
Histol Histopathol (1 995) 10: 509-51 9 Histology and 
Histopathology 

ln vited Revie w 

Mechanisms of synaptic 
dysfunction in Alzheimer's disease 
E. Masliah 
Departments of Neurosciences and Pathology, University of California, San Diego, La Jolla, California, USA 

Summary. Alzheimer's disease (AD) is characterized by 
a progressive cognitive decline in which memory, 
initiation, learning and conceptualization are severely 
affected. The main histopathological alterations are the 
presence of amyloid BlA4-containing plaques, tangles 
and amyloid angiopathy. It is believed that these brain 
alterations are associated with abnormal expression 
andlor processing of amyloid precursor protein (APP) 
and with abnormal assembly of cytoskeletal proteins. 
Recent quantitative studies with the electron rnicroscope 
and with immunochemical/immunocytochemical assays, 
using molecular markers for synaptic proteins, have 
shown that synaptic loss in the cortex is the major 
correlate of the patterns of cognitive decline in AD. The 
synaptic loss in AD is accompanied by neuronal loss and 
aberrant sprouting, and studies in incipient AD cases 
have shown that this alteration occurs very early in the 
progression of the disease preceding tangle formation 
and neuronal loss. These results suggest that darnage to 
the synaptic terminal plays a central role in the 
pathogenesis of AD. The mechanisms of synaptic 
pathology in AD are not yet clear, however, studies in 
transgenic animal models support the possibility that 
APP participates in synaptic stabilization and that 
abnormal metabolism of this molecule could lead to 
synaptic dysfunction which, in turn, results in 
neurodegeneration and dementia. 
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lntroduction 

Alzheimer's disease (AD) is a prevalent disorder 
among the elderly population and represents a major 
epidemiological challenge for the future in view of the 
projected growth of the population older than 65 years 
for the year 2000 (Khachaturian, 1985). Clinically AD is 
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characterized by a progressive cognitive decline in 
which memory, initiation, learning and conceptualization 
are severely affected (Katzman et al., 1988; Salmon et 
al., 1989). The main histopathological alterations are the 
neurodegeneration of the association and limbic system 
accompanied by the formation of plaques, tangles and 
amyloid angiopathy (Terry et al., 1994). Plaques contain 
B amyloid protein (BAP) which is derived from the 
amyloid precursor protein (APP) (Selkoe, 1989). 
Embedded in the amyloid plaque core are dystrophic 
neurites, astroglial cells and microglial reaction (Terry 
and Wisniewski, 1970; Masliah et al., 1993b; Terry et 
al., 1994). The tangles are composed of polymerized 
phosphorylated microtubule associated protein - tau, 
neurofilaments and ubiquitin (Trojanowski et al., 1993). 
Although the density and distribution of the lesions is 
very important for the diagnosis of the disease, as well 
as for the understanding of physiopathological 
mechanisms of neurodegeneration (Mirra et al., 1993), 
the main substrate for the cognitive alterations is the loss 
of synapses in the association cortex and limbic system 
(DeKosky et al., 1990; Terry et al., 1991; Masliah and 
Terry, 1994). The objective of the present manuscript is 
to review the mechanisms involved in neurodegeneration 
and synapse loss in AD with special emphasis on their 
possible relationship with the genetic alterations 
associated with AD. 

The role of synaptic alterations in mechanisms of 
dementia in' AD 

Recent studies have shown that in addition to the 
traditionally described lesions (plaques and tangles) 
found in the AD brain (Alzheimer, 1907; Terry et al., 
1964; Teny and Wisniwski, 1970; Dickson et al., 1988; 
Yamaguchi et al., 1988; Braak and Braak, 1991), this 
neurodegenerative disease is characterized by neuronal 
loss (Terry et al., 1981; Hof et al., 1990), disruption of 
the neuritic cytoskeleton with altered cortico-cortical 
connectivity (Morrison et al., 1987; Hof et al., 1990; 
Masliah et al., 1993a), and extensive synapse loss 
(Davies et al., 1987; Hamos et al., 1989; Masliah et al., 
1989, 1991b,d; DeKosky et al., 1990; Honer et al., 1992; 
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Lassman et al., 1992). It has been hypothesized that the 
dementia in AD could be caused by either the presence 
of these specific lesions alone or by the synergistic effect 
of some or al1 of these lesions (DeKosky and Scheff, 
1990; Terry et al., 1991; Samuel et al., 1994). The 
original studies by Blessed et al. (1968) suggested that 
amyloid deposition and plaque formation might be the 
major correlate with cognitive alteration in AD, but 
more detailed studies where control cases were not 
included in the linear regression analysis did not support 
this view (Terry et al., 1991). Other groups have shown 
that neuronal loss in specific areas of the neocortex and 
subcortical regions correlated with clinical alterations 
seen in AD (Neary et  al., 1986). However, these 
correlations are rather weak and do not completely 
explain al1 the clinical alterations observed in AD. 
Recently, severa1 studies have shown that neuropil 
threads and neurofibrillary pathology could be 
contributing to the dementia in AD (Deleare et al., 1989; 
Arrigada et al., 1992; Masliah et al., 1992d; Samuel et 
al., 1994). However, it is important to remember that a 
subgoup of AD cases shows very little or no fibrillary 
pathology and yet display very significant clinical 
alterations (Terry et  al., 1987b). An alternative 
hypothesis is that dementia in AD is directly associated 
with the disruption of neuritic substructure and loss of 
synaptic contact in specific neocortical and subcortical 
areas (Masliah et al., 1991d; McKee et al., 1991). In AD 
as well as in the Lewy body variant of AD (LBV) there 
is and approximate 30 to 50% loss of synapses in the 
frontal, parietal and temporal cortex (Davies et al., 1987; 
Masliah et al., 1989, 1991b,d, 1993c; Sheff et al., 1990; 
Scheff and Price, 1993; Lassmann et al., 1992) (Fig. 1). 
Studies of the progression of the lesions in AD have 
shown that synapse loss appears fírst in the molecular 
layer of the hippocampus dentate gyrus and is correlated 
with abnormal expression of APP in the entorhinal 
cortex (Masliah et al., 1994c,d). The damage to this 
circuit in AD correlates with the early symptoms of 
memory loss characteristic of this disorder (Hyman et 
al., 1986). Measurements by electron microscopy and 
immunocytochemistry have both shown very strong 
correlations between synaptic numbers in the frontal 
cortex and tests of global cognition in AD (DeKosky and 
Scheff, 1990; Terry et al., 1991). More recently, 
correlative studies between tests of cognition and 
immunochemical quantification of various synaptic 
proteins have confirmed this view (Lassmann et al., 
1992; Zhan et al., 1993). Further supporting a central 
role of synaptic damage in the pathogenesis of AD, 
recent studies have shown that the dystrophic neurites of 
the plaques contains synaptic vesicles, synaptic proteins 
and neurotransmitters (Armstrong et al., 1989; Masliah 

et al., 1991b, 1994a; Lassmann et al., 1992; Masliah and 
Terry, 1993). Moreover ultrastructural studies have 
shown that in AD the synapses are swollen and contain 
abnormal accumulation of cytoskeletal proteins, vesicles 
and lysosomes (Gonatas et al., 1967, 1970; Masliah et 
al., 1991b, 1993b) (Fig. 2). 

Cellular mechanisms of synaptic damage in AD 

Synaptic pathology in AD could be either the direct 
(or primary) result of an underlying molecular defect 
affecting the synapses, or an indirect (or secondary) 
result of neuronal loss, plaque and tangle formation 
(Masliah and Terry, 1993, 1994). Recent studies in AD 
have shown that while there is a 20-30% loss of 
pyramidal neurons (Terry et al., 1987a), synaptic loss 
could be as high as 50% (Masliah et al., 1992d; Alford et 
al., 1994; Masliah and Terry, 1994). Furthermore, 
stepwise regression analyses of the different 
neuropathological, neuroanatomical and neurochemical 
markers in the AD neocortex have shown that loss of 
pyramidal neurons in the inferior parietal cortex 
contributes 45% (r= 0.67, pe0.005, n= 16) of the 
correlative strength to the synaptic loss in the mid- 
frontal cortex (Terry et al., 1990; Masliah and Terry, 
1994), suggesting that neurodegeneration in AD might 
initiate with synaptic damage. Moreover, aging and 
plaqueltangle formation also contribute to synaptic loss 
in AD (Terry et al., 1990, 1991; Masliah et al., 1993e). 

In addition, unsuccessful compensatory mechanisms 
are taking place in response to the ongoing synaptic 
pathology (Masliah et al., 1991c,e, 1992b; Cotman et al., 
1991). Recent studies have shown that in AD 
approximately 30% of neuritic plaques express growth- 
associated protein 43 (GAP43) (Masliah et al., 1991e, 
1993c) which is a molecule associated with plasticity 
and regeneration under normal conditions and its 
accumulation in abnormal neurites in AD could indicate 
aberrant sprouting (Masliah et al., 1991a). Moreover, 
GAP43-containing sprouting neurites in the plaque also 
display strong immunoreactivity with antibodies which 
detect both secreted APP (sAPP) and APP processed 
through the beta-secretase pathway (Masliah et al., 
1992c, 1994a). These data suggest that accumulation of 
aberrantly processed APP products not only could 
mediate synaptic damage, but also trigger aberrant 
sprouting (Cotman et al., 1991; Masliah et al., 1992b,c). 
Supporting this view, previous studies have shown that, 
depending on concentration, APP is involved in neuronal 
survival, neuritic outgrowth, synaptogenesis and 
development of the nervous system (Whitson et al., 
1989; Yankner et al., 1990; Milward et al., 1992; Roch et 
al., 1992; Masliah et al., 1992a, 1993f). Therefore, the 

* 
Fig. 1. Laser scanning confocal rnicroscopy of the frontal cortex. Sections were double-irnrnunolabeled with a rnonoclonal antibody against the 
synaptic-associated protein synaptophysin (leii side of each panel) and polyclonal antibody against phosphotylated tau (nght side of each panel), which 
identifies, cytoskeletal alterations in the neurites. Synaptophysin irnrnunoreactivity appears as a punctate pattern, each dot represents an 
irnrnunolabeled presynaptic terminals. In AD and LBV there is a significant decrease in the number of irnrnunolabeled presynaptic terminals. In AD, the 
synaptic alterations are accornpanied by formation of neuropil threads. No threads are obse~ed in control and LBV cases. x 790 



Synaptic damage in Alzheimer disease 

Control 
syn 

LBV 

1 o0 

m Control 
E, 
v 
a A 0  
o 8o 
O 

m LwJ 
r 

L 
Y 
P 

m - 
C 

60 
a 
o 
O 

- 
m 
c - 
E 40 
.- 
O - 
c. 
P 
S 

>. 20 
U 
L 
n 

o 



Synaptic damage in Alzheimer disease 

neuritic plaque could represent a focd area of abnormal 
synaptic remodelling and since probably no successful 
synaptic circuitries are formed these neuritic process 
eventually degenerate (Dahl et al., 1989; Masliah et al., 
1992b). Other lines of evidence supporting this 
possibility are: 1) the finding of other growth factors in 
neuritic plaques (Birecree et d., 1988; Gómez-Pinilla et 
al., 1990; Masliah et al., 1992c, 1993f), 2) decrease in 
growth-inhibitory factors in AD (Uchida et al., 1991), 
and 3) presence in AD of cells of neuroectodermal origin 
displaying aberrantly sprouting neuritic processes 
immunoreactive with antibodies against tau (Ihara, 
1988), GAP43lneurofilaments (Masliah et al., 1993c), 
and brain spectrin (Masliah et d., 1991~). 

To further understand how aberrant sprouting might 
contribute to neurodegeneration, we developed a rodent 
model where the growth-promoting agent phorbol 12- 
myristate 13-acetate (PMA) was administered into the 
neocortex of adult rats (Masliah et al., 1993d). In the 

first two weeks post-injection, PMA induced aberrant 
sprouting, followed by neurodegeneration at four weeks. 
PMA activates and eventually down-regulates protein 
kinase C and induces in the rat the expression of several 
genes, including APP (Nishiguchi et al., 1988). In 
addition, PMA increases the production of sAPP and 
reduces BAP (Bieger et d. ,  1993; da Cruz de Silva et al., 
1993; Fukushima et al., 1993; Gabuzda et al., 1993; 
Loeffler and Huber, 1993; Slack et al., 1993a,b). Taken 
together, these human and rodent studies support the 
concept that aberrant sprouting rather than contributing 
to the regenerative process, only enhances the synapse 
loss and neurodegeneration. 

Neurona1 loss, plaqueltangle formation, aging and 
aberrant sprouting only partially account for the synaptic 
pathology in AD, suggesting that there is a basic 
pathogenesis process affecting the synapses. Possible 
mechanisms involved in the pathogenesis of synaptic 
damage in AD could be related to either abnormal 

flg. 2. Unrastniotwgl charecterisdics of the synaptic altgraUon in AD. Tñe aynaphlc terminal8 and mons are enlarged and contain groups of synapfie 
ve8idea (SV), pared helical filammts (PHF), and lamlnateá bodies. Thii neutite is adjacent to a dendrltic spine (M). x 13,000 
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function of synaptic proteins or direct toxic effects at the 
presynaptic site (Masliah and Terry, 1993). In this 
regard, recent studies have shown that APP, which is 
believed to be centrally involved in AD (Selkoe, 1989), 
might play an important role as a synaptic regulator 
(Schubert et al., 1991; Alvarez et al., 1992; Askanas et 
al., 1992; Roch et al., 1994; Small et al., 1994). 
Moreover, APP metabolism appears to be abnormal in 
AD (Sisodia et al., 1990; Zhong et al., 1994). Taken 
together these findings suggest that altered APP 
processing may lead to synaptic dysfunction (Fig. 3). 

APP processing and molecular mechanisms of 
synaptic damage in AD 

APP might play an important role in regulating 
synaptic function since it is located in synapses, is 
axonally transported and may be released from nerve 
terminals (Schubert et al., 1991; Alvarez et al., 1992; 
Askanas et al., 1992; Roch et al., 1994; Small et al., 
1994). Furthermore, APP is upregulated during CNS 

development, is present in the neuritic growth cones and 
promotes neuritic outgrowth and neurona1 sumival (Koo 
et al., 1990; Yankner et al., 1990; Fisher et al., 1991; 
Masliah et al., 1992a; Small et al., 1994). In addition, 
infusion of sAPP peptide into the rat brain and 
expression APP in transgenic mice promotes a 
synaptotrophic effect (Mucke et al., 1994; Roch et al., 
1994). Recent studies (Allsop et al., 1991; Mamyarna et 
al., 1991; Tagawa et al., 1991; Anderson et al., 1992; De 
Strooper et al., 1993; Mattson et al., 1993a,c) have 
suggested that APP is processed through two pathways 
(Fig. 3). In the alpha-secretase pathway, axonally 
transported APP is cleaved between amino acids 816 and 
B17 within the BAP sequence, resulting in the release of 
sAPP [molecular weight (MW)>100 kDa] at the synaptic 
site. This pathway precludes the release of BAP. In the 
beta-secretase pathway, APP is cleaved at the amino 
terminus of BAP at Met596. This pathway results in the 
release of BAP (1-40) and BAP (1-42) (4kDa), as well as 
in the production of medium MW APP (68kDa) and the 
ClOO fragment (14kDa). Recent studies suggest that the 
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Flg. 3. Schematic representation of the enzymatic pathways involved in APP processing. Abnormal processing 07 APP through the B-secretase 
pathway might not only result in the producüon of BAP, but also in the generation of dysfunctional N-terminal APP fragments that might lead to synaptic 
dysfunction. 
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soluble forms of BAP (1-40) are cleared and recycled, 
while BAP (1-42) tends to accumulate in the neuropil 
eventually leading to plaque formation (Cai et al., 1993; 
Higgins et al., 1994; Murphy et al., 1994; Suzuki et al., 
1994). It is conceivable that aberrant processing of APP 
might lead to the microdeposition of abnormal (and 
various MW) products at the synaptic site, which 
eventually results in dainage to the synapto-dendritic 
apparatus (Fig. 3). Aberrant processing andor clearance 
of APP products could lead to neuro-degeneration by: 1) 
direct toxic effect of elevated levels of aggregated BAP, 
2) since APP may turn out to be a important synaptic 
protein, its abnormal processing can result in synaptic 
dysfunction, 3) since APP might play an important role 
in neuronal survival, malfunctional APP could lead to 
lack of neuroprotection, and 4) any combination of the 
three. Abnormal deposits of aberrantly processed APP 
products at the synaptic site might cause damage by 
interfering with neurotransrnission andor by disturbing 
the calcium balance (Mattson et al., 1993b) at the 
synapses (Fig. 3). Supporting this possibility, recent 
studies have shown that in AD there is abnormal 

accumulation of APP, as well as severa1 synaptic 
proteins, in neuritic plaques and synaptic terminals 
(Joachim et al., 1991; Masliah et al., 1992c, 1994a; 
Masliah and Teny, 1993) (Fig. 4). 

Further evidence supporting the concept that 
abnormal accumulation of amyloidogenic proteins could 
alter synaptic function has been derived from studies of 
Creutzfeldt-Jakob disease (CJD), where prion protein 
(prplCJD accumulates in synapses (Kitamoto et al., 
1992b). Moreover, in CJD and other prion protein 
diseases the patterns of synaptophysin and SNAP25 
(another synaptic-associated molecule) immunostaining 
are abnormal, indicating a primary synaptic alteration in 
these conditions (Clinton et al., 1993). Recent studies 
have shown that in CJD, depending on the genetic 
alteration, PrP could accumulate either in a plaque-like 
fashion or in the synapses (Kitamoto et al., 1992b). Point 
mutation in codon 102 or 1171129 results in a plaque- 
type PrP accumulation (Kitamoto et al., 1992a,b), while 
a point mutation in codon 200 or no mutations in the PrP 
gene results in synaptic-type PrP accumulation 
(Kitamoto et al., 1992a,b). 

Flg. 4. Pattems of APP irnmunoreactivity in human frontal cortex. The monodonal antibody specific for human APP (8E5, Athena Neurosciences) 
recognizes in the control cases (A) the neuronal cell bodies, as wdl as some synapses. In AD (B, C, D), there 1s a significant increase in APP 
immunoreactMty in synaptic tenninals (arrow heads) and dystrophic neurites in the plaque (arrows). x 350 
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Taken together, these findings suggest that abnormal 
accumulation of potentially amyloidogenic proteins at 
the synaptic site might be responsible for synaptic 
dysfunction and neurodegeneration observed in these 
disorders (Probst et al., 1991; Kitamoto et al., 1992a,b). 

Concluding remarks: The role of genetic 
abnormalities in pathogenesis of synaptic alterations 
in AD 

In conclusion genetic alterations that interferes with 
the processing of APP could result in the abnormal 
function of this protein. This not only leads to the 
deposition of amyloid and plaque formation, but it also 
interferes with the synaptotrophic and stabilizing 
functions (Saitoh et al., 1994) of this molecule 
promoting eventually synaptic damage, neuro- 
degeneration and cognitive dysfunction. 

Currently it is  unclear how the expression of 
abnormal genotypes (APP mutations) (Goate et al., 
1991; Peacock et al., 1993), C h r l 4  mutations 
(Schellenberg et al., 1992), APOE e4 (Corder et al., 
1993; Saunders et al., 1993; Strittmatter et al., 1993a) 
might lead andlor confer susceptibility to the same 
clinicaVpathologica1 entity - AD. However, the prevalent 
hypothesis is that APP metabolism and processing is 
affected leading to neurodegeneration by either BAP 
deposition (Strittmatter et al., 1993a) andlor disruption 
of synaptic function (Masliah and Terry, 1993). The 
levels of APP within the nervous system, especially at 
the synaptic site, may depend on the rate of 
production/transport, proteolytic metabolism and 
clearance of APP products. In consequence, genetic 
alterations that might disturb any or al1 of the steps 
involved in metabolism and transport of APP function 
could lead to alterations of the function of this molecule 
at the synaptic site. While recently dCscribed mutations 
within the APP molecule in farnilial AD appear to affect 
cleavage and processing of APP (Suzuki et al., 1994; 
Zhong et al., 1994), the polymorphism in APOE rnight 
affect the clearance of metabolically processed APP 
products (Schmechel et al., 1993; Strittmatter et al., 
1993a,b; Wisniewski et al., 1993). In either case, the end 
result will be the abnormal accumulation of degraded 
products in the neuropil (Fig. 3). 

Recent studies have shown that the presence of 
APOE e4 allele is the major risk factor for AD, since 
more than 50% of patients with sporadic and farnilial 
AD (Corder et al., 1993; Saunders et al., 1993; 
Strittmatter et al., 1993a) and LBV (Galasko et al., 1994) 
display this allele. The mechanisms by which apoE is 
associated with AD are not known. However, it has been 
shown that apoE binds high affinity B-amyloid and that 
AD patients with the APOE e4 allele have more dense 
amyloid deposits within their brains (Schmechel et al., 
1993; Strittmatter et al., 1993a,b; Wisniewski et al., 
1993). Furthermore, apoE appears to be an important 
CNS molecule which is centrally involved in synaptic 
regeneration after injury and in neuritic outgrowth 
(Poiner et al., 1993; Nathan et al., 1994). In this regard, 
we have recently shown that in AD cases displaying the 
APOE ~4 allele synaptic loss is more severe than in 
cases with APOE e3 allele (Miller et al., 1994). 
Furthermore, aged homozygous APOE-knockout mice 
show significant loss of dendrites and presynaptic 
terminals, accompanied by microgliosis and abnormal 
regeneration after lesion (Masliah et al., 1994b). 
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