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Summary. A method has been developed by which it is 
possible to measure the fractal dimension of the arterial 
tree of the kidney. The objective of this work is to 
determine a method which permits us to discriminate 
between the architectures of specific organs by reference 
to a unique number, namely the fractal dimension of the 
arterial tree of that organ. This method opens the 
possibility of a new taxonomy for normal organs and for 
the pathological injuries related to the vascular 
morphology of those organs. 

The method that we have devised uses as its input the 
volume which is taken up by the arterial tree of the 
kidney. In order to calculate this volume we first 
obtained a plastic cast (the arteries were filled with 
Araldite CY233 plastic resin after which the organic 
tissues were corroded); thereafter we constructed a 
theoretical arterial tree having the same volume as the 
renal one. From this simplified tree, we were able to 
calculate its fractal dimension. 

The complete process of constmcting the theoretical 
arterial tree and the subsequent calculation of its fractal 
dimension was carried out automatically by way of a 
computer programrne to which we have given the name 
fractal program. 
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lntroduction 

Classically, the morphological sciences, when 
studying an organ, describe i t  by reference to its 
macroscopic and microscopic anatomy. Some of the 
features that define the organ are qualitative and provide 
subjective data; others are quantitative, but they give rise 
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to values which are not discrirninatory. 
The possibility of being able to characterise an organ 

by means of a single, unique and objective value, for 
example a number, is, we suggest, an attractive idea, but 
it presents us with a fundamental problem, namely that 
of choosing the method which will allow us to obtain 
that unique number for each organ. Could that method 
be its fractal dimension? 

Kidney anatomy of the arterial tree 

Fuller and Huelke (1973) have said «the renal arteries 
in the dog arise from the aorta, slightly caudal to the 
celiac and superior mesenteric tninks. The renal arteries 
divide into dorsal and ventral rami well before entering 
the hilum of the kidney. The ventral rarni of both renal 
arteries pass toward the hilum dividing into two stem 
branches, each of which may again divide before 
reaching the hilum of the kidney. Within the substance of 
the kidney, these ventral branches supply the cranial, 
middle and caudal areas of the ventral surface of the 
kidney, and are named according to their distribution 
(ventral-cranial, ventral-middle, and ventral-caudal 
segmental arteries). Usually each of these segmental 
arteries is double. The dorsal ramus of the renal artery 
likewise divides into double branches for the supply of 
the cranial, middle and caudal portions of the dorsal half 
of the kidney. The caudal third of the dog kidney is 
always supplied by branches fr0.m both the dorsal and 
ventral rarnis. (Nickel et al., 1973). 

What is a fractal? 

In classical Euclidean geometry objects have O, 1, 2 
or 3 dimensions. Modern algebra makes it possible for 
us to add more dimensions to classical geometry, 4, 5, 
6... etc, and this is useful when solving certain problems 
with physics. Through the use of algebra, man has been 
able to both imagine and manage abstract objects having 
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Fig. 1. The V-shaped fractal pattern used in this work. 

Fig. 2. Section of a theoretical arterial tree. 

more than three dimensions, although paradoxically he 
has not been able to draw rnany of thern. Both classical 
geornetry and its subsequent extensions always require 
an integer number of dimensions (1,2, .... N). 

But there is another geometry which uses fractional 
(112, 312, etc), or real dirnensions (log 4llog 3, etc). 
Those objects to which we can assign a fractional or real 

dirnension are called fractal objects and the value 
corresponding to the fractional dirnension is 
called the fractal dimension (Mandelbrot, 1987) or 
Hausdorff-Besicovitch dirnension (Abbot and 
Wise, 1981). However nobody has yet defined a 
fractal objectively. 

We are able to recognize a typical fractal 
object by its irregular andlor fragrnented 
appearance; its cornplexity, however, is only 
apparent, and this is because its geornetry has 
been constructed by scaling a single geometry 
entity (a straight line, a curve, etc) several times. 
The  property of scaling is  expressed 
rnathernatically by saying that it has interior 
similarity or self similarity. 

Fractals in biology 

A nurnber of pathophysiological cardiac 
disturbances display fractal behaviour 
(Goldberger and West, 1987). 

Fractal morphology can be attributed to trees, 
feathers, networks of neurons, His-Purkinje systern, 
vessel trees and other networks (Meakin, 1986; 
Goldberger and West, 1987; Barnsley, 1988; Goldberger 
et al., 1990). In Biology the rnost intensively studied 
fractal rnorphology is that of the bronchial tree of the 
human lung (Weibel and Gómez, 1962; Goldberger and 
West, 1987). 

In order to calculate the fractal dirnension of an 
organ, the rnethod which is habitually ernployed requires 
a large nurnber of measurernents of that organ. 
These rneasurernents can be length, surface areas, or 
volurnes of successive segments of a tree. They 
are plotted against the generation or branch nurnbers 
of the segments on log-log graphs. If al1 points 
fa11 on a straight line, the negative of its slope is defined 
as the fractal dimension (Tsonis and Tsonis, 1987). 

This  rnethod is so  laborious that the fractal 
dirnensions of rnany other organs are still to be 
quantified or, if this process has been carried out, 
then it has been with little precision, so that the arterial 
and venous cast of a kidney has a fractal dirnension of 
between 2 to 3 (Sernetz et al., 1985). 

Our work on the fractal dimension 

In this work we describe a rnethod which we have 
ourselves developed to calculate the fractal dirnension of 
the arterial tree-of the dog's kidney, a method which 
is  characterized by the need to take very few 
measurements. This method can be applied to any organ 
in any species, whenever it is possible to obtain just a 
few rneasurements of the arterial tree. 

On the basis of the results obtained by using 
our  method we discuss the question which we 
have earlier posed: namely, can the fractal dimension 
be a single unique nurnber which serves to define 
an organ in a species? 
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Materials and methods provided by the ~ e r v i c e  of Animal Protection. The 
ani als were first anaesthetized with Combelen (1.5 

Preparation of the casts cm Y' lanimal, by way of intramuscular administration) 
and with 0.5 gmlanimal of pentobarbital and 500 U.I./kg 

For the purpose of our study we have used three live weight sodium heparin, both administered 
crossbred male adult dogs weighing between 25-35 kg, intravenously; the animals were then sacrificed with an 

overdose of pentobarbital (1.5 grnlanirnal, by 
way of intravenous administration). 

The left jugular vein was dissected and a 
glass canula inserted onentated towards the 
heart. The vascular system was perfused with 
a cleansing solution made up of 6 to 8 litres 
of phosphate buffer, 0.1 M, pH 7.3 and was 
drained by the same jugular vein through the 
craneal limit of the incision we had earlier 
made. Once the vascular system had been 
washed, it was filled with 2 littres of 2% 
glutaraldehyde solution adjusted to pH 7.3 
with the addition of 1% of glucose. The 
washing solution as well as  the fixing 
solution were administered at 39" C. 

After the abdominal cavity was opened, 
the kidneys were extracted in order for them 

Flg. 3. Portion of one theoretical arterial tree. Dichotomic 
, bifurcations (arrows). A whole kidney is represented by 
v means of a prism. 

Fig. 4. Volumes that surround ea& branch of the V-shaped forks. A: junctions of the successive biurcations; R is the radius of the largest base of the 
truncated cone, r is that of the smallest base, h is the height which measures the same as an ami, or branch, of the V-shaped fractal. B: geometric 
body of the junctions in the bifurcations with r representing both the height and the radius of the largest base. 



Fractals and kidney arteria1 pattern 

to be weighed and their volume measurement taken. 
The respective renal arteries were tubed with a 14 gm 
Avocatto cannula and a mixture of epoxidic Araldite 
CY223 resin and polyaminic HY 2967 (Ciba-Geigy) 
hardener was injected in a volume proportion 87 cm3/40 
cm3. The resin had itself been previously mixed with 
2% DW 0133 red colourant. Al1 the products had 
been kept in a bath at 40' C up to the moment of 
injection. 

Following the injection of the resin, the organ 
was kept for two hours at room temperature, a sufficient 
time for the polymerization of the products. The kidneys 
were submerged in a 20% KOH solution and were kept 
for 24 hours in a stove at 50" C in order for tissue 
corrosion to take place and for the extraction of the 
plastic cast, which was then throughly cleaned in 
running water. 

Measurements taken from the plastic casts 

Measurements were taken at 13 sites on each of the 
plastic casts: the first site chosen was the cast of the 
renal artery, from its separation from the abdominal 
aorta artery to its first bifurcation into dorsal and ventral 
rami (Branch 0); the second was the cast of the main 
branch of the renal artery situated between the first and 
second bifucartion (Branch 1). Then we averaged out 
dorsal and ventral measurements. And so on for the 
other 11 Branches down to glomeruli. 

At each of the four sites (Branches) described, we 
measured the length and diarneter at both bases using a 
vernier calliper gauge with a 0.1 mm sensitivity. We also 
measured their respective volumes and for this purpose 
we divided the weight of each section by the density of 
the plastic: 1.1 gm/cm3 when hardened at room 

temperature. 
We also counted the maximum number of 

dichotomous bifurcations of the arterial tree 
that appeared on each plastic cast. 

Calculation of the fractal dimension 

We set out with the aim of simplifying 
and automating the mathematical calculation 
process. We have achieved simplicity in that 
our method needs very few measurements for 
input: for the plastic cast as a whole, only the 
measurement of its volume and the 
maximum number of bifurcations that it 
posses and the volume, length and the radius 
at each base of one of its Branches (O to 12) 
are used. With respect to automatization, we 
constructed a fractal vromarnme in the form . - 
of a computer program written in Pascal 
Light Speed 2.0 and executed on a Macintosh 
Plus computer (more details can be found in 
the attached Appendix). 

The programme has been designed to 
carry out various tasks. First it is able to 
construct theoretical trees that are similar to 
the skeletons of the trees which can be 
observed in each plastic cast. Note that we 
have not attempted to construct an exact 
template of each plastic cast. Each theoretical 
tree is formed by repeating, at different 
scales, the fractal pieces in the form of a V, to 
which we have given the name fractal model 
(Figs. 1-3). As the theoretical tree grows, the 
programme by mean one fractal dimension 
relating these successive pieces. The V 
shaped fractal dimension is different for each 

1 tre; constructed by the programme. 

1 Fig. S. M o l e  cast, dorsal view. 

I Fig. 6 Whole cast, section. One dichotomic bifurcation 
(arrow). 
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Secondly, the programme calculates the total volume 
of each theoretical fractal tree by totalling the volumes 
of al1 the truncated cones constructed around that tree; 
for this the program used each V Branch of each 
theoretical fractal tree as the axis of a skeleton from 
which we are able to construct a truncated cone (Fig. 4). 

Finally, from amongst the theoretical trees which 
have been constructed, the programme selects those 
which have the same volume as the plastic cast f 0.05%. 

Each tree constructed by the programme has a 
maximum of 1012 Branches because this number is the 
maximum number of dichotomic bifurcations that we 
noted. For each set of data 100 different theoretical trees 
are constructed, the fractal dimensions of which are 
differentiated by a value equal to 0.01. The programme 
canies out al1 calculations with 8-digit real numbers. 

The fractal dimension connected with each V-shape 

which forms the theoretical tree selected by the 
programme is the dimension allocated to the actual 
kidney by this fractal programme. 

Results 

The epoxidic resins enabled us to obtain complete 
casts of the kidney (Figs. 5,6). Whilst the arterial system 
was filled homogeneously, we noted that the vascular 
system was not filled from the efferent arterioles 
onwards (Figs. 7, 8), but the filling did reach the straight 
vessels that come from the arch-shaped arteries. 

With the aid of a magnifying glass we noted that the 
maximum number of dichotomic bifurcations was 12, 
located from the first division of the interlobed arteries 
to the glomeruli located in the corticai, which meant the 
existence of up to 1012 Branches in each plastic cast. 

1 
The measurements obtained from these 

plastic casts of the arterial trees from their 
separation from the abdominal aorta artery 
down to glomeruli, are shown in Table 1, 
and these same numerical values were 
introduced into the computer programme as 
its input. The volume of both the efferent 
artenoles (Fig. 8) and of the glomeruli were 
excluded in the volume of the plastic casts of 
three kidneys; they were, respectively 
4.2296, 9.61% and 7.56% (Table 1B). The 
theoretical volumes were calculated down to 
the glomerulus (Tables 2,3). 

After carrying out the calculations, the 
fractal programme detected severa1 fractal 
dimensions for which there was a 
coincidence when comparing the volume of 
their theoretical fractal trees and the volurnes 
of their respective plastic casts. When 
comparing volumes we allowed for an error 
of f 0.05%. We noted that onlv the fractal 
dimension having a value of 1.94 was found 
in al1 the results, whether the fractal 
programrne employed as its input data the set 
of measurements relating to the first Branch, 
or whether it employed those relating to the 
second. 

Tables 2 and 3 show the measurements 
for the branches of the theoretical fractal 
trees constructed for each of the three 
kidneys when the fractal dimension is 1.94 
and when we employed as input the data 
from Branches 1 or 2, as taken from 
their respective plastic casts. We also 
caiculated the correlations (Table 4) of the 
measurements of these theoretical fractal 
trees (Tables 2, 3) with those corresponding 

Flg. 7. Cast of efferent artenoles. 

Fig. 8. Cast of efferent arterioles and their glomeruli (G). 
One dichotomic bifurcation (arrow). 
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Table 1. Set of measurement obtained from the plastic casts and used by the programme successively as input. Branch number O is renal artey, from 
its separation from the abdominal aorta artely to its first bifurcation into dorsal and ventral rami. C is the volume of both the efferent artenoles and of the 
glomeruli. 

Kidney identification nurnber 

Total volurne of kidney (rnrn3) 

_(A) Total volume of plastic cast 
Maximun number of bifurcations from 
the renal artety to the glomerulus 

1 

Kidney 
number 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

(B) On each 

2 3 

Branch 
number 

O 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

O 

1 

2 

3 

4 

5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
6 

7 

8 

9 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
11 

- - - --------------------------------- . ---  

12 

O - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2 - -----------------------  
3 . . . . . . . . . . . . . . . . . . . . . . . .  
4 . . . . . . . . . . . . . . . . . . . . . . . .  
5 - - - - - - - - - - - - - - - - - - - - - - - -  
6 - -----------------------  
7 . . . . . . . . . . . . . . . . . . . . . . . .  
8 . . . . . . . . . . . . . . . . . . . . . . . .  
9 . . . . . . . . . . . . . . . . . . . . . . . .  

10 - -----------------------  
11 . . . . . . . . . . . . . . . . . . . . . . . .  
12 

kidney addition of total 

70000 

5256.8 

12 

73000 

(C)= A-B 

80000 

Length 
(mm) 

12.45 

14.00 

1 1 .O0 

10.00 

1 .O8 

0.90 

0.76 

0.65 

0.56 

0.49 

0.43 

0.39 

0.35 

14.40 

10.00 

8.00 

9.00 

4.12 

2.73 

1.84 

1.26 

0.87 

0.60 

0.42 

0.29 

0.21 

9.30 

10.00 

7.00 - - - - - - - - - - - - - - - - - - - -  
6.00 - - - - - - - - - - - - - - - - - - - -  
1.12 - - - - - - - - - - - - - - - - - - - - - - - -  
0.86 - - - - - - - - - - - - - - - - - - - - - - - -  
0.68 

0.56 - - - - - - - - - - - - - - - -  
0.47 - - - - - - - - - - - - - - - - -  
0.41 - - - - - - - - - - - - - - - - - -  
0.35 - - - - - - - - - - - - - - - - - - - - - - - -  
0.31 - - - - - - - - - - - - - - - -  
0.28 

volume of al1 branches 

263.01 

6222 6149.72 

Total volume of al1 the 
branches equal to this 

(mm3) 

141.000 

94.180 

60.720 

1 19.272 

14.555 

25.821 

48.282 

92.658 

180.264 

354.047 

698.651 

1383.455 

2745.993 

79.630 

80.360 

68.360 

. 108.320 

26.56 

47.928 

77.336 

129.738 

223.777 

394.060 

705.097 

1277.71 9 

2339.253 

88.090 

22.720 

20.720 

15.272 

4.161 

24.462 

44.053 

82.468 

157.777 

305.854 

597.91 5 

1 175.469 

2319.975 

4858.93 

Volurne 
(mm3) 

141.00 

47.09 

15.18 

14.91 

0.91 

0.81 

0.75 

0.72 

0.70 

0.69 

0.68 

0.68 

0.67 

79.63 

40.18 

17.09 

13.54 

1.66 

1.50 

591.58 397.87 

12 

Diameter of 
largest base 

(mm) 

4.30 

4.00 

2.50 

2.40 

2.05 

0.28 

0.18 

0.13 

0.09 

0.07 

0.05 

0.04 

0.04 

4.50 

3.50 

2.90 

2.50 

2.10 

0.90 

12 

Diameter of 
smallest base 

(mm) 

4.05 

3.00 

2.40 

2.05 

0.28 

0.18 

0.13 

0.09 

0.07 

0.05 

0.04 

0.04 

0.03 

4.20 

3.20 

2.70 

2.10 

0.90 

0.54 

0.34 

0.21 

0.13 

0.08 

0.05 

0.03 

0.02 

3.25 

1.90 

1.10 
- - - - - - - - - - - - - - * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

0.90 

0.86 

0.56 

0.37 

0.24 

0.16 

0.1 1 

0.07 

0.05 

0.03 

5558.137 

1.21 

1 .O1 

0.87 

0.77 

0.69 

0.62 

0.57 

0.54 

0.34 

0.21 

0.13 

0.08 

0.05 

0.03 

88.09 4.00 

11.36 2.00 

5.18 

1.91 

0.26 

0.76 

0.69 

0.64 

0.62 

0.60 

0.58 

0.57 

0.57 

1.30 

1 .O0 

0.90 

0.86 

0.56 

0.37 

0.24 

0.16 

0.1 1 

0.07 

0.05 

5958.99 
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Table 2. Measurements peitaining to the branches of the theoretical fractal trees of the three kidneys, when the fractal dimension is 1.94 and when, for 
input, the data from Branch 1 (the main branch of the renal artery situated behveen the first and second bifurcation) of their respective plastic casts is 
employed. Branch number O is renal artery, from its separation from the abdominal aorta artery to its first bifurcation into dorsal and ventral rami. 

Kidney identification number 

Maximun number of bifurcations from 
the renal artery to the glomerulus 

1 

12 

2 

12 

Kidney 
number 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 _ _ _ _ _ _ _ _ _  
2 

2 

2 

3 
3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 
On each kidney 

3 

12 

Length 
(mm) 

12.45 

14.00 

4.38 

27.82 

15.56 

8.719 

4.87 

2.73 

1.53 

0.85 

0.476 

0.2721 

0.1474 

14.40 

10.00 

4.47 

16.41 

11.38 

7.89 

5.47 

3.79 

2.63 

1.824 

1.264 

0.878 

0.6082 

9.30 

10.00 

5.46 

21.46 

15.86 

11.72 

8.66 

6.40 

4.73 

3.50 

2.586 

1.912 

1.413 

branches 

Branch 
number 

O 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

O 

1 

2 

3 

4 

5 

6 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
7 

8 

9 _ _ _ _ _ _ _ _ _ _ _ _ _  
10 

11 

12 

O 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

total volume of al1 

Difference with plastic casts, B in Table 1 

Volume 
(mm3) 

41 .O000 

47.0900 

9.6780 

419.39 

86.46 

17.84 

3.67 

0.7597 

O. 1569 

0.0321 

0.0066 

0.001 4 

0.0003 

79.63 

40.18 

20.91 

215.76 

73.71 

25.17 

8.604 

2.94 

1 .O048 

0.3429 

0.117 

0.040 

0.0137 

88.09 

11.360 

5.725 

169.61 

61 .S3 

22.33 

8.102 

2.939 

1 .O67 

0.3870 

0.1404 

0.0510 

0.0185 

5983.64 

Diameter of 
largest base 

(mm) 

4.300 

4.000 

3.000 

2.687 

1 .630 

0.989 

0.600 

0.364 

0.221 

0.134 

0.081 

0.049 

0.030 

4.500 

3.500 

3.200 

2.369 

1.663 

1.167 

0.819 

0.575 

0.403 

0.283 

0.199 

0.139 

0.098 

4.000 

2.000 

1.900 

1.845 

1.293 

0.906 

0.635 

0.445 

0.312 

0.219 

0.153 

0.107 

0.075 

-20.95 -24.64 -14.54 

Diameter of 
smallest base 

(mm) 

4.050 ---------------- 
3.000 

2.687 

1.630 

0.989 

0.600 

0.364 

0.221 

0.134 

0.081 

0.049 

0.030 

0.01 8 

4.200 

3.200 

2.369 

1.663 

1.167 

0.819 

0.575 

0.403 

0.283 

0.199 

0.139 

0.098 

0.069 

1.900 

1.900 

1.845 

1.293 

0.906 

0.635 

0.445 

0.312 

0.219 

0.153 

0.107 

0.075 

0.053 

5572.68 

Total volume of al1 the 
branches equal to this 

(mm3) 

141 .O00 - ------------------- 
94.1 80 ------------------- 
38.712 ------------------- 

3355.1 52 ------------------- 
1383.468 

571 .O96 

235.383 

97.245 

40.157 

16.450 

6.792 

2.861 

1.144 

79.630 

80.360 

83.676 

1 726.126 

1 179.475 

805.703 

550.683 

376.394 

257.221 

175.577 

119.845 

83.013 

55.982 

88.090 

22.720 

22.900 

1356.948 

984.538 

714.684 

518.587 

376.226 

273.195 

198.160 

143.778 

104.353 

75.707 

4879.88 
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Table 3. Measurements pertaining to the branches of the theoretical fractal trees of the three kidneys, when the fractal dimension is 1.94 and when, for 
input, the data from Branch 2 (the main branch of the renal artery situated between the second and third bifurcation) of their respective plastic casts is 
employed. Branch number O is renal artery, from its separation from the abdominal aorta artery to its first bifurcation into dorsal and ventral rami. 

Kidney identification number 

Maximun number of bifurcations from 
the renal artery to the glomerulus 

1 

12 

Kidney 
number 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

3 

3 

3 - - - - - - - - -  
3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

On each kidney 

2 

12 

3 

12 

Branch 
number 

O 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 O 

11 

12 

O 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 O 

11 

12 

O 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 O - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
11 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
12 

total volume of al1 

18.75 Difference with plastic casts, B in Table 1 

Length 
(mm) 

12.45 

14.00 

44.82 

25.08 

14.034 

7.86 

4.39 

2.463 

1.38 

0.766 

0.429 

0.245 

O. 1329 

14.40 

10.00 

17.93 

12.439 

Diameter of 
smallest base 

(mm) 

4.050 

3.000 

1.820 

1.105 

0.670 

0.407 

0.247 

0.150 

0.091 

0.055 

0.033 

0.020 

0.012 

4.200 

3.200 

2.246 

1.576 

8.07 

Total volume of al1 the 
branches equal to this 

(mm3) 

141 .O00 

94.1 80 

3358.996 

1385.068 

571 .O1 1 

235.665 

97.109 

40.110 

16.559 

6.781 

2.799 

1.179 

0.471 

79.630 

80.360 

1728.406 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
1 181.420 

Volume 
@m3) 

141 .O0 

47.09 

839.74 

173.13 

35.68 

7.36 

1.517 

0.313 

0.064 

0.013 

0.0027 

0.0006 

0.0001 

79.63 

40.18 

432.1 O 

147.67 

21.97 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
807.31 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
551.513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
376.970 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
257.675 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

176.101 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

120.213 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - Y - - - - - - - -  

82.060 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
56.158 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
38.336 

88.090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
22.720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1335.844 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
969.666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
703.742 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
510.989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
370.876 

--_--------------__------------------. 

269.128 ___- - - - - - - - - - - -____- - - - - - - - - - - - - - - - - - -  
195.472 -___- - - - - - - - - - -____- - - - - - - - - - - - - - - - - - -  
141.814 - -__-- - - - - - - - - - -___-- - - - - - - - - - - - - - - - - -  
102.916 ___- - - - - - - - - -____- - - - - - - - - - - - - - - - - - - - -  
74.71 1 

-__-----------____-------------------. 

54.212 

8.627 

5.981 

4.1 49 

2.878 

1.996 

1.383 

0.958 

0.665 

0.461 

9.30 

10.00 

40.04 

29.60 

21 .88 

16.18 

11.95 

8.837 

6.536 

4.829 

3.568 

2.638 

1.949 

branches 

Diameter of 
largest base 

(mm) 

4.300 

4.000 

3.000 

1.820 

1.105 

0.670 

0.407 
-----------------------.--------------------------------------------------- 

0.247 

0.150 

0.091 

0.055 

0.033 

0.020 

4.500 

3.500 

3.200 

2.246 

50.45 

17.23 

1.576 

1.106 - - - - - - - - - - - - -  

1.106 

0.776 

0.545 

0.382 

0.268 

0.188 

0.132 

0.093 

0.065 

5.89 

2.013 

0.687 

0.234 

0.08 

0.0274 

0.0094 

0.776 
- - - - - - - - - - - - -  

0.545 
- - -----------  

0.382 
- - -----------  

0.268 
- ------------  

0.188 
- - - - - - - - - - - - -  

0.132 
- - - - - - - - - - - - -  

0.093 

88.09 

11.36 

333.96 - - - - - - - - - - - - - - - - - - - - - - -  
121.20 - - - - - - - - - - - - - - - - - - - - - - -  
43.98 

15.96 

5.79 

2.102 

0.736 

0.277 - - - - - - - - - - - - - - - - - -  
0.1005 

0.0365 

0.0132 

1 
4.000 

- - -----------  
2.000 - - - - - - - - - - - - -  
1.900 - - - - - - - - - - - - -  
1.332 - - -----------  
0.933 - - - - - - - - - - - - -  
0.654 - - -----------  
0.458 - - - - - - - - - - - - -  
0.321 - - - - - - - - - - - - -  
0.225 - - - - - - - - - - - - -  
0.158 - - - - - - - - - - - - -  
0.1 11 - ------------  
0.077 - - -----------  
0.054 

1.900 
1 

1.900 

1.332 

0.933 

0.654 

0.458 

0.321 

0.225 

0.158 

0.111 

0.077 

0.054 

0.038 

5950.92 5536.15 4840.1 7 
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Table 4. Correlation coefficients when compaflng data groups contained in Table 1 with that periaining to kidney 1, 2 and 3 in Tables 2 and 3. 

to the plastic casts (Table 1). 
Although the programme carries out al1 its 

calculations using 8-digit real numbers, these are later 
rounded down to only 2,3, or 4, as can be seen from the 
Tables. 

Table 1 data 
compared wlth 
Kidney number 

Table 2 data 

Lenght 
Volume 
Diameter of 
largest base 
Diameter of 
smallest bsse 

Table 3 data 

Lenght 
Volume 
Diameter of 
largest base 
Diameter of 
smallest base 

Discussion 

With the aid of the results that we have obtained, let 
us now return to the question we first posed at the 
beginning of this work: could the fractal dimension be 
that unique number which can serve to define an organ 
in a species? In order to answer this question, it is 
helpful to divide it into three. 1s the arterial tree of the 
kidney a fractal organ? Does our method allow us to 
calculate the fractal dimension of an organ? 1s the fractal 
dimension unique for an organ? 

It is very difficult to answer the first of these 
questions because nobody has yet defined a fractal 
objectively. But we can say that the arterial tree of the 
kidney is a fractal organ, for three usual reasons: because 
of its aspect (Gleick, 1987; Goldberger and West, 1987; 
Goldberger et al., 1990); because we have been able 
(with the aid of our fractal programme) to construct 
theoretical fractal trees that have the same volume as the 
organ; and because an object is fractal if the pattern with 
which its structures have been constructed is also a 
fractal (Mandelbrot, 1987). 

If the arterial tree of the kidney has a specific 
property, such as being fractal, this is important for the 
complete organ because «the structure of the vascular 
network in the organs is so characteristic that its aspect 
allows the diagnosis of the organ and even of the tissue 

length 

I I 

1 1 2 I 3 
I 1 
1 I 

0.71 1 0.89 1 0.44 
1 1 

- 1 - 1 -  
1 1 
1 1 

1 - 1 -  
I I 
I I 
1 - 1 - 1 -  
I 1 

I I I 1 
1 1 

0.06 1 0.82 1 0.38 
- 1 - 1 -  

1 1 
I I - 1  _ 1 I - 
1 1 
1 1 

1 - 1 -  
I 

to which it beiongs» (~javakhichvili and Komakhjidza, 
1970). 

~ i t h  respect to the second question (does our method 
allow us to calculate the fractal dimension of an organ?) 
we can again answer this in the affirmative. The data 
contained in Tables 2-4 shows us that various fractal 

Volume 

1 1  2 j 3  
1 1 
1 1 

I 1 
- 1 -  - 1 

0.15 1 0.24 1 0.17 
1 1 
1 1 

- 1  - 1 -  
1 1 

I I 
_ I  I _ 1 -  

1 I 

I I I 
1 1 

- 1  - 1 -  

0.29 ! 0.33 0.35 
I I 

_ I  I _ 1 -  

1 1 
1 1 - 1  - 1 -  

I 

dimensions are possible for the template of each kidney, 
using our fractal prograrnme. 

As our fractai pattern we have chosen a V-shape for 
our fractal programme (Fig. 1) because it is very similar 
to the actual dichotomic bifurcations observed in the 
plastic casts. 

We do not suggest that our fractal programme 
constructs an exact template of each plastic cast, because 
variations exist between each of these, as shown by the 
measurements taken from them (Table 1); we have been 
looking for similarities, rather than differences, with the 
aid of a model that simplifies reality, applying to our 
work what Lefevre (1983) has said with regards to the 
lung, namely ~modeling the pulmonary arterial tree is 
considered as an optimal synthesis of the problem at the 
teleonomical optimization of a fractal model of the 
whole lung». 

Our fractal programme carries out al1 its calculations 
with 8-digit real numbers, although later these are 
rounded down to maximum the first four decimal figures 
because this is the highest degree of precision that we 
can obtain when taking measurements directly from the 
plastic casts (Table 1). This is also the reason why the 
fractal dimensions used by the fractal programme 
change in increments of 0.01 units, which is the grade of 
sensibility; experimentally we observed less increments 
were not profitable. 

The maximum of 12 levels of dichotornic bifurcations 
that we have counted in the three plastic casts of the 
kidneys represent 21 branches, corresponding in man to 
220 (Poirier, 1977). This data, drawn from only three 
kidneys, has no statistical value, but we have thought it 
was enough for this first work. 

When comparing the volumes calculated by the 
fractal programme with respect to the volumes of the 
plastic casts, we allow for an error of f 0.05%, a leve1 
which is habitually accepted in biological research. The 
volurne of both the efferent arterioles (Fig. 8) and of the 
glomeruli are excluded in the volume of the plastic casts, 

Diameter of 
largest base 

1 1 2 1 3  
1 1 
1 1 

- 1 1 - 1 -  

1 - 1 -  - 1 
1 1 

0.97 1 0.99 1 0.93 
I I 

1 - 1 -  I I 

1 
I 

1 
1 

1 1 
I - I -  

1 
- 1 - 1 -  

1 

1 1 
I I 

0.98 1 0.99 1 0.87 
1 1 
1 1 

1 - 1 -  

Diameter of 
smallest basa 

I 1 

1 1 2 1 3  
1 1 
1 1 

1 1 
1 - 1 -  

1 1 
- 1  - 1 -  

1 1 
1 1 

I _ u -  
1 1 
I I 

0.97 1 0.99 1 0.98 
I 0 
I I 
I I 

1 1 
- 1 - 1 -  

1 1 
- 1 - 1 -  

I 1 
I I ; _ 1 I - 
1 1 

0.98 1 0.99 0.97 
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whifst the theoretical voiumes are calculated down to the 
glomenilus. 

But can we say that the fractal dimension of an organ 
is unique? With the data that is now available to us 
(Table 1) and with the calculations of our fractal 
programme, we consider that the most representative 
number is only one which appears in al1 results of three 
kidneys; namely 1.94 (Table 2). 

According to our calculation system, only one set of 
measurements is necessary, but for the purpose of this 
investigation we used the 13 sets one after the other, in 
order to determine which of them provided the most 
useful data. 

If we accept this value of 1.94 as valid, this means 
that the true fractal dimension of the skeleton of the 
fractal tree (which appears as a line in Fig. 2) is 1.39 (= m) because, in the calculation (see Appendix), the 
fractal dimension has only intervened in two of the three 
lengths (height and radius) on each truncated cone (Fig. 
4) which form part of the theoretical fractal tree. 
Therefore the fractal dimension of the fractal tree as a 
whole is 2.7 (= 1.3931, a value which is similar to those 
resulting from the application of other methods. Thus 
arterial and venous casts of a kidney have a fractal 
dimension of between 2 and 3 (Sernetz et al., 1985), as 
does the lung alveolar-capillary (Goldberger and West, 
1987). The y o k  vessels of a chicken embryo incubated 
for 4 days have a fractal dimension of 513 (Tsonis and 
Tsonis, 1987). 

Using the value of 1.94, and once again employing 
our  fractal programme, we have calculated the 
measurements of the Branches of the fractal trees 
corresponding to the three kidneys, using as input the 
data from the plastic casts of either Branch 1 or Branch 2 
respectively (Tables 2, 3). These measurements have a 
very high correlation (Table 4) with their equivalents 
from the plastic casts (Table l), a fact which we have 
interpreted as support for the method that we have used 
to calculate and select the figure of 2.7 as the fractal 
dimension of the kidney. 

We suggest that the technique that we have 
constructed and, we believe, proved in this work, will be 
useful in carrying out more extensive and systematic 
statistical studies on fractal morphometrics, using either 
our fractal programme or a similar one. These extended 
studies will allow for the calculation of the fractal 
dimension not only of the kidney but also of other 
organs, thus enabling us to prove whether these are equal 
or different; later these studies could be expanded to 
include those pathologies originating from arterial 
alterations. If the results obtained reveal significantly 
different values, then we will have available to us a new 
and more objective taxonomy. 

Appendix 

An object is fractal if the pattern with which its 
structure has been constructed is a lso a fractal 
(Mandelbrot, 1987). The pattern we have chosen is a V- 

shaped fractal (Fig. 1) because i t  is similar to the actual 
dichotomic bifurcations which we observed on the 
plastic casts. The repetition of the pattern at different 
scales forms the skeleton of the fractal tree (Figs. 2, 3). 

Calculation of the fractal dimension of our pattern 

** In the calculation of the fractal dimension we have 
employed the Hausdorff-Besicovitch formula (Abbot, 
1981): 

L = L (AX) D- l where 

L is the Hausdorff invariant length, so called because 
it  always has the same value for each pattern, 
independent of the scale of the fractal pattern V (Fig. 1). 

L is a part of the total length of the fractal tree, made 
up by adding together the lengths of al1 the fractal 
patterns whose arms have a value equal to AX. 
AX is the length of each arm, or branch, of the fractal 

pattern (V) according to the resolution used in each case. 
D is the fractal dimension 
** The fractal pattern is constructed by way of a basic 

line (Fig. 9) where: Lo = AXo 
In Figure 3 the Hausdorff-Besicovitch formula 

(Abott, 1981) gives: 

(In this and in al1 subsequent formulae * represents 
the multiplication sign). 

** In Figure 10 we can see how the initial straight line 
(Fig. 9) appears after the application, for the first time, 
of the fractal pattern (V) (Fig l), where: 

Fig. 9. Starting line for the calculation of the fractal dirnension 
(Hausdorff-Besicovith dirnension). Lo is the initial length of the fractal 
tree when the only ami, or branch, of the fractal pattern rneasures X, . 
AXO is the initial length of the fracial pattern. 
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where: m is a fixed value for each fractal 
tree constructed by the programme; m makes Lo 
become smaller and, in this way, the scaling 
of the fractal pattern changes in succesive rarnifications. 

We apply the Hausdorff-Besicovith formula 
(Abbott, 1981) 

To calculate D, which is the fractal dimension of 
our pattern we divide formula (2) by (1); 

simplifying 

Flg. 10. V-shaped fractal rnodel and its rneasurernents after the 
first bifurcation. L, is the initial length of the fractal tree when the 
only ami, or branch, of the fractal pattern measures & . M,, is 
the initial length of the fractal pattern. M, is the initial length of 
each ami, or branch, of the fractal pattern after the first bifurcaüon. 
m is a fixed value which makes L, becorne srnaller in successive 
rarnifications. a is half the value of the angle forrned by the two 
amis of the fractal pattern. 

we now take logarithms (log) 

O = 10, (2 * , * [,]) + p-1,  * log (6 * [;])] 
simplifying 

D = -  log 2 

1% (Z) 
As D to have significance, must be greater than 

zero, the programme only needs to calculate those 
values where m is greater than Thus: fi(fi=1.414213562). 

De- l .414213562 
1.414213562 

lag ( m ) 
Each fractal tree constructed by the programme 

is different from the rest in the fractal dimension 
of its pattern and this is because m changes. 
The changes to m give rise to changes in the 
length of the arms for each V-shaped f r a ~ t d  f m  (Figs. 
192). 

The construction of volumes associated with the 
fractal pattern 

The programme constructs fractal trees 
by the repetition of the V-shaped fractal pattern 
(Fig. 1) at different scales (Figs. 2, 3). Whilst the 
plastic cast is tridimensional and has a volume, 
the V-shaped form does not. In order to obtain volumes 
for the programme to compare, it is necessary to 
create them from each fractal tree; to that end, 
the programme uses each arm, or branch, of the 
V-shape as a skeleton or control axis around which 
to construct a truncated cone (Fig. 4). 

The programme calculates the total volume 
of each fractal tree which it has constructed by 
totalling the volumes of al1 the truncated cones, 
which have themselves been constructed around 
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the fractal tree, this tree having been formed by thus its scaling changes in each successive ramification. 
the union of V-shaped fractal pattems (Fig. 1) repeated at 
different scales (Figs. 2,3). 

The v0lume of each truncated cone is: Acknowledgements. The authors thank Dr. Jos6 Garay de Pablo 
According to the formula Vis the volume of the for caicuiating the voiume bifurcations of the succesive cones in the 

fractal shape. We thank Ciba-Geigy Enterpnse for supplying the plastic 
resin, Dr. Jos6 Garcia Esteve for his fractal literature, and Carmen 

V=!*[n*h*(R2+i+R*r ) ]  Martin Carcla for her assitance in the translation of the manuscnpt. 
3 

truncated cone, h is its height, R the radius of the largest 
base, and r that of the smallest base; * is  the 
multiplication sign, and R= 3.141592654. 

Two truncated cones, constructed around the 
two arms, or branches, of a V-shaped fractal meet 
at a point (Fig. 4A, B); a third truncated cone, 
arising from an earlier ramification also meets 
at that point. The connection between these 
three truncated cones gives rise to a geometrical 
body (Fig. 4A, B) whose volume we have calculated by 
way of aleatory Montecarlo type system. 

V = 0.896 r3 
In this formula V represents the volume of the 

geometrical body made up by the connection of the three 
truncated cones. In the same neometrical body r 
represents the height and the radiÜs of the largest báse 
(Fig. 4B). - 

In the calculations performed by the programme 
R and r are always related in the successive branches of 
the fractal trees by a coefficient equivalent to: 

(R - r) * Proportional Factor to Dimension 
Fractal where Proportional Factor to Dimension 
Fractal = the relationship of length which exists between 
the arms of any two successive rarnifications, AXn of the 
fractal tree which has been constructed. Its value 1s: 

Proportional Factor to Dimension Fractal = [$[ 
n is the ordinal number of the bifurcation considered 

(1, ...., 12). 
m is a fixed value for each fractal tree constructed 

by the programme, which causes the length of 
the arms of the fractal pattern to became smaller, and 
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