
Summary. Diabetes leads to accelerated formation/
progression of lesions of atherosclerosis. Cardiovascular
disease thus develops earlier in people with type 1 or
type 2 diabetes compared to people without diabetes,
and cardiovascular (macrovascular) disease is the major
cause of death in adults with diabetes. The molecular
and cellular mechanisms leading to diabetes-accelerated
atherosclerosis are not well understood. The arterial
smooth muscle cell (SMC), one of the three or four
principal cell types in atherosclerosis, has been
extensively studied over the years. Proliferation and
accumulation of SMCs are believed to play important
roles in the progression of macrophage-rich lesions to
fibroatheromas. Further progression of these atheromas
into complicated vulnerable lesions that are likely to
cause the acute clinical symptoms of atherosclerosis
(myocardial infarction and stroke) may involve cell
death and loss of SMCs from the fibrous cap of the
lesion. 

Recent animal studies have shown that diabetes
causes a marked increase in SMC accumulation and
proliferation in atheromas. Hyperglycemia, advanced
glycation end-products, insulin and lipid abnormalities
associated with the diabetic environment have been
suggested to increase SMC accumulation. Indeed, it is
becoming increasingly clear that macrovascular disease
associated with diabetes is a multifactorial disease. We
review the factors and mechanisms that may regulate
SMC proliferation and accumulation in different stages
of lesion progression in diabetes. We propose that lipid
abnormalities associated with diabetes can act in
combination with growth factors present in the diabetic
environment to increase SMC accumulation and
accelerate lesion progression.
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Atherosclerosis and subsequent cardiovascular
disease are accelerated by diabetes

Diabetes is associated with both microvascular and
macrovascular complications. While microvascular
disease can lead to blindness, renal failure and
neuropathies, macrovascular disease leads to stroke,
myocardial infarction and amputation of limbs.
Macrovascular disease caused by atherosclerosis is more
common and occurs at an earlier age in people with type
1 and type 2 diabetes than in the general population
(Ruderman and Haudenschild, 1984). It is estimated that
75-80% of adult diabetic patients die from complications
of atherosclerosis. Furthermore, although women have a
lower susceptibility to cardiovascular disease than men,
women with diabetes lose this gender-related protection.
Together, there is a 2- to 10-fold increased risk of
macrovascular disease in people with diabetes,
depending on gender and type of diabetes. The incidence
of diabetes is now increasing by epidemic proportions
world-wide (Zimmet et al., 2001), and diabetes-
accelerated macrovascular disease is predicted to
become a major health care issue in the near future.
These reports stress the need for studies of the
mechanisms responsible for the increased atherosclerosis
and subsequent cardiovascular disease in diabetes.

Micro- and macrovascular complications of diabetes
appear to be regulated, in part, by distinct mechanisms.
The microvascular complications are believed to be due
to hyperglycemia-induced damage of microvascular
endothelial cells and neuronal cells, leading to increased
microvascular permeability and other deleterious events
(Brownlee, 2001). Large clinical studies support an
important role for hyperglycemia in microvascular
complications of diabetes (DCCT, 1993; UKPDS, 1998).
Although hyperglycemia may play a role in
macrovascular disease, hyperglycemia alone is not
sufficient since normalization of glucose levels does not
significantly improve macrovascular disease in people
with type 1 or type 2 diabetes (DCCT, 1993; UKPDS,
1998). 

The cellular and molecular mechanisms responsible
for diabetes-accelerated atherosclerosis are not well
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understood. Early studies on lesions from humans with
and without diabetes showed that the morphology and
cellular composition of the lesions are similar in the
diabetic and non-diabetic environment (Strandness et al.,
1964; Ferrier, 1967). The main difference between
people with and without diabetes is the accelerated
formation and/or progression of these lesions in diabetes.
Clearly, an effort is needed to elucidate what cell types
in the lesion are directly affected by the diabetic
environment and what cellular responses occur as a
consequence of these primary events. 

The role of the smooth muscle cell in progression of
atherosclerotic lesions

It is generally believed that accumulation of lipid-
loaded macrophages in the arterial wall initiates
formation of lesions of atherosclerosis. In humans,
accumulation of lipid-loaded macrophages is often seen
in areas with intimal thickening (smooth muscle cell
mass) that has formed in the subendothelial space due to
adaptations to local mechanical forces (Stary et al.,
1995). In many small animal models, infiltration of
monocytes and subsequent activation and differentiation
of these cells into lipid-loaded macrophages is seen in
areas without preexisting intimal thickening (Ross,
1993). These initial events are followed by an increased
accumulation of lipid-loaded macrophages and
extracellular lipid, which leads to formation of a lipid
core and a lesion, defined by the American Heart
Association as an atheroma (Stary et al., 1995). The next
step in the sequence of progression of the lesion is
increased accumulation of smooth muscle cells (SMCs)
in the intima and formation of a fibroatheroma. Finally,
the lesion is destabilized, possibly by thinning of the
SMC-rich fibrous cap and/or increased macrophage
death, events which can lead to plaque rupture,
thrombosis, and the acute clinical manifestations of
atherosclerosis (Ross, 1993; Glass and Witztum, 2001).
The intimal SMC is thought to play important roles in
the two latter stages of lesion progression. 

The role of the SMC in transition of atheromas to
fibroatheromas

The accumulation of SMCs in atheromas in non-
diabetic animal models is generally believed to be due to
increased migration of SMCs from the underlying media
of the artery into the intima, accompanied by increased
proliferation and possibly decreased death/apoptosis.
However, when atheromas are formed in areas with a
preexisting mass of intimal SMCs, migration may be a
minor contributor to the subsequent SMC accumulation.
Since no markers of SMC migration are known, the only
evidence for SMC migration is the appearance of SMCs
in areas that were previously devoid of SMCs.
Proliferation of SMCs, on the other hand, can be
measured by expression of molecules required for cell
cycle progression (such as proliferating cell nuclear

antigen; PCNA) or incorporation of thymidine analogs
(such as BrdU) into synthesized DNA. SMC
proliferation appears to play a significant role in
formation of fibroatheromas, although proliferation rates
are much lower in vivo than in vitro (Gordon and
Rekhter, 1997). A variety of molecules have been shown
to stimulate proliferation of SMCs. Among the most
potent growth factors for SMCs in culture are platelet-
derived growth factor B chain homodimer (PDGF-BB)
and fibroblast growth factor-2 (FGF-2). Others are
relatively weak when added alone, but enhance the
effects of stronger mitogens. Insulin-like growth factor I
(IGF-I) belongs to the latter group of growth factors
(Bornfeldt et al., 1994). SMC proliferation is also
regulated by other factors; components of the
extracellular matrix, and O2 tension, to name a few (for
review see Berk, 2001). Although these factors stimulate
proliferation of cultured SMCs, one should bear in mind
that their in vivo and ex vivo effects may differ. For
example, PDGF appears to act as a weak SMC mitogen
in vivo (Ferns et al., 1991; Jawien et al., 1992).

Advanced lesions with a thick fibrous cap of SMCs
are less vulnerable and less likely to rupture and cause
clinical symptoms. Thus, it is not clear if SMC
accumulation should be viewed as “good” or “bad”, and
it is quite likely that “good” or “bad” depends on the
stage of the lesion (see below and Schwartz et al., 2000).
What is clearer is that accumulation of SMCs in the
neointima is an integral part of lesion progression that
likely converts a reversible fatty streak into a non-
reversible fibroatheroma.

The role of the SMC in progression of fibroatheromas to
vulnerable lesions

Much research has recently focused on the processes
that drive formation of vulnerable lesions, which are
likely to rupture and cause acute clinical symptoms. A
thin fibrous cap and a low number of SMCs versus
macrophages are often seen in ruptured lesions. Several
studies have shown an increased SMC death/apoptosis in
these advanced lesions (Geng and Libby, 1995; Kockx
and Herman, 2000; McCarthy and Bennett, 2000), but
macrophages also account for a significant part of cell
death in such lesions (Tabas, 2000). Loss of SMCs may
lead to plaque instability because most of the interstitial
collagen fibers, which are important for the strength of
the fibrous cap, are produced by SMCs (Kockx and
Herman, 2000; Rekhter et al., 2000). Furthermore,
increased SMC apoptosis in the arterial wall has recently
been shown to induce secretion of pro-inflammatory
cytokines and to increase invasion of monocytes, which
would contribute to a decreased ratio of SMCs vs
macrophages (Schaub et al., 2000). Conversely, it has
been shown that treatments that prevent or lead to
regression of cardiovascular disease cause an increased
SMC involvement, a reduced macrophage involvement
(Kockx et al., 1998; Rong et al., 2001), and an increased
collagen content in lesions (Aikawa et al., 1998).
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However, despite the correlation between loss of SMCs
in the fibrous cap and plaque rupture, there is not yet any
direct evidence that SMC death indeed causes plaque
rupture.

What factors contribute to the increased SMC
accumulation in atheromas in diabetes?

We have recently shown, using a new porcine model
of diabetes-accelerated atherosclerosis, that diabetes
results in a marked accumulation and proliferation
(measured as expression of PCNA) of SMCs in
fibroatheromas (Suzuki et al., 2001). Several factors
associated with diabetes have been proposed to stimulate
SMC proliferation. The best-studied factors include
glucose, advanced glycation end-products (AGEs),
insulin and non-esterified fatty acids. Below we discuss
the different factors that may contribute to SMC
proliferation in diabetes.

1. High glucose levels

A large number of studies have examined the effects
of high glucose levels on the proliferative capacity of
isolated arterial SMCs from various species. The results
are contradictory. Whereas several studies have
demonstrated that high glucose levels can stimulate
SMC proliferation (e.g. Natarajan et al., 1992; Yasunari
et al., 1995; Begum and Ragolia, 2000; Watson et al.,
2001), other studies have found no stimulatory effect
(Sakakibara et al., 1993; Xia et al., 1995; Williams et al.,
1997; Suzuki et al., 2001; Indolfi et al., 2001), and yet
other studies have shown an inhibitory effect of high
glucose levels on SMCs (Peiro et al., 2001).
Interpretation of these results is complicated by the facts
that SMCs from species that do not develop diabetes-
accelerated atherosclerosis (e.g. rats and rabbits) are
often used, and that different incubation times and cell
culture conditions are used. 

To investigate the direct effect of high glucose levels
on proliferation of SMCs in a relevant model, we have
used a new porcine model of diabetes-accelerated
atherosclerosis, in which SMC accumulation and
proliferation (PCNA-positive SMCs) are increased in
lesions of atherosclerosis (Suzuki et al., 2001). Analysis
of the effect of high glucose on SMCs isolated from
these animals revealed that high glucose levels (15-50
mM) do not induce proliferation in the presence or
absence of growth factors despite an increased rate of
the citric acid cycle under high glucose conditions
(Suzuki et al., 2001). 

It is possible that the contradictory effects of high
glucose on proliferation of isolated SMCs can be
explained, in part, by indirect effects of high glucose
levels. For example, high glucose has been shown to
induce expression of growth factors and their receptors
in SMCs, including vascular endothelial growth factor;
VEGF (Natarajan et al., 1997; Williams et al., 1997),
transforming growth factor-ß (TGF-ß), FGF-2 (McClain

et al., 1992) and the PDGF-ß receptor (Inaba et al.,
1996). Thus, under certain conditions, high glucose
levels may stimulate proliferation by increasing the
autocrine actions of growth factors. This phenomenon,
as discussed above, is not consistently observed.

Interestingly, SMCs metabolize glucose largely
through glycolysis under aerobic conditions, a process
that has been referred to as "aerobic glycolysis"
(Morrison et al., 1976; Morrison et al., 1978; Paul et al.,
1979; Suzuki et al., 2001). We have recently shown that
glucose consumption in isolated proliferating human
SMCs is high (~0.6 pmoles glucose/h/cell) compared to
that of many other cell types (Renard and Bornfeldt,
2001). The high rate of glucose consumption in SMCs is
similar to that of malignant cells that are known to
exhibit a ~10-fold increase in glucose uptake and high
glycolysis under aerobic conditions (Skøyum et al.,
1997; Dang and Semenza, 1999). Thus, in this respect,
normal human SMCs in culture resemble tumor cells. It
is possible that the increased energy required in cells
with a high proliferative capacity is supplied primarily
by glycolysis rather than by oxidative glucose
breakdown. In this context, it has been suggested that
glycolysis, although highly unfavorable for the cell in
terms of ATP production, may serve as a protective
strategy to minimize oxidative stress (Brand and
Hermfisse, 1997). Since many of the effects of high
glucose have been attributed to an increased oxidative
stress, it is possible that SMCs, with their high rate of
glycolysis, are largely protected against the oxidative
stress induced by high glucose conditions in other cell
types, such as endothelial cells (Nishikawa et al., 2000;
Brownlee, 2001). Furthermore, the rate of glycolysis in
SMCs may be suppressed by an intact endothelium
(Morrison et al., 1976), and endothelial damage may
therefore contribute to this process.

No in vivo studies have investigated whether
hyperglycemia may directly stimulate SMC proliferation
and accumulation in atheromas. However, some studies
have determined cell proliferation in response to balloon
catheter injury in diabetic animals. Although the cellular
and molecular mechanisms of SMC proliferation in
balloon injury models may be quite different from those
mediating SMC proliferation and accumulation in
atherosclerosis, these studies nevertheless give us
important information. For example, a recent study
compared the proliferative response of medial and
intimal cells (the proliferating cell type(s) was not
identified) of the carotid artery after balloon injury in rat
models of type 1 and type 2 diabetes (Park et al., 2001).
The results showed an increased cell proliferation in the
model of type 2 diabetes (obese Zucker rats) but not in
the model of type 1 diabetes (streptozotocin-treated rats),
indicating that lipids or other factors associated with
type 2 diabetes, but not hyperglycemia, may stimulate
arterial proliferation (Park et al., 2001). Other studies
have shown that balloon injury of arteries of type 1
diabetic rats or rabbits results in decreased DNA
synthesis and BrdU incorporation in SMCs compared to
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non-diabetic controls, despite the presence of marked
hyperglycemia (Bornfeldt et al., 1992; Schiller and
McNamara, 1999; Dahlfors et al., 2000). The lack of
direct effects of hyperglycemia on SMC proliferation in
vivo is in agreement with studies that show no increase
in neointimal thickness in balloon injured arteries of
streptozotocin-diabetic rats 2 weeks after injury (Aoki et
al., 2001). Similar studies have been performed in
humans subjected to percutaneous transluminal coronary
angioplasty (PTCA). PTCA is often associated with an
increased mortality of patients with diabetes compared
to patients without diabetes. It is uncertain whether this
increased mortality is associated with increased SMC
accumulation/proliferation. It has been suggested that it
is due to elastic recoil of the artery rather than increased
cell proliferation (Moreno et al., 1999). Nevertheless,
improved glycemic control does not appear to alter the
long term outcome of angioplasty in people with
diabetes (Hasdai et al., 2001).

Together, the lack of consistent growth-stimulatory
effects of high glucose levels in isolated SMCs or
arterial tissue and the lack of effects of hyperglycemia
on SMC proliferation in vivo following balloon injury
argue that hyperglycemia does not directly stimulate
SMC proliferation and accumulation in diabetes.

2. Advanced glycation end-products (AGEs)

Another possibility is that hyperglycemia, through
increased formation of AGEs, could contribute to SMC
accumulation and proliferation. AGEs can be formed
extracellularly and intracellularly as a result of
nonenzymatic glycation of proteins under hyperglycemic
conditions, and levels of AGEs are elevated in diabetes
(Schmidt and Stern, 2001; Vlassara and Palace, 2002).
Some AGEs may also be formed as a result of
peroxidation of polyunsaturated fatty acids in
triglycerides and phospholipids. When derived from
lipids, these compounds should be termed advanced
lipoxidation end-products (ALEs); or, if their origin is
uncertain, AGE/ALEs (Baynes and Thorpe, 2000).
AGEs may affect cells by at least three different
mechanisms. First, AGE-modification of long-lived
extracellular proteins, such as collagen, leads to
formation of cross-links and thus to a more rigid scaffold
surrounding the SMCs. This modification of the
extracellular matrix may affect SMC proliferation (Iino
et al., 1996). 

Second, extracellular AGEs bind to a number of
cellular proteins; the components of the AGE-receptor
complex p60, p90 and galectin-3 (Li et al., 1996),
receptor for AGEs (RAGE; Neeper et al., 1992), CD36
(Ohgami et al., 2001) and the macrophage scavenger
receptor types I and II (Takata et al., 1988; Araki et al.,
1995). To date, the only well-defined AGE receptor with
signaling capacities is RAGE, which appears to mediate
intracellular signal transduction mainly through an
increased intracellular oxidative stress (Lander et al.,
1997; Wautier et al., 2001). RAGE recognizes and can
be activated by a large number of interesting ligands (for

review see Schmidt and Stern, 2001). These include
AGE and ALE adducts of proteins (e.g. Nε-
(carboxymethyl)lysine [CML]), amphoterin, amyloid
peptides, S100 polypetides, and transthyretin. It has been
shown that blocking the interaction of RAGE with its
ligands decreases atherosclerosis and expression of
adhesion molecules in blood vessels of diabetic mice
(Park et al., 1998; Kislinger et al., 2001). At present, it is
unknown if the effects of RAGE blockade on
atherogenesis are due to inhibition of AGE signaling or
signaling induced by one or several other RAGE ligands.
The S100 polypeptides are especially interesting
candidates because these peptides have proinflammatory
actions and are present in lesions of atherosclerosis
(Bobryshev et al., 1999; Wendt et al., 2002).

Several studies have investigated the effects of
extracellular AGEs on SMC proliferation. As with high
glucose, the effects of AGEs on SMC proliferation are
unconvincing. Furthermore, since different protocols are
used to generate AGEs, the studies are difficult to
compare. The extent of modification of the used protein
is likely to be of importance for the biological effects of
AGEs. AGEs have been found to increase SMC
proliferation (Mizutani et al., 2000; Hattori et al., 2002)
or have no effect (Iino et al., 1996; Sakata et al., 2000;
Renard et al., 2001). One study has demonstrated a
biphasic effect of AGEs; a growth-stimulatory effect was
seen at 1-10 µg/ml and an inhibitory effect at >20 µg/ml
(Satoh et al., 1997). Our studies on human SMCs have
shown no growth-stimulatory effects of AGE-modified
albumin or CML-modified albumin over a wide range of
concentrations (10 - 1000 µg/ml) and extents of
modification, despite expression of RAGE in these cells
(Renard et al., 2001). Furthermore, no growth-
stimulatory effect was observed when the RAGE ligands
S100 and ß-amyloid peptide were used (Renard and
Bornfeldt, unpublished observations). A recent in vivo
study shows that although blockade of RAGE leads to a
reduced neointimal formation after balloon injury of the
rat carotid artery, proliferation of SMCs was not
significantly suppressed (Zhou et al., 2001).

Finally, AGEs can be formed intracellularly from
glucose-derived dicarbonyl precursors under high
glucose conditions, a process that is faster than the
extracellular modification of proteins by glucose (for
review see Brownlee, 2001). Intracellular proteins
modified by AGEs may have altered function, but the
effects of intracellular AGE formation on SMC function
are unknown.

Together with the lack of effects of hyperglycemia in
the in vivo studies discussed above (in which AGE
formation is also enhanced), these findings suggest that
AGEs are not sufficient to explain the increased SMC
proliferation and accumulation seen in fibroatheromas in
diabetes.

3. Triglycerides and non-esterified fatty acids

Diabetes is associated with elevated levels of plasma
triglycerides due to lack of proper insulin signaling in
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insulin-sensitive tissues (Bianchi et al., 1995; Taskinen,
2001). Hypertriglyceridemia shows a strong correlation
with cardiovascular disease in humans (Faergeman,
2000) and is a risk factor for atherosclerosis in diabetes
(Semenkovich and Heinecke, 1997). Several animal
models of combined atherosclerosis and diabetes also
show elevated levels of triglycerides (Dixon et al., 1999;
Keren et al., 2000; Gerrity et al., 2001). Although there
is a strong correlation between elevated triglyceride
levels and macrovascular disease in diabetes, it is not
clear to what extent elevated plasma levels of
triglycerides contribute to diabetes-accelerated
atherosclerosis. 

However, evidence that elevated triglycerides in
combination with enhanced hydrolysis into non-
esterified fatty acids may play an important role in
stimulating proliferation and accumulation of lesion
SMCs is accumulating. Levels of non-esterified fatty
acids within the lesion are likely regulated to a great
extent by the activity of lipases, e.g. lipoprotein lipase
and secretory phospholipase A2 (sPLA2) present in the
lesion. Lipoprotein lipase is the rate-limiting enzyme for
hydrolysis of lipoprotein triglycerides (for review see
Brunzell, 1995; Mead et al., 1999). Lipoprotein lipase is
secreted primarily from muscle and adipose tissue and is
then bound to the vascular endothelium via cell surface
proteoglycans. In lesions of atherosclerosis, it is also
synthesized by macrophages (O’Brien et al., 1992).
Interestingly, lipoprotein lipase-deficiency in
macrophages has recently been shown to lead to reduced
atherosclerosis (Babaev et al., 2000; Clee et al., 2000;
Van Eck et al., 2000; Pentikäinen et al., 2002). A role for
sPLA2 activity in atherogenesis has also recently been
confirmed in mice overexpressing sPLA2 (Ivandic et al.,
1999). Furthermore, lipoprotein lipase expression has
been shown to be increased in macrophages from people
with type 2 diabetes (Sartippour and Renier, 2000), and
in isolated macrophages exposed to high glucose levels
(Sartippour et al., 1998) or to non-esterified fatty acids
(Michaud and Renier, 2001).

The most common fatty acids in human plasma are
the long-chained saturated palmitate (16:0), and stearate
(18:0), the monounsaturated oleate (18:1), the
diunsaturated linoleate (18:2) and polyunsaturated
arachidonate (20:4). Most of these fatty acids are bound
in triglyceride-rich particles in circulation (mainly very
low-density lipoproteins; VLDL) and plasma
concentrations can vary widely (µM to mM range). In
addition to the elevated levels of circulating
triglycerides, diabetes often results in increased levels of
circulating non-esterified fatty acids (Erkelend, 1998),
which could enter the arterial wall. 

A number of studies have examined direct effects of
non-esterified fatty acids on proliferation of cultured
SMCs from various species. The conditions used in
these studies vary, as there are several different
approaches to study the effects of non-esterified fatty
acids on cells. One approach is to expose the cells to
fatty acids in the absence of a carrier protein or without
pre-coupling to a carrier protein. In this case, the

effective fatty acid concentration is likely to be similar to
the concentration added to the cells, and the
concentration of fatty acid in the cellular membrane
fraction may even be an order of magnitude higher since
most of the fatty acid will bind to the membrane due to
its low aqueous solubility (Hamilton and Kamp, 1999).
The other approach is to couple the fatty acid to a carrier
protein (often fatty acid-free bovine serum albumin;
BSA). This method is used because non-esterified fatty
acids are complexed to albumin or other carrier proteins
in plasma (Hamilton and Kamp, 1999). The number of
fatty acid-binding sites on human albumin and BSA has
been estimated to ~ three. If a ratio of fatty acid:BSA of
≤ 3:1 is used, the unbound concentration of fatty acid in
a water phase is <50 nM for oleate (Richieri et al.,
1993). Under these conditions, low amounts of fatty
acids enter the cell through passive diffusion or
transporters (Hamilton and Kamp, 1999). Thus, the
"same" extracellular concentration of any given non-
esterified fatty acid can cause dramatically different
concentrations in the cellular membranes depending on
if it is coupled to a carrier protein or not (Hamilton and
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Fig. 1. The growth-promoting effect of oleate is modulated by carrier
protein-coupling. Porcine SMCs were isolated from the thoracic aorta by
an explant method (Suzuki et al., 2001). The cells (50,000 cells/well)
were plated in 24-well trays and quiescence was induced by a 2-day
incubation in the presence of 1% human plasma-derived serum. The
cells were stimulated with or without oleate, at indicated concentrations,
that had been coupled to 80 µM bovine serum albumin (BSA) for 1 h at
37 °C before addition to the cells, or with the same concentrations of
oleate and BSA without prior coupling. The cells were then incubated for
20 h with the indicated concentrations of oleate/BSA and newly
synthesized DNA was labeled with 1 µCi/ml [3H]-thymidine for an
additional 3 h. DNA synthesis was measured as trichloroacetic acid-
insoluble radioactivity. Basal 3[H]-thymidine incorporation was in the
range of 2000 cpm/mg protein. The experiment was repeated four times
with similar results. The values are shown as means ± SEM of triplicate
samples from a representative experiment. Differences between groups
were analyzed by two-way analysis of variance (ANOVA). Specific
comparison between points was determined by post-hoc comparison
using a Bonferroni test for multiple comparisons (Graph Pad Software,
San Diego, CA). Levels of significance are denoted by p<0.001 (***).



Kamp, 1999). This is demonstrated by the differences in
growth-promoting activities of oleate when added to
SMCs before or after coupling BSA. Oleate added to
porcine aortic SMCs at concentrations of 100-300 µM
without prior coupling to BSA (1.3:1 - 4:1 molar ratio
fatty acid:BSA) results in a significant increase in DNA
synthesis, whereas no mitogenic effect is seen when the
same concentrations of oleate are coupled to BSA prior
to addition to the SMCs (Fig. 1). 

Keeping these methodological considerations in
mind, it has been shown that oleate and linoleate exert
mitogenic effects on arterial SMCs from various species,
whereas stearate, palmitate and arachidonate do not
induce proliferation (Lu et al., 1996; Askari et al., 2001).
Micromolar concentrations of oleate and linoleate can
induce proliferation of isolated SMCs in the absence of
other growth factors when added without prior coupling
to a carrier protein. Under these conditions, the
molecular mechanisms of oleate-induced proliferation
have been shown to be mediated by protein kinase C;
PKC (Lu et al., 1996), mitogen-activated protein kinase;
MAPK/ERK (Lu et al., 1998a) and increased formation
of reactive oxygen species (Lu et al., 1998b). The
molecular mechanisms of linoleate-induced SMC
proliferation under these conditions have been attributed
to the conversion of linoleate to the bioactive
metabolites hydroperoxyoctadecadienoic acids
(HPODEs) and monohydroxyoctadecadienoic acids
(HODEs) by lipoxygenases. 13-HPODE has been shown
to stimulate proliferation in rat SMCs (Rao et al., 1995),
although its mitogenic effects appear to be species-
dependent, as porcine SMCs do not proliferate in
response to 13-HPODE (Natarajan et al., 2001).
Linoleate has also been shown to lead to activation of
the transcription factor peroxisome proliferator-activated
receptor (PPAR)α and PPARγ (for review see Vamecq
and Latruffe, 1999), although there is no evidence that
linoleate exerts its mitogenic effects through PPARs in
SMCs. 

Oleate and linoleate also potentiate the mitogenic
effects of more "classic" growth factors, such as
angiotensin II (Lu et al., 1996, 1998a,b), endothelin-1
(Kwok et al., 2000) and IGF-I (Askari et al., 2002). This
potentiation occurs when the non-esterified fatty acids
are added coupled to BSA at a ratio below 3:1 (Askari et
al., 2002). Under these conditions, oleate and linoleate
alone have little growth-promoting activity. Similarly,
under these conditions oleate does not activate the
MAPK/ERK pathway (Lu et al., 2000), but does
stimulate de novo formation of diacylglycerol (DAG)
without a detectable activation of PKC isoforms (Lu et
al., 2000; Yu et al., 2001). Oleate-mediated stimulation
of DAG levels may be due to the presence of an oleate-
dependent phospholipase D, PLD (Kasai et al., 1998)
that may be identical to the recently cloned isoform
PLD2 (Kim et al., 1999). PLD acts on phospholipids to
generate phosphatidic acid that, in turn, is converted to
DAG. Oleate has also been shown to inhibit growth-
factor-induced DAG kinase α activation in SMCs (Du et

al., 2001) and since DAG kinase phosphorylates DAG to
form phosphatidic acid, this process also leads to
increased DAG levels. Furthermore, we have recently
shown that inhibition of PLD activity prevents oleate-
and linoleate-induced potentiation of the mitogenic
effects of IGF-I, and that a DAG kinase inhibitor
(R59022) enhances IGF-I-stimulated DNA synthesis in
SMCs, similar to the effects of oleate and linoleate
(Askari et al., 2002). These findings suggest that PLD
and increased intracellular levels of DAG may mediate
the growth-promoting effects of low concentrations of
oleate and linoleate. However, fatty acids that do not
induce SMC proliferation also increase DAG formation.
Thus, palmitate and stearate bound to albumin at a
physiological ratio increase DAG concentrations in
SMCs (Lu et al., 2000; Yu et al., 2001). This raises the
interesting possibility that the fatty acid chain
composition of DAG is important for its ability to
promote SMC proliferation.

Although there is not yet evidence that oleate and
linoleate can stimulate SMC proliferation in atheromas,
a recent study supports a role for oleate in atherogenesis,
as a diet rich in oleate increased atherosclerosis
compared to a diet rich in saturated fatty acids (Merkel
et al., 2001). In summary, non-esterified fatty acids
within the lesion may be important in driving SMC
proliferation and accumulation by enhancing the effects
of growth factors in atheromas in diabetes.

4. Insulin

Insulin has been suggested to promote
atherosclerosis. This is based on the correlation between
hyperinsulinemia and cardiovascular disease (Reaven,
1988) and the ability of high concentrations of insulin to
promote SMC proliferation (Stout, 1996). However,
there is no evidence that insulin directly promotes
atherosclerosis. Instead, clinical studies show that insulin
therapy is beneficial or has no adverse effect on
macrovascular disease and its risk factors (DCCT, 1993;
Lindström et al., 1994; Kornowski et al., 1998; Lehto et
al., 2000). Furthermore, the growth-promoting effects of
insulin on isolated SMCs are meager, and are seen only
at high unphysiological concentrations of insulin due 
to a cross-activation of the IGF-I receptor (Bornfeldt 
et al., 1991, 1994; Avena et al., 1999). Several in 
vivo studies also support the lack of direct effects 
of insulin on SMC proliferation after arterial injury 
(Bornfeldt et al., 1992; Ridray et al., 1992). It is 
therefore likely that hyperinsulinemia is a marker of 
insulin resistance and associated lipid abnormalities, 
and that insulin is unable to directly stimulate SMC 
proliferation or accumulation in atherosclerotic lesions
in vivo.

5. Hypertension and the renin-angiotensin system

Type 2 diabetes is often associated with increases in
blood pressure, and it has been suggested a large part of
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macrovascular complications in people with type 2
diabetes may be attributed to hypertension (Sowers et
al., 2001). In people with type 1 diabetes, macrovascular
disease is often not seen until microalbuminuria, systolic
hypertension (Pinkney et al., 1995) and elevated
triglyceride levels (Bianchi et al., 1995) are present. On
the other hand, a number of factors, in addition to
hypertension, contribute to cardiovascular disease in
people with and without diabetes (Sowers et al., 2001).
The direct contribution of hypertension to SMC
accumulation in diabetes is unknown. 

Interestingly, it has recently been shown that
infusion of angiotensin II in mice leads to increased
atherosclerosis (Daugherty et al., 2000). This effect
appears to be independent of changes in blood pressure,
and may be due to stimulation of macrophages rather
than SMCs (Daugherty et al., 2000). These findings are
in line with recent clinical studies that show reduced
cardiovascular disease in people with diabetes treated
with an ACE inhibitor (HOPE Study Investigators, 2000;
see below). Thus, the renin-angiotensin system
contributes to macrovascular disease in diabetes through
a mechanism(s) that appears to be independent of blood
pressure.

6. Paracrine factors

It is likely that diabetes-stimulated SMC
accumulation and proliferation occur secondary to
increased macrophage infiltration into the arterial wall.
A variety of growth-regulatory molecules with the
ability to stimulate SMCs in a paracrine fashion are
released from macrophages. It is thus possible that the
increased SMC proliferation seen in fibroatheromas
from diabetic animals is due to an increased secretion of
growth factors from macrophages (or other cell types) in
the lesion, and that macrophages are directly affected by
the diabetic environment. For example, AGEs can
induce increased expression of at least two SMC growth
factors, PDGF (Kirstein et al., 1990) and IGF-I (Kirstein
et al., 1992) in monocytes. We have recently shown
increased levels of IGF-I immunoreactivity in
macrophages in lesions of atherosclerosis from diabetic
pigs fed a cholesterol-rich diet compared to non-diabetic
animals (Askari et al., 2002). 

Perhaps even more interesting is the possibility that
the mitogenic actions of growth factors released by
macrophages may be enhanced by factors in the diabetic
environment, such as non-esterified fatty acids, as
discussed above. This is unquestionably an interesting
area that requires further investigation.

What factors may contribute to increased SMC death
in vulnerable lesions of atherosclerosis in diabetes?

Because death from macrovascular disease is
increased in people with diabetes, it is likely that factors
in the diabetic environment affect the vulnerability of
lesions of atherosclerosis. Loss of SMCs in lesions of

atherosclerosis might contribute to this process, although
this hypothesis is supported, so far, only by correlative
studies. Some studies suggest that diabetes may be
associated with increased SMC death; high glucose
levels can increase apoptosis in isolated human SMCs
(Peiro et al., 2001) and in rat aorta in vivo (Chu et al.,
1997). On the other hand, other studies have found that
high glucose levels protect against apoptosis in isolated
SMCs (Hall et al., 2000). Non-esterified fatty acids may
also contribute to death of isolated SMCs under certain
conditions (Gouni-Berthold et al., 2001).

In summary, no studies to date have addressed
possible direct effects of diabetes on vulnerable lesions,
nor has the role of the SMC in these lesions been
studied. With the generation of animal models that
develop severe vulnerable lesions of atherosclerosis
(Rosenfeld et al., 2000; Gerrity et al., 2001), such studies
are now feasible.

What can we learn from intervention trials?

Several major clinical studies have investigated the
effects of improved blood glucose, lipid abnormalities
and hypertension on macrovascular disease associated
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Fig. 2. Diabetes-associated increases in non-esterified fatty acids may
contribute to SMC proliferation and accumulation in fibroatheromas by
synergizing with growth factors present in the atheroma. Diabetes leads
to hyperglycemia and increased formation of advanced glycation end-
products (AGEs). While hyperglycemia and AGEs may play important
roles in affecting the endothelium and/or macrophages, for example by
promoting monocyte adherence to the endothelium, macrophage (MØ)
accumulation and secretion of growth factors from macrophages, they
do not appear suff icient to directly promote proliferation and
accumulation of arterial smooth muscle cells (SMCs). Levels of
triglycerides and non-esterified fatty acids are associated with
macrovascular complications in both type 1 and type 2 diabetes.
Elevated levels of triglycerides and fatty acids in combination with the
presence of lipases (e.g. lipoprotein lipase and secretory phospholipase
A2) in the lesion are likely to lead to increased levels of non-esterified
fatty acids within the lesion. Fatty acids have a number of effects on
endothelial cells, macrophages and SMCs. In SMCs, the common fatty
acids oleate (18:1) and linoleate (18:2) enhance the growth-promoting
effects of several growth factors, such as angiotensin II, endothelin-1
and IGF-I. We propose that non-esterified fatty acids synergize with
growth factors present in the diabetic environment and that they play an
important role in mediating proliferation and accumulation of SMCs in
lesions of atherosclerosis in diabetes. 



with diabetes. However, one should bear in mind that
these studies tell us little about the cellular processes in
lesions of atherosclerosis, or the role of the SMC in
these lesions. Nevertheless, these studies give us
important clues as to which factors contribute to lesion
progression in humans with diabetes. 

Clinical studies have shown that macrovascular
disease of diabetes is a mutifactorial disease.
Interestingly, improved blood glucose control has been
shown to not significantly improve macrovascular
complications, whereas microvascular complications are
clearly reduced (DCCT, 1993; UKPDS, 1998). Other
studies show that, when present, hypertension and
elevated lipid levels appear to contribute to a similar
extent to macrovascular disease in people with diabetes
as in people without diabetes (Huang et al., 2001;
Robins, 2991; Steiner, 2001; Yki-Järvinen, 2001). 

The effect of hypertension and the renin-angiotensin
system on macrovascular disease in people with type 1
and type 2 diabetes was recently studied in the large
Heart Outcomes Prevention Evaluation (HOPE) trial.
The results from this study show that ramipril, an
angiotensin-converting-enzyme (ACE) inhibitor, caused
a significant reduction in death from cardiovascular
disease in people with diabetes. However, the benefit
was not greater in people with diabetes than in people
with other risk factors, and did not appear to be due to
reduction of blood pressure (HOPE Study Investigators,
2000). 

Thus, the renin-angiotensin system, hypertension
and lipid abnormalities all contribute significantly to
cardiovascular events both in people with and without
diabetes. 

Conclusions

Diabetes-accelerated atherosclerosis is a
multifactorial disease. One possible reason for this may
be that lesion initiation and different stages of lesion
progression are stimulated by different factors in the
diabetic environment. We propose that non-esterified
fatty acids that enhance the mitogenic effects of growth
factors present in the lesion, rather than hyperglycemia
or AGEs, contribute to the increased SMC proliferation
and accumulation in fibroatheromas in diabetes (Fig. 2).
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