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Summary. Atherosclerosis is the principal cause of
myocardial infarction, stroke, and peripheral vascular
disease, accounting for nearly half of all mortaity in
developed countries. For example, it has been estimated
that atherosclerosis leads to approximately 500,000
deaths from coronary artery disease and 150,000 deaths
from stroke every year in the United States (American
Heart Association, 1996). Percutaneous transluminal
angioplasty has become a well-established technique for
revascularization of occluded arteries. However, the
long-term efficacy of the procedure remains limited by
progressive vessel renarrowing (restenosis) within the
following few months after angioplasty. Abnormal
vascular smooth muscle cell (VSMC) proliferation is
thought to play an important role in the pathogenesis of
both atherosclerosis and restenosis. Accordingly,
considerable effort has been devoted to elucidate the
mechanisms that regulate cell cycle progression in
VSMCs. In the present article, we will review the
different factors that are involved in the control of
VSMC proliferation, especially in the context of
cardiovascular disease. Ultimately, a thorough
understanding of these regulatory networks may lead to
the development of novel drug and gene therapies for the
treatment of cardiovascular diseases. Therapeutic
approaches that targeted specific cell-cycle control genes
or growth regulatory molecules which effectively
inhibited neointimal lesion formation will be also
discussed.
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Importance of VSMC proliferation in the
pathogenesis of atherosclerosis and restenosis

Atherosclerosis is a complex process characterized
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by the formation of a neointimal lesion that
progressively occludes the arterial lumen. Neointimal
thickening is due to the accumulation of cellular and
extracellular substances in the space between the
endothelial cell lining (intima) and the underlying
medial VSMCs. According to the response-to-injury
hypothesis, atherosclerosis is triggered by different risk
factors (hypercholesterolemia, aging, hypertension,
cigarette smoking and diabetes) that can somehow lead
to endothelial dysfunction (Ross, 1993). The normal
endothelium plays numerous physiological roles
including: 1) provision of a nonthrombogenic, semi-
permeable surface; 2) regulation of vascular tone by
release of small molecules that modulate vasodilation
(nitric oxide, PGI2) or vasoconstriction (endothelin); 3)
secretion of different growth regulatory molecules and
cytokines; 4) provision of a nonadherent surface for
leukocytes and 5) ability to modify (oxidize)
lipoproteins that are transported into the arterial wall.
Once one or many of these endothelial properties have
been altered, a succession of events can lead to the
formation of fatty streaks, the earliest recognizable
lesion of atherosclerosis, and ultimately to fibrous and
fibrocalcified plagues. Studies in hypercholesterolemic
animals and in human atherosclerotic arteries have
identified three processes involved in the formation of
the atherosclerotic lesion (Ross, 1993): 1) the proli-
feration of VSMCs, macrophages and possibly lympho-
cytes; 2) the formation by VSMCs of a connective tissue
matrix comprising elastic fibre proteins, collagen and
proteoglycans; and 3) the accumulation of lipid and
mostly free and esterified cholesterol in the surrounding
matrix and the associated cells. VSMCs play the
principal role in the fibroproliferative component of the
disease process, because it is the principa source of the
connective tissue in the arterial wall (Ross, 1993).
Numerous observations suggest that VSMCs in
atherosclerotic lesions have changed from a contractile
to a synthetic state (Campbell and Campbell, 1990). In
the synthetic state, VSMCs can respond to different
growth factors and synthetize extracellular matrix
(Sjolund et al., 1990). "Activated" VSMCs can also
migrate toward the arterial lumen and express abundant
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levels of novel matrix components and proteases that
modify the surrounding matrix. This "growth and
synthetic response” of VSMCs contributes to the
development of the neointimal lesion that characterizes
atherosclerosis.

Excessive VSMC proliferation is also believed to be
involved in the pathophysiology of restenosis, the
recurrence of arterial narrowing at the site of balloon
angioplasty that occurs in 20-55% of coronary artery
disease patients after successful angioplasty (Fuster et
al.,, 1992; Libby et al., 1992; Ross, 1993). It is thought
that the acute disruption of the protective endothelial
lining at the site of angioplasty triggers this aggressive
form of atherosclerosis, which is typically characterized
by exuberant VSMC hyperplastic response (Bauters and
Isner, 1997; Libby and Tanaka, 1997; Thyberg, 1998),
extracellular matrix accumulation (Schwartz et al., 1992;
Strauss et al., 1994) and local "remodeling” (elastic
recoil) of the dilated vessel (Post et al., 1994; Wilensky
et al., 1995). To date, among all the different pharmaco-
logical attempts to prevent restenosis (Franklin and
Faxon, 1993), only antibody against platelet I1b/IIla
integrin (Topol et al., 1994) and probucol (Tardif et al.,
1997; Yokoi et al., 1997; Rodés et al., 1998) have shown
possible utility for the reduction of clinical restenosis.
Angiographic restenosis rates have also been shown to
be reduced following the implantation of intravascular
prosthesis (stents) at the angioplasty site. However, the
reduction in restenosis rates with these devices has only
been modest, from 32% to 22% in one study (Serruys et
al., 1994) or from 42% to 32% in another study
(Fischman et al., 1994). This limited effect may be
explained by the fact that although stents can provide a
larger lumen following angioplasty and prevent the local
elastic recoil, they are associated with a paradoxical
increase in neointimal formation and "late loss" in the
months following the procedure (Fischman et al., 1994;
Serruys et al., 1994). Therefore, taking into account that
a growing proportion of angioplasties are now being
performed together with stent implantation, effective
therapies to prevent restenosis may rely on reducing
VSMC proliferation and migration after balloon injury.

Molecular control of cellular proliferation

In the adult organism, at homeostasis, VSMCs in the
vessel wall express differentiation markers and their
proliferation index is extremely low. However, mature
VSMCs can undergo phenotypic modulation and reenter
the cell cycle in response to several physiological and
pathological stimuli (Thyberg, 1998). Using different
animal models of angioplasty in vivo, several
investigators have demonstrated a rapid proliferative
response of VSMCs in the media, followed by a second
peak of proliferation in the neointima which then
declines to basal levels within 2 to 6 weeks after
vascular injury (Stemerman et al., 1982; Clowes et al.,
1983; Clowes and Schwartz, 1985; Majesky et al., 1987;
Hanke et al., 1990; Ohno et al., 1994; Stadius et al.,

1992; Geary et al., 1996). Moreover, VSMC
proliferation (Indolfi et al., 1995b) and neointimal
hyperplasia (Asada et al., 1996) have been shown to be
influenced by the degree of balloon injury in different
animal models. Recently, increased VSMC proliferation
after angioplasty has been associated with up-regulation
of different components of the cell cycle machinery (see
below).

Progression through the cell cycle in mammalian
cells is driven by several cyclin-dependent protein
kinases (CDKs) that function at different phases of the
cell cycle (Motokura and Arnold, 1993; Heichman and
Roberts, 1994; Hunter and Pines, 1994; King et al.,
1994; Nurse, 1994; Peeper et al., 1994; Sherr, 1994;
Morgan, 1995). Activation of CDKs requires their
association with members of a family of structurally
related proteins called cyclins. The levels of individual
cyclins, which fluctuate during the different phases of
the cell cycle, are controlled transcriptionally and by the
ubiquitin-dependent proteolytic machinery. Different
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Fig. 1. Cell cycle control in mammalian cells. A Progression through the
mammalian cell cycle requires the sequential activation of specific
CDK/cyclin complexes. Active CDK/cyclin holoenzymes phosphorylate
cellular substrates, including the pocket proteins pRb, p107 and p130. It
is accepted that hyperphorylation of pocket proteins during Gt blocks
their interaction with the transcription factor E2F, thus causing
transactivation of genes with functional E2F sites that are required for
DNA synthesis (S phase). Subsequently, hypophosphorylated pocket
proteins interact again with E2F and repress transcription of E2F-
regulated genes. B. CDK inhibitory (CKIl) proteins associate with
CDK/cyclin complexes. Although active CDK/cyclin holoenzymes
containing a single CKI molecule have been demonstrated in cultures of
proliferating cells, binding of muitiple CKI molecules inhibit CDK activity.
For example, mitogen deprivation causes upregulation of CKils,
hypophosphorylation of pocket proteins and ultimately GO/G1 arrest. In
contrast, mitogen restimulation of starvation-synchronized cells is
associated with downregulation of CKls, thus allowing activation of
CDK/cyclin holoenzymes and progression through the cell cycle.
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CDK/cyclin complexes are orderly activated at specific
phases of the cell cycle (Fig. 1A). Progression through
the first gap-phase (G1) requires cyclin D/CDK4, cyclin
D/CDK®6, and cyclin E/CDK2 holoenzymes. Functional
cyclin A/CDK2 complexes are required for DNA
synthesis (S phase) and, subsequently, cyclin A/CDC2
and cyclin B/CDC2 pairs are assembled and activated
during the second gap-phase (G2) and mitosis (M
phase), respectively. Recent evidence has been provided
suggesting the requirement of CDK2 for entry into
mitosis as a positive regulator of cyclin B/CDC2 kinase
activity (Guadagno and Newport, 1996).

Active CDK/cyclin holoenzymes are presumed to
hyperphosphorylate the retinoblastoma susceptibility
gene product (pRb) and the related pocket proteins p107
and p130 (Fig. 1A,B). The interaction among members
of the E2F family of transcription factors and individual
pocket proteins is complex and determines whether E2F
proteins function as transcriptional activators or
repressors (Helin and Harlow, 1993; Weinberg, 1995;
Mayol and Grana, 1998). Simplified, it is accepted that
phosphorylation of pocket proteins from mid G1 to
mitosis is involved in the transactivation of genes with
functional E2F sites. The genes activated by E2F include
several growth and cell-cycle regulators (i.e., c-myc, N-
myc, CDC2, cyclin E, and cyclin A), as well as genes
encoding proteins that are required for DNA synthesis
(Farnham et al., 1993; Helin and Harlow, 1993;
DeGregori et al., 1995; Mayol and Grana, 1998).

CDK activity is negatively regulated by members of
a new class of cell cycle regulators, termed CDK
inhibitors (CKIs), which associate with and inhibit the
activity of CDKs (Elledge and Harper, 1994; Peter and
Herskowitz, 1994; Grana and Reddy, 1995; Morgan,
1995) (Fig. 1B). To date, the list of cloned mammalian
CKlIs includes p15, pl6, p18, p19, p21, p27 and p57. In
addition to its inhibitory effect on CDK2, p21 can also
inhibit DNA replication through direct interaction with
proliferating cell nuclear antigen (PCNA) (Flores-Rozas
et al., 1994; Waga ct al., 1994), and separate domains of
p21 are involved in these two activities (Chen et al.,
1995; Luo et al., 1995).

Positive regulators of VSMC proliferation
Mechanical stress

In hypertension, VSMCs are exposed to a chronic
increased mechanical stress, which is associated with
enhanced VSMC proliferation. Likewise, a marked
increase in tension occurs transiently at the site of
balloon angioplasty. In vitro systems have been
developed to test whether mechanical stress alone may
be transduced into growth stimulatory signals similar to
those produced by growth factors. Chronic cyclic strain
promoted DNA synthesis in VSMCs isolated from
diverse vascular beds and species, including human
VSMCs (Sumpio and Banes, 1988; Predel et al., 1992;
Wilson et al., 1993; Hishikawa ct al., 1994; Calara et al.,

1996; Cheng et al., 1996). This stimulatory effect
appears to involve activation of phospholipase C and
protein kinases A and C in a process mediated by
secreted platelet-derived growth factor (PDGF) and
fibroblast growth factor (FGF) (Wilson et al., 1993;
Hishikawa et al., 1994; Calara et al., 1996; Cheng et al.,
1996; Mills et al., 1997). Whereas release of basic FGF
(bFGF, also known as FGF-2) from VSMCs was
negligible in response to the small strains that may occur
in the normal artery, increased mechanical strain induced
bFGF release depending on both the frequency and the
amplitude of deformation (Cheng et al., 1997).
Mechanical stress also increased c¢-fos expression and
phosphoinositide turnover in cultured VSMCs (Lyall et
al.,, 1994). Of note is that a single transient mechanical
strain can induce VSMC proliferation, in part by
autocrine or paracrine release of bFGF (Cheng et al.,
1996). Thus, sustained and transient mechanical strain
may elicit a proliferative response of VSMCs during
hypertension and after angioplasty, respectively.
Collectively, these findings suggest that VSMC
hyperplasia induced by mechanical stretch and growth
factors are mediated, at least in part, by common signal
transduction pathways.

Growth factors

Many growth factors and cytokines have been
shown to stimulate VSMC proliferation in vitro and in
vivo (Majack, 1987; Majesky et al., 1988; Banskota et
al., 1989; Raines et al., 1989; Majack et al., 1990;
Sjolund et al., 1990; Thyberg et al., 1990; Hultgérh-
Nilsson et al., 1991; Salhany et al., 1992; Ross, 1993).
Growth factors that induce VSMC proliferation and are
generally upregulated in atherosclerotic lesions include
PDGF, bFGF, tumor necrosis factor-a (TNF-a), insulin-
like growth factor-1 (IGF-1), heparin-binding epidermal
growth factor-like growth factor, interleukin-1 and
transforming growth factor-8 (TGFB). Further evidence
that bFGF and PDGF might be physiological regulators
of VSMC growth has been provided using neutralizing
antibodies directed against these growth factors, which
inhibited neointimal VSMC accumulation after
angioplasty (Ferns et al., 1991; Lindner and Reidy,
1991). Similarly, inhibition of PDGF-B receptor subunit
expression suppressed neointimal thickening (Sirois et
al., 1997; Banai et al., 1998; Hart et al., 1999).
Conversely, overexpression of bFGF and PDGF
promoted neointimal hyperplasia (Nabel et al., 1993a,b).

Signal transduction molecules

As described above, protein kinases A and C
participate in VSMC proliferation after being stimulated
by growth factors like bFGF and PDGF. However, recent
studies indicate that signal transduction molecules can
also be directly upregulated by stretch injury that follows
balloon angioplasty. Lai et al. (1996) documented an
induction of MAPKs p42 (ERK-1) and p44 (ERK-2)
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from day 2 to day 8 after injury of rat carotid artery with
a slight decrease at day 14. Hu et al. (1997) showed a
sustained induction of ERK-2 from 5 minutes to 14 days
after rat carotid balloon injury. This was followed by an
increase in the expression of the protooncogenes c-fos
and c-jun and enhanced AP-1 DNA-binding activity.
MAPK activity increased markedly from 15 to 30
minutes after rat carotid artery injury with a return
toward basal levels by 11 hours (Lille et al., 1997).
However, later time points (>24 hours) were not
analyzed in that study. Similarly, a recent study
documented a very rapid (within 5 minutes) induction of
ERK activity after angioplasty of porcine carotid and
coronary arteries (Pyles et al., 1997). These studies
suggest that activation of MAPK in response to
mechanical manipulation of arteries may be biphasic. In
the first phase (<2 hours), there is a rapid activation of
the kinase in response to stretch. In the second phase,
there is a more slowly developing increase that occurs
over the time scale of days. This protracted increase in
activity may reflect the transformation of VSMCs from a
contractile to a secretory phenotype, or may be mediated
by the growth factors induced locally by the injury.

Transcription factors and components of the cell cycle
machinery

Numerous studies have identified transcription
factors that positively regulate VSMC growth.
Expression of a constitutive NF-kB-like activity appears
to be essential for proliferation of cultured bovine
VSMCs (Bellas et al., 1995). Several protooncogenes
(i.e., c-fos, c-jun, c-myc, c-myb, egr-1) are activated in
serum-stimulated VSMCs, and in some cases their
overexpression is sufficient to induce VSMC
proliferation in vitro (Castellot et al., 1985; Kindy and
Sonenshein, 1986; Reilly et al., 1989; Brown et al.,
1992; Campan et al., 1992; Bennett et al., 1994;
Rothman et al., 1994; Gorski and Walsh, 1995). Higher
levels of c-myc mRNA are present in VSMCs cultured
from atheromatous plaques than in VSMCs from normal
arteries (Parkes et al., 1991), and arterial injury induced
protooncogene expression (Miano et al., 1990, 1993;
Sylvester et al., 1998). Moreover, ¢c-myc and c-myb
antisense oligonucleotides inhibited VSMC proliferation
in vitro (Pukac et al., 1990; Brown et al., 1992; Simons
and Rosenberg, 1992; Bennett et al., 1994; Shi et al.,
1993, 1994), and their application prior to balloon
angioplasty reduced neointima formation (Simons et al.,
1992; Bennett et al., 1994; Shi et al., 1994). Collectively,
the above studies have identified peptide growth factors
and protooncogenes that are likely to stimulate VSMC
growth in vitro and in vivo.

VSMC proliferation in the balloon-injured rat
carotid artery is associated with a temporally and
spatially coordinated expression of CDK2 and its
regulatory subunits, cyclin E and cyclin A (Wei et al.,
1997). Induction of these factors correlated with
increased CDK2-, cyclin E- and cyclin A-dependent

kinase activity, indicating the assembly of functional
CDK2/cyclin E and CDK2/cyclin A holoenzymes in the
injured arterial wall. Expression of CDK2 and cyclin E
was also detected in human VSMCs within restenotic
lesions (Kearney ct al., 1997; Wei et al., 1997),
suggesting that induction of positive cell-cycle control
genes is a hallmark of injury-induced VSMC
hyperplasia.

Recent studies have provided significant insight into
the control of cell-cycle gene expression in VSMCs.
Overexpression of protein kinase C & (PKC 9d) inhibited
VSMC proliferation, and this effect was associated with
suppression of cyclin D1 and cyclin E expression
(Fukumoto et al., 1997). Consistent with the stimulatory
effect of Ras-dependent mitogenic signaling on cellular
proliferation, evidence has been presented implicating
Ras in the activation of the G1 CDK/cyclin/E2F pathway
(Winston et al., 1996; Aktas et al., 1997; Kerkhoff and
Rapp, 1997; Leone et al., 1997; Lloyd et al., 1997;
Peeper et al., 1997; Zou et al., 1997). Moreover,
inactivation of Ras inhibited neointimal lesion formation
after angioplasty (Indolfi et al., 1995a; Ueno et al.,
1997b), suggesting an important role of Ras on VSMC
proliferation in vivo. Since cyclin A is essential for cell
cycle progression and its expression is induced after
angioplasty (Wei et al., 1997), we explored a potential
link between Ras and cyclin A gene expression in
VSMCs (Sylvester et al., 1998). Our results show that
Ras is critical for the normal induction of cyclin A
promoter activity and DNA synthesis in mitogen-
stimulated VSMCs, and overexpression of the AP-1
transcription factor c-fos efficiently circumvented this
requirement via interaction with the cAMP-responsive
element (CRE, also known as ATF) at position —79 to
=72 in the cyclin A promoter (Fig. 2). Binding of
endogenous c-fos and CRE binding (CREB) factors to
the cyclin A CRE correlated with VSMC proliferation
induced by serum in vitro and by angioplasty in vivo
(Sylvester et al., 1998), and angioplasty induced the
localized expression of c-fos in VSMCs (Miano et al.,
1990, 1993; Sylvester et al., 1998). Thus, c-fos
expression and binding to the cyclin A CRE is spatially
and temporally consistent with a role for this factor in
the stimulation of cyclin A expression and VSMC
proliferation after balloon angioplasty. Notably, the E2F
site at position =37 to —32 in the cyclin A promoter was
essential for both serum- and c-fos dependent induction
of cyclin A expression in VSMCs (Sylvester et al.,
1998). Taken together, these findings suggest that c-fos
and E2F are important components of the signaling
cascade that link Ras activity to cyclin A transcription
and VSMC proliferation (Fig. 2).

Negative regulators of VSMC proliferation

Using several animal models of arterial injury, it has
been shown that "activated” VSMCs resume a quiescent
phenotype within 2-6 weeks after angioplasty
(Stemerman et al., 1982; Clowes et al., 1983; Clowes
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and Schwartz, 1985; Hanke et al., 1990; Geary et al.,
1996). Recent studies have identified some of the
molecules and regulatory networks responsible for
VSMC growth arrest in vivo. Balloon angioplasty
resulted in the induction of the CKls p21 and p27 in
VSMCs at time points that correlated with reduced
CDK2 activity and the decline in VSMC proliferation
(Chen et al., 1997; Tanner et al., 1998). Moreover,
overexpression of p27 efficiently blocked mitogen- and
c-fos-dependent induction of cyclin A promoter activity
in cultured VSMCs (Chen et al., 1997; Sylvester et al.,
1998). Thus, upregulation of p21 and p27 may
contribute to VSMC growth arrest at late time points
after angioplasty. In agreement with this hypothesis,
adenovirus-mediated overexpression of p21 (Chang et
al., 1995; Yang et al., 1996; Ueno et al., 1997a) and p27
(Chen et al., 1997) attenuated neointimal thickening in
balloon-injured arteries. It has also been shown that
induction of p27, but not p21, is associated with
inhibition of VSMC proliferation in cells stably
transfected with PKC 8 (Fukumoto et al., 1997).
Whether PKC 6 is involved in the upregulation of p27
after angioplasty in vivo remains to be explored. The
regulation of CDK inhibitors by integrins and
extracellular matrix components in VSMCs is discussed
below.

Endothelium-derived nitric oxide (NO), synthesized
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Fig. 2. Ras-dependent regulation of cyclin A gene expression and
VSMC proliferation. Ras activity is critical for VSMC proliferation in vivo
and in vitro. Forced overexpression of c-fos can induce cyclin A gene
transcription in the absence of Ras, and this effect requires the CRE site
at position =79 to —72 in the cyclin A promoter (Sylvester et al., 1998).
Moreover, VSMC proliferation induced by serum in vitro and by
angioplasty in vivo correlated with binding of c-fos and CREB factors to
the cyclin A CRE, and angioplasty induced c-fos expression in VSMCs.
Both the CRE and the E2F site (position —37 to —32) in the cyclin A
promoter are essential for mitogen-dependent induction of cyclin A
expression in VSMCs. These findings suggest that c-fos, CREB and
E2F factors are important components of the signaling cascade that link
Ras activity to cyclin A transcription and VSMC proliferation (see text for
details).

by a constitutive NO synthase, is thought to play an
important role as a physiological vasodilator and
inhibitor of VSMC growth (Moncada et al., 1991; Nava
et al., 1995). Teleologically, the lack of endothelium-
derived NO production due to disruption of the
protective endothelial lining after balloon angioplasty
might be expected to contribute to VSMC hyperplasia.
Consistent with this notion, eNOS-null mice have a
much greater degree of intimal growth after arterial
injury when compared to wild-type mice (Moroi et al.,
1998; Rudic et al., 1998). Moreover, arterial delivery of
EC mitogens that accelerated reendothelization also
attenuated neointimal hyperplasia after vascular injury
(Bjornsson et al., 1991; Asahara et al., 1995; Van Belle
et al., 1997). High production of NO by neointimal
VSMCs via an inducible pathway (iNO synthase) may
also contribute to the restoration of the quiescent
phenotype after balloon angioplasty (Yan and Hansson,
1998). Administration of the NO precursor L-arginine
(McNamara et al., 1993; Hamon et al., 1994; Le
Schwarzacher et al., 1997; Tourneau et al., 1999), or in
vivo transfer of NO synthase gene (von der Leyen et al.,
1995; Shears et al., 1997, 1998; Chen et al., 1998;
Janssens et al., 1998; Varenne et al., 1998) inhibited
neointimal lesion development in several animal models,
including balloon angioplasty, cholesterol-induced
atherosclerosis and allograft atherosclerosis. Conversely,
chronic inhibition of NO production accelerated
neointima formation in hypercholesterolemic rabbits
(Cayatte et al., 1994). Collectively, these results
implicate NO as a negative regulator of neointimal
hyperplasia. Recent studies have provided significant
insight into the mechanism underlying NO-induced
VSMC growth arrest (Ishida et al., 1997; Guo et al.,
1998). Addition of NO donors to starvation-
synchronized VSMCs induced p21 expression and
inhibited the activation of CDK2 and phosphorylation of
pRb normally seen upon serum restimulation. NO
donors also blocked mitogen-dependent upregulation of
cyclin A promoter activity and mRNA levels. These
studies suggest that repression of cyclin A transcription
and p21-dependent inhibition of CDK2 activity
contribute to NO-induced VSMC growth arrest. The
molecular mechanisms underlying NO-dependent
induction of p21 expression and repression of cyclin A
transcription need to be explored further.

Little is known about transcription factors that
repress VSMC proliferation whose downregulation
and/or inactivation might play an important role in
atherosclerosis and restenosis. Inactivation of p53 in
apoE-null mice has recently been shown to increase
cellular proliferation and accelerate atherosclerosis
(Guevara et al., 1999). Conversely, over-expression of
p53 has been shown to inhibit VSMC proliferation in
vitro and in vivo (Yonemitsu et al., 1998). The
homeobox gene Gax is highly expressed in cultures of
quiescent VSMCs, and its mRNA is rapidly
downregulated upon growth factor stimulation of
VSMC s in vitro and following angioplasty in vivo
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(Gorski et al., 1993; Weir et al., 1995). Moreover,
overexpression of Gax inhibited VSMC proliferation in
vitro and following balloon injury of the rat carotid

artery in a p2l-dependent manner (Smith et al.,
1997a,b).

Regulation of VSMC proliferation by extracellular
matrix components

Accumulating evidence indicates that specific
components of the extracellular matrix (ECM) and
integrins are physiological cell-cycle control elements in
atherosclerosis and restenosis (Assoian and
Marcantonio, 1996). Neointimal VSMCs within athero-
sclerotic lesions synthesize novel ECM components and
induce the expression of matrix-degrading proteases that
remodel the surrounding ECM. For example, matrix-
degrading metalloproteinase (MMP) expression is
induced within atherosclerotic plaques and after balloon
angioplasty (Bendeck et al., 1994; Galis et al., 1994;
Zempo et al., 1994; Southgate et al., 1996). Moreover,
MMP inhibitors repressed VSMC proliferation in vitro
and after angioplasty in vivo (Southgate et al., 1992;
Zempo et al., 1996; Cheng et al., 1998). Accordingly,
these ECM enzymes have been implicated in the
induction of neointimal VSMC hyperplasia during
atherosclerosis and restenosis. The serine proteases tPA
and uPA have also been found to be upregulated
following arterial injury in the rat model (Clowes et al.,
1990; Jackson et al., 1993; More et al., 1995; Reidy et
al., 1996). In addition to their role in migratory activity
of VSMCs, it has recently been discovered that human
VSMCs express high-affinity tPA receptors (Ellis and
Whawell, 1997). Indeed, tPA has been shown to be a
potent mitogen for human aortic VSMCs (Herbert et al.,
1994). Interestingly, uPA and its receptor (uPAR) seem
to be essential for the migration of VSMCs (Noda-Heiny
and Sobel, 1995; Noda-Heiny et al., 1995; Okada et al.,
1996). In addition, both uPA and uPAR have been
detected in different stages of human atherosclerotic
lesions (Lupu et al., 1995; Noda-Heiny et al., 1995;
Raghunath et al., 1995). The development of mice
lacking different components of the plasminogen system
has helped to better define the role of these factors in
VSMC proliferation in vivo. In plasminogen-deficient
mice, VSMCs fail to migrate toward the intima, but their
replication is unaffected (Carmeliet et al., 1997a,b).
Neointimal formation is reduced in the uPA-deficient
mouse and in mice deficient in both uPA and (PA, but
not in tPA-null mice, suggesting that uPA is the major
player in this process (Carmeliet et al., 1997a,b).

Integrins are transmembrane heterodimers that bind
to a number of ligands, primarily ECM molecules, and
stimulate a variety of transduction pathways (Hynes,
1992). One integrin in particular, avB3, is thought to
interact with osteopontin and play a critical role in
regulating cellular functions deemed essential for
restenosis including migration, ECM invasion and
proliferation of VSMCs (Panda et al., 1997). avB3 has

been found to be expressed by VSMCs in the intima of
diseased human coronary arteries (Hoshiga et al., 1995)
and is upregulated following balloon injury of baboon
brachial arteries (Stouffer et al., 1998). Further evidence
of the importance of this integrin in the pathogenesis of
restenosis has been provided by showing that selective
avB3 blockade could potently limit neointimal
hyperplasia in animal models of arterial injury (Choi et
al., 1994; Srivatsa et al., 1997). Interestingly, it has been
suggested that inhibition of avB3 could constitute a
potential mechanism for the beneficial effects on clinical
restenosis of abciximab (an inhibitor of platelet
glycoprotein IIb/Illa) in patients undergoing high-risk
percutaneous coronary interventions (Topol et al., 1994).

Changes in collagen content have been well
documented in different animal models of athero-
sclerosis and angioplasty (Strauss et al., 1994; Karim et
al., 1995; Coats et al., 1997). To investigate whether
changes in collagen may regulate VSMC proliferation,
Koyama et al. (1996) studied the growth properties of
VSMCs cultured on monomer collagen fibers and on
polymerized collagen. The rationale for these studies is
that polymerized collagen may resemble the scenario of
a normal artery composed of quiescent VSMCs, and
monomer collagen might mimic the ECM surrounding
proliferating VSMCs within atherosclerotic plaques.
Consistent with this interpretation, mitogen-stimulated
VSMCs proliferated in culture dishes coated with
monomer collagen, but were arrested in G1 when grown
on polymerized collagen. The inhibitory effect of
polymerized collagen on VSMC growth appeared to be
mediated by a2 integrins, and was associated with
suppression of p70 S6 kinase and upregulation of the
CKIs p21 and p27. The ability of polymerized collagen
to inhibit VSMC proliferation is consistent with a low
proliferative index of VSMCs in the normal arterial wall
(Koyama et al., 1996). This interpretation would predict
that p21 and p27 might be involved in the maintenance
of the quiescent state in the VSMCs residing in an intact
artery. However, although p21 and p27 are expressed at
high levels in balloon-injured arteries at time points that
coincide with the decline in VSMC proliferation,
expression of these growth suppressors is low or
undetectable in normal arteries (Yang et al., 1996; Chen
et al., 1997; Tanner et al., 1998). Despite this apparent
discrepancy, however, the findings by Koyama et al.
(1996) provide convincing evidence that the ability of
VSMCs to respond to growth signals is highly dependent
on changes in specific ECM components through
regulation of CKIs in vitro. Further studies are required
to determine whether integrins and ECM components
are involved in the control of CKI expression in VSMCs
in vivo.

The glycoprotein thrombospondin 1 (TSP1) is a
component of the ECM synthesized and secreted by
activated platelets (Lawler et al., 1978) and a variety of
cell types including ECs (McPherson et al., 1981; Reed
et al., 1995), macrophages (Jaffe et al., 1985), fibroblasts
(Jaffe et al., 1983) and VSMCs (Mumby et al., 1984).
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TSP1 is a 450 kD homotrimeric that interacts with
multiple extracellular macromolecules and cell surface
receptors, thus exerting a wide range of functions (Asch
et al., 1991; Frazier, 1991). TSP1 can induce EC growth
arrest in vitro (Bagavandoss and Wilks, 1990; Taraboletti
et al., 1990), and inhibits the spontanecous development
of angiogenic tube-like structures both in vitro and in
vivo (O'Shea and Dixit, 1988; Good et al., 1990; Iruela-
Arispe et al., 1991). In marked contrast, TSP1 promotes
VSMC proliferation and migration (Majack et al., 1986;
Yabkowitz et al., 1993), and plays a stimulatory role in
platelet activation and aggregation (Dixit et al., 1985;
Tuszynski et al., 1988). Of note is that TSP1 expression
has been associated with atherosclerotic lesions, acute
vascular injury, hyper-cholesterolemia and hypertension
(Wight et al., 1985; Raugi et al., 1990; Botney et al.,
1992; Liau et al., 1993; Van Zanten et al., 1994; Reed et
al., 1995; Roth et al., 1998). Taken together, these
findings suggest that TSP1 may play an important role in
the pathogenesis of atherosclerosis and restenosis. We
have recently shown that VSMC growth arrest upon
blockade of TSP1 requires the CKI p21 (Chen et al.,
1999b). Moreover, antibody blockade of TSPI
accelerated reendothelialization and reduced neointima
formation in balloon-injured rat carotid artery (Chen et
al., 1999a).

Effect of aging on VSMC proliferation

Aging leads to changes in the cardiovascular system
that are associated with an increased risk of
atherosclerosis (Kannel and Gordon, 1980; Folkow and
Svanborg, 1993; Marin, 1995; Bilato and Crow, 1996).
However, very little is known about age-related
mechanisms causing cardiovascular dysfunction and
enhanced atherosclerosis. Stemerman et al. (1982)
compared the in vivo kinetics of VSMCs from young
adult rats (3-4 months) to those of old rats (21-24
months). They gerformed aortic endothelial denudation
and found that [?H]thymidine incorporation into VSMCs
and intimal growth was increased with aging. These
authors concluded that the more pronounced athero-
sclerotic plaque growth seen with aging may be the
result of an age-related response to injury rather than
merely the accumulation of time-related intimal change.
Using a different approach, Spagnoli et al. (1992)
showed that aging results in increased aortic
atherosclerosis in hypercholesterolemic rabbits. Hariri et
al. (1986) used transplantation of aortic segments into
young or old recipients and studied the myointimal
hyperplasia seen after aortic endothelial injury with a
nondistending coiled wire catheter. They demonstrated
that the vascular response to endothelial injury appears
to be a function of the age of the arterial segment rather
than the host environment. In vitro studies have
confirmed that VSMCs isolated from old rats have a
significantly higher mitogen-mediated proliferative
response than young cells. Cultures of old VSMCs
disclosed a greater percentage of their population in the

S phase and a decrease in the percentage of cells in the
Gy/Gy phase as compared with young VSMCs (Hariri et
al., 1988). Old VSMCs also showed an increased
response to stimulatory growth factors (PDGF) and a
decreased response to inhibitory growth factors (TGF-8)
(McCaffrey et al., 1988; McCaffrey and Falcone, 1993).
Taken together, these findings suggest that age-
dependent increase in VSMC proliferation may
contribute to the increased prevalence and severity of
atherosclerosis and restenosis in the elderly.

In recent experiments, we used a rabbit model to
clucidate potential mechanisms involved in the age-
dependent increase in VSMC proliferation (Rivard et al.,
2000). We found that enhanced proliferation in VSMCs
isolated from old animals is associated with augmented
levels of cyclin A and CDK2 protein expression. In
marked contrast, expression of cyclin E in VSMCs did
not appear to change during aging. We also showed that
aging results in increased transcription from the cyclin A
promoter and expression of c-fos, a member of the AP1
family of transcription factors that interacts with the
cyclin A promoter and mediates induction of cyclin A
transcription and VSMC proliferation (Sylvester et al.,
1998). Consistent with this notion, electrophoretic
mobility shift assays demonstrated age-dependent
increase in AP1 DNA-binding activity in VSMCs. These
findings suggest that augmented cyclin A expression via
the action of AP1 transcription factors contributes to
increased VSMC proliferation with advanced age. They
also establish, for the first time, a direct link between the
transcriptional and cell cycle machinery that may
contribute to the increased prevalence and severity of
atherosclerosis in the elderly.

Antiproliferative therapies to inhibit vascular smooth
muscle cell hyperplasia

As discussed in further detail above, excessive
proliferation of VSMCs contributes to neointimal
thickening during atherosclerosis and restenosis.
Therefore, inhibiting this pathological response might be
a suitable approach to the treatment of vascular
proliferative disease. A variety of therapeutic strategies
that targeted specific components of the cell-cycle
machinery have been shown to successfully reduce
neointimal lesion formation in response to arterial injury.
These studies include inhibition of CDK2 (Abe et al.,
1994; Morishita et al., 1994a), CDC2 (Morishita et al.,
1993, 1994b; Abe et al., 1994), cyclin B1 (Morishita et
al., 1994b), cyclin G1 (Zhu et al., 1997), E2F (Morishita
et al., 1995), and PCNA (Morishita et al., 1993;
Frimerman et al., 1999), as well as overexpression of the
growth suppressor molecules p21 (Chang et al., 1995;
Yang et al., 1996; Ueno et al., 1997a), p27 (Chen et al.,
1997), p53 (Yonemitsu et al., 1998) and pRb (Chang et
al., 1995; Smith et al., 1997). Likewise, inactivation of
CDC2/PCNA (Mann et al., 1995) and CDK2 (Suzuki et
al., 1997) attenuated graft atherosclerosis. Several
investigators have also demonstrated a significant
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reduction of neointimal cell proliferation after gene
transfer of herpesvirus thymidine kinase and
administration of ganciclovir following angioplasty in
normal and atheromatous arteries (Ohno et al., 1994;
Simari et al., 1996; Steg et al., 1997). Gene therapy
strategies that targeted signal transduction molecules and
transcription factors implicated in the regulation of cell-
cycle control gene expression and VSMC proliferation
also attenuated neointimal thickening in vivo. These
include overexpression of the homeobox gene Gax
(Maillard et al., 1997; Smith et al., 1997), antisense
oligonucleotides against the protooncogenes c-myc
(Bennett et al., 1994; Shi et al., 1994) and c-myb
(Simons et al., 1992), and inhibition of cellular Ras
(Indolfi et al., 1995a; Ueno et al., 1997b). Currently,
clinical trials have been initiated to examine the safety
and efficacy of some of these gene therapy approaches,
including c-myc antisense oligonucleotides to reduce
restenosis after stenting, and the E2F decoy strategy to
treat atherosclerosis after coronary bypass graft.

An alternative approach to treat vascular disease
associated with VSMC growth is the use of anti-
proliferative drugs. It is important to emphasize,
however, that several drugs that efficiently inhibited
VSMC hyperplasia in animal models of vascular injury
failed to reduce the incidence of restenosis in patients
(Califf et al., 1991; Popma et al., 1991; Franklin and
Faxon, 1993). The lack of correlation between animal
studies and human clinical trials is likely to be due to
differences in the response of arteries of diverse species
to mechanical injury. Nevertheless, other therapeutic
strategies have shown promising results in preclinical
and clinical trials. For example, animal models of
arterial injury have shown that restenosis may be
prevented by local radiation therapy, and this effect is
associated with reduced proliferation in the media and
the adventitia of irradiated vessels (Waksman, 1997).
Similarly, intracoronary radiotherapy has shown positive
results in reducing the rate of restenosis in patients
(Condado et al., 1997; Teirstein et al., 1997, 1999).
Another example is probucol, which reduced luminal
narrowing after arterial injury in animal models (Ferns et
al., 1992; Schneider et al., 1993) and after balloon
coronary angioplasty in patients (Tardif et al., 1997;
Yokoi et al., 1997; Rodés et al., 1998). It should be noted
that in addition to its antioxidant and antiproliferative
properties, probucol also influences the lipoprotein
profile. Moreover, it was recently proposed that probucol
exerts its antirestenotic effects by improving vascular
remodeling after angioplasty rather than by inhibiting
neointimal formation per se (Cote et al., 1999).
Therefore, future studies are required to elucidate the
precise mechanisms underlying the beneficial effect of
probucol.

Concluding remarks

Abnormal VSMC proliferation plays an important
role in the pathogenesis of cardiovascular diseases,

including atherosclerosis and restenosis. Because of the
public health importance and economic impact of these
pathological processes, elucidating the regulatory factors
and molecular mechanisms that control VSMC growth is
currently the subject of active research. In this review,
we have discussed mechanisms underlying cell-cycle
control in VSMCs and their implication in vascular
occlusive discases. Gene therapy strategies that targeted
specific cell-cycle control genes or growth regulatory
molecules have been effective at inhibiting VSMC
proliferation and preventing arterial narrowing in several
animal models of vascular injury. The safety and
efficacy of some of these approaches are currently being
tested in clinical trials. These include inactivation of c-
myc to treat restenosis after coronary stenting, and
inhibition of E2F function to prevent neointimal
hyperplasia in bypass grafts. Local radiation therapy and
probucol have already shown positive results in recent
clinical trials for the treatment of restenosis. Despite
these encouraging results, it is important to emphasize
that several antiproliferative drugs that inhibited vessel
narrowing in animal models of angioplasty have failed to
reduce the incidence of restenosis in patients. It is
therefore essential to continue our efforts to elucidate the
molecular mechanisms governing the control of VSMC
in vitro and in vivo. Ultimately, a thorough under-
standing of these regulatory networks may lead to the
development of novel drug and gene therapies for the
treatment of atherosclerotic cardiovascular diseases.
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