
Summary. Dendritic spines mediate most excitatory
synapses in the CNS and are therefore likely to be of
major importance for neural processing. We review the
structural aspects of dendritic spines, with particular
emphasis on recent advances in the characterization of
their molecular components. Spine morphology is very
diverse and spine size is correlated with the strength of
the synaptic transmission. In addition, the spine neck
biochemically isolates individual synapses. Therefore,
spine morphology directly reflects its function. A large
number of molecules have been described in spines,
involving several biochemical families. Considering the
small size of a spine, the variety of molecules found is
astounding, suggesting that spines are paramount
examples of biological nanotechnology. Single-
molecular studies appear necessary for future progress.
The purpose of this rich molecular diversity is still
mysterious but endows synapses with a diverse and
flexible biochemical machinery. 
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Ultrastructure of dendritic spines

Dendritic spines are small protrusions which arise
from dendrites of various types of neurons in the central
nervous system (Fig. 1), including pyramidal neurons in
the cortex and the hippocampus and Purkinje cells in the
cerebellum. Dendritic spines were first described by
Cajal (Ramón y Cajal, 1888), who argued against many
of his contemporaries that they were not artifacts of the
Golgi stain. Not only did he proposed that they were
real, but he also postulated that spines were the primary
site of synaptic contact between dendrites and axons
(Ramón y Cajal, 1891) and were involved in learning
and memory (Ramón y Cajal, 1893). Later, Gray (1959)
confirmed that dendritic spines are indeed the sites of
neuronal connection using electron microscopy (EM).

At the EM level, dendritic spines appear as small
protrusions (<2 µm length, from dendrite to the tip)
typically having a spherical head (0.5-1.5 µm diameter)
connected by a narrow neck (<0.5 µm diameter) to the
dendritic shaft. Spine morphology is highly variable
from spine to spine, even in the same dendrites. Spines
have been morphologically categorized into three types:
thin, mushroom and stubby spines, according to Peters
and Kaiserman-Abramof (1970) (Fig. 1C). Thin spines
are most common and have a thin, long neck and a small
bulbous head. A smaller subset of spines with a large
head are called mushroom spines. Stubby spines are
devoid of a neck (Jones and Powell, 1969; Peters and
Kaiserman-Abramof, 1970) and are particularly
prominent during postnatal development (Harris et al.,
1992).

A majority of spines have single heads but a few of
them are branched with multiple heads. In dentate
granule cells (Trommald and Hulleberg, 1997) and CA1
pyramidal neurons (Harris et al., 1992; Fiala and Harris,
1999), only ~2% of all spines are branched. The
morphologies of two heads show variations similar to
those found in simple spines. There have been no cases
reported where their two heads of branched spines make
synapses with the same axon (Harris et al., 1992;
Trommald and Hulleberg, 1997; Sorra et al., 1998). In
contrast to typical spines, thin long protrusions without a
bulbous head are called filopodia and are
developmentally transient structures disappearing after
the peak period of synaptogenesis (Miller and Peters,
1981; Fiala et al., 1998).

Most spines receive an asymmetric excitatory
synapse on their heads (Fig. 1A,B). On the EM level,
these synapses are characterized by a thick, postsynaptic
density (PSD) located in the cytoplasmic surface of the
synaptic membrane, a relatively wide intermembrane
distance between pre- and postsynaptic membranes, and
thinner presynaptic densities (active zones) and vesicles
(Gray, 1959). The PSDs seem to represent proteins
located beneath postsynaptic membranes (Kennedy,
2000) and are either disk-like continuous, “macular”
PSDs (Fig. 1A,D), or large and irregular-shape,
“perforated” PSDs (Fig. 1B,D). In single sections,
perforated PSDs are often found as multiple separate
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PSDs (Fig. 1B) but, in many cases, they are found to be
connected following 3-D reconstruction (Peters and
Kaiserman-Abramof, 1969; Cohen and Siekevitz, 1978).
Most thin spines have macular PSDs, whereas more than
80% of mushroom spines have perforated ones (Harris et
al., 1992). Additionally, some spines receive inhibitory
symmetric synapses on their neck or near the base of
spines. In contrast to excitatory synapses on the spine
heads, the pre- and postsynaptic densities in these
synapses have similar thickness (Gray, 1959). 

Spines are often associated with polyribosomes,
which represent protein synthesis machinery.
Polyribosomes are found most commonly in the bases of
spines, but sometimes in spine heads or necks (Steward
and Levy, 1982; Spacek, 1985). A growing body of
evidence shows that protein synthesis may occur locally
in dendrites (Steward and Schuman, 2001). Since many
of the locally synthesized proteins, such as CaMKIIa,
FMRP and Arc, are synthesized depending on synaptic
activity, close association of polyribosomes with spines
could in principle enable synthesized proteins to be
limited to single activated spines (Steward and Schuman,
2001).

Many spines also contain smooth endoplasmic
reticulum (SER), which is continuous to the SER in
dendritic shafts and can extend through the spine neck to
head. In the hippocampus of mature rats, about a half of
all spines contain some form of SER, which can take the
form of vesicles, tubules, or a “spine apparatus” (Spacek
and Hartmann, 1983; Spacek and Harris, 1997), a stack
of SER cisternae and dense plates between the cisternae
(Gray, 1959). Most mushroom spines, which also have
perforated synapses, contain a spine apparatus, and their
number of cisternae is positively correlated with the PSD
area (Spacek and Harris, 1997). Although in the cortex
and the hippocampus, the spine apparatus is common, it
is rarely found in the cerebellum (Spacek, 1985).

As discussed above, the morphology of dendritic
spines is highly variable. Importantly, it is becoming
clear that the spine structure directly reflects the
functional features of the spine synapses. The spine head
volume, PSD area and the number of vesicles in
presynaptic terminals are positively correlated in
cerebellar Purkinje cells (Harris and Stevens, 1988) and
CA1 pyramidal neurons (Harris and Stevens, 1989).
Also, the active zone size, postsynaptic density size
(PSD), the number of docked vesicles and spine head
volume are positively correlated in the olfactory cortex
(Schikorski and Stevens, 1999). The number of the
docked vesicles corresponds to the readily releasable
pool of vesicles, which, in turn, correlates with the
release probability (Rosenmund and Stevens, 1996;
Schikorski and Stevens, 2001). Therefore, the spine
volume reflects the release probability of its synapse.
Also, as discussed below, the PSD area is positively
correlated with the number of AMPA receptors in the
PSDs (Nusser et al., 1998). In addition, the spine neck
length, which enables the calcium compartmentalization
(Yuste and Denk, 1995), is directly correlated with the

degree of biochemical isolation (Majewska et al.,
2000a,b). Therefore, morphological differences between
stubby or long spines could actually reflect a significant
difference in their biochemical function.

Taken together, these findings demonstrate that
synaptic parameters such as spine head volume, PSD
area and active zone area are directly correlated with
synaptic strength, and the spine neck also is also
correlated with the potential function of the spine to
implement calcium-dependent learning rules (Yuste et
al., 2000).

Molecular organization of dendritic spines

We will now review the different types of proteins
present in dendritic spines.

Glutamate receptors

Being major sites of glutamatergic inputs in neurons,
spines have all four types of glutamate receptors,
NMDA, AMPA, kainate, and metabotropic glutamate
receptors (Fig. 2). NMDA receptor (NMDAR) is thought
to be a heterotetramer composed of NR1, NR2A-D, or
NR3 and is invariably found in the PSD (Takumi et al.,
1999). In addition to the binding of glutamate, NMDAR
activation requires a postsynaptic depolarization to
remove its blockade by Mg2+. This property is important
for coincidence detection of pre- and postsynaptic
activation by the spines (Yuste and Denk, 1995; Yuste et
al., 1999). Ca2+ influx through NMDAR is thought to be
important in synaptic plasticity (Malenka and Nicoll,
1999). AMPA receptor (AMPAR) is also thought to be
heterotetramer made from the GluR1-4 subunits. Most
AMPAR is Ca2+-impermeable, and this feature appears
to be controlled by the incorporation of the GluR2
subunit. Whereas AMPAR comprising of GluR1, 3 and 4
shows Ca2+-permeability, GluR2-containing AMPAR is
not Ca2+-permeable (Hollmann et al., 1991). This is
attributed to RNA editing which converts a glutamine
residue in the channel pore forming domain to a
positively charged arginine (Hume et al., 1991; Sommer
et al., 1991). A number of electrophysiological
experiments have suggested that there is a large
variability in the number of functional AMPAR from
synapse to synapse, although every synapse might
contain NMDAR (Malenka and Nicoll, 1997). Indeed,
immunoelectron microscopy showed that the number of
AMPAR in single synapses is variable from spine to
spine and is correlated with the PSD area (Nusser et al.,
1998). Also, no AMPAR was detected in ~15% of
asymmetric synapses located on spines in CA1 (Nusser,
1998), consistent with the idea of silent synapses formed
exclusively of NMDAR (Malenka and Nicoll, 1997).
These electrophysiological and morphological findings
are consistent with two-photon imaging of calcium
accumulations in spines mediated by NMDAR and
AMPAR (Yuste et al., 1999). Also, mapping of
functional AMPAR by two-photon uncaging of caged
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Fig. 1. Ultrastructure of Dendrit ic spines. Electron
micrographs of dendritic spines in hippocampal slice
culture. A. Thin spines with macular PSDs. B. Mushroom
spines with perforated PSDs. C. Schematic drawing of
spine morphologies in categories, as described by Peters
and Kaiserman-Abramof (1970). D. Schematic drawing of
macular and perforated PSDs. Scale bar: 500 nm.



glutamate has recently been done (Matsuzaki et al.,
2001). 

Kainate receptors (KAR) are composed of GluR5-7
or KA1-2 subunits (Chittajallu et al., 1999) and are also
found in the PSDs (Huntley et al., 1993; Roche and
Huganir, 1995). Like the GluR2 subunit of AMPAR,
GluR5 and 6 subunits are subjected to RNA editing
which regulates Ca2+-permeability (Chittajallu et al.,
1999). 

Finally, metabotropic glutamate receptors (mGluR)
are G-protein coupled receptors. Spines contain mGluR1
and 5 (Baude et al., 1993; Lujan et al., 1996), which are

coupled to phospholipase C and phosphoinositide
hydrolysis producing inositol triphosphate (IP3) (Finch
and Augustine, 1998; Takechi et al., 1998). Interestingly,
these mGluRs are found in the periphery, but not in the
center, of the PSD (Baude et al., 1993; Lujan et al.,
1996), suggesting the existence of functional
subcompartments within the PSD or the spines.

Molecules related to Ca2+ homeostasis

In addition to Ca2+ influx through glutamate
receptors, Ca2+ influx into spines occurs through
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Fig. 2. Glutamate receptors and molecules
related to Ca2+ homeostasis in dendritic
spines. Green arrows indicate Ca2+ influx to
and efflux from spine cytoplasm.

Fig. 3. NMDA receptor-PSD95 complex and
AMPAR binding proteins.



4b were shown to interact with PSD-95 family proteins
(see below; DeMarco and Strehler, 2001). Cytoplasmic
Ca2+ is also sequestered into the ER by
sarco/endoplasmic reticulum Ca2+-ATPase (SERCA;
Fig. 2). SERCA is also thought to be present in spines
(Majewska et al., 2000a).

NMDAR-PSD-95 complex

In addition to glutamate receptors, various proteins
are found in the PSD of asymmetric synapses (Fig. 3).
PSD-95/SAP90, PSD-93/Chapsyn-110, SAP97 and
SAP102 compose a PSD-95 subfamily of membrane-
associated guanylate kinase (MAGUK) protein family,
characterized by multiple protein-binding domains
including 3 PDZ domains, a src homology 3 (SH3)
domain and a guanylate kinase-like (GK) domain (Sheng
and Sala, 2001). Through these protein-binding regions,
PSD-95 and other members of PSD-95 family interact
with a variety of proteins and are thought to work as a
scaffold in the PSD (Sheng and Sala, 2001). Specifically,
the PDZ domains of PSD-95, PSD-93 and SAP102 bind
to the C-terminal of NR2 subunit (Kornau et al., 1995;
Kim et al., 1996; Muller et al., 1996a). The C-terminal
sequence of NR2 may be required for the localization of
NMDA receptors to the PSD (Mori et al., 1998;
Steigerwald et al., 2000). However, the interaction
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Table 1. Proteins in NMDAR/PSD-95 complex

PSD-95/SAP90, PSD93/Chapsin-110, SAP97, SAP102 
Members of PSD-95 family of MAGUK proteins. They contain 3 PDZ domains, 1 GK domain and 1 SH3 domain, and interact with a variety of
membrane and cytoplasmic proteins. Binding partners of PSD-95 includes K+ channels, kainate receptor subunits (GluR6 and KA1), neuroligin,
neuronal NO synthase, PMCA4b and citron (Sheng and Sala, 2001).

GKAP/SAPAP
GKAP is consisted of 4 members, GKAP 1-4 (Sheng and Kim, 2000). The PDZ domain of GKAP binds to the GK domain of PSD-95 (Kim et al., 1997;
Naisbitt et al., 1997; Satoh et al., 1997; Takeuchi et al., 1997) and of S-SCAM (Hirao et al., 1998). The C terminal of GKAP binds to the PDZ domain of
shank (Naisbitt et al., 1999).

Shank
Characterized by a variety of protein-binding domains such as multiple ankyrin repeats, a SH domain, a PDZ domain, a proline-rich region and a SAM
domains. Shank comprises three known members, Shank 1, Shank2 and Shank 3 (Sheng and Kim, 2000). Shank binds to Homer (Tu et al., 1999) and
actin-binding protein, cortactin (Naisbitt et al., 1999).

Homer
Products of three genes, Homer 1, Homer 2 and Homer 3. Homer contains an EVH1 domain and a C-terminal coiled coil (CC) domain (Xiao et al.,
2000). One of splice variants, Homer 1a, is a product of immediate early gene regulated by synaptic activity (Brakeman et al., 1997), whereas Homer
1b and c are constitutively expressed (Kato et al., 1998; Xiao et al., 1998). Homer 1b and 1c contains a CC domain and show self-multimerization, but
Homer 1a lacks a CC domain (Kato et al., 1998; Xiao et al., 1998). Homer binds to mGluR, IP3R and Shank (Tu et al., 1998, 1999).

SynGAP 
A Ras GTPase-activating protein (GAP). SynGAP binds to the PDZ domains of PSD-95, and its GAP activity is inhibited by CaMKII (Chen et al., 1998;
Kim et al., 1998).

SPAR 
A Rap GTPase-activating protein. SPAR binds to the GK domain of PSD-95 and may regulate spine morphology (Pak et al., 2001).

S-SCAM 
S-SCAM contains 5 or 6 PDZ domains, a GK domain and two WW domains (Hirao et al., 1998). Three isoforms, S-SCAMα, ß and γ are found (Hirao et
al., 2000b). S-SCAM binds to GKAP through the GK domain (Hirao et al., 1998), and PSD-95 (Hirao et al., 2000b), neuroligin, NMDAR (Hirao et al.,
1998), ß- and δ-catenin (Ide et al., 1999; Nishimura et al., 2002) through the PDZ domains.

voltage-gated Ca2+ channels (VGCC) (Yuste et al., 2000;
Fig. 2). VGCC was detected in spines using
fluorescence-labeled ω-conotoxin, a selective blocker
for VGCC (Mills et al., 1994). Moreover, with
fluctuation analysis of Ca2+ transients induced by action
potentials, the number of VGCC in single spines was
estimated to be 1-20 (Sabatini and Svoboda, 2000). 

Cytoplasmic Ca2+ can also be increased through
release from internal stores. Inositol triphosphate
receptors (IP3R) and ryanodine receptors (Fig. 2),
involved in release of Ca2+ from internal stores, are
found on smooth endoplasmic reticulum in spines
(Walton et al., 1991; Sharp et al., 1993; Martone et al.,
1997). However, they appear to exist differentially in
spines from different brain regions. In rat hippocampus,
ryanodine receptors, but not IP3 receptors, were found in
spines (Sharp et al., 1993). On the other hand, both
receptors were found in neostriatal spines (Martone et
al., 1997). Finally, IP3 receptors, but not ryanodine
receptors, were present in spines from avian cerebellum
(Walton et al., 1991). 

Molecules involved in exclusion of cytoplasmic
Ca2+ are also found in spines (Fig. 2). Plasma membrane
Ca2+-ATPase (PMCA) pumps out cytoplasmic Ca2+, and
one of four isoforms of PMCA, PMCA2 was found in
spines using immunoEM (Hillman et al., 1996; Stauffer
et al., 1997). Also, two of the isoforms, PMCA 2b and



between NMDAR and PSD-95 does not seem important
for synaptic localization of NMDAR since the
localization of NMDAR appears intact in PSD-95
knockout mice (Migaud et al., 1998). Also, when
synaptic localization of PSD-95, PSD-93 and
presumably other PSD-95 family proteins was disrupted
by a mutant of CRIPT, a microtubule-binding protein
found in spines (Niethammer et al., 1998), the synaptic
clustering of NMDAR was still intact (Passafaro et al.,
1999). Thus, the function of PSD-95 does not seem to be
synaptic clustering of NMDAR but instead its link to
intracellular signaling machinery (Migaud et al., 1998).

Through PSD-95, NMDAR makes a complex with a
variety of proteins including GKAP, Shank, Homer,
SynGAP, SPAR and S-SCAM (Fig. 3; see Table 1 for
description of individual proteins). Through the PSD-
95/GKAP/Shank/Homer complex, NMDAR is also
linked to mGluR and IP3R (Tu et al., 1998, 1999). This
linkage may enable functional interaction between these
receptors, and their close association may allow Ca2+

influx through NMDAR and IP3 generated in mGluR-
dependent manner to access IP3R and regulate its
function (Tu et al., 1999). This coupling can be regulated
by neuronal activity through activity-dependent

expression of Homer 1a, which is thought to work as an
endogenous dominant negative regulator for constitutive
forms of Homer (Xiao et al., 1998). Also, the proximity
of NMDAR to SynGAP (Kim et al., 1998) and SPAR
(Pak et al., 2001) may enable synaptic activity to be
coupled to Ras and Rap signaling pathways.

AMPAR-binding proteins

Synaptic expression of AMPAR is thought to be
dynamically regulated by neuronal activity (Malinow
and Malenka, 2002). Several proteins interact with
specific subunits of AMPAR and may mediate this
dynamic regulation of trafficking and stabilization of
AMPAR. AMPAR subunits have PDZ-binding motif in
its C terminal and, through this motif, bind to PDZ
proteins (Sheng and Sala, 2001). Whereas GluR1 binds
to SAP97 (Leonard et al., 1998), GluR2 and GluR3 bind
to PDZ-containing proteins, GRIP/ABP (Dong et al.,
1997; Srivastava et al., 1998) and PICK1 (Xia et al.,
1999). Disruption of these interaction prevents synaptic
localization of AMPAR (Hayashi et al., 2000; Osten et
al., 2000). Other than PDZ proteins, GluR2 also binds to
NSF, an ATPase which has a role in membrane fusion
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Table 2. Actin-binding proteins found in dendritic spines.

Myosin (Miller et al., 1992; Cheng et al., 2000; Walikonis et al., 2000)
An actin-based motor protein. Two isoforms of myosin heavy chain subunits, myosin IIB (Miller et al., 1992; Cheng et al., 2000) and V (Walikonis et al.,
2000) are found in spines. Myosin IIB makes a complex with actin, drebrin, and gelsolin (Hayashi et al., 1996).

DLC (Naisbitt et al., 2000)
A light chain subunit of microtubule-based motor, dynein, and myosin V. DLC interacts with GKAP (Naisbitt et al., 2000).

Drebrin (Hayashi et al., 1996)
Drebrin interacts with gelsolin and myosin IIB and modulates actomyosin interaction in vitro (Hayashi et al., 1996). Overexpression of drebrin makes
spines longer (Hayashi and Shirao, 1999).

Gelsolin
A Ca2+-sensitive actin-severing and capping protein (Kwiatkowski, 1999)

αα-actinin, Spectrin and Fodrin (Wyszynski et al., 1997; Ursitti et al., 2001).
Actin-crosslinking proteins in spectrin family (Matsudaira, 1991). Ca2+ inhibits actin-crosslinking ability. α-actinin binds to the C terminal of both NR1
and NR2B subunits, and this binding may be inhibited by Ca2+/calmodulin (Wyszynski et al., 1997). α-fodrin binds to ankyrin repeats of Shank (Bockers
et al., 2001).

Protein 4.1N (Walensky et al., 1999)
A brain isoform of protein 4.1 which contains spectrin-actin�binding domains (Hoover and Bryant, 2000). 4.1N binds to a membrane proximal region of
the GluR1 C-terminal (Shen et al., 2000) and to a MAGUK protein, CASK (Biederer and Sudhof, 2001).

Adducin (Seidel et al., 1995)
Adducin binds to spectrin and recruits spectrin to the fast-growing end of F-actin (Matsuoka et al., 2000). This actin-related activity is regulated by
Ca2+/calmodulin and phosphorylation by PKA, PKC and Rho kinase (Matsuoka et al., 1996, 1998; Fukata et al., 1999).

Spinophilin/Neurabin II (Allen et al., 1997)
An actin binding protein with a PDZ domain. Spinophilin binds to PP1 and regulates PP1 activity (Allen et al., 1997; Satoh et al., 1998).

Synaptopodin (Mundel et al., 1997)
Synaptopodin is enriched in dendrites and spines, specifically around the spine apparatus in the spine neck (Deller et al., 2000).

Cortactin (Naisbitt et al., 1999)
An actin binding protein which has a role in cortical actin assembly and membrane dynamics (Weed and Parsons, 2001). Cortactin binds to Shank
(Naisbitt et al., 1999).



(Nishimune et al., 1998; Osten et al., 1998; Song et al.,
1998). In addition, GluR1 binds to an actin binding
protein, protein 4.1N (Shen et al., 2000). Disruption of
these bindings also reduces the surface expression of
AMPAR (Noel et al., 1999; Shen et al., 2000). 

Actin and associated proteins

Electron micrographs of spines show that spine
heads are filled with a “fluffy” indistinct material, and
indeed this feature is used as a way to distinguish spine
profiles from surrounding neuropil and particularly from
dendrites, which are instead rich in microtubules (Peters
et al., 1991). This material represents actin filaments
probably broken during fixation or staining procedure
(Fifkova and Morales, 1992). The organization of actin
filaments can be preserved when they are decorated by
myosin subfragments. With this technique, it was shown
that actin filaments form a mesh-like network in spine
heads and interact with plasma membrane and the PSD
by their barbed ends, whereas, in spine necks, actin
filaments form long bundles (Fifkova and Delay, 1982).

Neurons express two isoforms of actin, ß- and γ-
actin, both of which are enriched in dendritic spines
(Kaech et al., 1997). Polymerized actin (F-actin) in
spines is more stable in comparison to F-actin from other
cellular compartments. For example, an actin
polymerization blocker, cytochalasin D, does not
effectively depolymerize F-actin in spines even after 24
hours of treatment, whereas it readily disrupts F-actin in
the cell body and dendritic shaft (Allison et al., 1998).
However, another polymerization blocker, latrunculin A
can depolymerize F-actin effectively in spines (Allison
et al., 1998). 

Dendritic spines also contain a variety of actin-
associated proteins, including myosin, drebrin, α-actinin,
fodrin, spectrin, adducin, spinophilin, synaptopodin and
cortactin (Fig. 4; see Table 2 for description of
individual proteins). Together with actin filaments, these
proteins could play a role in functions such as vesicle
and protein transport, regulation of spine morphology or
anchoring of membrane proteins. 

Two types of myosin heavy chain subunits, Myosin
IIB (Miller et al., 1992; Cheng et al., 2000) and V
(Walikonis et al., 2000), have been found in spines.
Myosin V interacts with GKAP through a light chain
subunit of Myosin V, dynein light chain (DLC),
suggesting that GKAP/DLC interaction may be involved
in trafficking of proteins in the PSD-95 complex
(Naisbitt et al., 2000). Myosin IIB can make a complex
with actin, drebrin, and gelsolin, and drebrin was shown
to regulate actomyosin interaction (Hayashi et al., 1996). 

Two of these actin-binding proteins, α-actinin and
protein 4.1N, may directly couple glutamate receptors to
the actin cytoskeleton. α-actinin binds to actin filaments
and the cytoplasmic tails of both NR1 and NR2B
subunits (Wyszynski et al., 1997). This binding may be
regulated by synaptic activity since NR1/α-actinin
binding is inhibited by Ca2+/calmodulin (Wyszynski et
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al., 1997). Protein 4.1N contains spectrin-actin–binding
domains (Walensky et al., 1999) and binds to a
membrane proximal region of the GluR1 C-terminal
(Shen et al., 2000). Two other actin-binding proteins,
cortactin (Naisbitt et al., 1999) and α-fodrin (Bockers et
al., 2001), binds to Shank and may connect NMDAR
and mGluR to the actin cytoskeleton through the PSD-
95/GKAP/Shank/Homer complex. 

As suggested from multiple links between actin and
glutamate receptors, the actin cytoskeleton is thought to
have important roles in anchoring glutamate receptors.
Complete depolymerization of F-actin in spines by
latrunculin A led to a 40% decrease the number of spines
with NMDAR clusters or AMPAR clusters (Allison et
al., 1998). Although the synaptic localization of
NMDAR clusters was disrupted, NMDAR remained
clustered in nonsynaptic sites. On the other hand,
AMPAR dispersed, suggesting that synaptic clustering of
NMDAR and AMPAR is dependent on F-actin in
different ways (Allison et al., 1998). Also, GluR1 is
extractable with TritonX 100, but NR1 is not, suggesting
that NMDAR tightly associates with cytoskeleton, but
AMPAR associates weakly (Allison et al., 1998). The
association of NMDAR with PSD-95 and GKAP is not
dependent on F-actin, whereas this protein complex is
tightly associated with F-actin (Allison et al., 1998,
2000). The clustering of α-actinin, drebrin and CaMKIIa
(see below) in spines is F-actin-dependent, and these
proteins are weakly associated with F-actin (Allison et
al., 1998, 2000).

Many of these actin-binding proteins can be
regulated by Ca2+. For example, gelsolin is a Ca2+-
sensitive actin-severing and capping protein
(Kwiatkowski, 1999). Also, the actin-related activity of
adducin is regulated by Ca2+/calmodulin (Matsuoka et
al., 1996). In addition, fodrin and spectrin can be
degraded by a Ca2+-dependent protease, calpain (Siman
et al., 1984). These Ca2+-dependent properties of actin-
binding proteins might be important in the regulation of
actin dynamics in spines. For instance, recently gelsolin
is suggested to have an important role in activity-
dependent regulation of actin turnover in spines (Star et
al., 2002).

Finally, actin-binding proteins may regulate
formation and morphogenesis of spines. For example, in
spinophilin knockout mice, the spine density of neurons
was abnormally high during development (Feng et al.,
2000). Also, overexpresion of drebrin causes elongation
of spines (Hayashi and Shirao, 1999). 

Other cytoskeleton proteins

The existence of microtubules in spines is
controversial. Using microtubule-preserving technique
including albumin-pretreatment, it was proposed that
microtubules connect the spine apparatus to the PSD
(Westrum et al., 1980). However, ß-tubulin was detected
only in the PSD but not in the spine cytoplasm with
immunoEM (Caceres et al., 1983). Whether a



microtubule-associated protein, MAP2, is present in
spines is also controversial. Caceres et al. (1983) found
strong immunoreactivity to MAP2 in spine cytoplasm,
whereas Beernhardt and Matus (1984) (Bernhardt and
Matus, 1984) did not detect any immunoreactivity in
spines and the PSD. Also, Kaech et al. (1997) showed
confinement of MAP2 in dendritic shaft using
transfection of GFP-tagged MAP2.

Although intermediate filaments in spines have not
been thoroughly studied, several neurofilament proteins
were found in the PSD (Walsh and Kuruc, 1992) and
interact with GKAP (Hirao et al., 2000a). Also, a type
IV intermediate filament protein, α-internexin is found
in spines (Benson et al., 1996; Suzuki et al., 1997).

Adhesion molecules

Dendritic spines also contain a variety of cell
adhesion molecules, including N- and E-cadherin,
cadherin-related neuronal receptor (CNR), integrins,
neural cell adhesion molecule (NCAM), densin-180,
neuroligin1 and syndecan-2 (Fig. 5; See Table 3 for
description of individual proteins).

Like glutamate receptors, these adhesion molecules
are linked to the actin cytoskeleton. Cadherins interact
with actin filaments through ß-catenin and α-catenin
(Takeichi, 1995), and integrins (Geiger et al., 2001) and
densin-180 (Walikonis et al., 2001) binds to α-actinin.

Syndecan-2 (Hsueh et al., 1998) and neuroligin 1 (Irie et
al., 1997; Hirao et al., 1998) are linked to actin filaments
by binding to PDZ proteins, CASK (syndecan-2), PSD-
95 and S-SCAM (neuroligin 1). 

Interestingly, neuroligin 1 may have a central role in
presynaptic differentiation since neuroligin ,1 even
expressed in non-neuronal cells, triggers the formation
of presynaptic structures on contacting axons (Scheiffele
et al., 2000).

Syndecan-2 may also have an important role in spine
development. Syndecan-2 accumulates on spines during
the period of the morphological maturation of spines
from filopodia, and exogenous expression of syndecan-2
in immature neurons causes accelerated spine formation
(Ethell and Yamaguchi, 1999)

Also, N-cadherins (Tang et al., 1998), integrins
(Bahr et al., 1997) and PSA-NCAM (Muller et al.,
1996b) have been suggested to be involved in synaptic
plasticity. This is not surprising if one considers their
roles in the interaction with presynaptic or extracellular
components at the synaptic junctions. For example, N-
cadherin seems localized in the adhesive structure
surrounding the PSD in synaptic junctions (Beesley et
al., 1995; Fannon and Colman, 1996; Uchida et al.,
1996; Benson and Tanaka, 1998). ß-catenin shows
activity-dependent redistribution (Murase et al., 2002),
and the resulting change in cadherin adhesion may
regulate synaptic function and spine morphology

624

Spine molecular structure

Table 3. Adhesion molecules in dendritic spines

N- and E-cadherins (Beesley et al., 1995; Fannon and Colman, 1996; Uchida et al., 1996; Benson and Tanaka, 1998)
Ca2+ -dependent homophilic cell adhesion molecules. Their cytoplasmic regions are linked to actin filaments through ß- and α-catenin (Takeichi, 1995).

CNR (Kohmura et al., 1998)
CNRs are products of 14 or 15 genes in mammal, but the proteins show a huge variety, which might be produced by somatic DNA rearrangement or
trans-splicing (Hamada and Yagi, 2001).

Integrin (Einheber et al., 1996; Nishimura et al., 1998; Schuster et al., 2001)
Integrins are heterodimers composed of combinations of α- and ß-subunits and bind to the extracellular matrix. Integrins are linked to actin filaments
through their binding to α-actinin and other actin-binding proteins (Geiger et al., 2001). Three subunits, α8 (Einheber et al., 1996), ß8 (Nishimura et al.,
1998) and ß1 (Schuster et al., 2001) integrins are found in spines.

NCAM (Persohn and Schachner, 1987, 1990)
A Ca2+-dependent homophilic adhesion molecule, which has three splice variants, NCAM 120, 140 and 180. The extracellular region of NCAM can be
glycosylated by polysialic acid (PSA), and the degree of polysialation has an effect on the adhesion property of NCAM and other adhesion molecules
(Walsh and Doherty, 1997). 

Densin-180 (Apperson et al., 1996)
Densin-180 is a transmembrane protein containing a PDZ domain (Apperson et al., 1996), which binds to α-actinin (Walikonis et al., 2001). Densin-180
also binds to CaMKII (Strack et al., 2000b), and densin-180, CaMKII and α-actinin make a ternary complex (Walikonis et al., 2001). Densin-180 also
binds to δ-catenin, which in turn binds to N-cadherin. δ-catenin is enriched in spines (Izawa et al., 2002). 

Neuroligin 1 (Song et al., 1999)
A ligand of ß-neurexin (Ichtchenko et al., 1995). Neuroligin 1 and b-neurexin function as cell adhesion molecules in excitatory synapses (Song et al.,
1999). Neuroligin1 also intracellularly binds to PSD-95 (Irie et al., 1997) and S-SCAM (Hirao et al., 1998).

Syndecan-2 (Hsueh et al., 1998) 
A cell surface heparan sulfate proteoglycan. Its C-terminal binds to the PDZ domain of CASK (Hsueh et al., 1998). CASK co-localizes with syndecan-2
in the PSD (Hsueh et al., 1998) and interacts with protein 4.1 and links syndecan-2 to the actin cytoskeleton (Biederer and Sudhof, 2001). The C
terminal of syndecan-2 binds to synbindin, which is structurally related to yeast proteins involved in vesicle transport (Ethell et al., 2000).



(Togashi et al., 2002).

Kinases 

Ca2+/Calmodulin dependent kinase II (CaMKII) is a
major constituent of the PSD in spines (Fig. 6; Kennedy
et al., 1983; Kelly et al., 1984; Ouimet et al., 1984),
where it contributes >10% of the protein mass (Kelly
and Cotman, 1978). CaMKII is a serine/threonine
protein kinase and has two dominant isoforms, α and ß

in the brain (Soderling et al., 2001). Binding of
Ca2+/Calmodulin activates kinase activity and
autophosphorylates Thr286 (Soderling et al., 2001). This
Ca2+-dependent activation of CaMKII induces targeting
of CaMKII to the PSD through binding of CaMKII to
NMDAR (Strack and Colbran, 1998; Leonard et al.,
1999; Shen and Meyer, 1999). CaMKII phosphorylates
NR2B (Omkumar et al., 1996), and this phosphorylation
at Ser 1303 inhibits the binding between CaMKII and
NR2B (Strack et al., 2000a). CaMKIIß binds directly to
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Fig. 4. Actin (green filaments) and actin-binding
proteins in dendritic spines.

Fig. 5. Cell adhesion molecules in dendritic
spines.



F-actin, and may target CaMKIIα to synapses (Shen et
al., 1998). Additionally, AMPAR may also be regulated
by CaMKII, since CaMKII phosphorylates GluR1
subunits and enhances their single channel conductance
(Barria et al., 1997; Derkach et al., 1999). Other CaMKII
substrates include PSD95, SAP90, dynamin, and α-
internexin (Yoshimura et al., 2000). 

Protein kinase C (PKC) is a Ca2+-dependent
serine/threonine kinase present in the PSD (Fig. 6; Wolf
et al., 1986). Specifically, α (Xia et al., 1999) and γ
(Kose et al., 1990) isoforms of PKC were found in
spines. PKC binds to PICK1 and this complex may be
transported to spines (Perez et al., 2001).
Phosphorylation of GluR2 by PKC leads to dissociation
of GluR2 with GRIP/ABP and binding of PICK1 to
GluR2 as described above (Matsuda et al., 1999; Chung
et al., 2000). PKC also phosphorylates adducin and
regulates its actin-capping ability (Matsuoka et al., 1996,
1998). In addition, PKC may regulate the distribution of
NMDAR (Lan et al., 2001; Fong et al., 2002).

IP3 3-kinase A phosphorylates IP3 into inositol
1,3,4,5-tetrakisphosphate (IP4), which enhances Ca2+

entry from voltage-gated Ca2+ channels and Ca2+

internal release from IP3 receptors (Irvine and Schell,
2001). IP3 3-kinase A is activated by interaction with
Ca2+/calmodulin and through phosphorylation by
CaMKII (Communi et al., 1997; Woodring and Garrison,
1997). IP3 3-kinase A binds to F-actin through N-
terminal 66-amino acids, and this binding localizes the
kinase to spines (Fig. 6; Schell et al., 2001).

Finally, Eph receptors are a family of receptor
tyrosine kinases that were found in the PSD (Fig. 6;
Torres et al., 1998; Buchert et al., 1999). Ligand binding

to a subtype of Eph, EphB receptors, induces a direct
interaction of EphB with NMDAR in a kinase-
independent manner, whereas EphB tyrosine kinase
activity appears to be required for synapse formation
(Dalva et al., 2000). EphB receptors phosphorylate
syndecan-2, and this phosphorylation leads to an
interaction between syndecan-2 and EphB receptors.
This phosphorylation seems crucial for syndecan-2
clustering and spine maturation (Ethell et al., 2001).

Phosphatases

Several members of serine/threonine protein
phosphatases have roles in synaptic transmission and
plasticity (Winder and Sweatt, 2001). Among them, two
members, protein phosphatase 1 (PP1) and
calcineurin/protein phosphatase 2B, are found in
dendritic spines (Fig. 6; Goto et al., 1986; Ouimet et al.,
1995). α and γ1 isoforms of PP1 are highly concentrated
in spines (Ouimet et al., 1995). PP1 binds to spinophilin,
and this binding regulates PP1 activity (Allen et al.,
1997). PP1 also binds to a scaffold protein, Yotiao
(Westphal et al., 1999). Yotiao in turn binds to the NR1
subunit of NMDAR (Lin et al., 1998) and protein kinase
A (PKA) (Westphal et al., 1999). This binding may
enable PP1 and PKA to regulate NMDA receptor
channel activity (Westphal et al., 1999). PP1
dephosphorylates CaMKII in the PSD (Shields et al.,
1985; Strack et al., 1997), and this dephosphorylation
may lead to dissociation of CaMKII from the PSD
(Yoshimura et al., 1999).

Calcineurin is composed of a catalytic subunit and a
regulatory subunit, and binding of Ca2+/calmodulin on
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Fig. 6. Kinases, phosphatases and other
proteins in dendritic spines.



activates calpain and causes proteolysis of spectrins
(Siman and Noszek, 1988). In addition, calpain degrades
PSD-95 (Lu et al., 2000; Vinade et al., 2001) and GRIP
(Lu et al., 2001) and may alter the structure of the PSD
(Dosemeci and Reese, 1995; Lu et al., 2000; Vinade et
al., 2001).

Summary and future perspectives: Spine as a
nanomachine

Spines therefore appear to contain an large diversity
of molecular cascades. Glutamate receptors and their
associated proteins, actin and actin binding proteins,
calcium homeostasis machinery, adhesion molecules,
kinases, phosphatases, neurotrophin receptors, Rho
GTPases, proteases, plus a host of other molecular
families, some of which may not have been described
yet, are present in spines. Among them, several proteins
such as AMPAR (Nusser et al., 1998), Homer (Okabe et
al., 2001) and ß-catenin (Murase et al., 2002) are known
to differentially exist from spine to spine and show
activity-dependent redistribution into and out of spines.
As discussed before, spine morphology and synaptic
function are also variable. These variety might be the
reflection of the molecular diversity in spines. What is
the purpose of this molecular richness? Although at this
point we can only speculate about it, obviously this
molecular diversity must be key for the function and
plasticity of the synapse and may endow it with unusual
biochemical flexibility. 

Since spines are small (~1 fl), it is difficult to
imagine such a crowded and more complex
environment. Spines appear as one of the ultimate
examples of miniaturization in Biology, and could
represent a good testing ground for biological
nanotechnology (Mehta et al., 1999). Indeed, there is
already some evidence for both small number of
molecules and extreme precision in their location. As
explained above, the number of NMDAR or AMPAR on
a given spine can be very small (Nusser et al., 1998).
Also, the number of VGCC present on spines has been
estimated to be as low as 1 (Sabatini and Svoboda,
2000). Moreover, even the position of these channels
and receptors, particularly with respect to other
molecular components of the spine, appears determined
with extreme precision, like in the case of mGluR (Lujan
et al., 1996). It seems to us that spines are built with
great molecular sophistication, and that future studies to
understand their structure and function must operate at
an equally high level of experimental precision. It does
not appear exaggerated to argue that the understanding
of the function of the biochemical pathways present in
spines may require single-molecule techniques (Mehta et
al., 1999), in combination with detailed computational
modeling of the spatio-temporal dynamics and kinetics
of these molecules (Kennedy, 2000). 
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the catalytic subunit activates phosphatase activity (Klee
et al., 1998). Calcineurin binds to AKAP79 (Coghlan et
al., 1995), which also binds to PKA (Ndubuka et al.,
1993) and PKC (Klauck et al., 1996). AKAP79 binds to
PSD-95 and SAP97, and may target these kinases and
phosphatase to glutamate receptor complexes (Colledge
et al., 2000). AKAP79 is found in the spines, but not in
the PSD (Fig. 6; Sik et al., 2000). Calcineurin also binds
to an immunophilin, FKBP12. Calcineurin is targeted to
ryanodine and IP3 receptors through its association with
FKBP, and may regulate Ca2+ release from internal
stores (Fig. 6; Snyder et al., 1998).

Neurotrophin receptors

Dendritic spines also contain neurotrophin receptors.
At least, two types of receptors, TrkB and p75, are found
in the PSD (Fig. 6; Wu et al., 1996; Dougherty and
Milner, 1999; Drake et al., 1999; Aoki et al., 2000).
BDNF is also found in the PSD (Aoki et al., 2000). TrkB
is primarily a receptor for BDNF and NT-4 whereas
p75NTR binds to all neurotrophins with similar affinity
(Huang and Reichardt, 2001). Neurotrophins mediate
synaptic plasticity in spine synapses (Kovalchuk et al.,
2002). Also, neurotrophin signaling modulates the
morphology of dendritic spines. In cerebellar Purkinje
cells, signaling through TrkB modulates spine density
and morphology without any apparent effect on the
parent dendrites (Shimada et al., 1998), whereas BDNF
destabilizes spines and dendrites in cortical neurons
(Horch et al., 1999). 

Rho GTPases and related proteins

Rho GTPases are a family of proteins known to
regulate the actin cytoskeleton in a variety of cell types
(Hall, 1998). RhoA and Rac1, most well-characterized
members of Rho GTPase, were shown to regulate spine
density and morphology (Nakayama et al., 2000; Tashiro
et al., 2000). The existence of proteins interacting with
RhoA and Rac1 in spines suggests that RhoA and Rac1
must exist in spines (Fig. 6), although this has not been
directly demonstrated. Kalirin-7 is a GDP/GTP
exchange factor which activates Rac1. Kalirin-7
interacts with PSD-95, is localized in spines and
regulates spine morphogenesis (Penzes et al., 2001).
Also, citron, a downstream effector of RhoA, was found
to bind PSD-95 and to be localized in spines in the
thalamus and the cortex (Furuyashiki et al., 1999; Zhang
et al., 1999).

Proteases

A Ca2+-dependent protease, calpain, is enriched in
spines and the PSD (Fig. 6; Perlmutter et al., 1988).
Calpain can cleave a variety of proteins which exist in
spines, including actin, spectrin, cortactin, NCAM,
integrin, Ca2+ channel, ryanodine receptor and NMDAR
(Chan and Mattson, 1999). Activation of NMDAR
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