
Summary. The purpose of this paper is to review current
knowledge and understandings of gene control and cell
differentiation, based upon an appreciation of a possible
role that nuclear microanatomy and considerations of
steric symmetry might play.

Metaphase sister chromatids have identical base
codes but show a mirror image symmetry of higher order
coiling. Chromosomes in the interphase nucleus have
spatially well defined domains and are anatomically
distinct and ordered. Chromosomes are known to have
interactions i.e. sex chromosome inactivation, PEV etc
An hypothesis of gene activation is made based on

steric interactions among chromosomes and between
chromosomes and activating and repressor proteins.
These interactions may be influenced by the handedness
of higher order chromatid coiling, since homologues
show mirror-image symmetrical coiling in metaphase,
which might be retained to a certain degree in
interphase. This may result in a binary switching of
genes.

All possible combinations of chromatids in the
interphase nucleus, would be enabled by a differential
segregation of homologous chromatids at mitosis. To
conserve patterns of interchromatid interactions, there
must be a programmed segregation of chromatids
towards one of the two spindle pole attachments. This
orientation might be effected by preferential attachment
of microtubules to kinetochore attachment sites, by steric
hindrance of the kinetochore by condensed chromatin
which initially allows only unidirectional tubule
attachment, or possibly by a tethering of interacting
chromatids which would migrate en masse. 

An attempt to apply this hypothesis to some
illustrative pathological conditions is made.

Key words: Cell diferentiation, Chromosomes, Mitotic
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Introduction

The great advances in the understanding of gene
function and differentiation were facilitated by the
breath-taking technological advances in molecular
biology and information technology. The discoveries of
mechanisms of gene functioning, of the multitudes of
promoters and repressors and their involvement in
human disease conditions have overshadowed the newly
gained understanding of chromosomal microanatomy
and its application to the above knowledge. Until the
application of confocal ultramicroscopy and in situ
hybridization techniques (i.e. FISH), very few
anatomical insights could be gained about chromosomal
microstructure. To many biologists and investigators, the
nucleus was regarded as little more than a reaction
vessel for the interactions of nucleotides and their
associated enzymes and cofactors. 

The purpose of this review is to correlate newly
gained knowledge of chromosomal microanatomy with
present knowledge of gene functions and genetics.

Chromosomal spatial domains in the interphase
nucleus

With classical light microscopy chromosomes are
only discrete, and identifiable during mitosis. During
interphase however, light microscopy of the nucleus
only reveals nucleoli, and clumps of heterochromatin.
Visser et al. (2000) examined BrdU-labeled chromatids
by immunoelectronmicroscopy after several generations.
They found that the labeled chromatin formed distinct
domains, with occasional areas of contact between
adjacent chromosomes. Abney et al. (1997) used
photobleaching of fluorescently labeled chromatin to
demonstrate the relative immobility of chromatin, which
implied that the chromosomes are attached to underlying
nuclear substructures. By plotting intranuclear positions
of FISH signals for nine different q arm markers, Sun et
al. (2000) concluded that there was a size dependent
intranuclear organization of chromosomes within the
interphase nuclei of cultured human fibroblasts, with the
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q arm telomeres of large chromosomes more
peripherally located than the telomeres of smaller
chromosomes. A relationship of gene function with
chromatin organization has been claimed by Cremer et
al. (2000). This is supported by immunolabelling of
nascent RNA and FISH labeling of cultured HeLa cells
(Verschure et al., 1999).

Physical and functional attachments are described
(Pfaller and Newport, 1995; Ye and Worman, 1996;
Vladimirskaya et al., 1999) of chromosomes to the
nuclear envelope and easily discerned intranuclear
structures such as the nucleoli (Chubb et al., 2002). As
well, Barboro et al. (2003) propose the attachment of
chromosomes to a nuclear frame consisting of lamins
stabilized with RNA and nuclear mitotic apparatus
protein (NuMa), which determines functional domains
and higher order organization of chromatin (Gotzman
and Foisner, 1999). Weipoltshammer et al. (1999) has
demonstrated telomeric but not centromeric attachments
to the nucleoskeleton. The nuclear matrix is thought to
be pivotal in the functional organization of chromatin,
allowing for the attachment of transcription factors and
enabling chromatin remodeling by histone-DNA 
and histone-histone interactions (Stein et al., 
2000). Associations have been made between 
the nuclear matrix and gene regulation and their 
interactions with intranuclear cytoplasmic intermediate 
filaments (Traub 1995; Tolstonog et al., 2001, 
2002).

Spatial order of chromosomes in the interphase
nucleus and in mitosis

In addition to chromosomes occupying discrete
intranuclear loci i.e. “domains”, evidence has
accumulated that they also evidence preferred spatial
relationships to each other. In plants, yeasts, and diptera,
interphase chromosomes have the Rabl configuration
i.e.telomeres at one nuclear pole and centromeres at the
opposite pole (Marshall et al., 1996, 1997; Leitch, 2000).
In human and murine cells, specific genes occupy
constant positions relative to each other, irregardless of
transcriptional activity or cell differentiation (Nagele et
al., 1999; Parada and Misteli, 2002; Parada et al., 2002).
Some investigations have found that genes occupy
constant radial positions between the nuclear center and
the nuclear membrane (Parreira et a1., 1997). Ferguson
and Ward (1992) and Kozubek et al. (2002) have
described a centromeric orientation at the nuclear
membrane of human cells. Both studies failed to show
evidence of homologue pairing. The studies of
Skalnikova et al. (2000) and Nogami et al. (2000) also
found peripheral centromeric orientation in human blood
cells, with genes and early replicating domains situated
centrally in the nucleus. Kirsch-Volders et al. (1980)
measured association tendencies of chromosomes and
found preferential associations for pairs of autosomes at
both centromeres and telomeres. Tanabe et al. (2002)
have found that the chromosomes of both human and

chicken cells show similar radial positions with large
chromosomes peripherally located and smaller ones
more central. Lukasova et al. (2002) have shown that
human lymphocyte chromosomes have a nonrandom
three dimensional structure, with highly expressed genes
found close to the nuclear center, on the inner sides of
the chromosomal territories. The findings of Cremer et
al. (2001), are consistent with the above, but find some
differences in the positioning of chromosomes (number
18 and Y) between the ellipsoid nuclei of human amnion
and fibroblast nuclei and the spherical nuclei of human
lymphocytes. Sadoni et al. (1999) have demonstrated in
human cultured fibroblasts, a higher order
compartmentalization of polar chromosomes with gene
replication times and hence gene function corresponding
to mitotic chromosomal banding patterns. From their
pulse labeling experiments, they concluded that sister
chromatids are mitotically segregated in an apparent
random manner. Alcobia et al. (2000) used centromeric
chromosomal probes and confocal microscopy to study
centromere associations in human blood cells and
fibroblasts. While they demonstrated specific
associations of centromeres especially the acrocentrics
with nucleoli, they also found tissue specific association
patterns. Manders et al. (1999) pulse labeled living
cultured Indian Muntjac cells and followed specific
labeled foci through the cell cycle. They concluded that
”the gross structure of an interphase chromosome
territory is directly related to that of the prophase
chromosome”. Furthermore, Nagele et al. (1999), found
that “some chromosome homologues of diploid cells
exhibited a preferred intranuclear position that may
correspond to the spatial order of chromosomes in
rosettes of mitotic cells”. A study of chromosome
positioning of post-mitotic daughter cells suggested that
chromosome positioning was dependent upon their
configuration at the preceding mitosis (Sun and Yokata,
1999). This conclusion was supported by the findings of
Gerlich et al. (2003), who also suggested that the
specific timing of sister chromatid separations transmits
chromosomal positions from one cell generation to the
next.

Many studies reveal that chromosomal order is also
maintained during mitosis. Coll et al. (1980), using
Giemsa-banding chromosomal identification techniques,
found that the chromatids show symmetrical orientation
on the mitotic plate which in their text figures, appear
not to show "mirror-image" symmetry, but form identical
arrays of haploid sets which show “head to tail”
orientation on the mitotic plate. Recently, Klein et al.
(1998) have shown that chromosomes maintain a
nonrandom and symmetrical order during mitosis. In
contrast, Allison and Nestor (1999) have found that
human chromosomes show a random but symmetrical
distribution on the mitotic ring and describe symmetrical
chromatid position in daughter cells. Nagele et al.
(1995), describe an "antiparallel disposition" of the two
haploid sets on the mitotic rosette, which is consistent
with Coll et al’s findings (1980).
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Symmetry of chromatids 

Evidence for mirror image symmetry can also be
found in the topology of sister chromatids. Boy de la
Tour and Laemmli (1988) observed mirror symmetry of
sister chromatids in metaphase chromosomes. Using
electron tomography of metaphase nucleolar organizer
regions, Heliot et al. (1997) described the same
phenomenon. Using FISH probes, Baumgartner et al.
(1991), described mirror symmetry of fluorescent spots
on sister chromatids. Ushiki et al. (2002), using atomic
force microscopy, demonstrated the symmetrical coiling
of sister chromatids, as well as the existence of bridging
fibers between Q-bands of sister chromatids. Stack and
Anderson (2001) have dealt with the theoretical
implication of the above findings in some depth. Goradia
and Davis' investigation (1978), entitled “Asymmetry in
sister chromatids of human chromosomes” deals with
nonsymmetrical patterns of G-banding of chromatids,
rather than with the “handedness” of chromatin coiling.
The chromosome scaffold is thought to provide the
template for the spiral structure of mitotic chromosomes
(Hirano, 2000; Maeshima and Laemmli, 2003), but no
explanation for the mirror-image symmetrical coiling
could be found. 

Changes in chromatin structure related to gene
activity and cell differentiation

Epigenetic mechanisms (Hendrich and Willard,
1995) play a central role in gene silencing and involve
methylation of DNA and histone deacytelation (Lee and
Chan, 2001; FASEB Meeting Report, 2001; Maison et
al., 2002; Richards and Elgin, 2002). As well, various
protein factors such as heterchromatin protein 1
(Kellum, 2003) bind to DNA, alter the chromatin coiling
structures, as well as gene expression. Transcription
factors may alter chromatin coiling and affect gene
activity (Lundgren et al., 2003). A link between
alterations in chromatin structure, the binding of
transcription factors to the nuclear matrix with RNA
polymerase II, and gene activity is discussed by Stein et
al. (1999). There is current interest in the BAF
(SW1/SNF) family of chromatin remodeling proteins
which are thought to allow access of transcription factors
to DNA (Kassabov et al., 2003; Katsani et al., 2003;
Wang, 2003). Olave et al. (2002) discussed the role of
actin intermediate filaments in the chromatin remodeling
complexes. Histone octamers and DNA topoisomerase I
and II form the chromosomal scaffold (Sumner,1996),
contribute to DNA supercoiling and accessibility, and to
the spatial accessibility of interaction sites (Caserta and
diMauro, 1996). In addition to epigenetic mechanisms,
gene expression is affected by mutations and is protected
from silencing by “insulators” or boundary elements
(Bell and Felsenfeld, 1999; Burgess-Beusse et al., 2002).

The actions of the above-mentioned chromatin-
modifying factors have been related to cell
differentiation and embryonic development (Renard,

1998; Cunliffe, 2003). Spatial position of a gene relative
to other chromosomal elements has also been linked to
gene activity (Bridger et al., 2000). In human
differentiated cells, both homologous and some
nonhomologous chromosomes show pairing and close
spatial associations (Chandley et al., 1996) which show
tissue specific patterns (Alcobia et al., 2000). Gene
inactivation has been linked to its distance from
centromeric heterochromatin (Bartova et al., 2002) and
has been presented as an example of epigenetic
silencing. TIF1, a transcriptional intermediary factor
involved in cell differentiation concentrates in the
pericentromeric heterochromatin of embryonic cells
induced to differentiation by retinoic acid (Cammas et
al., 2002). The retinoic acid receptor itself is silenced by
DNA methylation and histone deacetylation (Sirchia et
al., 2002). Beil et al. (2002) describe “a global
remodeling of interphase chromatin territories” in
leukemic cells which have undergone retinoic acid-
induced differentiation.

Evidence of chromosome-chromosome interactions

The above discussions are essential in the
development of a thesis for a programmed, nonstochastic
mechanism for interchromosomal interactions. It appears
that chromosomal domains are discrete intranuclear
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Fig. 1. An interphase nucleus: The black circle represents the nuclear
membrane to which a pair of homologue chromosomes are attached at
their telomeres and show mirror-image symmetrical coiling. The white
coiled structures represent adjacent chromosomes with identical
“handedness” of coiling. The pair of black and white chromosomes on
the left show identical “handedness” and the white coil is inserted with
close apposition into the black one, and suggests that chromosome
interactions can occur. The pair of chromosomes on the right show
opposite “handedness” in coiling and cannot be apposed.



territories which appear to have preferred intranuclear
locations which are perpetuated through cell division
into succeeding generations. It is natural to question
whether neighbouring chromosomal territories evidence
interactions. If this is indeed true, then it is apparent that
the degree of chromatin supercoiling and the direction of
its symmetry (i.e. left or right-handed coiling) will be
important in determining any interactions with
neighbouring chromosomes (Fig. 1). The cited findings
of chromatid mirror-image symmetry have been
described in metaphase chromosomes which evidence
“tight” winding and compaction. The visible presence of
heterochromatin in interphase nuclei is evidence for the
retention of some chromosomal superwinding. Parada et
al. (2002), cite the retention of G-banding regions in
interphase nuclei. 

Some evidence of these interactions in interphase
cells have been described at length-Position Effect
Variegration (PEV) in Drosophila (Qumsiyeh, 1995;
Dernburg et al., 1996; Sabl and Heniloff, 1996; Dorer
and Henikoff, 1997; Carvalho et al., 2001; Csink et al.,
2002), transvection, wherein phenotypic effects of an
allelic mutation are masked by its homologue (Wu and
Morris,1999) (Mattick and Gagen,2001), chromosomal
silencing from one parent in interspecific hybrids i.e.
“nucleolar dominance” (Lewis and Pikaard, 2001)
(Sullivan et al., 2001), human X chromosome
inactivation i.e. “dosage effects” (Carrel et al., 1999;
Bailey et al., 2000; Willard and Carrel, 2001) , transgene
imprinting of X inactivation (Monk and Grant, 1990;
Migeon et al., 1999; Willard and Carrel, 2001), and
translocations involving spatially proximate
chromosomes (Kozubek et al., 1999; Neves et al., 1999;
Marshall, 2002).

Mitotic chromatid segregation

Previous studies of chromatid separation and
segregation have designated this process as a random
one. The labeling experiments of Zink et al. (1998) and
Neff and Burke (1991) revealed the presence of both
labeled and unlabelled chromatids in daughter nuclei.
Because sister chromatids are assumed to have identical
genetic codes, their random distribution would have no
biological significance if their segregation patterns
imparted no information. Present theories of inherited
differentiation are based on transmission of epigenetic
factors such as histone acetylation (Jeppesen, 1997) and
methylation as well as associationed RNA and other
proteins such as HP1 (Kellum, 2003) 

The thesis proposed in the preceding discussion
attributes informational significance to the “handedness”
of chromosomal coiling, even when there is a degree of
unraveling in interphase. Adjacent portions of spiraled
chromosomes cannot insert their supercoiled helix and
interact with chromosomes showing opposing
“handedness”. These interactions based on symmetry of
adjacent chromosomes can be thought of as binary
switches. At least 2^23, (8,388,608) combinations of

spiraled chromosomes are possible. In order for specific
combinations of interacting chromosomes to be inherited
by succeeding cell generations, chromatid segregation
must be non-random. The mechanism which effects this
programmed segregation is necessary for the existence
of multicellular organisms with cellular differentiation,
and is probably not present in bacteria or yeasts.

In addition to the previously discussed symmetry in
chromatid structure, Goradia and Davis (1978) described
different G banding patterns among human sister
chromatids. In contrast, Morris (1977) found no
evidence of non-random segregation of sister
chromatids. Bekaert et al. (2002) describe different
telomere lengths of sister chromatids in human
lymphocytes. These findings reinforce the view that
sister chromatids are not identical.

Non-random segregation may be effected by
physical attachments of interacting chromosomes which
retain their associations, even through replication and
migration. Avivi and Feldman (1980) cite many
investigations describing tethering or connections of
chromosomes in plants. 

A more likely mechanism would propose differential
spindle affinities for sister centromere attachment. As
well, there may be qualitative differences in the
centrioles which result in preferential kinetochore
attachments. Jablonka and Jablonka (1982) theorized
that each chromatid contained a directional code which
was either masked or unmasked by differences in origin
of DNA replication forks. Sullivan et al. (2001), in their
review cite evidence supporting an epigenetic role in
determining centromere sites. Differing chromatid
configurations might conceivably be associated with
different centromeric functionality. Van Hooser et al.
(2001) suggest that epigenetic factors might assist in
establishing the centromeric site and play a role in
kinetochore plate assembly. McEwan et al. (1997) in
their study of kinetochore fiber attachment describe a
sequential attachment of kinetochore fibers to sister
chromatids, with one chromatid usually showing twice
the number of attached fibers than the leading sister
kinetochore. Taylor et al. (2001) describe assymetrical
localization of the spindle checkpoint component BubR1
– the kinetochore with the weaker BubR1 signal is
usually closer to the nearest spindle pole. At present
however, inspite of the above mentioned findings, no
strong experimental evidence exists yet for programmed
chromatid segregation.

One could suppose that microtubule attachment is
opportunistic with attachment of microtubules from one
centriole attaching to the most proximal kinetochores of
chromatid pairs during anaphase. The consequences of
such a segregation would be the formation of daughter
cells showing mirror-image symmetry of their respective
chromatids. Interchromosomal interactions would still
occur within each daughter, but there is no programmed
segregation in this model. The segregation of chromatids
would be determine by the relation of the spindle axis to
the axis of homologue symmetry within the anaphase
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nucleus.

Conclusions

Much evidence exists for the existence of ordered
and preferred chromosomal territories in interphase
nuclei. As well, evidence exists for interactions of
interphase chromosomes. It appears that sister
chromatids in mitosis show mirror image symmetry and
that interphase chromosomes may retain some of the
higher order organization seen in mitosis. Very weak
evidence exists for programmed separation of
chromatids.

The above two concepts, i.e. steric interactions of
adjacent chromosomes in the interphase nucleus, and
programmed chromatid segregation would explain not
only normal differentiation and development but some
pathological conditions.

Chromosomal translocations are thought to occur
between spatially adjacent chromosomes. In balanced
Robertsonian translocations, the translocated
chromosomal segments presumably remain in close
apposition and interact in the same manner. Unbalanced
translocations remove portions of chromosomes from
their associated interacting neighbour, thereby inducing
lack of repression /activation of genes. Parada et al.
(2002) have shown in benign and neoplastic mouse cells
that two translocated chromosomes are positioned in
close proximity to each other. In cancer-related
syndromes like Bloom’s syndrome and Fanconi’s
anemia, the rate of sister chromatid exchanges is
markedly increased over normal (Hojo et al., 1995). The
insertion of chromosomal segments with chromatin
coiling opposite to the normal at that site would cause
disruptions of any postulated interactions and steric loss
of control for gene expression. Similarly, in aneuploidies
of neoplasia, genes on extra chromosomes would not be
controlled by steric modulation.

Dedicated to the memory of my brother, Dr. W.P. Bell, zichrono l’bracha.
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