
Summary. C-reactive protein (CRP) is a powerful
cardiovascular risk marker. Evidence suggests that this
may be due to its direct proatherogenic properties.
Because of different biological functions of CRP in
different species, an appropriate animal model for the
study of its role in atherogenesis is difficult to set up.
Binding to low density lipoprotein (LDL), activation of
the complement system and interaction with
monocyte/macrophages are rigorously defined
pathogenic properties of CRP which might contribute to
an active role of the molecule in human atherogenesis.
Furthermore, direct effects on arterial wall cells, i.e.
endothelial cells and smooth muscle cells, have been
reported. The molecular basis of CRP interaction with
these cells, however, remains unclear. Should CRP
indeed be actively involved in human atherogenesis, the
molecule may become a target for therapy.
Pharmaceutical companies develop CRP-inhibitors. 
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Introduction

C-reactive protein (CRP) is the prototype acute
phase protein in humans and plays an important role in
innate immunity (Mortensen, 2001; Volanakis, 2001). In
acute phase response, plasma CRP concentrations may
rise up to 1000-fold compared to normal. CRP possesses
diverse biological functions like opsonizing pathogens
(Kindmark, 1971; Volanakis and Kaplan, 1971;
Mortensen et al., 1976; Kindmark, 1971; Mold, 2001) or
damaged cells (Martin et al., 1995; Gershov et al., 2000)
and regulating inflammatory processes (Mold et al.,
2002). One of the major and most rigorously defined
biological functions of CRP in humans is activation of
the complement system via the classical pathway

(Kaplan and Volanakis, 1974; Volanakis and Kaplan,
1974; Claus et al., 1977; Volanakis, 1982). 

CRP - a cardiovascular risk marker 

CRP was established as a sensitive marker of
inflammation a long time ago (Tillett and Francis, 1930).
Accumulating evidence from various epidemiological
prospective studies over the recent years indicates that
CRP is an important marker of future cardiovascular risk
(Danesh et al., 1998; 2000; Koenig et al., 1999; Speidl et
al., 2002; Haidari et al., 2001; Folsom et al., 2002). If
subjects are both in the top quintile of CRP and low
density lipoprotein (LDL) cholesterol plasma levels their
risk of a first cardiovascular event is increased up to
eight- to nine-fold (Rifai and Ridker, 2001). Recently,
data from a large population study (Women´s Health
Study) demonstrated worse survival rates for women
belonging to the upper quintile of CRP plasma levels as
compared to those from the upper quintile of LDL
cholesterol plasma levels (Ridker et al., 2002). These
data suggest that CRP plasma levels are a stronger
predictor of cardiovascular events than LDL cholesterol
plasma levels. The question arises whether CRP is just a
cardiovascular risk marker or whether it is a
cardiovascular risk factor intimately involved in the
pathogenesis of atherosclerosis.

CRP - a cardiovascular risk factor?

Data from a variety of experimental studies indicate
an active role of CRP in atherogenesis. However, some
of these studies are seemingly preliminary and the
described effects need to be investigated in detail before
the impact of such studies can be assessed properly.
Furthermore, it is not yet proven in an animal model that
CRP is causal in atherogenesis. It is difficult to set up an
appropriate animal model as the biological functions of
CRP differ from species to species.

The following paragraph summarizes the evidence
for an involvement of CRP in atherogenesis and
comments on the plausibility of results. 

1. CRP deposition in human atherosclerotic lesions
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is now well established (Torzewski et al., 1998; Zhang et
al., 1999; Yashojima et al., 2001). The molecule is
already detectable in the arterial intima in the earliest
stages of atherogenesis and accumulates with lesion
progression. 

2. CRP binds to apolipoprotein-containing
lipoproteins like LDL and very low density lipoprotein
(VLDL). This is also well established and may be of
considerable importance in the pathogenesis of
atherosclerosis. Initial reports have already demonstrated
binding to the native molecules (de Beer et al., 1982;
Cabana et al., 1982; Pepys et al., 1985). Recently, a
further investigation in the matter revealed that CRP
preferentially binds to modified forms of LDL like
enzymatically modified LDL (E-LDL) (Bhakdi et al.,
1999) and oxidized LDL (oxLDL) (Chang et al., 2002). 

3.  CRP interacts with vascular cells. The proposed
interactions need to be investigated in detail. This seems
especially important because the molecular basis of CRP
interaction with vascular cells remains largely undefined.
The following effects of CRP on vascular cells have
been reported:
(a) CRP interaction with monocytes/macrophages. CRP
has been demonstrated to induce Tissue Factor
expression and release in monocytes/macrophages
(Cermak et al., 1993). Furthermore, CRP acts as a
chemotattractant for monocytes (Torzewski et al., 2000).
This observation, in combination with the fact that CRP
deposition in the arterial wall precedes the appearance of
monocytes in atherogenesis, suggests that CRP may be a
major monocyte chemoattractant. Importantly, soluble
CRP (Zwaka et al., 2001) and immobilized CRP (Fu and
Borenstajn, 2002) have been demonstrated to mediate
the uptake of native LDL into macrophages. Intracellular
vesicle formation and accumulation of cholesterol
suggest a contribution of CRP to foam cell formation. As
CRP is known to opsonize biological particles (see
above), these data indicate a mechanism for foam cell
formation independent from biochemical modification of
LDL. 
(b) CRP interaction with endothelial cells. Some reports
have described effects of CRP on endothelial cells that
were supposed to be atherogenic (Pasceri et al., 2000,
2001; Verma et al., 2002a,b; Devaraj et al., 2003). Dose-
dependent significant expression of ICAM-1, VCAM-1
and E-selectin was detected in human umbilical vein
endothelial cells (HUVEC) following CRP stimulation
(Pasceri et al, 2001). Furthermore, CRP was
demonstrated to induce expression of monocyte
chemoattractant protein-1 (MCP-1) in HUVECs (Pasceri
et al, 2001). An involvement of endothelin-1 (ET-1) and
interleukin-6 (IL-6) in these CRP-mediated effects (see
above) was demonstrated in saphenous vein endothelial
cells (Verma et al., 2002a). CRP was also shown to
inhibit nitric oxide (NO) production and stimulation of
NO release via downregulation of endothelial NO
synthase (eNOS) (Verma et al., 2002b). Lastly, CRP was
demonstrated to increase plasminogen activator
inhibitor-1 (PAI-1) in human aortic endothelial cells

(Devaraj et al., 2003). It is important to note that to date
no CRP-receptors have been demonstrated to be
expressed on endothelial cells. Thus, the mechanisms of
CRP-interaction with endothelium remain unclear. 

(c) CRP interaction with vascular smooth muscle
cells (VSMCs). It has been proposed that CRP induces
relaxation of human vessels independent from
endothelium (Sternik et al., 2002). Vasorelaxation was
attenuated using potassium channel inhibitors suggesting
that CRP may exert a relaxing effect on VSMCs
involving K channels. Again, it has to be noted that to
date no CRP-receptors have been demonstrated to be
present on VSMCs. 

Mechanisms of CRP action in atherosclerosis

CRP activates the complement system 

Ligand-bound CRP activates the complement system
via the classical pathway (Kaplan and Volanakis, 1974;
Volanakis and Kaplan, 1974; Claus et al., 1977;
Volanakis, 1982). It has been known for many years now
that complement plays a role in atherosclerosis
(Torzewski et al., 1997a,b). Animals lacking components
of the complement system are protected against diet-
induced atherogenesis (Geertinger and Soerensen, 1977;
Schmiedt et al., 1998; Buono et al., 2002). Various
complement proteins, including the terminal
complement complex C5b-9, have been shown to
deposit in human and animal atherosclerotic lesions
(Niculescu et al., 1985; Vlaicu et al., 1985; Seifert et al.,
1989; Torzewski et al., 1997a,b), but not in healthy
arterial tissue. Potential complement-activating
molecules have been detected in atherosclerotic lesions
in recent years (Seifert et al., 1989, 1990). Given the role
of CRP as a robust cardiovascular risk marker and given
the fact that CRP colocalizes with activated complement
fragments in atherosclerotic lesions (Torzewski et al.,
1998; Yasojima et al., 2001), CRP-mediated complement
activation in the arterial wall may be considered as an
important pathogenic feature in human atherogenesis. It
is tempting to speculate that CRP, bound to LDL or
modified LDL in the arterial wall, might play a pivotal
role in atherogenesis by local perpetuation of the
humoral immune response via activation of the
complement system. 

CRP interacts with phospholipids on cell membranes

CRP-binding to cells has long been investigated. It
was initially demonstrated that CRP binds to necrotic
cells or damaged cell membranes only (Kushner and
Kaplan, 1961), but not to normal cells. CRP was shown
to bind to phosphorylcholine in the membranes of
damaged cells and this process requires partial
hydrolysis of the membrane phospholipids (Volanakis
and Wirtz, 1979). Also, CRP was reported to bind to
apoptotic cells (Gershov et al., 2000). In the light of the
aforementioned reports of CRP-mediated activation of
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vascular cells (cells that are not known to express CRP-
receptors), it has to be considered that CRP-induced
effects in these cells are not mediated via specific
receptors but may be due to an interaction of CRP with
phospholipids of damaged cells in cell culture. 

CRP interacts with cellular CRP receptors 

CRP-binding to cellular receptors has long been
investigated. CRP-Rs were demonstrated to be present
on various types of leukocytes: polymorphonuclear
neutrophils (PMNs) (Müller and Fehr, 1986; Buchta et
al., 1987); blood monocytes (Zeller et al., 1986); and
lymphocytes (Mortensen et al., 1975; James et al.,
1981). Whereas some reports provided evidence for
specific CRP-receptors on leukocytes (Tebo and
Mortensen, 1990; Zen et al., 1997) other experiments
demonstrated interaction with Fc-receptors (Marnell et
al., 1995; Bharadwaj et al., 1999). The high affinity IgG-
receptor FcγRI was identified as a low affinity CRP-
receptor (Marnell et al., 1995), whereas, recently, the
low affinity IgG-receptor FcγRIIa was described as the
major receptor for CRP (Bharadwaj et al., 1999). There
are two codominantly expressed allelic variants of
FcγRIIa resulting in a change at amino acid position 131
displaying different affinity to IgG1 and IgG2. FcγRIIa-
131R/R has been defined as the “high responder” form
of the receptor and FcγRIIa-131H/H as the “low
responder” form for IγG binding. It has been reported
that these two allelic variants confer distinct CRP-
binding to leukocytes (Stein et al., 2000). In monocytes,
CRP-binding to cells expressing FcγRIIa-131H/H was
hardly detectable whereas significant binding has been
demonstrated for FcγRIIa-131R/H and FcγRIIα-131R/R.
However, as the initial reports (Bharadwaj et al., 1999;
Stein et al., 2000) used anti-CRP antibodies in order to
demonstrate CRP-binding to FcγRIIa it was suggested
that detection of CRP-binding to FcγRIIa results from
interaction of the Fc-part of the anti-CRP antibodies with
FcγRIIa itself (Saeland et al., 2001). In experiments
using F(ab’)2 fragments of anti-CRP antibodies (Clone
CRP 8, Sigma), no CRP-binding to FcγRIIa-R131 was
found on polymorphonuclear leukocytes and FcγRIIa-
transfected IIA.6 cells. Other authors proposed that the
observation of CRP-binding to FcγRIIa might be due to
IgG-contamination of the CRP reagent used in the
binding studies (Hundt et al., 2001). Finally, Ca-
dependent high affinity CRP binding to the extracellular
portion of FcγRI has recently been demonstrated using
surface plasmon resonance (BIAcore® system)
(Bodman-Smith et al., 2002). This observation again
contradicts previous results of low affinity CRP-binding
to FcγRI expressed on COS-7 cells (Marnell et al.,
1995). Thus, the data surrounding the area of CRP
binding to cellular receptors are confusing and the
question of the major cellular CRP-receptor has not yet
been resolved. In the light of increasing evidence for an
involvement of CRP in the pathogenesis of
atherosclerosis the identification of the major CRP

receptor and its consecutive blockage might be of
therapeutic relevance. 

In summary, a causal role for CRP in atherogenesis
is most likely but not yet proven. CRP may be a target
for therapy. Potential therapeutic strategies involve
lowering CRP plasma levels by direct inhibition of CRP
synthesis in hepatocytes, interfering with CRP-mediated
complement activation or blockage of cellular CRP-
receptors. Pharmaceutical companies develop CRP-
inhibitors. 
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