decalcification; 4) antibody
selection. Each of the immunostainings have their
advantages and drawbacks (Vidal et al., 2000; Hasan et
al., 2002). The FVIII staining, although specific, is not
very sensitive. The megakaryocytes express FVIII. Ulex
europeus may also label some inflammatory and
neoplastic cells. The CD31 (PECAM-1) (Sheibani and
Frazier, 1999) immunohistochemistry also stains
platelets and megakaryocytes and some PC. An
interfering feature of the CD34 in the BM is the
expression of CD34 on myeloid blasts, which makes this
immunostain unsuitable for the assessment of the MVD
in CD34-positive AML. Pruneri et al. (2002) evaluated
the MVD in MM by staining with anti-CD105 and anti-
CD34 antibodies. The anti-CD34 antibody preferentially
highlighted the small vessel endothelial sprouts, whereas
the anti-CD105 antibody better highlighted the sinusoid-
like vessels. Although the MVD was significantly higher
in MM than in controls after immunostaining with either
the anti-CD105 antibody or the anti-CD34 antibody,
only the MVD determined with the latter had a
prognostic value. In solid tumours the superiority of
anti-CD105 over anti-CD34 was demonstrated in non-
small cell lung (Tanaka et al., 2001) and breast
carcinomas (Kumar et al., 1999). Thrombomodulin is
constitutively highly expressed by EC and can also be
used to highlight microvessels (Pulé et al., 2002); 5)
training and experience of the investigator influences the
identification of the vascular hot spot; and 6) methods of
counting: since the microvessels are unevenly
distributed, different methods have been used to evaluate
a representative tumour area. It has been suggested that
EC proliferation is particularly active in the highly
vascularised regions (“hot spots”) (Weidner et al., 1991).
One method often used is the quantification of the MVD
in the hot spot. A limitation of this method is the
subjectivity of hot spot determination. Another method
used for solid tumours is the Chalkley point overlap
morphometry technique (Chalkley, 1943; Vermeulen et
al., 2002). This method uses an eyepiece graticule that
contains a number of grid points. By turning the grid the
maximum number of grid points has to be superimposed
on the microvessels (within the hot spot). This number
reflects the relative area occupied by the microvessels
rather than the vessel density. The main advantage of
this method is that no decision has to be made by the
observer as to whether two adjacent immunostained
cross-sections belong to one or to two separate blood
vessels, and thus reduces the subjectivity. The Chalkley
technique has been used in studies of breast cancer
patients and the count proved to be a significant and
independent prognostic factor. In the BM environment,

however, this method can give discrepant results to those
obtained by MVD determination in the hot spots: normal
sinusoids have an open lumen and it is easy to
superimpose more grid points on such vessels than on
the small newly-formed slit-like vessels in
haematological malignancies. The observation that
newly-formed microvessels are smaller than the pre-
existing sinusoids implies that an increase in MVD will
be stronger than the increase in the Chalkley count, the
latter being an estimate of the microvessel area.

The MVD is the net result of cumulative phases of
angiogenesis and angioregression, and therefore can not
predict whether a patient will respond to anti-angiogenic
therapy. Oxygen and nutrient consumption of a tumour
determine which intercapillary distance is compatible
with viability. This does not however imply that a
tumour with a low MVD (and a high intercapillary
distance) is less dependent on oxygen and nutrient
supply. Another limitation of the MVD is that its value
does not take into account the functionality of the
vessels. Reducing microvessels in a condition of over-
vascularisation (cf. supra), inhibiting hypoxic vessels or
inhibiting vessels with a stagnating blood flow, will
probably be less effective. During anti-angiogenic
therapy the MVD is difficult to interpret, since the
evolution of the MVD under anti-angiogenic therapy is
dependent on several factors. Assuming that the therapy
succeeds in reducing the microvasculature, a reduction
in MVD will be observed if the decrease in MVD is
stronger than the tumour mass reduction The MVD will
remain constant if the decrease in microvasculature
parallels the decrease in tumour mass. Even an increase
in MVD can theoretically be compatible with a
successful therapy in the situation where the tumour
mass reduction is stronger than the decrease in MVD
(Folkman, 2001).

Endothelial cell proliferation

To have a better idea of the ongoing angiogenesis at
the time of biopsy the endothelial cell proliferation
(ECP) fraction can be determined on the basis of a
double immunostaining for CD34 and Ki-67: CD34 will
highlight the EC of the microvessels while Ki-67 will
stain the nuclei of the proliferating EC. The ECP fraction
of quiescent adult vasculature is 0.01% (Carmeliet and
Jain, 2000). This is not unexpected since these EC have
a life span of several hundred days. The EC of tumour-
associated vessels have a turnover of around 5 days. In
haematological malignancies we observed an ECP
varying between 0 and 7% (De Raeve et al., 2004). 

Angiogenesis in multiple myeloma

Several reports have found independently that
increased MVD is an adverse prognostic marker for MM
(Vacca et al., 1994; Rajkumar et al., 2000; Munshi and
Wilson, 2001). There is a correlation between the MVD,
the clinical stage and cytological grade (Xu et al., 2002).
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A decreased MVD in MM patients achieving complete
remission after chemotherapy has been reported by one
study (Sezer et al., 2001b), but was not observed in
another study (Rajkumar, 1999), where MVD was
compared before and after chemotherapy followed by
stem cell transplantation. The MVD of BM in patients
with active MM (Fig. 1b) is significantly higher than in
patients with inactive MM or patients with monoclonal
gammopathy of undetermined significance (MGUS)
(Vacca et al., 1994). These observations suggest that
active MM may represent the “vascular phase” of
plasma cell tumours, and non-active MM and MGUS the
“prevascular phase” (Fig. 1a). Moreover, since BM
angiogenesis and labelling index (LI) are closely
associated with the phases of MM activity, and since the
LI is a prognostic factor, it may well be that the MGUS
and non-active MM are at risk of progression towards
active MM if the BM shows angiogenesis (Ribatti et al.,
2003b). MM cells of patients with active MM express
VEGF (Dankbar et al., 2000), bFGF (Vacca et al.,
2003a), HGF (Borset et al., 1996) and Ang-1 (Giuliani et
al., 2003). VEGF induces proliferation and triggers
migration of human MM cells via an autocrine loop.
VEGF isoform 165 activates at least two pathways in
MM: the Raf-1-MEK-extracellular signal-regulated
protein kinase (ERK) pathway mediating proliferation,
and the protein kinase C (PKC)-dependent cascade
associated with migration (Podar et al., 2001). In
addition VEGF is involved in several paracrine loops
which trigger growth of MM. MM cells secrete VEGF-A
which stimulates proliferation and chemotaxis in EC via
VEGFR-2 and in stromal cells via VEGFR-1. Residual
stromal cells secrete VEGF-C and VEGF-D which
trigger plasma cell proliferation via VEGFR-3 (Vacca et
al., 2003b). Both splice variants VEGF165 and
VEGF121 are secreted by MM cells and stimulate the
expression of IL-6 by BM EC and BM stromal cells. In
turn, IL-6 stimulates the expression of both VEGF splice
variants by MM cells (Dankbar et al., 2000). Along with
IL-6, other cytokines and growth factors, such as bFGF
(Bisping et al., 2002), IL-1ß, PDGF, insulin-like growth
factor, TGF-ß, TNF-α, and keratinocyte growth factor,
have been reported to stimulate VEGF expression
(Dankbar et al., 2000).

Serum HGF and serum VEGF levels are increased in
MM (Iwasaki et al., 2002), but do not correlate with
disease severity, as indicated by the stage of disease and
ß2-microglobulin (ß2M) (Sezer et al., 2001a). 

MMPs are also involved in the angiogenesis in MM.
Of the 24 different MMPs known to be involved in the
progression of malignancies, MMP-2, -7, -8, -9 and -13
(Barillé et al., 1999; Wahlgren et al., 2001; Vacca et al.,
2003a) have been demonstrated in human MM cell lines
and patients. MMP-2 is also secreted by BM stroma
(Barillé et al., 1997). The secretion of MMP-9 by MM
cells is dependent on the tumour-stroma interaction
(Barillé et al., 1997). Moreover, the MMP-2 secretion is
more pronounced in patients with active MM than in
those with non-active MM and with MGUS (Vacca et

al., 2003a). MMPs are able to degrade many components
of the extracellular matrix (ECP) thereby promoting
invasion, metastasis and angiogenesis (Hiraoka et al.,
1998; Bergers et al., 2000; Egeblad and Werb, 2002).
During the degradation of the ECM, matrix-bound
growth factors and angiogenic factors are released
(Kalluri et al., 2003). The capillary basement membrane
is composed of type IV collagen, laminin, heparan-
sulphate proteoglycans, perlecans, nidogen/entactin
SPARC/BM-40/osteopontin, type XV collagen and type
XVIII collagen (Kalluri et al., 2003). The structure of the
capillary BM is complex with a high level of cross-
linking. When the basement membrane is being
disassembled some of the sequestered proteins (such as
VEGF and bFGF) are released or different domains
(cryptic domains of partially degraded collagens) of
proteins with angiogenic potential are exposed. In
addition, the basement membrane degradation liberates
the EC from their cell-surface anchors (integrins)
enabling the EC to migrate and to proliferate (vascular
sprouting). As the basement membrane degradation
reaches completion, the remaining MMP-resistant
products, such as endostatin, arrestin, constatin and
tumstatin have anti-angiogenic effects. The MMP-
induced degradation of the basement membrane
therefore initially promotes angiogenesis and later on
inhibits angiogenesis (Kalluri et al., 2003). Besides their
role in angiogenesis the MMPs participate in the
recruitment of osteoclasts to the sites of resorption (Sato
et al., 1998) and play a role in bone resorption (Holliday
et al., 1997; Everts et al., 1998). Under physiological
conditions the activity of MMPs is tightly controlled by
endogenous tissue inhibitors of MMP (TIMP). Synthetic
broad-spectrum MMP inhibitors have been used for
cancer therapy with disappointing results. As a major
side-effect musculo-skeletal pain, which was attributed
to the inhibitory effect on MMP-1, has been reported
(Coussens et al., 2002).

For the study of the pathophysiology of MM in
general and the angiogenesis in particular, the murine
5T33MM and 5T2MM models have been developed
(Radl et al., 1988; Asosingh et al., 2000b; Vanderkerken
et al., 2003b). Both 5TMM cells originated from elderly
C57Bl/KaLwRij mice that developed spontaneously
MM. The 5TMM models are propagated in vivo by
isolating the BM of diseased mice followed by i.v.
transfer of isolated MM cells into young syngeneic mice.
The 5T2MM model is characterised by a moderate
growth and the development of osteolytic lesions while
the 5T33MM model is more aggressive and
representative for the human plasmablastic MM
(Vanderkerken et al., 1997). In both the 5T2MM and the
5T33MM tumour growth is associated with an increased
angiogenesis (Van Valckenborgh et al., 2002). The
5T33MM cells express VEGF-A, bFGF, PDGF
(A,B,C,D) (Van Riet et al., 2003) and Ang-1. Upon
interaction with BMEC, the 5T33MMvt cells secrete
MMP-9 (Van Valckenborgh et al., 2002). In the 5T2MM
model experiments are underway with a broad spectrum
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Fig. 1. Sections of
paraffin-embedded and
decalcified trephine
biopsies. A. CD34
immunostaining of a
MGUS. There is no
increased MVD. The
microvessels (sinusoids)
are totally comparable to
sinusoids of control BM.
The thin endothelial lining
is weakly positive for
CD34. B. Ki-67/CD34
immunostaining of a
diffusely growing MM.
The nuclei of proliferating
cells stain brown with the
Ki-67 immunostaining.
The endothelial cells stain
red with the CD34
immunostaining. The
MVD is increased. The
microvessels have slit-like
lumina and the
endothelial lining is
strongly positive for
CD34. Proliferating
endothelial cells can be
recognised by a brown-
stained nucleus and a
red-stained cell
membrane (not present in
this figure). C. CD34
immunostaining of an IMF
in a cellular phase. There
is an increased MVD. The
abnormal
megakaryocytes are often
in close contact with the
microvessel. Among the
CMPD, IMF has the
highest MVD. D. CD34
immunostaining of an IMF
in a fibrotic phase. The
MVD is markedly
increased. Rare
microvessels have an
open lumen and are
weakly stained for CD34.
The majority of the
microvessels have a
compressed lumen and
strongly express CD34.
E. CD34 immunostaining
of a CML in chronic
phase. Microvessels with
an open lumen and
microvessels with a slit-
like lumen are both
present. F. Ki-67/CD34
immunostaining of a CML
in chronic phase. G. Ki-
67/CD34 immunostaining
of an ET. The cellularity is
moderately increased.
Some microvessels with
slit-like lumen are
present. The MVD in ET

is increased compared to control BM and BM from patients with reactive thrombocytosis. H. CD34 immunostaining of a CLL. Despite the diffuse
infiltration there is no increase in MVD. Bars: A-C, E-G, 100 µm; D, H, 200 µm.
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MMP-inhibitor SC-964 and the first results show a
reduction in tumour growth, a direct anti-angiogenic
effect and a reduction in osteolytic lesions (Van
Valckenborgh et al., 2003).

Another animal model which proved to be useful in
the study of angiogenesis in MM is the severe combined
immunodeficiency (SCID)-hu model of human MM
(Urachima et al., 1997) in which human fetal bone grafts
are implanted bilaterally in the flanks of SCID mice. In
this model it was demonstrated that thalidomide and
immunomodulatory derivatives of thalidomide mediate
both anti-MM activity and anti-angiogenesis (Lentzsch
et al., 2003).

Angiogenesis in myelodysplastic syndrome and
acute myeloid leukaemia

In myelodysplastic syndromes the MVD is
significantly increased compared to normal controls.
Among the French-American British (FAB) subtypes,
the MVD is significantly higher in RAEB-t, CMML, and
MDS with fibrosis compared to RA, RARS and RAEB
subsets (Pruneri et al., 1999). In multivariate analysis,
MVD has prognostic power together with age and
haemoglobin level (Korkolopoulou et al., 2001). In
AML there is an increased angiogenesis in active disease
compared to normal BM (Hussong et al., 2000; Padro et
al., 2000; Aguayo et al., 2000a; Kini et al., 2001). A
decrease, or even levels back to the control level, are
observed in patients after achieving complete remission
(de Bont et al., 2001b). Rimsza et al. (2002) divided
AML samples into two broad, therapeutically relevant
prognostic groups: favourable/intermediate and
unfavourable and observed that the AML cases with
unfavourable prognostic features were more likely to
enhance EC proliferation in vitro than cases with
favourable/intermediate prognosis. They suggested that
the complex karyotypic and molecular genetic changes
in the former would alter the expression of
angioregulatory molecules such as VEGF. Indeed, AML
blasts can express VEGF (Fiedler, 1997) and aberrant
VEGF secretion and aberrant expression of VEGFR-2
have been shown to play an important role in leukaemia
cell survival (de Bont et al., 2002). The VEGF secreted
by the leukaemic cells can support leukaemic cell
survival directly by autocrine stimulation of the
VEGFR-2 (Dias et al., 2000) and via an EC-dependent
paracrine pathway by triggered secretion of GM-CSF, G-
CSF, Il-8 and M-CSF by the EC (Bellamy et al., 1999).
The in vitro expression of cellular VEGF was reported to
be an independent prognostic factor for overall survival
in a high-risk subgroup of patients (de Bont et al., 2002).
There is a significant relationship between increasing
cellular VEGF levels and shorter survival as well as
shorter disease-free survival (Aguayo et al., 1999). In
acute promyelocytic leukaemia there is an increased
production of VEGF which can be inhibited by all-
transretinoic acid therapy (Kini et al., 2001). In contrast

to AML, the increased plasma VEGF levels in MDS do
not have a prognostic value (Aguayo et al., 2002).

AML cells can produce other angiogenic factors
such as IL-8 (Tobler et al., 1993), bFGF (Hussong et al.
2000), Ang-1 (Müller et al., 2002) , MMP-2 and MMP-9
(de Bont et al., 2001b). MMP-2 secretion is frequently
found in AML cells, but is absent in normal
haematopoietic progenitor cells (Janowska-Wieczorek et
al., 1999) while MMP-9 is expressed in AML cells,
normal mononuclear cells and CD34+ progenitor cells
(Ries et al., 1999). In CMML the plasma levels of
VEGF, HGF and TNFα are strongly increased (Aguayo
et al., 2000a). Plasma levels of TNFα are not
significantly increased in MDS and AML (Aguayo et al.,
2000a).

Angiogenesis in acute lymphoblastic leukaemia

An increased MVD has initially been observed in
ALL in a study of 40 children (Perez-Atayde et al.,
1997) and has been confirmed subsequently (Aguayo et
al., 2000a; Pulé et al., 2002). When dividing
microvessels into either small (smallest diameter <17
µm) and large (smallest diameter >17 µm), the
difference in total MVD count between control patients
and AML patients could be entirely attributed to
differences in small microvessels (Pulé et al., 2002), i.e.
the MVD for large microvessels showed no increase in
the leukaemic sample. At remission, small microvessels
dropped substantially. This observation may suggest that
the smaller microvessels represent “buds” or “sprouts”
involved in active vascular remodelling. At presentation
there is a broad spectrum of MVD. No correlation has
been observed between MVD and age, sex, cytogenetics,
and immunophenotype (Pulé et al., 2002). The MVD in
ALL has no prognostic value and is no indicator for
relapse (Pulé et al., 2002).

In ALL there are increased plasma levels of HGF,
TNFα and bFGF, but not of VEGF (Aguayo et al.,
2000a). MMP secretion has been demonstrated in
different lymphoblastoid cell lines such as Burkitt’s
lymphoma, B-cell lymphoblastic leukaemia and T-cell
lymphoblastic leukaemia (Vacca et al., 1998).

Angiogenesis in chronic lymphocytic leukaemia

Kini et al. (2000) found a significantly increased
MVD in 12 B-CLL patients. They used the CD34
monoclonal antibody and found that the MVD correlated
with the cellularity and the stage. In a study of 129
patients the MVD was counted in the hot spots on the
basis of FVIIII-RA immunostaining and no increase in
MVD was observed (Aguayo et al., 1999) (Fig. 1h). 

Molica et al. (2002a) measured the microvessel area
and could distinguish two subpopulations within the
CLL population: those with a microvessel area ≥ 0.009
mm2 had a significantly shorter survival than those with
a microvessel area <0.009 mm2. The microvessel area
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correlated with the VEGF expression by B-CLL cells.
Intracellular levels of VEGF in CLL are of prognostic
significance (Aguayo et al., 2000b). A brisk increase in
the detectable mRNA levels of VEGF and protein
secretion has been observed when B-CLL cells were
exposed to hypoxia (Chen et al., 2000). The elevation of
VEGF in hypoxic conditions was variable from clone to
clone but did suggest that under the appropriate
environmental conditions CLL cells were capable of
releasing increased levels of VEGF.

Serum levels of VEGF were found to be of
prognostic value, but did not correlate with tumour
angiogenesis. As discussed previously, the presence of
many sources of sVEGF, such as stromal cells, platelets,
and EC, and the involvement of several angiogenic and
anti-angiogenic factors, may account for this
observation. Examining the serum levels of VEGF
(sVEGF) in combination with the serum levels of ß2M
was revealed to be a good prognostic tool (Molica et al.,
2002b): the median progression-free survival of patients
who had both sVEGF and sß2M levels above 203 pg/ml
and 2.73 mg/L respectively was 13 months, while
patients who had both sVEGF and sß2M below 203
pg/ml and 2.73 mg/L had a median progression-free
survival longer than 40 months. 

B-CLL cells express both VEGFR-1 (flt-1) and
VEGFR-2 (kdr) indicating that VEGF may also have a
direct autocrine growth stimulatory function (Kay et al.,
2002). Levels of VEGFR-1 correlate with white blood
counts and with levels of cellular VEGF (Aguayo et al.,
2001). Another receptor expressed on CLL cells is the
Tie-1 receptor tyrosine kinase, which correlated with
white blood cell count. When evaluated in early-stage
disease, VEGFR-1 and Tie-1 did not correlate with
survival (Aguayo et al., 2001). 

There is evidence that bFGF acts as a survival factor
for CLL (Gabrilove, 2001): higher intracellular bFGF
levels in B-CLL cells in patients with high-risk disease
and resistance to fludarabine has been observed (Menzel
et al., 1996), and bFGF upregulates bcl-2 expression,
which induces resistance to apoptosis (Konig et al.,
1997). bFGF serum levels are generally high in early B-
CLL but do not have prognostic power (Molica et al.,
2002b). CLL cells are also known to secrete the pro-
angiogenic factor TGFß (Schuler et al., 1999) and MMP-
9 (Bauvois et al., 2002). Besides the secretion of pro-
angiogenic molecules the anti-angiogenic factor
thrombospondin-1 is consistently secreted by the B-CLL
cells; to a lesser extent the anti-angiogenic factors
endostatin and interferon α are also secreted (Kay et al.,
2002). Under hypoxic conditions the levels of mRNA of
thrombospondin-1 decrease (Kay et al., 2002). Thus,
there are both pro- and anti-angiogenic molecules
secreted by the CLL cell clones and an imbalance in the
production between these factors could induce an
angiogenic switch. The factors responsible for such an
imbalance could be a hypoxic environment and/or
genetic mutations, such as p53 mutations, which are
documented in progressive CLL (Callet-Bauchu et al.,

1999).

Angiogenesis in chronic myeloproliferative disease

In CMPD a significantly increased MVD has been
observed in chronic myelocytic leukaemia (CML) (Fig
1e,f) and in idiopathic myelofibrosis (IMF) (Fig. 1c,d)
and a moderate increase in polycythaemia vera
(Lundberg et al., 2000). Aguayo et al. (2000a) observed
a higher vascular area and higher plasma levels of VEGF
in CML compared to AML. In CML there was an
increased plasma concentration of bFGF, HGF and
TNFα. In a multivariate analysis (Korkolopoulou et al.,
2003) of 52 patients with CML, the microvessel area
was related to progression-free survival, whereas both
MVD and microvessel area were significant
prognosticators for overall survival. A positive
correlation emerged between BM fibrosis and MVD.
CML cells express Ang-1 and its receptor Tie-2
suggesting that these angiogenic molecules might be
involved in an autocrine stimulatory pathway (Müller et
al., 2002). The Tie-1 tyrosine kinase receptor protein
levels in BM samples of CML patients are significantly
higher when compared to control patients (Verstovsek et
al., 2002). Tie-1 BM levels are a predictor of survival in
early chronic phase CML independent of risk group,
spleen size, age, and haemoglobin and basophil count
(Verstovsek et al., 2002).

Using the pathognomonic bcr-abl-fusion gene as a
genetic marker present in virtually all BM-derived cells
of patients with CML, Gunsilius (2003) was able to
show that EC belong to the malignant cell clone, since
they also contained the bcr-abl-fusion gene. These data
suggested that CML arises from a haemangioblastic
progenitor cell, the progeny of which are malignant
blood cells, a genotypically clonal EC. In addition, this
study provided evidence for the existence of an
haemangioblast in the BM of adults and for the existence
of post-natal vasculogenesis.

The angiogenesis in patients with IMF is much more
pronounced than in those with either PV or essential
thrombocythaemia (ET) (Fig. 1g) (Mesa et al., 2000a).
The increase in MVD in IMF correlates with cellularity
and megakaryocyte clumping (Mesa et al., 2000a) and,
in a multivariate analysis, correlated with increased
spleen size and overall survival (Mesa et al., 2000a). The
clonal proliferation of megakaryocytes in IMF is
accompanied by the abnormal release of cytokines
including angiogenic factors resulting in an excessive
stromal reaction (Reilly, 1997) and an increase in BM
vascularity (Thiele et al., 1992). Implicated cytokines
include TGF-ß (Martyre et al., 1994), bFGF (Martyre et
al., 1997; Chou et al., 2002), platelet-derived growth
factor (PDGF) and VEGF. The constitutive expression
and secretion of VEGF in human megakaryocytes can be
increased by either a paracrine or an autocrine
mechanism (Mohle et al., 1997; Bellamy et al., 1999). 

In PV there are increased sVEGF levels in 90 % of
the patients and splenomegaly is associated with an
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increase in sVEGF levels (Murphy et al., 2002). In IMF
there is an increased microvascular TGF-ßRI up-
regulation (Chou et al., 2002). Cyclooxygenase (Cox)-2,
the inducible form of Cox that converts arachidonic acid
to prostaglandins, and Tie-2 are immunohistochemically
detectable in megakaryocytes of normal, CML and PV
patients (Zetterberg et al., 2003). Whether these
molecules are abnormally regulated in megakaryocytes
from patients with myeloproliferative disorders remains
to be elucidated. 

Mesa et al. (2000b) determined the MVD on the
basis of a CD34 stain in 164 ET patients and found an
increased MVD compared to either normal controls or
patients with reactive thrombocytosis.

Therapeutic considerations and conclusion

One of the major advantages of anti-angiogenic
therapy is that it will not generate drug-resistant cell
populations, given that the malignant cells are not the
direct target. 

Since more and more angiogenic pathways are
unravelled, it becomes clear that there is a redundancy of
mechanisms by which the tumour succeeds in switching
on angiogenesis. Targeting one angiogenic factor has
proven to be insufficient to achieve a complete
remission. 

Combination of a VEGF-R inhibitor together with a
receptor tyrosine kinase inhibitor targeting PDGF-R
activity could be more efficacious even in late-stage
tumours (Bergers et al., 2003). By targeting the PDGFR-
ß signalling, the interaction between EC and pericytes is
disturbed which destabilises the tumour vessels and
renders them more vulnerable to anti-VEGF therapy. A
triple-action inhibitor such as SU6668 is a potent small-
molecule inhibitor of the receptor tyrosine kinases
VEGFR-2, bFGFR and PDGFR (Hoekman, 2001). In
addition SU6668 has an inhibitory activity on the stem
cell factor (SCF) receptor, c-kit, which is structurally
related to the former receptors and is expressed on 60 to
80% of the leukaemic blasts of AML patients. c-kit plays
a role in promoting the growth of leukaemic cells.
Hence, there are three mechanisms by which SU6668
may be beneficial for AML patients. First, inhibition of
c-kit may lead to a reduction in blast cell proliferation.
Second, by inhibition of angiogenesis and third, by
reduction of the EC as paracrine sources of growth
factors (such as SCF) (Smolich et al., 2001).

Recognition of the significance of stromal cell-
tumour cell interactions has spurred an intensive
research effort to develop targeted molecular therapies
that can disrupt these interactions. Novel agents that
target both the tumour and the microenvironment offer
promising perspectives in the field of MM (Anderson,
2003; Anderson et al., 2003). For example, the
immunomodulatory derivatives of thalidomide as well as
the proteasome inhibitor PS-341 (bortezomid)
(Hideshima et al., 2001, 2003) induce apoptosis of MM
cells, block the production of cytokines involved in

growth, survival, drug resistance (IL-6, VEGF, TNFα)
and migration, inhibit angiogenesis and impede the
interaction between MM cells and fibronectin and
between MM cells and the BM stromal cells. These
agents also stimulate host anti-tumour immunity by
expanding the patient NK-cell number and function
against MM cells and by stimulating T-cell proliferation
and production of IL-2 and IFN-γ (Davies et al., 2001).
With the use of these agents, a state of tumour dormancy
will probably be attained. 

The challenge with anti-angiogenic therapy will be
to find the appropriate combinations of these drugs
including the appropriate timing. For example, the MMP
inhibitors are most effective in the initial phase of the
disease, since the MMPs are involved in the angiogenic
switch (Bergers et al., 2000). Judiciously applied anti-
angiogenic therapy can be applied concurrently with
conventional chemotherapy or radiotherapy (Jain, 2001;
Lee et al., 2000), combining two different modes of
action to affect tumour growth. The anti-angiogenic
therapy, by restoring the balance of pro- and anti-
angiogenic cytokines, will reduce the disorganisation of
the tumour vasculature and facilitate the oxygen supply
and the delivery of therapeutics. In addition, the anti-
angiogenic therapy will reduce the EC as a paracrine
source of growth factors.

On the other hand, some of the conventional
chemotherapeutic agents, such as cyclophosphamide,
have been shown to have anti-angiogenic capabilities by
changing the dosage scheduling (Browder et al., 2000);
in classical chemotherapy dosage schedules the highest
survivable dose is chosen followed by a treatment-free
interval to permit recovery of normal host cells, such as
rapidly growing haematopoietic progenitors. In this
same interval the vascular EC can also resume growth,
which could support re-growth of tumour cells and could
increase the risk of the emergence of drug-resistant
tumour cells. To more effectively suppress the re-growth
of the tumour-associated EC, the conventional
chemotherapeutic agent is administered at shorter
intervals without interruption. The combination of this
therapy together with other anti-angiogenic agents could
be beneficial in slowly growing haematological
malignancies.

For the selection of patients and the evaluation of
treatment efficacy one should realise that the MVD in se
is not accurate enough. By judging therapy efficacy on
the basis of classical clinical parameters (clinical
examination, imaging, tumour markers,…) one should
be aware of the fact that apoptosis of EC and decrease of
the vasculature will usually precede the reduction in
tumour mass. Moreover, the fact that not all vessels are
functionally equal, the fact that the blood flow is not
uniform in time and space and the fact that tumours can
constitutively over-express angiogenic factors (resulting
in over-vascularisation) (Hlatky et al., 2002), makes the
evaluation of treatment efficacy even more difficult. For
the pathologist who wants to have an idea of ongoing
angiogenesis at the time of biopsy, the determination of
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the ECP fraction by means of double immunostained
sections is an option, provided that the sample is
representative.
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