
Summary. Ionizing or ultraviolet radiation-induced
cellular survival signaling pathways induce development
of cancer and insensitivity of tumor cells to radiation
therapy. Accumulating evidence suggests that the
phosphatidylinositide 3-kinase (PI3K)/AKT signal
pathway is a major contributor to radioresistance. In
many cell types PI3K/AKT signaling is a key
cytoprotective response downstream of the EGFR family
receptors and mediated carcinogenesis. Cytokines, such
as HGF, IGF-I, and IL-6 also protects cells against
apoptosis induced by radiation through PI3K/AKT
pathway. The mechanics by which PI3K/AKT signaling
functions in radiation responses may include its
regulation of mitochondrial proteins, transcription
factors, translation machinery, and cell-cycle
progression. In addition, cross-talk between the
PI3K/AKT pathway and mitogen-activated protein
kinases, protein kinase A, and protein kinase C signal
pathway may also play an important role.
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The phosphatidylinositide 3-Kinase/AKT signal
pathway

Phosphatidylinositide 3-Kinase (PI3K) enzymes
consist of two subunits, a catalytic P110 subunit and a
regulatory and localizing subunit, P85. Several different
classes of PI3K enzymes exist (Wymann and Pirola,
1998; Vanhaesebroeck and Alessi, 2000). The P85
subunit of PI3K enzymes contains a phosphotyrosine
(SH2)-binding domain (Ching et al., 2001). The major
catalytic function of the PI3K is in the P110 subunit that

acts to phosphorylateinositol phospholipids (PIP2:
phosphatidyl inositol 4,5 bisphosphate), in the plasma
membrane at the 3-position within the inositol sugar
ring. 

The proto-oncogene c-akt, encoding a 57-kDa
serine/threonine protein kinase, is the cellular homolog
of the viral oncogene v-akt (Bellacosa et al., 1991).
AKT, also known as protein kinase B, is catalytically
activated by phosphorylation at Thr308 and Ser473.
Binding of cytokines to its receptor triggers activation of
PI3K, enabling PI3K to phosphorylate phosphoinositides
(Chan et al., 1999). Phosphorylated phosphoinositides
bind to the pleckstrin homology domains of AKT and
PDK1, resulting in their plasma membrane translocation,
and phosphorylate AKT at Thr308 and Ser473
(Bellacosa et al., 1998). Dually-phosphorylated active
AKT is then able to phosphorylate and thereby inactivate
the pro-apoptotic protein Bad (Datta et al., 1997) and the
pro-apoptotic FOXO transcription factor FKHRL1
(Brunet et al., 1999) as well as to phosphorylate Iκ B
kinase, promoting the expression of anti-apoptotic genes
through activation of nuclear factor-κ B (Romashkova
and Makarov, 1999).

The PI3K/AKT signal pathway in radiation responses

Ionizing radiation has been previously shown to
rapidly activate kinases, and contributes to tumor cell
viability. Sensitivity of tumor cells to radiation therapy is
a critical determinant of the probability of local control
and, ultimately, of cure (Peters and Brock, 1993; West et
al., 1993). 

A number of studies have shown a positive
relationship between epidermal growth factor receptor
(EGFR) expression and tumor resistance to radiation
(Sheridan et al., 1997). The EGFR family consists of
four closely-related growth factor receptors, including
EGFR or HER-1 (erb-B1), HER-2 (erb-B2/neu or
p185neu), HER-3 (erb-B3), and HER-4 (erb-B4). EGFR
binds several distinct ligands, including EGF,
transforming growth factor-α, and ampheregulins.
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EGFR signaling leads to radiation resistance. In some
cell types, the antiapoptotic effects of EGFR receptor
signaling have been attributed to activation of the
PI3K/AKT pathway (Kainulainen et al., 2000). EGFR
signaling to PI3K/AKT has been proposed to enhance
the expression of the mitochondrial anti-apoptosis
proteins Bcl-xL and Mcl-1 and caspase inhibitor proteins
such as c-FLIP isoforms (Leverrier et al., 1999; Kuo et
al., 2001; Panka et al., 2001). Enhanced expression of
Bcl-xL and Mcl-1 will protect cells from apoptosis via
the intrinsic/mitochondrial pathway, whereas expression
of c-FLIP isoforms will block killing from the extrinsic
pathway via death receptors (Suhara et al., 2001). In
addition, AKT has been shown to phosphorylate Bad
and human procaspase 9, thereby rendering these
proteins inactive in apoptotic processes (Li et al., 2001).
Inhibitors of EGFR signaling have been shown to
decrease the activity of the PI3K/AKT pathway in a
variety of cell types and to increase the sensitivity of
cells to a wide range of toxic stresses including cytotoxic
drugs and radiation (Pianetti et al., 2001). Activation of
AKT was shown to protect cells from death in the
presence of EGFR receptor inhibition (Cuello et al.,
2001). These findings strongly argue that PI3K/AKT
signaling is a key cytoprotective response in many cell
types downstream of the EGFR family receptors.

Ultraviolet (UV)-initiated signal transduction
pathways in some circumstances have tumor promotion
effects (Staberg et al., 1983). It has been reported that
exposure of mammalian cells to UV radiation including
short (UVC, 200–280 nM), long (UVA, 320–400 nM),
and mid- (UVB, 280– 320 nM) wavelengths leads to a
large number of changes in cells such as activation of
transcription factors and protein kinases, and leads to the
expression of genes that are observed to be up-regulated
in different types of cancer in addition to skin cancer
(Ronai and Weinstein, 1988; Matsui and DeLeo, 1990;
Devary et al., 1991; Huang et al., 1999). 

While UV activates cell survival pathways to fight
against UV-induced cell death, the cell survival of
mutated cells could lead to overexpression of certain
oncogenes thereby causing skin cancer. One possible
mechanism for UVB-induced carcinogenesis involves its
ability to induce COX-2 expression. It has been reported
that up-regulation of COX-2 in respones to UV radiation
may be mediated by the PI3K/AKT pathway (Tang et
al., 2001). Induction of COX-2 causes increased
prostaglandin synthesis, a phenomenon associated with
UV-induced tumorigenesis (Grewe et al., 1993; Fischer
et al., 1999).

Hepatocyte growth factor/scatter factor (HGF/SF)
not only protects cells against apoptosis induced by UV
and ionizing X-rays (Fan et al., 1998), but also
stimulates DNA repair activity. HGF/SF induced the
phosphorylation of AKT, and stabilization of the
expression of Bcl-xL. These biological effects of
HGF/SF could be inhibited by wortmannin, suggesting
that these activities of HGF/SF are due, in part, to a
PI3K- and AKT-dependent signaling pathway. Another

major survival factor, insulin-like growth factor I (IGF-I)
is also able to protect cells from apoptosis under a wide
variety of circumstances, including radiation with UVB.
Kulik and his colleagues (1998) reported that although
signal transduction pathways used by the IGF-I receptor
in protecting cells from apoptosis includes PI3K/AKT,
mitogen-activated protein kinase (MAPK), p38/HOG1,
and p70S6 kinase, only the activation of PI3K and its
effector AKT did correlate with the regulation of
apoptosis in Rat-1 fibroblasts system induced by
radiation with UVB.

Furthermore, radiation of the vascular endothelium
alone is sufficient to induce AKT phosphorylation
through a PI3K-dependent mechanism, and PI3K
contributes to endothelial cell viability (Edwards et al.,
2002). Mutations or down-regulation of tumor
suppressor gene Phosphatase and Tensin (PTEN), which
directly antagonizes PI3K, have been observed in a
number of human cancers (Dahia et al., 1999), and the
mutation is associated with AKT activation (Suzuki et
al., 1998; Davies et al., 1999). The alteration of PTEN
causes elevated phosphorylation of AKT. Wick et al.
(1999) have shown that expression of PTEN, the
phosphatase that counteracts the effects of PI3K,
radiosensitizes glioma cells lacking a functional copy of
this gene. 

However, some evidence also suggests that
radiation-induced activation of AKT is partially
independent of PI3K. Examples of PI3K-independent
activation of AKT have been described previously.
Expression of upstream oncogenes such as Src and Ras
produce AKT activity that is not completely abolished
by PI3K inhibitors (Liu et al., 1998) and some authors
have demonstrated that the calmodulin kinase kinase is a
PI3K-independent mechanism for AKT activation (Yano
et al., 1998). 

The mechanisms by which PI3K/AKT signaling
functions in radiation responsesPI3K/AKT and
reactive oxygen species (ROS) 

Some UV-induced genes are believed to be regulated
by an oxidative mechanism (Tyrrell, 1996). Naturally
occurring free radicals typically include ROS and
reactive nitrogen species (Lander, 1997). In addition to
inducing cellular injury such as DNA damage and lipid
peroxidation, free radicals also function as intracellular
messengers (Sen and Packer, 1996; Lander, 1997). UV
radiation leads to the generation of ROS, especially
H2O2, which is responsible for an increase in AKT
phosphorylation at Ser473 and Thr308 in mouse
epidermal Cl 41 cells. Data are accumulating which
indicate a vital role of ROS in mediating cellular
responses to various extracellular stimuli. It has been
reported that free radicals are involved in the production
of cytokines, growth factors, and hormones in the
activation of nuclear transcription factors, gene
transcription, neuromodulation, and apoptosis (Tyrrell,
1996; Sen and Packer, 1996; Lander, 1997). For
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example, it has been reported that the generation of 
H2O2 is required for platelet-derived growth factor
signal transduction (Sundaresan et al., 1995). 

The role of PI3K/AKT in the regulation of mitochondrial
proteins

In vivo cooperation between Bcl-xL and the
PI3K/AKT signaling pathway for the protection of
epidermal keratinocytes from apoptosis induced by UVB
radiation has been observed in animal models (Umeda et
al., 2003). Contribution of the PI3K/AKT signaling
pathway to the protection of Bcl-xL-deficient
keratinocytes from apoptosis was clearly demonstrated
by in vitro inhibition experiments using wortmannin.
Upon activation by PI3K, AKT induces phosphorylation
of Bad at Ser136 (Datta et al., 1997). Bad
phosphorylation results in sequestration in the cytoplasm
in association with 14–3-3 proteins leaving from a
mitochondrial location after dissociation with
antiapoptotic Bcl-2 members (Zha et al., 1996). 

Alternatively, besides Bad phosphorylation, recent
studies have found that AKT can directly regulate
caspase activation either at a premitochondrial level
(Kennedy et al., 1999) or at a postmitochondrial level
downstream of cytochrome c release and before
activation of caspase-9 (Zhou et al., 2000). A recent
report demonstrated that the PI3K/AKT pathway was
required for keratinocyte survival independent of Bcl-xL
expression (Jost et al., 2001). 

Epicutaneous treatment with wortmannin of Bcl-xL-
/- mice resulted in a marked sensitization to UVB
radiation, control mice were not significantly affected by
this treatment, suggesting that dependency on
PI3K/AKT was reciprocal to Bcl-xL expression. UVB
radiation resulted in translocation of phosphorylated
AKT from the basal cell layer to throughout the
epidermis in wild-type and Bcl-xL-/- mice, although the
underlying mechanism remains to be elucidated. Since
Bcl-xL is expressed predominantly in the suprabasal
keratinocytes, the redistribution of active AKT over the
suprabasal layer might represent the spatial
compensation for Bcl-xL deficiency upon UVB
radiation. Thus, these data provide compelling evidence
that AKT can compensate for Bcl-xL deficiency to form
a "fail-safe" system against apoptotic stimuli (Umeda et
al., 2003).

Mcl-1 is an antiapoptotic protein of the Bcl-2 family.
Experimentally, the PI3K/AKT signaling pathway is
important for IL-6-elicited anti-apoptotic signaling and
Mcl-1 expression in human keratinocyte cells when
exposed to UV radiation (Petit-Frere et al., 1998).
Unlike the phosphorylation of Bad or procaspase 9, the
PI3K/AKT pathway upregulates the Mcl-1 expression at
the level of transcription. Interestingly, unlike the
situation in the hematopoietic cells, the PI3K pathway is
commonly activated and necessary for Mcl-1
upregulation in a wide array of epithelial cancer cells,
including hepatoma cells (Kuo et al., 2001), prostatic

cancer cells (Chung et al., 2000), cervical cancer cells
(Wei et al., 2001), and basal cell carcinoma cells (Jee et
al., 2002).

The role of PI3K/AKT in the regulation of translation
machinery 

Recent studies have shown that low-energy laser
radiation (LELI) significantly enhanced the regeneration
process. LELI promotes cell proliferation by inducing
translation of early G1-phase regulatory proteins (Ben-
Dov et al., 1999). Previous studies have shown that
induction of early G1-phase regulatory proteins, such as
c-myc (Mendez et al., 1996) and cyclin D1 (Barbet et al.,
1996) requires de novo mRNA and protein synthesis,
resulting from translation of pre-existing mRNAs
(Brown and Schreiber, 1996). Eukaryotic initiation
factor 4E (eIF4E) is a major regulator of cap-dependent
mRNA translation in response to proliferative stimuli
(Polunovsky et al., 1996). One of the mechanisms
known to regulate eIF4E is phosphorylation-dependent
dissociation of a translational-repressor protein, i.e.
protein heat and acid stable (PHAS-I), also referred to as
eIF4E-binding protein-1 (4EBP1) (Lin et al., 1994). The
non- or partially phosphorylated form of PHAS-I, which
strongly interacts with eIF4E, limits the latter ’s
availability of eIF4E to the translation process. LELI
induced the phosphorylation of PHAS-I, which was
abolished by the addition of the PI3K inhibitor
wortmannin, suggesting this phosphorylation to be
PI3K-dependent. Moreover, LELI induced the
phosphorylation of mammalian target of rapamycin
(mTOR), which was directly mediated by AKT, and in
turn induced PHAS-I phosphorylation (Raught and
Gingras, 1999). The fully phosphorylated PHAS-I
dissociated from eIF4E, allowing the latter to form the
initiation complex and translation to proceed (Gingras et
al., 1999, 2001). Taken together, it was suggested that
PI3K-dependent phosphorylation of AKT mediates the
effect of LELI on PHAS-I phosphorylation and eIF4E
availability to the translation machinery.

The role of PI3K/AKT in the regulation of transcription
factors 

Activator Protein-1 (AP-1), a protein complex
consisting of members of the Fos and Jun protein
families, is one of the major transcription factors that are
upregulated in response to UVB radiation (Barthelman
et al., 1998). There is a direct correlation between UVB-
induced AP-1 activation and increased c-fos gene
expression (Sheridan et al., 1997). Specific properties of
PI3K suggest that it is likely to function as a mediator
molecule in the UVB-induced signaling pathways that
upregulate c-Fos and AP-1 expression. Studies in the
JB6 murine epidermal cell line demonstrated that insulin
or EGF-induced AP-1 transactivation required PI3K
activity (Huang et al., 1996). Other studies in insulin-
responsive rat fibroblasts (HIRc-B cells) demonstrated
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that microinjection of the SH2 domain of the regulatory
subunit p85 could inhibit the insulin-induced expression
of c-Fos (Jhun et al., 1994). In another case, NIH3T3
cells that were transfected with a constitutively active
mutant p110 construct displayed a marked increase in c-
fos transactivation (Hu et al., 1995). UVB radiation
induces the PI3K signaling pathway which is also
involved in the upregulation of c-Fos in the HaCaT cell
line.

The role of PI3K/AKT in the regulation of cell cycle
checkpoint

AKT is not only a “cell survival” kinase but it may
play an important role in regulation of cell-cycle
progression (Muise-Helmericks et al., 1998; Medema et
al., 2000). The classical pathway coupling DNA damage
to cell-cycle arrest involves up-regulation of p53 and its
transcriptional targets. In response to DNA damage, p53
induces the expression of growth-inhibitory genes, such
as p21cip1/waf1 and GADD45 (Levine, 1997).
However, the existence of p53-independent mechanisms
resulting in cell-cycle arrest has been demonstrated in
lymphoid cells derived from p53-/- mice (Strasser et al.,
1994). Similarly, hematopoietic cell lines lacking p53
protein arrest in the G1 and G2/M phases after treatment
with ionizing radiation (Quelle et al., 1998).

The activation of PI3K/AKT may be a general
requirement for cytokines to override the growth arrest
at G1 and G2/M checkpoints induced by γ-radiation.
PI3K/AKT can overcome p53-independent cell cycle
arrest. For example, Rat1a cells in which the
p21cip1/waf1 promoter is inactive and which are thus
deficient in p53-dependent cell-cycle checkpoints still
respond to γ-radiation by transient G2 arrest, which is
alleviated by activated AKT. In addition, it was recently
shown that activation of AKT also has the potential of
alleviating the p53-mediated cell-cycle checkpoints.
AKT may exert its effect through the inhibition of the
FOXO transcription factors that are downstream
phosphorylation targets of AKT. It was recently shown
that FOXO3a modulates the expression of several genes
that regulate response to stress at the G2/M cell-cycle
checkpoint (Tran et al., 2002). AKT may also exert its
effect through phosphorylation and sequestration of
p21cip1/waf1 and through enhanced degradation of p53
(Zhou et al., 2001). 

Evidence also suggests a general role for the PI3K
signaling pathway in regulating cell-cycle progression.
Notably, PI3K activity can be sufficient to induce G1
transit in fibroblasts (Klippel et al., 1998) and is required
for IL-2–dependent activation of E2F in T-cells
(Brennan et al., 1997). Thus, downstream targets of
PI3K/AKT–dependent pathways that regulate normal
cell-cycle progression may also participate in overriding
γ-radiation–induced checkpoints. PI3K activity has been
shown to contribute to induced expression of D-type
cyclins (Gille and Downward, 1999) and to increase
cyclin D1 stability through AKT-dependent

phosphorylation of GSK-3ß (Diehl et al., 1998).
Alternatively, PI3K effects on G1-phase progression
may be mediated through the downregulated expression
of the Cdk inhibitor, p27kip1, because various inhibitors
of the PI3K pathways have been shown to cause
enhanced expression of p27kip1 protein (Brennan et al.,
1997). Although PI3K activation does not appear to be
required for EPO- or IL-3-dependent proliferation of
non-irradiated cells, lack of PI3K activity in DNA-
damaged cells could impair some or all of these events,
resulting in growth arrest.

Cross-talk with other signal pathways in radiation
responses

Cross-talk with MAPK superfamily

MAPK belongs to a large family of serine/threonine
protein kinases and include extracellular signal-regulated
protein kinases (ERKs), p38 kinase, and c-Jun N-
terminal kinases (JNKs). ERKs are involved in survival
signaling in response to a variety of growth factors,
whereas activation of JNKs or p38 kinase is suggested to
play decisive roles in the control of cell death (Xia et al.,
1995). However, the activation of JNKs and p38 kinase
and overexpression of MAP kinase kinase 6, an
upstream kinase of p38 kinase, have been reported to
protect cells from apoptosis (Roulston et al., 1998;
Zechner et al., 1998).

ERKs are also critical for radiation-induced signal
transduction (Dent et al., 2003). In some cell types, ERK
and AKT signaling can cooperate to reduce the apoptotic
threshold in cells. In some cases, the proapoptotic
protein Bad is phosphorylated and inactivated by both
ERK signaling (Serine112) and PI3K/AKT (Serine136)
(Hayakawa et al., 2000). In addition, it is also possible
that ERKs and AKT, via the P70 S6 kinase, may
cooperate to inhibit Bad function (Harada et al., 2001).
Recently, ionizing radiation has been shown to activate
the P70 S6 kinase in an EGFR-, PI3K- and MEK1/2-
dependent fashion (Carter et al., 1998; Contessa et al.,
2002). Thus, radiation-induced P70 S6 kinase signaling
may alter the apoptotic response of irradiated cells via
the modulation of Bad phosphorylation.

JNK are strongly activated by diverse cell stresses,
many of which induce cell death. UV radiation is a
strong stimulator of JNK activity in PC12 cells, and JNK
activation is associated with programmed cell death. It
has been reported that AKT inhibits activation of JNK
by cytotoxic stimuli in a manner correlated with
induction of JNK interacting protein-1 (JIP-1),
suggesting that the JNK pathway represents an
additional point of antiapoptotic signaling by AKT
(Levresse et al., 2000).

p38 MAP kinase plays an important and unique role
in signal transduction pathways in response to UV
radiation (Dent et al., 2003). Rane et al. (2001) recently
showed that the p38 kinase pathway regulates AKT
activation in human neutrophils. UV activates AKT via a
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ROS-sensitive pathway in the early phase and UV-
induced release of proinflammatory cytokines, such as
TNF-α and IL-1ß leads to the feedback activation of
p38, which in turn contributes to the prolonged
activation of AKT in cultured human keratinocytes and
in human skin in vivo (Strickland et al., 1999; Kulms et
al., 2000). It seems then that a balance between AKT
and p38 signal pathways may well be an important
modulator between cell death and survival in response to
UV radiation.

Cross-talk between different protein kinase
pathways is often more complex than according to the
above observations. For example, in JB6 mouse
epidermal cells, it was demonstrated that the activation
of AKT induced by UVB radiation is mediated by ERKs
and p38 kinase, but not JNKs, through their downstream
kinase, mitogen- and stress-activated protein kinase 1
(MSK1), in addition to the PI3K/PDK pathway (Nomura
et al., 2001). In HaCaT cells, the activity of both PI3K
and p38 kinases is required for UVB-induced AKT
activation (Tang et al., 2001). In other studies, PI3K
inhibitors repressed ERK activation in several cell types
after various modes of stimulation (Cross et al., 1994;
Welsh et al., 1994; Hawes et al., 1996). Overexpression
of DN-p85 also impaired UVB-induced ERK
phosphorylation, although the blocking of ERK
activation has been suggested to be independent of PI3K
activity (Scheid and Duronio, 1996; Ferby et al., 1996).

The results that ERKs and p38 kinase mediate AKT
activation suggest a novel role for MAPKs in signal
transduction. Investigators have speculated that the
members of the MAPK family might not directly
phosphorylate AKT. Activated MAPKs are translocated
to the nucleus, where they phosphorylate several
different transcription factors (Seger and Krebs, 1995;
Gupta et al., 1995; Zinck et al., 1995; Chow et al., 1997;
Deak et al., 1998). In addition to phosphorylating
nuclear proteins, several cytoplasmic proteins (e.g.
RSKs and MSKs), phospholipase A2, and the EGFR
have been shown to be substrates for ERKs (Lin et al.,
1993; Seger and Krebs, 1995; Deak et al., 1998; Frodin
and Gammeltoft, 1999), and p38 kinase has been shown
to phosphorylate cytoplasmic proteins (e.g. MAPKAP-
Ks and MSKs) (Stokoe et al., 1992; McLaughlin et al.,
1996; Deak et al., 1998). In contrast to ERKs and p38
kinase, which appear to have substrates outside the
nucleus, substrates for JNKs are believed, to date, to be
transcription factors exclusively. Moreover, UVB-
activated MSK1 phosphorylated AKT at both Thr308
and Ser473, whereas UVB-activated MAPKAP-K2
phosphorylated AKT at only s Ser473, as previously
demonstrated by Alessi et al. (1996). These facts may
account for the differences between MAPK family
kinases in the regulation of AKT.

Cross-talk with protein kinase A (PKA)

It has been reported that AKT could be activated in a
PI3K-independent manner (Sable et al., 1997; Filippa et

al., 1999). An agonist of the PKA pathway can activate
AKT by increasing cytoplasmic calcium levels (Sable et
al., 1997; Filippa et al., 1999). The increased calcium
binds to calmodulin, and the Ca2+/calmodulin complex
activates the calcium/calmodulin-dependent kinase
kinase, which then activates AKT by directly
phosphorylating AKT at Thr308 (Yano et al., 1998).
Although the details of the molecular mechanism for
involvement of signal transduction pathways are not
clear, PKA and calcium/calmodulin-dependent kinase
kinase also play an important role in H2O2-mediated
AKT phosphorylation by UV radiation. This hypothesis
is supported by a previous finding that UV radiation
induced a rapid increase in intracellular free calcium and
transactivation of nuclear factor of activated T-cells,
which is believed to depend on Ca2+/calmodulin
complex formation and activation of calcium/
calmodulin-dependent kinase kinase (Huang et al.,
2000).

Cross-talk with protein kinase C (PKC)

Recently, a cross-talk between the PI3K/AKT
pathway and PKC activity has been observed.
Overexpression of PKC stimulated AKT activity and
suppressed cytokine-dependent apoptosis. On the other
hand, the phorbol ester phorbol 12-myristate 13-acetate,
an activator of PKC, down-regulates growth factor-
induced AKT activation, and specific isoforms of PKC
directly interact as negative regulators of AKT
(Doornbos et al., 1999; Li et al., 1999; Zheng et al.,
2000). Thus, PKC inhibitors might be potential
modulators of this survival pathway. PKC inhibitor STP
and clinically relevant antineoplastic derivatives, such as
PKC412, down-regulate the activity of the PI3K/AKT-
survival pathway in otherwise treatment-resistant cancer
cells and sensitizes cancer cells to chemotherapy and
radiotherapy. 

Conclusions

The cellular response to radiation is complex; the
balance between death, arrest, and survival is tipped by
the presence or absence of signaling through specific
pathways. Emerging studies have shown that the
PI3K/AKT cell survival pathway is activated post
ionizing radiation and UV radiation. PI3K/AKT-
mediated survival pathways may fight imminent cell
death and possibly induce development of cancer and
insensitivity of tumor cells to radiation therapy. Because
activation of PI3K/AKT may influence tumor response
to therapy, the status of AKT might act as a prognostic
marker and be a valid target to overcome an apoptotic
threshold in efforts to improve the outcome of the
associated disease.
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