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Summary. The blood-retina1 barrier consists of two 
components which are comprised of the retinal vascular 
endothelium and the retinal pigment epithelium, 
respectively. Its functional integrity can be recognized 
by tight junctions between these cells with a paucity of 
endocytic vesicles within them and the presence of the 
molecules that regulate the ionic and metabolic gradients 
that constitute the barrier. The banier is compromised in 
severa1 disease processes and by a variety of agents, but 
in most cases the location and mechanism for barrier 
failure is not understood. Perfusion with a variety of 
radiolabeled tracer molecules, vitreous fluorophoto- 
metry, or magnetic resonance imaging can be used to 
quantitate blood-retina1 barrier leakage. Fluorescein 
angiography or magnetic resonance imaging can localize 
sites of leakage in vivo with limited resolution. Evans 
blue dye can be used to visualize blood-retina1 barrier 
failure in gross pathological specimens and immuno- 
histochemical labeling of serum proteins such as  
albumin or fibrinogen can be used to localize sites of 
blood-retina1 barrier breakdown by light microscopy. 
Tracers such as  horseradish peroxidase, micro- 
peroxidase, or lanthanum, or the immunocytochemical 
demonstration of albumin can be used to reveal blood- 
retinal barrier breakdown at the ultrastructural leve1 and 
provide insights into the mechanisms involved. This 
review discusses the advantages and lirnitations of each 
of these methods to aid in selection of the appropriate 
techniques to derive the desired information. 
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lntroduction 

Normal retinal function requires strict control of 
extracellular fluid and ions. The features that enable this 
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regulation to occur collectively comprise the blood- 
retinal-barrier (BRB). The BRB functions by excluding 
blood-borne proteins from the retina and by sustaining 
ionic and metabolic gradients (Dermietzel and Krause, 
1991). Failure of this barrier leads to macular edema, 
which is a major cause of visual loss and can occur in 
association with diabetic retinopathy or other ocular 
disorders, following ocular surgery, or from other causes 
(Patz et al., 1973; Cunha-Vaz, 1976; Eagle, 1984). BRB 
dysfunction may also result in the liberation of serum- 
derived factors that could potentiate the ocular 
complications of severa1 disease processes. In some 
cases, structural defects such as vascular abnormalities 
or cell damage reveal the site of BRB compromise, but 
in other situations the source of BRB leakage is unclear. 
Finding an appropriate means to localize the specific site 
of BRB failure for the various ocular disorders could 
provide the basis for devising effective therapeutic 
intervention to prevent or ameliorate macular edema. 

Anatomical correlates 

The  BRB consists of an inner and an outer 
component. The inner BRB is comprised of the retinal 
vascular endothelium (RVE) and the outer BRB is 
formed by the retinal pigment epithelium (RPE) (Cunha- 
Vaz, 1976; Raviola, 1977). The BRB is analogous to the 
blood-brain barrier (BBB) in that both are characterized 
by complexly arranged tight junctions between the 
barrier-forming cells and a paucity of endocytic vesicles 
within these cells (Cunha-Vaz et al., 1966; Shakib and 
Cunha-Vaz, 1966; Casley-Smith, 1969; Cunha-Vaz, 
1976; Raviola, 1977; Essner, 1987; Sagaties et al., 1987; 
Brightman, 1989; Janzer, 1993). The tight junctions of 
the RPE, whose formation appears to be regulated by 
diffusible factors from the neural retina (Rizzolo and Li, 
1993) are more resistant to opening due to ionic stress 
than are other interepithelial tight junctions (Sandig et 
al., 1990). They are, however, more susceptible to 
opening due to osmotic stress than are the tight junctions 
of the RVE (Laties and Rapoport, 1976). 

The  inner BRB, like the BBB, has secondary 
components. Pericytes ensheath the RVE and both 
pericytes and endothelial cells are surrounded by a 
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negatively-charged basement membrane which is 
composed of a combination of various types and 
proportions of collagens, laminin, fibronectin, glycos- 
aminoglycans including proteoglycans (primarily 
heparan sulfate), and glycoproteins with unknown 
functions such as nidogen and entactin (Sagaties et al., 
1987; Brightman, 1989; Dermietzel and Krause, 1991). 
It is not clear what influence pericytes have on the BRB, 
but pericyte loss, which occurs in human diabetic retino- 
pathy (DR) (De Oliveira, 1966; Yanoff et al., 1969; 
Addison et al., 1970; Engerman et al., 1977) and 
experimental models of DR (Kinoshita and Nishimura, 
1988; Midena et al., 1989; Robison et al., 1989) 
accompanies BRB breakdown (Cunha-Vaz et al., 1975; 
Kmpin et al., 1978, 1979; Waltman et al., 1978a,b; Tso 
et al., 1980; Jones et al., 1982; Blair et al., 1984b; 
Lightman et al., 1987b; Williamson et al., 1987; Vinores 
et al., 1989, 1990a,b, 1993a,b). Retina1 vessels have a 
higher density of interendothelial junctions and of 
endothelial vesicles than brain vessels, suggesting 
greater vascular permeability; however, pericytes are 
approximately four times as numerous in retina, 
probably to compensate for a more permeable endo- 
thelial barrier in retina than in brain (Stewart and Tuor, 
1994). 

Thickening of the retinal perivascular basement 
membrane does not directly correlate with increased 
resistance to vascular leakage since thickened peri- 
vascular basement membranes are characteristic of 
human DR and experimental models of the disorder 
(Yanoff, 1969; Ashton, 1974; Williamson and Kilo, 
1977; Fischer and Gartner, 1983; Frank et al., 1983; 
Robison et al., 1983; Sima et al., 1985; Vinores et al., 
1988; Vinores and Campochiaro, 1989). Changes in the 
composition of the basement membrane at the BRB in 
experimental models of diabetes, however, have been 
reported (Caldwell et al., 1986; Das et al., 1990) and 
may reflect functional alterations. As with cerebral 
vessels forming the BBB, retinal vessels are invested by 
astrocytic processes (Bjorklund and Dahl, 1985; Tout et 
al., 1993); however, within the retina, Müller cells also 
participate in the ensheathment of vessels (Hogan and 
Feeney, 1963; Cunha-Vaz et al., 1966; Rasmussen, 1972; 
Büssow, 1980). 

Glial regulation 

Like the BBB, the development and/or maintenance 
of the inner BRB appears to be under the control of 
perivascular astrocytes. Astrocytes migrate into the 
retina from the optic nerve (Stone and Dreher, 1987; 
Ling and Stone, 1988; Watanabe and Raff, 1988; Ling et 
al., 1989) and their migration across the retina coincides 
with the spread of patent vessels (Tout et al., 1993). 
Astrocytes are confined to the vascularized regions of ' 

the retina, where their processes invest retinal micro- 
vessels and they are absent from avascular retinas like 
those of the horse and rabbit (Bjorklund and Dahl, 1985; 
Stone and Dreher, 1987; Schnitzer, 1987, 1988a,b,c; 

Tout et al., 1993). One important difference between 
brain and retina is that in the retina, Müller cells, as well 
as astrocytes, participate in the-formation of the 
perivascular sheath (Hogan and Feeney, 1963; Cunha- 
Vaz et al., 1966; Rasmussen, 1972; Büssow, 1980). In 
vascularized retinas, such as those of the human, cat, and 
rat, two distinct layers of vessels exist: the inner and 
outer vascular plexuses. The inner vascular plexus, 
which resides in the nerve fiber layer and ganglion cell 
layer, is almost totally invested by astrocytic processes 
(Büssow, 1980; Stone and Dreher, 1987; Schnitzer, 
1988c; Chan-Ling et al., 1990; Hollander et al., 1991; 
Holash and Stewart, 1993), whereas Müller cells are a 
major contributor to the perivascular sheaths in the outer 
vascular plexus (Kondo et al., 1984; Hollander et al., 
1991; Holash and Stewart, 1993), which is found in the 
outer plexiform layer. 

Embryonic neural tissue can induce non-neural 
vessels to develop BBB or BRB features (Stewart 
and Wiley, 1981), but the specific role of astrocytes 
and the mechanism by which this occurs remain 
somewhat controversial. Cell contact with astrocytes 
has been reported by some investigators to be essential 
for vascular endothelial cells to establish a barrier 
function (Stewart and Wiley, 1981 ; Bradbury, 1984; 
Shivers et al., 1984; Janzer and Raff, 1987; Tao- 
Cheng et al., 1987; Brigthman, 1989; Tontsch and 
Bauer, 1991); other investigators found that a secreted 
factor derived from astrocytes, rather than direct 
cell contact, was responsible (Arthur et al., 1987; 
Maxwell et al., 1987, 1989; Shivers et al., 1988; 
Neuhaus et al., 1991). Müller cells share the ability 
of astrocytes to induce the formation of BRB properties 
in the vascular endothelium (Tout et al., 1993). In 
the feline model of retinopathy of prematurity, 
hypoxia causes retinal astrocytes to degenerate with 
a coincident failure of the BRB. As astrocytes re- 
colonize the retina days later, the BRB is re-established 
(Chan-Ling and Stone, 1992; Chan-Ling et al., 1992), 
suggesting that astrocytes are necessary to establish 
a functional BRB. Recent studies with cerebral astro- 
cytes, however, have provided uncertainity concerning 
the role of astrocytes in the integrity of the stmcturally 
analogous BBB. Gliotoxin 6-aminonicotin-amide, 
which also causes degeneration of astrocytes, does not 
result in a loss of BBB integrity in rats (Krum 
and Rosenstein, 1993), presenting uncertainity that 
astrocytes are essential for maintaining a functional 
BBB. In chickens, BBB characteristics are evident by 
embryonic day 14, which is prior to perivascular 
ensheathment by astrocytes (Albrecht et al., 1990; 
Holash et al., 1993) also shedding doubt on the 
astrocytic control of BBB function. Finally, Holash et al. 
(1993) found no evidence that mature astrocytes had the 
capacity to induce BBB features as embryonic neural 
tissue did (Stewart and Wiley, 1981), suggesting that 
they may function in maintaining the BBB, but the initial 
establishment of the BBB may be more complex than 
initially thought. 
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BRB-specific proteins 

A variety of proteins can be used as immunohisto- 
chernical markers to reveal functional BRB sites. Those 
whose functions are known fa11 within two categories: 1) 
proteins responsible for maintaining ionic or metabolic 
gradients and, therefore, cell polarity, and 2) proteins 
associated with tight junctional complexes (zonulae 
occludens). 

Detailed reviews of the enzymes, receptors, and 
transporter molecules associated with the BBB can be 
found elsewhere (Dermietzel and Krause, 1991; Janzer, 
1993). Retina1 capillaries generally share the same 
molecular characteristics as brain capillaries with the 
exception of y-glutamyl-transpeptidase, which is absent 
from retinal capillaries, but expressed in brain capillaries 
(Holash and Stewart, 1993). A 140 kDa membrane 
protein associated with pericytes in the central and 
peripheral nervous system has been localized only in 
regions with a functional BBB or blood-nerve barrier 
(BNB). Its distribution closely resembles that of y- 
glutamyl-transpeptidase and it is likely to be involved in 
some resorptive or transport function. This protein is 
also expressed in retinal capillaries and the RPE (Krause 
et al., 1988). 

The glucose transporter, GLUTl, is another molecule 
that is concentrated on cells that form interendothelial or 
interepithelial occluding junctions, thus constituting 
blood-tissue barriers such as the BBB and the BRB. It 
has been demonstrated on the capillary endothelial cells 
of the retina, optic neme, and iris, and on the RPE cells, 
the ciliary body epithelium, and the posterior epithelium 
of the iris, al1 of which have occluding intercellular 
junctions and comprise the BRB, the BAB, and the BNB 
(Harik et al., 1990; Takata et al., 1990, 1992; Takagi et 
al., 1994). Although GLUTl is localized on cells with 
occluding junctions in ocular tissue, there is no 
association of the transporter with the tight junction 
itself. GLUTl is not found on the capillary endothelium 
of vessels in the choroid, ciliary body, sclera, or other 
retro-orbital tissues that do not form a functional barrier. 
It is also absent from large vessels, since they do not 
have major transport functions (Harik et al., 1990). The 
appearance of GLUTl developmentally coincides with 
the appearance of barrier characteristics in the retinal 
capillaries (Dermietzel et al., 1992) and its abundance 
increases with age (Cornford et al., 1993; Vannucci, 
1994). There is approximately a four-fold greater 
abundance of immunoreactive GLUTl on the ablumenal 
membranes of capillary endothelial cells compared to 
the lumenal membranes, with about 40% of the protein 
contained within the cytoplasm (Gerhart et al., 1989; 
Farrell and Pardridge, 1991). In diabetes, there is a 
down-regulation of GLUTl in brain microvessels 
(Pardridge et al., 1990), but within retinal microvessels, 
GLUTl levels on both the lumenal and ablumenal 
surfaces and within the cytoplasmic compartment of the 
endothelium are increased more than ten-fold (Kumagai 
et al., 1994a,b), possibly accounting for, at least in part, 

the more devastating effects diabetes has on the retina 
than on the brain. 

The ZO-1 protein is a specific constituent of 
epithelial and endothelial tight junctions (Stevenson et 
al., 1986; Watson et al., 1991) that can serve as a 
structural marker for the BBB or BRB. 

Other markers have shown a specific association with 
the BRB, but their functions are unknown. One such 
example is the postnatally-appearing endothelial-barrier 
antigen (EBA), which can be found on the luminal 
surface of endothelial cells in vessels forming a BRB, 
BBB, or BNB (Sternberger and Sternberger, 1987; 
Sternberger et al., 1989; Rosenstein et al., 1992; 
Ghabriel et al., 1994). EBA is greatly reduced or absent 
from fenestrated or injured vessels and from vessels 
associated with inflammatory cells or reactive astrocytes 
where the barrier function is compromised (Stemberger 
and Sternberger, 1987; Stemberger, 1989; Sternberger et 
al., 1989). Conversely, PAL-E is an antigen found in 
capillaries and veins throughout the body, but the 
antigen is absent from the endothelium at the BBB, 
BRB, and BAB. When these barriers break down, 
however, PAL-E is induced (Schlingemann et al., 1985, 
1994). Immuno-electron microscopy shows the PAL-E 
epitope is associated with endothelial vesicles 
(Schlingemann et al., 1985), so its expression, coincident 
with barrier compromise, could indicate the induction of 
vesicular transport as a mechanism for barrier failure. 

HT7, a highly glycosylated immunoglobulin-like 
surface glycoprotein, is another example of a BRB- or 
BBB-specific marker of unknown function that has been 
demonstrated in vessels with blood-tissue barrier 
properties and in the RPE (Risau et al., 1986; Albrecht 
et al., 1990; Seulberger et al., 1990). HT7 can be 
induced coincidently with other blood-tissue barrier 
characteristics in vessels that normally do not form 
functional barriers, such as those of the choriallantoic 
membrane, by embryonic brain (Risau et al., 1986; 
Schlosshauer and Herzog, 1990) or by soluble factors 
derived from astrocytes (Lobrinus et al., 1992). 

Radiolabelled tracer molecules 

A number of molecules have been labelled with a 
radioactive isotope and used as tracers to assess BRB 
function. Such molecules should be water soluble non- 
electrolytes that are not bound to plasma proteins, 
metabolized, or actively transported at the site of the 
BRB. Examples of molecules used in this fashion 
include sucrose, mannitol, inulin, urea, and albumin 
(Johanson, 1989) (Table 1). Intravenous inoculation of 
these labelled molecules and their subsequent assay in 
extravascular fluids can be used to quantitate BRB 
breakdown, but not to localize sites of leakage (Ennis 
and Betz, 1986; Lightman et al., 1987b; Lightman and 
Greenwood, 1992). It is an effective method for 
comparing permeability rates of molecules with different 
molecular weights or different molecular properties, or 
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Table 1. Tracer molecules for assessing BRB integrity. 

TRACER MOLECULAR DIAMETER APPLICATIONS LlMlTATlONS 
WEIGHT 

Lanthanum 139 0.1 14nm (4nm in Localization of BRB breakdown sites at Requires pelfusion or fixed tissue; not 
colloidal f on ,  but it lhe electron microscopic level useful clinically 
can penetrate 
spaces as small as 
2 nm) 

0.55nm Fluorescein Clinical or experimental; can visually Can show general areas of leakage, but 
determine whether BRB is functional not specific sites at the cellular level 
in vivo by fluorescein angiography; 
vitreous fluorophotometry can be u 4  
to quantitative leakage 

14C-Sucrose 344 1.04nm 

Microperoxidase 1,900 2nm 

Horseradish 
peroxidase 

Albumin 

Evans Blue Dye 961, but it 7.8nm 
forms a complex 
with serum 
albumin 

Quantitation of BRB leakage in 
experimental animals 

Localization of BRB breakdown sites 
in experimental animals; can be used 
for electron microscopic evaluation 

Localization of BRB breakdown sites 
in experimental animals; can be used 
for electron microscopic evaluation 

Cannot localize site(s) of leakage; 
impractical for clinical studies 

Requires tissue fixation and sectioning; 
not useful clinically; may be cost- 
prohibitive 

Requires tissue fixation and sectioning; 
may induce ariifactual BRB breakdown; 
not useful clinically 

With a radioactive label, BRB leakage Not useful clinically, but fixed clinical and 
can be quantitated, but not localized; experimental specimens can be evaluated 
sites of BRB breakdown can be immunohistochemically 
immunolocalized by light or electron 
microscopy 

Gross visualization of areas with BRB 
compromise 

Only useful with gross pathological 
specimens 

Fibrinogen 340,000 lmmunohistochemical localization of Large molecular weight limits sensitivity, 
BRB breakdown sites only detects areas of substantial leakage; 

use limited to pathological specimens 

for comparing inward with outward BRB permeability 
rates (Ennis and Betz, 1986; Lightman et al., 1987a; 
Johanson, 1989). 

Fluorescein 

Vitreous fluorophotometry (VFP) can be used 
to quantitate and fluorescein angiography to visibly 
detect BRB failure in vivo in a clinical or experimental 
setting following intravenous injection of sodium 
fluorescein or carboxyfluorescein, which is 1000 
times less lipid soluble than fluorescein (Grimes et 
al., 1982) and appears to have a lower affinity for 
the carrier-rnediated system facilitating the transport of 
the molecule from the retina to the choroid (Tsuboi 
and Pederson, 1986; Grimes, 1988b). Both tracer 
molecules are comparable in molecular weight, 
spectral characteristics, and permeability from the 
choroid to the retina (Blair et al., 1984a; Blair and 
Rusin, 1986; Tsuboi and Pederson, 1986). The 
small molecular weights of these tracers enable one ' 

to detect minor breeches in the BRB that would 
go unrecognized with protein tracers. VFP, however, 
cannot distinguish between inner and outer BRB 
breakdown. 

VFP was used to show abnormally high concentra- 
tions of fluorescein in the vitreous of al1 retinitis 
pigmentosa (RP) patients evaluated, which correlated 
with the extent of RPE and photoreceptor damage and 
with capillary leakage (Fishman et al., 1981; Cunha-Vaz 
and Travassos, 1984). Fluorescein leakage was even 
detected in RP patients with no ophthalrnoscopically 
apparent abnormalities and only minor changes in the 
electroretinograrn (ERG) and in carriers of the X-linked 
recessive gene for RP even though their fundus 
examination and ERG were normal (Fishman et al., 
1981). 

VFP and fluorescein angiography have been used 
extensively to study BRB breakdown in diabetic 
retinopathy in humans (Cunha-Vaz et al., 1967, 1975, 
1993; Knipin et al., 1978; Waltrnan et al., 1978b; Kemell 
and Ludvigsson, 1985; Krogsaa et al., 1987; Engler 
et al., 1991) and in animal rnodels (Waltman et al., 
1978a; Jones et al., 1979, 1982; Tso et al., 1980; Blair 
et al., 1984a; Vine et al., 1984). Most investigators 
have shown that fluorescein leakage is directly 
correlated with the progression 'of the disease; however, 
Grimes (1988a), using quantative fluorescence 
microscopy with carboxyfluorescein failed to show a 
greater accumulation of carboxyfluorescein in the 
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retinas of diabetic rats compared with those of normal 
rats. Fluorescein-based methods have also been used 
to evaluate BRB compromise mediated by adenosine 
agonists, prostaglandins El ,  and other stimulators of 
cyclic adenosine monophosphate (Michels and 
Maumenee, 1975; Sen and Campochiaro, 1989, 199 l), 
as well as in experimental proliferative vitreoretino- 
pathy (Sen et al., 1988) and associated with pars 
planitis and aphakia (Cunha-Vaz and Travassos, 
1984). 

Magnetic resonance imaging 

Magnetic resonance imaging (MRI) enhanced by the 
paramagnetic contrast agent, gandoliniumdiethylene- 
triaminetetraacetic acid has been used to localize and 
quantify BRB breakdown (Berkowitz et al., 1991, 
1992; Sato et al., 1992; Sen et al., 1992; Wilson et al., 
1992; Ando et al., 1994). The results obtained with MRI 
correlate with those using fluorescein-based methods 
and with immunocytochemical staining for albumin, but 

PEg. l. Colloidal lanthanum 
~ a s a b o c e i h i a n a r m a l ~ .  
Lanthanurn is promlnsnt ln 
B W a  m- (bomlnl and 
can be: fuurtd In ths b a a l  
i r r f d w & i t R P E .  I t a ~ b  
vlauahked fn ths intrer~ellular 
spaw betw%fm &!m R E  wils 
up to the leve1 of the flgh-t 



Assessment of blood-retina1 barrier 

MRI has distinct advantages. It is not subject to the 
optical lirnitations of VFP and allows one to distinguish 
between inner and outer BRB failure in the rabbit (Sato 
et al., 1992; Ando et al., 1994). It's resolution is not as 
great as that resulting from the microscopic evaluation of 
exogenous or endogenous tracers, but MRI allows in 
vivo analysis, thus enabling the investigator to monitor 
progressive changes in BRB integrity within the same 
animal. 

Evans blue dye 

Evans blue dye can be used for visualization of areas 
with BRB breakdown in gross pathological specimens, 
but it is not used clinically or microscopically. It forms a 
complex with albumin and the relatively high molecular 
weight of this complex limits its sensitivity. It is not 
frequently used on ocular tissues, but may provide a 
quick assessment of BRB integrity as an adjunct to more 
detailed studies (Laties and Rapoport, 1976; de Bara et 
al., 1989). 

Lanthanum 

Lanthanum forms an electron dense colloid when the 
pH of a solution containing ionic lanthanum is raised 
(Revel and Karnovsky, 1967). This can be used as tracer 
for the electron microscopic localization of BRB 
breakdown sites (Pederson, 1979) (Fig. 1). It can be used 

prior to, concurrent with, or following fixation, but 
lanthanum salts may have toxic effects on unfixed cells 
(Martinez-Palomo et al., 1973). In colloidal form, 
lanthanum has a particle size of 40 A, but can penetrate 
spaces as small as 20 A (Revel and Karnovsky, 1967), 
enabling one to detect sites of leakage that larger 
molecules would not reveal. Using lanthanum as a 
tracer, Caldwell et al. have demonstrated that BRB 
failure in diabetic rats is mediated by alterations in 
membrane permeability and increased vesicle formation 
in both the RVE (Caldwell and Slapnick., 1992) and the 
RPE (Caldwell et al., 1985), while the tight junctions 
remain unaltered, a finding confirmed using 
immunocyto-chemical staining for albumin (Vinores et 
al., 1990b). Lanthanum has also been used to show that 
prostaglandin El-induced BRB failure occurs by an 
opening of the interendothelial tight junctions (Pederson, 
1979), which has also been demonstrated using immuno- 
cytochemical staining for endogenous albumin (Vinores 
et al., 1992). Permeable interepithelial cell junctions and 
an increase in the number of pinocytotic vesicles have 
also been demonstrated in dystrophic rat RPE using this 
technique (Caldwell and McLaughlin et al., 1983). 

Horseradish peroxidase 

Horseradish peroxidase (HRP) is a tracer that has 
frequently been used to assess BRB integrity. Following 
intravenous injection or perfusion with the enzyme, 

Fig. 2. Horseradish peroxidase (HRP) used as 
a tracer in a 1 month spontaneously diabetic 
BB rat shows an RPE cell that has become 
permeable to the enzyme, indicative of outer 
BRB breakdown. HRP is found within the 
cytoplasm, but not the organelles of one RPE 
cell; an adjacent RPE cell (lower leít) remains 
impermeable to HRP. 3,3'-diaminobenzidine 
without counterstain. x 15,000 
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reaction with 3,3'-diaminobenzidine yields a granular (Tso and Shih, 1976) in monkeys, and after light darnage 
reaction product that can reveal BRB breakdown sites at in rabbits (Putting et al., 1992; Zweypfenning et al., 
the electron microscopic leve1 (Fig. 2). This technique 1992). The use of HRP, however, has often produced 
has been used to evaluate the BRB in dystrophic rats conflicting results. For example, some investigators have 
(Caldwell and Mc Laughlin, 1983), following lens demonstrated BRB breakdown associated with diabetes 
extraction (Tso and Shih, 1977) or prolonged hypotony using HRP as a tracer (Wallow and Engerman, 1977; 

Fig. 3. Immunoperoxidase staining for albumin in a retina1 
vessel from a rabbit 48 hrs after treatment with prostaglandin 
E,. Positivity within the perivascular extracellular matrix 
indicates BRB failure. Reaction product within the inter- 
endothelial cell junction (arrow) suggests the junction may be 
~copenu, accounting for the BRB failure. An albumin-filled 
vesicle (arrowhead) is found within a vascular endothelial cell, 
suggesting that transcyiosis may also play a role in mediating 
BRB breakdown. Uranyl acetate counterstain. x 42,500 
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Ishibashi et al., 1980; Chakrabarti et al., 1990), while 
others, using the same technique have not seen any BRB 
compromise associated with diabetes (Kirber et al., 
1980; Wallow, 1983; Fitzgerald and Caldwell, 1990). To 
provide further confusion, the RPE cells (Kirber et al., 
1980) and RVE cells (Lin and Essner, 1986) of control 
rats have been reported to be permeable to HRP, Most of 
the studies cited above were performed with type 11 
HRP. HRP, and particularly the type 11 isoform, has 
been shown to be capable of inducing pronounced 
vascular leakage by endocytosis and damage to the 
vascular endothelium (Cotran and Karnovsky, 1967; 
Houthoff, 1982; Balin et al., 1986; Chau et al., 1991), 
which is mediated, at least in part, by histamine and 
serotonin (Cotran and Kamovsky, 1967; Fitzgerald and 
Caldwell, 1990), each of which can induce capillary 
permeability (Westergaard, 1978; Gross et al., 1982). 
HRP type VI, although being more expensive, is 
preferred to the type 11 isoform as a tracer (Westergaard 
and Brightman, 1973; Balin et al., 1986), but some 
leakage has also been reported using this isoform 
(Cotran and Karnovsky, 1967; Lin and Essner, 1986). 

One possible altemative is the smaller molecular weight 
microperoxidase (Feder, 197 1 ; Smith and Rudt, 1975), 
which appears to be nontoxic, but is also quite 
expensive. 

lmmunohistochemical localization of extravasated 
serum protesns 

The use of exogenous tracer molecules for 
the localization of BRB breakdown sites has been 
criticized because the introduction of the tracer may 
adversely affect the BRB either by direct or indirect 
action of the foreign substance on the barrier such as 
by cytotoxicity, histamine and serotonin induction, 
osmotic changes, or other mechanisms, or due to 
pressure fluctuations during perfusion. The immuno- 
histochemical demonstration of endogenous serum 
proteins is an alternative that eliminates the need 
to introduce any foreign substance and can be used 
on fixed pathological specimens, thereby providing 
access to large numbers of cases, even when un- 
common disorders are being evaluated. Retrospective 

Fig. 4. lmmunoperoxidase siaining for albumin reveals reaction producl within he  cytoplasm of a damaged RPE cell from a galactosemn: rat that has 
been maintained on a 50% galactose dket for 7 months. Thi indicates that b e  surface membrane has undergone degenerative changes that render il 
permeabb to albumin. The dioroid is at the bottom of the ñgure. Uranyl acetate counterstain. x 7,500 
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studies can be performed on surgical, autopsy, or 
experimental tissues after years of storage and the 
technique can be used at the light microscopical level to 
localize the specific areas of BRB compromise and 
visualize the extent of BRB failure by overviewing 
entire sections of retina. 

In normal eyes, albumin can be demonstrated only 
within vascular lumens and throughout the choroid, 
where there is no functional barrier due to the 
fenestrated vessels. The demonstration of extravascular 
albumin within the retina or RPE is indicative of BRB 
failure and its visualization may reveal the source of 
macular edema in cases where structural defects are not 
apparent. The immunohistochemical localization of 
extravasated albumin has been used to localize BRB 
breakdown sites in paraffin sections of eyes affected by 
diabetic retinopathy, retinal vascular disease, ocular 
inflammatory disease, ocular infections, neoplastic 
disease, retinitis pigmentosa, post-surgical macular 
edema, or other ocular disorders (Vinores et al., 1989, 
1990a, 1994a,b). It is also useful for assessing the 
integrity of tbe blood-aqueous barrier (Küchle et al., 
1 994). 

At the electron microscopic level, immunocyto- 
chemical labeling for albumin is useful to ascertain 
the mechanisms by which the BRB-forming cells 
are transgressed by seeing if extravascular albumin is 
found: 1) within the intercellular junctions of the RVE 
and RPE cells, suggesting that the tight junctions have 
opened (Fig. 3), 2) diffusely within the cytoplasm of 
RVE and RPE cells, suggesting that membrane 
permeability has been altered (possibly due to cell 

Fig. 5. Immuno- 
peroxidase 
staining for 
albumin in a 
retinal vessel 
from a rat on a 
50% galactose 
diet for 18 
months. 
Albumin is 
demonstrated 
within the 
vessel lumen 
and in 
numerous 
vesicles in the 
RVE suggesting 
that BRB 
breakdown may 
occur by 
vesicular 
transporl. No 
counterstain. 
x 50,000 

damage) (Fig. 4), or 3) contained within vesicles, 
suggesting that vesicular transport (transcytosis) may be 
operative (Fig. 5). 

The immunocytochemical localization of albumin 
at the ultrastructural level has suggested that BRB 
compromise associated with diabetes or galactosemia 
in rats (Vinores et al., 1990b, 1993b) and diabetes 
in humans (Vinores et al., 1993a) is mediated by 
increased membrane permeability of RVE cells and 
RPE cells, and increased vesicular transport. In 
retinitis pigmentosa, albumin extravasation occurs 
through damaged RVE and RPE cells (Vinores et 
al., 1994b). This technique has also shown that 
prostaglandin El  and adenosine agonists cause BRB 
breakdown by opening the tight junctions between RVE 
cells (Vinores et al., 1992). Once the barrier-forming 
cells have been transgressed, extravasated protein can 
readily disperse through basement membranes and 
extracellular spaces and it is not excluded from cells that 
lack the capacity to form a functional barrier, such as 
pericytes, neurons, and glia (Vinores et al., 1990b, 
1993a,b). Similar findings have been reported following 
BBB failure (Henkind et al., 1980; Kitagawa et al., 
1991). 

Fibrinogen is another serum protein whose immuno- 
histochemical demonstration reveals sites of BRB 
breakdown. Due to its high molecular weight, it cannot 
detect minor areas of leakage, but its immuno- 
localization is useful for examining hard exudates, where 
the protein may be more resistant to degradation than 
alburnin, and for localizing sites of hernorrhage (Murata 
et al., 1992, 1993). 
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Concluding remarks 

BRB breakdown occurs in severa1 pathological 
conditions and can be mediated by diverse agents. A 
variety of methods are available to assess BRB function 
quantitatively and qualitatively (Table 1 )  to better 
understand the mechanism of BRB failure from different 
causes. The choice of methods depends on the type of 
data desired, the setting (clinical or experimental), and 
the condition of the tissue to be evaluated (in vivo, fixed 
tissue, etc).  Each method has its own particular 
limitations and sensitivity, which must be considered in 
its selection. Since no single method can provide 
quantitative data with a qualitative assessment of BRB 
compromise with high resolution, multiple approaches 
may be required to obtain an overall picture. 
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