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Summary. Nitric oxide (NO) has opened a new and 
vigorous field of biological and clinical experimentation 
as evidenced presently by about one hundred original 
publications every week. Being a biological signal under 
physiological conditions, NO may be «foe or friendn to 
pathologically affected tissues. Major insights into the 
biology and pathology of this unorthodox biomolecule 
have come from the histochemical analysis of NO 
synthase (NOS) and its molecular isoforms that are 
responsible for the formation of NO. Immunocyto- 
chemistry as well as NADPH-diaphorase histochemistry 
are most widely used to visualize NOS in various 
tissues. There are several constraints regarding 
specificity and sensitivity of the techniques used and, 
therefore, apparent discrepancies in the literature 
concerning the cellular and subcellular distribution of 
NOS and its isoforms. Despite such inconsistencies there 
is a wealth of data that has an important impact on 
further investigation of NO-mediated processes 
underlying a vast number of NO-mediated physiological 
and pathological mechanisms. 
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lntroduction 

Nitric oxide (NO) has recently expanded its status 
from an environmental pollutant to a biological signal 
molecule that mediates blood vessel relaxation and 
immune responses, kills pathogens, inhibits platelet 
aggregation and adhesion, and serves as a neuro- 
modulator in the central and peripheral nervous system. 
There is, moreover, evidence that NO may be a 
physiological regulator of mitochondrial respiration and 
gene activity, and that NO is implicated in a variety of 
human diseases being, in dependence on the particular 
circumstances, a «foe or friend» to pathologically 
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affected tissues (Knowles and Moncada, 1994; Moncada 
et al., 1994a,b; Schmidt and Walter, 1994; Body et al., 
1995; Gross and Wolin, 1995; Kerwin et al., 1995; 
Moncada and Higgs, 1995; Schroeder and Kuo, 1995; 
Vincent, 1995). 

Nitric oxide, an unorthodox biomolecule 

NO is a gaseous radical produced in the atmosphere 
by lightning and the burning of fossil fuels. Since the 
late 1970s NO is known to activate guanylyl cyclase and 
to cause vascular smooth muscle relaxation (Arnold et 
al., 1977; Gruetter et al., 1979). But it took several years 
to discover that inorganic oxides of nitrogen are 
biologically produced (Green et al., 1981) and that NO is 
identical to the so-called "endothelium derived relaxing 
factor" (EDRF) (Furchgott, 1988; Ignarro et al., 1988). 
Since that time there has been, despite initially 
considerable scepticism, an explosion of research 
activity on this topic. Named the molecule of the year in 
1992, NO has opened a new and vigorous field of 
biological and clinical experimentation as evidenced 
presently by nearly one hundred original publications 
every week. 

Due to its unique ability to diffuse quickly in both 
aqueous and lipid environment, NO is assumed to spread 
rapidly to neighbouring tissue elements regardless of 
intervening membranes. Derived from theoretical 
considerations, Wood and Garthwaite (1994) have 
calculated that the physiological sphere of influence of a 
single point source of NO emitting for 1-10 sec has a 
diameter of about 200 pm. Contrary to conventional 
biosignals that act via specific receptor molecules, NO 
functions in a fairly specific manner by a wide range of 
chemical reactions controlling enzyme activities, ion 
channels, gene transcription, mitochondrial respiration, 
and can interact with oxygen-derived radicals to produce 
other highly reactive substances (Brown, 1995; Crow 
and Beckman, 1995; Garthwaite and Boulton, 1995; 
Gross and Wolin, 1995; Moncada and Higgs, 1995). 
There are compelling reasons to believe that NO 
mediates a variety of functions in the nervous system, 
such as synaptic transmission, plasticity, regulation of 
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cerebral blood flow, induction and regulation of the 
circadian rhythm, and hyperalgesia (for review, see 
Schuman and Madison, 1994; Garthwaite and Boulton, 
1995; Paakari and Lindsberg, 1995; Bachneff, 1996). 
Furthermore, NO is involved in the development of 
tolerance to and withdrawal from morphine (Bhargava, 
1995; Vaupel et al., 1995) and alcohol (Lancaster, 1995). 
At higher concentrations NO has been proposed to have 
antibacterial, antifungal, antiprotozoal and tumoricidal 
activity (Vallance and Collier, 1994; Kerwin et al., 1995; 
Schoedon et al., 1995). NO overproduction in 
mammalian systems may contribute to cell damage or 
cell death (Dawson, 1995; Gross and Wolin, 1995; 
Krónke et al., 1995) (Fig. 1). Thus, NO might be 
implicated in cerebral disorders induced by hypoxia and 
ischemia, migraine, Parkinson's disease and AIDS 
dementia (Moncada, 1994; Olesen et al., 1995). On the 
other hand, manipulation of the NO pathway may offer 
therapeutic benefit in selected human diseases 

underscoring the importante of large-scale experiments 
on the NO-biology as well as clinical trials to develop 
the NO pharmacology and to assess undesirable side 
effects that might arise from pharmacotherapeutic 
interventions (Body et al., 1995; Moncada and Higgs, 
1995; Schroeder and Kuo, 1995). 

Nitric oxide synthase 

Major insights into the biology and pathology of NO 
have come from the characterization of the enzyme that 
is responsible for its formation in living tissues, called 
NO synthase (the term «synthase» stands, in contrast to 
«synthases», for enzymes that do not utilize ATP). 
Catalyzed by NO synthase (NOS; EC 1.14.13.39), NO is 
produced in a NADPH-dependent manner by oxidation 
of the guanidino nitrogen of L-arginine in the presence 
of molecular oxygen and several cofactors (FMN, FAD, 
tetrahydrobiopterin, heme moiety). Three major 

FIa. l. Scheme of NO eftects at a CNS glutamate synapse, partially hypothetical. Synaptic activity results in an increase in pre- and postsynaptic Ca++ - 
leveis via voltage- or transmittSr(NMDA-r808plor)-gatd Ion channels (a). Calcium binds to calmodulin and activates (b) nitric oxide synthase (NOS, 
neuronal isoform). NO generated by the conversion of arginine to citrulline (c) modulates synapüc activity (d), dilates blood vessels (e) and influences 
many oaier cduiar functions by m o d R i i n  of cellular proteins, e. g. guanylyl cydase (1). NO also reacts with superoxide anions (O2.-) 10 peroxynitrite 
(ONOO) that may, in the case of a peithological overproduction, damage cells in the vicinity, possibly by initiating a cytotoxic cascade (g). 
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isoforms of NOS have been identified so far. Based on 
the historical order of purification and cDNA isolation, 
or on the cell type or organ in which the enzyme was 
originally discovered, the isoforms are termed: NOS 1 
(brain or neuronal NOS, nNOS), NOS 11 (macrophage or 
hepatocyte NOS), and NOS 111 (endothelial NOS, 
eNOS) (Forstermann and Kleinert, 1995; Griffith and 
Stuehr, 1995). Whereas NOS 1 and NOS 111 were 
originally identified as constitutive in brain and vascular 
endothelium, type 11 is normally not expressed (or 
occurs at a very low level), but is inducible by cytokines 
and bacteria1 products (therefore also termed «inducible 
NOS», iNOS). After induction, there are apparently no 
regulatory mechanisms for NOS 11. The activity of NOS 
1 and 111, on the other hand, is dependent on the 
availability of free calcium ions and calmodulin. 
Molecular cloning of the constitutive NOS isoforms has 
indicated a consensus sequence for phosphorylation 
sites, which can be modulated by protein kinase A, 
protein kinase C and Ca++/calmodulin-dependent protein 
kinase as well (Nakane et al., 1991; Dinerman et 
al. ,  1994a). The functional significance of NOS 
phosphorylation, showing in vitro an inhibitory effect on 
the enzyme activity, is not yet clear. 

As indicated by cloning studies, NOS isoforms are 
bi-domaine enzymes consisting of a reductase and a 
heme (oxygenase) moiety. NOS exhibits sequence 
similarities to both cytochrome P450 mono-oxygenases 
and the respective reductases (Knowles and Moncada, 
1994; Griffith and Stuer, 1995; Mayer, 1995). Possibly, 
NOS has evolved phylogenetically from a fusion of both 
components. 

The NOS catalyzed conversion of the substrate L- 
arginine into citrullin and NO is not yet fuily understood. 
Basically, electrons are transferred from NADPH via the 
flavin cofactors FAD and FMN to the heme leading to 
the reduction of molecular oxygen. ~ ~ - h ~ d r o x ~ - ~ -  
arginine is produced as an intermediate and, finally, 
oxidatively cleaved to L-citrulline and NO (Mayer, 
1995). Substrate analogs have become the most 
commonly used inhibitors of NOS activity. They exhibit 
variable affinities for the NOS isoforms, althou h none 
is truly specific. NO-monomethyl-L-arginine, &-nitro- 
L-arginine and its methyl ester, N-iminoethyl-L- 
ornithine and N~-amino-L-arginine act as competitive 
and, in some cases, irreversible inhibitors of al1 the 
NOS-isoforms (Moncada and Higgs, 1995). Other 
compounds, such as 7-nitroindazole, are more specific. It 
inhibits neuronal NOS and exhibits an antinociceptive 
activity, but does not interfere with the protective actions 
of endothelial NOS (Moore et al., 1993; Southan and 
Szabo, 1996). 

Localization techniques 

Unlike conventional biosignals, NO is produced and 
released when required, instead of being stored in 
cellular compartments. Action sites of NO in tissue are 
therefore preferably localized by the identification of the 

synthesizing enzyme NOS. 
Several topochemical methods, above al1 immuno- 

cytochemistry, NADPH-diaphorase histochemistry and 
in-situ hybridization of NOS-mRNA, can be used to 
demonstrate NOS expression under in-situ conditions 
(Vincent, 1994; Beesley, 1995). Moreover, there are a 
few reports in which supplementary methods have been 
applied, such as the autoradiographic localization of the 
enzyme by demonstrating the binding of the irreversible 
NOS inhibitor [ 3 ~ ] ~ - n i t r o a r g i n i n e  to the enzyme 
molecule (Burazin and Gundloch, 1995), and, further- 
more, single cell PCR of NOS-mRNA, by which the 
expression of nNOS was shown in single hippocampal 
neurons (Chiang et al ., 1994). 

lmmunocytochemistry 

Several antisera and monoclonal antibodies have 
been raised against the different NOS-isoform proteins 
by individual researchers, or have become commercially 
available, amongst others from Affiniti Bioreagents 
(UK), Transduction Laboratories (USA), Euro- 
diagnostica (Sweden), Biomol (Germany), Alexis 
Corporation, and Auspep (Australia). A critica1 factor in 
immunocytochemical studies is the specificity of the 
antibodies used as well as specimen preparation, 
especially fixation (Buwalda et al., 1995). There are 
several reports demonstrating NOS immunoreactivity at 
the electron microscopic level (Llewellyn-Smith et al., 
1992; Valtschanoff et al., 1992; Aoki et al., 1993; 
Tomimoto et al., 1994; Loesch and Burnstock, 1995; 
Roufail et al., 1995). In most cases immunolabeling has 
not been specifically associated with any subcellular 
organelle or with endocellular membranes (but see 
"Electron microscopic NADPH-diaphorase cyto- 
chemistry"). For eNOS, however, immunoprecipitation 
was found to be to some extent concentrated to 
membranes of subcellular organelles such as 
mitochondria and endoplasmic reticulum (Tomimoto et 
al., 1994; Loesch and Burnstock, 1995; O'Brien et al., 
1995). Biochemical studies indicate that eNOS is mainly 
particulate (Forstermann et al., 1991a) and may be 
translocated from the particulate to the cytosolic fraction 
(Michel et al., 1993; Robinson et al., 1995). Membrane 
binding of eNOS has been deduced from a consensus 
sequence for N-terminal myristoylation (Lamas et al., 
1 992). 

NADPH-diaphorase (NADPH-d) histochemistry 

The ability of the reductase domain located at the 
terminal sequence of NOS to transfer electrons from the 
coenzyme NADPH to other substrates, including 
tetrazolium salts, gives rise to the so-called NADPH- 
diaphorase activity (Dawson et al., 1991; Hope et al., 
199 1). The histochemical NADPH-diaphorase reaction 
by which soluble tetrazolium salts are converted to 
insoluble visible formazan is widely used as a robust 
method to localize NOS (Vincent, 1994). This 
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histochemical staining relies on a simple redox reaction, 
though several other enzymes, such as cytochrome C 
and cytochrom P 450 reductase, also display NADPH 
diaphorase activity. Fortunately, most of the staining 
activities that are not related to NOS can be suppressed 
by aldehyde fixation (Matsumoto et al., 1993; Tracey et 
al., 1993). Aldehyde-fixed tissue displays a distribution 
pattern of NADPH-d that appears to be largely identical 
to those of NOS immunolabeling (Dawson et al., 1991; 
Hashikawa et al., 1994; Schilling et al., 1994; Pullen and 
Humphreys, 1995; Roufail et al., 1995; Kugler and 
Drenckhahn, 1996). However, there are now several 
examples where NADPH-d staining is not due to NOS 
activity, such as in the olfactory epithelium and the 
vomeronasal organ (Kishimoto et al., 1993), in the 
cortex (Kharazia et al., 1994; Sobreviela and Mufson, 
1995), the olfactory bulb (Spessert and Layers, 1994), 
the spinal cord (Vizzard et al., 1994), or in the nervous 
system of the pulmonate mollusc Helix (Cooke et al., 
1994). Therefore, care must be taken in the interpretation 
of NADPH-d staining results. Worl et al. (1994) and ' 
Buwalda et al. (1995) have undertaken several 
experiments to further study the effect of aldehyde 
fixation on NADPH-d staining and NOS immuno- 
labeling. Their results indicate that aldehydes 
differentially suppress or elicit NADPH-d activity in 
different groups of neurons. Also, the application of 
detergents for better penetration of medium constituents 
may influence the outcome regarding sensitivity (Fang et 
al., 1994) and localization (Würdig and Wolf, 1994). 
Knockout mice that lack the gene for respective NOS 
isoforms represent an ideal specificity control (Huang et 
al., 1993, 1995; Snyder, 1995). Thus, the disruption of 
the nNOS gene resulted, at light microscopical level, in 
an almost complete loss of NADPH-d staining in CNS 
neurons (Huang et al., 1993) and in retina1 cells (Darius 
et al., 1995). 

Electron microscopic NA DPH-diaphorase cytochemistry 

To adapt NADPH-d histochemistry to electron 
microscopic level, Hope and Vincent (1989) have 
proposed the use of 2-(2'benzothiazolyl)-5-styryl-3- 
(4'phthalhydrazidyl) tetrazolium chloride (BSPT) in 
place of nitroblue tetrazolium chloride which is 
preferred for light microscopy. BSPT is a non- 
osmiophilic compound that yields an osmiophilic 
formazan on reduction (Kalina et al., 1972); therefore, it 
is particularly suitable for electron microscopic 
examination. The BSPT technique provides amazingly 
clear-cut pictures and has been further developed by 
Wolf et al. (1992, 1993, 1995), broadly used to localize 
NOS ultrastructurally in normal and excitotoxically 
lesioned nervous tissues (Calka et al., 1994, 1996; Faber- 
Zuschratter and Wolf, 1994; Darius et al., 1995; Schmidt 
et al., 1995). Abundantly BSPT-stained neurons were 
found to be rich in highly contrasted membranes of the 
endoplasmic reticulum, including the nuclear envelope. 
Portions of the outer membrane of mitochondria and 

membranes of the Golgi apparatus also exhibited distinct 
BSPT-formazan deposits (Wolf et al. 1992, 1993; Calka 
et al., 1994) (Fig. 2). Many other neurons, as well as a 
few glial cells, were virtually unstained in the light 
microscope, yet showed labeled membrane portions at 
electron microscopic level, although to a far lesser 
extent. In contrast to these observations, several 
biochemical data suggest that nNOS is cytosolically 
located rather than membrane bound (Forstermann et al., 
1991b). On the other hand, in cerebellar preparations 
Hecker et al. (1994) have found more than 60% of the 
total NOS in the particulate fraction and which, based on 
density gradient ultracentrifugation, are associated with 
the endoplasmic reticulum fraction. Hiki et al. (1992) 
have also reported an insoluble NOS in the rat brain. 
Concluding from these findings and with respect to the 
electron microscopic NADPH-d cytochemistry, the 
enzyme might be largely attached to endocellular 
membranes, but may become soluble during the 
homogenization procedure. 

Since the electron microscopic BSPT-technique is by 
far more sensitive than the light microscopical NADPH- 
d histochemistry, the use of a powerful specificity 
control, such as NOS-knockout mice, is most important 
(Darius et al., 1995). Interestingly, iNOS as seen in 
activated microglial cells or macrophages exhibited a 
"sand-like" BSPT-formazan in cytosolic areas or in 
vacuoles without any accumulation at endocellular 
membranes (Schmidt et al., 1995; Calka et al., 1996). 
This particular precipitation form indicates that there is 
no tendency of BSPT-formazan to dislocate and to attach 
artifactually to lipophilic structures. 

In-situ hybridization 

Using radiolabeled probes, in-situ hybridization has 
been employed by several authors to study the 
distribution of NOS-mRNA within tissue sections. 
Intemeurons containing nNOS-mRNA were detected in 
mice in parallel with the NOS protein in the plexiform 
layer of the main olfactory bulb and the granule cell 
layer of the main and accessory olfactory bulbs 
(Kishimoto et al., 1993). A quantitative analysis of NOS 
hybridization signal was performed in lumbar dorsal root 
ganglia after transection of the sciatic nerve in rats 
(Verge et al., 1992). Here, a dramatic increase in the 
numbers of NOS mRNA-positive neurons were found, 
indicating that even so-called constitutive NOS-isoforms 
can become inducible after exposure to a lesion 
stimulus. Endoh et al. (1994) have used riboprobes that 
have higher specific sensitivity than probes made by end 
labeling of oligonucleotides. Enabling to detect even low 
amounts of message, the authors succeeded in 
demonstrating NOS-mRNA in neurons of the 
hippocampal CA1 region where other authors failed to 
clearly see signs of NOS-staining (Dawson et al., 1991; 
Vincent and Kimura, 1992). After treatment with 
bacteria1 lipopolysaccharide or cytokines a widespread 
expression of the inducible isoform could be observed 
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(Kroncke et al., 1995), and has been demonstrated in 
many tissues by in-situ hybridization, e. g. in vascular 
smooth muscle and in cardiac myocytes (Luss et al., 
1995), in synovial lining cells, endothelial cells and 
chondrocytes (Sakurai et al., 1995), and in epithelial 
cells in human paranasal sinuses (Lundberg et al., 1995). 

lmmunocytochemical localization of NO-targets 

Due to the fact that NO activates the soluble isoform 
of guanylyl cyclase (Koesling et al., 1995) to generate 
cyclic GMP, NO production sites can be demonstrated 
immunocytochemically by using antisera raised against 
cGMP conjugated to protein carriers (de Vente et al., 
1990). Consequently, in response to NO-donors there 
was a dramatic increase in cGMP-staining of cerebellar 
structures (de Vente and Steinbusch, 1992; Southam et 
al., 1992). A major disadvantage of the method, 
however, is that up to 80 % of the cGMP is lost during 
the immunocytochemical process (de Vente and 
Steinbusch, 1992). 

Recently, immunostaining of nitrotyrosine residues 
in proteins has been used as a marker of peroxynitrite 

formation which occurs by the reaction of NO with 
superoxide anions (Beckman et al., 1994; Kooy et al., 
1995; Miller et al., 1995; Szabo et al., 1995). 
Consequently, nitrotyrosine immunostaining was found 
to be significantly reduced when the animal was treated 
with NO-inhibitors. Nitrotyrosine and iNOS were 
immunocytochemically colocalized in a guinea pig 
model of gut inflammation, and positive staining of both 
antigenic structures was most intense in epithelia and 
neurons of the myenteric and submucosal ganglia 
(Miller et al., 1995). Since antibodies against nitro- 
tyrosine residues have become commercially available 
(e. g. from Upstate Biotechnology, USA), the immuno- 
chemistry of the NO-dependent tyrosine nitration will 
rapidly gain widespread acceptance in NO research. 

Cellular NOS sources 

NO, as well as its generating enzyme, occur 
in mammalian tissues almost ubiquitously. The 
constitutively expressed nNOS isoform was first purified 
from rat and porcine cerebellum (Bredt and Snyder, 
1990; Mayer et al., 1990; Schmidt et al., 1991). Except 

Fig. 2. Electron 
microscopic NADPH- 
diaphorase cytochemistry. 
BSPT-formazan deposits 
related to neurona1 NOS 
have been found to be 
attached to distinct 
portions of endocellular 
membranes, predominantly 
to those of the 
endoplasmic reticulum and 
the nuclear envdope, and 
occacionally to membranes 
of mito~hondria and the 
Golgi apparatus. The 
inducible NOS-isoform is 
located in the cytosol or in 
vacuoles forming "sand- 
like" formazan grains, 
whereas eNOS reaction 
product, based on 
preliminary resulb, 
appears to be confined to 
the mitochondrial matrix. 
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instead of being stored in cellular compartments, formed 
and released'on demand by the action of NOS. Methods 
for the localization of the enzyme and its molecular 
isoforms are, therefore, iínportant tools to enhance our 
understanding of the functional interrelation between 
NO production sites and their cellular targets. A major 
challenge for the future is to develop highly specific 
topochemical techniques with an enhanced sensitivity 
that allow the identification even of traces of NOS. Low 
quantities of NOS may be of  particular relevance to 
physiological aspects of NO effects as well as to NO- 
mediated processes o f  chronic inflammation and 
degeneration. 
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