
Summary. Human pathological conditions of the central
nervous system (CNS) associated with angiogenesis (i.e.
neovascularization) include neoplastic, as well as
infectious, ischemic, and traumatic processes.
Upregulation of vascular endothelial growth
factor/vascular permeability factor (VEGF/VPF) and
tenascin-C (TN-C) is spatially and temporally related to
neovascularization. Spatially, VEGF/VPF and TN-C are
both found at the site of neovascularization, but they are
not detected in areas of normal brain or in areas without
neovascularization. Te m p o r a l l y, VEGF/VPF and TN-C
are found at the peak of angiogenesis and are not
detected when angiogenesis had ceased. 
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Vascular endothelial  growth factor/vascular
permeability factor (VEGF/VPF)

Angiogenesis, i.e. neovascularization, is a complex
biological process whose regulatory mechanisms are not
completely understood. Formation of new vessels occurs
not only during embryogenesis, wound healing and
regeneration, but also in pathological processes, e.g.
neoplasia, diabetic retinopathy and arthritis (Folkman,
1995; Yancopoulos et al., 1998). VEGF/VPF (Senger et
al., 1983; Nicosia, 1998) is a hypoxia-inducible,

(Shweiki et al., 1992) secreted endothelial cell mitogen,
(Nicosia, 1998) which has been shown to increase
microvascular permeability and endothelial fenestration
(Senger et al., 1983; Roberts and Palade, 1995). This
~45 kDa heparin-binding glycoprotein dimer contains
two subunits of equivalent mass and is structurally
homologous to platelet-derived growth factor (Nicosia,
1998). Of the four different isoforms arising from
alternative mRNA splicing (VEGF/VPF121, 165,189,206) ,
V E G F / V P F1 6 5 is predominantly expressed (Ferrara et
al., 1991). The shorter forms are diffusible whereas the
longer ones are bound to the extracellular matrix (ECM)
(Ferrara et al., 1991). VEGF/VPF is secreted by a variety
of cell types and is angiogenic in vivo (Ferrara et al.,
1991; Claffey and Robinson, 1996; Nicosia, 1998).
Although VEGF/VPF is thought to be a specific
endothelial cell mitogen, receptors for VEGF/VPF have
been demonstrated on smooth muscle cells (Brown et al.,
1997). The two human VEGF/VPF receptors: flt-
1/VEGFR-1 (De Vries et al., 1992) and KDR/VEGFR-2
( Terman et al. ,  1992) are widely distributed on
endothelial cells (Millauer et al., 1993) while VEGFR-3
is specifically distributed on lymphatic endothelial cells
(Jeltsch et al., 1997). Moreover, a novel receptor that
binds VEGF/VPF 1 6 5 but not VEGF/VPF 1 2 1 w a s
described and found to be identical to human neuropilin-
1, a receptor for the collapsin/semaphorin family that
mediates neuronal cell guidance (Soker et al., 1998).
VEGF/VPF currently appears to be the principal
mediator and a potent inducer of angiogenesis during
normal physiological processes such as vascular
development (Nicosia, 1988; Ferrara et al., 1991; Plate
et al., 1992; Jakeman et al., 1993; Millauer et al., 1993;
Breier et al., 1995; Zagzag, 1995; Claffey and Robinson,
1996; Brown et al. ,  1997; Nicosia, 1998) and in
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inflammatory and neoplastic pathologies outside the
CNS (Jakeman et al., 1993; Millauer et al., 1993; Breier
et al., 1995; Dvorak et al., 1995). Hypoxia-inducible
factor-1 (HIF-1), a heterodimeric basic-helix-loop-helix-
PAS (bHLH-PAS) transcription factor composed of HIF-
1α and HIF-1ß subunits, plays an essential role in
oxygen homeostasis (Wang and Semenza, 1995; Wang et
al., 1995; Iyer et al., 1998). HIF-1ß, which is also known
as the aryl hydrocarbon receptor nuclear translocator
( H o ffman et al., 1991), can dimerize with several
different bHLH-PAS transcription factors. In contrast the
H I F - 1α subunit is unique to HIF-1. Its expression
increases as cellular O2 concentration decreases, and
determines the level of HIF-1 activity (Wang et al.,
1995; Jiang et al., 1996; Semenza et al., 1996). HIF-1
activates a large battery of genes whose protein products
function either to increase O2 availability or to allow
metabolic adaptation to O2 deprivation (Semenza, 1998).
Included among these are genes encoding VEGF/VPF
erythropoietin, glucose transporters, glycolytic enzymes,
insulin-like growth factor 2 (IGF2), and IGF binding
proteins-1,-2, and -3 (Semenza et al., 1996; Iyer et al.,
1998; Semenza, 1998; Tazuke et al., 1998; Feldser et al.,

1999). Such genes share the presence of hypoxia-
response elements, which contain binding sites for HIF-
1. Upon reoxygenation, HIF-1α is rapidly degraded,
both in cultured cells and in vivo ( Wang et al., 1995;
Huang et al., 1996). Hypoxia or iron chelation prevents
ubiquitination of HIF-1α. The interaction between
pVHL and HIF-1α is regulated the binding of pVHL to a
hydroxylated proline residue of HIF-1α (Ivan et al.,
2001; Jaakkola et al., 2001). In addition to hypoxia, the
regulation of VEGF/VPF expression may involve
diverse mechanisms including activated oncogenes,
mutant or deleted tumor suppressor genes, and cytokine
activation (Claffey and Robinson, 1996). 

Tenascin-C

TN-C is a large complex secreted protein of the
ECM which is expressed in developing brain, cartilage
and mesenchyme and is re-expressed in tumors, wound
healing and inflammation (Erickson, 1993; Redick and
S c h w a r z b a u e r, 1995) where there is remodeling of the
ECM (Erickson, 1993). It has a characteristic six-armed
quaternary structure (hexabrachion) linked to a central
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Table 1. VEGF/VPF and TN-C expression in neoplastic angiogenesis.

AGE SEX SITE VEGF/VPF TENASCIN-C 

(years) ISH ISH IHC

Vasc Cells Tumor Cells Vasc Cells Tumor Cells PV IC

GBM
2 F L. Frontal Lobe -/- +/+++ +/+++ +/+++ +/+++ +/+++
39 F L. Parietal Lobe -/- ++/+++ +/+++ -/+ +/+ -/+
47 M L. Parietal Lobe -/- +/+++ +/+++ +/+ +/+++ +/++
48 F R. Occipital Lobe -/- +/+++ +/+++ -/+++ +/+++ -/+++
55 M R. Frontal Lobe -/- ++/+++ +/+ +/+++ +/+++ +/+++

JPA
4 M Cerebellum -/- +/++ +/+++ -/+ +/+++ -/+
5 F Cerebellum -/- -/++ -/+ - -/+ -/-
8 M Cerebellum -/- -/- -/+++ -/+ -/+++ -/+
8 F Cerebellum -/- -/- -/+ - -/+++ +/+
12 F Cerebellum -/- +/+++ -/+ - -/+ -/+
13 F Lateral Ventricle -/- +/+ - - -/+ -/-

HB
15^~ M Cerebellum -/- +/+++ +/+++ -/+ +/+++ -/+
17^ M Spinal Cord -/- ++/+++ +/+++ -/+ ++/+++ -/+
18~ F Cerebellum -/- ++/+++ +/+++ -/+ +/+++ -/+
28 F Cerebellum -/- +/+++ -/+++ - -/++ +/++
38 F Spinal Cord -/- ++/+++ +/+++ -/+ ++/+++ -/++
39 M Cerebellum -/- ++/+++ +/+++ -/+ +/+++ -/+
45 M Cerebellum -/- ++/+++ +/+++ -/+ +/++ +/++

ISH: in situ hybridization; IHC: immunohistochemistry; vasc: vascular; PV: perivascular; IC: intercellular; GBM: glioblastoma multiforme; JPA: juvenile
pilocytic astrocytoma; HB: hemangioblastoma; ^: same patient; ~:patient with Von Hippel-Lindau; -: not detected; +: weak; ++: moderate; +++: strong.
The tumors included 5 GBMs (astrocytoma, WHO Grade IV/IV), 6 JPAs (astrocytoma WHO Grade I/IV (Kleihues et al., 1993)), and 7
hemangioblastomas. We assessed the presence of vascular hyperplasia in each case, taking into account the following three histological criteria: 1)
increased vascular density, 2) increased number of vascular cell layers, and 3) plump endothelial cells (Brem et al., 1972). Three out of 6 JPAs and 4
out 5 GBMs showed glomeruloid vascular complexes. One GBM without vascular hyperplasia was classified as such because of the presence of
necrosis. Two JPAs cases showed tumor infarction (Giannini and Scheithauer, 1997). The 7 hemangioblastomas were highly vascular but had variable
cell density with highly cellular and paucicellular regions. Four samples of histologically normal brain removed in the course of surgical exposure were
used as controls. When present, normal tissue adjacent to the lesions was used as internal controls. There was no VEGF/VPF mRNA in normal brain
vasculature and scant signal was detected in normal cerebral cortex but not in white matter in the 4 normal controls.



knob formed by disulfide links of cysteines in the N-
terminal ends of the six polypeptide arms (Erickson,
1993). In addition, TN-C consists of epidermal growth
f a c t o r-like and fibronectin-type III repeats, and a
fibrinogen-like region at the carboxyl terminus. At least

2 structurally and functionally different human TN
isoforms (~200 and 300kDa) are generated by alternative
splicing, with seven type III repeats being included or
omitted in the mRNA (Erickson, 1993). Knockout of
TN-C expression in mice had no major phenotypic
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Table 2. VEGF/VPF and TN-C expression in non-neoplastic angiogenesis.

AGE SEX SITE (LOBE) INTERVAL^ VEGF/VPF Tenascin-C

(years) ISH ISH IHC

Vascular Nonvascular Vascular Nonvascular PV IC
Cells Cells Cells Cells

Abscess1

69 F R. temoro-parietal 1day -/+++ -/+++ +/++ +/+ +/+++ +/++
9 F L. temporo-parietal 7 days +/++ +/+++ +/+++ -/+ -/++ -/+
45 M R. occipital 14 days -/+ +/+++ ++/+++ -/++ -/+++ -/++
56 M L. lateral ventricle 21 days -/+ +/+++ +/++ -/+ +/++ -/+
12 M L. frontal 30 days -/++ -/++ ++/+++ -/++ +/+++ +/++
32 M L. frontal 34 days -/- +/+ -/++ -/+ -/+++ -/++

Infarcts2

33 M R. temporal 1 day -/+ -/+ +/+ -/+ +/++ -/+
23 M R. temporal 3 days +/++ -/+ +/+ +/++ +/+ -/+
47 F L. frontal 5 days +/+++ +/+++ +/++ +/+++ -/++ -/++
61 M L. occipital 7 days +/++ -/+++ +/+++ +/+++ -/+++ -/++

Trauma3

35 M L. temporo-parietal 2 days -/+ -/+ +/+ +/+ -/+ -/-
40 M R. frontal 7 days -/++ +/+++ +/+++ +/++ +/++ +/+
53 M R. frontal 9 days +/++ +/+++ +/+++ +/++ +/++ +/++
57 M L. frontal 12 days +/+++ +/+++ +/++ +/++ +/+++ +/++
25 M L. frontal 14 days +/++ -/+ -/+ +/++ +/+++ +/++
6 F R. frontal 1825 days -/- -/- -/- -/- -/+ -/+

SDH4

73 M Bilateral convexity 1 day -/+ - +/+++ +/+ -/++ -/+
70 M R.frontal-parietal 14 days -/+ +/+++ +/++ -/+ -/++ -/++
92 F L. frontal 42 days -/++ -/+ +/+ -/+ +/+++ +/++
79 M Bilateral convexity 84 days +/+ -/+ +/+ -/+ +/++ -/+
50 M L. parietal 120 days -/- -/- -/ -/- -/- -/-

^: for abscesses and subdural hematomas (SDH) the interval is the time between the onset of symptoms and the surgical procedure. By contrast, for
infarcts and traumas, it indicates the time between the onset of the clinical symptoms or head injury and the surgical procedure; ISH: in situ
hybridization; IHC: immunohistochemistry; PV: perivascular; IC; intercellular; -: not detected; +; weak; ++: moderate; +++: strong pathological event and
the surgical procedure; ie vascular occlusion or head injury; ISH: in situ hybridization; IHC: immunohistochemistry; PV: perivascular; IC; intercellular; -:
not detected; +; weak; ++: moderate; +++:strong
1: In each case, the wall of an organizing cerebral abscess i.e. inflamed “granulation tissue” with variable matrix deposition around a necrotic center
with marked neovascularization was seen (Hardman, 1979). Organisms identified by gram stain and culture were N o c a r d i a spp (two cases),
Streptococcus intermedius and Acinetobacter in one. In 2 cases no organisms were found.
2Pathological examination (Garcia, 1992) of the four cerebral infarcts reveals hemorrhagic (3 cases) and non hemorrhagic “bland” (1 case) infarcts.
Cases included a 24 hour old hemorrhagic infarct (due to cocaine abuse), a 3 day old arteriovenous malformation associated-hemorrhagic infarct, a 5
day old bland infarct and a 7 day old hemorrhagic infarct thought to be an intratumoral hemorrhage. This case showed luxurious vascular proliferation
admixed with histiocytic cells. VEGF/VPF signal was strong in 5 and 7 day old infarcts. TN-C immunostaining was scant 1 and 3 days after the hypoxic
injury, was more evident after 5 days and marked 7 days after onset of hypoxia/ischemia.
3: Surgical specimens were obtained 2, 7, 9, 12, and 14 days after blunt trauma to the head (Cancilla et al., 1979). Vascular proliferation was not
detected in the lesion operated on 2 days after trauma, but was seen with increasing intensity on days 7 and 9 and was marked between days 12 and
14. The sixth patient was a 6 year old girl who suffered from medically refractory seizures 5 years after a car accident. The specimen obtained from this
patient showed features consistent with old remote contusion with cavitation and gliosis. VEGF/VPF progressively increased in 7, 9, and 12 day old
contusions but was less pronounced by day 14 and was not detected in the 5 year old injury. TN-C expression was stronger in the recent infarct as
compared to TN-C expression accompanying the more chronic changes. Perivascular immunostaining was more pronounced in the areas of prominent
neovascularization while the intervascular staining was variable. TN-C immunostaining increased from days 2 to 7, was maximal on day 9, was similar
on days 12 and 14, and was not detected in the case obtained 5 years after injury. Thus, in cerebral contusions perivascular staining correlated with the
extent of neovascularization and was not detected in the remote contusion. 
4: Five patients, were operated upon to remove subdural hematomas from 1 to 120 days after onset of clinical symptoms. Pathological examination
(Hardman, 1979) obtained 1 and 14 days after onset of clinical symptomatology showed well developed sinusoids within the clot. The specimens
obtained 42 and 84 days after clinical onset showed recent hemorrhage within a more chronic membrane i.e. less abundant vascularization and more
prominent matrix deposition. The case obtained over 4 months after beginning of symptoms revealed a hyalinized membrane with hemosiderin laden
macrophages with no discernable vascular channels. In the case where tissue was obtained 5 years after injury no signal was found (data not shown). 



abnormality (Saga et al., 1992; Forsberg et al., 1996) e.g.
nerve regeneration and healing of cutaneous wounds is
the same as in controls (Forsberg et  al., 1996).
Nevertheless, TN-C is believed to be important for

several cellular processes including adhesion, migration,
and proliferation of cells (Erickson, 1993). A variety of
cell types including astrocytes (Bourdon et al., 1983;
Grumet et al., 1985; Dorries et al., 1993; Brodkey et al.,
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1995; Zagzag et al., 1995, 1996) and vascular cells
(Schor et al., 1991; Mackie et al., 1992; Webersinke et
al., 1992; Canfield and Schor, 1995; Hahn et al., 1995;
Zagzag et al., 1996) express TN-C in vitro and in vivo.

Angiogenesis in the central nervous system

Angiogenesis plays a critical pathogenetic role in
many pathological processes of the CNS. It is crucial for
brain tumor growth (Zagzag et al., 1988; Cheng et al.,
1996). The vascular proliferation associated with
gliomas is well recognized (Burger et al., 1985) and is
one of the criteria used for their grading (Daumas-
Duport et al., 1988). Neovascularization often correlates
with biological aggressiveness and degree of malignancy
of brain tumors as well as clinical recurrence, and
inversely with post-operative survival of patients with
anaplastic astrocytomas (Burger et al., 1985; Daumas-
Duport et al., 1988). Infiltration of malignant tumors in
the brain can follow vascular channels (Scherer, 1940;
Zagzag et al., 1988, 2000). Newly formed brain tumor
blood vessels with defective blood-brain barrier (Zagzag
et al.,  1988, 1989; Del Maestro et al. ,  1990) are
responsible for the contrast enhancement of brain tumors
(Zagzag et al., 1989). They are associated with an
increased risk of intratumoral hemorrhage (Liwnicz et
al., 1987) and contribute to the pathogenesis of tumor-
associated edema (Zagzag et al., 1998, 1989; Del
Maestro et al . ,  1990). Like high grade gliomas,
hemangioblastomas are highly vascular neoplasms. They
are formed by two cellular components i.e. vascular cells
and “stromal” cells. It has been suggested by several
investigators that the stromal cells are the “main tumor
cells” (Castaigne et al . ,  1968) and the vascular
component is the result of an exuberant “reactive”
vascular proliferation. 

In cerebral abscesses, (Britt and Enzmann, 1983)

two main stages exist .  These are cerebrit is  and
encapsulation. Each of these two stages can be
subdivided in two, i.e. early and late substages. Early
cerebritis (days 1-3) is associated with the spread of
o rganisms across the injured vascular wall and with
early necrosis, vascular congestion, petechial
hemorrhages, microthromboses, perivascular fibrinous
exudates and acute inflammation. Even at this early
stage the endothelial cells swell. However, definite
neovascularization is usually detected in the late
cerebritis stage (days 4-9) when the necrotic purulent
center is surrounded by a narrow irregular layer of
granulation tissue infiltrated by neutrophils, lymphocytes
and some macrophages often cuffing the perivascular
spaces. At this stage, endothelial cells show marked
hypertrophy and hyperplasia including mitoses and there
is increased capillary density. Subsequently (days 10-
13), matrix deposition around numerous newly formed
blood vessels results in an early poorly defined
developing abscess wall. As time passes (day 14 and
later), the wall becomes firmer and is well demarcated
from the surrounding edematous brain. Thus,
neovascularization plays a major role in the organization
of the wall of the abscess from matrix deposition to
encapsulation.

Cerebral infarcts (Liu, 1988; Garcia, 1992) and
traumas (Mitchell et al., 1978; Cancilla et al., 1979;
Hardman, 1979) are histologically similar. However, the
molecular layer of the cortex, which is regularly spared
in an infarct, is usually disrupted at the crown of the
contused gyri. In both conditions, neurons in the affected
region undergo necrosis as shown by the presence of
ischemic cell changes (nuclear pyknosis and cytoplasmic
hypereosinophilia). However, the earliest microscopical
tissue alterations include white matter edema.
Approximately 3 days after the original insult, early
vascular proliferation can be detected at the edge of the
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Fig. 1. GBM. Tissue blocks for immunohistochemistry (Zagzag et al., 1995) and ISH (Zagzag et al., 1996) were prepared as previously described. 
a. TN-C immunoreactivity was found to be variable and heterogeneous within individual tumors. Enhanced TN-C expression was also detected among
tumor cells and around individual cells as a fine fibrillary network. Occasional tumor cells showed intracytoplasmic expression of TN-C. There is strong
immunoreactivity especially in hyperplastic vessels (v) including the pseudopalisading areas (p) around areas of necrosis (n). Necrotic tumor tissue
remains negative. Fine fibrillar extension of TN-C from blood vessels to the surrounding tumor cells was occasionally seen. TN-C expression helped to
delineate the tumor margin against the surrounding gliotic brain tissue, where it was mainly seen around hyperplastic blood vessels as previously
described (Zagzag et al., 1995). Normal brain distant from the tumors showed vascular TN-C expression that was similar to the 4 samples of normal
control brain i.e. TN-C was weakly expressed in the media of small intraparenchymal arterioles and leptomeningeal arteries, as previously described
(Zagzag et al., 1995). Immunoperoxidase and hematoxylin couterstain, x 50. b. ISH for TN-C mRNA. Strong signal of TN-C mRNA is demonstrated in a
hyperplastic vessel (v) and tumor cells (t) including the edge of a necrotic area (n). TN-C mRNA is seen in vascular cells lining the vascular lumens and
within the walls of the vascular complexes especially at the invasive edge of the GBMs. TN-C mRNA was detected in vessels beyond the tumor
"margin" in the brain tissue adjacent to the tumor in 2 out of 5. NBT/BCIP, x 50. c. Upregulation of TN-C mRNA expression in pseudopalisading cells (p)
around necrotic areas (n). NBT/BCIP, x 50. d. No staining is seen with the sense probe and no detectable TN-C mRNA staining in the 4 normal brains
used as controls NBT/BCIP, x 50. e. ISH demonstrated strong VEGF/VPF mRNA in tumor cells especially in pseudopalisading cells around areas of
necrosis (n) and in areas just adjacent to the infiltrating edge of the tumors as previously described (Plate et al., 1992; Shweiki et al., 1992). NBT/BCIP,
x 100. In 3 GBMs where brain tissue more distant from the tumor was present, no detectable VEGF/VPF message was found in blood vessels. ISH for
VEGF/VPF was performed using a probe of the whole published sequence of VEGF/VPF (980bp). The sequence product was introduced into
pBluescript II SK (Stratagene Cloning Systems, La Jolla, California). Anti-sense and sense riboprobes were prepared using digoxigenin RNA Labeling
Kit (Boehringer Mannheim Biochemicals, Indianapolis, IN). ISH for VEGF/VPF was performed using a similar protocol as for TN-C (Zagzag et al., 1996)
with a few modifications. The concentration VEGF/VPF probe was 6 ng/µl. Bakers yeast was added to the hybridization buffer. Hybridization was
achieved by applying 125 µl of the probe with incubation at 56 °C. Washes following hybridization were done using 2 x SSC at 56∞C and 0.2 SSC at
room temperature. The alkaline phosphatase was 1:5000 dilution. Incubation with NBT/BCIP was done at room temperature in the dark. Before
mounting the slides were washed with tris-EDTA and counterstained with methylene green.



necrotizing process in both infarct and trauma. By days 5
to 7 capillaries proliferate at the margin of the necrosis.
Thus, in cerebral infarct edema precedes angiogenesis
(Liu, 1988). Over the next 2-3 weeks neovascularization
increases with marked proliferation of capillaries
associated with gliosis and microglial cell activation.
Hyperplastic endothelial cells with mitotic figures can be
detected. 

In chronic subdural hematomas (SDH), angioblastic
invasion of the clot starts within a week. The new
capillaries originate almost entirely from the dural
aspect, (Putnam and Cushing, 1925) (i.e. from the inner
dural surface). They penetrate the clot and migrate
around its outer surface and then follow its inner surface.
Thus, the clot becomes enclosed by a highly vascular
membrane. The membrane on the dural (outer) aspect of
the clot is thicker and more vascular than the inner
membrane. Both membranes have formed within 2 to 3
weeks. Small blood vessels located within the capsule of
the hematoma have attenuated endothelial cells and wide
endothelial gap junctions (Yamashima et al., 1983) and
can either "spontaneously" or after minor trauma be the
source of repeated and continuing bleeding and
transudation of plasma (Markwalder, 1981; Ya m a s h i m a
and Yamamoto, 1984). These contribute to the
e n l a rgement of the chronic SDH, rendering it a slowly
expanding space-occupying lesion. Therefore,

angiogenesis within the subdural membrane plays an
essential role in the organization of the chronic SDH and
its enlargement. 

Folkman and Klagsbrun introduced the concept of
Angiogenic Diseases, and proposed to categorize as
such, diseases where the dominant pathology is
angiogenesis (Folkman and Klagsburn, 1987). There is
precedent for regrouping diseases with common
pathological features or pathogenesis but with diff e r e n t
etiologies. For example, inflammatory myopathies
( H e ff n e r, 1993) include dermatomyositis which is a B
cell-mediated process causing vascular damage and is
often associated with cancer, polymyositis which is a T
cell-mediated process and inclusion body myositis, a
disease of unknown etiology. Inflammatory myopathies
also include infectious myopathies (e.g. trichinosis) and
granulomatous myopathies (e.g. sarcoidosis).
Demyelinating diseases (Prineas and McDonald, 1997)
include pathological conditions of diverse etiologies. For
example, multiple sclerosis has an incompletely
understood etiology involving genetic and
environmental factors. Adrenoleukodystrophy, known in
the past as Schilder’s disease, is an X-linked condition
associated with an abnormal excess of very long chain
fatty acid esters due to an impaired capacity to form the
coenzyme A derivative. Acute disseminated
encephalomyelitis follows viral infections (measles,
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Fig. 2. Microcyst in a JPA. a. Moderate cellularity around a microcyst (M) in a JPA. H&E, x 100. b. Immunohistochemistry for TN-C of the same area as
in (a) shows reactivity lining the microcyst (arrowhead) and around a vessel wall (v) adjacent to the microcyst. Immunoperoxidase and hematoxylin
counterstain, x 100. TN-C was detected in hyperplastic vessels including in those lining cyst walls as previously described (Zagzag et al, 1995; Jallo et
al., 1997). The immunostaining around hyperplastic vessels was either within the vascular wall or coating its outer surface. TN-C in or around vascular
channels was consistently greater within and around the walls of hyperplastic vessels than non-hyperplastic blood vessels. TN-C expression was faint
or focal among tumor cells but no message was detected in the tumor cells. c. ISH for VEGF/VPF mRNA of the same area as in (a) and (b) showing
upregulation of VEGF/VPF around the microcyst. NBT/BCIP, x 100. VEGF/VPF mRNA was also detected in areas adjacent to vascular hyperplasia.



mumps, rubella, chicken pox) or vaccination (smallpox,
rabies). Acute hemorrhagic leukoencephalitis (Hurst’s
disease) usually occurs after viral upper respiratory tract
infection. Marchiafava-Bignami disease was originally
described in crude red wine drinkers and is thought to be
related to a vitamin deficiency. Progressive multifocal
encephalopathy is due to cytopathic killing of
oligodendrocytes infected with JC virus and usually
occurs in immunocompromised patients. Central pontine
myelinolysis is believed to be associated with the rapid
correction of hyponatremia. Demyelination has also
been associated with neoplasia (Peiff e r, 1988). Finally,
B a l o ’s concentric sclerosis is of unknown etiology. All
these conditions which have different causes are grouped
together as inflammatory myopathies or demyelinating
diseases because they all share a common pathological

finding, i.e. inflammation or demyelination. Similarly,
the pathological conditions in the CNS in which
neovascularization plays a pivotal role and where
VEGF/VPF and TN-C are both upregulated could be
regrouped as “Angiogenic Diseases” of the CNS. 

VEGF/VPF in CNS angiogenesis 

In situ hybridization (ISH) for VEGF/VPF in
glioblastomas multiforme (GBMs) (Fig. 1), juvenile
pilocytic astrocytomas (JPAs) (Figs. 2-4),
hemangioblastomas (Fig. 5), cerebral abscesses (Fig. 6),
cerebral infarcts (Fig. 7), trauma-induced cerebral
lesions (Fig. 8) including 5 chronic SDHs (Fig. 9) and 4
normal control brains, demonstrates the expression of
VEGF in these conditions that are associated with
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Fig. 3. ISH for VEGF/VPF in a cyst of a JPA.
a. Wall of a large cyst showing strong signal
for VEGF/VPF mRNA in the cells of
hyperplast ic vessels.  NBT/BCIP, x 50. 
b. High magnification of the boxed area in
(a). Note the strong signal for VEGF/VPF
mRNA in vascula r cells (arrowheads).
NBT/BCIP, x 200. Only weak staining was
observed in the tumor vasculature of JPAs
which failed to show hyperplastic vessels.
VEGF/VPF mRNA in tumor cells was focal
and weak in one case and not detectable in 2
cases.



angiogenesis. Moreover, our findings demonstrate the
spatial and temporal upregulation of VEGF/VPF in
relation to neovascularization in both neoplastic and
non-neoplastic pathological conditions of the CNS.
Several lines of evidence suggest that VEGF/VPF is
involved in brain tumor angiogenesis: 1) VEGF/VPF is
produced by glioma cells in vitro; (Plate et al., 1992;
Shweiki et al., 1992); 2) VEGF/VPF expression is
dramatically up-regulated in various human brain tumors
in vivo , such as highly vascularized GBMs (Plate et al.,
1992; Shweiki et al., 1992), or von Hippel-Lindau
disease-associated hemangioblastomas; (Stratmann et
al., 1997); 3) receptors for VEGF/VPF have been
demonstrated in both high and low grade gliomas (Plate
et al., 1993; Weindel et al., 1994; Leung et al., 1997);
and 4) experimentally induced angiogenesis and brain
tumor growth in nude mice can be specifically inhibited

by anti-VEGF/VPF monoclonal antibodies (Kim et al.,
1993) or by a dominant-negative flk-1 mutant (Millauer
et al., 1994). Moreover, VEGF/VPF plays a role in
experimental animal models of cerebral trauma (Nag et
al., 1997) and infarct (Kovacs et al., 1996; Plate et al.,
1999), and has been demonstrated in a variety of non-
neoplastic cell types. These include neurons (Kovacs et
al., 1996), astrocytes (Ijichi et al., 1995), pericytes
(Murata et al., 1996), smooth muscle cells (Li et al.,
1995; Stavri et al., 1995), macrophages (Berse et al.,
1992), lymphoid cells (Freeman et al., 1995), platelets
(Mohle et al., 1997), and fibroblasts (Volpert et al.,
1997). Endothelial cells isolated from a variety of organs
including skin (Namiki et al., 1995; Detmar et al., 1997),
umbilical cord (Namiki et al., 1995), brain (Fischer et
al., 1995), lung (Liu et al., 1995), and kidney (Seghezzi
et al., 1998), in vitro and in organotypic cultures (Fischer
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Fig. 4. ISH for VEGF/VPF mRNA in 2 JPAs with tumor infarction. High (a) and low (c) magnification of two different JPAs with tumor infarction (I).
Ghost vessels can be seen in the infarcted zones (v). T: tumor adjacent to the infarct. HxE, a, x 100; c, x 50. High (b) and low (d) magnification of ISH
for VEGF/VPF demonstrating mRNA in tumor cells around the infarcts (arrowheads). There is no VEGF/VPF in the rest of the tumor (T). NBT/BCIP, b,
x 100; d, x 50. In addition in 2 out of 6 JPAs portions of the cerebellar granular layer were expressing VEGF/VPF mRNA as previously described in the
normal adult rat brain (Monacci et al., 1993). 



et al., 1995) have been shown to express VEGF/VPF.
Our results demonstrate that under selected conditions,
the role of endothelial cells in vascular growth extend
beyond that of a target to involve contingency synthesis
of VEGF/VPF and thus autocrine activation (Uchida et
al., 1994). VEGF/VPF is angiogenic and increases

microvascular permeability (Senger et al., 1983; Roberts
and Palade, 1995) including that of cerebral
microvessels (Wang et al., 1996). Because cerebral
angiogenesis is associated with increased vascular
permeability (Zagzag et al., 1988, 1989; Del Maestro et
al., 1990) which plays a major role in the pathogenesis
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Fig. 5.
Hemangioblastoma.
a. TN-C
immunostaining
was heterogenous
and found around
vascular channels,
often as a fine
network radiating
out from larger size
vessels.
Immunoperoxidase
and hematoxylin
counterstain, 
x 100. b. TN-C
mRNA signal is
intense in vascular
cells of the tumor
including
endothelial cells of
capillaries
(arrowheads).
NBT/BCIP, x 200.
c. Some vascular
cells within the wall
of larger vessels
are also labeled for
TN-C mRNA
(arrowhead).
NBT/BCIP, x 400.
d. Strong
VEGF/VPF mRNA
is detected in
stromal cells.
NBT/BCIP, x 400.
As previously
described
(Stratmann et al.,
1997).



of cerebral edema (Del Maestro et al., 1990;
Hariri, 1994), it is likely that the development
of cerebral edema is intimately linked to
angiogenesis. Moreover, in several conditions,
edema formation precedes angiogenesis, e.g. in
cerebral infarct (Liu, 1988). Our study suggests
that VEGF/VPF could play an important role in
the pathogenesis of angiogenesis associated-
cerebral edema in the CNS which interestingly
has been referred to as vasogenic edema
(Klatzo, 1967). Ultrastructural cellular changes
seen in cells exposed to VEGF/VPF include
fenestrations (Roberts and Palade, 1995) and
activated vesiculo-vacuolar organelles (Feng et
al., 1996). Fenestrations (Long, 1970) and
vesiculo-vacuolar organelles (Lossinsky et al.,
1996) have been described in brain tumors
vessels. Moreover, vesiculo-vacuolar organelles
(Lossinsky et al., 1996) and capillary
fenestrations have been linked to barrier
permeability in brain tumors (Long, 1970) and
in SDHs (Yamashima et  al . ,  1983).  I t  is
interesting that among the 3 types of neoplasms
we have studied, JPAs and hemangioblastomas
which are often cystic are usually less likely to
be associated with peritumoral edema. This
suggests that the storage of VEGF/VPF
primarily occurs in the tumor associated cyst
( Weindel et al. ,  1994), rather than in the
surrounding brain tissue as it probably occurs in
most GBMs. In our study when VEGF/VPF
mRNA was found just beyond the infiltrating
edge of the GBMs.

Cerebral edema is one of the most
important factors contributing to the morbidity
and mortality associated with these
edematogenic CNS diseases that we have
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Fig. 6. Organizing wall of a cerebral abscess. a . S t r o n g
immunoreactivity for TN-C is seen around proli ferating
vascular channels (V). It was diffusely seen around vessels,
delineating vascular channels by following the branches of the
arborization pattern, it was also detected in the intervascular
stroma and in the subendothelial matrix forming a thick band
at the interphase be tween endothel ium and stroma.
Immunoperoxidase and hematoxylin counterstain, x 50.
Necrotic tissue and areas composed mainly of neutrophils (p)
were negative for TN-C immunostaining. b. ISH for TN-C
mRNA shows signal within vascular cells (arrows), fibroblasts
and inflammatory cells (arrowheads). Note lack of TN-C
immunoreactivity and TN-C mRNA in necrotic regions within
the purulent exudate (P). Perivascular staining was stronger
than the intervascular staining and was diffusely expressed in
the extracellular space as a discrete fibrillary network
surrounding individual or groups of inflammatory cells; TN-C
mRNA was also seen in reactive astrocytes, in brain tissue
adjacent to  the abscess. NBT/BCIP x 50. c . ISH for
VEGF/VPF shows many inflammatory, fibroblastic and
astrocytic cells (arrowheads) expressing VEGF/VPF in
between vessels (v) some with labeled endothelial cells
(arrows). VEGF/VPF mRNA. NBT/BCIP, x 50



studied. For example, it often complicates the post
operative period of patients with brain tumors (Hariri,
1994). In cerebral abscesses, edema is often widespread
(Klatzo, 1967; Nakagawa et al., 1990) and develops

e a r l y, greatly increasing the mass effect of the local
lesion. It is the major cause of early death in cerebral
infarcts (White et al., 1979; Ropper and Shafren, 1984).
In cerebral traumas, (Bruce et al., 1981) cerebral edema
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Fig. 7. Cerebral infarct. a . F i b r i l l a r y
TN-C immunostaining (arrowheads) at
the edge of an infarct  where
numerous new blood vessels are
present (v). TN-C expression was
minimal or undetectable in the center
of the infarct, with enhanced fibrillary
staining at the periphery of the lesion
primarily around vascular channels
and was more abundant in areas
where lumens were discernible and
plump endothelial cells were seen.
TN-C mRNA was primarily seen in
capillaries and in reactive astrocytes.
Immunoperoxidase and hematoxylin
counterstain, x 100. b . ISH for TN-C
shows strong signal within vascular
cells (arrowheads). NBT/BCIP, x 50.
c . ISH for VEGF/VPF shows signal
within macrophages (arrowheads)
and vascular cells. NBT/BCIP, x 200.
d . I rregular nuclei  resemb ling
microglial cells were also labeled. e .
Cortex adjacent to an infarcted area
of brain tissue showing upregulation
of VEGF/VPF within neurons
(arrowheads).  NBT/BCIP; x 50. f .
Higher magnification of a pyramidal
neuron labeled for VEGF/VPF mRNA.
NBT/BCIP, x 200.



is variable. However, even in a patient with a small
cerebral contusion, edema may involve the majority of
white matter of the hemisphere bearing a focal injury. In
all these processes it adds to the increased intracranial
pressure caused by the primary lesion by superimposing
a significantly larger mass on the brain. It may worsen
the neurological condition with the development of

hemiparesis, speech dysfunction, and convulsions, and
in more severe cases, brain swelling may cause a fatal
cerebral herniation syndrome with secondary damage to
the brainstem. Cerebral edema is therefore a key
component in determining prognosis and clinical
outcome. The potentially lethal aspect of cerebral edema
is especially well illustrated by the significant decline in
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Fig. 8. Cerebral contusion. a. Histological section of
cortex and subarachnoid space with distented
leptomeningeal  vessel (LV) at  the edge of a
contused area (c) showing many blood vessels
(arrowheads). H&E, x 50. b. Immunohistochemistry
for TN-C of the same area described in (a). Note the
strong reactivity around vessel (arrowheads) in the
contused region and in the subpial zone (SZ). In
blood vessels with flat endothelial cells and areas
without obvious vascular lumens, TN-C expression
was weak. Intracellular TN-C was seen in rare
reactive astrocytes.  Immunoperoxidase and
hematoxylin counterstain,  x 50. c . ISH  for
VEGF/VPF mRNA of the same area described in (a)
and ( b ) .  Upregulation for VEGF/VPF is seen
adjacent to the contused area primarily in neurons
(arrowhead). Macrophages and vascular cells are
also labeled. NBT/BCIP; x 50



n e u r o s u rgical operative mortality and by the dramatic
neurological improvement in non-surgical patients
associated with the use of corticosteroid antiedematous
therapy (Jelsma and Bucy, 1967) shown to downregulate
VEGF/VPF expression in vitro (Criscuolo et al., 1988).
Despite progress in understanding the nature,
pathophysiology and therapy of cerebral edema, still, it
remains a common and ongoing problem for many
patients with brain pathology.

VEGF/VPF expression is modulated by hypoxia,
glucose deficiency, tumor suppressor genes, oncogenes
and other cytokines (Claffey and Robinson, 1996). The
CNS tumoral or reparative processes that we have
studied are likely to be associated with some degree of
hypoxia. Astrocytomas of both low (Giannini and
Scheithauer, 1997) and high grade (Barker et al., 1996)
display necrotic and/or infarcted areas. Abscesses have
necrotic centers and thus have ischemic/hypoxic tissues.
Infarcts by their nature have an obvious ischemic
component. Besides infarction that can be identified in
90% of fatal head injuries (Graham et al., 1995),
vasospasm due to subarachnoid hemorrhage with
cerebral contusions can contribute to the developing
brain edema by induction of ischemia. Moreover,

cerebral contusions are usually associated with full
thickness necrosis of the cortex. In both, the signal in
elongated cells is consistent with microglial cells
(Barleon et al., 1996), where a VEGF/VPF signal was
detected. VEGF/VPF is expressed by cells in the deep
portion of the subdural membrane. It is interesting that
these cells expressing VEGF/VPF also express CD31
(PECAM-1) that has been recently shown to be
implicated in angiogenesis (DeLisser et al., 1997).
VEGF/VPF may represent the angiogenic factor that has
been extracted from SDH (Nakamura and Ts u b o k a w a ,
1989). VEGF/VPF upregulation is detected as quickly as
3 hours in vitro in astrocytes exposed to hypoxia (Ijichi
et al., 1995), and within 30 minutes in
polymorphonuclear neutrophils after injury in vivo (Nag
et al., 1997). Thus, hypoxia is critical for the
upregulation of VEGF/VPF. HIF-1a plays an essential
role in oxygen homeostasis (Wang and Semenza, 1995;
Wang et al., 1995; Iyer et al., 1998). HIF-1 activates a
l a rge battery of genes whose protein products include
VEGF/VPF (Forsythe et al., 1996; Semenza et al., 1996;
Iyer et al., 1998; Semenza, 1998; Tazuke et al., 1998;
Feldser et al., 1999). HIF-1α has been demonstrated in
many tumors (Zagzag et al, 2000). However, in some
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Fig. 9. Chronic SDH. a. Outer membrane (OM) adjacent to the dura mater lining the hematoma cavity (H) showing the presence of an inflammatory
infiltrate and numerous newly formed vascular channels (V). H&E, x 50. b. Higher magnification of the inner portion of the membrane shows large cells
(arrowheads) with large nuclei and prominent nucleoli lining the hematoma cavity (H). These cells were also immunopositive for vimentin, smooth
muscle actin, CD31 (PECAM-1) and negative for Factor VIII related antigen and CD34 (Q-BEND10) (data not shown). Smaller mononuclear cells are
located deeper in the membrane. H&E, x 400. c. TN-C is heterogeneously expressed in the outer membrane. TN-C immunostaining is primarily seen in
the areas adjacent to the hematoma cavity (H) i.e. in the inner deeper layer of the outer membrane where it is marked around vascular channels.
Immunoperoxidase and hematoxylin counterstain, x 50. d. ISH for VEGF/VPF mRNA shows upregulation within the large cells (arrowheads) lining the
hematoma cavity in the deeper portion of the outer membrane. NBT/BCIP, x 50. e. Higher magnification of these cells (arrowheads). NBT/BCIP, x 400 



conditions, e.g. hemangioblastomas, other mechanisms
(i.e. loss of the Von Hippel-Lindau tumor suppressor
gene (Siemeister et al., 1996; Stratmann et al., 1997;
Vortmeyer et al., 1997; Lee et al., 1998), are responsible
for the upregulation of VEGF/VPF. Other tumor
suppressor genes and oncogenes including ras (Rak et
al., 1995), src (Mukhopadhyay et al., 1995; Jiang et al.,
1997), and p53 (Kieser et al., 1994; Mukhopadhyay et
al., 1995) have been shown to modulate VEGF/VPF
expression. Both src (Kieser et al., 1994; Mukhopadhyay
et al., 1995), which at least in part involve HIF-1
upregulation (Jiang et al., 1997), and ras (Rak et al.,
1995) upregulate VEGF/VPF. The exact implication of
p53 is unclear. While mutant p53 was reported to
potentiate the upregulation of VEGF/VPF by protein
kinase C (Keiser et al., 1994), other studies have
demonstrated that wild type p53 suppresses the src-
induced VEGF/VPF transcription (Mukhopadhyay et al.,
1995). Some studies have implicated the p53-MDM2
pathway in the regulation of HIF-1α degradation (Ravi
et al., 2000). Epidermal growth factor (EGF) receptor
upregulates VEGF/VPF (Petit et al., 1997). Both P53
and EGFR are important in the pathogenesis of high
grade gliomas (Louis and Gusella, 1995). The role of src
and ras in human brain tumors remains to be clarified
( Wasson et al., 1990; Brustle et al., 1992; Patt et al.,
1993). Glucose deficiency is also able to induce
VEGF/VPF expression (Shweiki et al., 1995).

Direct [basic fibroblast growth factor (FGF) (Stavri
et al., 1995; Tsai et al., 1995; Ryuto et al., 1996), platelet
derived growth factor (PDGF) (Finkenzeller et al., 1992;
Tsai et al., 1995), EGF (Tsai et al., 1995)] and indirect
[tumor necrosis factor (TNF) (Ryuto et al., 1996;
Yoshida et al., 1997), transforming growth factor (TGF)
(Pertovaara et al., 1994) and interleukin-1 (Li et al.,
1995; Ryuto et al., 1996)] angiogenic factors also
upregulate VEGF/VPF expression. Some have
s y n e rgistic effects with VEGF/VPF, e.g. basic FGF
(Goto et al., 1993). Moreover, FGF-induced
angiogenesis, is at least in part, mediated by VEGF/VPF
(Deroanne et al., 1997). Thus, a variety of potentially
interrelated pathways can lead to the upregulation of
V E G F / V P F. These modulating factors, including
hypoxia, glucose deficiency, tumor suppressor genes,
oncogenes and growth factors, probably interact in vivo
in a complex interplay. For example, hypoxia modulates
p53 expression (Graeber et al., 1994) and is linked to
permeability (Tanno et al., 1992), probably in part
through upregulation of VEGF/VPF. Thus, each of these
regulating mechanisms alone or in conjunction with
others may lead to the upregulation of VEGF/VPF.
Further studies are needed to elucidate their interaction.
High (Plate et al., 1992; Shweiki et al., 1992) and low
(Weindel et al., 1994; Leung et al., 1997) grade human
astrocytomas, and hemangioblastomas (Stratmann et al.,
1997) and experimental animal models of CNS
neoplasms (Plate et al., 1993), cold injury (Nag et al.,
1997) and ischemia (Kovacs et al., 1996), are associated
with VEGF/VPF upregulation. We have demonstrated

that a variety of human hypoxic/ischemic, inflammatory,
infectious and traumatic conditions of the CNS
associated with angiogenesis are also associated with
upregulation of VEGF/VPF, a potent angiogenic and
edematogenic cytokine. 

TN-C and angiogenesis

In contrast to the low levels of TN-C found in
normal adult brain, enhanced expression occurs in
human astrocytomas (Zagzag et al., 1995, 1996). For
example, by Western blot its expression is elevated up to
4 fold in GBMs as compared to normal control tissue
(Zagzag et al., 1995). It is expressed around tumor cells
mainly of high-grade tumors as well as in hyperplastic
vessels of astrocytomas regardless of grade, and its
expression correlates with angiogenesis (Zagzag et al.,
1995, 1996). Immunohistochemistry and ISH for TN-C
showed enhanced TN-C expression in all high and low-
grade astrocytomas (Figs. 1, 2) and hemangioblastomas
(Fig. 5), and in a variety of non-neoplastic diseases of
the CNS which are associated with neovascularization.
These included infectious, inflammatory and ischemic
diseases of the CNS, e.g. cerebral abscesses (Fig. 6) and
infarcts (Fig. 7), as well as traumatic conditions such as
cerebral contusions (Fig. 8) and SDHs (Fig. 9). TN-C
was observed around hyperplastic blood vessels of
tumors regardless of their grade or type as well as
around newly formed vascular channels of non-
neoplastic processes. Thus, TN-C expression correlates
spacially and temporally with angiogenesis in both
neoplastic and non-neoplastic human diseases of the
brain. Moreover, because TN-C mRNA and protein were
not upregulated in vessels of normal brain, it is possible
that TN-C expression might be important for vascular
cell activation. Vascular cells able to synthesize TN-C
include endothelial cells (Webersinke et al., 1992; Hahn
et al., 1995; Zagzag et al., 1996), and pericytes/smooth
muscle cells (Schor et al., 1991; Mackie et al., 1992;
Zagzag et al., 1996). Other cell types capable of
expressing TN-C include astrocytes (Grumet et al.,
1985; Dorries et al., 1993; Brodkey et al., 1995; Zagzag
et al. ,  1996; Ness and David, 1997), fibroblasts
(Copertino et al., 1997), and neurons (Ferhat et al.,
1996). 

Evidence linking TN-C and angiogenesis includes:
1) TN-C, which has both adhesive and counteradhesive
domains for a variety of cell types (Prieto et al., 1992)
modulates endothelial cell adhesion (Murphy-Ullrich et
al., 1991; Joshi et al., 1993; Sriramarao et al., 1993;
Chung and Erickson, 1994). This is mediated in part by
αvß3 integrin (Joshi et al., 1993; Sriramarao et al., 1993)
that is required for angiogenesis (Brooks et al., 1994). 2)
TN-C modulates microvascular migration (Kaplony et
al., 1991; Canfield and Schor, 1995; Hahn et al., 1995;
Chung et al., 1996). For example, TN-C-rich matrices
are permissive for endothelial cell migration, by contrast
to inhibitory thrombospondin-rich matrices (Canfield
and Schor, 1995). TN-C is specifically expressed at the
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site of migration of developing embryonic vasculature
(Spence and Poole, 1994). Moreover, during cornea
development, cells derived from the neural crest and
destined to become endothelia migrate exactly along the
line of the TN-C-rich stroma (Kaplony et al., 1991).
Furthermore, antibodies against TN-C inhibit endothelial
cell sprouting in vitro (Canfield and Schor, 1995; Hahn
et al., 1995; Chung et al., 1996). TN-C also modulates
the migration of glial (Wehrle-Haller and Chiquet, 1993)
and glioma cells (Deryugina and Bourdon, 1996),
cerebellar granular layer cells (Husmann et al., 1992)
and supports lymphocyte rolling (Clark et al., 1997).
TN-C also plays a similar role during embryogenesis
(Erickson and Bourdon, 1989). For example, TN-C is
expressed at the site of migration of neural crest cells
(Mackie et al., 1988), which could be inhibited by anti-
TN-C antibodies (Bronner- F r a s e r, 1988). 3) TN-C
modulates migration and proliferation of vascular cells,
both crucial steps of the angiogenic cascade (Ausprunk
and Folkman, 1977). TN-C modulates the proliferation
of a variety of cell types (Chiquet-Ehrismann et al.,
1986; Crossin, 1991). However, the mitogenic effect of
TN-C on endothelial cells is seen only if TN-C is added
before or simultaneously when bFGF is added to
endothelial cell cultures (Chung et al., 1996). TN-C
enhances cell migration both by its anti-adhesive effects
(Murphy-Ullrich et al.,  1991; Joshi et al.,  1993;
Sriramarao et al., 1993; Chung and Erickson, 1994) and
by stimulation of the expression of genes encoding
matrix metalloproteinases (Tremble et al., 1994). One
additional important mechanism is the loss of focal
adhesion in endothelial cells induced by the alternatively
spliced region of TN-C that is a step associated with cell
migration and proliferation (Murphy-Ullrich et al., 1991;
Chung and Erickson, 1994). This effect can be blocked
by antibodies against annexin II, a 35 kD non-integrin
receptor for TN-C on endothelial cells (Murphy-Ullrich
et al., 1991; Chung and Erickson, 1994). Interestingly,
overexpression of an immediate early gene, e.g. c-jun
which is upregulated in brain infarcts (Liu, 1995) and
injuries (Nag et al., 1997) and associated with
angiogenesis (Michel et al., 1994; Liu, 1995; Nag et al.,
1997) stimulate TN-C (Mettouchi et al., 1997). Recently
TN-C has been shown to be a survival factor for vascular
smooth muscle cells (Jones et al., 1997), which have
been implicated in the neovascular proliferative
phenomena associated with GBMs (Haddad et al.,
1992); 4) TN-C is up-regulated spatially and temporally
in newly formed vessels of granulation tissue in
experimentally induced skin wounds (Mackie et al.,
1988; Chuong and Chen, 1991) and is not detectable or
markedly reduced in the scar when wound contraction is
complete (Chuong and Chen, 1991; Fassler et al., 1996).
5) TN-C is expressed in vascular tumors and reactive
vascular proliferations e.g. bacillary angiomatosis
(Kostinanovsky et al., 1997). 6) TN-C binds to heparin,
( Weber et  al . ,  1995) an important modulator of
angiogenesis (Folkman and Shing, 1992). 7) vascular
cells including endothelial cells and smooth muscle

cells/pericytes contribute to the deposition of TN-C
( Webersinke et al., 1992; Hahn et al., 1995; Zagzag et
al., 1996) present at sites of vascular hyperplasia. 8)
several factors known to stimulate angiogenesis in
cerebral embryogenesis and neoplasia (Zagzag, 1995),
including basic FGF (Rettig and Garin-Chera, 1989;
Meiners et al., 1993; Tucker et al., 1993; Rettig et al.,
1994), TGF (Rettig and Garin-Chesa, 1989; Adams
Pearson et al., 1988; Mackie et al., 1992; Hahn et al.,
1995), PDGF (Adams Pearson et al., 1988; Mackie et al.,
1992), EGF (Sakai et al., 1995), interleukin-1 (Rettig et
al., 1994), and TNF-alpha (Rettig and Garin-Chesa,
1989; Rettig et al.,  1994) can upregulate TN-C
expression.

Although a variety of ECM molecules including
laminin (Kubota et al., 1988), fibronectin (Nicosia et al.,
1993), collagen (Montesano et al., 1983),
thrombospondin (Iruela-Arispe et al., 1991), SPA R C
(Lane et al., 1994), and vitronectin (Davis et al., 1993)
have been implicated in the regulation of angiogenesis, it
appears that the interaction of endothelial cells with TN-
C is different from that of the other ECM molecules. For
example, endothelial cells in vitro attach to TN-C
substrata where they elongate and extend and have
interconnecting processes (Sriramarao et al., 1993).
These features are lacking when endothelial cells are
grown on fibronectin, collagen, vitronectin or laminin
substrata (Sriramarao et al., 1993). Because of its
particular implication in brain pathology, and its
potential role in each of the crucial steps of the
angiogenic cascade, TN-C may prove to be the most
important ECM molecule in CNS pathological
angiogenesis.

Conclusion

The strong association of increased VEGF/VPF and
TN-C expression in angiogenic conditions of the CNS
suggests a link between their expression. Whether
VEGF/VPF upregulates TN-C expression or how TN-C
precisely modulates angiogenesis is unknown. The effect
of VEGF/VPF, a hypoxia-inducible angiogenic factor, on
TN expression is unknown. Since TN-C lacks a hypoxia
response element, the upregulation of TN in a hypoxic
environment, could be mediated by VEGF/VPF. Thus, it
is of interest to investigate if VEGF/VPF upregulates TN
expression. TN-C may be an angiogenic cofactor by
presenting VEGF/VPF to the cell surface as it was
described for proteoglycans and FGF (Schlessinger et
al., 1995). Besides VEGF/VPF and TN-C, there are
other molecules which are also upregulated in a variety
of neoplastic and non-neoplastic conditions of the CNS
associated with angiogenesis. For example, αvß3 integrin
required for angiogenesis (Brooks et al., 1994), is
upregulated in embryogenesis (Sutherland et al., 1993),
in brain neoplasms (Gladson, 1996) and also in cerebral
ischemia (Okada et al., 1996). VEGF/VPF and TN-C
follow the same paradigm of upregulation in
embryogenesis, become almost undetectable in adult
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q u i e s c e n c y, and are re-upregulated in tissue injury and
activated state. It is therefore likely that embryological,
neoplastic and non-neoplastic angiogenesis in the brain
is mediated by similar biological compounds and
molecules. The accurate regulation of the well-
controlled angiogenesis occurring in embryogenesis as
opposed to the uncontrolled neovascularization of
tumors remains unclear. Nevertheless, VEGF/VPF and
TN-C are upregulated in several human pathological
neoplastic and non-neoplastic processes of the CNS
associated with angiogenesis.
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