LOS COLEOPTEROS HYDRADEPHAGA (HALIPLIDAE, GYRINIDAE, NOTERIDAE Y DYTISCIDAE) DE LA CUENCA DEL RIO SEGURA. SE. DE LA PENINSULA IBERICA.

Andrés Millán Sánchez

UNIVERSIDAD DE MURCIA. 1991.

4. RESULTADOS 4.2. Estudio biogeográfico.

4.2. Estudio biogeográfico.

4.2.1. Introducción.

En medios de características parecidas, incluso si están alejados unos de otros, suelen encontrarse especies diferentes, consecuencia de las visicitudes que sufren éstas en su dispersión, poblamiento y evolución. La explicación no puede ser estrictamente ecológica, sino que ha de tenerse en cuenta factores de tipo histórico, genético y antropológico para interpretar determinados modelos de distribución geográfica en áreas más o menos extensas (MARGALEF, 1983; GIL, 1985).

Es por ello, por lo que para una visión completa del origen y distribución de un grupo determinado de organismos, a un nivel de percepción concreto, es necesario realizar un estudio evolutivo bajo una proyección geográfica, además de ecológica.

En este sentido, la biogeografía, y dentro de ésta la zoogeografía, estudia, describe y trata de explicar la actual distribución de los animales (BANARESCU, 1990), por lo que resulta un instrumento ideal como complemento en la investigación biológica y ecológica de los seres vivos.

La biogeografía puede dar respuesta a preguntas tales como ¿cuál ha sido la evolución en el tiempo y en el espacio de las especies?, ¿cuál es su dinámica?, ¿de qué forma están reguladas?, ¿cómo se construyen las asociaciones interespecíficas?, ¿por qué hay tantas especies en un área determinada?, etc. (BLONDEL, 1985). Pero estas respuestas no son fáciles de obtener, puesto que encierran múltiples aspectos de las ciencias experimentales y de la historia, tales como la Geología, Geografía, Climatología, Paleontología, Sistemática, Evolución, Fisiología, Antropología o Ecología (COX et al., 1976; MYERS & GILLER, 1988), como para esperar unos resultados precisos y estables. La importancia de distinguir factores históricos y ecológicos, así como la dificultad para hacerlo cuando producen los mismos efectos biogeográficos (ENDLER,1982), constituye un claro ejemplo.

Dado que la biogeografía es una ciencia relativamente reciente, no son muchos los trabajos que tratan los modelos corológicos de los taxones de insectos acuáticos, bajo un prisma histórico, evolutivo y ecológico. Además, gran parte de estos organismos son capaces de volar, traspasando las barreras geográficas (BANARESCU, 1990) que, en muchos casos, son la base de las hipótesis biogeográficas, lo que dificulta aún más su estudio. Por lo general, la mayoría de las investigaciones, se limitan a ofrecer un mero inventario, catalogación y tipificación de las áreas de distribución geográfica de las especies, basándose en los modelos espaciales ya establecidos para la fauna terrestre.

Es a partir de mediados de este siglo, cuando empiezan a surgir estudios sobre biogeografía de insectos acuáticos más profundos. Entre éstos, destacan los de THIENEMAN (1950), ILLIES (1965), WEBER (1965), BECKER (1975), OLMI (1976), ZWICK (1979), LIND (1982), MALICKY (1983), LARSON & COLBO (1983), GIL (1985), KADDOURI (1986), VALLADARES (1988), etc.

Dentro de los estudios biogeográficos específicos de Hydradephaga, cabe mencionar los de GUIGNOT (1931-33) y FRANCISCOLO (1979), principalmente. El resto de estudios se restringen, en su mayoría, a determinados géneros de la Región Holártica cuya sistemática y distribución es bien conocida. Tal es el caso de los trabajos de ROUGHLEY & PENGELLY (1981), LARSON & NILSSON (1985), ZIMMERMAN (1985), BRANCUCCI (1983 b, 1986, 1988), LARSON (1987 b, 1989), NILSSON (1989), NILSSON & LARSON (1990), etc.

Todos estos trabajos, junto con otros de caracter teórico (LA GRECA, 1975; BALL, 1976; PIELOU, 1979; ENDLER, 1982; MYERS & GILLER, 1988; BANARESCU, 1990; etc.), filogenético (LAWRENCE & NEWTON, 1982; EVANS, 1985; BEUTEL & BELKACEME, 1986; RUHNAU, 1986; BEUTEL & ROUGHLEY, 1988; BAMEUL, 1989; etc.) o ecológicos (GIUDICELLI et al., 1985; WEWALKA, 1986; CHANDLER & GROMKO, 1989; etc.), conforman una buena base científica que permite plantear hipótesis biogeográficas para explicar el origen, evolución y distribución de determinados grupos de insectos, al menos a un nivel taxonómico elevado.

En cuanto a la Península Ibérica, ésta constituye un enclave de excepcional interés biogeográfico, al actuar como refugio de numerosos organismos durante las glaciaciones del Pleistoceno y, posteriormente, como centro de dispersión de estas mísmas especies (MARGALEF, 1974; LA GRECA, 1975). Pero, a pesar de su importancia, tampoco existen suficientes estudios biogeográficos sobre insectos acuáticos en este área. Principalmente, son los trabajos de Limnología descriptiva y regional llevados a cabo por Margalef, entre los años 50 y 60, los que recogen estos aspectos.

Por lo que respecta a los Hydradephaga, destacan las Tesis Doctorales de REGIL (1982), SAINZ-CANTERO (1989) y CARRIDO (1990), y estudios puntuales como los de MONTES & SOLER (1985), MACHADO (1987), FRESNEDA & HERNANDO (1988, 1989) o ISART et al. (1990).

Este capítulo se centra en el análisis corológico de las especies de Hydradephaga encontradas en la cuenca del río Segura, y sus afinidades faunísticas con algunas Areas Biogeográficas Paleárticas, así como con el resto de cuencas hidrográficas de la Península Ibérica, además de las Islas Baleares.

Todos estos planteamientos quedan enmarcados en tres objetivos fundamentales:

- 1) Conocer el orígen y distribución de la fauna de Coleópteros Hydradephaga de la cuenca del río Segura.
- 2) Contribuir al conocimiento de la actual distribución de la fauna de Hydradephaga, tanto en la Península Ibérica, como en la Subregión Paleártica Occidental.
- 3) Detectar las especies características en diferentes Areas de la Península Ibérica.

En todo caso, estos objetivos se deben considerar de caracter tentativo, dada la dificultad que entraña la interpretación de los resultados, como

consecuencia de la escasez de registros fósiles y la desigualdad y dispersión de datos que existe en la actualidad, referentes a la distribución de las especies de Hydradephaga.

4.2.2. Metodología.

El conocimiento que se tiene en la Subregión Paleártica Occidental de la fauna de Coleópteros Hydradephaga es aceptable en su conjunto, pero desigual según qué áreas. En todas ellas no se han realizado estudios monográficos y profundos sobre este grupo de insectos, que faciliten el acceso a la información. Así, en las Islas Británicas, el centro de Europa o en las Penínsulas Escandinava, Italiana, e Ibérica, existe una buena información sobre esta fauna, mientras que en la Europa del este en general, determinadas áreas de Rusia o el Mediterráneo oriental, se observan lagunas muy importantes en cuanto a la presencia y distribución de los Hydradephaga.

Otro problema importante es la desigual datación y nivel de esfuerzo empleado en alcanzar el actual conocimiento faunístico sobre dichas áreas, de manera que aunque en la Península Italiana, Francia y Africa, se han hecho estudios muy completos de Hydradephaga, estos tienen más de 10 años de antigüedad, por lo que ha sido necesario actualizar los datos con trabajos puntuales, que en general, se encuentran muy dispersos, y no siempre son fáciles de conseguir. Por el contrario, zonas como la Islas Británicas o las Penínsulas Escandinava e Ibérica, tienen la información faunística, sobre este grupo de Coleópteros, recogida en un sólo tratado y practicamente actualizada.

La escala o nivel de percepción (BLONDEL, 1985), representa otra dificultad añadida, de manera que cuando se comparan áreas, éstas deben ser equiparables a nivel biogeográfico (extensión, evolución histórica, grado de información, etc.). Un claro ejemplo sobre este aspecto se aprecia cuando se reduce dicha escala para estudiar en mayor profundidad un área geográfica determinada, como en el caso de la Península Ibérica, de manera que se observan lagunas faunísticas en determinados lugares de su superficie, por falta de estudios o localizaciones

inprecidas (carencia de datos U.T.M.) de las especies, que desde un nivel de referencia mayor no se detectan al perder importancia dentro de una información más generalizada.

Todos estos aspectos, dan una idea de la complejidad y extrema laboriosidad que supone el estudio comparativo de las faunas de diferentes regiones biogeográficas, sea cual sea el nivel de percepción al que se trabaje.

El análisis corológico se ha realizado únicamente para las especies de la cuenca del río Segura, a partir de las categorías corológicas utilizadas por FRANCISCOLO (1979), fundamentadas en la clasificación elaborada por LA GRECA (1964). La base de este análisis, lo constituyen las matrices elaboradas previamente, donde se recoge, de forma complementaria, la distribución de dichas especies en:

- . Las cuencas hidrográficas peninsulares, incluyendo las Islas Baleares (tabla 4.2.1).
- Las Areas Paleárticas Occidentales delimitadas por ILLIES (1978), pero levemente modificadas al considerar las cuencas como unidades funcionales e integradoras del paisaje. De esta manera, los Pirineos y los Alpes han entrado a formar parte de las correspondientes cuencas de España, Francia e Italia, mientras que el sur de Suecia se ha incluido dentro de la cuencas de la Península Escandinava. Se han considerado aquí, las Islas Canarias como representante macaronésico (tabla 4.2.2).
- . Las grandes Regiones biogeográficas mundiales más aceptadas (RAPOPORT, 1975). En este último caso, y dada la gran extensión este-oeste de la Región Paleártica, se dividió ésta en tres Subregiones: Paleártica Occidental, Oriente Medio y Paleártica Oriental (tabla 4.2.3).

Los mapas de distribución geográfica realizados para cada especie y expuestos en el apartado de la diagnosis de las especies (apartado 4.1.3), completan este análisis.

Para el estudio de las afinidades faunísticas de la cuenca del río Segura (simbolizada como CSE: Area nº 6) con diferentes Areas Biogeográficas de la Subregión Paleártica Occidental, en primer lugar, se ha procedido a la selección de las mismas teniendo en cuenta su importancia biogeográfica y/o su proximidad a la zona de estudio.

De este modo, se eligieron las siete Areas Biogeográficas siguientes:

- 1) NORTE DE AFRICA (N.A): Se trata de la zona denominada "x" en ILLIES (1978). Incluye, aproximadamente, las cuencas comprendidas entre la cordillera del Atlas y las costas mediterráneas de Marruecos, Argelia y Túnez. Las fuentes de información provienen de GUIGNOT (1931-33) e ILLIES (1978). Otros trabajos complementarios que han permitido completar la lista faunística han sido los de BISTROM (1982, 1986), FRANCISCOLO (1979) y HOLMEN (1987) principalmente.
- 2) ISLAS BRITANICAS (I.B): Es la zona "17" de ILLIES (1978), Constituida por Inglaterra, Gales y Escocia. La fuente de información principal ha sido FRIDAY (1988).
- 3) FRANCIA (FRA): Se ha denominado así al conjunto de las zonas "8", "13" y parte de la "2" y de la "4", de ILLIES (1978), es decir, las cuencas que se localizan entre Francia principalmente, Suiza, Austria, Bélgica y Luxemburgo. Las fuentes de información más importantes han sido GUIGNOT (1947) e ILLIES (1978). Los estudios de FRANCISCOLO (1979), BRANCUCCI (1980, 1984), HOLMEN (1987), LEBLANC (1987), BAMEUL (1985 a y b, 1989), entre otros, han completado esta información.
- 4) ITALIA (ITA): Comprende la zona "3" y parte de la "4" de ILLIES (1978), formada por las cuencas de Italia peninsular, Sicilia, Corcega y Cerdeña. La fuente de información principal ha sido FRANCISCOLO (1979). Se ha completado con los estudios de ROCCHI (1980), ANGELINI (1982), ROMANO (1982), DETTNER (1983), BURMEISTER et al. (1987), HOLMEN (1987), PEDERZANI & MARINI (1988), BAMEUL (1989), etc.

	PENINSULA IBERICA Y BALEARES													
SPP	CNO	CDU	CTÀ	CGA	CGR	csu	CSE	cju	CEB	СРО	BAL	т		
PERO	1	1	1	1	1	1	1	1	1	1	1	11		
HAOB	1	1			1		1	1	1	1		7		
HALI	1	1	1	1	1	1	1-	1	1	1	1	11		
HAMU	1	1 1	1	1	1	1	1	1	1	1	1	11		
GYCA	1	1	1	1 1	1 1	1	1	1	1	1	1	11		
GYDE.	1	1	1	1	1	1	1	1 1	1	1	1	9		
GYDI	ī	1	*	-	*	1	1	-	1	1	1	11		
GYUR	1	1	1	1	1	î	i	1	1	1	1	11		
ORVI	1	1	1	1	1		1	1	î	î		9		
NOLA	1	1	1	1	1	1	1	1	1	1	1	11		
HYAU	1	1	1	1	1	1	1	1	1	1	1	11		
HYCU		1		1	1	1	1	1		1	1	8		
YOBI	1	1 1	1 1	1 1	1 1	1	1	1	1	1	1	11		
HYPU	1	1	1	1	1	1	1 1	1	1	1	1	11		
HYSI	1	1	1	1	1	*	1	1	1	1	1 1	11		
coco	1	1	1	1	1		1	1	1	1	1	10		
COIM	1	1		1			1	_	1	1		6		
HEMU							1				1	2		
HYDI	1	1	1		1	1	1	1	1	1		9		
HYLI	1 1	1	,	1	1	,	1	1		1	1	8		
HYMA	1	1	1 1	1 1	1 1	1 1	1	1 1		1	1	10		
HYNI	1	1	1	7	1	1	1	1	1 1	1	1	10		
HYTE	1	1	1.	1	ī		1	1	1	1	1	10		
GRFR	1	1				1	1	-		î	1	6		
GRVA	1	1	1	1	1		1		. 1	1	1	9		
STEP	1	1	1	1	1	1	1	1	1	1	1	11		
STLE	1	1	1	1	1	1	1	1	1	1		10		
DEDE		1		1	1 1	1	1]		1	6		
DEFA			1	1	1	1	1 1	1	1	1		3		
DEHI	1	1	1	1	1	1	1	1	li	1		8 10		
DEMO	1	1	_	1	1	ī	ī	î	ī	l î	1	10		
POCA					1		1			_		2		
POCE	1	1	1	1	1		1	1			1	8		
POCL		1			1	1	1	1				5		
POGR	1	1			1		1	ĺ	1	1		5		
POMA	1	1	1		1		1 1	1	1	1		1 8		
ORSE	1	1	-				1	*	-			3		
LAHY	1	1	1	1	1	1	1	1	1	1	1	11		
LAMI	1	1	1	1	1		1	1	1	1	1	10		
LAPO			1	1	1	1	1	1		1	1	8		
AGBR	1	1	1	1	1	1	1	1	1	1	1	11		
AGDI	1	1	1	1	1	1	1	1	1	1	1	11		
AGBG	1 1	1 1	1	1	1	1	1	1	1	1	1	11		
AGNI	1	1	1		1	1	1	1	1 1	1	,	6		
AGBP	1	1	1	1	1	1	1	1	1	1 1	$\frac{1}{1}$	10 11		
AGCH.	1	1	1	1	1	_	1	*	1	1 *	*	7		
AGME	ī	1	1	1	-		ī	1	î	1		7		
AGNE	1	1	1	1	1	1	1	1	1	1	1	11		
AGPA	1	1			1		1	1	1	1		7		
ILFU	1	1		_		_	1		1	1		5		
RHSU	1	1	1	1	1	1	1	1	1	1	1	11		
MECO ERST		1 1	1 1	1 1	1	1 1	1 1	1	1	1	1	10		
HYLE		T	1	1	1	1	1	1 1		1	1	9		
DYCI	.1	1	1	1	1	1	1	1	1	1 1	1 1	7 10		
DYPI	1	î	1	1	î		ī	i	1	1	1	9		
CYTR	~	1	1	î	ī	1	î	î	1	1	1	9		
CYLA	1	1		1	1		1	1	1	1	1	9		
NE:	49	56	43	46	55	38	64	49	17	50	12			
IVE	43	20	43	40	35	38	04	1 49	47	50	42			

Tabla 4.2.1

	AREAS BIOGEOGRAFICAS SEGUN ILLIES (1978)																									
SPP	- CAN	X NAF	3 ITA	5 YUG	6 GRE	7 BUL	8 SUI	9 AUS	10 CHE	11 HUN	12 MNE	13 FRA	14 ALE	15 MBA	16 RUS	17 IRL	18 ING	19 ISL	20 NOR	21 CIR	22 SUE	23 FIN	24 CAU	25 MCA	Y TUR	Т
PERO		1	1 1	1	1	1	1	1	1	1	1	1	1	ı	1	1	1	1	1		1	1	1	1	1	7 24
HALI	1	1	1	1 1	1 1	. 1	1 1	1 1	1 1	1	1 1	1 1	1	1	1	1	1				ì	-			1	20 16
AUST	1	1 1	1 1	1	1 1	1		1	1	1	1 1	1	1	1	1 1	1	1		1		1			1	1 1	10 19
GYDE	1	1 1	1	1 1	1	1 1	1	1	1	1	1 1	1 1	1	1	1	1	1		1		1	1	1	1	1	10 23
GYUR	1	1 1	1 1	1 1	. 1	1 1	1	1	1 1	. 1	1 1	1 1	1 1	1 1	1 1	1	1 1		1		1	1			1	16 20
NOLA HYAU		1 1	1 1	1	1	1	1	1	1	1		1														5 11
HYCU		1 1	1 1	1 1	1	1	1 1	1	1	1	1	1 1	1 1	1	1								1		1	16 7
BIMI HYPU	1	1 1	1 1	1 1	1 1	1	1 1	1	1	1 1	1	1	1 1	1	1 1	1	1 1		1		1	1	1	1	1 1	15 23
COCO	1	1 1	1	1 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1				1		1	1	1 1	6 22
COIM	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1 1	23 4
HYDI	1 1	1 1	1	1	1 1	1	1	1	1	1	1	1 1	1	1	1	1	1		1		1	1	1	1	1	24 6
HYLU HYMA		1	1	1	1	1	1	1	1	1	1	1	1		1	_	1						1		1	5 17
HYNI	1	1	1	1	1	1 1	1 1	1	1	1 1	1	1	1	1	1	1	1 1	1	1	1	1	1	1 1	1	1	24 16
GRFR		1	1		1 1	1	1	1		1	1	1														10
STEP		,	1				1					1	1			1	1									6
DEDE	1	1	1								1 *															3 0
DEFA DEHI DEMO		1	1	1	1	·	, !					1 1 1														1
POCA	1	1	1		1	1	1.				1	1												,	,	0
POCL	1	1	1	1	1	1	1	1			1	1	1	1	1	1	1		1	1		1	1	1	1 1 1	9 4 20
POMA			1	1	1	1	1	1	1		1	1	1	1	1	1	1		•	1	1	•	1		1	0 15
ORSE	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1		1	1	1	1 1	1	1	1	17 24
LAMI	•	1	1	1	1 1	1	1	1	1	1	1	1 1	1 1	1	1	1	1		1		1	1	1	1	1 1 1	23 21
AGBR		1	1	1	1	1	1	1	1	1	•	1	1	٠	1	i	1		•		•		•	`	1	9
AGBG	1	i	1	1	1	. 1	1	1	1	1	1 1	1	1	1	1	1 1	1		1	1	1	1	1	1	1	20 21
AGNI	1 1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1 1	17 25
AGCH		1 1	1	1	1	1	1 1	1 1	1	1	1	1	1	1	1	1 1	1		1		1	1		1	1	22 14
AGNE	1	1	1 1	1 1	1	1	1	1	1	1 1	1 1	1	1	1	1	1	1 1		1 1		1	1	1	1	1	23 21
ILFU RHSU	1	1	1	1 1	1	1 1	1 1	1 1	1 1	1	1 1	1 1	1	1 1	1	1	1 1		1 1	1 1	1	1		1	1	23 23
MECO ERST	1	1	1 1	1	1 1	1	1	1	1		1	1 1	?										1	1	1 1	10 12
HYLE DYCI	1	1	1 1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1				1		1	1	1 1	8 21
DYPI CYTR		1	1 1	1 1	1	1	1	1	1	1	1	1	1	1	1								1	1	1	6 18
CYLA	1	1	1	1	_1						1		1								1	-	1	_	1	10
NOE:	25	51	59	48	51	40	43	37	34	33	36	56	39	27	34	28	34	2	20	8	24	17	27	22	42	

Tabla 4.2.2

DISTRIBUCION MUNDIAL												
	OM	PO	EA	EO		,		\dashv				
	\vdash	PU	EA	EU	NA	SA	oc	T				
PERO	.1	?						1				
HALI	1	١ ' ا	1					1 2				
HAMU	1 1							1				
GYCA	1	1						1 2				
GYDE	1							1				
GYDI	1 1	- 1						2 1				
ORVI	1	1						2				
NOLA HYAU								0				
HYCU	1							1				
YOBI BIMI								0				
HYPU	1	1						2				
HYSI	1 1		1					2				
COIM	1	1			1			1 3				
HEMU HYDI	1	1						2 2				
HYLI	1	1						0				
HYLU	1							1				
HYMA HYNI	1	1						1 2				
HYTE	1	1						2				
GRFR								0				
STEP								0				
STLE								0				
DEDE								0				
DEFA								0				
DEHI								0				
POCA			- 1					0				
POCE	1							1 0				
POGR	1	1	,		1			3				
POMA								0				
ORSE	1	1						2				
LAHY	1	1						2				
LAMI	1	1						2				
AGBR	. 1	_						0				
AGDI	1 1	1						1 2				
AGGU	1	1						2				
AGNI	1 1	· 1						2 2 2				
AGCH	1	-						1				
AGME								0				
AGNE	1 1							1 1				
ILFU	1	1			1			3				
RHSU	1	1	1	1			1	5 0				
ERST	1	1	1	1	1	1	1	7				
HYLE	1 1	1	1					2 2				
DYPI	1	1						0				
CYTR	1		1					2 2				
CYLA	1	1						2				
NºE:	42	23	6	2	4	1	2					

OM: Oriente medio.

PO: Paleártico oriental. EA: Etiópico africana.

EO: Etiópico oriental. NA: Norte de Améica.

SA: Sur de América.

OC: Oceania.
T: Total.
NOE: NO de especies

presentes.

Tabla 4.2.3

- 5) PENINSULA IBERICA (P.I): Comprende parte de la zona "1" y parte de la "2" de ILLIES (1978), dado que la constituyen el conjunto de cuencas hidrográficas que conforman la Península Ibérica (excepto la cuenca del Segura) más las Islas Baleares. La información base ha partido de RICO et al. (1990) y se ha completado con los estudios de SAINZ CANTERO (1989), GARCIA AVILES (1990), GARRIDO (1990), FERY & BRANCUCCI (1990) y comunicaciones personales de Ignacio Ribera y Carlos de Paz.
- 7) PENINSULA ESCANDINAVA (P.E): Formada por las zonas "20", "21", "22", "23" y parte de la "14" de ILLIES (1978), que corresponden a Noruega, área sur del Circulo Polar Artico, Suecia, Finlandia y regiones próximas de Rusia. La fuente de información principal ha sido la de LUNDBERG & (1986). Los trabajos de NILSSON (1982, 1984, 1986 a, b y c, 1989), LARSON & NILSSON (1985) y NILSSON & LARSON (1990), han servido para completar esta información.
- 8) PENINSULA BALCANICA (P.B): Comprende las zonas "5", "6" y "7" de ILLIES (1978), que incluyen gran parte de Yugoslavia y Bulgaria, Albania y Grecia. Las fuentes de información principal han sido ILLIES (1978) y FRANCISCOLO (1979), y se han completado con los trabajos de GUEORGUIEV (1977, 1981).

Finalmente, la lista de especies de cada una de las Areas también se ha corregido, completado y actualizado con la información recogida de la revisión de las publicaciones, desde sus inicios en 1976, de la revista BALFOUR-BROWNE CLUB.

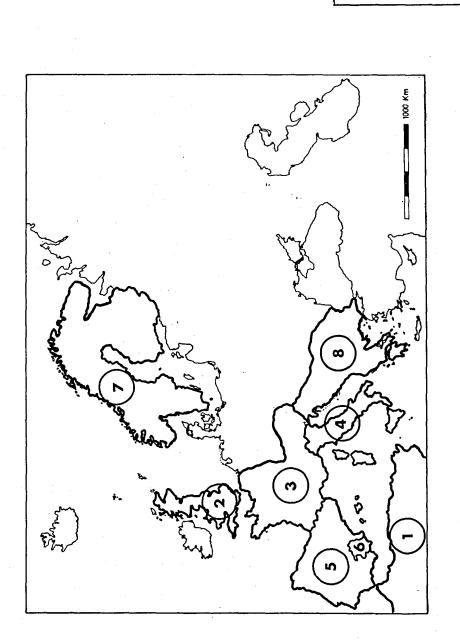
En el mapa 4.2.1, aparece representada la delimitanción de cada una de las Areas consideradas.

Como resultado final se ha obtenido una matriz de 372 especies por 8 Areas Biogeográficas, incluyendo la cuenca del río Segura (tabla 4.2.4 del apartado de afinidades faunísticas entre Areas Biogeográficas Paleárticas).

Esta matriz, contribuye a actualizar la distribución de muchas de las especies de Hydradephaga en cada una de las Areas seleccionadas, lo que sienta las bases para futuros estudios biogeográficos, más complejos. En este sentido, hay que matizar, que dada la extensión y número de especies citadas en las Areas estudiadas, es probable que exista alguna omisión, lo que no disminuye la representatividad de esta lista faunística.

La ordenación taxonómica de las especies se ha realizado por orden alfabético, siguiendo el criterio de ILLIES (1978). Además:

- . Se ha aceptado la nomenclatura utilizada por la revista de coleopterología BALFOUR-BROWNE CLUB, para la denominación de las especies en las que existe duda sobre cuál es su nombre válido, o que recientemente han cambiado su denominación. En todo caso, a dichas especies se les ha añadido la sinonimia más común.
- . Sólo se han considerado para este estudio, aquellas especies que no albergan ninguna duda sobre su presencia en las Areas seleccionadas.
- . No se han incluido la mayoría de las subespecies, dada la escasa validez que tienen muchas de ellas, el desconocimiento de su distribución y, en general, el grado de controversia que existe sobre las mismas.
- . Se les ha dado el nombre de "especies únicas" (U), aquellas que sólo aparecen en una de las Areas Biogeográficas seleccionadas, pero que tienen una distribución más amplia por otras Areas no consideradas, a diferencia de las especies endémicas.


En base a esta matriz, se han calculado algunas variables con sentido biogeográfico para cada una de las Areas estudiadas, como riqueza específica (S), riqueza genérica (G), relación especies/géneros (S/G), relación riqueza específica/superficie (S/A), número de endemismos (E) y diversidad genérica (DG), parámetro que da una idea del reparto de las densidades específicas de los géneros. Para su cálculo, se ha utilizado el índice de diversidad taxonómica (DG) de SIMPSON (1949), discutido y revisado por WILLIAMS (1951) y DEN BOER (1980), y aplicado por GIL (1985):

6: CUENCA DEL RIO SEGURA
7: PENINSULA ESCANDINAVA
8: PENINSULA BALCANICA

5: PENINSULA IBERICA

1: MORTE DE AFRICA 2: ISLAS BRITANICAS

3: FRANCIA 4: ITALIA

$$N(N-1)$$
 $N= n^{\circ}$ total de especies $n_i = n^{\circ}$ de especies en el género i $\Sigma n_i(n_i-1)$

Los cálculos de la relación riqueza de especies/superficie son aproximados, dada la dificultad para determinar la superficie exacta de várias de las Areas Biogeográficas seleccionadas, al tener unos límites imprecisos.

También, los valores de riqueza específica de alguna de las Areas seleccionadas, como la del Norte de Africa o la Península Balcánica, se deben considerar aproximados, por falta de estudios faunísticos específicos.

Mediante el empleo del Indice estadístico de Sokal (SOKAL & ROHLF, 1980), sobre la matriz de datos de presencia/ausencia de las 8 Areas Biogeográficas por 372 especies, se obtuvieron las afinidades entre dichas Areas.

El Indice de Sokal (S) se basa en una matriz de presencia/ausencia (1 y 0) a partir de la siguiente fórmula matemática:

$$S = \frac{(a + d)}{[a + d + 2(b + c)]}$$

donde

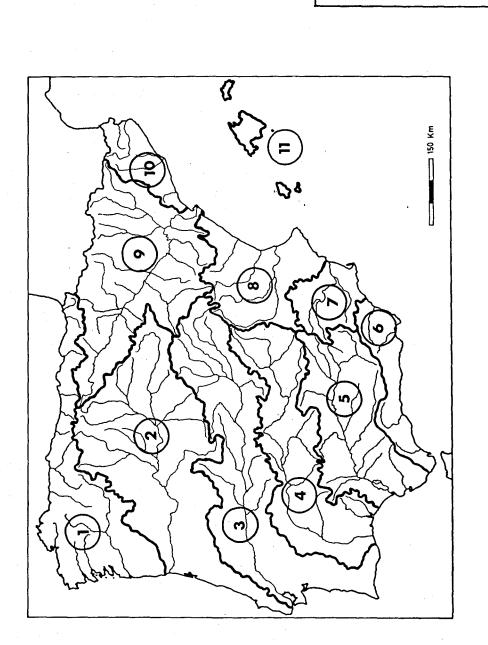
a: nº de especies presentes en los dos elementos comparados.

b: nº de especies que aparecen sólo en el primer elemento comparado.

c: nº de especies que aparecen sólo en el segundo elemento comparado.

d: nQ de especies que no aparecen en ninguno de los dos elementos comparados.

Posteriormente, a la matriz cuadrada resultante, en este caso de 8x8, se le aplicó una técnica de clasificación "single linkage" ("vecino más próximo"), mediante el programa SYSTAT versión 3.0 1985, para el cálculo del cluster y la representación espacial de las Areas seleccionadas.


Para el estudio comparativo de la fauna de las diferentes cuencas hidrográficas de la Península Ibérica, se ha elaborado una matriz de 185 especies repartidas en 11 Areas, a partir de las fuentes bibliográficas ya indicadas para la Península Ibérica, además de datos propios (tabla 4.2.9 del apartado de afinidades faunísticas entre cuencas hidrográficas Ibéricas). Las cuencas seleccionadas son las siguientes (mapa 4.2.2):

- 1) CUENCA NORTE (CNO): Formada por la cuenca del Miño y las pequeñas cuencas de la vertiente norte de la Cordillera Cantábrica.
- 2) CUENCA DEL DUERO (CDU): Formada por la propia cuenca del Duero y las pequeñas subcuencas de Beira Litoral y de Estremadura, (se ha considerado que las barreras geográficas entre estas cuencas y la cuenca del Duero, son menores que entre éstas y la del Tajo).
- 3) CUENCA DEL TAJO (CTA): Formada por la propia cuenca del Tajo y las pequeñas subcuencas de los ríos Sado y Mira, en el Baixo Alentejo y Algarve, respectivamente. Al igual que en el caso anterior, se ha considerado que las barreras geográficas de estas subcuencas son menores con la cuenca del Tajo que con la del Guadiana.

El resto de cuencas presentan los límites físicos aceptados por la mayoría de los estudios geográficos (ARENILLAS & SAENZ, 1987):

- 4) CUENCA DEL GUADIANA (CGA).
- 5) CUENCA DEL GUADALQUIVIR (CGR).

11: ISLAS BALEARES

1: CUENCA NORTE
2: CUENCA DEL DUERO
3: CUENCA DEL TAJO
4: CUENCA DEL GUADIANA
5: CUENCA DEL GUADIANA
6: CUENCA DEL GUADALQUIVIR
7: CUENCA DEL SEGURA
8: CUENCA DEL SEGURA
9: CUENCA DEL EBRO
10: CUENCA DEL PIRINEO ORIENTAL

- 6) CUENCA SUR (CSU).
- 7) CUENCA DEL SEGURA (CSE).
- 8) CUENCA DEL JUCAR (CJU).
- 9) CUENCA DEL EBRO (CEB).
- 10) CUENCA DEL PIRINEO ORIENTAL (CPO).
- 11) ISLAS BALERAES (BAL).

El listado de los nombres de las 185 especies se ha realizado siguiendo el orden empleado por RICO *et al.* (1990). Los criterios de selección y denominación de las especies han sido los mismos que para el caso de las Areas Biogeográficas Paleárticas:

- La denominación de las especies difiere con respecto a la información que aporta RICO et al. (1990), en los nombres que reciben dos de ellas: Laccophilus ponticus por L. variegatus y Rhantus suturalis por R. pulverosus, según las observaciones recogidas en BALFOUR-BROWNE CLUB, (ver capítulo de diagnosis de las especies, 4.1.3).
- . Se han eliminado aquellas especies que según RICO et al. (1990) presentan algún tipo de duda, y se han incluido las nuevas citas peninsulares hasta la entrega de la presente memoria: Bidessus coxalis=ibericus (Carlos de Paz, com. per.), Hydroporus productus (GARCIA AVILES & SOLER, 1990), Deronectes angusi (FERY & BRANCUCCI, 1990), Potamonectes mariae (MILLAN & ROCCHI, en prensa), Agabus neglectus (GARRIDO, 1990) e Hydaticus seminiger (Ignacio Ribera, com. per.).
- . Tampoco se ha tenido en cuenta la única cita de Suphrodytes dorsalis (SABATER et al., 1986), al entender que su presencia en la Península Ibérica

necesita ser confirmada, dado el caracter no especializado en Hydradephaga del artículo donde se publica.

- . Unicamente se han considerado para este estudio dos subespecies Potamonectes depressus elegans y Cybister tripunctatus africanus.
- . En este caso, se han catalogado como endemismos, las especies que sólo aparecen en una cuenca hydrográfica.
- . En la tabla 4.2.9, se indica además, la posibilidad de que determinadas especies se encuentren en otras cuencas donde todavía no han sido citadas (denominadas "dudas" y simbolizadas con un "2").

El estudio de las variables con sentido biogeográfico mencionadas anteriormente, ha seguido el mismo proceso para su cáculo, que el de las Areas Biogeográficas Paleárticas.

Para conocer la semejanza existente entre las cuencas hidrográficas, también se ha empleado el Indice de Sokal, en este caso a partir de una matriz de presencia/ausencia (1 y 0) de 11 cuencas por 185 especies. Posteriormente, a la matriz cuadrada (11x11) resultante, se le aplicó el programa SYSTAT versión 3.0 1985, para la obtención del cluster y la representación espacial de las cuencas comparadas.

Finalmente, para detectar las especies características de cada una de las Areas peninsulares definidas en la clasificación previa de las cuencas, se ha utilizado el tratamiento matemático de la teoría de la información (DE PABLO, 1987), basado en los parámetros Gi e I(V.S):

. Gi es la medida en que contribuye un sector a la información compartida de la especie con respecto a la sectorización realizada. Este parámetro detecta las especies que son características, por su presencia o ausencia, en un determinado sector o cluster, en relación con la frecuencia de aparición en dicho sector, el número de muestras del mismo y la frecuencia de aparición con el resto de sectores.

. I(V.S), es la información compartida global de la especie con respecto a la sectorización realizada.

4.2.3. Resultados y discusión.

ANALISIS COROLOGICO

Después del estudio minucioso de las tablas 4.2.1, 4.2.2 y 4.2.3, donde se indica la distribución peninsular, Paleártica Occidental y distribución general respectivamente, de las especies de Hydradephaga encontradas en la cuenca del río Segura, dichas especies se han agrupado en las siguientes categorías corológicas:

- Distribución Cosmopolita: Eretes sticticus (1, 1,56%).
- Distribución Euro-afro-indo-notogéica: Rhantus suturalis (1, 1,56%).
- Distribución Paleártico-etiópica: Haliplus lineatocollis (1, 1,56%).
- Distribución Mediterráneo-afro-indiana: Hidroglyphus signatellus (1, 1,56%).
- Distribución Mediterráneo-etiópica:

 Hydaticus leander y Cybister tr. africanus (2, 3,12%).

- Distribución Holártica*:

Coelambus impressopunctatus* y Potamonectes griseostriatus* (2, 3,12%).

- Distribución muy amplia en la Región Paleártica:
 - . Holopaleártica:

Laccophilus hyalinus y Agabus bipustulatus* (2, 3,12%).

. Eurosiberiana:

Haliplus obliquus, Agabus guttatus, A. paludosus* e Ilybius fuliginosus (4, 6,25%).

. Euroasiático-boreoalpina*:

Oreodytes septentrionalis (1, 1,56%).

. Euroasiático-mediterránea*:

Gyrinus caspius, G. distinctus*, Orectochilus villosus, Hydrovatus cuspidatus, Hydroporus nigrita*, Laccophilus minutus* y L. ponticus* (7, 10,94%).

. Euroasiático-mediterránea-macaronésica*:

Hydroglyphus pusillus*, Hydroporus discretus*, H. tessellatus*, Aghs biguttatus*, A. nitidus*, Dytiscus circumflexus* y Cybister lateralimarginalis* (7, 10,94%).

. Euroturánico-mediterránea:

Hydroporus marginatus, Agabus chalconatus y A. melanocornis* (3, 4,69%).

. Euroturánico-mediterráneo-macaronésica:

Aulonogyrus striatus, Coelambus confluens y A. nebulosus (3, 4,69%).

- Distribución europea:
 - . Oeste de Europa:

Stictonectes lepidus (1, 1,56%).

. Boreoalpina:

Oreodytes davisi (1, 1,56%).

. Endemismo ibérico-galo:

Stictonectes epipleuricus y Deronectes hispanicus (2, 3,12%)

- Distribución mediterránea:

. Holomediterránea

Peltodytes rotundatus e Hydroporus lucasi (2, 3,12%).

. Atlántico-mediterránea:

Haliplus mucronatus, Gyrinus urinator, Agabus brunneus y A. didymus (4, 6,25%).

. Atlántico-mediterráneo-macaronésica*:

Bidessus minutissimus (1, 1,56%).

. Mediterráneo-turánico-macaronésica:

Potamonectes ceresyi (1, 1,56%).

. Mediterráneo-asiático-macaronésica*:

Herophydrus musicus* (1, 1,56%).

. Mediterraneo-macaronésica:

Gyrinus dejeani, Hydroporus limbatus*, Potamonectes clarki y Meladema coriacea* (4, 6,25%).

. Mediterráneo-tirrénica*:

Noterus laevis*, Hyphydrus aubei*, Yola bicarinata, Graptodytes varius*, G. fractus*, Stictonectes optatus, Deronectes fairmairei* D. moestus y Dytiscus pisanus (9, 14,06%).

- Endemismo ibérico:

. Sur de la Península Ibérica:

Deronectes depressicollis, Potamonectes cazorlensis y Potamonectes mariae (3, 4,69%).

Entre paréntesis se indica el número de especies pertenecientes a cada categoría corológica y su porcentaje con respecto al total de especies encontradas en la cuenca del río Segura.

También se han señalado con asterisco (*) las variaciones que se han producido, tanto en las categorías corológicas como en la ubicación de las especies

en las mismas, con respecto a la información suministrada por FRANCISCOLO (1979). A continuación se comentan brevemente estos cambios:

- 1) Se ha considerado la distribución de *Coelambus impressopunctatus* y *Potamonectectes griseostriatus* de caracter Holártico, si atendemos exclusivamente al rango de especie (ALARIE & LECLAIR, 1988; FRESNEDA & HERNANDO, 1989) y no al de subespecie.
- 2) Dado que *Agabus bipustulatus* tiene una amplia repartición por toda la Región Paleártica, como se aprecia en las tablas 4.2.2 y 4.2.3, existiendo además citas de las Islas Canarias (MACHADO, 1987) o Nepal (BRANCUCCI, 1981), se ha creido conveniente incluir esta especie dentro de la categoría de especies Holopaleárticas.
- 3) Las numerosas citas pertenecientes a *Agabus paludosus*, de Europa septentrional, incluyendo el norte de Rusia (LUNDBERG &GUSTAFSSON, 1986), así como las de la región caucásica y Turquía, permiten ampliar el rango de distribución de esta especie de Medioeuropea (FRANCISCOLO, 1979) a Eurosiberiana.
- 4) Se ha sustituido el término "centroasiático" por "asiático", dado que las especies presentes en estas categorías llegan a alcanzar Nepal e incluso China (HOLMEN, 1987). Tal es el caso de *Gyrinus distinctus*, *Hydroporus nigrita*, *Laccophilus minutus* y *L. ponticus*, que ven ampliada su distribución a la categoría de Euroasiáticas, u *Oreodytes septentrionalis* a la de Euroasiáticaboreoalpina.
- 5) La presencia en las Islas Canarias de Hydroglyphus pusillus, Hydroporus discretus, H. tessellatus, Agabus biguttatus, A. nitidus, Dytiscus circumflexus y Cybister lateralimarginalis (FRANCISCOLO, 1979; MACHADO 1987), ha permitido crear un nuevo grupo corológico denominado Euroasiático-mediterráneo-macaronésico, que refleja el aumento de su distribución general. Para Hydroporus discretus, este aumento es más considerable, puesto que anteriormente estaba

dentro de la categoría Mediterráneo-turánico-macaronésico, y actualmente existen numerosas citas de ella en Europa septentrional (LUNDBERG, 1986).

- 6) La existencia de citas de *Agabus melanocornis* próximas al Mar Caspio (ILLIES, 1978), permiten incluir a esta especie en la categoría corológica Euroturánico-mediterránea, junto con *A. chalconatus*, lo que parece reafirma la hipótesis de CARR (1988) de que son especies con áreas de distribución muy solapadas (simpátricas).
- 7) La presencia de *Herophydrus musicus* en la Península Ibérica (MILLAN & SOLER, 1990), aunque cualitativamente es importante, al constatar la capacidad de esta especie para colonizar el continente europeo, propiamente dicho, no amplía su área de distribución general, muy característica, dado que se encuentra repartida en una franja relativamente estrecha al sur de la Región Paleártica a la que se ha denominado Mediterráneo-asiático-macaronésica.
- 8) Se añade la nueva categoría Atlántico-mediterráneo-macaronésica, para reflejar la distribución de *Bidessus minutissimus*.
- 9) Se amplía el área de distribución para Graptodytes fractus y Deronectes fairmairei, con anterioridad dentro de la categoría corológica Tirrénica según FRANCISCOLO (1979), a la nueva categoría Mediterráneo-tirrénica, por su presencia en el sur de Francia y en la Península Ibérica. Para el caso de Graptodytes varius, se ha considerado más exacto incluirla en esta categoría, al encontrarse ampliamente repartida por el norte de las cuencas mediterráneas, incluso en zonas de la cabecera de las mismas.
- 10) Especies como Hydroporus limbatus y Meladema coriacea por un lado, y Noterus laevis e Hyphydrus aubei por otro, actualmente se han considerado con una distribución más restringida que la de tipo Atlántico-mediterránea (FRANCISCOLO, 1979), y se han encuadrado dentro de las categorías Mediterráneo-macaronésica y Oeste-mediterráneo-tirrénica respectivamente. La explicación se basa en que ninguna de ellas ha colonizado, hasta el momento, áreas como las Islas Británicas, Dinamarca o el sur de la Península Escandinava, de marcado caracter

atlántico, aunque sí están citadas del norte de la Península Ibérica y de Francia. La cita de *Meladema coriacea*, en Holanda y Bélgica (FRANCISCOLO, 1979) se deben considerar de caracter esporádico.

El estudio de la distribución de las especies por cuencas hydrográficas dentro de la Península Ibérica (tabla 4.2.1), permite matizar alguna de las distribuciones generales para las especies del Segura, comentadas anteriormente:

- 1) Dentro de las especies Euroasiático-mediterráneas, *Gyrinus caspius*, *Laccophilus ponticus* y, sobre todo, *Hydrovatus cuspidatus*, parecen ser las más meridionales al no alcanzar la vertiente cantábrica.
- 2) Por el contrario, Peltodytes rotundatus e Hydroporus lucasi (este último con ciertas matizaciones por su posible confusión con H. planus, especie con una distribución mucho más amplia), clasificadas como Holomediterráneas, también son capaces de ocupar las cuencas atlánticas más occidentales. Este aspecto se acentúa más, cuando se observa en especies pertenecientes a la categoría Mediterráneo-tirrénica, como Noterus laevis, Hyphydrus aubei, Yola bicarinata, Graptodytes varius, Deronectes moestus y Dytiscus pisanus, por lo que podrían catalogarse mejor como especies Atlántico-mediterráneas occidentales.
- 3) Gyrinus dejeani e Hydroporus limbatus, aunque también están citadas en las cuencas más al norte de la Península Ibérica y podrían encuadrarse como especies Atlántico-mediterráneas-occidentales, probablemente, deben su presencia a condiciones microambientales especiales, debiéndose considerar, en todo caso, especies de caracter esporádico.
- 4) Las citas en Mallorca de Stictonectes epipleuricus, endemismo ibéricogalo de cotas alpinas y subalpinas, alimenta la hipótesis de que esta especie pueda estar en los arroyos de montaña del Atlas Magrebí, aún sin estudiar concienzudamente. De ser así, su distribución se prodría considerar de tipo Oeste-mediterráneo-magrebo-alpina.

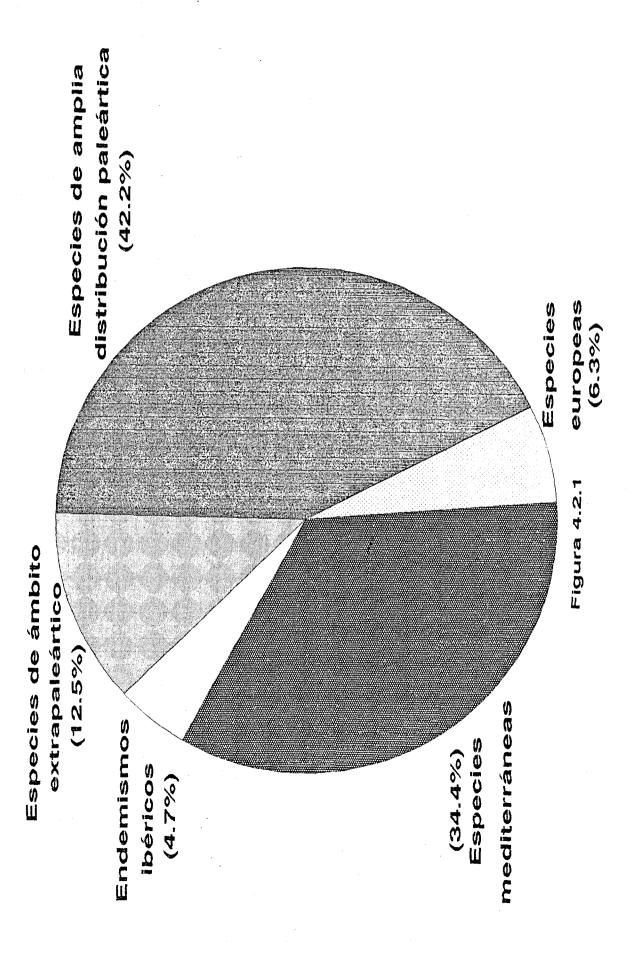
El reciente descubrimiento, de una especie muy emparentada, S. occidentalis (FRESNEDA & FERY, 1990), aconseja una revisión de las citas existentes de S. epipleuricus.

5) Finalmente, cabe resaltar la presencia de especies como Graptodytes fractus y Potamonectes ceresyi en cuencas del norte peninsular, a pesar de su marcado caracter mediterráneo (tablas 4.2.2 y 4.2.3). En este sentido dichas citas constituirían las localizaciones más septentrionales fuera del ámbito costero. De todos modos, no se ha considerado conveniente asociarlas a un nuevo tipo de distribución, dado que son fáciles de confundir con otras especies afines, como Graptodytes varius o G. ignotus y la reciente Potamonectes mariae (MILLAN & ROCCHI, en prensa) respectivamente. De todos modos, en caso de ser confirmadas, se deberían catalogar como especies esporádicas en la cuenca del Duero y cuenca Norte.

El siguiente paso ha consistido en analizar, de forma global, las categorías corológicas resultantes, calculando los porcentajes que presenta la fauna de Hydradephaga del Segura para cada una de ellas. Para ello se han reagrupado dichas categorías corológicas en 5 grandes bloques, de manera similar a como lo han hecho otros autores (VALLADARES, 1988; SAINZ-CANTERO, 1989; GARRIDO, 1990):

- . Especies de ámbito Extrapaleártico: 8 (12,50%).
- . Especies de amplia distribución Paleártica: 27 (42,19%).
- . Especies Europeas: 4 (6,25%).
- . Especies Mediterráneas: 22 (34,37%).
- . Endemismos Ibéricos: 3 (4,69%).

Como se puede observar (figura 4.2.1), el mayor porcentaje lo constituyen las especies de amplia distribución Paleártica, mientras que las endémicas presentan el más bajo, por lo que se puede considerar que la fauna de Hydradephaga de la cuenca del Segura no es muy peculiar. Unicamente las 3 especies endémicas de la Península Ibérica y, en concreto, *Potamonectes mariae*,


propia de la cuenca del Segura, se puede catalogar, de momento, como la especie típica de esta zona.

Aun así, las especies Mediterráneas constituyen el grupo más característico del área de estudio, puesto que, aunque su porcentaje es menor que el de las especies de amplia distribución Paleártica, muchas de éstas tienen un marcado caracter meridional, como ocurre con las especies (20) incluidas en las categorías Euroasiático-mediterráneas, Euroasiático-mediterráneo-macaronésicas, Euroturánico-mediterráneas y Euroturánico-mediterráneas-macaronésicas. En total, el 70,3% (45) de las especies de la cuenca del río Segura, incluyendo las endémicas, se podrían encuadrar en la categoría corológica de especies mediterráneas y/o con una destacada presencia en las cuencas mediterráneas (figura 4.2.2).

De estos datos, también se deduce la gran capacidad de dispersión y colonización que presentan la mayor parte de las especies capturadas en la zona de estudio, corroborado por el hecho de que el 84,37% (54) de las especies detectadas (tabla 4.2.1) en la cuenca del río Segura se encuentran en más de la mitad de las cuencas hidrográficas peninsulares (incluyendo las Islas Baleares) y el 54,69% (35) (tabla 4.2.2) están citadas para más de la mitad de las Areas Biogeográficas catalogadas por ILLIES (1978).

A un nivel taxonómico superior, los géneros Agabus e Hydroporus, de caracter septentrional en Europa, engloban el mayor número de especies con distribución más amplia, tanto en la cuenca del Segura, como en el resto de la Subregión Paleártica Occidental (tablas 4.2.1 y 4.2.2), lo que indica una cierta influencia de fauna de origen nórdico; mientras que son las especies pertenecientes a los géneros Stictonectes, Deronectes y, fundamentalmente, Potamonectes, las que tienen una distribución más localizada. Estos últimos junto con Herophydrus y Cybister, constituyen algunos de los géneros más meridionales de la Subregión Paleártica Occidental.

ANALISIS COROLOGICO GLOBAL

ANALISIS COROLOGICO GLOBAI

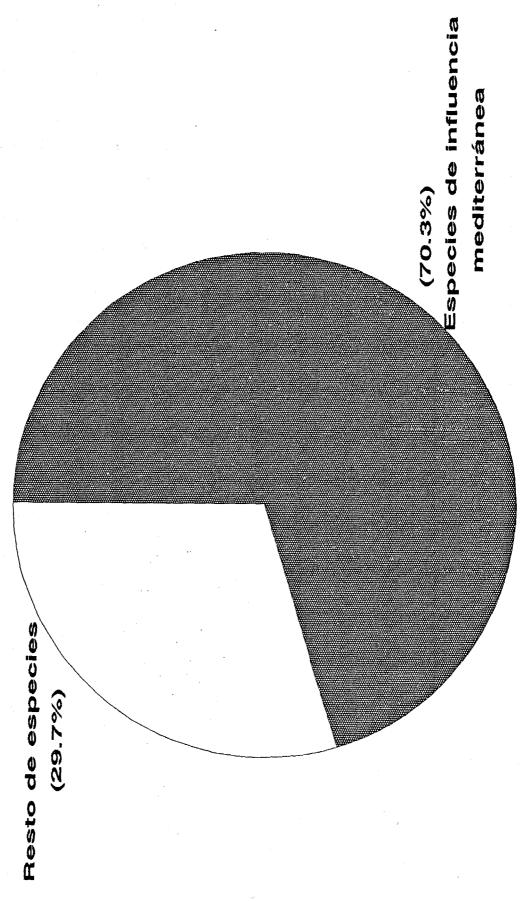


Figura 4.2.2

Como se ha comentado anteriormente, para explicar la distribución de los organismos en las áreas geográficas, hace falta introducir el pasado, la historia o la génesis del medio donde se han desarrollado (MARGALEF, 1974), a través de registros fósiles (por lo general muy escasos) y su ajuste con la evolución geológica de dichas áreas, en muchos casos compleja y de difícil interpretación.

Haciendo un recorrido histórico, hay que partir del Pérmico Superior (248 millones de años a. d. C.) para encontrar indicaciones de los primeros restos fósiles de interés, asociados a las formas de los actuales Coleópteros, aunque habría que ubicarse en el Triásico Superior (213 millones de años a. d. C.) para detectar los géneros *Triaplus*, *Sogdodromeus* y *Hadeocoleus*, de los que probablemente se derivaron los Hydradephaga actuales (PAULIAN, 1988).

Posteriormente, durante el Jurásico Medio y Superior (144 millones de años a. d. C.) y, sobre todo, en el Oligoceno y Mioceno (24 y 5 millones de años a. d. C. aproximadamente), estos organismos continuaron su camino evolutivo dando lugar a una gran parte de las familias conocidas en nuestros días, aunque hasta el Cuaternario (2 millones de años a. d. C.) no aparecen todas las familias actuales de Coleópteros Hydradephaga (PAULIAN, 1988).

Los cambios climáticos que tuvieron lugar durante la Era Cuaternaria, concretamente en el Pleistoceno, una vez formadas las biotas actuales, son los que explican, a escala general, la distribución geográfica actual de un gran número de taxones (PIELOU, 1979). Los cuatro periodos glaciales e interglaciales provocaron cambios drásticos en el ambiente de las zonas templadas y áreas adyacentes, sepultando gran parte de estas biotas epicontinentales bajo el hielo. En la Subregión Paleártica Occidental, las glaciaciones empujaron a la mayor parte de los Coleópteros hacia el Mediterráneo, el cual actuó como centro de refugio de especies y, posteriormente, como centro de origen y dispersión en los periodos inter y postglaciares.

Según las investigaciones llevadas a cabo por De Latin en 1949, existieron 9 centros-refugio secundarios en el Mediterráneo, constituidos principalmente, por formaciones peninsulares e insulares (LA GRECA, 1975). De todos estos centros, las Penínsulas Balcánica e Ibérica, son las que al parecer, jugaron el papel más importante (MARGALEF, 1983).

En años sucesivos, las condiciones climáticas favorables permitieron el asentamiento de las especies en sus zonas de refugio, o la difusión en mayor o menor medida, conformando la imagen biogeográfica actual.

La cuenca del río Segura (CSE), por su ubicación mediterránea y su proximidad al continente africano, debió constituir un punto de confluencia de especies de orígenes muy diferentes. Para conocer este aspecto se ha estudiado el grado de comunicación de su fauna actual de Hydradephaga, a través de las afinidades faunísticas que presenta con algunas de las Areas Paleárticas Occidentales de mayor interés biogeográfico, ya comentadas en el apartado de metodología (mapa 4.2.1) y de las que, seguidamente, se indica el porqué de su interés:

- . Norte de Africa (N.A): antiguamente unida al sur de la Península Ibérica. Representa la fauna de mayor influencia tropical.
- . Islas Británicas (I.B): caracter de insularidad y representativa de fauna atlántica y centroeuropea en general.
- . Francia (FRA): proximidad a la cuenca del río Segura y representativa, principalmente, de fauna centroeuropea.
- . Italia (ITA): caracter peninsular y proximidad a la cuenca del río Segura. Representa la fauna de mayor influencia mediterránea.
- . Península Ibérica (P.I): caracter peninsular y proximidad a la cuenca del río Segura.

- . Península Escandinava (P.E): constituye la región de origen de gran parte de las especies que se dispersaron durante las primeras glaciaciones.
- . Península Balcánica (P.B): caracter peninsular, constituyendo uno de los centros de refugio de especies más importante del Mediterráneo. Representa la fauna de caracter mediterráneo, influenciada por especies de origen turánico y centroasiático.

Las 372 especies registradas en las 8 Areas estudiadas, incluida la cuenca del río Segura (tabla 4.2.4), constituyen cerca del 75% de la fauna de Hydradephaga de la Subregión Paleártica Occidental, si se considera que su número total debe aproximarse a las 500 especies, después de las modificaciones realizadas (revisión de especies, nuevas citas, etc.) sobre las 403 especies de la lista faunística elaborada por L. Per Brinck y por M.A. Ienistea (ILLIES, 1978).

En la tabla 4.2.5, se representan los valores de los parámetros con sentido biogeográfico calculados para cada una de las Areas consideradas.

En esta tabla se aprecia, en general, un aumento de la diversidad taxonómica desde las zonas septentrionales a las más meridionales, de modo que, Areas circunmediterráneas, como el Norte de Africa y las Penínsulas de Italia, Balcánica e Ibérica, son las que presentan los valores más altos de diversidad genérica (DG), además del mayor número de endemismos; mientras que, las Islas Británicas y la Península Escandinava, regiones donde la fauna de Hydradephaga ha sido bién estudiada, registran los valores más bajos.

Si se comparan estos valores con la diversidad genérica de la cuenca del río Segura, se observa que ésta presenta un valor elevado, como cabría esperar, dada su ubicación en el Mediterráneo. Es decir, los resultados obtenidos confirman los planteamientos históricos previos, en los cuales, las Areas mediterráneas, y entre ellas la cuenca del Segura, recogen las faunas provenientes de regiones marginales, que en periodos climáticos desfavorables, encuentran en estas zonas las condiciones adecuadas para su supervivencia.

Por el contrario, la pobre densidad taxonómica de las regiones septentrionales, reflejan las dificultades de las biotas para regresar a sus áreas de origen, una vez restablecidas las condiciones climáticas normales, debido por un lado a los propios procesos adaptativos sufridos por las especies, y por otro, al clima poco propicio de dichas áreas de origen.

Tiene especial interés detectar el contraste existente entre el número de endemísmos (E) de la Península Ibérica,19 en total, y la falta de éstos en las Islas Británicas. Esto refleja que los procesos de especiación en la Península Ibérica han sido los más importantes de la Subregión Paleártica Occidental, para los Coleópteros Hydradephaga, aspecto que ya había sido observado por BERTRAND (1964), para otros Coleópteros. Esto es debido, probablemente, a mayor presencia de barreras geográficas y unas condiciones climáticas favorables, que impidieron el regreso de las especies a sus tierras de origen.

En cambio, en las Islas Británicas, el aislamiento marítimo no parece haber constituido un problema para este grupo faunístico, de forma que la inexistencia de barreras orográficas y la proximidad al continente propició, en organismos de gran capacidad de vuelo como los Hydradephaga, una fácil difusión entre la isla y el continente y viceversa, que dificultaron los procesos de especiación.

Una vez conocida la composición y características de la fauna de estas Areas, se han estudiado sus afinidades y, en concreto, cuál de ellas tiene una mayor semejanza o grado de comunicación faunística con la cuenca del Segura, para lo cual se utilizó el Indice de Similaridad de Sokal & Michener. Los resultados obtenidos de la aplicación de este índice sobre las matriz de presencia/ausencia de 372 especies y 8 Areas, aparecen en las tablas 4.2.6 (distancias) y 4.2.7 (coincidencias).

Dichos valores reflejan, que el Norte de Africa (0.772) y la Península Ibérica (0.670), son las Areas que presentan un valor de similitud más alto con la cuenca del Segura, mientras que la Península Escandinava tiene el más bajo (0.448). Pero también, que el resto de regiones tienen valores de semejanza relativamente elevados, por lo que en general, se puede considerar que existe una buena

ESPECIES/AREAS BIOGEOGRAFICAS

FAMILIAS	ESPECIES	N.A	I.B	FRA	ITA	P.I	CSE	P.E	P.B	TOTAL	E/U
GYRINIDAE											
	1.A.CONCINNUS		• • • • • • • • • • •							, ,	
2 GYRINUS	2.A.STRIATUS									b	
GIRINUS 2	.4.G.CASPIUS		1							λδ	
3	.5.G.COLYMBUS									3	
4	6.G.DEJEANI									6	
5	7.G.DISTINCTUS	1.	1	1	1	1	1	1	1	8	
6	8.G.MARINUS		1						1	5	
7		i	1	_					1	6	
8		1	1							3	
9	.11.G.OPACUS		1							2	
10	.12.G.PAYKULLI=BICOLOR	1								1	
11 12	.13.G.PULLATUS									7	U
13	.15.G.SUFFRIANI									5	
14	.16.G.URINATOR									7	
ORECTOCHIL.	.17.OBECTOCHILUS.VILLOSUS	3								8	
											
HYGROBIIDAE		1									
HYGROBIA	.18.H.HERNANNI	1.	1	1	:.1	1	. , , , , , , ,		1	f	• • • • • •
NOTERIDAE	***************************************										
NOTERUS	.19.N.CLAVICORNIS										
2	.20.N.CRASSICORNIS										
3	.21.N.LAEVIS										
CANTHYDRUS	.22.C.DIOPHTALMUS	1.			1	1				3	
		 									
HALIPLIDAE											
PELTODYTES	.23. P. CAESUS	1	1							6	
BRYCHIUS	.24.P.ROTUNDATUS		1	, =						0	
2	.26.B.GLABRATUS									1	1
HALIPLUS	.27. H. ALSATICUS										
2	.28.H.ANDALUSICUS										
3	.29.H.APICALIS										
4	.30.H.CONFINIS										
5	.31.H.FLAVICOLLIS										
6	.32.H.FLUVIATILIS										
1	.33.H.FULVICOLLIS										
8	.34.H.FULYUS									1	t
9	.35.H.FURCATUS										
10	.37.H.HEYDENI										
11	**************************************			1,,	,,,,,,	1			, , , , , 1 , ,	0	1

FAMILIAS	ESPECIES	N.A	G.B	FRA	ITA	P.I	CSE	4.1	P.B	TOTAL	E/I
HALIPLIDAE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
HALIPLUS	.38.H.IMNACULATUS		1	1		1		1		4	
13	.39.H.INTERGECTUS	 						1		11	.,,,,,
14	.40.H.LANINATUS	 ,,,,,,,	1	1	1				1	4	
15	.41.H.LINEATOCOLLIS	1	1	1,,,	1	1	1	1	1	8	
16	.42.B.LINEOLATUS	 	1	1	1			1		4	ļ
17	.43.H.MUCRONATUS	1	1	1	1	1	1		1	7	
18	.44.H.OBLIQUUS	l1	1	1	1	1	1	1	1	8	,
	.45.H.RUBIDUS			1	1	1				3	ļ.,.,,
	.46.H.RUFICOLLIS									5	
	.47.H.RUFICEPS						The second second		5 5 5	1 '	
	.48.H.SIBIRICUS									11	
23	.49.E.VARIEGATUS		1	1	1	1.		1	. 1.	6	
	.50.H.VARIUS									1	
	.51.H.WEHNCKEI										
6.7			-		eli gille kikisari Talah kiki				<i>-</i>		
DYTISCIDAE .											
	.52.L.HYALINUS										
2 .	.53.L.NINUTUS	1	1	1	1	1	1	1	1	8	
3	.54.L.PONTICUS=VARIEGATUS	1	1	1	1	1	1	1	1	8	
4	.55.L.STROEHNI							1		1	
HYPHYDRUS .	.56.H.AUBEI	1		1		1.,	1		1	6	
2	.57.H.SANCTUS				1				1	2	
3	.58.H.OVATUS		1	1	1	1		1	1	6	
IYDROVATUS .	.59.H.CLYPEALIS	1	1	1		1			1	l6	
2	.60.H.CUSPIDATUS	1		1	1	1	1		1	6	
	.61.H.SIMPLEX									3	
	.62.B.ALIENUS									1	
	.63.B.COXALIS=IBERICUS									,	
	.64.B.DELICATULUS.									1	
	65.B. EXORNATUS					and the second	14.4	1000		1	
	.66.B.GOUDOTI									1	, , , , , ,
	.67.B.GROSSEPUNCTATUS.										
	.68.B.MINUTISSIMUS									,	
こうときも とき じょうりょう	.69.B.NULLERI									1	
0	.70.B.NASUTUS	* * * * * * * *	•••••				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• • • • • • •			• • • • • •
	71.B.PUNILUS										
	72.B.SHARPI										
	73.B.SAUCIUS										
	74.B.TIRAGALLOI										
	75.B.UNISTRIATUS										
	76.H.CONFUSUS										
	77.H.HAMULATUS										
3 .	78.W.PUSILLUS	1	1	1	1	1	1	1	1	8	
	79.H.SIGNATELLUS										
	80.Y.BICARINATA										

FAMILIAS	ESPECIES	N.A	G.B	FRA	ITA	P.I	CSE	P.E	P.B	TOTAL	E/U
DYTISCIDAE											
COELANBUS	.81.C.CONFLUENS	1	1	1	1	1	1	1	1	8	
2	.82.C.ENNEAGRANNUS										
3	.83.C.IMPRESSOPUNCTATUS		1	1	1	1	1	1	1	7	
4	.84.C.LEBNAEUS	1	,,,,,,,	1	1	1		.,	1	5	,,,,,,,
5	.85.C.MARKLINI	, ,		1		1		1		3	
6	.86.C.NIGROLINEATUS=LAUTUS		1					1		2	
7	.87.C.NOVENLINEATUS										
8	.88.C.PALLIDULUS	l1		1	1	1			1	55	
9	.89.C.PARALLELOGRANUS										
10	.90.C.SAGINATUS										
HYGROTUS	.91.H.DECORATUS		1	1	1			1	1	5	
2	.92.H.INAEQUALIS										
3	.93.H.QUINQUELINEATUS										
4	.94.H. VERSICOLOR.										
nedudhaudha	.95.H.NUSICUS										
2	96.H.GUINEERSIS										
	97. S. DORSALIS.										
HYDROPORUS	.98.H.ACUTANGULUS										
2	99. H. ANALIS	1	*******		1	1	* * * * * * * * *		1	1	
3	100.H.ARGUSTATUS.										1
ı	101.H.ARCTICUS										
	102.H.BASINOTATUS										
Ĵ	103. H. BODENEYERI										
0	104.H.BRANCOI					******			******	' ' ' '	1
7	105.H.BRANCUCII					1 1 1		• • • • • • •	******	1	11
1											1
9	106.H.BREVIS										0
10	107.H.BKUCAL										1
11											
12	109.H.DISCRETUS										
13	110. H. DOBROGEANUS			******		******				11	
14	111.H.ELONGATULUS	1									
15	112.H.ERYTHROCEPHALUS	1								1	į.
1	113.H.EUGENIAE									1	ł
17	114.H.FERBUGINEUS										
18	115.H.FOYEOLATUS										
19	116.H.FUSCIPENNIS										
20	117.H.GLABRIUSCULUS										
21	118.H.GRIDELLII										
22	119. H. GUEORGUIEVI										
23	120.H.GYLLENHALLII=PICEUS										
24	121.H.INCOGNITUS										
25	122.H.IONICUS										
26	123.H.JONICUS										
27	124.H.JURJURENSIS										
28	125.H.KRAATZI			1	1			1.	1.		·
29	126.H.LAPPONUM										
						.,,,,,,,					

Tabla 4.2.4 (continuación)

DYTISCIDAE HYDROPORUS 31 32 33 34 35	127.H.LINBATUS													
31 32 33 34	128.H.LONGICORNIS	1		 										
32 33 34		1					1	1	1		• • • •	1	6	
33 34	•						1			1		,,,,,	3	
34	129.H.LONGULUS							1				1	6	
	130.H.LUCASI		****	 			*****	1	1			1	6	
35	131.H.NARGINATUS	1		 *				1,.	1			1	7	
VV	132.H.MELANABIUS	4		 ****				1		1		1	6	
36	133.H.MEMNONIUS		1	 1			****					1	7	
37	134.H.NORI=MELANOCEPHALUS												4	
- 38	135.H.NEGLECTUS												3	
39	136.H.NEVADENSIS			 			·. *****	1					1	
40	137.A.NIGELLUS=TARTARICUS	 ,,,		 . , . , .	1.		1,	1		1		1	5	
41	138.H.NIGRITA			 1	1.		1	1	1	1		1	7	
42	139.H.NIVALIS			 	1.		1	1	,,,,,,,,			1	4	
43	140.H.NORMANDI			 	1.			1					2	
44	141.A.NOTATUS	 								1			1	.,
45	142.A.OBSCURUS											1	6	
46	143.H.OBSOLETUS											1	7	
	144.H.OBIENTALIS	1										1	1	
	145.H.PALUSTRIS												6	
	146.H.PICICORNIS				_							i	1	
1	147. B. PLANUS.												7	
	148.H.PRODUCTUS	1	-,	 *				,,,,,,			,		, , ,	
	149.H.PUBESCENS												6	
	150.A.PUBERULUS	1		 									1	
	151.H.REGULARIS						, .	,					1	
	152.H.RUFIFRONS			 		,							2 1	
	153.H.SANFILIPPOI												1	
	154.H.SCALESTANUS													
1	155.H.SPRINGERI	1 - 7 -		 		. ,						, .	5	
				 			~							
[156.H.STRIOLA			 								1	5	
1	157.A.SUBNUTICUS					,],l
	158. H. TESSELLATUS	1		 									7	
	159.H.TRISTIS											l	6	
	160. R. TONENTOSUS													
. 1	161. H. UMBROSUS	ŧ .												1
	162.H.VAGEPICTUS													
	163.H.VESPERTINUS	1												
	164.H.ZIMNERNANNI													
	165.L.OBLONGUS													
	166.G.AEQUALLIS													
	167.G.AUBASIUS													
	168.G.ATLANTIS													
4.	169.G.BILINEATUS			 l	1		1	1		1		1	6	
	170.G.BRENONDI													
6	171.G.FLAVIPES=CONCINNUS]	1	 l	1		1	1				1	6	

FAMILIAS	ESPECIES	N.A	G.B	FRA	ITA	P.I	CSE	P.E	P.B	TOTAL	E/U
DYTISCIDAE											
GRAPTODYTES	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , ,				, , , , , , , ,					
7	172.G.FRACTUS	1		1	1	1	1			5	
8	173.G.GRANULARIS		1	1	1	1		1	1	6	
9	174.G.IGNOTUS	1		1.	1	1			1	5	
10	175.G.PHRYGIUS								1	1	1
11	176.G.PICTUS.		1	1	1	1		1	1	6	
12	177.G.PIETRII	1			1					12	
13	178.G.PSEUDOPHRYGIUS									11	1
14	179.G.VARTUS									6	
15	180.G. VETERATOR					* * * * * * * * * *	*******		1	2	
	181.R.BIMACULATUS					1			, , , , , , , , ,	3	
PHILIPOPILES	182 R. CRUX									11110	* * * * * * *
4.	183.R. NUMIDICUS									1	· · · · · · · ·
3	184.R.SEXGUTTATUS									*****	
4										1	
SIETTITIA	185. SIETTITIA. AVENIONENSIS	1								11	1
2	186.S.BALSETENSIS										1
METAPORUS	187.M.MERIDIONALIS									1, 4	
SCARODYTES	188.S.HALENSIS	l								7	
2	189.S.MALICKYI									11	0
- 3	190.S.SAVINENSIS									2	
OREODYTES	191.O.ALPINUS		1					1		2	
2	192.O.DAVISI		1	1.	1	1	1		1	6	,
3	193.O.SANMARKII		1	1.	1	1		1	1	6	
. 4	194.O.SEPTENTRIONALIS		1	1.	1	1	1	1	1	17	
PORHYDRUS	195. P. GENEI									4	
9	196.P.LINEATUS									5	
3	197. P.OBLIQUESIGNATUS									12	
	198. P. VICINUS	!									
STICTOTARS	199.STICTOTARSUS.12-PUSTULATUS									1	1
2110101AB3	200.S.PROCERUS										
	201.STICTONECTES.EPIPLEURICUS										
SITUIUNEUI.	202.S.ESCHERI										
6											
3	203.S.FORNOSUS										
4	204.S.LEPIDUS										
5	205.S.OCCIDENTALIS					1				J1	
6	206.S.OPTATUS										
7	207.S.RUFULUS										
DEBONECTES	208.D.ALGIBENSIS										
2	209.D.ANGUSI					, 1				. 1	1
3	210.D.AUBEI			1.	1.	1			1.	. 4	
4	211.D.BERTRANDI										
5	212.D.BICOSTATUS										
f 6	213.D.CONSTIPENNIS										
7	214.D.DELAROUZEI.										
8	215. D. DEPRESSICOLLIS										
Ĭ	216. D. FAIRNAIREI										
9	210. U. FAINMAIBLI	11.	********	1.	1.	1 .	1 .		, , , , , , 1 ,	. (

Tabla 4.2.4 (continuación)

FAMILIAS	ESPECIES	N.A G.B FRA ITA P.I CSE P.E P.B TO	DTAL E
DYTISCIDAE			
DERONECTES		***************************************	
10	217.D. FERRUGINEUS		1
11	218. D.HISPANICUS		3
12	219.D. LAREYNIEI		1
13	220.D.LATUS		6
14		1	6
15	222.D.OPATRINUS		2
16	223. D. PARVICOLLIS.		1
17	224 D. PEYERINHOFFI		1
18	225.D.PLATYNOTUS		
19	226.D.SAHLBERGI	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
20		The second secon	
21		1	
POTANONECT.		and the solution of the soluti	4
9			9
3			4
,			1
7. 			9
c		1	
7			
8		1. 3. 4. 3. 1. v. 3. 3. 4. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	
0	1	1	
10	,		
•••			
11		ن دارهٔ میرانسیاسیولیسیاسیاسیاسیاس	
12			
13			
14			
15			
16			
17		aalista kaa aa iyoo paliyee ka aaska dalka ka ka ka aa aa ba	
		ayaa kaaliga araah in kalibi digilaa isaan ayaan magaligi itali 🗀	
			3
21	249.P.TURCA	l	2
		mkaanaan ahaan laga laga ahaan ka ahaan la la	
2	252.C.HAENORRHOIDALIS	~ handlen 1. a 1 1	
	1		
		the contract of the contract o	2
, i ". 11	#*************************************		

Tabla 4.2.4 (continuación)

FANILIAS	ESPECIES	N.A	G.B	FRA	ITA	P.I	CSE	P.E	P.B	TOTAL	E/U
DYTISCIDAE						,		,			
AGABUS	256.A.ADPRESSUS	[1		1	0
2	257.A.AFFINIS		1	1	1			1	1	5	
	258.A.ALBARRACINENSIS										1
4	259.A.ARCTICUS										
5	260.A.BALCANICUS	1								1 1	1
-	261.A.BEDELI									1	0
	262.A.BIGUTTATUS									7	
8	263.A.BIGUTTULUS									11	0
9	264.A.BINOTATUS									,	
10	265.A.BIPUSTULATUS									Q	,,,,,,,,,
	266.A. BRUNNEUS.	1								7	
	267.A.BULGARICUS										1
	268.A.CARABOIDES	1								, , , ,	
	269.A. CEPHALOTES										
14											
	270.A.CHALCONATUS	1									
16	271.A.CLYPEALIS										0
	272.A. CONFINIS										0
	273.A. CONGENER	1								1	
	274.A.CONSPERSUS										
20	275.A.COXALIS			• • • • • •		****				1	0
	276.A. DETTNERI										
	277.A.DILATATUS	1								1	
23	278.A.DYDINUS	1.	1	1.	1	1.			1	7	
24	279.A.ELONGATUS										0
25	280.A.ERICHSONI=NIGROAENEUS				1			1		2	
26	281.A. FUSCIPENNIS	.,,						1		11	0
27	282.A.GUTTATUS		1	1.	1	1.	1	1	1	17	[
28	283.A.HEYDENI					1.				11	l1
29	284.A.HOZGARGANTAE										1
30	285.A. INFUSCATUS										10
31	286.A. LABIATUS.										1
32	287.A. LAPPONICUS	1									1
33	288.A. LEVANDERI = APPROXIMATUS										n
34	289. A. MELANABIUS		1	1	1			1	1	,,,,,,	
35	290.A.MELANOCORNIS.										
36	291.A.MOESTUS										
37	292.A.NEBULOSUS									1	1
38	293. A. NEGLECTUS									1	,
39	294.A.NITIDUS	1									1
40	295.A.OPACUS										
	296.A.PALUDOSUS	1								1	1
42	297.A.PSEUDOCLYPEALIS=HARALDI										
43	298.A.PSEUDONEGLECTUS				1					. 1	1
43	298.A.PSEUDONEGLECTUS	<u> </u>			1	• • • • • •			,,,,,,,	1	

Tabla 4.2.4 (continuación)

FANILIAS	ESPECIES	n.	A G.B	FRA	ITA	P.I	CSE	P.E . P.B	TOTAL	E/U
AGABUS	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		·			, ,	•••••	,,,,		
44	299.A.SERBICORNIS				·			1	1	0
45	300.A.SETULOSUS								11	
46	301.A.SOLIERI			1	1	1		11	5	
47	302.A.STRIOLATUS				1			1	4	
48	303.A.STURNII									
49	304.A.SUBTILIS									
50	305.A.THONSONI		*********					1		
51	306.A.ULIGINOSUS		1	1	1			1 1		
52	307.A.UNDULATUS									
53	308.A.UNGUICULARIS									
	309.A. WASASTJERNAE									
54										
55	310.A.ZAITZENI									
56	311.A.ZETTERSTEDTI									
ILYBIUS	312.I.AENESCENS									
2	313.1.ANGUSTIOB									
3	314.I.ATER									
4	315.I.CRASSUS									
125 S 4 S	316.I.FENESTRATUS									
. 6	317.1.FULIGINOSUS		11.	1	1	1	1	1 1	8	
	318.I.GUTTIGER]						1	3	
8	319.I.PICIPES									
q	320.I.MERIDIONALIS									
10	321.1.QUADRIGUTTATUS=OBSCURUS									
- 11	322.I.SINILIS									
12	323.1.VITTIGER									
13	324.I.SUBARNEUS									
	325.R. BISTRIATUS-ABERRATUS									
BHANTUS										
2	326.R.CONSPUTUS								1	· · · · · · · · · · ·
3	327.R. EISOLETUS								5	
4	328.B.FENNICUS								2	
5	329.B.FRONTALIS=NOTATUS									
6	330.R. (NARTUS).GBAPII	• • • • • • • • • • • • • • • • • • • •	1.	1	1			11	5	
1	331.R.BISPANICUS		1	1,;		1			3	
8	332.R.LATITANS			1	1				,3	
9	333.R.NOTATICOLLIS							1	2	
10	334.B. PUSTULATUS	1 .								
1	335.R.SUTURALIS=PULVEROSUS									
2	336.R.SUTURELLUS=BISTRIATUS									
OLYMBETES	337.C.DOLABRATUS									
2	338.C. FUSCUS									
	339.C.SCHILDENECHTI									
	340.C.PAYKULLI									
J	341.C.STRIATUS			I		*****		1 1	3	

Tabla 4.2.4 (continuación)

PANILIAS	ESPECIES .	N.A	G.B	FRA	ITA	P. I	CSE	P.E	P.B	TOTAL	E/E
DYTISCIDAE	**************										
MELADENA	342.M.CORIACEA	1		1	1	1	1		1	6	
ERETES	343.E.STICTICUS	1		1	1	1	1		1	6	
	344.H.ARUPEX=MODESTUS									1	(
2	345.H.CONTINENTALIS=STAGNALIS	 		1	1		,,	1	1	4	
	346.H.DEBARROS-NACHADOI									1	1
4	347.H.GRAMNICUS			1	1				1	3	
5	348.H.LEANDER	1		1	1	1	1		1	6	
6	349.H.SEMINIGER	 	1	1	1	1		1	1	6	
9	350.H.TBANSVERSALIS		1	1	1			1	1	5	
GRAPHODERUS	351.G.AUSTRIACUS			1	1			1	1	4	,,,,,,
2	352.G.BILINEATUS	l	1	1	1			1	1	5	
3	353.G.CINEREUS	l	1	1	1	1		1	1	16	
4	354.G.PICIVENTRIS									1	,.
5	355.G.VERBUCIFEB										
6	356.G.ZONATUS									5	
ACILIUS	357. A. CANALICULATUS									15	
2	358.A.DUVERGERI	1								14	
3	359. A. SULCATUS.	1							1	7	
DYTISCUS	360.D.CIRCUNCINCTUS	ı								5	
2	361.D.CIBCUNFLEXUS.								1	8	
า	362.D.DINIDIATUS							_	1	ξξ	
Å	363. D. LAPPONICUS.								*******		
T .	364.D.LATISSINUS.									9	
S S	365.D. MARGINALIS.								1	6	
7	366. D. PISANUS				1	1	1		1	6	
0	367. D. SENISULCATUS	1			1	1		1	1	7	
CYBISTER	368. C. LATERAL INARGINALIS	1					1	1	1	,,,,	
CIBIDIER 5	369. C. REICHEI	1								1	
2	370.C.SENEGALENSIS										
ن ب	371.C.TRIPUNCTATUS.AFRICANUS										1
4		1								1	
5	372.C.VULNERATUS	1				1	• • • • • • •		• • • • • • •	13	

N.A:	Norte	de	Africa.
T D	T 1	n •	

I.B: Islas Británicas.

FRA: Francia.

ITA: Italia.

P.I: Península Ibérica.

C.S: Cuenca del río Segura.

P.E: Península Escandinava.

P.B: Península Balcánica.

Nºspp: № de especies por área biogeográfica.

Endemismos: Nº de endemismos.

Total: № de veces que aparece una especie en las distintas áreas biogeográficas.

E/U: Especies endémicas (1) y únicas (0) de cada área biogeográfica.

Tabla 4.2.4 (continuación)

PARAMETROS DE INTERES BIOGEOGRAFICO GRAPICO

i							
	P. IBERICA C. SEGURA	P. ESCANDINAVA P. BALCANICA	ITALIA	I. BRITANICAS	N.AFRICA	AREAS	
8	527454 18254	1110896	309943	228343	685200	Α	PARA
Superficie Riqueza de Riqueza de Relación es Diversidad Relación ri	183 64	186 211	220	146 216	124	S	METROS
Table Superficie en Km² Riqueza de especies Riqueza de géneros Relación especies/géneros Diversidad genérica Relación riqueza de espec	42 28	40	45	36	40	G	PARAMETROS DE INTERES BIOGEOGRAFICO
	4.36 2.29	5.27	4.89	4.05	3.10	s/c	ES BIOGE
Tabla 4.2.5 śneros especies/superficie	15.04 20.78	15.33	17.64	12.65	22.23	DG	OGRAFICO
5 Sperficie	3.20 35.06	4.00	7.10	6.39	1.81	s/A	
	19 1	12) ဖွား	ω O	6	145	4 W 1 1 1 1

DISTANCIAS

	N.A	G.B	FRA	ITA	Р. І	CSE	P.E	P.B
N.A	1.000	0.532	0.535	0.605	0.718	0.772	0.340	0.567
G.B	0,532	1.000	0.764	0.656	0.597	0.613	0.764	0.683
FRA	0.535	0.764	1.000	0.789	0.697	0.545	0.637	0.751
ITA	0.605	0.656	0.789	1.000	0.702	0.551	0.508	0.751
P.I	0.718	0.597	0.697	0.702	1.000	0.670	0.416	0.632
CSE	0.772	0.613	0.545	0.551	0.670	1.000	0.448	0.556
P.E	0.340	0.764	0.637	0.508	0.416	0.448	1.000	0.518
P.B	0.567	0.683	0.751	0.751	0.632	0.556	0.518	1.000

Tabla 4.2.6

COINCIDENCIAS

a	ь	С	Sa	Sb	Nab					
1	1	124	0	0	246	ayb:	. A	rea	S	s com
1	2	47	77	96	150					
1	3	84	40	132	114					
1	4	99	25	121	125	t				arece
1	5	101	23	81	165	Nab: N				
1	6	52	72	12	234	ł				
1	7	32	92	152	94	1				
1	8	87	37	123	123					
2	2	143	0	0	227	1				
. 2	3	136	7	80	147	1				
2	4	118	25	102	125	1				
2	5	88	55	94	133					
2	6	32	111	32	195	1				
2	7	120	23	64	163	ł				
2	8	118	25	92	135	1				
3	3	216	0	0	154					
3	4	179	37	41	113					
3	5	143	73	39	115	1				
3	6	56	160	8	146	1				
3	7	133	83	51	103	1				
3	8	167	49	43	111	1				
4	4	220	0	0	150	1				
4	5	146	74	36	114	1				
4	6	59	161	5	145	1				
4	7	111	109	73	77	İ				
4	- 8	169	51	41	109	1				
5	5	182	0	0	188	1				
5	6	62	120	2	186	1				
5	7	75	107	109	79					
5	8	128	54	82	106					
6	6	64	- 0	0	306	1				
6	7	22	42	162	144					
6	8	55	9	155	151	1				
7	7	184	0	0	186	1				
7	8	108	76	102	84	i				
8	8	210	0	0	160	1				
	ş	1	j) !		1				

Tabla 4.2.7

comunicación entre la fauna de Hydradephaga de la cuenca del Segura con las del resto de Areas Paleárticas, siendo ésta mucho mayor, como cabía esperar, con la mediterránea.

Merece la pena destacar la elevada afinidad faunística entre las Islas Británicas y la cuenca del Segura, en comparación con otras regiones como Italia o los Balcanes, lo que parece indicar la existencia de un pasillo de difusión de espécies durante las glaciaciones del Pleistoceno, desde las regiones más septentrionales del norte de Europa hacia la Península Ibérica, cuya primera escala habría sido Inglaterra, y su posterior refugio, el sur de la Península Ibérica.

También se aprecia que la afinidad faunística de la cuenca del Segura es un poco mayor, con la Península Balcánica, que con Italia, a pesar de la proximidad de esta última, lo que confirma la gran importancia de los Balcanes como centro de refugio de especies durante las glaciaciones del Pleistoceno. La presencia de los Alpes y la inundación del actual Valle del Po, durante este periodo histórico, pudo constituir una barrera de difícil acceso para la penetración de muchas especies de Hydradephaga hacia Italia.

La posterior clasificación de estas Areas, a través de un análisis de cluster (figura 4.2.3), ha permitido detectar únicamente dos sectores o grupos, con identidad propia:

- . Grupo A: formado por las Penínsulas Balcánica, Escandinava e Italiana, Francia, y las Islas Británicas.
- . Grupo B: formado por el Norte de Africa, la Península Ibérica y la cuenca del río Segura.

La gran capacidad de dispersión de los Hydradephaga, dificulta la delimitación de Areas zoogeográficas muy definidas, al presentar faunas de origen muy heterogéneo. Sólo, la relación de sus especies con la fauna norteafricana ha permitido la clasificación de estos dos grandes bloques, de manera que el grupo

A tendría un grado de comunicación faunística, relativamente pobre, con las especies del Norte de Africa, y una mayor influencia de especies centroeuropeas y septentrionales; mientras que el grupo B, estaría mucho más influenciado por la fauna de Hydradephaga norteafricana, como consecuencia de la unión durante el Mioceno (25 millones de años a. d. C.), de las provincias actuales de Cádiz, Málaga, Granada, Almería y Murcia, con las tierras del Rif.

La representación espacial de las 8 Areas (variables) estudiadas (figura 4.2.4 a y b), a partir de las coordenadas obtenidas para las mismas, mediante la aplicación del programa SYSTAT (tabla 4.2.8) sobre la matriz cuadrada de afinidades faunísticas, ha posibilitado determinar, con mayor exactitud, el grado de comunicación entre dichas Areas. Así:

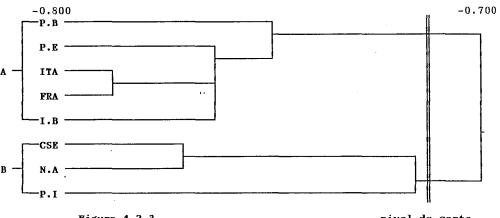
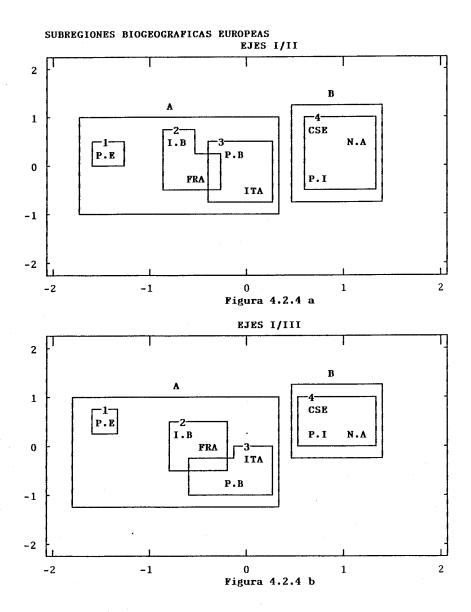
- . En el grupo A, se observa una clara separación entre la fauna de Hydradephaga de las regiones meridionales, como Italia y la Península Balcánica, de la de las regiones atlánticas, y septentrionales, como las Islas Británicas y sobre todo, la Península Escandinava. Esto permitiría definir 3 Subregiones biogeográficas nuevas dentro de este grupo, a las que se les ha denominado:
 - Subregión Boreal-europea (1).
 - Subregión Atlántico-centroeuropea (2).
 - Subregión Mediterráneo-europea (3).

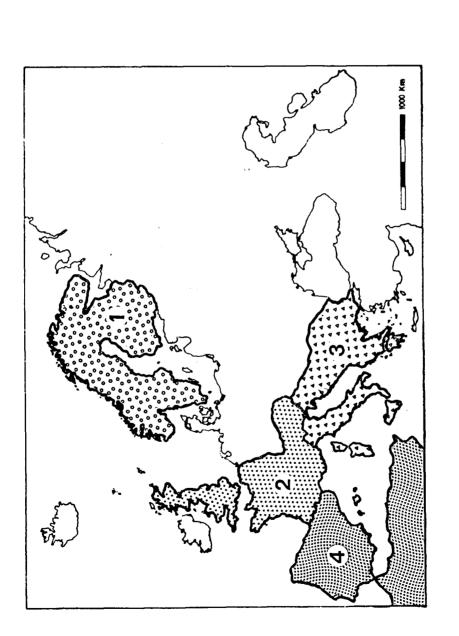
En este conjunto de áreas, Francia se encontraría en una situación intermedia, entre las Subregiones Mediterráneo-europea y Atlantico-centroeuropea, aunque más próxima a esta última.

- . En el grupo B, la representación espacial no permite delimitar nuevas Subregiones biogeográficas, por lo que en su conjunto formaría una única unidad a la que se le ha denominado:
 - Subregión Mediterráneo-ibérico-norteafricana (4).

La localización de estas Subregiones aparece reflejada en el mapa 4.2.3.

CLASIFICACION DE LAS AREAS BIOGEOGRAFICAS PALEARTICAS


Figura 4.2.3

nivel de corte

COORDENADA	S EN TR	ES DIMI	ENSIONES
VARIABLE	EJE I	11	III
N.A I.B FRA ITA P.I CSE P.E P.B	-0.67 -0.43 0.06 0.73 0.73	0.26 0.25 -0.39 -0.60 -0.48 0.61 0.24	0.09 0.23 -0.18 -0.42 0.10 0.58 0.41

Tabla 4.2.8

- 1: SUBREGION BOREAL-EUROPEA
- 2: SUBREGION ATLANTICO-CENTROEUROPEA
- 3: SUBREGION MEDITERRANEO-EUROPEA
- 4: SUBREGION MEDITERRANEO-IBERICO-MORTEAFRICANA

Como se puede apreciar, la fauna de Coleópteros Hydradephaga de la cuenca del Segura y, en general, la de la Subregión Paleártica Occidental, tienen orígenes muy diferentes y una distribución muy amplia que, en la mayor parte de los casos, reflejan los cambios geológicos ocurridos de mayor importancia, lo que indica que también puede tener interés el estudio biogeográfico de grupos taxonómicos que a pesar de poseer gran capacidad de desplazamiento en general, incluyen en su fauna especies relictas o de distribución muy restringida.

AFINIDADES FAUNISTICAS ENTRE CUENCAS HIDROGRAFICAS IBERICAS

Para entender, a un nivel de percepción más preciso, la relación de la fauna de la cuenca del río Segura con el resto de cuencas hidrográficas peninsulares, es preciso recordar varios aspectos de caracter histórico y geológico que han conformado el paisaje actual de la Península Ibérica.

Desde el Plioceno hasta la actualidad, las escorrentías superficiales ocurridas en la Península, guiadas por la pauta tectónica, se fueron estructurando en redes fluviales de mayor o menor entidad. Estas redes se han ordenado según cuencas, que se adaptan en líneas generales, a la configuración geológica del territorio. La Meseta central, elevada y rodeada de montañas, y los dos grandes valles exteriores del Ebro y Guadalquivir, sirven de soporte a las cinco principales cuencas: Duero, Tajo, Guadiana, Guadalquivir, Jucar y Ebro. Las restantes, más pequeñas y numerosas, ocupan los ámbitos externos de la Península Ibérica, pudiéndose reagrupar en otras cuatro cuencas: Norte, Sur, Segura y Pirineo Oriental (ARENILLA & SAENZ, 1987).

El territorio peninsular está constituido, en su parte noroccidental y en los ejes de las grandes cordilleras alpinas, por un amplio escudo de materiales silíceos, mientras que en el resto de la Península Ibérica, hay un predominio de cuencas de origen terciario y sierras calizas.

Desde un punto de vista biogeográfico, esta disposición geológica, se refleja en la mayor importancia de los sistemas cársticos y su fauna subterránea asociada, así como en la escasez de aguas superficiales y, como consecuencia de ello, la existencia de una pobre fauna epicontinental de agua dulce (MARGALEF, 1983).

Este último aspecto, contrasta con el relevante papel desempeñado por la Península Ibérica como centro de refugio y posterior dispersión de especies durante el Pleistoceno, lo que en cierto modo ha podido contribuir a paliar, si no de forma cuantitativa, sí de forma cualitativa, la riqueza de su fauna de Hydradephaga, como lo demuestra el elevado número de endemismos presentes.

Finalmente, la separación de la Península Ibérica en dos zonas, como consecuencia de la inundación a través de la actual depresión del Guadalquivir, la unión de las provincias del sur, como ya se ha comentado, a las tierras del Rif africano y la separación de las Islas Baleares desde las costas alicantinas, completan el conjunto de factores de mayor interés biogeográfico.

A partir de aquí, se ha analizado la distribución de las especies de Hydradephaga en las distintas cuencas hydrográficas peninsulares, con el fin de explicar la composición faunística actual en cada una de ellas y su relación con estos procesos históricos.

En la tabla 4.2.9, se presentan la distribución del conjunto de especies peninsulares (185), en las diez cuencas en que se ha dividido el territorio, más las Islas Baleares (ver mapa 4.2.2).

En dicha tabla, además de los 1 y 0 (espacios vacios), referidos, respectivamente, a la presencia o ausencia de las especies, se indica también, simbolizado con un "2", la posibilidad de que determinadas especies puedan encontrarse en otras cuencas donde todavía no han sido citadas, al menos, de forma esporádica. Esta información, pretende completar el vacio existente sobre la distribución peninsular de muchas de estas especies y se basa en la proximidad geográfica entre cuencas de características climáticas, geológicas y ecológicas similares. Aun así, por el caracter hipotético de estos datos, no se han utilizado en el tratamiento matemático.

ESPECIES/CUENCAS HYDROGRAFICAS IBERICAS

ESPECIES	CNO	CDU	CTA	CGA	CGR	CSV	CSE	CJU	CEB	CPO	BAL	TOTAL	E/U
HALIPLIDAE													
1. Peltodytes		-										-	
1 P.caesus 2 P.rotundatus												1 1	
2. Brychius												.L	
3 B.elevatus	1	1					• • • • • • • • • • • • • • • • • • • •		1	1.		4	
3. Haliplus							 					<u>- </u>	
4 H.obliquus 5 H.lineatocollis 6 H.fluviatilis 7 H.heydeni 8 H.inmaculatus 9 H.andalusicus 10 H.flavicollis 11 H.fulvus 12 H.guttatus 13 H.mucronatus 14 H.rubidus 15 H.variegatus	11111111	11111111	12	1.	1.	1.	1.	1.	1.	1.	1		
HYGROBIIDAE	J												
4. Hygrobia	11.14	`				-							
16 H.hermanni	1.	1.	1.	1	1.	1	2.	1.	1.	1		9	
GYBINIDAE						-:							
5. Aulonogyrus						,		-					
17 A.concinnus 18 A.striatus			1. 1.										
6. Gyrinus													
19 G.minutus 20 G.caspius 21 G.dejeani 22 G.distinctus 23 G.substriatus 24 G.urinator		1.	1.	1	1	2	1 1 1	1 2 1	1 1 1	1 2		1. 1 1.	3

Tabla 4.2.9 (continuación)

nidae rectochilus 0.villosus BIDAE anthydrus C.diophthalmus	1	1	1								1 (1) 	e at goding to the control	
O.villosus BIDAE anthydrus	1	1	1	1				1					:
BIDAE	1	1	1	1									
anthydrus						2	1	1,	1	1		9	
							1 4				13.131	ta jai	
C.diophthalmus					,								
•					,	1	2		,.		1.	2	
oterus	٠.					d je		1,40					L
N.clavicornis N.laevis						1							
SICIDAE				***************************************		,							<u>'</u>
Nethles			***,*.	-							48, 10		
M.cribatellus				1	1	1			.			3	
Hyphydras		:.				· · · · · · · · · · · · · · · · · · ·	<u></u>					·	<u></u>
H.aubei H.ovatus								1	1	1.	1.	11	··
Hydrovatus										*		 	<u></u>
	2			1		1	1	1		1.		1	1.
Yola												d	Ь.
Y.bicarinata	1	1	1	1	1	1	1	1	1	1.	1.	11	
Bidessus											1	J	<u>.</u>
B.goudoti	1	1 1	1	1	1 1 1	1 1	1	l l	1	1.	1. 1.	5	
	Methles C.cribatellus Iyphydrus H.aubei H.covatus H.clypealis H.cuspidatus Midessus Cola C.bicarinata Bidessus Consulis B.aucius B.saucius B.saucius B.saucius B.saucius B.saucius	Methles 4. cribatellus	Methles 4. cribatellus	Methles 4. cribatellus	Methles 4. cribatellus 1. 1. dyphydrus 4. aubei 1. 4. covatus 1. 5. covatus 1. 6. clypealis 1. 7. clypealis 2. 8. cuspidatus 2. 9. covalis 1. 1. covatus 1. 1. dessinglex 1. 2. dessinglex 1. 3. covalis 1. 4. dessinglex 1. 4. dessinglex 1. 5. dessinglex 1. 6. dessinglex 1. 7. dessinglex 1. 8. dessinglex 1. 8. dessinglex 1. 8. dessinglex 1. 9. dessinglex 1. 1. dessinglex 1. 1. dessinglex 1. </td <td>Methles 4. cribatellus 1</td> <td>Methles 4. cribatellus 1<td>(cribatellus 1 <t< td=""><td>Methles 4. cribatellus 1<td>(cribatellus. 1 <</td><td>(cribatellus. 1 <</td><td>(cribatellus. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</td><td>(ethles (.cribatellus</td></td></t<></td></td>	Methles 4. cribatellus 1	Methles 4. cribatellus 1 <td>(cribatellus 1 <t< td=""><td>Methles 4. cribatellus 1<td>(cribatellus. 1 <</td><td>(cribatellus. 1 <</td><td>(cribatellus. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</td><td>(ethles (.cribatellus</td></td></t<></td>	(cribatellus 1 <t< td=""><td>Methles 4. cribatellus 1<td>(cribatellus. 1 <</td><td>(cribatellus. 1 <</td><td>(cribatellus. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</td><td>(ethles (.cribatellus</td></td></t<>	Methles 4. cribatellus 1 <td>(cribatellus. 1 <</td> <td>(cribatellus. 1 <</td> <td>(cribatellus. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</td> <td>(ethles (.cribatellus</td>	(cribatellus. 1 <	(cribatellus. 1 <	(cribatellus. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	(ethles (.cribatellus

ESPECIES	CNO	CDU	CTA	CGA	CGR	CSU	CSE	CJU	CEB	CPO	BAL	TOTAL	E/U
DYTISICIDAE													
15. Hydroglyphus			-								- 1.		
42 H.pusillus 43 H.signatellus	1												
16. Coelambus				-								-11	
44 C.confluens 45 C.impressopunctatus 46 C.lernaeus 47 C.marklini 48 C.pallidulus 49 C.parallelogrammus.	2	1 1 1	2.	1.	1.	2.	1.	2.	1 1	1.	1.	6	
17. Hygrotus			-										
50 H.inaequalis	1	1	1.	1.	1.				1.	1.	1	8	
18. Herophydrus					1 *	-				· 		<u> </u>	
51 H.musicus						2.	1.	2.			1	2	
19. Hydroporus		+											1
52 H.analis	1111111	1.	1.	111	1.	2.	1	1	11111111111	1	1		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

E	BPECIES	CNO	CDV	CTA	CGA	CGR	CSV	CSE	CJU	CEB	CPO	BAL	TOTAL	E/U
DYT	SICIDAE				1015									
76 77 78 79 80 81 82 83	H.planus H.pubescens H.rufifrons H.tessellatus H.tristis H.vagepictus H.vespertinus H.melanarius H.brancoi H.longulus H.nevadensis	1.	1 1 1	1	l	1		1		2	11		9103343	0
20.	Porhydrus				¥.									
86 87	P.genei P.vicinus			1	1					; , , , , , , , , , , , , , , , , , , ,	•••••	•••••	2	
21.	Graptodytes							ay An			Aug.	[4,]] [4,]]		
90 91 92 93	G.fractus G.granularis	1. 2. 1.	1 1 1	1	· · · · · · · · · · · · · · · · · · ·	1	2 1	2	1	1	1.	1. 1. 1.	9	0
22.	Rhithrodytes	1.		* * .			,		<u> </u>			¥.		· · · · · · · · · · · · · · · · · · ·
96	R.bimaculatus	1.	1							1	2.		3	
23.	Netaporus				1935		1 1 1				vijasi Jugar	1 4		
97	M.meridionalis		1	1	1	1	1	2	1	2	1.	1.	8	
24.	Scarodytes								,					
98	S.halensis	1.	1	1	1	1			1	1	1.		88	

Tabla 4.2.9 (continuación)

ESPECIES	CNO	CDU	CTA	CGA	CGR	CSU	CSE	CJU	CEB	CPO	BAL	TOTAL	E/U
DYTISICIDAE									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,	
25. Stictonectes					y								
99 S.epipleuricus 100 S.escheri 101 S.formosus 102 S.lepidus 103 S.occidentalis 104 S.optatus 105 S.rufulus	1		1	1.	1.	1.	1	1	1			2	1
26. Deronectes			,									1	
106 D.algibensis	1		1.	1.	1.	1.	1.	1.	1.	1.	1		1
121 S.12-pustulatus	1.	1	1.	1.	1	2 .	2.	1	1	1			8
28. Potamonectes			1									- how-	
122 P.canaliculatus 123 P.carinatus 124 P.cazorlensis 125 P.ceresyi 126 P.clarki 127 P.d.elegans 128 P.griseostriatus 129 P.mariae 130 P.sansi	1.	1.	1.	2	1	2	1	1	1	1			7 2 8 5 5 5

Tabla 4.2.9 (continuación)

*

ESPECIES	CNO	CDV	CTA	CGA	CGR	CSU	CSE	CJU	CEB	CPO	BAL	TOTAL	E/U
DYTISICIDAE			1,20,111								1.1.		. 25
29. Oreodytes	ar			jaren j		1 144	Sajar	,		y - 1 - 1		A(1)	
131 O.davisi 132 O.sanmarki 133 O.septentrionalis	1	1 .	1.			2 .	1	1	1	1		4	
30. Laccophilus			u Parlight Vis		* 7.52 34								
134 L.hyalinus 135 L.minutus 136 L.ponticus	1	1 .	1.	1.	1.	2.	1	1.	1	1	1.	10	
31. Copelatus					property of								
137 C.atriceps 138 C.haemorrhoidalis	1	1.	1.	1.	1.	•••••		1	2	1 1	1	6	
32. Platambus							4-3.4 ₁₇				\$2% :		
139 P.maculatus	1	1.							1:::	.v1	1.	9	••••
33. Agabus	3 14		nda",							last of	zijak ile Taliki		
147 A.albarracinensis 148 A.bipustulatus 149 A.chalconatus 150 A.congener 151 A.conspersus 152 A.dettneri 153 A.hozgargantae 154 A.melanocornis	1		1.	1.	1. 1. 1. 1.	11111111.	11111111	11.		11	1	1136510411748217	
155 A.nebulosus 156 A.neglectus 157 A.paludosus 158 A.solieri 159 A.sturmi	1	1. 1.	2.		1. 1.		1.	1.	1., 1., 1.,	1		3	

그리는 사용과 이 전쟁이 많이 폭력하고 함께 가장이 되었다. 그 사람들이 살아 있다면 나가 되지 않아 네트워.

ESPECIES	CNO	CDU	CTA	CGA	CGR	CSU	CSE	CJU	CEB	CPO	BAL	TOTAL	E/U
DYTISICIDAE	4 1 1 1												
34. Ilybius											-		
161 I.ater	1	1	1.		1.	• • • • • • • •	1	2	1 1	2		5	
35. Rhantus	^												
166 R.exoletus 167 R.hispanicus 168 R.suturalis	1	1	1.	2	1.			1.	• • • • • •			5	, ,
36. Colymbetes	- :												
169 C.fuscus 170 C.schildknechti													
37. Meladema	:	ŀ								-			
171 M.coriacea		1					1.		1.	1.	1	10	
38. Eretes			11										
172 E.sticticus		1	1.	1.	1.	1.	1.	1.	2.	1.	1	9	
39. Hydaticus													
173 H.debarros-machadoi 174 H.leander 175 H.seminiger			1.	2.	1.	1.	1.	1.	2.	1.	1	. 7	
40. Graphoderus													
176 G.cinereus					••••					1.		1	0
41. Acilius				·									
177 A.sulcatus 178 A.duvergeri													

Tabla 4.2.9 (continuación)

ESPECIES	CNO	CDU	CTA	CGA	CGR	CSU	CSE	CJU	CEB	CP0	BAL	TOTAL	E/U
DYTISICIDAE						÷			14.1				
42. Dytiscus											**		
179 D.circumflexus 180 D.marginalis 181 D.pisanus 182 D.semisulcatus	1. 1.	1	1	1	1.		1	1	1.	1 1	1.	8	
43. Cybister							-					!	
183 C.vulnerarus 184 C.tr. africanus 185 C.lateralimarginalis.	 	1	1	1	1.	1	1	1	2.	1	1.]9	
Nospp:125143 Dudas:132													

CNO: Cuenca Norte.

Nºspp: № de especies por cuenca hidrográfica...

CDU: Cuenca del Duero.

Dudas: Especies que pueden estar en una cuenca hidrográfica.

CTA: Cuenca del Tajo.

Endemismos: Nº de endemismos.

CGA: Cuenca del Guadiana.

Total: Nº de veces que aparece una especie en las distintas cuencas hidrográficas.

CGR: Cuenca del Guadalquivir.

E/U: Especies endémicas (1) y únicas (0) de cada cuenca hidrográfica.

CSU: Cuenca Sur.

CSE: Cuenca del Segura.

CJU: Cuenca del Jücar.

CEB: Cuenca del Ebro.

CPO: Cuenca del Pirineo Oriental.

BAL: Islas Baleares.

Tabla 4.2.9 (continuación)

PARAMETROS DE INTERES BIOGROGRAFICO

CUENCAS	V	S	Ç	s/c	DC	s/A	B
C. NORTE	60224	124		3.65	11.68		ī
C. DUERO	111072	143	38	3.76	14.50		I
C.TAJO	93289	96	38	2.53	25.33		2
C. GUADIANA	74853	94	36	2.61	24.15	12.56	0
C. GUADALQUIVIR	63085	• •		2.79	20.02		
C. SUR	18391	09	29	2.07	.23.29		0
C. SEGURA	18254			2.29	20.78	35,06	
C. JUCAR	42904		35	2.46	22.15	20.04	0
C. EBRO	86098	111	33	3.36	14,96	12.89	0
C. P. ORIENTAL	16493	109	38	2.87	21.02	60.99	0
I. BALEARES	4964	73	32	2.28	29.86	147.06	0

Tabla 4.2.10

A: Superficie en Km²
S: Riqueza de especies
C: Riqueza de géneros
S/G: Relación especies/géneros
DG: Diversidad genérica
S/A: Relación riqueza de especies/superficie
E: Endemismos.

Posteriormente, en base a esta tabla, se han calculado los valores de diferentes parámetros relacionados con la densidad taxonómica (tabla 4.2.10), los cuáles, pueden dar una idea de las características de la fauna de cada cuenca.

Como se puede apreciar de la interpretación de la tabla 4.2.10, la diversidad genérica no sigue una pauta de aumento en dirección norte-sur, como ocurre con las Areas Biogeográficas Paleárticas estudiadas. Así, aunque la franja norte peninsular, formada por las cuencas hidrográficas del Norte, Duero y Ebro, presentan los valores de diversidad genérica (DG) más bajos, y las Islas Baleares el más alto, son las cuencas centrales, del Tajo y Guadiana, las que tienen los siguientes valores mas elevados de diversidad genérica.

La explicación puede deberse a una mezcla de factores ecológicos e históricos. Las cuencas del Tajo y Guadiana, predominantemente silíceas, presentan un mayor número de cuerpos de agua epicontinentales, lo que aumenta la posibilidad de colonización de la fauna de Coleópteros Hydradephaga. Además, la existencia de importantes barreras que limitan la dispersión de su fauna, favorecería los procesos de especiación, como lo refleja el número de endemismos que contienen.

Estos endemismos, de posible origen hespérico, se formarían en las tierras del oeste peninsular, emergidas del Paleozoico, cuyos ríos de montaña, de aguas frías y poco mineralizadas sirvieron de refugio y focos de especiación de muchos taxones (GARRIDO, 1990).

A todo ello habría que añadir, la existencia de importantes extensiones de tierras calizas en la Meseta central, asociadas a cuerpos de agua de origen cárstico, lo que constituiría otra fuente importante de enriquecimiento faunístico.

Desgraciadamente, las cuencas del Tajo y Guadiana son las peor estudiadas de la Península Ibérica, en lo que respecta al conocimiento de la fauna de Hydradephaga.

En el caso de las cuencas del norte peninsular, la existencia de un "corredor" formado por los Pirineos y la Cordillera Cantábrica, libre de hielos durante las glaciaciones del Pleistoceno, habría posibilitado el refugio de especies provenientes de regiones más septentrionales, conocidas como elementos lusitánicos, las cuales, en condiciones favorables, habrían vuelto a colonizar sus áreas de origen. Este factor podría ser la causa principal de la elevada riqueza específica (S) encontrada en las cuencas del Ebro, Norte y Duero principalmente.

Solo, la existencia de un clima más riguroso en estas últimas cuencas, explicaría los pobres valores de diversidad genérica que presentan, lo que se comprueba en parte, por que el elevado número de especies se debe, fundamentalmente, a unos pocos géneros, como *Haliplus*, *Hydroporus* y *Agabus*, propios de zonas más septentrionales de la Subregión Paleártica Occidental.

El resto de cuencas, estrechamente relacionadas con el Mar Mediterráneo, tienen una diversidad genérica alta, similar a la observada para el Area biogeográfica del Norte de Africa, lo que vuelve a indicar la importancia de estas zonas como centros de refugio y dispersión faunístico durante las glaciaciones pleistocénicas.

De todas ellas, destacan las Islas Baleares, al presentar la diversidad genérica más elevada. Las causas de esta elevada diversidad genérica pueden substentarse en la retirada de las aguas del Mar Mediterráneo durante el Mioceno, en la llamada "crisis del Messiniense" (BELLES, 1987), lo que ocasionó la formación de puentes de tierra entre la isla y el continente por donde las especies pudieron pasar en ambas direcciones, la conexión de cuencas hidrográficas que actualmente están separadas, la formación de lagos salobres y de agua dulce, etc., que, además de constituir un territorio muy heterogéneo, permitieron la confluencia de especies continentales, incluso de aquellas con poca capacidad de dispersión, que contribuyeron al enriquecimiento taxonómico de las Islas Baleares.

En este sentido hay que resaltar, que la destrucción indiscriminada de los cuerpos de agua y ambientes apropiados para la vida de los Hydradepaga en estas islas, está reduciendo ostensiblemente dicha fauna (GARCIA AVILES, 1990).

Por lo que respecta a la cuenca del río Segura, ésta reúne las mismas características que el resto de cuencas peninsulares mediterráneas, destacando, junto con las cuencas Sur, del Pirineo Oriental y las Islas Baleares, por el elevado número de especies que presenta en relación con su superficie (S/A). También es interesante recordar la presencia del único endemismo ibérico actual, exclusivo de una sola cuenca mediterránea, dentro de este grupo de Coleópteros, Potamonectes mariae, cuyo origen aunque puede estar más relacionado con factores ecológicos, al encontrarse preferentemente en cuerpos de agua hipersalinos, indudablemente, aumenta el interés de los procesos de especiación que ocurren en ella.

Una vez conocida la composición y características de la fauna de cada una de las cuencas, se han estudiado sus afinidades faunísticas para determinar las posibles vías de comunicación entre las especies. Para ello, se ha aplicado, en primer lugar, el Indice de Similaridad de Sokal & Michener, cuyos resultados aparecen en las tablas 4.2.11 y 4.2.12.

De la interpretación de estas tablas, se deduce que la distancia entre las cuencas es la principal barrera física, de manera que aquellas que están más próximas, presentan en general, una mayor semejanza entre sus faunas, como consecuencia de una mayor comunicación y, probablemente, unas condiciones ambientales, geológicas e históricas parecidas.

Pero también se observa, que la afinidad entre las faunas de Hydradephaga de las cuencas hidrográficas es elevada (las distancias más bajas están próxima a 0.5), lo que implica que las barreras físicas que las delimitan no representan un obstáculo infranqueable para la mayor parte de las especies de este grupo.

La cuenca del Júcar, en este aspecto, es la que presenta el mayor grado de comunicación de su fauna con el resto de cuencas peninsulares. El valor mínimo del índice de afinidad encontrado para su fauna es de 0.6, con respecto a la fauna de la cuenca Norte; mientras que la fauna de las Islas Baleares y las de las cuencas del Segura, Sur y del Pirineo Oriental respectivamente, presentan los valores de afinidad más alta con el conjunto de especies de esta cuenca. La situación geográfica de la cuenca del Júcar (centro-este) y la escasa importancia de las barreras físicas que la delimitan, pueden ser las causas más importantes que explican esta elevada afinidad faunística con el resto de cuencas.

Por el contrario, la cuenca Norte es la que tiene los valores de afinidad faunística más bajos con la mayor parte de las cuencas peninsulares, probablemente, debido al efecto barrera de la cornisa cantábrica. En este caso, son las faunas de Hydradephaga de las cuencas del Ebro y, fundamentalmente, del Duero, las de mayor grado de comunicación con ésta.

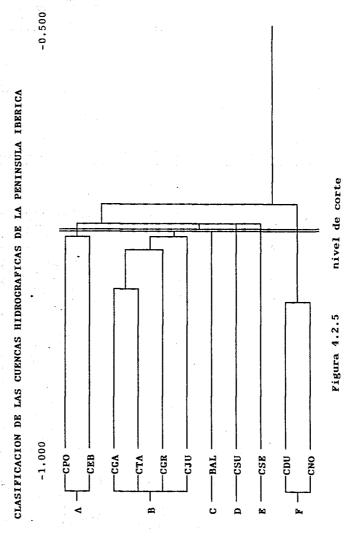
Merece la pena destacar la elevada semejanza existente entre las faunas de la cuenca del Guadiana y la de las Islas Baleares, probablemente, como consecuencia de la antigua unión de estas islas a la actual cuenca del Júcar, la cual, dada su afinidad con ambas cuencas, habría formado un "pasillo" de características geológicas y ecológicas apropiadas para el paso de especies en ambas direcciones.

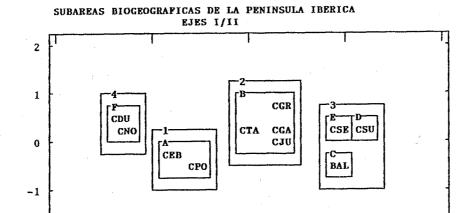
En cuanto a la fauna de la cuenca del río Segura, el mayor grado de comunicación lo presenta con las de las cuencas Sur y Júcar, además de una alta afinidad con la fauna de las Islas Baleares. Por el contrario, los valores más bajos de afinidad faunística, los tiene, como cabía esperar, con las cuencas del norte peninsular.

La clasificación posterior, de las cuencas estudiadas, mediante una técnica de cluster aplicada sobre la matriz cuadrada de afinidades faunísticas de 11x11, ha permitido reagruparlas en seis bloques o sectores concretos (figura 4.2.5):

. Grupo A: Formado por las cuencas del Pirineo Oriental y del Ebro y caracterizada por la presencia de una rica fauna de Hydradephaga de tipo alpino,

DISTANCIAS

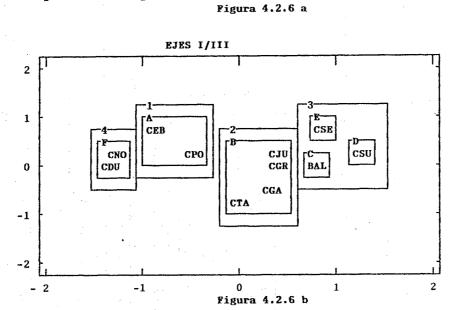

•										-		
		CNO	CDU	CTA	* .	CGA CGR	CSU	CSE	czu	CEB	CPO	BAL
-	CNO	1.000	1.000 0.832 0.600 0.545 0.535 0.427 0.513 0.600 0.713 0.670 0.497	0.600	0.545	0,535	0.427	0.513	0.600	0.713	0.670	0.497
	CDU	0.832	1.000	0.637	7 0.627 0.616 0.432 0	0.616	0.432	0.486	0.486 0.616 0.697	0.697	0.654	0.491
: ,,	CTA	009.0	0.637	1.000	0.816	0.697	0.610	610	0.718	0.594	0.637	0.648
	CGA	0.545		0.81	1.000	0.772	0.664	643	0.751	0.572	0.659	0.735
	CGR	0.535	0.616	0.697	0.772	1.000	0.697	0.675	0.729	0.729 0.572 0.616 0.681	0.616	0.681
	CSU	0.427	0.432	0.610	0.664	0.697	1.000	0.740	0.740	0.497	0.594	0.735
	CSE	0.513	0.486	0.610	0.610 0.643	0.675	0.740	1.000	0.740	0.562	0.594	0.713
	CJU	009.0	0.616	0.718	0.751	0.729	0.740	0.740	1,000	0.659	0.735	0.745
_	CEB	0.713	0.697	0.594	0.572	0.572	0.497	0,562	0.562 0.659 1.000 0.751 0.545	1.000	0,751	0.545
	CPO	0.670	0.654	0.637	0.659	0.616	0.594	0.594	0.735	0.751	1.000	0.686
	BAL	0.497	0.491 0.648 0.735 0.681 0.735 0.713 0.745 0.545 0.686 1.000	0.648	0.735	0.681	0.735	0.713	0.745	0.545	0.686	1.000
_		_										


Tabla 4.2.11

COINCIDENCIAS

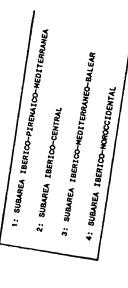
1 1 124 0 0 61 1 2 118 6 25 36 1 3 73 51 23 38 1 4 67 57 27 34 1 5 72 52 34 27 1 6 39 85 21 40 1 7 49 75 15 46 1 8 68 56 18 43 1 9 91 33 20 41 1 10 86 38 23 38 1 11 52 72 21 40 2 2 143 0 42 22 2 3 86 57 10 32 2 4 84 59 10 32 2 3 86 57 10 32 <th>a</th> <th>ь</th> <th>С</th> <th>Sa</th> <th>Sb</th> <th>Nab</th>	a	ь	С	Sa	Sb	Nab
1 3 73 51 23 38 1 4 67 57 27 34 1 5 72 52 34 27 1 6 39 85 21 40 1 7 49 75 15 46 1 8 68 56 18 43 1 9 91 33 20 41 1 10 86 38 23 38 1 11 52 72 21 40 2 2 143 0 0 42 2 38 57 10 32 2 4 84 59 10 32 2 4 84 59 10 32 2 5 89 54 17 25 2 6 49 94 11 31 2 7 9 99 44 12 30 3 <						
1 4 67 57 27 34 1 5 72 52 34 27 1 6 39 85 21 40 1 7 49 75 15 46 1 8 68 56 18 43 1 10 86 38 23 38 1 11 52 72 21 40 2 2 143 0 0 42 2 3 86 57 10 32 2 4 84 59 10 32 2 4 84 59 10 32 2 4 84 59 10 32 2 4 84 59 10 32 2 4 84 59 10 32 2 4 84 17 35 2 9 99 44 12 30 3 3 <t< td=""><td></td><td>2</td><td>118</td><td></td><td>25</td><td></td></t<>		2	118		25	
1 5 72 52 34 27 1 6 39 85 21 40 1 7 49 75 15 46 1 8 68 56 18 43 1 10 86 38 23 38 1 10 86 38 23 38 1 11 52 72 21 40 2 2 143 0 0 42 2 3 86 57 10 32 2 4 84 59 10 32 2 4 84 59 10 32 2 5 89 54 17 25 2 6 9 94 11 31 2 7 7 64 7 35 2 9 99 44 12 30			73		23	
1 6 39 85 21 40 1 7 49 75 15 46 1 8 68 56 18 43 1 10 86 38 23 38 1 11 52 72 21 40 2 2 143 0 0 42 2 3 86 57 10 32 2 4 84 59 10 32 2 4 84 59 10 32 2 4 84 59 10 32 2 4 84 59 10 32 2 4 84 59 10 32 2 4 84 59 10 32 2 4 84 59 10 32 2 4 84 59 41 13 13 2 9 99 44 12 30					34	
1 7 49 75 15 46 1 8 68 56 18 43 1 10 86 38 23 38 1 11 52 72 21 40 2 2 143 0 0 42 2 3 86 57 10 32 2 4 84 59 10 32 2 4 84 59 10 32 2 5 89 54 17 25 2 6 49 94 11 31 2 7 56 87 8 34 2 8 79 64 7 35 2 9 99 44 12 30 3 3 96 0 0 89 3 4 78 18 16 73 3 3 96 0 0 89 3 4 </td <td></td> <td></td> <td></td> <td></td> <td>21</td> <td></td>					21	
1 8 68 56 18 43 1 10 86 38 23 38 1 11 52 72 21 40 2 2 143 0 0 42 2 3 86 57 10 32 2 4 84 59 10 32 2 4 84 59 10 32 2 6 49 94 11 31 2 7 56 87 8 34 2 9 99 44 12 30 2 10 94 49 15 27 2 11 61 82 12 30 3 3 96 0 0 89 3 4 78 18 16 73 3 3 96 0 0 89 3 4 78 18 16 73 3						
1 9 91 33 20 41 1 10 86 38 23 38 1 11 52 72 21 40 2 2 143 0 0 42 2 3 86 57 10 32 2 4 84 59 10 32 2 4 84 59 10 32 2 6 49 94 11 31 2 7 56 87 8 34 2 9 99 44 12 30 2 10 94 49 15 27 2 11 61 82 12 30 3 3 96 0 0 89 3 4 78 18 16 73 3 5 73 23 33 56					18	
1 11 52 72 21 40 2 2 143 0 0 42 2 3 86 57 10 32 2 4 84 59 10 32 2 6 49 94 11 31 2 6 49 94 11 31 2 7 56 87 8 34 2 9 99 44 12 30 2 10 94 49 15 27 2 11 61 82 12 30 3 3 96 0 0 89 3 4 78 18 16 73 3 3 36 42 34 8 71 3 3 47 48 18 76 73 3 3 47 74 49 49 49 49 49 49 49 49 49 <td< td=""><td>1</td><td>9</td><td></td><td></td><td></td><td></td></td<>	1	9				
2 2 143 0 0 42 2 3 86 57 10 32 2 4 84 59 10 32 2 5 89 54 17 25 2 6 49 94 11 31 2 7 56 87 8 34 2 8 79 64 7 35 2 9 99 44 12 30 3 9 9 44 12 30 3 3 96 0 0 89 3 4 78 18 16 73 3 3 96 0 0 89 3 4 78 18 16 73 3 5 73 23 33 56 3 2 4 18 71 68 3 9 66 30 45 44 4 94		10				
2 3 86 57 10 32 2 4 84 59 10 32 2 5 89 54 17 25 2 6 49 94 11 31 2 6 49 94 11 31 2 8 79 64 7 35 2 9 99 44 12 30 2 10 94 49 15 27 2 11 61 82 12 30 3 3 96 0 0 89 3 4 78 18 16 73 3 3 96 0 0 89 3 4 78 18 16 73 3 3 3 56 30 45 44 3 10 69 27 40 49 3 11 52 44 21 68 <td< td=""><td>1</td><td>11</td><td></td><td></td><td></td><td></td></td<>	1	11				
2 4 84 59 10 32 2 5 89 54 17 25 2 6 49 94 11 31 2 6 49 94 11 31 2 8 79 64 7 35 2 9 99 44 12 30 3 9 64 7 35 22 10 94 49 15 27 21 2 11 61 82 12 30 30 30 60 0 89 3 4 78 18 16 73 33 56 42 54 18 71 30 30 56 30 69 30 48 48 71 48 48 71 49 49 49 49 49 49 49 49 49 41 50 44 41 49 40 49 41 49 44 41 70	2	2				
2 7 56 87 8 34 2 8 79 64 7 35 2 9 99 44 12 30 2 10 94 49 15 27 2 11 61 82 12 30 3 3 96 0 0 89 3 4 78 18 16 73 3 5 73 23 33 56 3 6 42 54 18 71 3 7 44 52 20 69 3 8 65 31 21 68 3 9 66 30 45 44 3 10 69 37 40 49 3 11 52 44 21 68 4 94 0 0 91 4 4 96 31 48 14 77 4 <td< td=""><td>2</td><td></td><td></td><td>59</td><td></td><td></td></td<>	2			59		
2 7 56 87 8 34 2 8 79 64 7 35 2 9 99 44 12 30 2 10 94 49 15 27 2 11 61 82 12 30 3 3 96 0 0 89 3 4 78 18 16 73 3 5 73 23 33 56 3 6 42 54 18 71 3 7 44 52 20 69 3 8 65 31 21 68 3 9 66 30 45 44 3 10 69 37 40 49 3 11 52 44 21 68 4 94 0 0 91 4 4 96 31 48 14 77 4 <td< td=""><td>2</td><td>5</td><td></td><td></td><td></td><td></td></td<>	2	5				
2 7 56 87 8 34 2 8 79 64 7 35 2 9 99 44 12 30 2 10 94 49 15 27 2 11 61 82 12 30 3 3 96 0 0 89 3 4 78 18 16 73 3 5 73 23 33 56 3 6 42 54 18 71 3 7 44 52 20 69 3 8 65 31 21 68 3 9 66 30 45 44 3 10 69 37 40 49 3 11 52 44 21 68 4 94 0 0 91 4 4 96 31 48 14 77 4 <td< td=""><td>2</td><td>6</td><td></td><td></td><td></td><td>31</td></td<>	2	6				31
2 9 99 44 12 30 2 10 94 49 15 27 2 11 61 82 12 30 3 3 96 0 89 3 4 78 18 16 73 3 5 73 23 33 56 3 6 42 54 18 71 3 7 44 52 20 69 3 8 65 31 21 68 3 9 66 30 45 44 3 10 69 27 40 49 3 11 52 44 21 68 4 94 0 0 91 4 7 46 48 14 77 4 64 48 14 77 4 9 63 31 48 43 4 10 70 24	2				8	34
2 11 61 82 12 30 3 3 96 0 0 89 3 4 78 18 16 73 3 5 73 23 33 56 3 6 42 34 18 71 3 7 44 52 20 69 3 8 65 31 21 68 3 9 66 30 45 44 3 10 69 27 40 49 3 11 52 44 21 68 4 94 0 0 91 4 77 64 4 4 94 0 0 91 72 64 48 14 77 77 64 48 14 77 77 72 44 8 8 73 73 73 73 73 74 74 46 48 14 77 77 74 <t< td=""><td>2</td><td></td><td></td><td></td><td></td><td></td></t<>	2					
2 11 61 82 12 30 3 3 96 0 0 89 3 4 78 18 16 73 3 5 73 23 33 56 3 6 42 34 18 71 3 7 44 52 20 69 3 8 65 31 21 68 3 9 66 30 45 44 3 10 69 27 40 49 3 11 52 44 21 68 4 94 0 0 91 4 77 64 4 4 94 0 0 91 72 64 48 14 77 77 64 48 14 77 77 72 44 8 8 73 73 73 73 73 74 74 46 48 14 77 77 74 <t< td=""><td>2</td><td>9</td><td></td><td></td><td></td><td></td></t<>	2	9				
3 4 78 18 16 73 3 5 73 23 33 56 3 6 42 54 18 71 3 7 44 52 20 69 3 8 65 31 21 68 4 9 66 30 45 44 3 10 69 27 40 49 3 11 52 44 21 68 4 94 0 0 91 45 77 64 4 6 46 48 14 77 77 64 48 18 73 73 73 73 73 73 73 73 73 73 73 73 73 74	2					
3 4 78 18 16 73 3 5 73 23 33 56 3 6 42 54 18 71 3 7 44 52 20 69 3 8 65 31 21 68 4 9 66 30 45 44 3 10 69 27 40 49 3 11 52 44 21 68 4 94 0 0 91 45 77 64 4 6 46 48 14 77 77 64 48 18 73 73 73 73 73 73 73 73 73 73 73 73 73 74	2	11				
3 5 73 23 33 56 3 6 42 54 18 71 3 7 44 52 20 69 3 8 65 31 21 68 3 9 66 30 45 44 3 10 69 27 40 49 3 11 52 44 21 68 4 4 94 0 0 91 4 5 79 15 27 64 4 6 46 48 14 77 4 9 63 31 48 43 4 10 70 24 39 52 4 11 59 35 14 77 5 106 0 0 79 70 5 6 55 51 5 74 <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td>	3					
3 6 42 54 18 71 3 7 44 52 20 69 3 8 65 31 21 68 3 9 66 30 45 44 3 10 69 27 40 49 3 11 52 44 21 68 4 4 94 0 0 91 4 5 79 15 27 64 4 6 46 48 14 77 4 9 63 31 48 43 4 10 70 24 39 52 4 11 59 35 14 77 5 106 0 0 79 5 6 55 51 5 74 5 7 55 51 9 70	3	5		23	33	56
3 7 44 52 20 69 3 8 65 31 21 68 3 9 66 30 45 44 3 10 69 27 40 49 3 11 52 44 21 68 4 4 94 0 0 91 4 579 15 27 64 4 6 46 48 14 77 4 6 46 48 14 77 4 9 63 31 48 43 4 10 70 24 39 52 4 11 59 35 14 77 5 5 106 0 0 79 5 5 106 0 0 79 5 5 10 0 79 70 5 7 55 51 5 74 5 9 <td< td=""><td>3</td><td></td><td></td><td></td><td></td><td></td></td<>	3					
3 8 65 31 21 68 3 9 66 30 45 44 3 10 69 27 40 49 3 11 52 44 21 68 4 4 94 0 91 4 5 79 15 27 64 4 6 46 48 14 77 4 6 46 48 14 77 4 9 63 31 48 43 4 10 70 24 39 52 4 11 59 35 14 77 5 5 51 5 70 75 5 7 55 51 5 74 5 7 55 51 5 70 70 5 8 71 35 15 64	3					
3 10 69 27 40 49 3 11 52 44 21 68 4 4 94 0 0 91 4 5 79 15 27 64 4 6 46 48 14 77 4 7 46 48 18 73 4 8 67 27 19 72 4 9 63 31 48 43 4 10 70 24 39 52 4 11 59 35 14 77 5 5 106 0 0 79 5 6 55 51 5 74 5 7 55 51 9 70 5 8 71 35 15 64 5 9 69 37 42 37	3	- 8	65		21	68
3 11 52 44 21 68 4 4 94 0 0 91 4 5 79 15 27 64 4 6 46 48 14 77 4 7 46 48 18 73 4 8 67 27 19 72 4 9 63 31 48 43 4 10 70 24 39 52 4 11 59 35 14 77 5 5 106 0 0 79 5 6 55 51 5 74 5 7 55 51 5 74 5 9 69 37 42 37 5 10 72 34 37 42 5 10 72 34 37 42 5 10 72 34 37 42 5 11 60 46 13 66 6 6 60 0 0 125 6 7 38 22 26 </td <td>3</td> <td></td> <td></td> <td></td> <td>45</td> <td></td>	3				45	
4 4 94 0 0 91 4 5 79 15 27 64 4 6 46 48 14 77 4 7 46 48 18 73 4 9 63 31 48 43 4 10 70 24 39 52 4 11 59 35 14 77 5 106 0 0 79 5 5 7 55 51 5 74 5 5 7 55 51 5 74 5 74 77 74 74 77 74 74 77 74 74 77 74 77 74 77 74 77 74 77 74 77 74 74 77 74 74 74 74 74 74 74 74 <	3		69	27		
4 5 79 15 27 64 4 6 46 48 14 77 4 7 46 48 18 73 4 8 67 27 19 72 4 9 63 31 48 43 4 10 70 24 39 52 4 11 59 35 14 77 5 5 106 0 0 79 5 6 55 51 5 74 5 7 55 51 9 70 5 8 71 35 15 64 5 9 69 37 42 37 5 10 72 34 37 42 5 11 60 46 13 66 6 6 60 0 0 125						
4 7 46 48 18 73 4 8 67 27 19 72 4 9 63 31 48 43 4 10 70 24 39 52 4 .11 59 35 14 77 5 5 106 0 0 79 5 6 55 51 5 74 5 7 55 51 9 70 5 8 71 35 15 64 5 9 69 37 42 37 5 10 72 34 37 42 5 11 60 46 13 66 6 6 60 0 0 125 6 7 38 22 26 99 6 8 49 11 37 88 <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td>	4					
4 7 46 48 18 73 4 8 67 27 19 72 4 9 63 31 48 43 4 10 70 24 39 52 4 .11 59 35 14 77 5 5 106 0 0 79 5 6 55 51 5 74 5 7 55 51 9 70 5 8 71 35 15 64 5 9 69 37 42 37 5 10 72 34 37 42 5 11 60 46 13 66 6 6 60 0 0 125 6 7 38 22 26 99 6 8 49 11 37 88 <td>4</td> <td></td> <td>46</td> <td></td> <td>14</td> <td></td>	4		46		14	
4 8 67 27 19 72 4 9 63 31 48 43 4 10 70 24 39 52 4 11 59 35 14 77 5 5 106 0 0 79 5 6 55 51 5 74 5 7 55 51 9 70 5 8 71 35 15 64 5 9 69 37 42 37 5 10 72 34 37 42 5 11 60 46 13 66 6 6 60 0 0 125 6 7 38 22 26 99 6 8 49 11 37 88 6 9 39 21 72 53 6 10 47 13 62 63 6 11 42 18 31 94 7 7 64 0 0 121 7 8 51 13 35 </td <td>4</td> <td></td> <td></td> <td></td> <td></td> <td>73</td>	4					73
4 9 63 31 48 43 4 10 70 24 39 52 4 11 59 35 14 77 5 5 106 0 0 79 5 6 55 51 5 74 5 7 55 51 9 70 5 8 71 35 15 64 5 9 69 37 42 37 5 10 72 34 37 42 37 5 11 60 46 13 66 66 60 0 0 125 6 7 38 22 26 99 68 49 11 37 88 88 69 99 63 41 33 88 69 63 63 63 63 63 63 63 63	4					
4 .11 59 35 14 77 5 5 106 0 0 79 5 6 55 51 5 74 5 7 55 51 9 70 5 8 71 35 15 64 5 9 69 37 42 37 5 10 72 34 37 42 5 11 60 46 13 66 6 6 60 0 0 125 6 7 38 22 26 99 6 8 49 11 37 88 6 9 39 21 72 53 6 10 47 13 62 63 61 11 42 18 31 94 7 7 64 0 121 72 </td <td>4</td> <td>9</td> <td></td> <td>31</td> <td></td> <td>43</td>	4	9		31		43
5 5 106 0 79 5 6 55 51 5 74 5 7 55 51 9 70 5 8 71 35 15 64 5 9 69 37 42 37 5 10 72 34 37 42 5 11 60 46 13 66 66 66 60 0 0 125 67 38 22 26 99 68 49 11 37 88 88 66 9 39 21 72 53 66 63 61 14 13 62 63 63 61 14 18 31 94 94 17 64 0 121 73 88 86 121 74 74 74 64 57 74 10 49 15 60 61 </td <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td>	4					
5 9 69 37 42 37 5 10 72 34 37 42 5 11 60 46 13 66 6 6 60 0 0 125 6 7 38 22 26 99 6 8 49 11 37 88 6 9 39 21 72 53 6 10 47 13 62 63 6 11 42 18 31 94 7 64 0 0 121 7 8 51 13 35 86 7 9 47 17 64 57 7 10 49 15 60 61 7 11 42 22 31 90 8 8 86 0 0 99 <t< td=""><td>4</td><td></td><td></td><td></td><td></td><td></td></t<>	4					
5 9 69 37 42 37 5 10 72 34 37 42 5 11 60 46 13 66 6 6 60 0 0 125 6 7 38 22 26 99 6 8 49 11 37 88 6 9 39 21 72 53 6 10 47 13 62 63 6 11 42 18 31 94 7 64 0 0 121 7 8 51 13 35 86 7 9 47 17 64 57 7 10 49 15 60 61 7 11 42 22 31 90 8 8 86 0 0 99 <t< td=""><td>5</td><td></td><td></td><td></td><td></td><td></td></t<>	5					
5 9 69 37 42 37 5 10 72 34 37 42 5 11 60 46 13 66 6 6 60 0 0 125 6 7 38 22 26 99 6 8 49 11 37 88 6 9 39 21 72 53 6 10 47 13 62 63 6 11 42 18 31 94 7 64 0 0 121 7 8 51 13 35 86 7 9 47 17 64 57 7 10 49 15 60 61 7 11 42 22 31 90 8 8 86 0 0 99 <t< td=""><td>5</td><td></td><td></td><td></td><td></td><td></td></t<>	5					
5 9 69 37 42 37 5 10 72 34 37 42 5 11 60 46 13 66 6 6 60 0 0 125 6 7 38 22 26 99 6 8 49 11 37 88 6 9 39 21 72 53 6 10 47 13 62 63 6 11 42 18 31 94 7 64 0 0 121 7 8 51 13 35 86 7 9 47 17 64 57 7 10 49 15 60 61 7 11 42 22 31 90 8 8 86 0 0 99 <t< td=""><td>5</td><td></td><td></td><td></td><td></td><td></td></t<>	5					
5 10 72 34 37 42 5 11 60 46 13 66 6 6 60 0 0 125 6 7 38 22 26 99 6 8 49 11 37 88 6 9 39 21 72 53 6 10 47 13 62 63 6 11 42 18 31 94 7 7 64 0 0 121 7 8 51 13 35 86 7 9 47 17 64 57 7 10 49 15 60 61 7 11 42 22 31 90 8 8 86 0 0 99 8 9 67 19 44 55 <td></td> <td>9</td> <td></td> <td></td> <td></td> <td></td>		9				
6 6 60 0 0 125 6 7 38 22 26 99 6 8 49 11 37 88 6 9 39 21 72 53 6 10 47 13 62 63 6 11 42 18 31 94 7 7 64 0 0 121 7 8 51 13 35 86 7 9 47 17 64 57 7 10 49 15 60 61 7 11 42 22 31 90 8 8 86 0 0 99 8 9 67 19 44 55 8 10 73 13 36 63 8 11 56 30 17 82 <td>5</td> <td>10</td> <td></td> <td></td> <td></td> <td></td>	5	10				
6 7 38 22 26 99 6 8 49 11 37 88 6 9 39 21 72 53 6 10 47 13 62 63 6 11 42 18 31 94 7 7 64 0 0 121 7 8 51 13 35 86 7 9 47 17 64 57 7 10 49 15 60 61 7 11 42 22 31 90 8 8 8 6 0 0 99 8 9 67 19 44 55 8 10 73 13 36 63 8 11 56 30 17 82 9 9 111 0 0 74 9 10 87 24 22 52 9 11 50 61 23 51 10 10 109 0 0 76 10 11 62 47 11 65	5	11	60	46	13	
6 8 49 11 37 88 6 9 39 21 72 53 6 10 47 13 62 63 6 11 42 18 31 94 7 7 64 0 0 121 7 8 51 13 35 86 7 9 47 17 64 57 7 10 49 15 60 61 7 11 42 22 31 90 8 8 86 0 0 99 8 9 67 19 44 55 8 10 73 13 36 63 8 11 56 30 17 82 9 9 111 0 0 74 9 10 87 24 22 52 9 11 50 61 23 51 10 10 109 0 0 76 10 11 62 47 11 65						
6 9 39 21 72 53 6 10 47 13 62 63 6 11 42 18 31 94 7 7 64 0 0 121 7 8 51 13 35 86 7 9 47 17 64 57 7 10 49 15 60 61 7 11 42 22 31 90 8 8 86 0 0 99 8 9 67 19 44 55 8 10 73 13 36 63 8 11 56 30 17 82 9 9 111 0 0 74 9 10 87 24 22 52 9 11 50 61 23 51<		7				
6 10 47 13 62 63 6 11 42 18 31 94 7 7 64 0 0 121 7 8 51 13 35 86 7 9 47 17 64 57 7 10 49 15 60 61 7 11 42 22 31 90 8 8 60 0 99 8 9 67 19 44 55 8 10 73 13 36 63 8 11 56 30 17 82 9 9 111 0 0 74 9 10 87 24 22 52 9 11 50 61 23 51 10 10 109 0 0 76 10 11 62 47 11 65						
6	9					
7	- F					
7 8 51 13 35 86 7 9 47 17 64 57 7 10 49 15 60 61 7 11 42 22 31 90 8 8 86 0 0 99 8 9 67 19 44 55 8 10 73 13 36 63 8 11 56 30 17 82 9 9 111 0 0 74 9 10 87 24 22 52 9 11 50 61 23 51 10 10 109 0 0 76 10 11 62 47 11 65						
7 9 47 17 64 57 7 10 49 15 60 61 7 11 42 22 31 90 8 8 86 0 0 99 8 9 67 19 44 55 8 10 73 13 36 63 8 11 56 30 17 82 9 9 111 0 0 74 9 10 87 24 22 52 9 11 50 61 23 51 10 10 109 0 0 76 10 11 62 47 11 65	7		51			
7 11 42 22 31 90 8 8 8 86 0 0 99 8 9 67 19 44 55 8 10 73 13 36 63 8 11 56 30 17 82 9 9 111 0 0 74 9 10 87 24 22 52 9 11 50 61 23 51 10 10 109 0 0 76 10 11 62 47 11 65	7	9		17	64	57
8 8 86 0 0 99 8 9 67 19 44 55 8 10 73 13 36 63 8 11 56 30 17 82 9 9 111 0 0 74 9 10 87 24 22 52 9 11 50 61 23 51 10 10 109 0 0 76 10 11 62 47 11 65	7					
8 9 67 19 44 55 8 10 73 13 36 63 8 11 56 30 17 82 9 9 111 0 0 74 9 10 87 24 22 52 9 11 50 61 23 51 10 10 109 0 0 76 10 11 62 47 11 65						
8 10 73 13 36 63 8 11 56 30 17 82 9 9 111 0 0 74 9 10 87 24 22 52 9 11 50 61 23 51 10 10 109 0 0 76 10 11 62 47 11 65	8					
8 11 56 30 17 82 9 9 111 0 0 74 9 10 87 24 22 52 9 11 50 61 23 51 10 10 109 0 0 76 10 11 62 47 11 65	Ö					
9 9 111 0 0 74 9 10 87 24 22 52 9 11 50 61 23 51 10 10 109 0 0 76 10 11 62 47 11 65	8					
9 10 87 24 22 52 9 11 50 61 23 51 10 10 109 0 0 76 10 11 62 47 11 65	9					
9 11 50 61 23 51 10 10 109 0 0 76 10 11 62 47 11 65	9	10	87			
10 10 109 0 0 76 10 11 62 47 11 65	9					
	10	10	109	0	0	76
11 11 73 0 0 112						
	11	11	73	0	- 0	112

a y b: Areas comparadas. c: Especies comunes en a y b. Sa: Sólo aparecen en a. Sb: Sólo aparecen en b. Nab: No están ni en a, ni en b.



0

-2


1

2

COORDENADA	s en	TRE	S DIME	NSIONES
VARIABLE	EJE	1	11	111
CNO CDU	•	.32		0.18
CTA CGA	-0	.03	0.19	-0.78
CGR CSU	0	.37	0.70	~0.20
CSE	. 0	.86	0.05	0.66
CEB CPO	-0	.30	-0.44	0.60
BAL	1		-0.65 -0.52	

Tabla 4.2.13

Mapa 4.2.4

ubicada en los Pirineos, junto con una fauna de influencia mediterránea propia de zonas de menor altitud.

- . Grupo B: Formado por las cuencas del Tajo, Guadiana, Guadalquivir, todas de caracter predominantemente silíceo, y la cuenca del Júcar, estrechamente relacionada con las del Tajo y Guadiana a través de la Sierra de Cuenca. Se caracterizan por una diversidad genérica muy elevada, acompañada también de una importante riqueza de especies.
- . Grupo C: Formado por las Islas Baleares únicamente, dada su situación geográfica y el origen heterogéneo de su fauna de Hydradephaga.
- . Grupo D: Formado por la cuenca Sur exclusivamente. El caracter de áridez de su territorio y la relación de su fauna con la del Norte de Africa, son sus características principales.
- . Grupo E: Representado sólo por la cuenca del Segura. Al igual que la cuenca Sur, el carácter árido de sus tierras y su relación faunística con el Norte de Africa, constituyen los principales aspectos que definen su fauna. Se diferencia de la cuenca Sur, por la existencia de más áreas con cotas altitudinales mayores, que permiten la presencia de especies de regiones más frías, aumentando la heterogeneidad de su fauna.
- . Grupo F: Formado por las cuencas Norte y del Duero. Se caracteriza por una elevada riqueza de especies procedentes, fundamentalmente, de áreas septentrionales de la Subregión Paleártica Occidental.

El siguiente paso ha sido la representación espacial de las cuencas estudiadas (figuras 4.2.6 a y b), a partir de las coordenadas obtenidas (tabla 4.2.13) mediante la aplicación del programa SYSTAT sobre la matriz cuadrada de sus afinidades faunísticas.

De la interpretación de estas figuras, se ha podido definir con mayor precisión, el grado de comunicación entre las faunas de Hydradephaga de las

Islas Baleares (Grupo C) y las cuencas Sur (Grupo D) y Segura (Grupo E), al presentar una "distancia de afinidad" entre ellas, similar en ambas representaciones espaciales (ejes I/II y I/III), situación que no se repite con las cuencas del Guadalquivir y Ebro. Esto ha permitido reagrupar a las tres primeras, en una sola zona, denominada:

- Subárea Ibérico-mediterráneo-balear (3): caracterizada por la aridez de sus tierras y una fauna heterogénea de Hydradephaga, con influencia norteafricana.

El resto de grupos (A, B y F), reflejan las mismas afinidades entre cuencas, observadas en el dendrograma. La denominación recibida ha sido la siguiente:

- Grupo A: Subárea Ibérico-pirenáico-mediterránea (1).
- Grupo B: Subárea Ibérico-central (2).
- Grupo F: Subárea Ibérico-noroccidental (4):

La representación cartográfica de estas Subáreas aparece reflejada en el mapa 4.2.4.

Por último, con el fin de seleccionar las especies que caracterizan cada una de estas Subáreas, se han utilizado los parámetros Gi y I(V:S), de la teoría de la información (DE PABLO, 1987).

Se han considerado especies características, aquellas con valores de Gi y I(V.S) superiores a 0.2 y una frecuencia de aparición de, al menos, el 50% (tabla 4.2.14). Así mismo, no se han tenido en cuenta aquellas especies que han resultado igualmente características para más de una Subárea.

Las especies seleccionadas se han clasificado a su vez en:

- . Exclusivas: cuando sólo se encuentran en una Subárea.
- . Presentes: cuando se localizan sobre todo en una Subárea.
- . Ausentes: cuando no se localizan en una Subárea y sí en el resto.

ESPECIES CARACTERISTICAS DE LAS SUBAREAS IBERICAS

ESPECIES	I(V.S)	Sa.I-pirenáica-m. % G1	Sa.I-central % G2	Sa.I-md-balear % G3	Sa.I-noroccidental Z G4
H-31-1	0.68	0 0.12	0 0.20	0 0.15	100 1 00
Haliplus inmaculatus	0.22	0.12	25 0.03	66 0.15	100 1.00
H.andalesices	0.65		1		1 1
H.folvos	0.45	100 0.27	75 0.03	0.78	100 0.27
		0.36	75 0.18	33 0.02	50 0.00
H.variegatus	0.66	100 0.76	031 8.00	0.25	50 0.07
Gyrinus.minutus	0.56	50 0.00	0.60	660.07	100 0.46
G.distinctus Canthydrus.diophthalmus	0.30	0.12	0.20	660.44	1
	0.43	100 0.59	0.45	33 0.00	0.12
Hyphydrus.ovatus	1		1	1	L :
Hydrovatus.clyplealis	0.45	50 0.46	75 0.09 25 0.03	33 0.07	0100 0.36
H.simplex Bidessus.coxalis	1	00.06	0.03	0.07	50 0.27
	Į.	00.36	75 0.18	0.47	1100 0.46
B.goudoti B.pumilus		500.00	75 0.09	66 0.02	0.46
B.saucius	1	0.27	75 0.31	0.35	50 0.02
Coelambus.lernaeus		00.46	100 0.60	33 0.07	50 0.02
C.pallidulus	1	50 0.02	50 0.04	0.35	50 0.02
Herophydrus.nusicus	1	0.02	0.20	66 0.44	0.12
Hydroporus.brancucii	1	0.06	0.00	0.07	50 0.32
R.erythrocephalus	1	0.12	0.20	0.15	1100 1.00
H.ferrugineus	1	500.07	0.31	0.13	100 0.76
H.gyllenhali	1	0.27	50 0.04	0.23	100 0.59
H.incognitus		50 0.68	0.31	0.35	100 0.76
H.ionicus	4	1001.00	0.31	0.15	0.12
H.memnonius		50 0.32	0.20	0.07	00.06
H.nigellos		50 0.32	0.03	0.07	0.06
H.nivalis	i	100 0.46	25 0.09	0.47	100 0.46
H.normandi	1	100 0.36	50 0.00	0.41	100 0.36
H.obscurus		0 0.12	0.20	0.15	1100 1.00
H.obsoletus	4	0.46	100 0.60	0.13	100 0.36
H.pallidolus	1	100 0.27	75 0.03	0.78	100 0.27
H.rufifrons		00.08	0.09	0.07	50 0.32
H.tristis	0.66	50 0.07	0.31	0.25	1
H. vagepictus		50 0.07	0.31	0.25	100 0.76
H.vespertinus	1	0.27	50 0.04	0.25	100 0.59
H.melanarius	4	50 0.07	00	0.25	100 0.76
H.brancoi	1	0.12	00	0.23	100 1.00
H.nevadensis	1	0.12	25 0.00	0.25	100 0.76
H. longulus	1	100 0.36	50 0.00	0.61	100 0.46
Porhydrus.genei		0.12	50 0.26	0.15	0.12
rorniming. Scholessessesses	10.95	1	1	U.13	1

	,				
		Sa.I-pirenáica-m.	Sa.I-central	Sa.I-md-balear	Sa.I-noroccidental
ESPECIES	I (V.S)	x G1	% G2	/s X + 5 G3	% G4
Darladana danai	0.32	0 0.12	50 0.26	0 0.15	0 0.12
Porhydrus genei	1	0 0.12	50 0.26	00.15	00.12
	0.47	0 0.27	75 0.31	0 0.35	50 0.02
Graptodytes aequalis	0.47	50 0.02	25 0.03	00.35	100 0.59
G.bilineatus	•		0.03	00.07	50 0.32
G.granularis	0.26	0 0.06	3	1	1
G.pictus		100 1.00	0 0.20	0.15	00.12
Rhithrodytes bimaculatus		50 0.07	0 0.31	0.25	100 0.76
Scarodytes halensis		100 0.19	100 0.31	0 1.00	100 0.19
Stictonectes formosus	0.55	0 0.19	75 0.49	0 0.25	0 0.19
S.optatus	0.45	0.46	50 0.00	100 0.47	500.00
Deronectes angusi	0.68	0 0.12	0 0.20	0.15	100 1.00
D.aubei	0.70	100 0.46	25 0.09	0.47	100 0.46
D.bertrandi	0.47	50 0.02	25 0.03	0.35	100 0.59
D.bicostatus	0.45	0 0.46	75 0.09	33 0.07	100 0.36
D.costipennis		0 0.12	0 0.20	0.15	1100 1.00
D.depressicollis	0.30	0 0.19	25 0.00	66 0.26	0.19
D.fairmairei	0.59	100 0.19	100 0.31	66 0.01	0.76
D.ferrugineus	0.26	0 0.06	0.09	0.07	50 0.32
D. latus	0.66	50 0.07	0 0.31	0 0.25	100 0.76
Stictotarsus 12-pustulatus	0.85	100 0.19	100 0.31	1.00	100 0.19
Potamonectes ceresyi	0.59	00.76	100 0.31	66 0.01	100 0.19
P.d.elegans	0.45	50 0.00	50 0.00	0 0.47	100 0.46
Oreodytes sanmarki	0.47	50 0.02	25 0.03	0 0.35	100 0.59
O.septentrionalis	0.59	0 0.19	0.31	33 0.01	100 0.76
Laccophilus ponticus	0.66	50 0.07	100 0.31	100 0.25	0.76
Copelatus atriceps	0.52	50 0.00	75 0.09	0.61	100 0.36
Agabus dilatatus	0.59	100 0.76	0.31	33 0.01	0 0.19
A.heydeni		0 0.36	50 0.00	33 0.02	100 0.46
A.albarracinensis	0.47	50 0.02	25 0.03	0.35	100 0.59
A.conspersus	0.40	100 0.27	75 0.03	66 0.00	0.59
A.dettenri	1	0.12	10 0.20	0.15	1.00 1.00
A.neglectus	0.66	50 0.07	0.31	0.25	100 0.76
A.labiatus		0 0.12	0 0.20	0.15	100 1.00
Ilybius ater	1	100 0.76	25 0.00	00.25	00
I.fuliginosus	0.74	100 0.46	0.60	33 0.02	100 0.46
Rhantus hispanicus	0.70	00.36	75 0.18	00.47	100 0.46
Colymbetes schildknechti	0.47	00.27	75 0.31	00	50 0.02
Hydaticus debarros-machadoi	0.32	0 0.12	50 0.26	00.15	0.12
H. leander	0.47	50 0.02	75 0.03	100 0.35	00.59
H. seminiger	0.26	50 0.32	00.09	0.07	00.06
Graphoderus cinereus	0.26	50 0.32	0.09	0.07	0.56
Acilius.sulcatus	1 -	100 0.36	500.00	0.61	1
A.duvergeri	3		the state of the s	1	100 0.36
w.mater.Ret.T	U.11	0 0.27	75 0.31	0.35	50 0.02
				· · · · · · · · · · · · · · · · · · ·	

Tabla 4.2.14 (continuación)

Así, los resultados obtenidos han sido los siguientes:

- 1) Subárea Ibérico-pirenáico-mediterránea.
- . Especies características exclusivas:

Hydroporus ionicus
H. memnonius
H. nigellus
Graptodytes pictus
Hydaticus seminiger
Graphoderus cinereus

. Especies características presentes:

Gyrinus minutus Agabus dilatatus Ilybius ater

. Especies características ausentes:

Haliplus andalusicus
H. variegatus
Hydrovatus clypealis
Coelambus lernaeus
Deronectes bicostatus
Potamonectes ceresyi

- 2) Subárea Ibérico-central.
- . Especies características exclusivas:

Porhydrus genei P. vicinus Stictonectes formosus Hydaticus debarros-machadoi Acilius duvergeri

. Especies características presentes:

Bidessus saucius
Hydroporus obsoletus
Graptodytes aequalis
Colymbetes schildknechti

. Especies características ausentes:

Gyrinus distinctus Hyphydrus ovatus Ilybius fuliginosus

- 3) Subárea Ibérico-mediterránea-balear.
- . Especies características exclusivas:

Canthydrus diophthalmus Herophydrus musicus

. Especies características presentes:

Stictonectes optatus
Deronectes depressicollis

. Especies características ausentes:

Haliplus fulvus H. rubidus Coelambus pallidulus Hydroporus nivalis

H. normandi

H. palustris

H. longulus

Scarodytes halensis

Deronectes aubei

D. bertrandi

Stictotarsus duodecimpustulatus

Potamonectes depressus elegans

Oreodytes sanmarki

Copelatus atriceps

Acilius sulcatus

4) Subárea Ibérico-noroccidental.

. Especies características exclusivas

Haliplus inmaculatus

Bidessus coxalis

Hydroporus brancucii

H. erythrocephalus

H. obscurus

H. rufifrons

H. brancoi

Graptodytes granularis

Deronectes angusi

D. costipennis

D. ferrugineus

Agabus dettneri

A. labiatus

. Especies características presentes:

Bidessus goudoti Hydroporus ferrugineus H. gyllenhali H. incognitus H. tristis H. variegatus H. vespertinus H. nevadensis H. melanarius Graptodytes bilineatus Rhithrodytes bimaculatus Deronectes latus Oreodytes septentrionalis Agabus heydeni A. albarracinensis A. neglectus Rhantus hispanicus

. Especies características ausentes:

Hydrovatus simplex
Bidessus pumilus
Deronectes fairmairei
Laccophilus ponticus

Como se puede apreciar, las regiones del norte peninsular son las que presentan unas faunas más características, lo que implica una menor comunicación con la fauna de Hydradephaga del resto de cuencas de la Península Ibérica. Por el contrario, las cuencas del sur peninsular y las Islas Baleares están constituidas por una fauna más heterogénea y por tanto menos característica. Aún así, son pocas las especies características dado el alto grado de afinidad observado entre las cuencas.

En general, la Península Ibérica presenta una fauna de Coleópteros Hydradephaga muy variada, al igual que otras zonas mediterráneas (FRANCISCOLO, 1979), estando la mitad norte más influencia por especies de regiones de Europa septentrional y central, fundamentalmente, de los géneros Haliplus, Hydroporus Agabus o Graphoderus; mientras que la mitad sur y las Islas Baleares tienen más relación con especies de regiones meridionales de Europa y el Norte de Africa, como las pertenecientes a los géneros Porhydrus, Stictonectes, Canthydrus y Herophydrus principalmente.

Finalmente, el principal factor determinante de la comunicación entre las faunas de las distintas cuencas es, además de la gran capacidad de desplazamiento de estos Coleópteros, la proximidad entre cuencas de características históricas, geológicas y ecológicas similares.

Este último aspecto, justifica la importancia de investigaciones a un nivel de percepción más profundo (BLONDEL, 1985), que permita conocer aspectos más complejos, como aquellos que actúan a modo de barrera justo en la frontera de separación de las distribuciones de dos especie, y que sirvan de complemento a estudios biogeográficos de caracter extensivo.

4. RESULTADOS 4.3. Estudio ecológico.

4.3. Estudio ecológico.

4.3.1. Introducción.

Los Hydradephaga, son los Coleópteros acuáticos de mayor versatilidad ecológica, y uno de los grupos con más riqueza de especies.

Junto con los Heterópteros acuáticos, poseen la más amplia variedad de formas adaptativas, que junto con el caracter eurioico o generalista (RANTA, 1985) y oportunistas, de gran parte de ellos, les permite vivir y explotar sistemas acuáticos de naturaleza muy diferente.

En general, tienen una gran capacidad de dispersión, sobre todo por el vuelo (FOSTER, 1979; CARR, 1986; NILSSON, 1986 d), de manera que pueden colonizar y explotar cuerpos de agua temporales o muy inestables y emigrar cuando las condiciones son desfavorables (MONTES et al., 1982).

Todos estos factores (movilidad y diversidad de hábitats), unidos a la baja densidad de individuos encontrada en muestras estándar, les hace ser poco propicios como indicadores de la calidad del agua (ROBACK, 1974). Sin embargo, resulta evidente que se produce una clara disminución, cualitativa y cuantitativa de sus poblaciones, en aguas contaminadas o muy alteradas por los efectos del manejo humano, lo que denota que existen otra serie de características bióticas y/o abióticas que, directa o indirectamente están determinando su distribución (BAGGE, 1983; FRIDAY, 1987).

Por otra parte, en recientes trabajos, se ha demostrado que el estudio, por separado, de las comunidades de Coleópteros acuáticos, refleja las mismas condiciones ambientales que la comunidad de macroinvertebrados en su conjunto (JEFFRIES, 1988), pero con ventajas adicionales como: el gran espectro de hábitats que son capaces de caracterizar, su capacidad para ocupar todos o casi todos los rangos de los parámetros ambientales seleccionados, su facilidad de muestreo y la amplia bibliografía disponible. Además, según HEUSS (1989), ciertas

especies, entre las que se encuentran algunos Hydradephaga, pueden indicar grados de contaminación y contenido de oxígeno disuelto.

Otro aspecto importante, al que no se le ha prestado mucha atención en la literatura, es la larga vida de los adultos, que permite encontrarlos durante gran parte del año, disminuyendo así la variabilidad estacional en las muestras (EYRE et al., 1986).

En definitiva, los Hydradephaga, al igual que otros Coleópteros acuáticos, a pesar de su pobre aportación en los índices de calidad de aguas, se pueden catalogar como buenos indicadores de las características macro y microambientales de los hábitats acuáticos que ocupan (BRANCUCCI, 1980) y, sobre todo, importantes descriptores de los cambios espaciales y temporales producidos en los sistemas hídricos (RICHOUX & CASTELLA, 1986; RICHOUX, 1988).

La suma de estas características, hace de los Hydradephaga un grupo de insectos muy interesantes en zoología y ecología aplicada, siendo un instrumento válido para el estudio del funcionamiento integral de las cuencas hidrográficas y para la planificación y gestión de los recursos naturales de las mismas.

Existen muchos trabajos, dentro y fuera de la Península Ibérica, que tratan el tema faunístico y sistemático, pero son pocos los que abordan aspectos ecológicos de los Coleópteros acuáticos en general y de los Hydradephaga en particular. La investigación en ecología de este taxon, normalmente, está confinada a tipos similares de hábitats o a áreas muy restringidas (EYRE et al., 1986)

Los trabajos que relacionan las características del medio con la presencia de determinadas especies de macroinvertebrados acuáticos, se pueden diferenciar, fundamentalmente, en dos tipos:

a) Estudios de carácter descriptivo y con un tratamiento de los datos sencillo, en donde se asocian, a través de documentación bibliográfica y de la experiencia de campo, las variables abióticas y/o bióticas del medio con las especies encontradas. Dentro de este tipo se pueden incluir los trabajos de

HOSSEINIE (1974, 1978), BRANCUCCI (1980), BIESIADKA (1980), BAGGE (1983), MIELEWCZYK (1983/84), BOURASSA, ALAIRE & LECLAIR (1986), BUSSLER (1988) y HANSON & SWANSON (1989), entre otros. De ellos, destaca el de BRANCUCCI (1980), que trata aspectos de vuelo y migración de especies, utilizando métodos de marcaje.

b) Estudios en los que se aplican técnicas estadísticas y multivariantes, como los de LARSON (1985), RANTA (1985), CUPPEN (1986), FLECHTNER (1986), LANCASTER & SCUDDER (1986), RICHOUX & CASTELLA (1986), FRIDAY (1987) y DOLEDEC & CHESSEL (1989). Merecen especial atención los trabajos de LARSON (1985), que trata la distribución de los Ditíscidos y los parámetros del medio que caracterízan esa ditribución; FRIDAY (1987), que resalta, desde un punto de vista global, los factores bióticos y abióticos más importantes que están implicados en la ditribución y diversidad de los macroinvertebrados; y DOLEDEC & CHESSEL (1989), por el tratamiento de los datos y la interpretación que hacen de la estructura espacio-temporal de los macroinvertebrados.

Recientemente, también se han utilizado técnicas estadísticas y multivariantes en trabajos aplicados, cuya finalidad es clasificar hábitats por su interés de conservación, en base a la presencia de Coleópteros acuáticos, fundamentalmente Hydradephaga (SHIRT, 1987), EYRE et al. (1986), EYRE & RUSHTON (1989), EYRE & FOSTER (1989) y FOSTER et al. (1990).

Las últimas tendencias, en este sentido, intentan elaborar modelos predictivos, que permitan relacionar la composición de la comunidad con variables ambientales concretas. Estos modelos, podrían ser utilizados también para la valoración de los recursos biológicos de cuerpos de agua de diferente naturaleza cara a su conservación (FAITH & NORRIS, 1989).

En la Península Ibérica, son muy pocos los estudios ecológicos de macroinvertebrados acuáticos, aplicados o no, que incluyen a los Coleópteros Hydradephaga. Cabe mencionar los trabajos de BIGOT & MARAZANOF (1966), MONTES & RAMIREZ (1981), SABATER et al. (1986), FRESNEDA & HERNANDO (1988) e ISART et al. (1990). Con respecto a los estudios que aplican técnicas

multivariantes destacan los de SOLER (1972), SOLER et al. (1972), MONTES et al., 1980, y más recientemente el de RIBERA & ISART (en prensa), que correlaciona medidas morfométricas de Ditíscidos con variables del medio.

No se conocen estudios peninsulares que utilicen los Coleópteros acuáticos como instrumento para valorar la necesidad de conservación de determinados enclaves naturales.

Después de una revisión detallada de toda esta información bibliográfica, se deduce que existe múltiples factores, tanto abióticos como bióticos que, "a priori", parecen determinar la distribución y ocupación de los diferentes cuerpos de agua por los Hydradephaga. En LARSON (1985), aparece una relación de las variables del medio más importantes estudiadas por diferentes autores.

En general, los parámetros abióticos más estudiados son: altitud (FRESNEDA & HERNANDO, 1988); temporalidad del cuerpo de agua (NILSSON, 1986 a y c); tamaño y profundidad (FLECHTNER, 1986); velocidad de la corriente, tipo de sustrato y sedimento (LARSON, 1985); grado y tipo de mineralización (LANCASTER & SCUDDER, 1986); pH (CUPPEN, 1986); y, en menor medida, oxígeno disuelto y contaminación (HEUSS, 1989). Los bióticos son principalmente: fisiología de la especie (LANCASTER & SCUDDER, 1986); forma del cuerpo, velocidad de natación y maniobrabilidad (RIBERA & ISART, en prensa); ciclo de vida (WEWALKA, 1986); capacidad de vuelo o desplazamiento (BRANCUCCI, 1980); presencia de macrófitos y/o vegetación de ribera (FRIDAY, 1987); presencia de organismos presa y competencia, aunque este último factor es difícil de cuantificar (NILSSON, 1986 d; FRIDAY, 1987).

En este capítulo se ha estudiado el conjunto de las especies de Hydradephaga desde una visión integrada con el medio, para dar respuesta a los siguientes objetivos:

- Determinar las tendencias de distribución general de las especies de Hydradephaga en la cuenca del río Segura.
 - Destacar los parámetros del medio que mejor caracterizan su distribución.

- Conocer las asociaciones especificas más importantes, en qué tipo de hábitats se encuentran y cuál es su localización en la cuenca.
- Indicar las especies, localidades de muestreo y tipos de hábitats que tienen mayor interés conservacionista a escala regional, siguiendo criterios de rareza y riqueza de especies.

4.3.2. Metodología.

Para la obtención de los objetivos propuestos en este capítulo, se han elaborado diferentes matrices de datos a las que, posteriormente, se les ha aplicado diferentes técnicas multivariantes de ordenación y de clasificación.

La primera matriz elaborada ha sido la de presencia/ausencia, (1 y 0), derivada de las estimas relativas obtenidas para cada especie en las diferentes estaciones de muestreo (apéndice 2). Se ha preferido utilizar los datos de presencia/ausencia dado el carácter extensivo del muestreo y la marcada heterogeneidad de las muestras (ver capítulo 3).

A esta matriz de 248 estaciones y 64 especies, se le ha aplicado un análisis de correspondencias múltiples (MCA), con el fin de explorar las principales tendencias de variación ecológica de las especies de Hydradephaga de la cuenca del río Segura. Esta técnica, es una generalización del "análisis de correspondencias" (CA) (BENZECRI, 1973; HILL, 1979), para el análisis de datos nominales, y resulta muy útil en el tratamiento de matrices de presencia/ausencia (PALAZON, 1990). Para llevar a cabo este análisis se utilizó el paquete estadístico SPAD.N (LEBART et al., 1987).

Para elaborar una segunda matriz (apéndice 3), se seleccionaron aquellos parámetros del medio que según la bibliografía consultada, parecen ser los más importantes en la distribución de las especies. En cada parámetro se establecieron una serie de clases o modalidades nominales u ordinales que se detallan en la tabla 4.3.1.

A esta matriz, junto con la de presencia/ausencia, se les ha aplicado un análisis canónico de correspondencias múltiples (CMCA) (TER BRAAK, 1988), con objeto de interpretar la distribución de las especies en relación con los parámetros del medio seleccionados. Para llevar acabo este tratamiento multivariante se ha empleado el programa CANONO (TER BRAAK, 1988). Este tipo de técnica de ordenación canónica ha sido utilizada por LEBRETON et al. (1988) para macroinvertebrados acuáticos, con datos cualitativos, de forma satisfactoria.

El siguiente paso ha sido la elaboración, como resultado de las dos matrices anteriores, de una tercera matriz de especies por modalidades de las variables ambientales (64x54), que refleja los datos de frecuencia de aparición de las especies en cada una de las clases o rangos propuestos (tabla de contingencia).

Con el fin de equiparar las modalidades y especies por su presencia, se ha ponderado esta matriz, dividiendo cada columna (modalidades) por el número de veces que aparece dicha modalidad en la cuenca y multiplicando por 100; y cada fila (especies) por el número de estaciones de muestreo en las que aparece la especie en la zona de estudio y multiplicando por 100 (apéndice 4). En este caso, se pretende obtener una caracterización de las especies de la cuenca en función de los parámetros ambientales.

Para este último tipo de datos, se ha empleado un análisis de correspondencias (CA), frecuentemente aplicado en el tratamiento de tablas de contingencia (BENZECRI, 1973). El paquete estadístico utilizado ha sido el mismo que para el MCA.

La cartografía biológica, se ha elaborado utilizando el tratamiento matemático de la teoría de la información (DE PABLO, 1987), para detectar las especies que caracterizan cada uno de los diferentes tipos de hábitats previamente establecidos.

Dicha tipificación, se ha realizado, mediante el empleo de dos clasificaciones diferentes, una "propia", de las 248 estaciones de muestreo donde aparecen Hydradephaga, fundamentada en la naturaleza y fisonomía de la estación, en la

	MOI	DALIDADE	S DE LOS I	PAF	RAMETROS DEL ME	DIO		
ALTITUD (m.) (ALT)*	PERSIS (PER)		DEL AGUA		ROFUNDIDAD (cm. PRO)*) VELC		DAD DE CORRIENTE (cm/s)
	1 Fluo 2 Perr	ctuante/ manente	′pozas	1	0-15 >15-50 >50	1 E	§āj 1ed	as estancadas a: <15 cm/seg ia: 15-50 cm/seg a: >50 cm/seg
SUSTRATO DOM:			SEDIMENTO CO (SED)*	0	MACROFITOS DOM (TMA)o	INANTI	ES	COBERTURA MACROFITOS(%) (CMA)*
O Limos y ard 1 Arenas 2 Gravas 3 Cantos/gui 4 Roca/cemen	jarros	1 CPOM 2 FPOM			0 Ausente 1 Briófitos 2 Algas filame 3 Carófitos 4 Fanerógamas			0 Ausencia 1 5-10 2 >10-30 3 >30-70 4 >70
VEGETACION DE RIBERA GRADO DE M. (GMI)*			MII	NERALIZACION:S	g/1.)	, cc	ONDUCTIVIDAD(μmhos/cm)	
2 Juncos/Tife	as/Tar	ais	2 Mesosal 3 Salinas	na: in:	0.5, <800 s: 0.5-3, 800-8 as: >3-20, 8000 >20-40, 30000-6 nas: >40, >6000	-3000 0000	0	
TIPO DE MINE		CION	OXIGENO D (ODI)*	IS	UELTO (mg/l.)	CONT (CON		INACION ORGANICA
O Equilibrio 1 Carbonatad 2 Sulfatadas 3 Cloruradas	as	0.	0 Anóxi 1 Bajo: 2 Medio 3 Alto:	2:	-5 5-12		uas dia	

^{*} rangos ordinales

Tabla 4.3.1

o rangos nominales

sectorización macroambiental llevada a cabo por VIDAL-ABARCA (1985) en la cuenca del río Segura y en la propia experiencia de campo.

La segunda clasificación, cuya finalidad es la de corregir y completar la tipología propia, se ha realizado mediante el empleó de una técnica de cluster (NAKACHE, 1987), aplicada sobre las coordenadas de las 248 muestras (estaciones) para los 6 primeros ejes del MCA, en base a las 54 modalidades de las 13 variables ambientales estudiadas.

La confrontación, por último, de los resultados para las 2 clasificaciones, ha permitido definir los principales tipos de hábitats de la cuenca y conocer las especies que los caracterízan, por su presencia o ausencia.

Para conocer las especies de Hydradephaga, estaciones de muestreo y tipos de hábitats de la cuenca del río Segura, con mayor interés de conservación, se han utilizado conjuntamente, criterios de "rareza" o "calidad de la especie" (EYRE et al., 1986; EYRE & RUSHTON, 1989; FOSTER et al., 1990) y riqueza específica de las estaciones y hábitats estudiados, términos fáciles de interpretar por la sociedad y los políticos en general, lo que posibilita actuaciones proteccionistas más rápidas.

Los tipos de rareza de las especies, se han establecido teniendo en cuenta el número de veces que aparece cada una de ellas en las 248 estaciones de muestreo, asociándole, a continuación, un valor de una escala geométrica, más apropiada que una aritmética según EYRE & RUSHTON (1989):

```
. tipo 7 = 1 estación = 64
```

- . tipo 4 = 8-15 estaciones = 8
 - tipo 3 = 16-31 estaciones = 4
 - . tipo 2 = 32-64 estaciones = 2
 - . tipo 1 = >64 estaciones = 1

tipo 6 = 2-3 estaciones = 32

[.] tipo 5 = 4-7 estaciones = 16

3.7

Se ha considerado más efectivo utilizar las estaciones de muestreo como unidad de referencia, en vez de delimitar cuadrados con un área preestablecida, dada la heterogeneidad de ambientes que presenta la cuenca del Segura, con cuerpos de agua muy diferentes próximos en el espacio.

Para cuantificar el grado de conservación de cada estación de muestreo, se ha empleado el índice "Factor de calidad de rareza" (RQF), según EYRE & RUSHTON (1989). A continuación se indican los pasos seguidos para su cálculo:

- a) En primer lugar, se han sumando los valores de rareza de las especies presentes en cada estación de muestreo.
- b) Posteriormente, con el fin de dar mayor peso a la presencia o asociación de especies raras, al valor de rareza de cada estación, se le ha añadido el valor de la "rareza de asociación", que prima la asociación de especies raras, obteniéndose el valor de "rareza total asociada" (RAT). Para ello, en las estaciones de muestreo con más de una especie, se han eliminado los valores de rareza 1 y se han equiparado los valores de mayor rareza a los inmediatamente inferiores (EYRE & RHUSTON, 1989).
- c) Por último, los resultados del RAT en cada estación, se han dividido por el número de especies presentes en ellas, obteniendo el valor final de RQF.

Para detectar las estaciones y tipos de hábitats más interesantes, se ha modificado el índice de rareza utilizado, en función de la riqueza de especies (riqueza asociada a rareza = RR), dado que este factor aumenta el interés de protección de dichos medios cara a la conservación de la mayor diversidad genética posible. Para el cálculo del RR, se ha multiplicado el valor de RAT por la riqueza relativa, es decir, por la proporción de especies presentes en cada estación de muestreo con respecto a las 64 especies de Hydradephaga registradas en la cuenca:

El valor final de conservación de las estaciones de muestreo, ha sido resultado del cálculo de la media de los valores de RQF y RR, que han presentado cada una de ellas, obteniendo un nuevo índice al que se le ha denominado "Interés de conservación" (IC).

Este índice también se ha aplicado para cada uno de los tipos de hábitats principales, calculando la media y desviación típica de los valores de IC, RR y RQF para las estaciones pertenecientes a dicho tipo de hábitat.

4.3.3. Resultados y discusión.

ORDENACION

. MCA: Análisis de correspondencias múltiples.

Con el objeto de simplificar la exposición de los resultados obtenidos en el análisis, sólo se han considerado los tres primeros ejes de la ordenación de la matriz de presencia/ausencia.

Los autovalores, inercia e inercia acumulada de los ejes aparecen en la tabla 4.3.2, así como las contribuciones absolutas de las especies (modalidades) y estaciones (muestras), con valores mayores a 3, que forman dichos ejes.

Para la representanción de los planos factoriales se han seleccionado las especies mejor representadas en los mismos, es decir, aquellas con una contribución relativa para la suma de los ejes I y II o I y III, mayor de 0.1 (tabla 4.3.3) (PALAZON, 1990). No se han considerado las ausencias de las especies, dado que a pesar de que algunas tienen contribuciones relativas altas, aparecen en el

centro de las coordenadas o muy próximas a él y carecen de interés para la interpretación de los resultados.

No se han representado las estaciones con objeto de no complicar la exposición gráfica (los valores de las contribuciones relativas de las mejor representadas en los planos factoriales de los ejes I, II y III aparecen en la tabla 4.3.4). Tampoco se ha reflejado el diagrama de ordenación de los ejes II y III, dado que no ha aportado nuevos aspectos explicativos.

La figura 4.3.1 representa la ordenación de las especies en los planos definidos por los ejes I y II. En el primer eje se puede apreciar la existencia de un gradiente de especies y estaciones, desde la cabecera a la vega baja y desembocadura de la cuenca. Así, con valores negativos para el eje I aparecen, principalmente, especies como Gyrinus distinctus, G. dejeani, Orectochilus villosus, Hydroporus nigrita, H. tessellatus, H. discretus, Graptodytes varius, Stictonectes epipleuricus, Deronectes depressicollis, Potamonectes cazorlensis y Oreodytes davisi, que se encuentran asociadas a estaciones de tramos altos de los ríos (por encima de los 1000 m.), con aguas dulces y velocidad de la corriente elevada. Al desplazarse por la derecha del eje, se observa un escalonamiento de especies hacia estaciones de los tramos inferiores del río. Es el caso de Eretes sticticus y Agabus nebulosus, entre otros.

El segundo eje, aporta información redundante con respecto al primero, de manera que se puede ver, aunque con menor claridad, un gradiente de la cabecera (coordenadas negativas) a la desembocadura (coordenadas positivas). Pero quizá, el factor que puede definir este eje con mayor peso, es la separación de especies y estaciones en relación con la vegetación de ribera. De este modo, se observa la presencia, en la parte positiva del eje de Agabus bipustulatus, Hydroporus lucasi, Deronectes hispanicus, Graptodytes fractus, Stictonectes optatus, Dytiscus circumflexus y D. pisanus, asociadas por lo general, a estaciones "abiertas" de porte arbustivo. Mientras que en el extremo negativo aparece el grupo de especies que se ha mencionado para el eje I en la cabecera de la cuenca, típicas de ambientes acuáticos más recogidos, con una vegetación en galería más frondosa.

CORRESPONDENCIAS MULTIPLES (MCA)

EJE I EJE II EJE III 0.81 0.50 0.45 AUTOVALORES 8.18 5.01 4.53 INERCIA 8.18 13.20 17.73 INERCIA ACUMULAD COORDENADAS Y CONTRIBUCIONES ABSOLUTAS ESPECIES ESTACIONES EJE I C1 CA C1 CA CY.DI -4.23 8.30 120 -2.04 20.5 HY.NI -4.4 7.40 113 -1.78 15.7 OR.DA -6.69 6.90 108 -1.51 11.2 GY.DE -2.59 6.20 109 -1.22 7.4 HY.DI -1.94 6.10 128 0.13 4.9 GA.VA -2.51 5.30 144 -0.87 3.7 OR.VI -1.51 4.90 PO.CA -1.86 4.30 HY.TE -5.26 4.30 ST.EP -2.29 4.00 DE.DE -7.13 3.90 EJE II C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
8.18 5.01 4.53 INERCIA 8.18 13.20 17.73 INERCIA ACUMULAD COORDENADAS Y CONTRIBUCIONES ABSOLUTAS ESPECIES ESTACIONES EJE I C1 CA C1 CA GY.DI -4.23 8.30 120 -2.04 20.5 HY.NI -4.4 7.40 113 -1.78 15.7 OR.DA -6.69 6.90 108 -1.51 11.2 GY.DE -2.59 6.20 109 -1.22 7.4 HY.DI -1.94 6.10 128 0.13 4.9 GA.VA -2.51 5.30 144 -0.87 3.7 OR.VI -1.51 4.90 PO.CA -1.86 4.30 HY.TE -5.26 4.30 ST.EP -2.29 4.00 DE.DE -7.13 3.90 EJE II C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
8.18 5.01 4.53 INERCIA 8.18 13.20 17.73 INERCIA ACUMULAD COORDENADAS Y CONTRIBUCIONES ABSOLUTAS ESPECIES ESTACIONES EJE I C1 CA C1 CA GY.DI -4.23 8.30 120 -2.04 20.5 HY.NI -4.4 7.40 113 -1.78 15.7 OR.DA -6.69 6.90 108 -1.51 11.2 GY.DE -2.59 6.20 109 -1.22 7.4 HY.DI -1.94 6.10 128 0.13 4.9 GA.VA -2.51 5.30 144 -0.87 3.7 OR.VI -1.51 4.90 PO.CA -1.86 4.30 HY.TE -5.26 4.30 ST.EP -2.29 4.00 DE.DE -7.13 3.90 EJE II C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
8.18 13.20 17.73 INERCIA ACUMULAD COORDENADAS Y CONTRIBUCIONES ABSOLUTAS ESPECIES ESTACIONES EJE I C1 CA C1 CA GY.DI -4.23 8.30 120 -2.04 20.5 HY.NI -4.4 7.40 113 -1.78 15.7 OR.DA -6.69 6.90 108 -1.51 11.2 GY.DE -2.59 6.20 109 -1.22 7.4 HY.DI -1.94 6.10 128 0.13 4.9 GA.VA -2.51 5.30 144 -0.87 3.7 OR.VI -1.51 4.90 PO.CA -1.86 4.30 HY.TE -5.26 4.30 ST.EP -2.29 4.00 DE.DE -7.13 3.90 EJE II C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
ESPECIES ESTACIONES EJE I C1 CA C1 CA GY.DI -4.23 8.30 120 -2.04 20.5 113 -1.78 15.7 OR.DA -6.69 6.90 108 -1.51 11.2 GY.DE -2.59 6.20 109 -1.22 7.4 HY.DI -1.94 6.10 128 0.13 4.9 GA.VA -2.51 5.30 144 -0.87 3.7 OR.VI -1.51 4.90 PO.CA -1.86 4.30 HY.TE -5.26 4.30 ST.EP -2.29 4.00 DE.DE -7.13 3.90 EJE II C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
ESPECIES ESTACIONES EJE I C1 CA C1 CA GY.DI -4.23 8.30 120 -2.04 20.5 113 -1.78 15.7 OR.DA -6.69 6.90 108 -1.51 11.2 GY.DE -2.59 6.20 109 -1.22 7.4 HY.DI -1.94 6.10 128 0.13 4.9 GA.VA -2.51 5.30 144 -0.87 3.7 OR.VI -1.51 4.90 PO.CA -1.86 4.30 HY.TE -5.26 4.30 ST.EP -2.29 4.00 DE.DE -7.13 3.90 EJE II C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
C1 CA C1 CA GY.DI -4.23 8.30 120 -2.04 20.5 HY.NI -4.4 7.40 113 -1.78 15.7 OR.DA -6.69 6.90 GY.DE -2.59 6.20 109 -1.22 7.4 HY.DI -1.94 6.10 128 0.13 4.9 GA.VA -2.51 5.30 144 -0.87 3.7 OR.VI -1.51 4.90 132 -0.83 3.4 PO.CA -1.86 4.30 HY.TE -5.26 4.30 ST.EP -2.29 4.00 DE.DE -7.13 3.90 EJE II C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 ST.OP 1.95 6.20 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
C1 CA C1 CA GY.DI -4.23 8.30 120 -2.04 20.5 HY.NI -4.4 7.40 113 -1.78 15.7 OR.DA -6.69 6.90 108 -1.51 11.2 GY.DE -2.59 6.20 109 -1.22 7.4 HY.DI -1.94 6.10 128 0.13 4.9 GA.VA -2.51 5.30 144 -0.87 3.7 OR.VI -1.51 4.90 132 -0.83 3.4 PO.CA -1.86 4.30 HY.TE -5.26 4.30 ST.EP -2.29 4.00 DE.DE -7.13 3.90 EJE II C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
HY.NI -4.4 7.40
HY.NI -4.4 7.40
OR.DA -6.69 6.90 108 -1.51 11.2 11.2 11.2 11.2 11.2 11.2 11.2
GY.DE -2.59 6.20 109 -1.22 7.4 HY.DI -1.94 6.10 128 0.13 4.9 GA.VA -2.51 5.30 144 -0.87 3.7 OR.VI -1.51 4.90 132 -0.83 3.4 PO.CA -1.86 4.30 HY.TE -5.26 4.30 ST.EP -2.29 4.00 DE.DE -7.13 3.90 EJE II C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
HY.DI -1.94 6.10 128 0.13 4.9 144 -0.87 3.7 OR.VI -1.51 4.90 132 -0.83 3.4 PO.CA -1.86 4.30 HY.TE -5.26 4.30 ST.EP -2.29 4.00 DE.DE -7.13 3.90 EJE II C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
GA.VA -2.51 5.30 144 -0.87 3.7 OR.VI -1.51 4.90 PO.CA -1.86 4.30 HY.TE -5.26 4.30 ST.EP -2.29 4.00 DE.DE -7.13 3.90 EJE II C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 ST.OP 1.95 6.20 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
OR.VI -1.51 4.90 PO.CA -1.86 4.30 HY.TE -5.26 4.30 ST.EP -2.29 4.00 DE.DE -7.13 3.90 EJE II C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
PO.CA -1.86 4.30 HY.TE -5.26 4.30 ST.EP -2.29 4.00 DE.DE -7.13 3.90 EJE II C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
HY.TE -5.26 4.30 ST.EP -2.29 4.00 DE.DE -7.13 3.90 EJE II C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
ST.EP -2.29 4.00 DE.DE -7.13 3.90 EJE II C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
EJE II C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
EJE II C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
C2 CA C2 CA AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
AG.BP 2.92 9.70 189 1.52 18.50 HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
HY.LU 2.25 7.00 119 1.07 9.20 DY.PI 3.64 6.70 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
DY.PI 3.64 6.70 113 -1.01 8.10 ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
ST.OP 1.95 6.20 144 0.96 7.40 AG.NE 3.27 5.40 108 0.93 7.00
AG.NE 3.27 5.40 108 0.93 7.00
AG. NE 3.27 3.40 1 100 0.33 7.00
DE.HI 2.32 4.00 386 0.91 6.70
TTTT: TTT
HY.DI 1.20 3.80 203 0.72 4.20
OR.DA -3.90 3.80 131 0.63 3.20
GR.FR 2.21 3.70
ER.ST 1.66 3.50
DE.MO 1.76 3.50
EJE III
C3 CA C3 CA
PO.GR 9.62 12.90 386 2.05 37.30
HY.AU 3.58 8.90 113 1.07 10.20
AG.NE 3.82 8.10 120 0.97 8.40
LA.MI 1.94 6.80 119 -0.65 3.80
OR.DA 4.79 6.40 356 0.62 3.40
ER.ST 2.09 6.10 33 0.62 3.40
CO.CO 2.15 5.80
RH.SU 1.65 5.30
I
OR.SE 5.02 3.50

Tabla 4.3.2

CORRESPONDENCIAS MULTIPLES (MCA)

OKKESPUNDENCIAS DI	OBITIODS (IIC				
COORDENADAS Y	CONTRIBUC	IONES	RELATIVAS DE	LAS ES	PECIES
EJES	1-11		EJ	es I-II	I
C1	C2 CR12		C1	С3	CR13
OR.DA -6.69 -3 HY.DI -1.94 -1 GY.DI -4.23 -1 HY.NI -4.40 HY.LU -1.83 -2 GY.DE -2.59 -0 AG.BP -1.13 -2 OR.VI -1.51 -0 GR.VA -2.51 -0 ST.OP -0.98 -1 HY.TE -5.26 -2 DE.DE -7.13 -3 OR.SE -6.24 -4 DY.PI -0.96 -3 DE.MO -1.82 -3 ST.EP -2.29 -0 DE.HI -1.74 -2 AG.NE 0.52 -3 HA.LI -0.44 -3 HA.MU -0.79 -3	3.90 0.48 1.20 0.48 1.13 0.47 1.48 0.45 2.25 0.39 0.83 0.38 2.92 0.37 1.12 0.33 0.33 0.30 0.06 0.29 1.95 0.26 2.04 0.25 3.30 0.25 1.49 0.24 3.64 0.24 1.76 0.24 0.16 0.22 2.32 0.21 3.27 0.18 0.09 0.16		OR.DA -6.69 GY.DI -4.23 HY.NI -4.40 PO.GR 1.82 GY.DE -2.59 HY.DI -1.94 DE.DE -7.13 OR.VI -1.51 GR.VA -2.51 HY.TE -5.26 HY.AU 0.90 OR.SE -6.24 PO.CA -1.86 AG.NE 0.52 ST.EP -2.29 LA.MI 0.42 CO.CO 0.80 ER.ST 0.41 RH.SU 0.60 HY.LU -1.83 HA.LI -0.44 DE.MO -1.82	4.79 1.50 0.51 9.62 0.68 0.00 4.56 0.03 0.09 2.82 3.58 5.02 0.45 3.82 0.12 1.94 2.15 2.09 1.65 -0.68 -0.20	
AG.NI -2.11 -1 ER.ST 0.41 1 BI.MI -0.68 -0 GR.FR -0.33 2	1.66 0.13 0.42 0.12		HA.MU -0.79 HE.MU 0.51 PO.MA 0.67 HY.PU 0.15	1.07 0.95	0.16 0.15 0.14 0.12
AG.BG -1.47 1 AG.GU -3.04 4	1.46 0.12 1.29 0.11		AG.DI -1.35	-0.34	0.11

Tabla 4.3.3

CORRESPONDENCIAS MULTIPLES (MCA)

ORRI	ESPONDI	ENCIAS	MULTIP	LES (1	1CA)			·							, <u>.</u>
			C	OORDE	VADAS	Y CONTI	RIBUCIONES	RELATIVA	AS DE	LAS MUE	STRAS			,	
			E	JES I-	-11	٠					E.	JES I-	·III	_	
	C1	C2	CR12		C1	C2	CR12		C1	С3	CR13		C1	сз	CR13
	-1.51		0.57	341		-0.08	0.17	386	0.52		0.61	65		-0.08	0.17
	-2.04		0.50	344		-0.08	0.17		-2.04	0.97	0.54	354	0.14	0.02	0.16
	-1.78	1.52	0.43	343		-0.08	0.17	li .	-1.78	1.07	0.45	28	0.14	0.02	0.16
	-0.32 -1.22	0.09	0.42	236 347		-0.08	0.17	1	-1.51		0.42	97	0.18	0.36	0.16
103		-0.07	0.32	371		-0.08 -0.08	0,17 0,17	356	-1.22 0.25	0.13 0.62	0.32 0.26	31	0.14	0.02	0.16
91		-0.07	0.28		-0.27	0.30	0.16	264		-0.04	0.24	352 387	0.20	0.27	0.15
307		-0.07	0.28		-0.54		0.16	366		-0.04	0.24	358	0.19	$0.09 \\ 0.04$	$0.15 \\ 0.14$
86		-0.07	0.28	225		-0.07	0.15	332		-0.04	0.24	236	0.18	0.03	0.14
366		-0.07	0.28	223		-0.07	0.15	67		-0.04	0.24	371	0.18	0.03	0.14
85		-0.07	0.28	65		-0.07	0.15	91		-0.04	0.24	114		-0.07	0.14
128	-1.00	-0.44	0.28	175		-0.07	0.15		-0.83		0.24	275	0.17	0.04	0.14
84		-0.07	0.28	311		-0.07	0.15	86		-0.04	0.24	341	0.18	0.03	0.14
202	0.13	-0.07	0.28	309	0.09	-0.07	0.15	202		-0.04	0.24	201	0.17	0.29	0.14
81	0.13	-0.07	0.28	159	0.09	-0.07	0.15	85	0.13	-0.04	0.24	324	0.17	0.04	0.14
43	0.13	-0.07	0.28	220	0.09	-0.07	0.15	43	0.13	-0.04	0.24	343	0.18	0.03	0.14
67		-0.07	0.28	151	0.09	-0.07	0.15	84	0.13	-0.04	0.24	41	0.09	-0.07	0.14
56		-0.07	0.28	122	0.09	-0.07	0.15	197	0.13	-0.04	0.24	344	0.18	0.03	0.14
264		-0.07	0.28	275		-0.07	0.15	56	0.13	-0.04	0.24	266	0.17	0.04	0.14
197		-0.07	0.28	386	0.52	0.91	0.15	81	0.13	-0.04	0.24	347	0.18	0.03	0.14
332		-0.07	0.28		-0.29	0.19	0.14	104	0.13	-0.04	0.24	69	0.09	-0.07	0.14
	-0.87	0.96	0.24	387		-0.08	0.14	307	0.13	-0.04	0.24	33	0.24	0.62	0.14
	-0.65	0.42	0.24	358.		-0.03	0.13	1	-1.00		0.23		-0.45	-0.12	0.13
	-0.83		0.24	266		-0.03	0.13	355	0.24		0.21	99	0.14	0.49	0.13
	-0.41	1.07	0.22		-0.31		0.13	•	-0.60		0.18	367	0.21	0.20	0.13
349		-0.08	0.21	41		-0.06	0.13	I .	-0.65		0.18	101	0.16	0.05	0.13
29		-0.08	0.21	69		-0.06	0.13	175		-0.08	0.17	98	0.16	0.05	0.13
294 194		-0.08 -0.08	0.21	114		-0.06	0.13	223		-0.08	0.17	359	0.19	0.17	0.13
	-0.54		0.21	324 329		-0.03	0.13	194	0.15		0.17		-0.29		0.12
	-0.15	0.72	0.21			-0.10	0.12	225		-0.08	0.17		-0.87		0.12
	-0.30		0.20	101	~0.45	0.00	0.12	159		-0.08	0.17		-0.54		0.12
28		-0.27	0.19	98		-0.02	0.12 0.12	349	0.15		0.17	100	0.17	0.18	0.12
354		-0.07	0.19		-0.25	0.49	0.12	151 294	0.09	-0.08	0.17		-0.31		0.12
31		-0.07	0.19		-0.27		0.11	311		$0.01 \\ -0.08$	$0.17 \\ 0.17$	229	0.17		0.12
	-0.60		0.13	17		-0.13	0.11	370	0.09		0.17		-0.35 -0.28		$0.11 \\ 0.11$
	0.00	0.02	3,10	11		-0.00	0.11	220		-0.08	0.17	382	0.17	0.08	0.11
								309		-0.08	0.17	17		-0.06	0.11
								122		-0.08	0.17		-0.54		0.11
								29		0.01	0.17			0.01	0.11
									0.13	0.01	0.11	14,0	~0.50	0.07	0.11

Tabla 4.3.4

Figura 4.3.1

DE.DE

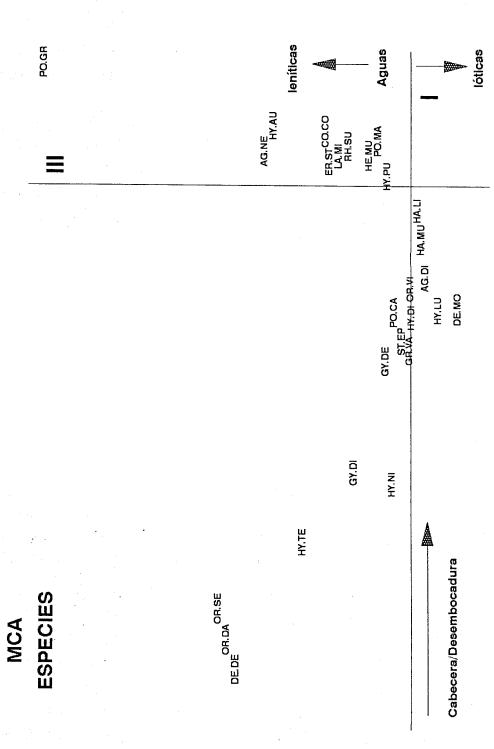
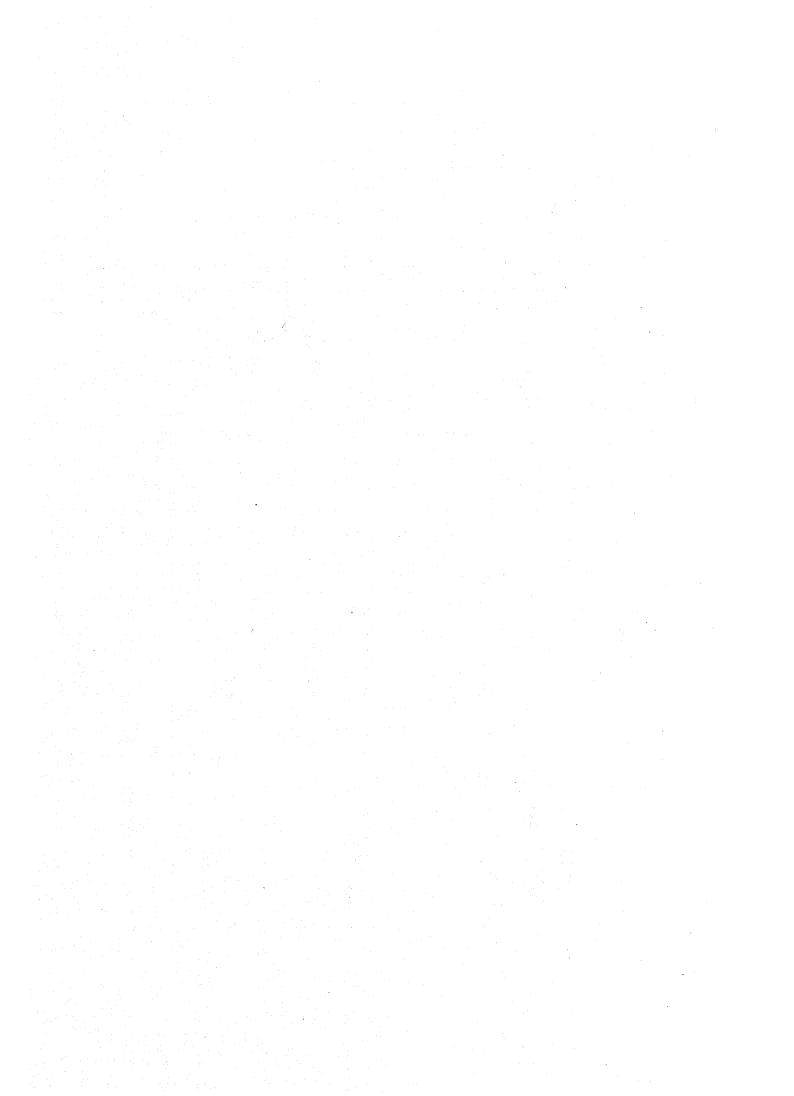



Figura 4.3.2

El tercer eje (figura 4.3.2), aunque también aporta información redundante referida al "eje direccional" de la cuenca, refleja una segregación de especies y estaciones en relación con la velocidad de la corriente, el tipo de sustrato y el contenido en sedimentos orgánicos, (en un sentido amplio, separaría cuerpos de agua lóticos y leníticos). Así, en su parte positiva, se encuentran especies como Potamonectes griseostriatus, Hyphydrus aubei, Coelambus confluens, Herophydrus musicus, Laccophilus minutus, Agabus nebulosus, Eretes sticticus, Rhantus suturalis, etc., asociadas a estaciones de aguas estancadas, sustrato de limo y arcilla y abundante materia orgánica en descomposición.

No obstante, un análisis detallado de estos dos últimos ejes revela la existencia de especies y estaciones puntuales, que contribuyen a la formación de los mismos y que no se corresponden con las tendencias generales anteriormente expuestas. Un ejemplo significativo lo constituyen las especies de género *Oreodytes*, las cuales tienen valores elevados de sus contribuciones absolutas y coordenadas positivas, en el eje III, tratándose de especies de caracter alpina.

Todo ello hace pensar en la inestabilidad de los ejes II y III para detectar gradientes bien definidos en la estructura de la comunidad, bien porque estos no existen como tales, bien por la complejidad y heterogeneidad de la matriz de datos.

Aun así, en una interpretación general, se podría considerar al primer eje indicador de las especies de cabecera, al segundo de las especies de la vega media y al tercero de las especies de la vega baja y cuerpos de agua aislados de la misma.

. CMCA: Análisis de correspondencias canónicas múltiples.

Con la aplicación de este análisis, se pretende mejorar los resultados obtenidos con el MCA y detectar con mayor claridad los gradientes ambientales que determinan la distribución de las especies.

Al igual que en el análisis anterior, sólo se han considerado los tres primeros ejes para simplificar los resultados obtenidos, y no se ha representado la ordenación espacial de los eje II y III al aportar información redundante. El programa utilizado, en este caso, no proporciona valores de contribuciones absolutas ni relativas.

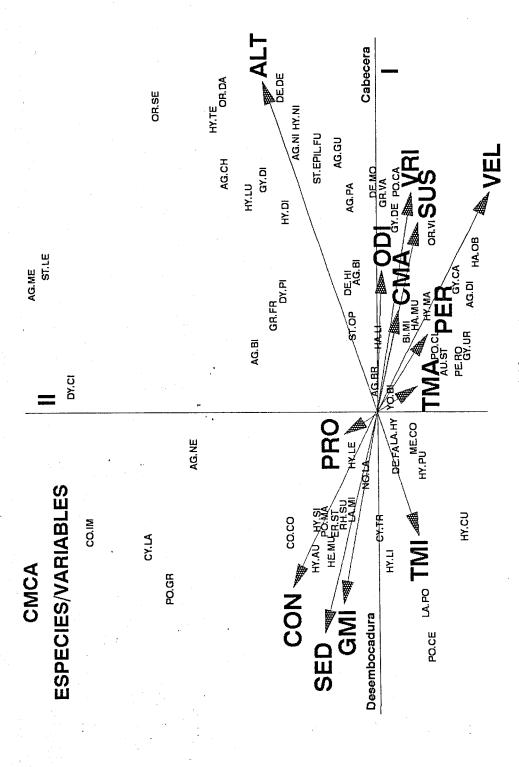
En la tabla 4.3.5, se presentan los autovalores y varianza acumulada, así como las coordenadas de las especies para los tres primeros ejes, y en la tabla 4.3.6, las coordenadas, coeficientes canónicos y correlaciones de las variables ambientales para esos mismos ejes.

Debido a la diferencia de escala con respecto a las especies, las variables ambientales se representan en el plano factorial de los ejes, multiplicadas por 2,5. Las muestras no se han representado.

Al confrontar los ejes I y II (figura 4.3.3), se sigue observando un gradiente desde la cabecera a la desembocadura. El eje I, se puede interpretar como el "eje" real de la cuenca del río Segura, de manera que la mayoría de las variables ambientales se distribuyen próximas a él, situándose en los extremos aquellas que son claramente representativas de la cabecera (coordenadas positivas), como la altitud, vegetación de ribera en galería, sustrato grueso, velocidad de corriente alta y elevado contenido en oxígeno disuelto; o de la desembocadura (coordenadas negativas), como alto contenido en sedimento orgánico, aguas muy mineralizadas y cloruradas, y contaminación orgánica elevada. Próximas al centro de coordenadas se encuentran las variables que explican situaciones puntuales en determinadas zonas de la cuenca, como pueden ser la profundidad y persistencia del agua o el tipo y cobertura de macrófitos.

Las especies se distribuyen también, en su mayoría, a lo largo del eje I, siendo las de la cabecera, fundamentalmente, Deronectes depressicollis, Oreodytes davisi, O. septentrionalis, Hydroporus tessellatus, H. nigrita y Agabus nitidus, mientras que las más características de la vega baja y desembocadura son Potamonectes ceresyi, Laccophilus ponticus, Hydroporus limbatus, Hyphydrus

CORRESPONDENCIAS CANONICAS MULTIPLES (CMCA)


	EJE III	EJE II	EJE I
AUTOVALORES		0.011	0.370
VARIANZA ABSORBIDA		51.00	39.10

	COORDENADAS DE LAS ESPECIES									
	EJE I	EJE II	EJE III			EJE I	EJE II	EJE III		
AU.ST	0.33	-0.49	-0.22		HY.CU	-0.76	-0.63	0.42		
OR.VI	1.19	-0.41	0.10		HY.AU	-0.97	0.44	-1.40		
GY.UR	0.43	-0.64	0.06		CO.IM	-0.79	2.17	-1.87		
GY.DE	1.29	-0.14	0.03		CO.CO	-0.80	0.65	-1.05		
GY.DI	1.55	0.83	-0.12		HE.MU	-0.85	0.34	-0.51		
GY.CA	0.87	-0.54	0.69		HY.PU	-0.34	-0.31	-0.24		
PE.RO	0.33	-0.60	-0.33		HY.SI	-0.73	0.41	1.06		
HA.LI	0.53	-0.03	-0.05		BI.MI	0.54	-0.24	-0.04		
HA.OB	1.06		-0.27		YO.BI	0.11	-0.16	0.01		
HA.MU	0.63	-0.26	-0.12		GR.VA	1.46		-0.14		
ME.CO	-0.18	-0.29			GR.FR	0.64	0.76	-0.16		
RH.SU	-0.72		-0.74		ST.LE	0.97	2.45	-2.06		
IL.FU	1.72	0.42	0.29		ST.OP	0.57	0.18			
HY.LE	-0.29	0.19	-0.38		ST.EP	1.72	0.42			
ER.ST	-0.77	$0.32 \cdot$	-0.37	-	DE.DE	2.16	0.70	0.37		
CY.TR	-0.77	-0.01	1.00		DE.MO	1.53	0.00	-0.02		
CY.LA	-0.89		-0.49		DE.HI	0.86	0.21			
DY.PI	0.80				DE.FA	-0.32	-0.13	-0.41		
DY.CI	0.17	2.26	-0.31		HY.MA	0.70	-0.37	-0.16		
AG.BR	0.20	0.02	0.09		HY.TE	1.95	1.20	-0.09		
AG.DI	0.78	-0.66	0.04		HY.NI	1.93	0.60	-0.03		
AG.BP	0.40	0.90	-0.48		HY.DI	1.33	0.67	0.15		
AG.BG			0.16		HY.LU	1.43	0.94	-0.01		
AG.NI	1.77	0.59	0.50		HY.LI	-0.99	-0.08	1.60		
1	1.73		0.33				1.17			
1	1.43		-0.06		1	2.04				
AG. NE	-0.28				PO.CE	-1.56				
AG.ME	0.85	2.55	-1.73		PO.GR	-1.17	1.54	-1.23		
AG.CH	1.59	1.12	0.44		PO.MA	-0.75	0.40	1.19		
LA.HY	-0.13	-0.12	-0.22		PO.CL	0.44	-0.44	-0.35		
LA.MI	-0.67	0.22	-0.81		PO.CA	1.53	-0.15	-0.06		
LA.PO	-1.27	-0.34	0.29		NO.LA	-0.42	0.09	-0.03		

Tabla 4.3.5

1	ENADAS DE NTALES		RIABLES
	EJE I		
ALT	0.87	0.33	-0.02
PER	0.31	-0.18	-0.01
	-0.11		
VEL	0.59	-0.51	0.01
SUS	0.59	-0.23	0.28
	-0.65		
TMA	0.07		
CMA		-0.03	
VRI	0.71	-0.22	-0.11
GMI	-0.62	0.19	0.49
TMI	-0.36	-0.12	0.67
ODI	0.38	-0.05	0.17
CON	-0.46	0.25	0.03
CORREI	LACIONES NTALES	DE LAS	VARIABLES
		EJE II	to the control of the period of
ALT		0.19	
PER	0.23		-0.01
PRO		0.12	-0.09
VEL	0.43	-0.29	0.00
SUS		-0.13	0.00 0.17
SED		0.13	0.17
TMA			-0.10
CMA	0.03	_0.00 _0.00	-0.10
VRI			
GMI		-0.12	0.30
1	-0.26	0.11 -0.07	0.30
ODI	0.28		0.40
CON		0.14	0.10 0.02
	CIENTES C BLES AMBI	ANONICO	
 A contract to the contract of the	EJE I		
100	0.58		The second second
The second secon	-0.01		
PRO	0.11		0.11
VEL	0.19	0.50	
SUS	0.16		
SED	-0.20	0.05	-0.20
TMA	0.06	-0.10	-0.16
CMA	0.04	0.06	0.11
VRI	0.24	0.02	0.11
GMI	0.03	0.42	0.52
IMT	0.00	0.15	0.73
ODI	0.15	0.03	0.26
CON	0.09	0.32	0.14

Tabla 4.3.6

Escala: spp x100, variables x250

Figura 4.3.3.

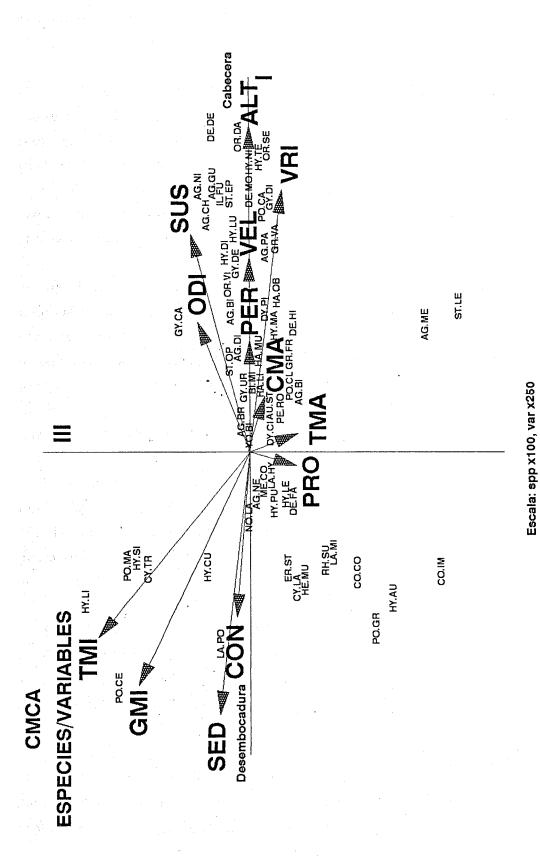


Figura 4.3.4

aubei, Herophydrus musicus, Hydroglyphus signatellus, Potamonectes mariae y Coelambus confluens.

Por el contrario, las especies que están próximas al eje II son, en general, más eurioicas, teniendo una amplia distribución en la cuenca. Tal es el caso de Laccophylus hyalinus, Yola bicarinata, Hydroglyphus pusillus, Meladema coriacea, Hydaticus leander, Agabus brunneus y Noterus laevis, con una cierta tendencia a la parte baja de la cuenca, y Agabus bipustulatus, Aulonogyrus striatus, Gyrinus urinator, Potamonectes clarki, Haliplus lineatocollis, Peltodytes rotundatus y Bidessus minutissimus, con preferencia por la parte alta de la cuenca.

Aquellas especies que aparecen aisladas y lejos del eje I (elevadas coordenadas para el eje II), son especies raras o muy escasas en la cuenca del río Segura que reflejan únicamente, las características de la estación donde se han encontrado. Este es el caso de Potamonectes griseoestriatus, Coelambus impressopunctatus, Cybister lateralimarginalis o Hydrovatus cuspidatus en la vega baja y desembocadura, y de Dytiscus circumflexus, Agabus melanocornis, Stictonectes lepidus o Haliplus obliquus en los tramos de cabecera.

Este último aspecto, sirve de interpretación al eje II, el cual, probablemente explica situaciones puntuales de determinadas especies en la cuenca. Por otra parte, las bajas correlaciones de las variables ambientales con este eje ponen de manifiesto su escaso interés para la interpretación de la estructura de la comunidad.

Cuando se representa el eje I con el III (figura 4.3.4), se observa el mismo tipo de distribución, con las pequeñas variaciones debidas a la situación de especies raras o escasas con respecto a determinadas variables del medio, como es el caso de *Hydroporus limbatus* con respecto al tipo de mineralización.

En este caso se puede apreciar, con gran nitidez, como el eje I refleja la distribución general de las especies de Hydradephaga a lo largo del gradiente cabecera-desembocadura, indicando además, la capacidad de éstas para desplazarse a lo largo de dicho eje, es decir, su afinidad por los ambientes de la

cabecera o la vega baja de la cuenca del Segura. Por el contrario, los ejes II y III representan, en general, aspectos muy concretos de la distribución de determinadas especies, muy raras en la zona de estudio.

Todo ello hace pensar en la existencia de un único y bien definido gradiente altitudinal, asociado a unas características microambientales propias, que se refleja, no sólo en la comunidad de Hydradephaga, sino en la práctica totalidad de las variables muestreadas.

. CA: Análisis de correpondencias.

Al igual que en los dos casos anteriores, sólo se han representado los tres primeros ejes del análisis.

Los autovalores, inercia e inercia acumulada de los ejes y las contribuciones absolutas de las especies y modalidades de los parámetros ambientales iguales o mayores de 3, que explican la formación de dichos ejes aparece representada en la tabla 4.3.7.

La representación del diagrama de ordenación en los distintos planos factoriales se ha realizado, con las coordenadas de las especies y modalidades cuya suma de las contribuciones relativas para los ejes I y II o I y III es igual o superior a 0.1 (tabla 4.3.8). No se han representado las muestras para una visión más clara de los resultados, además, la distribución espacial de las especies y modalidades aparecen en gráficos separados.

Después de interpretar los diagramas de ordenación del eje I con el II (figura 4.3.5 a y b) y I con el III (figura 4.3.6 a y b), se confirman los resultados obtenidos anteriormente, en los que el primer eje es reflejo de la distribución de las especies desde los tramos altos (extremo negativo) de la cuenca del Segura hasta la desembocadura (extremo positivo).

Así, se encuentra en su parte positiva, especies como *Herophydrus musicus*, *Noterus laevis* o *Rhantus suturalis*, y modalidades como oxígeno disuelto 1, altitud

CORRESPONDENCIAS SIMPLES (CA)

ORRESPONDENCIAS SINFLES (CA)												
EJE I EJE II EJE III												
0.17 0.04 0.03	AUTOVALORES											
0.43 0.10 0.06	INERCIA											
0.43 0.54 0.60	INERCIA ACUMULADA											
CONTRIBUCIONES ABSOLUTAS DE LAS ESPECIES ESPECIES MODALIDADES												
EJE I												
C1 CA	C1 CA											
HA.LI -0.15 13.94	ODI1 1.47 11.26											
HE.MU 0.67 8.69	ALTO 1.48 8.30											
NO.LA 0.47 8.02	GMI3 1.81 6.97											
DY.CI 0.46 5.31	ALT3 -0.79 6.64											
HY.MA -0.39 5.00	GMI2 1.07 6.05											
AG.DI -0.49 4.89	GMI4 2.14 5.96											
RH.SU 0.48 3.89	SED1 -0.78 5.41											
	CON2 1.30 5.09											
	VRI1 1.21 4.93											
	VRI3 -0.74 3.87											
	TMI3 1.08 3.79											
	EJE II											
CŻ CA	C2 CA											
RA.SU -0.11 23.95	ODI1 -2.70 52.28											
AG.DI 0.00 20.44	GMI3 1.98 11.51											
HE.MU 0.10 19.53	GMI4 2.43 10.66											
HA.LI -0.08 16.87	ALTO 0.99 5.20											
DY.CI -0.05 8.16	SED2 -0.81 4.57											
HY.MA -0.01 5.31												
	EJE III											
C3 CA	C3 CA											
AG.PA -0.21 29.53	SUS4 -1.75 30.07											
HA.LI -0.02 13.53	VRIO -1.20 14.42											
OR.VI 0.25 10.03												
AG.BP -0.31 6.09	GMI4 1.74 8.77 GMI3 1.21 7.01											
ER.ST -0.48 3.98	SED1 0.47 4.43											
GR.VA 0.24 3.63	DEDI 0.47 4.43											
J 5.21 5.05												

Tabla 4.3.7

1			000	DEFENDING P GOVERNMENT	ANDO DO	I WINTO DE	IOO PIPO I V	T [
				RDENADAS Y CONTRIBUCI PECIES	ONES RE	LATIVAS DE	FO2 F1F2 1 1		ES DEL NEDIO
		C1 C2	CR12		CR13		C1 C2	CB12	C1 C3 CB13
	HY.CU	0.94 -1.98		HY.NI -0.75 0.36		ODI1			GNIO -0.66 0.20 0.84
1		1.23 -1.57		HY.DI -0.54 0.04		VBI1			VRI3 -0.74 0.23 0.79
-	HY.DI	-0.54 0.04		PO.CA -0.72 0.33		GNIO			VEL2 -0.57 0.30 0.61
	CO.IN	1.09 -1.90		GY.DE -0.64 0.25	0.71	VRI3	-0.74 0.00	0.72	VRI1 1.21 0.33 0.61
	PO.CE	1.59 1.49		OR.VI -0.60 0.25	0.70	TMI3	1.08 0.87	0.71	ALT3 -0.79 0.24 0.61
	GY.DE	-0.64 0.01	0.62	ST.EP -0.68 0.27	0.68	ALT3	-0.79 0.03	0.55	ODI3 -0.45 0.30 0.59
	HY.NI	-0.75 0.00	0.60	HY.LU -0.57 0.12	0.63	GNI2	1.07 0.30		ALT1 0.55 -0.49 0.56
	HY.LU	-0.57 0.03		CY.TR 0.18 -1.84		ALTO	1.48 0.99		TNI1 -0.58 0.24 0.55
	PO.CA	-0.72 -0.04		DE.NO -0.69 0.09		CONO			CONO -0.52 0.07 0.53
	PO.NA	1.06 1.12		GR.VA -0.64 0.24		11		0.52	SED3 0.73 -0.30 0.52
	OB.VI		0.59	AG.DI -0.49 0.15	0.51	GMI3			GMI2 1.07 -0.14 0.52
	ST.EP	-0.68 -0.02		PO.CE 1.59 1.05	0.51	TNI1			VRIO 0.50 -1.20 0.51 SUS4 -0.29 -1.75 0.50
	DE.NO		0.55	GY.DI -0.55 0.22		GN14	-0.57 0.02 2.14 2.43		TMI3 1.08 0.23 0.45
	GR.VA	-0.64 -0.04 -0.49 0.00	0.48	OR.DA -0.71 0.44 HY.TE -0.78 0.49	0.50	ODI3		0.44	ALTO 1.48 0.60 0.43
1	AG.DI BE.MU		0.45	IL.FU -0.69 0.29		SEDO			SUS3 -0.61 0.36 0.43
1	AG.NI		0.43	HE.NU 0.67 -0.13	0.46	PER2		- 1.	SUSO 0.63 -0.34 0.43
	GY.UR		0.43	AG.NE 0.16 -0.70		TMA1	-0.67 0.06		SEDO -0.55 0.00 0.42
	BY.SI		0.42	AG.NI -0.65 -0.11		SUS3			VELO 0.59 -0.38 0.41
	IL.FU		0.40	RH.SU 0.48 -0.28	0.43	SUSO			ODI2 0.06 -0.37 0.40
	HY.LI		0.38	LA.NI 0.49 -0.23	0.38	ALT1	0.55 -0.03		SED1 -0.78 0.47 0.37
	OR.DA	-0.71 -0.01		OR.SE -0.74 0.57	0.35	CON2	1.30 -0.52	0.31	TNA1 -0.67 -0.07 0.36
	BY.TE	-0.78 -0.01	0.34	HA.MU -0.31 -0.07	0.35	SED2	0.43 -0.81	0.31	PER2 -0.16 0.06 0.35
	RH.SU	0.48 -0.11	0.34	AG.GU -0.77 0.62	0.34	AETO	0.59 0.01		GNI4 2.14 1.74 0.33
	AG.BG	-0.45 0.06		AG.BG -0.45 0.03	0.32	11	-0.78 0.00		GNI3 1.81 1.21 0.32
		-0.31 -0.01	1000	BI.NI -0.29 -0.07		VEL3	and the second second		CON2 1.30 0.26 0.28
	LA.NI		0.32	HY.AU 0.60 -0.25	0.32	11	-0.52 0.08	1	SUS2 -0.52 0.27 0.28
	BI.NI	-0.29 0.05	0.31	AG.CH -0.60 -1.05		TMA2	0.16 -0.29	1	VEL3 -0.74 0.16 0.24
	HY.PU	0.31 0.06	0.29	HY.PU 0.31 -0.08	0.30	CNAO PERO	0.42 0.39		ODI1 1.47 0.42 0.22 GMI1 0.24 -0.43 0.22
	LA.PO Hy.AU	1.24 0.36 0.60 0.12	0.28	PO.MA 1.06 0.28 CY.LA 1.23 0.30	0.30 0.29	TNAO	0.55 0.43 0.41 0.38		PERI 0.01 -0.55 0.18
	PO.CL		0.25	LA.PO 1.24 0.35	0.28	ALT2	-0.34 -0.22		CON1 0.20 -0.17 0.14
	HY.LE	0.38 -0.11		HY.SI 1.08 0.41		ODI2	0.06 0.21		TMI2 -0.01 -0.34 0.13
-		-0.63 0.05		HY.LI 0.81 -0.21			0.50 0.37		PERO 0.55 -0.12 0.12
		-0.15 -0.08		AG.BP -0.14 -0.31		11	0.24 -0.26		TNA2 0.16 0.19 0.11
1		-0.74 -0.04		AG.PA -0.63 -0.21					
	AG.GU	-0.77 0.00	0.21	PO.GR 0.62 -0.84	0.26				
		-0.67 0.04		HY.LE Q.38 -0.15	0.26				
		-0.50 0.00		PO.CL -0.27 -0.01					
		-0.39 -0.01		GY.CA -0.50 0.26					
	ER.ST	0.55 0.28		DE.DE -0.67 0.28					
		-0.22 -0.03		ER.ST 0.55 -0.48					
	NO.LA	0.47 -0.16		LA.HY 0.25 -0.21		16.00		İ	
	LA.HY		0.12	HA.LI -0.15 -0.02					
	AU.ST CO.CO	-0.20 0.04 0.36 0.25		CO.IN 1.09 0.18 HY.NA -0.39 0.06		11			
		0.30 0.29	0.11	DE.HI -0.19 0.23					
				ME.CO 0.23 -0.22				. 144	
1	1380 1380 1380		A. 112	ST.OP -0.19 -0.23		11/25			
1			en vikter Til	COCO 0.36 -0.40					
1				AG.BR 0.00 -0.52		\prod			
			af de ar	HY.CU 0.94 0.34		Heran.			
				NO.LA 0.47 -0.29	0.15				$\frac{1}{N} \sum_{i=1}^{N} \frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i$
				DE.FA 0.09 -0.37					
				GR.VA -0.22 -0.32					en en en en en en en en en en en en en e
				GY.UR -0.22 -0.07				}	
				AU.ST -0.20 -0.01	0.11			}	

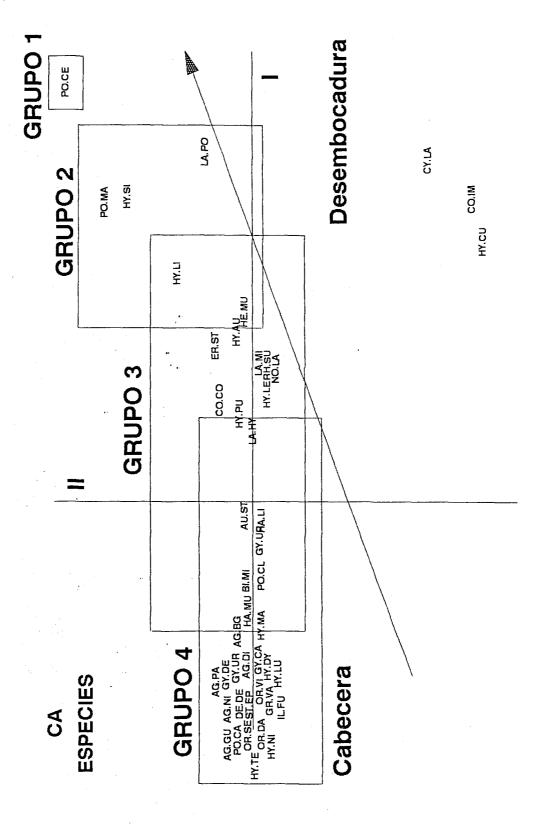


Figura 4.3.5 a

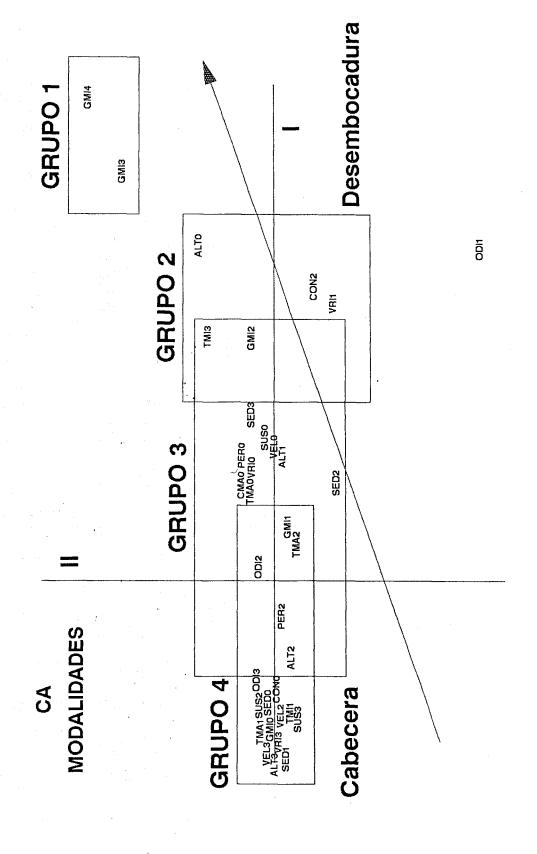


Figura 4.3.5 b

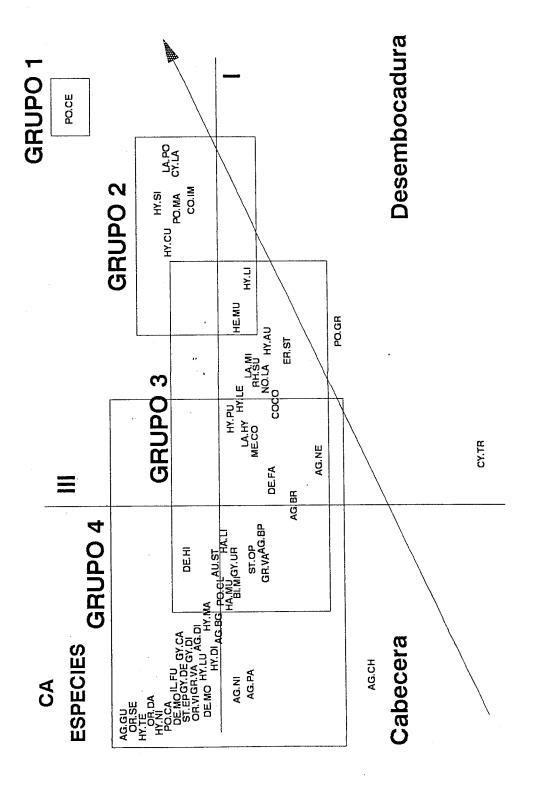


Figura 4.3.6 a

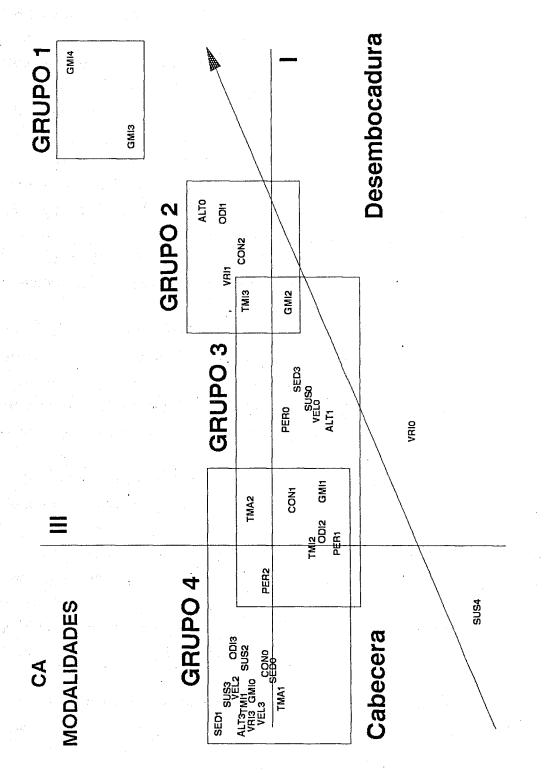


Figura 4.3.6 b

0, grado de mineralización 2, 3 y 4, contaminación orgánica 2, vegetación de ribera 1 o tipo de mineralización 0, mientras que en su parte negativa, las especies que contribuyen con un mayor peso a su formación son Haliplus lineatocollis, Hydroporus marginatus o Agabus didymus, y modalidades altitud 3, tipo de sedimento 1, vegetación de ribera 3, tipo de macrófitos 1 o grado de mineralización 0.

Los ejes II y III, vuelven a detectar situaciones puntuales, de especies muy escasas, en la zona de estudio. Este último aspecto, unido a la varianza absorbida por el primer eje (43%), con respecto al segundo (10%) y tercero (6%), parecen indicar que con la interpretación de este primer eje es suficiente para explicar la distribución de los Hydradephaga en el espacio físico de la cuenca y su relación con determinadas modalidades de las variables del medio.

Pero la ventaja más importante de este análisis, ha sido la posibilidad de detectar, con mayor precisión, las preferencias de determinados grupos de especies por algunas modalidades de las variables del medio (microambientes). El resultado final ha sido la caracterización de 4 grupos cenológicos y ecológicos, bien definidos, dentro del gradiente general observado en la cuenca:

- . Grupo 1: formado únicamente por *Potamonectes ceresyi*, que es exclusivo de aguas salinas e hipersalinas.
- . Grupo 2: formado por Laccophilus ponticus, Hydroglyphus signatellus y Potamonectes mariae que se encuentran, preferentemente, en aguas permanentes, mesosalinas, con un contenido orgánico elevado (eutrofizadas o muy contaminadas) y vegetación de ribera escasa (cañas o carrizo), en tramos bajos de la cuenca del Segura (por debajo de los 500 m.).

En el caso de *Hydroporus limbatus* y *Herophydrus musicus*, éstas actuarían a modo de "especies puente", pudiendo pertenecer a este grupo y al siguiente.

. Grupo 3: formado por Laccophilus minutus, Coelambus confluens, Hyphydrus aubei, Rhantus suturalis, Hydaticus leander, Eretes sticticus y Noterus

laevis, que se presentan con mayor frecuencia en aguas temporales o fluctuantes, con abundante sedimento y materia orgánica finamente particulada (incluso cieno), pero menos mineralizadas y, en general, con mayor contenido en oxígeno disuelto que el caso anterior, aunque para este último parámetro, el rango de variación encontrado ha sido muy amplio. La vegetación de ribera ausente o muy pobre (cañas, carrizo o juncos).

Hydroporus nigrita, H. discretus, H. marginatus, H. lucasi, Oreodytes davisi, O. septentrionalis, Gyrinus caspius, G. dejeani, G. distinctus, Orectochilus villosus, Potamonectes cazorlensis, Stictonectes epipleuricus, Deronectes depresicollis, D. moestus, Agabus didymus, A. paludosus, A. nitidus, A. biguttatus, A.guttatus e Iliybius fuliginosus. Son, en general, especies que viven en ambientes por encima de los 500 m., de aguas corrientes (aunque ocupen los remansos), limpias y bien oxigenadas, dulces y permanentes, sustrato grueso, con musgos y abundante vegetación de ribera que forma bosque de galería.

Laccophylus hyalinus, Haliplus lineatocollis, H. mucronatus, Hydroglyphus pusillus, Bidessus minutissimus, Aulonogyrus striatus, Gyrinus urinator y Potamonectes clarki, forman parte de un conjunto de especies muy abundantes y con una amplia distribución en la cuenca del Segura, que se pueden considerar de características intermedias entre los dos últimos grupos.

સાર્થ**ા કર્યા છે. છે. છે. જે છે. કે છે.** કું કર્યા કું કરા કોફોર્ડ કર્યા કોફોર્ડ કર્યા કે કેઈ જો કહેલી, કું કરા કું કરો કરો કરો કર

No se han incluido en ningún grupo, especies como *Peltodytes rotundatus* o *Dytiscus circumflexus*, pues a pesar de tener contribuciones absolutas altas, sus contribuciones relativas son muy bajas, lo cual indica un contraste muy grande entre los hábitats que han ocupado en la zona de estudio.

El resto de especies presentan unos valores de contribución relativa muy bajos, por lo que al no reflejarse en los diagramas de ordenación, no se ha creido conveniente incluirlas en grupo alguno.

Tampoco se les ha atribuido grupo a especies poco frecuentes y con una disposición espacial muy particular, como es el caso de Cybister lateralimar ginalis,

Hydrovatus cuspidatus Coelambus impressopunctatus y Potamonectes griseostriatus que parecen estar asociadas a aguas muy eutrofizadas (modalidad 1).

Esta última modalidad, junto con sustrato 4 y vegetación de ribera 0, explicarían características del medio puntuales, asociadas a especies también muy escasas.

En general, se puede considerar que la altitud en sus dos extremos (modalidades 0 y 3) y el grado de mineralización, son las características del medio que mejor explican la distribución de los Hydradephaga en la cuenca del Segura. Por el contrario, la profundidad del cuerpo de agua y el grado de cobertura de macrófitos, son los que menos importancia parecen tener.

CLASIFICACION

Hasta ahora, se ha interpretado la distribución de las especies y sus asociaciones atendiendo, a las características microambientales. Pero, en este apartado, el objetivo principal va a ser el de interpretar la distribución de las especies de Hydradephaga a nivel global, es decir, qué hábitats prefieren y cuáles son las especies que definen dichos hábitats.

Para conocer los diferentes tipos de hábitats existentes en la cuenca del río Segura, se ha efectuado una clasificación previa de las estaciones de muestreo. El resutado ha sido la siguientes tipificación (entre paréntesis se indica el número total de estaciones de cada tipo):

- . Hábitat tipo 1: Arroyos y ríos de la cabecera. (66).
- . Hábitat tipo 2: Arroyos de la vega media. (41).
- . Hábitat tipo 3: Curso medio de ríos no encauzados. (13).
- . Hábitat tipo 4: Tramos de ríos encauzados. (9).
- . Hábitat tipo 5: Tramos fluviales influidos por embalses. (10).
- . Hábitat tipo 6: Cursos bajos y desembocadura de ríos. (15).

- . Hábitat tipo 7: Ramblas del sector árido. (27).
- . Hábitat tipo 8: Orillas de embalses. (10).
- . Hábitat tipo 9: Acequias y canales de riego. (4).
- . Hábitat tipo 10: Balsas de riego y estanques artificiales. (7).
- . Hábitat tipo 11: Pozas y charcas. (34).
- . Hábitat tipo 12: Fuentes. (6).
- . Hábitat tipo 13: Arrozales. (2).
- . Hábitat tipo 14: Salinas interiores. (1).
- . Habitat tipo 15: Salinas costeras. (3).

En la tabla 4.3.9, aparecen las estaciones que corresponden a cada tipo de hábitat.

El siguiente paso ha sido la realización de un análisis de clasificación de las estaciones a partir de las coordenadas de los 6 primeros ejes del MCA, aplicada sobre la matriz de muestras por los parámetros del medio, mediante el empleo de una técnica jerárquica aglomerativa (NAKACHE, 1987), que ha permitido obtener nuevos grupos de hábitats comparables con los anteriores.

En una primera etapa, se diferenciaron 15 tipos de hábitats, para una mejor confrontación con los resultados de la tipología inicial. Posteriormente, se comprobó que estos hábitats podían incluirse en grupos más amplios, para evitar información redundante, resultando un total de 7 tipos de hábitats diferentes:

- . Hábitat tipo 1: Arroyos y ríos de la cabecera. (74).
- . Hábitat tipo 2: Arroyos de la vega media no contaminados. (66).
- . Hábitat tipo 3: Cuerpos de agua leníticos con macrófitos. (49).
- . Hábitat tipo 4: Arroyos anóxicos de la vega media. (4).
- . Hábitat tipo 5: Cursos bajos y desembocadura de ríos con elevada contaminación orgánica. (17).
- . Hábitat tipo 6: Cuerpos de agua leníticos sin macrófitos. (14).
- . Hábitat tipo 7: Río de aguas profundas, con/sin influencia de embalses. (24).

CLASTFICACION DE LAS ESTACIONES DE MUESTREO SEGUN TIPOLOGIA PROPIA

LASIFICACION DE LAS ESTACIONES DE MUESTREO SEGUN	TIPOLOGIA PROPIA
1 ARROYOS Y RIOS DE CABECERA	and the second s
Estaciones: 1,2,3,5,6,7,8,9,10,11,15,16,17,108, 129,130,131,132,135,140,141,142,143 165,166,167,168,169,171,172,173,190	109,110,111,113,114,115,119,120,122,123,124,125,126,127,128, ,144,145,147,149,150,151,152,154,155,156,158,159,161,163,164, ,191,193,194,196.
2 ARROYOS DE LA VEGA MEDIA	
Estaciones: 179,181,182,185,197,198,199,200,201 261,264,265,266,269,283,284,285,286	,202,203,204,209,210,212,215,220,221,222,223,228,244,250,259, ,298,299,303,306,309,311,313,329.
3 CURSO MEDIO DE RIOS NO ENCAUZADOS	
Estaciones: 21,23,24,25,26,28,29,32,39,43,47,56	,57.
4 TRAMOS DE RIOS ENCAUZADOS	
Estaciones: 52,64,65,67,69,84,85,86,338.	
5 TRAMOS FLUVIALES INFLUIDOS POR EMBALSES	
Estaciones: 13,18,20,31,121,139,175,180,181,187	,349.
6 CURSOS BAJOS Y DESEMBOCADURA DE RIOS	
Estaciones: 34,91,92,97,98,99,100,101,102,103,1	06,107,216,275,307.
7 RAMBLAS DEL SECTOR ARIDO	
Rstaciones: 33,37,42,44,73,74,225,226,227,233,374,376.	236,237,238,290,291,292,293,297,317,341,343,346,347,348,353,
8 ORILLAS DE EMBALSES	
Estaciones: 12,30,53,136,174,211,229,316,345,38	1.
9. ACEQUIAS Y CANALES DE RIEGO	
Estaciones: 41,81,104,208.	
10 BALSAS DE RIEGO Y. ESTANQUES ARTIFICIALES	
Estaciones: 170,369,371,384,386,387,388.	
11 POZAS Y CHARCAS	
Estaciones: 189,268,310,314,315,324,328,331,332 367,368,370,372,373,375,378,382,383	,350,351,352,354,355,356,358,359,360,361,362,363,364,365,366,385.
12 FUENTES	
Estaciones: 183,188,287,294,389,390.	
13 ARROZALES	
Estaciones: 22,217.	
14 SALINAS INTERIORES	
Estaciones: 344.	
15 SALINAS COSTERAS	· · · · · · · · · · · · · · · · · · ·
Estaciones: 377,379,380	

1 ARROYOS	Y RIOS DE CABECERA
Estaciones:	1,2,3,5,6,8,9,10,11,15,16,18,20,21,25,108,109,110,111, 113,114,115,119,120,121,122,123,124,125,126,127,128,129,
	130, 132, 135, 131, 136, 139, 140, 141, 142, 143, 144, 145, 147, 149,
	150, 151, 152, 154, 155, 156, 158, 159, 161, 163, 164, 165, 166, 167,
	168,169,171,172,173,175,193,196,208,383,385,389,390.
2 ARROYOS	DE LA VEGA MEDIA NO CONTAMINADOS
Estaciones:	7,17,23,26,28,34,44,56,73,74,179,181,182,185,188,189,
	190,191,194,197,198,199,200,201,202,203,204,209,210,212,
**************************************	215,216,220,221,222,223,225,226,227,244,250,261,266,283,
	285,286,287,290,291,292,293,297,298,303,306,307,309,313,
	315,328,329,338,349,351,353,354.
3 CUERPOS	DE AGUA LENITICOS CON MACROFITOS
Estaciones:	22,24,33,37,42,53,183,217,228,229,233,237,238,268,310,
	311,314,317,331,332,341,343,346,347,349,350,355,356,360,
	361, 362, 363, 364, 365, 368, 369, 371, 372, 373, 374, 376, 378, 379,
and the second second	381,386,387,388. Hadridally love to the little of the control of t
4 ARROYOS	ANOXICOS DE LA VEGA MEDIA
Estaciones:	259,264,269,275.
5 CURSOS I ORGANICA	BAJOS Y DESEMBOCADURA DE RIOS CON ELEVADA CONTAMINACION
Estaciones:	64,65,67,69,81,92,98,99,100,101,102,103,104,106,107,265, 382,384.
6 CUERPOS	DE AGUA LENITICOS SIN MACROFITOS
Estaciones:	236,324,344,345,348,352,358,359,366,367,370,375,377,380.
7 RIOS DE	AGUAS PROFUNDAS CON/SIN INFLUENCIA DE EMBALSES
Estaciones:	12,13,29,30,31,32,39,41,43,47,52,57,84,85,86,91,97,170, 180,187,211,284,294,299,316.

CLASIFICACION DE LAS ESTACIONES EN BASE A LAS MODALIDADES DEL MEDIO

Nivel de corte

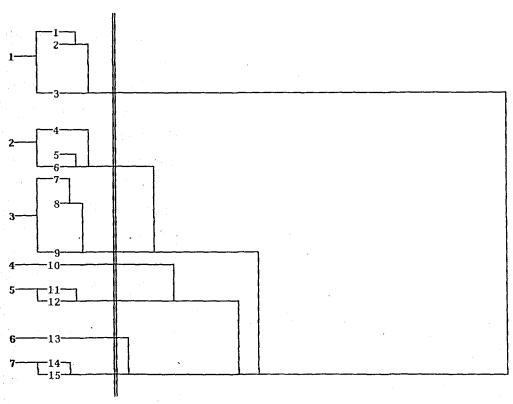


Figura 4.3.7

El dendrograma resultante, se presenta en la figura 4.3.7 y las estaciones correspondientes a cada grupo aparecen en la tabla 4.3.10.

Sólo los tipos de hábitats 1, 2 y 5 se pueden considerar, con pequeñas matizaciones, similares a los tipos 1, 2 y 6 de la clasificación anterior. El 3 y el 7 engloban hábitats leníticos y lóticos, respectivamente, de la tipología previa. Unicamente, los tipos 4 y 6, reflejan unas condiciones del medio que no se habían diferenciado inicialmente.

Como se puede apreciar de la comparación de las dos clasificaciones, el cluster de estaciones de muestreo por afinidad de modalidades ambientales no ha detectado determinados tipos de hábitats específicos (fuentes, tramos encauzados, ramblas del sector árido, salinas, etc.), debido por un lado, a que las modalidades reflejan con mayor exactitud microambientes, y por otro, a que las pocas especies de Hydradephaga que pueden colonizar estos hábitats, caracterizándolos, como Potamonectes mariae en "salinas interiores" o Potamonectes ceresyi en "salinas costeras", también son capaces de ocupar otros hábitats diferentes, siempre y cuando éstos presenten unas condiciones microambientales favorables.

Sin embargo, sí se ha mostrado válido para detectar unas características microambientales extremas, como anoxia o ausencia de macrófitos, que por sí mismas pueden definir tipos de hábitats concretos.

De la interpretación conjunta de las dos clasificaciones, se pueden considerar 17 tipos de hábitats diferentes, 15 de la tipología propia, más dos nuevos, tipos 4 y 6, detectados en el análisis de cluster:

- 1. Arroyos y ríos de la cabecera (66).
- 2. Arroyos de la vega media no contaminados. (38).
- 3. Curso medio de ríos no encauzados. (13).
- 4. Tramos de ríos encauzados. (9).
- 5. Tramos fluviales influidos por embalses. (10).
- 6. Cursos bajos y desembocadura de ríos con elevada contaminación orgánica. (14).

- 7. Ramblas del sector árido. (25).
- 8. Orillas de embalses. (9).
- 9. Acequias y canales de riego. (4).
- 10. Balsas de riego y estanques artificiales. (7).
- 11. Pozas y charcas con macrófitos. (26).
- 12. Fuentes. (6).
- 13. Arrozales. (2).
- 14. Salinas interiores. (1).
- 15. Salinas costeras. (3).
- 16. Arroyos anóxicos de la vega media. (4).
- 17. Cuerpos de agua leníticos naturales, sin macrófitos. (11).

Se ha mantenido el tipo "salinas interiores", por sus características intrínsecas y por la importancia de la única especie que los coloniza, *Potamonectes mariae*, que es endémica de la cuenca del Segura.

Con el fin de conocer las especies que caracterizan cada uno de estos macroambientes tipo, se han empleado los mismos parámetros de la teoría de la información (DE PABLO, 1987), que en el estudio biogeográfico: Gi y I(V.S).

A pesar de que los valores de Gi e información compartida global (I(V.S)), que explican la presencia de las especies para cada uno de los hábitats y para el conjunto de los mismos, han sido bajos, debido probablemente, a la escasa frecuencia de aparición de dichas especies, se han considerado suficientemente significativos aquellos próximos o superiores a 0.050 (tabla 4.3.11), en porcentajes de presencia mayores del 10%.

El resultado obtenido para los diferentes tipos de hábitats ha sido el siguiente (las especies se exponen en orden decreciente, según su valor de Gi):

1. Arroyos y ríos de cabecera: Caracterizado por la presencia de Orectochilus villosus, Haliplus lineatocollis, Potamonectes cazorlensis, Stictonectes epipleuricus, Hydroporus discretus, Deronectes moestus, Gyrinus de jeani,

TEORIA DE LA INFORMACION: ESPECIES CARACTERISTICAS

Especies	AU.ST	OR.VI	GY.UR	GY.DE	HA.LI	HA.MU	ME.CO
I(V.S)	0.108	0.166	0.059	0.065	0.196	0.115	0.060
Hábitat 1 G1 (%)		0.162 36	• • • • • •		0.150 74	0.056 36	
" 2 G2 (%)	0.034 28	0.028 2	0.039 18	0.057 15			0.032 18
" 3 G3 (%) " 4 G4						0.075	
(%) 5 G5						0.066	
(%) 6 G6							
(%) " 7 G7 (%)							
" 8 G8 (%)						0	
" 9 G9 (%)						0.053	
" 10 G10 (%) " 11 G11		. 0.053			0.054		
(%) " 12 G12		0			0.152		
(%) " 13 G13	0.395				0		0.131
(%) " 14 G14 (%)	100				0.102		50
" 15 G15 (%)					0.128		
" 16 G16 (%) " 17 G17	0 052				0.137	0.053	
(%)	0 052				0.181	0.071	

Tabla 4.3.11

I(V.S): información compartida global.

Gi: medida de contribución de un hábitat a la

información compartida de la especie para la sectorización. %: frecuencia de aparición de la especie en un hábitat.

Especies	RH.SU	HY.LE	ER.ST	AG.BR	LA.HY	HY.AU	co.co
I(V.S)	0.097	0.060	0.064	0.062	0.122	0.051	0.088
I(V.S) Hábitat 1 G1 (%) 2 G2 (%) 3 G3 (%) 4 G4 (%) 5 G5 (%) 6 G6 (%) 7 G7 (%) 8 G8 (%) 10 G10 (%) 11 G11 (%) 12 G12 (%) 13 G13 (%) 14 G14 (%)	0.097	0.582	0.064	0.059	0.122 0.055 77 0.161 92 0.096 11 0.137 0.120 0	0.051	0.088
" 15 G15 (%) " 16 G16 (%) " 17 G17 (%)			0.066 25	0.052	0.150 0.176 100		0.184

Tabla 4.3.11 (continuación)

Especies	HE.MU	HY.PU	BI.MI	YO.BI	GR.VA	ST.EP	DE.MO
I(V.S)	0.136	0.116	0.135	0.072	0.072	0.081	0.072
Habitat 1 G1 (%) " 2 G2	0.077	0.056 7	0.057 31		0.050 13	0.073 15	0.065 13
(%) " 3 G3 (%)		0.049	0.060				
" 4 G4 (%) " 5 G5	• • • • •	0.165	0.053				
(%) 6 G6 (%)	0.131 42	70	0.061				
" 7 G7 (%) " 8 G8 (%)	0.063 33		0.067	0.050			
" 9 G9 (%) " 10 G10		0.060					
(%) " 11 G11 (%)							
" 12 G12 (%) " 13 G13 (%)		.0.316		*,* * * * * *			
" 14 G14 (%) " 15 G15		0.056					
(%) " 16 G16 (%)		0.060 0.060					
" 17 G17 (%)			0.057 0				

Tabla 4.3.11 (continuación)

Especies	DE.FA	HY.DI	PO.CE	PO.MA	PO.CL	PO.CA	NO.LA
I(V.S)	0.055	0.088	0.085	0.183	0.094	0.120	0.063
Hábitat 1 G1 (%) 2 G2		0.071 22		0.074 0		0.105 22	
(%) " 3 G3 (%) " 4 G4							
(%) 5 G5 (%) 6 G6							0.098
(%) 7 G7 (%)	0.077 16			0.087 32	0.063		28
" 8 G8 (%) " 9 G9 (%)					0 0.051 0		
" 10 G10 (%) " 11 G11 (%)			0.064 15	0.110	0.059 0		
" 12 G12 (%) " 13 G13 (%)					0.057 0		
" 14 G14 (%) " 15 G15			0.397	0.431 100			
(%) " 16 G16 (%) " 17 G17			66	0.143	0.051 0.067		0.052 25
(%)				45			

Tabla 4.3.11 (continuación)

Bidessus minutissimus, Haliplus mucronatus y Graptodytes varius. Por su ausencia, lo caracterizan Herophydrus musicus y Potamonectes mariae.

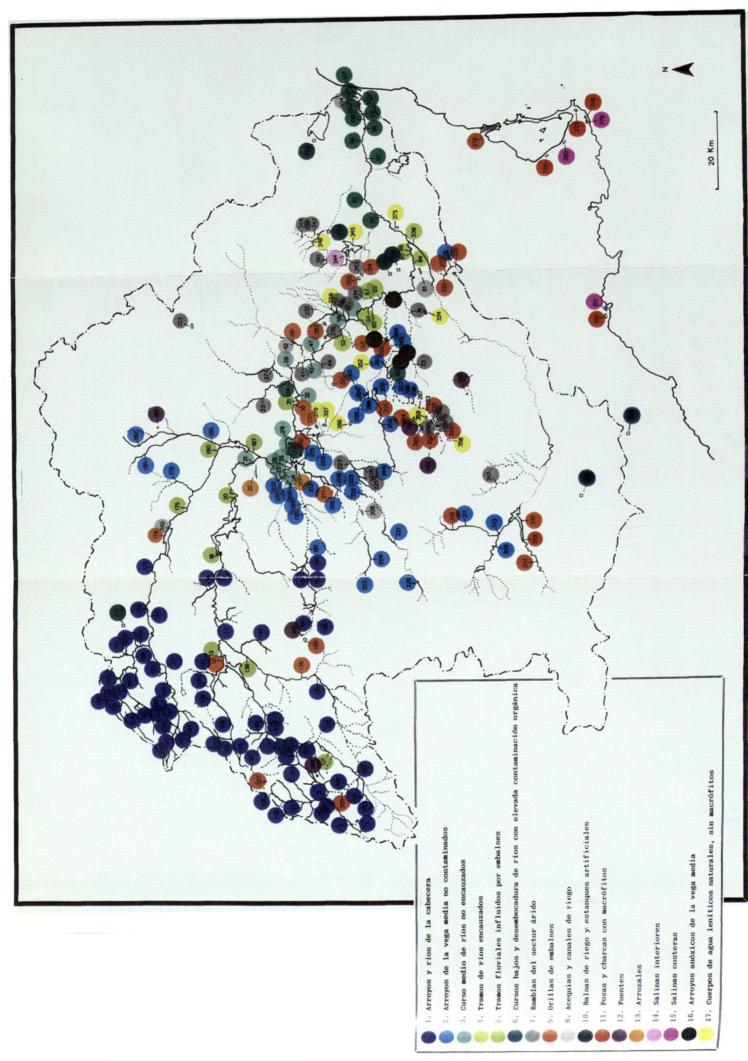
- 2. Arroyos de la vega media no contaminados: Caracterizado por la presencia de Gyrinus urinator, Aulonogyrus striatus y Meladema coriacea.
- 3. Curso medio de ríos no encauzados: Sólo una especie caracteriza este hábitat por su presencia, *Hydroglyphus pusillus*. Por el contrario, *Haliplus mucronatus* y *Bidessus minutissimus* lo caracterizan por su ausencia.
- 4. Tramos de ríos encauzados: Laccophilus hyalinus, lo caracteriza por su presencia, mientras que por su ausencia lo hacen Haliplus mucronatus y Bidessus minutissimus.
- 5. Tramos fluviales influidos por embalses: Aparece de nuevo, Hydroglyphus pusillus caracterizando este hábitat por su presencia.
- 6. Cursos bajos y desembocadura de ríos con alta contaminación orgánica: En este caso, son *Laccophylus hyalinus*, *Herophydrus musicus* y *Noterus laevis* las especies características por su presencia y, *Bidessus minutissimus* por su ausencia.
- 7. Ramblas del sector árido: Potamonectes mariae, Deronectes fairmairei, Agabus brunneus y Yola bicarinata lo caracterizan por su presencia.
- 8. Orilla de embalses: Laccophilus hyalinus, Bidessus minutissimus y Herophydrus musicus lo caracterizan por su presencia, mientras que Haliplus mucronatus y Potamonectes clarki, lo hacen por su ausencia.
- 9. Acequias y canales de riego: Caracterizado por la presencia de Laccophilus hyalinus y Potamonectes mariae, y por la ausencia de Hydroglyphus pusillus, Haliplus mucronatus y Potamonectes clarki.

10. Balsas de riego y estanques artificiales: Caracterizado por la presencia de Potamonectes mariae, Haliplus lineatocollis y A. nebulosus, y la ausencia de Potamonectes clarki.

Performance of the contract of the contract of the contract of the contract of the contract of the contract of

- 11. Pozas y charcas: Lo caracterizan por su presencia Laccophilus minutus, Potamonectes ceresyi e Hyphydrus aubei, y por su ausencia Orectochilus villosus. En el caso de P. ceresyi, hay que especificar, que está asociado exclusivamente a pozas y charcas litorales de caracter salobre.
- 12. Fuentes: Caracterizado por la presencia de Agabus paludosus, A. nebulosus, A. nitidus e Hydroporus marginatus. Mientras que son características por su ausencia Haliplus lineatocollis y Potamonectes clarki.
- 13. Arrozales: Rhantus suturalis, Hydaticus leander, Aulonogyrus striatus, Hydroglyphus pusillus, Eretes sticticus y Meladema coriacea son las especies que aparecen más importantes. Laccophilus hyalinus es característica por su ausencia.
- 14. Salinas interiores: Sólo aparece *Potamonectes mariae*. Son características por su ausencia *Laccophilus hyalinus* y *Haliplus lineatocollis*.

- 15. Salinas costeras: Unicamente lo caracteriza por su presencia Potamonectes ceresyi. Mientras que por su ausencia lo hacen Laccophilus hyalinus, Haliplus lineatocollis e Hydroglyphus pusillus.
- .16. Arroyos anóxicos de la vega media: Caracterizado por la presencia de Laccophilus hyalinus, Eretes sticticus, Noterus laevis y Agabus brunneus, y por la ausencia de Laccophilus hyalinus, Haliplus lineatocollis, Hydroglyphus pusillus Haliplus mucronatus y Potamonectes clarki.
- 17. Cuerpos de agua leníticos sin macrófitos: Lo caracterízan por su presencia Coelambus confluens y Potamonectes mariae. Por su ausencia lo hacen Haliplus lineatocollis, H.mucronatus, Potamonectes clarki, Bidessus minutissimus y Potamonectes clarki.


En el mapa 4.3.1., aparece reflejada la localización de los distintos tipos de hábitats en la cuenca del río Segura.

Como se puede apreciar, el hábitat tipo caracterizado por mayor número de especies es el de "arroyos y ríos de la cabecera", debido, probablemente, a que son cuerpos de agua que soportan una presión antrópica menor, lo que les permite mantener la heterogeneidad ambiental y variabilidad estacional adecuadas para la colonización de estas especies.

Los "arroyos de la vega media" "acequias y canales de riego" y "fuentes", han sido, por el contrario, los únicos tipos de hábitat donde se ha tenido que tomar valores de información compartida inferiores a 0.05, lo que en principio, se puede interpretase en el sentido de que las especies que los caracterizan son bastante eurioicas, o bien se trata de hábitats en los que por sus características físicas y ecológicas generales, difícilmente pueden vivir la mayoría de especies de Hydradephaga.

Los tipos de hábitats como "tramos encauzados", "tramos influidos por embalses", "salinas costeras" y "salinas interiores", son los que presentan las mayores dificultades para ser colonizados por los Hydradephaga, al estar caracterizado cada uno de ellos por una sóla especie y presentar porcentajes de frecuencia de aparición para otras pocas nulos o muy bajos. En cambio, los taxones capaces de vivir en estos medios, generalmente, aprovechan la falta de competencia para desarrollar poblaciones con una alta densidad de individuos.

Otros hábitats, también escasos, y de características especiales como "arrozales" y "arroyos anóxicos", presentan sin embargo, un numeroso grupo de especies características. Esto obedece, probablemente, a dos factores: por un lado, a la alta producción de larvas de Quironómidos, Culícidos, Tubifícidos, etc., que son frecuentes en estos medios, constituyendo una rica y variada fuente de alimento para los Hydradephaga (NILSSON & SODERSTROM, 1988), y por otro, a la capacidad de estos Coleópteros para ocupar cuerpos de agua, de manera ocasional, hasta que encuentran otros medios más favorables donde pueden establecerse (MONTES et al., 1982).

Mapa 4.3.1

•			

ESPECIES Y ESPACIOS DE INTERES NATURALISTICO

"La conservación de la diversidad de la vida salvaje es esencial para el mantenimiento del balance de la biosfera. En ella, los invertebrados juegan un papel vital por su biomasa y por la utilización que de ellos se puede hacer, como fuente de alimento, fertilización del suelo, control de otras poblaciones, bioindicadores, medicina, etc. "(Comité de Ministros del Consejo de Europa, 1987).

En consecuencia, el mantenimiento de la diversidad de invertebrados, de la que los Coleópteros constituyen el grupo taxonómico más numerosos, es esencial para la especie humana.

Durante los últimos años, se ha observado una paulatina disminución de la fauna de invertebrados. Este hecho, ha llevado al Consejo de Europa a proponer la protección de los invertebrados terrestres, acuáticos y aéreos ante las posibles causas de daño, empobrecimiento o destrucción de sus poblaciones.

Para conseguir que esta protección sea efectiva, en primer lugar y como medida esencial, hay que conocer y preservar los hábitats de las especies en peligro de extinción, para posteriormente actuar sobre la propia fauna de macroinvertebrados (LEARNER et al., 1990).

Pero, por desgracia, los sistemas acuáticos (cuencas, ríos, arroyos, ramblas, charcas, fuentes, etc.) son uno de los medios naturales que mayor presión antrópica soportan, dada la importancia del agua como fuente de recursos. Esta presión, aún es mayor en regiones áridas y semiáridas (como la cuenca del río Segura), debido a la escasez y consecuentemente, fuerte demanda de agua existente (VIDAL-ABARCA, 1985).

Autores como DECAMPS & NAIMAN (1989), han denunciado la falta de coherencia en el uso y gestión de las cuencas hidrográficas en la mayoría de los países. El aumento de la contaminación, la construcción irracional de presas, canales, derivaciones y dragrados, los drenados de tierras o la deforestación de las riberas, son actividades que han perturbado y continuan perturbando,

demasiado a menudo, la dinámica ecológica de los ríos. "Un sistema fluvial, no puede reducirse a un canal único de desagüe".

Todos estos factores han actuado negativamente sobre la fauna que albergan estos hábitats, y en concreto sobre la fauna de Coleópteros acuáticos, haciendo aún más difícil su supervivencia.

Por otra parte, hasta hace unos pocos años, para la protección de la flora y de la fauna, se había tenido en cuenta, fundamentalmente, las plantas superiores y los vertebrados, además de que no se mencionaba la necesidad de conservar los espacios naturales donde vivieran las especies amenazadas.

Para paliar estas lagunas, se crea la Unión Internacional para la Conservación de la Naturaleza y Recursos Naturales (IUCN), con el objetivo de proteger la diversidad biológica a todos sus niveles, así como los espacios naturales más representativos de esa diversidad. A partír de aquí, se empieza a tomar en consideración a los invertebrados, y dentro de ellos, a los Coleópteros acuáticos, por su importancia global en el funcionamiento de la biosfera, como ya se ha comentado anteriormente (cadena trófica, indicadores biológicos, especiación, etc.).

Una de las primeras medida de la IUCN, fue la de incluir a los insectos en las listas rojas de especies amenazadas, atendiendo a las siguientes categorías: en peligro, vulnerables, raras, fuera de peligro y endémicas; para posteriormente, dictar una serie de normas y leyes encaminadas a la protección de tales especies.

Después, para incluir como apéndice a la lista de especies protegidas por ley, bajo el Convenio de Berna, firmado el 19 de septiembre de 1979, la IUCN requirió un inventario de las especies de macroinvertebrados acuáticos más amenazadas.

El resultado ha sido, que únicamente dos especies de Coleópteros acuáticos, Graphoderus bilineatus (De G.) y Dytiscus latissimus L., están protegidos legalmente en Europa, por los países firmantes del Convenio de Berna.

Esto es debido a la dificultad que entraña seleccionar las especies a proteger, dado el diferente status de conservación que tienen en las distintas áreas que ocupan (SHIRT, 1986). Así, especies catalogadas como amenazadas en una región, pueden ser muy comunes en otra (SCHOENER, 1990). Esta particularidad, aunque es bastante tópica, en el caso de los Coleópteros acuáticos se agudiza mucho más, al presentar una distribución muy amplia como consecuencia de su gran capacidad de vuelo.

En la tabla 4.3.12, se presenta el status de conservación, que las especies de Hydradephaga encontradas en la cuenca del río Segura, tienen en diferentes países de Europa (FOSTER, 1978; HANSEN, 1980; FRANZ, 1983; BLAB et al., 1984; RENNER, 1984 y SHIRT, 1986), indicando además, con un asterisco, aquellas que fueron propuestas por especialistas de diferentes países, para su inclusión en el Convenio de Berna.

Como se puede ver, en España, no existen especies de Coleópteros acuáticos protegidas por ley. Unicamente el Dr. Régil Cueto, señala algunas en peligro de extinción que, probablemente, serán muchas más en el futuro, con la divulgación de los trabajos llevados a cabo por otros especialistas del grupo, en diferentes regiones de la Península Ibérica.

En la actualidad, los investigadores no se ponen de acuerdo, sobre cuales son los métodos más adecuados para seleccionar a las especies a proteger (DONY & DENHOLM, 1985).

La falta de rigor, en algunos casos, y de unanimidad en los criterios seleccionados para clasificar a las especies dentro de un nivel de protección en otros, son los problemas más importantes que impiden la protección legal de algunos macroinvetebrados acuáticos (STROOT & DEPIEREUX, 1989).

En los últimos años, los criterios más utilizados han sido de dos tipos: los que valoran la riqueza (DONY & DENHOLM, 1985; FRIDAY, 1987), rareza (DONY & DENHOLM, 1985; FAITH & NORRIS, 1989;), y diversidad (DISNEY, 1987; FRIDAY, 1987), a partir de la frecuencia y abundancia de las especies por unidad de

superficie; y los que emplean la representatividad (MARGULES & USHER, 1981), tipismo o naturalidad (EYRE et al., 1986), basados fundamentalmente, en las características del hábitat que ocupan. Algunos estudios, incluso, valoran a las especies y sus hábitats utilizando tipismo y rareza conjuntamente (EYRE & RUSHTON, 1989; FOSTER et al., 1990).

La riqueza, presenta el problema de su dependencia con el tamaño de la muestra. También, la rareza, según STROOT & DEPIEREUX (1989), tiene el inconveniente de considerar especies raras, aquellas que por su forma de vida y hábitos, son difíciles de detectar. Aún así, se muestran de acuerdo con la idea de considerar las especies raras como frágiles o vulnerables, afirmando que sin información complementaria, no se puede interpretar que estén particularmente en declive o amenazadas.

Estos mismos autores, emplean un método que valora datos antiguos y recientes de las especies, lo que permite detectar las que están en declive o en expansión. Pero este criterio lleva inplícito otro problema, que es la necesidad de obtener registros históricos de las citas de las especies y que, desgraciadamente, en muchos casos son inexistentes, han desaparecido por diferentes causas o, simplemente, son poco fiables.

Con la rareza (al igual que con la riqueza y diversidad), también surge otra dificultad, relacionada con la escala de trabajo (DONY & DENHOLM, 1985), puesto que el estudio, incluso de una misma zona, utilizando diferentes escalas de superficie, puede variar los resultados de rareza para las especies. Es por esto, por lo que se recomienda la utilización de escalas regionales (FOSTER et al, 1990).

La representatividad y el tipismo presentan el inconveniente de que es un criterio difícil de definir y cuantificar, y normalmente, resulta de la intuición y experiencia personal del investigador (EYRE & RUSHTON, 1989). Por otra parte, existe la paradoja de que los lugares más típicos o representativos, normalmente carecen de especies raras, cuando lo que se intenta conservar son ambas cosas.

STATUS DE CONSERVACION EN EUROPA DE LAS ESPECIES DE LA CUENCA DEL RIO SEGURA

HCDROTEG			Γ						Γ	I	
ESPECIES	A	В	D	GB	G	I	DM	N	F	S	SW
Haliplus mucronatus	1			R							
Gyrinus distinctus											
Gyrinus urinator						,	, ,			1	
Orectochilus villosus						l .					
Hyphydrus aubei				L							
Hydrovatus cuspidatus	1 ' '										
Yola bicarinata			-			1			1		
Bidessus minutissimus						L					
Coelambus confluens											
Hydroporus discretus	1		ľ	'							
Hydroporus marginatus				l .		I .					
Graptodytes varius		1	t .								
Stictonectes epipleuricus											
Potamonectes griseostriatus	1 '					•			i		1
Oreodytes davisi	[]										
Oreodytes septentrionalis			4								
Agabus brunneus	1		4							1	
Agabus didymus	4										
Agabus biguttatus			4				1 '	*	i		
Agabus guttatus	[]							1	*		
Agabus bipustulatus								i	l		
Agabus chalconatus	1		l	Nb		1	[1	l .		
Agabus melanocornis			4					t .			
Meladema coriacea											1
Eretes sticticus				1		*			*	1	
Dytiscus circumflexus	G.P,5	S.P		Nb			*	1			*
Dytiscus pisanus	G.P	G.P		,	,	,	1	3	,	,	
Cybister tr. africanus	G.P,*		1			4	1		1		L
Cybister lateralimarginalis	G.P,4						1	i			i .

Leyendas:

PAISES

A: Austria

B: Bélgica D: Alemania

GB: Gran Bretaña

G: Grecia

I: Italia

DM: Dinamarca N: Holanda

F: Francia

S: España SW: Suecia . LEGISLACION: G.P: Género protegido por ley

S.P: Especie protegida por ley

. LISTAS ROJAS: 1: Extintas
2: Vulnerables a extinguir

3: En gran peligro

4: En peligro

5: Potencialmente en peligro

. OTRAS CATEGORIAS: V: Vulnerables

R: Raras

N: Notables en G. Bretaña

Na: <30 cuadrados de 10 Km

Nb: entre 31 y 100 cuadrados de 10 Km

*: Se recomienda su inclusión en el Convenio de Berna

Tabla 4.3.12

Algunos investigadores, como FAITH & NORRIS (1989), apuntan otros criterios, como la elaboración de modelos predictivos, que permitan relacionar la composición de la comunidad con diferentes variables del medio para, posteriormente, poder utilizarlos en la valoración y conservación de los recursos biológicos de las aguas continentales.

En general, la riqueza, diversidad y rareza son los términos más fáciles de cuantificar y explicar a la sociedad, lo que posibilita acciones más rápidas y eficaces por parte de los Gobiernos.

Este último aspecto, junto con la carencia de suficientes registros de Hydradephaga, anteriores al presente estudio, ha llevado a la utilización de la rareza y riqueza, como los índices más adecuados para interpretar el estado actual de los Hydradephaga y los hábitats que ocupan en la cuenca del río Segura.

Los resultados obtenidos se pueden considerar a tres niveles, que se comentan seguidamente:

1) Especies

En la tabla 4.3.13, aparecen indicados los tipos de rareza, las especies que pertenecen a cada uno de esos tipos y el porcentaje que presentan con respecto al total de especies detectadas en la cuenca del Segura.

Son 13 especies las que tienen los valores de rareza máxima, de las cuales, merecen especial atención las dos del género *Cybister*, puesto que se trata de especies meridionales, muy comunes en regiones mediterráneas (FRANCISCOLO, 1979). Su escasez en la zona de estudio, así como en otras áreas diferentes, parece indicar que actualmente pueden estar sufriendo un proceso de regresión, probablemente debido a que son especies llamativas y fáciles de capturar.

Todo lo contrario sucede con Oreodytes septentrionalis, Agabus melanocornis, A. chalconatus y A. guttatus, cuyas distribuciones son,

generalmente, más septentrionales, por lo que se puede considerar lógica su escasa presencia, al tratarse, probablemente, de especies esporádicas.

Coelambus impressopunctatus y Potamonectes griseostriatus, a pesar de tener una distribución Holártica, en la cuenca del Segura, al menos, parecen estar restringidas a ambientes muy concretos.

Cabe resaltar también, a *Deronectes depressicollis*, especie endémica de la Península Ibérica, con una distribución muy localizada (FERY, 1987), limitada a los arroyos y cuerpos da agua de la cabecera de las cuencas del Guadalquivir y, ahora, del Segura (ver apartado de biogeografía).

Dentro del tipo 6, Oreodytes davisi y Dytiscus circumflexus, presentan situaciones similares con algunas especies del tipo anterior, tratándose la primera de una especie de caracter alpino, mientras que la segunda, al tener una distribución mediterránea, debería de haberse capturado más veces.

Varias de las especies que tienen valores de rareza altos en la cuenca del Segura (tipos 5, 6 y 7), también son raras o se recomienda su protección en otras áreas más septentrionales de Europa. A este grupo pertenecen Potamonectes griseostriatus, Oreodytes davisi, O. septentrionalis, Agabus guttatus, A. chalconatus, A. melanocornis, Dytiscus circumflexus, D. pisanus, Cybister tr. africanus y C. lateralimarginalis, de las que 7 están incluidas dentro del tipo de rareza más alto).

Con respecto a las especies que se han encontrado asiduamente en la zona de estudio (tipos 1, 2 y 3), destacan *Potamonectes cazorlensis* y *P. mariae* al tratarse, al menos en la actualidad, de especies endémicas de la Península Ibérica y de la cuenca del Segura respectivamente.

También es interesante mencionar a *Herophydrus musicus*, pues a pesar de que recientemente se ha citado para la Península Ibérica (MILLAN & SOLER, 1990), es una de la especies más comunes en la cuenca del Segura, por lo que podría considerarse que está en expansión, aunque para confirmarlo habría que hacer

TIPOS DE RAREZA DE LAS ESPECIES								
Tipos	n⊙spp	r						
7:1	13	20.31						
6:2-3	6	9.37						
5:4-7	14	21.87						
4:8-16	16	25.00						
3:16-31	7	10.93						
2:32-64	6	9.37						
1:>64	2	3.12						

TIPO 7:	
11110 1.	TIPO 6:
L.ponticus	H.limbatus
A.melanocornis	H.tessellatus
A.chalconatus	0.davisi
C.lateralimarginalis	G.caspius
A.guttatus	A.paludosus
C.impressopunctatus	D.circumflexus
H.obliquus	
D.depressicollis	TIPO 5:
O.septentrionalis	D.fairmairei
C.tr.africanus	H.aubei
P.griseostriatus	A.nebulosus
S.lepidus	A.biguttatus
H.cuspidatus	I.fuliginosus
-	H.marginatus
TIPO 4:	P.ceresyi
D.moestus	A.nitidus
S.epipleuricus	D.pisanus
G.varius	G.distinctus
S.optatus	P.rotundatus
L. minutus	H.nigrita
R.suturalis	G.fractus
N.laevis	D.hispanicus
G.dejeani	-
A.bipustulatus	TIPO 3:
E.sticticus	0.villosus
H.leander	H.discretus
H.signatellus	H.musicus
C.confluens	P.cazorlensis
A.didynus	M.coriacea
A.brunneus	G.urinator
H.lucasi	P.mariae
TIPO 2:	TIPO 1:
B.minutissimus	L.hyalinus
A.striatus	H.lineatocollis
Y.bicarinata	
H.nucronatus	
P.clarki	
H.pusillus	

Tabla 4.3.13

un estudio más detallado de su distribución. Aun así, esta hipótesis parece apoyarla el hecho de que se haya encontrado recientemente en las Islas Baleares (GARCIA AVILES, 1990), después de numerosos estudios sobre este grupo de Coleópteros llevados a cabo en estas islas y la actual desaparición de medios acuáticos epicontinentales a la que se están viendo sometidas.

El resto de especies, son muy comunes, aunque en otros países se recomienda la protección de algunas de ellas o están encuadradas dentro de la categoría de raras, como Haliplus mucronatus, Orectochilus villosus, Yola bicarinata, Bidessus minutissimus, Hydroporus discretus, Agabus didymus y A. brunneus, quizá más por su distribución general que por que realmente estén amenazadas.

2) Estaciones

Los valores de los índices "Factor de Calidad de Rareza" (RQF), "Riqueza Asociada a Rarera" (RR) e "Interés de Conservación" (IC), aparecen en la tabla 4.3.14 (para simplificar la visualización de los resultados obtenidos, únicamente se reflejan las 10 estaciones con los valores más altos de IC. En el apéndice 5, aparece la información completa para todas las estaciones.

De la interpretación de esta tabla, se deduce que son las estaciones de la cabecera de la cuenca del Segura, en el río Madera principalmente, y los ríos Zumeta y Mundo (ver apéndices 1 y 5), las que presentan los mayores valores de RR. Las más importantes son la estación del "río Zumeta después de Santiago de la Espada", que contiene la mayor riqueza de especies, y los "Chorros del río Mundo" y la "desembocadura del río Madera en el Segura", que alcanzan los valores de rareza más altos, dentro de este grupo.

Por el contrario, estaciones en balsas de riego, charcas o fuentes, situadas en diferentes puntos de la cuenca (ver mapa 4.3.2), presentan los valores de RQF más grandes. De ellas, tienen un especial interés la estación de muestreo de los "Humedales del Hondo", al encontrar una sóla especie con valor máximo de rareza,

Cybister lateralimarginalis; y la "poza cerca del nacimiento del Benamor", por ser la estación de estas características con mayor riqueza de especies.

Cuando se estudia el total de las estaciones de muestreo, se observa que, de ellas, 92 (37.1%) tienen valores de RQF= 8, lo que indica, además de la importancia de un porcentaje elevado de las estaciones por la rareza de sus especies, que un parte importante de los Hydradephaga presentan una distribución muy localizada en la zona de estudio.

Un total de 53 estaciones (21.37%) tienen valores de RR= 4. Estos valores reflejan que la asociación interespecífica de los Hydradephaga en la cuenca, no es muy alta, lo que puede ser debido a dos factores: el comportamiento competitivo de las especies por un lado, y las características del medio por otro. En este último caso, el fuerte deterioro de gran parte de las estaciones, ocasionado por el manejo humano, parece ser la causa más importante de la destrucción de los microambientes de las estaciones, que son los que posibilitan la riqueza y diversidad específica de estos medios.

Al hacer una valoración global del grado de conservación de las estaciones de la zona de estudio, se aprecia que, únicamente 52 de ellas (22.98%), presentan valores de IC= 8, lo que redunda en la apreciación señalada anteriormente, en el sentido de la importante alteración ocasionada en estos cuerpos de agua. Si se consideran los valores de IC menores de 4, como indicadores de un grado de conservación del medio por debajo de lo normal, para la colonización de los Coleópteros Hydradephaga, se puede concluir que, aproximadamente, el 52% de las estaciones de muestreo de la cuenca del río Segura no alcanzan unos niveles de conservación aceptable que permitan la supervivencia de estos organismos en sus aguas.

			INTERES DE CONSERVACION	RIQUEZA/ RAREZA	CALIDAD DE RAREZA
ESTACIONES	×	S	וכ	RR	RQF
R. Zumeta después de Santiago de la Espada (Jaén)	120 17	17	48.99	80.22	17.76
R. Madera cerca del nacimiento (Jaén)	108	15	41.69	64.92	18.47
Desembocadura del río Madera (Jaén)	113	11	37,45	48.98	25.91
Humedales de El Hondo. Balsa de riego (Alicante)	384	Н	32.50	1.00	64.00
Los Chorros del río Mundo (Albacete)	144	o,	30.71	34.31	27.11
Poza cerca del Nacimiento del río Benamor (Murcia)	189	13	30,53	44.28	16.77
Laguna de autodepuración de Espinardo (Murcia)	386	11	30.09	39,36	20.82
Charca en el río Madera. Camino de Silex (Jaén)	383	2	29.75	3.50	56.00
R.Madera en el cruce con la carretera de Pontones (Jaén) 109 13	109	13	26.46	38,39	14.54
Fuente en La Toba (Jaén)	389	7	25.50	3.00	48.00
Annual Control of the				·	

Tabla 4.3.14

N: número de la estación. S: riqueza de especies.

3) Tipos de hábitats

En la tabla 4.3.15 se presentan, ordenados de mayor a menor, los valores medios de cada tipo de hábitat para los tres índices estudiados, así como su desviación típica.

El estudio de dicha tabla ha permitido interpretar 3 grupos de hábitats por su interés de conservación:

I) "Hábitats de interés excepcional": formado por los tipos "arroyos y ríos de cabecera", "balsas de riego y estanques artificiales", "pozas y charcas" "fuentes", "arrozales" y "salinas costeras", que son los que presentan los valores más altos de IC.

Dentro de dicho grupo, se observa que la desviación típica del tipo "balsas de riego y estanques artificiales" es la más alta de estos hábitats, lo que está indicando una gran variabilidad del IC en las estaciones que lo componen. Esto puede ser debido a la suma de varios factores, tales como el comportamiento oportunista de gran parte de las especies de Hydradephaga, la existencia de potentes depredadores, como Cybister tr. africanus y C. lateralimarginalis que son capaces de desplazar a otras especies también depredadoras y la heterogeneidad macro y microambiental que caracterizan a los muestreos extensivos.

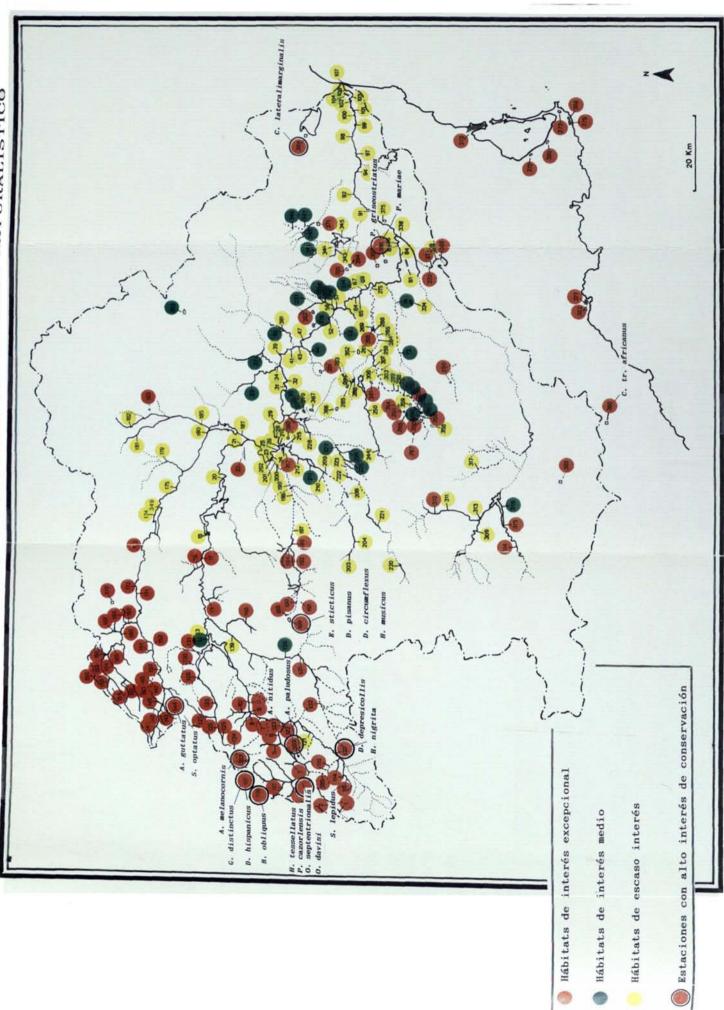
Todos estos aspectos, permiten deducir que los valores obtenidos de IC, se pueden interpretar como la capacidad potencial que tiene cada uno de los tipos de hábitats estudiados para albergar una determinada riqueza y/o rareza de especies.

Cuando se estudian los índices "RQF" y "RR" por separado, se descubren pequeñas variaciones que completan la información aportada anteriormente. De esta manera, los hábitats tipo "fuentes" y "salinas costeras", son mucho más importantes por su capacidad para ser colonizados por especies raras o poco frecuentes en la cuenca del Segura, mientras que, proporcionalmente, los "arroyos

y ríos de cabecera" son más importantes por la riqueza de especies que pueden contener.

En su conjunto, estos hábitats son los más importantes, desde el punto de vista de su conservación y protección, al reflejar las condiciones del medio más naturales y/o incluir los ambientes acuáticos más propicios para los Coleópteros Hydradephaga.

- II) "Hábitats de interés medio": lo constituyen los tipos "orillas de embalse", los cuales presentan valores de rareza altos, y "ramblas del sector árido" que son importantes por su riqueza de especies.
- III) "Hábitats de escaso interés": formado por el resto de hábitats, caracterizados, bien por unas condiciones microambientales poco adecuadas para la colonización de los Coleópteros Hydradephaga, como sucede con los "arroyos de la vega media no contaminados", "cursos medios de ríos no encauzados", "tramos influidos por embalses", "salinas interiores" y "cuerpos de agua leníticos naturales, sin macrófitos"; bien por un alto nivel de degradación del medio debido, fundamentalmente, a la acción humana. Dentro de éstos se encuentran los tipos "tramos encauzados", "cursos bajos y desembocadura de ríos contaminados", "acequias y canales de riego" y "arroyos anóxicos de la vega media".


En este último caso, es urgente la ejecución de las medidas necesarias, encaminadas a paliar tales efectos a la vez que posibiliten la regeneración de dichos hábitats.

Finalmente, se ha elaborado el mapa 4.3.2, en el que se representa la situación de los 3 grupos de hábitats en la cuenca del Segura, con la localización de las especies y estaciones con mayor interés de conservación. En el caso de las especies, se ha tenido en cuenta para su inclusión, además de los valores de rarera, otros factores de caracter faunístico, ecológico y biogeográfico comentados en anteriores apartados.

	HABITATS TIPO									
INTERES DE CONSERVACION (IC)			RIQUEZA RAREZA		ADA A	FACTOR DE CALIDAD DE RAREZA (FQR)				
H.TIPO	X(IC)	STD.	H.TIPO	X(RR)	STD.	н.тіро	X(FQR)	STD.		
10	14.07	10.09	15	21.33	6.34	1	8.51	15.43		
15	10.83	4.56	10	21.19	6.86	10	6.95	3.94		
. 1	8.36	0.84	12	14.67	1.30	13	4.60	0.64		
12	7.86	1.48	11	11.94	2.06	11	3.44	0.92		
11	7.69	2.58	13	9.43	3.63	7	3.13	1.80		
13	7.02	4.06	8	8.28	5.40	2	2.64	2.97		
7	5.11	4.38	1	8.21	5.63	6	2.60	5.06		
2	4.90	2.41	17	7.97	4.91	5	1.27	0.44		
6	4.80	0.81	2	7.17	1.52	17	1.23	0.11		
17	4.60	11.82	7	7.09	19.71	12	1.06	13.32		
8	4.41	7.57	6	7.01	11.39	16	0.54	8.45		
5	3.20	8.21	5	5.12	15.53	8	0.54	1.14		
16	2.63	1.32	16	4.71	1.23	3	0.45	1.40		
14	2.03	0.00	14	4.00	0.00	4	0.40	0.00		
3	1.78	3.83	3	3.12	7.54	15	0.33	0.12		
4	1.23	1.51	4	2.07	2.60	9	0.09	0.44		
9	0.98	2.46	9	1.88	3.85	14	0.06	1.64		

Tabla 4.3.15

H.TIPO: Hábitats tipo. X(): Media de los Indices. STD: Desviación estandar.

Mapa 4.3.2