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Summary. Nomadism is a true hemopoietic characteris-
tic during vertebrate phylogeny and ontogeny.

This work reviews the mechanisms and developmen-
tal steps of hemopoiesis, from a phylogenetic point of
view. A summary of the principal hemopoietic «foci»
along the evolutionary line is also presented.
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Introduction

All biological systems tend to reach the maximum
possible size. When the surface:volume ratio of protists
became inadequate for metabolite exchange, multi-
cellularity was adopted to achieve the maximum
energetic efficiency and size. The acquisition of one or
more simple cavities allowed the development of
multiple forms in spite of the absence of a specialized
system for distribution and disposal of metabolites. The
development of a circulatory system provided a new
approach for the energetic problem. Likewise, as
biological complexity increases, multiple cellular
subsystems appear, each one associated with a specific
function such as oxygen transport, blood clotting or
immune response (Glomski and Tamburlin, 1990).

In most simple forms, metabolites are transported in
solution through an acellular fluid (Glomski and
Tamburlin, 1989). “Lower” invertebrates lack hemo-
poiesis, probably because their short life time fits well
with the time course of blood cells (Tavassoli, 1991).
Most plathelmints and nematods present occasional
mitosis in their hemocytes (intravascular hemopoiesis)
(Sminia, 1974), while true coelomate have vascularized
aggregates of hemopoietic cells behind vascular or
visceral walls (extravascular hemopoiesis) (Andrew,
1965; Glomski and Tamburlin, 1990).

General phylogeny of hemopoiesis

As general rule, hemopoiesis is, from the beginning,
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a «nomadimic» mesoderm-associated process (Tavassoli,
1991): its development as a blood cell producing system
shows many “experiments of nature” (Aggio, 1987)
along the phylogenetic line until its final settlement in
specific organs, underscoring the importance of studying
«lower» species as a complementary method for a better
knowledge of the mechanisms involved in «higher»
groups (Tavassoli, 1986).

Hemopoietic organs are clusters of developing cells,
all of them derived from a unique precursor (stem cell)
and framed in a hemopoietic stroma or “micro-
environment” (Owen, 1988) which has been character-
ized only partially in mammals (Gordon, 1988; Tavassoli
and Minguell, 1991), while data from lower species are
rare (Castillo et al., 1990; Gallego et al., 1995; Zapata, et
al., 1995).

Hemopoiesis consists basically in the conversion of
pluripotent progenitors the into functionally, highly
specialized cells, frequently destined to live for a few
hours or weeks before being sequestered, destroyed and
replaced. Hemopoiesis has been classically separated
into lymphopoiesis (producing lymphocytes and plasma
cells), and myelopoiesis (resulting in platelets,
erythrocytes, granulocytes and monocytes).

In ectothermic vertebrates, lymphopoiesis and
myelopoiesis are anatomically associated. Permanent
separation between these tissues is first seen in birds,
when lymph node and bursa of Fabricius become well
defined structures (Cohen and Siegel, 1982). In
mammals, this separating process takes place during the
fetal life when lymphatic organs (spleen, lymph nodes)
are fully functional and myelopoiesis settles exclusively
and permanently in the bone marrow. It is interesting to
note that there are multiple remaining examples of
simultaneous splenic and bone marrow myelopoiesis in
adult rodents (Fruhman, 1970; Hayes, 1973), insecti-
vores (Fukuta et al., 1982; Tanaka, 1986b), edentates
(Weiss and Wislocki, 1956; Hayes, 1970) and mono-
trems (Tanaka, 1986a; Tanaka et al., 1988).

Basic hemopoietic mechanisms in vertebrates.
Along their path towards differentiation, hemopoietic

precursors are influenced by several factors which guide
them through the following developmental, irreversible
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steps: migration, nidation, commitment, proliferation,
differentiation and a final functional phase which in turn
is followed by death either by programmed senescence
(apoptosis) (Cowling and Dexter, 1994) or at random
(Necas et al., 1993). Emergence from the system is
compensated by an identical imput of cells, a delicate
equilibrium kept through precise feedback mechanisms.

Migration until settlement in the appropiate organ is
supported by a circulating pool of stem cells, responsible
for the nomadism observed not only in phylogeny but
also during ontogeny (Nicolas-Bolnet et al., 1991), as
remarked below.

Nidation, commitment, and proliferation of hemo-
poietic cells are influenced not only by their immediate
microenvironment and their products: cytokines
(interleukins and hemopoietic growth factors) (Zipori,
1992, Bronchud, 1995), and "homing molecules"
(Abboud et al., 1994) but also by specific "long range"
hormones (such as erythropoietin) (Zipori et al., 1985),
contact cell-to-cell influences, and the surrounding
microvasculature (Zipori, 1988). The presence of special
receptors present in the cell surface at each stage of
development is also essential (Metcalf, 1993). It is
probable that some or many of these ways of directing
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stem cells until their final destination are common to all
vertebrates, since their end products are very similar
(Rosse and Waldman, 1966; Zanjani et al., 1969).

These mechanisms are permanently operative in
endothermics, while ectothermics show marked seasonal
variations (Zapata et al., 1992; Siegl et al., 1993),
probably as adaptative strategies to meet environmental
and metabolic requirements.

Hemopoietic «foci» and circulating cells in
vertebrates

Circulating cells of vertebrates are classically divided
into five main types: lymphocytes, monocytes/
macrophages, erythrocytes, thrombocytes/platelets and
granulocytes.

Lymphocytes and macrophages are quite homo-
geneous along the group and some observations have
even suggested the existence, in "lower" vertebrates, of
subgroups similar to those seen in man (Tomonaga et al.,
1985; Evans and Cooper, 1990).

Erythrocytes are anucleated in mammals or nucleated
in others vertebrates. Comparative data show a well-
defined inverse relationship between cell size and
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Fig. 1. Principal hemopoietic-foci in vertebrate phylogeny. Size of trapezes is according to the importance of the organ in the hemopoiesis.
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circulating number (Finge, 1984).

Thrombocytes and granulocytes show marked
diversity. The former are polymorphous cells complete
or anucleated, and little is known about their
developmental stages in non mammalian species
(Daimon et al., 1977, Pica et al., 1990). They are linked
with coagulation and hemostasis from chondrichthyans
(Daimon and Uchida, 1985; Pica et al., 1990).

Granulocytes are heterogeneous cells with confusing
terminology and functions still obscure. Generally, they
pertain to the acidophylic, neutrophylic and basophylic
lines, with morphological intraspecies variations
(Andrew, 1965).

Hemopoietic «foci» are ubiquitous (Fig. 1). Agnathes
concentrate their hemopoietic functions in a diffuse gut-
associated tissue, probably homologous to the spleen of
more advanced organisms (Zapata, 1983). Cartilaginous
fishes direct granulopoiesis to specific places such as
Leydig’s organ (in the submucosa of the oesophagus)
and the epigonal organ (Galindez, 1994). Teleosts bear
the most important "foci" in their pronephros (Finge,
1984). In amphibians, the bone marrow (supplemented
by the spleen) takes place as the rector organ of
hemopoiesis. All these variations suggests that in
absence of the bone marrow several mesodermic tissues
are used for homing hematopoiesis. The emergence of
rigid bones (together with terrestrial life) is followed by
the emigration of hemopoietic cells to the marrow. The
adaptative significance of this event is unclear, although
it could have been related to the adoption of a more
protected environment for an indispensable function
(Tavassoli, 1986).

Ontogeny of hemopoiesis in vertebrates

Embryonic and fetal hemopoiesis is also a migratory
phenomenon. A typical example is provided by the
mouse, in which primitive hemopoietic cells appear first
in the yolk sac (Moore and Metcalf, 1970) to later
migrate and colonize in the liver and spleen and then to
the bone marrow in a final transfer. At each step, the
respective microenvironment should obviously be
prepared to receive them by offering the appropiate
seedbed for proliferation and differentiation
(Migliacchio et al., 1976). This migratory pattern is also
observed in very distant groups such as fishes (Teshima
and Tomonaga, 1986; Doggett and Harris, 1987) and
birds (Dieterlen-Lievre, 1994) although in these animals
the the final localizations are quite variable.

The hemopoietic «foci» that are operative during the
whole life span of «lower» vertebrates are equal to those
present in the embryonic and fetal stages of "higher"
species. So the basic ontogenetic mechanisms must
be present along all the phylogenetic line: that is to say
that hemopoietic is basically supported by primitive
cells genetically programmed to move and lodge in
different organs, which in turn are also genetically
programmed to offer the appropriate environment in due
time.

Final comment

Hemopoiesis is an old process whose origin is
concomitant or subsequent with the coelom. In
physiological conditions, it requires an appropriate
«niche» and a complex system of regulatory influences
located in the cellular microenvironment or coming from
distant sources, interacting with specific receptors
present in the surface of the hemopoietic cells.

In vertebrates, hemopoiesis runs a long way, starting
in the yolk sac and ending in the bone marrow and
lymphatic structures, having passed through the liver, the
spleen and other tissues that are circumstantially or
permanently active.

Evolutionary aspects are not sufficiently studied, and
since the cellular environment exerts a crucial influence
on the differentiation of hemopoietic stem cells, the
spontaneous models offered by «lower» vertebrates with
their «dissected» loci may offer an original approach to
better understand the basic mechanisms involved.
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