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Summary. Nitric oxide (NO) has opened a new and
vigorous field of biological and clinical experimentation
as evidenced presently by about one hundred original
publications every week. Being a biological signal under
physiological conditions, NO may be «foe or friend» to
pathologically affected tissues. Major insights into the
biology and pathology of this unorthodox biomolecule
have come from the histochemical analysis of NO
synthase (NOS) and its molecular isoforms that are
responsible for the formation of NO. Immunocyto-
chemistry as well as NADPH-diaphorase histochemistry
are most widely used to visualize NOS in various
tissues. There are several constraints regarding
specificity and sensitivity of the techniques used and,
therefore, apparent discrepancies in the literature
concerning the cellular and subcellular distribution of
NOS and its isoforms. Despite such inconsistencies there
is a wealth of data that has an important impact on
further investigation of NO-mediated processes
underlying a vast number of NO-mediated physiological
and pathological mechanisms.
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Introduction

Nitric oxide (NO) has recently expanded its status
from an environmental pollutant to a biological signal
molecule that mediates blood vessel relaxation and
immune responses, kills pathogens, inhibits platelet
aggregation and adhesion, and serves as a neuro-
modulator in the central and peripheral nervous system.
There is, moreover, evidence that NO may be a
physiological regulator of mitochondrial respiration and
gene activity, and that NO is implicated in a variety of
human diseases being, in dependence on the particular
circumstances, a «foe or friend» to pathologically
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affected tissues (Knowles and Moncada, 1994; Moncada
et al., 1994ab; Schmidt and Walter, 1994; Body et al.,
1995; Gross and Wolin, 1995; Kerwin et al., 1995;
Moncada and Higgs, 1995; Schroeder and Kuo, 1995;
Vincent, 1995).

Nitric oxide, an unorthodox biomolecule

NO is a gaseous radical produced in the atmosphere
by lightning and the burning of fossil fuels. Since the
late 1970s NO is known to activate guanylyl cyclase and
to cause vascular smooth muscle relaxation (Arnold et
al., 1977; Gruetter et al., 1979). But it took several years
to discover that inorganic oxides of nitrogen are
biologically produced (Green et al., 1981) and that NO is
identical to the so-called “endothelium derived relaxing
factor” (EDRF) (Furchgott, 1988; Ignarro et al., 1988).
Since that time there has been, despite initially
considerable scepticism, an explosion of research
activity on this topic. Named the molecule of the year in
1992, NO has opened a new and vigorous field of
biological and clinical experimentation as evidenced
presently by nearly one hundred original publications
every week.

Due to its unique ability to diffuse quickly in both
aqueous and lipid environment, NO is assumed to spread
rapidly to neighbouring tissue elements regardless of
intervening membranes. Derived from theoretical
considerations, Wood and Garthwaite (1994) have
calculated that the physiological sphere of influence of a
single point source of NO emitting for 1-10 sec has a
diameter of about 200 gm. Contrary to conventional
biosignals that act via specific receptor molecules, NO
functions in a fairly specific manner by a wide range of
chemical reactions controlling enzyme activities, ion
channels, gene transcription, mitochondrial respiration,
and can interact with oxygen-derived radicals to produce
other highly reactive substances (Brown, 1995; Crow
and Beckman, 1995; Garthwaite and Boulton, 1995;
Gross and Wolin, 1995; Moncada and Higgs, 1995).
There are compelling reasons to believe that NO
mediates a variety of functions in the nervous system,
such as synaptic transmission, plasticity, regulation of
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cerebral blood flow, induction and regulation of the
circadian rhythm, and hyperalgesia (for review, see
Schuman and Madison, 1994; Garthwaite and Boulton,
1995; Paakari and Lindsberg, 1995; Bachneff, 1996).
Furthermore, NO is involved in the development of
tolerance to and withdrawal from morphine (Bhargava,
1995; Vaupel et al., 1995) and alcohol (Lancaster, 1995).
At higher concentrations NO has been proposed to have
antibacterial, antifungal, antiprotozoal and tumoricidal
activity (Vallance and Collier, 1994; Kerwin et al., 1995;
Schoedon et al., 1995). NO overproduction in
mammalian systems may contribute to cell damage or
cell death (Dawson, 1995; Gross and Wolin, 1995;
Kronke et al., 1995) (Fig. 1). Thus, NO might be
implicated in cerebral disorders induced by hypoxia and
ischemia, migraine, Parkinson’s disease and AIDS
dementia (Moncada, 1994; Olesen et al., 1995). On the
other hand, manipulation of the NO pathway may offer
therapeutic benefit in selected human diseases
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underscoring the importance of large-scale experiments
on the NO-biology as well as clinical trials to develop
the NO pharmacology and to assess undesirable side
effects that might arise from pharmacotherapeutic
interventions (Body et al., 1995; Moncada and Higgs,
1995; Schroeder and Kuo, 1995).

Nitric oxide synthase

Major insights into the biology and pathology of NO
have come from the characterization of the enzyme that
is responsible for its formation in living tissues, called
NO synthase (the term «synthase» stands, in contrast to
«synthases», for enzymes that do not utilize ATP).
Catalyzed by NO synthase (NOS; EC 1.14.13.39), NO is
produced in a NADPH-dependent manner by oxidation
of the guanidino nitrogen of L-arginine in the presence
of molecular oxygen and several cofactors (FMN, FAD,
tetrahydrobiopterin, heme moiety). Three major
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Fig. 1. Scheme of NO effects at a CNS glutamate synapse, partially hypothetical. Synaptic activity results in an increase in pre- and postsynaptic Ca*+ -
levels via voltage- or transmitter(NMDA-receptor)-gated ion channels (a). Calcium binds to calmodulin and activates (b) nitric oxide synthase (NOS,
neuronal isoform). NO generated by the conversion of arginine to citrulline (c) modulates synaptic activity (d), dilates blood vessels (e) and influences
many other cellular functions by modification of cellular proteins, e. g. guanylyl cyclase (f). NO also reacts with superoxide anions (O, to peroxynitrite
(ONOO) that may, in the case of a pathological overproduction, damage cells in the vicinity, possibly by initiating a cytotoxic cascade (g).
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isoforms of NOS have been identified so far. Based on
the historical order of purification and cDNA isolation,
or on the cell type or organ in which the enzyme was
originally discovered, the isoforms are termed: NOS I
(brain or neuronal NOS, nNOS), NOS II (macrophage or
hepatocyte NOS), and NOS III (endothelial NOS,
eNOS) (Forstermann and Kleinert, 1995; Griffith and
Stuehr, 1995). Whereas NOS I and NOS III were
originally identified as constitutive in brain and vascular
endothelium, type II is normally not expressed (or
occurs at a very low level), but is inducible by cytokines
and bacterial products (therefore also termed «inducible
NOS», INOS). After induction, there are apparently no
regulatory mechanisms for NOS II. The activity of NOS
I and III, on the other hand, is dependent on the
availability of free calcium ions and calmodulin.
Molecular cloning of the constitutive NOS isoforms has
indicated a consensus sequence for phosphorylation
sites, which can be modulated by protein kinase A,
protein kinase C and Ca**/calmodulin-dependent protein
kinase as well (Nakane et al., 1991; Dinerman et
al., 1994a). The functional significance of NOS
phosphorylation, showing in vitro an inhibitory effect on
the enzyme activity, is not yet clear.

As indicated by cloning studies, NOS isoforms are
bi-domaine enzymes consisting of a reductase and a
heme (oxygenase) moiety. NOS exhibits sequence
similarities to both cytochrome P450 mono-oxygenases
and the respective reductases (Knowles and Moncada,
1994; Griffith and Stuer, 1995; Mayer, 1995). Possibly,
NOS has evolved phylogenetically from a fusion of both
components.

The NOS catalyzed conversion of the substrate L-
arginine into citrullin and NO is not yet fully understood.
Basically, electrons are transferred from NADPH via the
flavin cofactors FAD and FMN to the heme leading to
the reduction of molecular oxygen. NG-hydroxy-L-
arginine is produced as an intermediate and, finally,
oxidatively cleaved to L-citrulline and NO (Mayer,
1995). Substrate analogs have become the most
commonly used inhibitors of NOS activity. They exhibit
variable affinities for the NOS isoforms, although none
is truly specific. NG-monomethyl-L-arginine, NS-nitro-
L-arginine and its methyl ester, N-iminoethyl-L-
ornithine and NG-amino-L-arginine act as competitive
and, in some cases, irreversible inhibitors of all the
NOS-isoforms (Moncada and Higgs, 1995). Other
compounds, such as 7-nitroindazole, are more specific. It
inhibits neuronal NOS and exhibits an antinociceptive
activity, but does not interfere with the protective actions
of endothelial NOS (Moore et al., 1993; Southan and
Szabo, 1996).

Localization techniques

Unlike conventional biosignals, NO is produced and
released when required, instead of being stored in
cellular compartments. Action sites of NO in tissue are
therefore preferably localized by the identification of the

synthesizing enzyme NOS.

Several topochemical methods, above all immuno-
cytochemistry, NADPH-diaphorase histochemistry and
in-situ hybridization of NOS-mRNA, can be used to
demonstrate NOS expression under in-situ conditions
(Vincent, 1994; Beesley, 1995). Moreover, there are a
few reports in which supplementary methods have been
applied, such as the autoradiographic localization of the
enzyme by demonstrating the binding of the irreversible
NOS inhibitor [3H]L-nitroarginine to the enzyme
molecule (Burazin and Gundloch, 1995), and, further-
more, single cell PCR of NOS-mRNA, by which the
expression of nNOS was shown in single hippocampal
neurons (Chiang et al., 1994).

Immunocytochemistry

Several antisera and monoclonal antibodies have
been raised against the different NOS-isoform proteins
by individual researchers, or have become commercially
available, amongst others from Affiniti Bioreagents
(UK), Transduction Laboratories (USA), Euro-
diagnostica (Sweden), Biomol (Germany), Alexis
Corporation, and Auspep (Australia). A critical factor in
immunocytochemical studies is the specificity of the
antibodies used as well as specimen preparation,
especially fixation (Buwalda et al., 1995). There are
several reports demonstrating NOS immunoreactivity at
the electron microscopic level (Llewellyn-Smith et al.,
1992; Valtschanoff et al., 1992; Aoki et al., 1993;
Tomimoto et al., 1994; Loesch and Burnstock, 1995;
Roufail et al., 1995). In most cases immunolabeling has
not been specifically associated with any subcellular
organelle or with endocellular membranes (but see
“Electron microscopic NADPH-diaphorase cyto-
chemistry™). For eNOS, however, immunoprecipitation
was found to be to some extent concentrated to
membranes of subcellular organelles such as
mitochondria and endoplasmic reticulum (Tomimoto et
al., 1994; Loesch and Burnstock, 1995; O’Brien et al.,
1995). Biochemical studies indicate that eNOS is mainly
particulate (Forstermann et al., 1991a) and may be
translocated from the particulate to the cytosolic fraction
(Michel et al., 1993; Robinson et al., 1995). Membrane
binding of eNOS has been deduced from a consensus
sequence for N-terminal myristoylation (Lamas et al.,
1992).

NADPH-diaphorase (NADPH-d) histochemistry

The ability of the reductase domain located at the
terminal sequence of NOS to transfer electrons from the
coenzyme NADPH to other substrates, including
tetrazolium salts, gives rise to the so-called NADPH-
diaphorase activity (Dawson et al., 1991; Hope et al.,
1991). The histochemical NADPH-diaphorase reaction
by which soluble tetrazolium salts are converted to
insoluble visible formazan is widely used as a robust
method to localize NOS (Vincent, 1994). This
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histochemical staining relies on a simple redox reaction,
though several other enzymes, such as cytochrome C
and cytochrom P 450 reductase, also display NADPH
diaphorase activity. Fortunately, most of the staining
activities that are not related to NOS can be suppressed
by aldehyde fixation (Matsumoto et al., 1993; Tracey et
al., 1993). Aldehyde-fixed tissue displays a distribution
pattern of NADPH-d that appears to be largely identical
to those of NOS immunolabeling (Dawson et al., 1991;
Hashikawa et al., 1994; Schilling et al., 1994; Pullen and
Humphreys, 1995; Roufail et al., 1995; Kugler and
Drenckhahn, 1996). However, there are now several
examples where NADPH-d staining is not due to NOS
activity, such as in the olfactory epithelium and the
vomeronasal organ (Kishimoto et al., 1993), in the
cortex (Kharazia et al., 1994; Sobreviela and Mufson,
1995), the olfactory bulb (Spessert and Layers, 1994),
the spinal cord (Vizzard et al., 1994), or in the nervous
system of the pulmonate mollusc Helix (Cooke et al.,
1994). Therefore, care must be taken in the interpretation
of NADPH-d staining results. Worl et al. (1994) and
Buwalda et al. (1995) have undertaken several
experiments to further study the effect of aldehyde
fixation on NADPH-d staining and NOS immuno-
labeling. Their results indicate that aldehydes
differentially suppress or elicit NADPH-d activity in
different groups of neurons. Also, the application of
detergents for better penetration of medium constituents
may influence the outcome regarding sensitivity (Fang et
al., 1994) and localization (Wiirdig and Wolf, 1994).
Knockout mice that lack the gene for respective NOS
isoforms represent an ideal specificity control (Huang et
al., 1993, 1995; Snyder, 1995). Thus, the disruption of
the nNOS gene resulted, at light microscopical level, in
an almost complete loss of NADPH-d staining in CNS
neurons (Huang et al., 1993) and in retinal cells (Darius
etal., 1995).

Electron microscopic NADPH-diaphorase cytochemistry

To adapt NADPH-d histochemistry to electron
microscopic level, Hope and Vincent (1989) have
proposed the use of 2-(2’benzothiazolyl)-5-styryl-3-
(4’phthalhydrazidyl) tetrazolium chloride (BSPT) in
place of nitroblue tetrazolium chloride which is
preferred for light microscopy. BSPT is a non-
osmiophilic compound that yields an osmiophilic
formazan on reduction (Kalina et al., 1972); therefore, it
is particularly suitable for electron microscopic
examination. The BSPT technique provides amazingly
clear-cut pictures and has been further developed by
Wolf et al. (1992, 1993, 1995), broadly used to localize
NOS ultrastructurally in normal and excitotoxically
lesioned nervous tissues (Calka et al., 1994, 1996; Faber-
Zuschratter and Wolf, 1994; Darius et al., 1995; Schmidt
et al., 1995). Abundantly BSPT-stained neurons were
found to be rich in highly contrasted membranes of the
endoplasmic reticulum, including the nuclear envelope.
Portions of the outer membrane of mitochondria and

membranes of the Golgi apparatus also exhibited distinct
BSPT-formazan deposits (Wolf et al. 1992, 1993; Calka
et al., 1994) (Fig. 2). Many other neurons, as well as a
few glial cells, were virtually unstained in the light
microscope, yet showed labeled membrane portions at
electron microscopic level, although to a far lesser
extent. In contrast to these observations, several
biochemical data suggest that nNOS is cytosolically
located rather than membrane bound (Forstermann et al.,
1991b). On the other hand, in cerebellar preparations
Hecker et al. (1994) have found more than 60% of the
total NOS in the particulate fraction and which, based on
density gradient ultracentrifugation, are associated with
the endoplasmic reticulum fraction. Hiki et al. (1992)
have also reported an insoluble NOS in the rat brain.
Concluding from these findings and with respect to the
electron microscopic NADPH-d cytochemistry, the
enzyme might be largely attached to endocellular
membranes, but may become soluble during the
homogenization procedure.

Since the electron microscopic BSPT-technique is by
far more sensitive than the light microscopical NADPH-
d histochemistry, the use of a powerful specificity
control, such as NOS-knockout mice, is most important
(Darius et al., 1995). Interestingly, iNOS as seen in
activated microglial cells or macrophages exhibited a
"sand-like* BSPT-formazan in cytosolic areas or in
vacuoles without any accumulation at endocellular
membranes (Schmidt et al., 1995; Calka et al., 1996).
This particular precipitation form indicates that there is
no tendency of BSPT-formazan to dislocate and to attach
artifactually to lipophilic structures.

In-situ hybridization

Using radiolabeled probes, in-situ hybridization has
been employed by several authors to study the
distribution of NOS-mRNA within tissue sections.
Interneurons containing nNOS-mRNA were detected in
mice in parallel with the NOS protein in the plexiform
layer of the main olfactory bulb and the granule cell
layer of the main and accessory olfactory bulbs
(Kishimoto et al., 1993). A quantitative analysis of NOS
hybridization signal was performed in lumbar dorsal root
ganglia after transection of the sciatic nerve in rats
(Verge et al., 1992). Here, a dramatic increase in the
numbers of NOS mRNA-positive neurons were found,
indicating that even so-called constitutive NOS-isoforms
can become inducible after exposure to a lesion
stimulus. Endoh et al. (1994) have used riboprobes that
have higher specific sensitivity than probes made by end
labeling of oligonucleotides. Enabling to detect even low
amounts of message, the authors succeeded in
demonstrating NOS-mRNA in neurons of the
hippocampal CA1 region where other authors failed to
clearly see signs of NOS-staining (Dawson et al., 1991;
Vincent and Kimura, 1992). After treatment with
bacterial lipopolysaccharide or cytokines a widespread
expression of the inducible isoform could be observed
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(Kroncke et al., 1995), and has been demonstrated in
many tissues by in-situ hybridization, e. g. in vascular
smooth muscle and in cardiac myocytes (Luss et al.,
1995), in synovial lining cells, endothelial cells and
chondrocytes (Sakurai et al., 1995), and in epithelial
cells in human paranasal sinuses (Lundberg et al., 1995).

Immunocytochemical localization of NO-targets

Due to the fact that NO activates the soluble isoform
of guanylyl cyclase (Koesling et al., 1995) to generate
cyclic GMP, NO production sites can be demonstrated
immunocytochemically by using antisera raised against
c¢GMP conjugated to protein carriers (de Vente et al.,
1990). Consequently, in response to NO-donors there
was a dramatic increase in cGMP-staining of cerebellar
structures (de Vente and Steinbusch, 1992; Southam et
al., 1992). A major disadvantage of the method,
however, is that up to 80 % of the cGMP is lost during
the immunocytochemical process (de Vente and
Steinbusch, 1992).

Recently, immunostaining of nitrotyrosine residues
in proteins has been used as a marker of peroxynitrite

2-[2'-benzothiazolyl]-5 I-
[ :’t.t;{::'phthaIhydr‘éiid;(sﬁ}!ry

azolium chloride

BSPT
+ NADPH

NADP

Formazan

formation which occurs by the reaction of NO with
superoxide anions (Beckman et al., 1994; Kooy et al.,
1995; Miller et al., 1995; Szabo et al., 1995).
Consequently, nitrotyrosine immunostaining was found
to be significantly reduced when the animal was treated
with NO-inhibitors. Nitrotyrosine and iNOS were
immunocytochemically colocalized in a guinea pig
model of gut inflammation, and positive staining of both
antigenic structures was most intense in epithelia and
neurons of the myenteric and submucosal ganglia
(Miller et al., 1995). Since antibodies against nitro-
tyrosine residues have become commercially available
(e. g. from Upstate Biotechnology, USA), the immuno-
chemistry of the NO-dependent tyrosine nitration will
rapidly gain widespread acceptance in NO research.

Cellular NOS sources

NO, as well as its generating enzyme, occur
in mammalian tissues almost ubiquitously. The
constitutively expressed nNOS isoform was first purified
from rat and porcine cerebellum (Bredt and Snyder,
1990; Mayer et al., 1990; Schmidt et al., 1991). Except

Fig. 2. Electron
microscopic NADPH-
diaphorase cytochemistry.
BSPT-formazan deposits
related to neuronal NOS
have been found to be
attached to distinct
portions of endocellular
membranes, predominantly
to those of the
endoplasmic reticulum and
the nuclear envelope, and
occasionally to membranes
of mitochondria and the
Golgi apparatus. The
inducible NOS-isoform is
located in the cytosol or in
vacuoles forming “sand-
like" formazan grains,
whereas eNOS reaction
product, based on
preliminary results,
appears to be confined to
the mitochondrial matrix.

.
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from prominently nNOS-positive solitary neurons,
which are relatively evenly distributed throughout the
brain (Egberongbe et al., 1994; Rodrigo et al., 1994;
Vincent, 1994), evidence has been provided for small
amounts of nNOS in other neurons and in astro- and
microglial cells by means of the above mentioned
electron microscopic BSPT technique for NADPH-d
(Wolf et al., 1992, 1993, 1995; Darius et al., 1995; Calka
et al., 1996) as well as by several other identification
methods (Murphy et al., 1995; Gabott and Bacon, 1996).
Contrary to theoretical expectations considering NO as a
retrograde trans-synaptic transmitter (Garthwaite, 1991;
Schuman and Madison, 1994), quantitative BSPT-EM
studies revealed that mainly presynaptic areas (41% in
hippocampus, 38% in neocortex) were NADPH-d
labeled (Faber-Zuschratter and Wolf, 1994). Post-
synaptic endings showed only exceptionally marked
endomembranes.

As indicated by immunocytochemistry, abundantly
nNOS-containing neurons can also be seen in the spinal
cord (Valtschanoff et al., 1992; Saito et al., 1994;
Vizzard et al., 1994) and in the peripheral neural system,
such as myenteric and submucous ganglia of the
gastrointestinal tract (Ekblad et al., 1994), subepicardial
and interatrial ganglia (Klimaschewski et al., 1992;
Tanaka et al., 1993), and in ganglion cells of the
pancreas (Tay and Burnstock, 1994), the gallbladder
(Siou et al., 1994), and the adrenal gland (Afework et al.,
1994) as well as nerve fibers of the pineal gland (Lopez-
Figueroa and Miiller, 1996). NO synthesized in
peripheral nNOS-positive non-adrenergic non-
cholinergic (NANC) nerves is known to mediate
neurotransmission (Grozdanovic et al., 1994; Rand and
Li, 1995), first demonstrated in anococcygeus muscles
(Li and Rand, 1989; Ramagopal and Leighton, 1989).
Later on, nitrergic transmission by NANC nerve endings
was postulated for many other organs, e. g. the corporal
erectile tissue and the deep cavernous arteries in the
penis (Burnett et. al., 1993), different blood vessels
(Yoshida et al., 1994), the pancreas (Worl et al., 1994),
the urinary bladder (Smet et al., 1996), the ovary (Jarret
et al., 1994), and the principal bronchi of the respiratory
tract (Fischer et al., 1993). The nNOS isoform has also
been found in CNS tumors (Cobbs et al., 1995), visceral
and somatic striated muscle fibers (Kobzik et al., 1994;
Grozdanovic et al., 1995), mast cells (Bacci et al., 1994),
mucosal cells of the colon (Torihashi et al., 1996),
somatostatin producing cells of the stomach and
pancreas (Burrell et al., 1996), the airway epithelium of
the lung (Kobzik et al., 1993), and in boar spermatozoa
(NADPH-d staining; Atanassov et al., 1990).

The eNOS-isoform was originally isolated from the
endothelium of the bovine aorta (Forstermann et al.,
1991b; Pollock et al., 1991). Using specific antibodies,
eNOS has been localized in endothelial cells of various
arteries and veins in many tissues (Pollock et al., 1993;
Busconi and Michel, 1994; Fukuda et al., 1995;
Miyawaki et al., 1995). There are apparently important
phenotypic differences between endothelial cells of large

vessels and the microvasculature as well as among
microvasculature endothelial cells isolated from different
tissues and organs (Balligand et al., 1995). Apart from
eNOS, both the neuronal (Loesch et al., 1994; Thomsen
et al., 1995) and the inducible isoform (Balligand et al.,
1995) have been found in endothelial cells. On the other
hand, eNOS immunoreactivity has been detected in
kidney tubular epithelial cells (Tracey et al., 1994),
syncytiotrophoblasts of human placenta (Myatt et al.,
1993), cardiac myocytes (Seki et al., 1996), interstitial
cells of the canine colon (Xue et al., 1994), and in
neurons of the rat brain, mainly those of the
hippocampal formation (Dinerman et al., 1994b). The
latter report remains questionable at present, as a re-
investigation in our own and other laboratories
(H.H.H.W. Schmidt, Wiirzburg, personal comm.) failed
to demonstrate any detectable eNOS immunoreactivity
in nerve cells of the rat brain.

The iNOS-isoform, first isolated from murine
macrophages (Hevel et al., 1991; Stuehr et al., 1991), is
constitutively expressed at a very low level, if at all, but
can be induced ubiquitously upon exposure to
inflammatory cytokines (interleukin-1, tumor necrosis
factor, interferon y) or bacterial lipopolysaccharide
(Gross and Wolin, 1995; Schoedon et al., 1995; Sparrow,
1995; Shapiro and Hotchkiss, 1996). Recently, Kroncke
et al. (1995) have listed several mammalian cell types
which are so far known to express NOS on induction.
Surprisingly, this NOS-isoform has been found to be
induced even in endothelial cells (Balligand et al., 1995)
as well as in neurons, as shown for cerebellar granule
cells (Minc-Golomb et al., 1996), apart from the
respective constitutive isoform. Neuronal iNOS might,
according to the authors, contribute to the vulnerability
of the brain to various insults besides other cellular sites
of iNOS expression, such as microglia and astrocytes
(Lee et al., 1993; Murphy et al., 1995; Schmidt et al.,
1995; Chao et al., 1996). Long time expression of iNOS
in infiltrating macrophages may be of pathogenetic
significance in myocardial infarction (Dudeck et al.,
1994) and in type I diabetes mellitus (Kroncke et al.,
1993; Wu, 1995). Moreover, there are a wealth of reports
on the induction of iNOS in various types of cells and
tissues under conditions of inflammation, host defense,
carcinogenesis, autoimmune disease, or transplant
rejection (for review, see Moncada et al., 1994a,b; Gross
and Wolin, 1995; Kerwin et al., 1995; Moncada and
Higgs, 1995).

Conclusions

NO research has attracted great interest since the
discovery in the late 1980s which showed that the
endothelium-derived relaxing factor is identical to NO.
The enormous multiplicity of NO actions as a biological
messenger or a cytostatic/cytotoxic agent, and its
ubiquitous distribution throughout the body deserve
great efforts to further explore the physiology and
pathology of this unconventional biomolecule. NO is,
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instead of being stored in cellular compartments, formed
and released on demand by the action of NOS. Methods
for the localization of the enzyme and its molecular
isoforms are, therefore, important tools to enhance our
understanding of the functional interrelation between
NO production sites and their cellular targets. A major
challenge for the future is to develop highly specific
topochemical techniques with an enhanced sensitivity
that allow the identification even of traces of NOS. Low
quantities of NOS may be of particular relevance to
physiological aspects of NO effects as well as to NO-
mediated processes of chronic inflammation and
degeneration.
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