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Summary. A method has been developed by which it is
possible to measure the fractal dimension of the arterial
tree of the kidney. The objective of this work is to
determine a method which permits us to discriminate
between the architectures of specific organs by reference
to a unique number, namely the fractal dimension of the
arterial tree of that organ. This method opens the
possibility of a new taxonomy for normal organs and for
the pathological injuries related to the vascular
morphology of those organs.

The method that we have devised uses as its input the
volume which is taken up by the arterial tree of the
kidney. In order to calculate this volume we first
obtained a plastic cast (the arteries were filled with
Araldite CY233 plastic resin after which the organic
tissues were corroded); thereafter we constructed a
theoretical arterial tree having the same volume as the
renal one. From this simplified tree, we were able to
calculate its fractal dimension.

The complete process of constructing the theoretical
arterial tree and the subsequent calculation of its fractal
dimension was carried out automatically by way of a
computer programme to which we have given the name
fractal program.
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Introduction

Classically, the morphological sciences, when
studying an organ, describe it by reference to its
macroscopic and microscopic anatomy. Some of the
features that define the organ are qualitative and provide
subjective data; others are quantitative, but they give rise
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to values which are not discriminatory.

The possibility of being able to characterise an organ
by means of a single, unique and objective value, for
example a number, is, we suggest, an attractive idea, but
it presents us with a fundamental problem, namely that
of choosing the method which will allow us to obtain
that unique number for each organ. Could that method
be its fractal dimension?

Kidney andtomy of the arterial tree

Fuller and Huelke (1973) have said «the renal arteries
in the dog arise from the aorta, slightly caudal to the
celiac and superior mesenteric trunks. The renal arteries
divide into dorsal and ventral rami well before entering
the hilum of the kidney. The ventral rami of both renal
arteries pass toward the hilum dividing into two stem
branches, each of which may again divide before
reaching the hilum of the kidney. Within the substance of
the kidney, these ventral branches supply the cranial,
middle and caudal areas of the ventral surface of the
kidney, and are named according to their distribution
(ventral-cranial, ventral-middle, and ventral-caudal
segmental arteries). Usually each of these segmental
arteries is double. The dorsal ramus of the renal artery
likewise divides into double branches for the supply of
the cranial, middle and caudal portions of the dorsal half
of the kidney. The caudal third of the dog kidney is
always supplied by branches from both the dorsal and
ventral rami». (Nickel et al., 1973).

What is a fractal?

In classical Euclidean geometry objects have 0, 1, 2
or 3 dimensions. Modern algebra makes it possible for
us to add more dimensions to classical geometry, 4, 5,
6... etc, and this is useful when solving certain problems
with physics. Through the use of algebra, man has been
able to both imagine and manage abstract objects having
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dimension are called fractal objects and the value
corresponding to the fractional dimension is
called the fractal dimension (Mandelbrot, 1987) or
Hausdorff-Besicovitch dimension (Abbot and
Wise, 1981). However nobody has yet defined a
fractal objectively.

We are able to recognize a typical fractal
object by its irregular and/or fragmented
appearance; its complexity, however, is only
apparent, and this is because its geometry has
been constructed by scaling a single geometry
entity (a straight line, a curve, etc) several times.
The property of scaling is expressed
mathematically by saying that it has interior
similarity or self similarity.

Fractals in biology

A number of pathophysiological cardiac

Fig. 1. The V-shaped fractal pattern used in this work.

Fig. 2. Section of a theoretical arterial tree.

more than three dimensions, although paradoxically he
has not been able to draw many of them. Both classical
geometry and its subsequent extensions always require
an integer number of dimensions (1, 2, ....N).

But there is another geometry which uses fractional
(172, 3/2, etc), or real dimensions (log 4/log 3, etc).
Those objects to which we can assign a fractional or real

disturbances display fractal behaviour
(Goldberger and West, 1987).

Fractal morphology can be attributed to trees,
feathers, networks of neurons, His-Purkinje system,
vessel trees and other networks (Meakin, 1986;
Goldberger and West, 1987; Barnsley, 1988; Goldberger
et al., 1990). In Biology the most intensively studied
fractal morphology is that of the bronchial tree of the
human lung (Weibel and Gémez, 1962; Goldberger and
West, 1987).

In order to calculate the fractal dimension of an
organ, the method which is habitually employed requires
a large number of measurements of that organ.
These measurements can be length, surface areas, or
volumes of successive segments of a tree. They
are plotted against the generation or branch numbers
of the segments on log-log graphs. If all points
fall on a straight line, the negative of its slope is defined
as the fractal dimension (Tsonis and Tsonis, 1987).

This method is so laborious that the fractal
dimensions of many other organs are still to be
quantified or, if this process has been carried out,
then it has been with little precision, so that the arterial
and venous cast of a kidney has a fractal dimension of
between 2 to 3 (Sernetz et al., 1985).

Our work on the fractal dimension

In this work we describe a method which we have
ourselves developed to calculate the fractal dimension of
the arterial tree of the dog’s kidney, a method which
is characterized by the need to take very few
measurements. This method can be applied to any organ
in any species, whenever it is possible to obtain just a
few measurements of the arterial tree.

On the basis of the results obtained by using
our method we discuss the question which we
have earlier posed: namely, can the fractal dimension
be a single unique number which serves to define
an organ in a species?
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Materials and methods

Preparation of the casts

For the purpose of our study we have used three
crossbred male adult dogs weighing between 25-35 kg,

=

el

provided by the Service of Animal Protection. The
anignals were first anaesthetized with Combelen (1.5
cm”/animal, by way of intramuscular administration)
and with 0.5 gm/animal of pentobarbital and 500 U.I./kg
live weight sodium heparin, both administered
intravenously; the animals were then sacrificed with an
overdose of pentobarbital (1.5 gm/animal, by

way of intravenous administration).
The left jugular vein was dissected and a
— glass canula inserted orientated towards the
j heart. The vascular system was perfused with
a cleansing solution made up of 6 to 8 litres
of phosphate buffer, 0.1 M, pH 7.3 and was
drained by the same jugular vein through the
craneal limit of the incision we had earlier
made. Once the vascular system had been
—— washed, it was filled with 2 littres of 2%
glutaraldehyde solution adjusted to pH 7.3
with the addition of 1% of glucose. The
washing solution as well as the fixing

| solution were administered at 39° C.
After the abdominal cavity was opened,
the kidneys were extracted in order for them

Fig. 3. Portion of one theoretical arterial tree. Dichotomic
bifurcations (arrows). A whole kidney is represented by
means of a prism.

R

Fig. 4. Volumes that surround each branch of the V-shaped forks. A: junctions of the successive bifurcations; R is the radius of the largest base of the
truncated cone, r is that of the smallest base, h is the height which measures the same as an arm, or branch, of the V-shaped fractal. B: geometric
body of the junctions in the bifurcations with r representing both the height and the radius of the largest base.
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to be weighed and their volume measurement taken.
The respective renal arteries were tubed with a 14 gm
Avocatto cannula and a mixture of epoxidic Araldite
CY223 resin and polyaminic HY 2967 (Ciba-Geigy)
hardener was injected in a volume proportion 87 cm3/40
cm3. The resin had itself been previously mixed with
2% DW 0133 red colourant. All the products had
been kept in a bath at 40° C up to the moment of
injection.

Following the injection of the resin, the organ
was kept for two hours at room temperature, a sufficient
time for the polymerization of the products. The kidneys
were submerged in a 20% KOH solution and were kept
for 24 hours in a stove at 50° C in order for tissue
corrosion to take place and for the extraction of the
plastic cast, which was then throughly cleaned in
running water.

Measurements taken from the plastic casts

Measurements were taken at 13 sites on each of the
plastic casts: the first site chosen was the cast of the
renal artery, from its separation from the abdominal
aorta artery to its first bifurcation into dorsal and ventral
rami (Branch 0); the second was the cast of the main
branch of the renal artery situated between the first and
second bifucartion (Branch 1). Then we averaged out
dorsal and ventral measurements. And so on for the
other 11 Branches down to glomeruli.

At each of the four sites (Branches) described, we
measured the length and diameter at both bases using a
vernier calliper gauge with a 0.1 mm sensitivity. We also
measured their respective volumes and for this purpose
we divided the weight of each section by the density of
the plastic: 1.1 gm/cm3 when hardened at room
temperature.

We also counted the maximum number of
dichotomous bifurcations of the arterial tree
that appeared on each plastic cast.

Calculation of the fractal dimension

We set out with the aim of simplifying
and automating the mathematical calculation
process. We have achieved simplicity in that
our method needs very few measurements for
input: for the plastic cast as a whole, only the
measurement of its volume and the
maximum number of bifurcations that it
posses and the volume, length and the radius
at each base of one of its Branches (0 to 12)
are used. With respect to automatization, we
constructed a fractal programme in the form

of a computer program written in Pascal
Light Speed 2.0 and executed on a Macintosh

Plus computer (more details can be found in
the attached Appendix).

The programme has been designed to
carry out various tasks. First it is able to
construct theoretical trees that are similar to
the skeletons of the trees which can be
observed in each plastic cast. Note that we
have not attempted to construct an exact
template of each plastic cast. Each theoretical
tree is formed by repeating, at different
scales, the fractal pieces in the form of a V, to
which we have given the name fractal model
(Figs. 1-3). As the theoretical tree grows, the
programme by mean one fractal dimension
relating these successive pieces. The
shaped fractal dimension is different for each
tree constructed by the programme.

Fig. 5. Whole cast, dorsal view.

Fig. 6 Whole cast, section. One dichotomic bifurcation

(arrow).



567

Fractals and kidney arterial pattern

Secondly, the programme calculates the total volume
of each theoretical fractal tree by totalling the volumes
of all the truncated cones constructed around that tree;
for this the program used each V Branch of each
theoretical fractal tree as the axis of a skeleton from
which we are able to construct a truncated cone (Fig. 4).

Finally, from amongst the theoretical trees which
have been constructed, the programme selects those
which have the same volume as the plastic cast + 0.05%.

Each tree constructed by the programme has a
maximum of 1012 Branches because this number is the
maximum number of dichotomic bifurcations that we
noted. For each set of data 100 different theoretical trees
are constructed, the fractal dimensions of which are
differentiated by a value equal to 0.01. The programme
carries out all calculations with 8-digit real numbers.

The fractal dimension connected with each V-shape

which forms the theoretical tree selected by the
programme is the dimension allocated to the actual
kidney by this fractal programme.

Results

The epoxidic resins enabled us to obtain complete
casts of the kidney (Figs. 5, 6). Whilst the arterial system
was filled homogeneously, we noted that the vascular
system was not filled from the efferent arterioles
onwards (Figs. 7, 8), but the filling did reach the straight
vessels that come from the arch-shaped arteries.

With the aid of a magnifying glass we noted that the
maximum number of dichotomic bifurcations was 12,
located from the first division of the interlobed arteries
to the glomeruli located in the cortical, which meant the
existence of up to 1012 Branches in each plastic cast.

The measurements obtained from these
plastic casts of the arterial trees from their
separation from the abdominal aorta artery
down to glomeruli, are shown in Table 1,
and these same numerical values were
introduced into the computer programme as
its input. The volume of both the efferent
arterioles (Fig. 8) and of the glomeruli were
excluded in the volume of the plastic casts of
three kidneys; they were, respectively
4.22%, 9.61% and 7.56% (Table 1B). The
theoretical volumes were calculated down to
the glomerulus (Tables 2, 3).

After carrying out the calculations, the
fractal programme detected several fractal
dimensions for which there was a
coincidence when comparing the volume of
their theoretical fractal trees and the volumes
of their respective plastic casts. When
comparing volumes we allowed for an error
of + 0.05%. We noted that only the fractal
dimension having a value of 1.94 was found
in all the results, whether the fractal
programme employed as its input data the set
of measurements relating to the first Branch,
or whether it employed those relating to the
second.

Tables 2 and 3 show the measurements
for the branches of the theoretical fractal
trees constructed for each of the three
kidneys when the fractal dimension is 1.94
and when we employed as input the data
from Branches 1 or 2, as taken from
their respective plastic casts. We also
calculated the correlations (Table 4) of the
measurements of these theoretical fractal
trees (Tables 2, 3) with those corresponding

Fig. 7. Cast of efferent arterioles.

Fig. 8. Cast of efferent arterioles and their glomeruli (G).
One dichotomic bifurcation (arrow).



568
Fractals and kidney arterial pattern

Table 1. Set of measurement obtained from the plastic casts and used by the programme successively as input. Branch number 0 is renal artey, from
its separation from the abdominal aorta artery to its first bifurcation into dorsal and ventral rami. C is the volume of both the efferent arterioles and of the
glomeruli.

Kidney identification number 1 2 3
Total volume of kidney (mm3) 73000 80000 70000
(A) Total volume of plastic cast 6222 6149.72 5256.8
Maximun number of bifurcations from
the renal artery to the glomerulus 12 12 12
Kidney Branch Length Volume Diameter of Diameter of Total volume of all the
number number (mm) (mm3) largest base smallest base branches equal to this
(mm) (mm) (mm3)
1 0 12.45 141.00 4.30 4.05 141.000
''''' 1 [T T[T 1400 T 4709 | 400 |7 800 |7 94180 |
I 2 [ 1100 | 1518 | 250 [ 240 | 60720 |
""" 1|3 [ 1000 | 149t | 240 [ 205 | 19272 |
""" 1 | a7 08 | oer | 208 | o2 | 1ass5
A 5 | 090 |« 081 | o028 | < o018 | 25821 |
e Tems | Ters )T eds o4 ) 2w |
1 7 0.65 0.72 0.13 0.09 92.658 |
""" 1|8 | ose | o7 | o009 | o007 | 10264 |
“““ 1 |9 [ o4 | o069 | oor | oos | 354047
""""" 1 | 10 | o4 | 088 | o005 | 004 |  e9sest |
""" 1|11 | "os | oes | o004 | o004 | 1383485 |
""" 1 | 12 [ e | o067 | o004 | o0 | 2ras903 |
2 0 14.40 79.63 4.50 4.20 79.630
____ 2 | 1 | 000 | 4018 | "3s0 | 320 | so30 |
2 [T 2 | goo | 1700 | 200 | 270 | 68.360 |
N N . 3 | 900 | 1354 | 250 | 210 | . 108320 |
N 4 | 412 | 166 | 210 |« o900 | 2656 |
2 | s T 273 | ¢ 150 | 080 | ¢ os4 | 47.928 |
I 2 6 | 184 | 121 | osa | 034 | 77.33% 1
""" A . - R Y D A PT°F T S
B 8 | 087 | 087 | o021 | 013 | ez
''''' 2 | 9 | eeo | o [T Tots T[T Tooes T Tzeaoe0 |
2 [T 0 T 042 | 069 | o008 | 005 | 705007 ]
2 T T 029 | 062 | 005 | % 003 | Terrme ]
2 [T T T 021 | 057 | 003 | 002 | 2339253 |
3 1 0 9.30 88.09 4.00 3.25 88.090
I I I T 13 | Tz0 R 2720 ]
I R T 700 | sie | Tva [T R 20720 ]
_____ I R I R R R e L e -
_____ R N I Y I T e . R T
_____ I R I . e R Y
I D R 068 | 060 | Tose | oa7 T 053 ]
R 7T 056 | 064 | Tomr [T 024 T 82468 |
D 8 | 047 | R o6 | s T
I R R e 060 | Tode [T o1 T Taosess ]
_____ R R T - O Y A R
s fooomo et | osr |T T Toor [T To0s T THazeasy |
3 12 0.28 0.57 0.05 0.03 2319.975
(B) On each kidney addition of total volume of all branches 5958.99 5558.137 4858.93

(C)=A-B 263.01 591.58 397.87
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Table 2. Measurements pertaining to the branches of the theoretical fractal trees of the three kidneys, when the fractal dimension is 1.94 and when, for
input, the data from Branch 1 (the main branch of the renal artery situated between the first and second bifurcation) of their respective plastic casts is
employed. Branch number 0 is renal artery, from its separation from the abdominal aorta artery to its first bifurcation into dorsal and ventral rami.

Kidney identification number 1 2 3
Maximun number of bifurcations from
the renal artery to the glomerulus 12 12 12
Kidney Branch Length Volume Diameter of Diameter of Total volume of all the
number number (mm) (mm3) largest base smallest base branches equal to this
(mm) (mm) (mm3)

_____ LU SO R BUUOL.... N Lo O WO NOOOIORP SO ... SOV WO ... A
S I O 1400 | 47000 | 4000 | 3000 I 94180 |
q 2 4.38 9.6780 3.000 2.687 38.712
""" 1| 3 | 2rs2 | 41939 | 2887 |  1es0 |  @3BI2 |
""" 1|4 T[T 1sse | ee4s | 1es0 | oess | 1383468 |
""" 1| s | "eme | 1784 |  oes | o600 | 57108 |
""" 1| e | asr | a3er | oeo0 | o3 | 235383 |
"""" 1|7 [ 273 [ omser | o384 | o221 | 97245 |
""" 18 [ 4ss [ otsee | o221 [ o1s | a0157 |
""" 1T 9 T[T oss | o032 | o1 | o081t | 16450 |
"""" 11 | " oare | oooe6 | oot | o004 | 6792 |
""" 1T [ To2z2t [ ooot4 | oo [ o0 | 2861 |
""" 132 [ o1ara | oo003 | oo0s0 | o018 | 1144 |
2 0 14.40 79.63 4.500 4.200 79.630
""" > T T[T 1000 | 4018 | ase0 | 200 | so3e0 |
e 2 T[T 447 | 2091 | 3200 | 2390 | 83676 |
R a | 1641 | 21576 | 2360 | 1683 | 1726126 |
e a | 138 | 7371 | 1863 | 1167 | 1179475
A S I S R 780 | 7 T 117 [ ose [ Teszs ]
----- 2 e | Tsar [ eeos | TTomie [T Tesns [T Tssoess |
R A s7e | oot | o575 | oass [ aseses |
""" 2 e[ aes [ Tioess | o [ Toms [ awear |

2 9 1.824 0.3429 0.283 __9._195_)_______________]ZS_‘§Z7_ ______
e Two [ TTTess [ TTToarr |77 TTTeaes T TTiiodse o wiesds ]
2 1 0.878 0.040 0.139 0098 | 83013 |
N . 06082 | 00137 | 0098 | 0069 55.982
3 0 9.30 88.09 4.000 1.900 88.000
R R 000 [ a0 | o0 [ TTisoo [T Taeme ]
'''' R N Y T e -
““““ 3 |3 T[T 2146 | teeet | 1sas | 1203 © 1356.948
'''' 3 |47 see | eis3 | 1203 | 0906 | osas38 |
""" 3 s T[T 472 | 2233 | oso6 | oess | 714684 |
""" 3 | & [ ees | 812 | oess | o4 | 518587 |
e Ty e s | Toms T Tome T aeas
3 8 4.73 1.067 0.312 0.219 | 27195
""" 3 | e | "sso | oss0 | o219 | o153 198.160
""" 3 |70 [ 2ses | 01404 | o018 | o7 | is7s |
I T A I werz [ oosto | onor [T oo T Thoasss |
R T 1413 | 00185 | 0.075 0.053 i 75.707
On each kidney total volume of all branches 5983.64 5572.68 4879.88
Difference with plastic casts, B in Table 1 -24.64 -14.54 -20.95
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Table 3. Measurements pertaining to the branches of the theoretical fractal trees of the three kidneys, when the fractal dimension is 1.94 and when, for
input, the data from Branch 2 (the main branch of the renal artery situated between the second and third bifurcation) of their respective plastic casts is
employed. Branch number 0 is renal artery, from its separation from the abdominal aorta artery to its first bifurcation into dorsal and ventral rami.

Kidney identification number 1 2 3
Maximun number of bifurcations from
the renal artery to the glomerulus 12 12 12
Kidney Branch Length Volume Diameter of Diameter of Total volume of all the
number number (mm) (mm®) largest base smallest base branches equal to this
(mm) (mm) (mm3)

1 0 12.45 141.00 4.300 4.050 141.000
“““ 1| 1 | 1400 [ 4709 | 4000 | 3000 | 94180 |
"""" 1 | 2| 482 | 83974 | 3000 | 180 | 3358996 |
____ 1| 3 | 2508 | 17313 | 180 | 1105 | 1385068 |
""" 1| 4 | 14084 | 368 | 1105 |  oer0 |  s71011 |
"""" T s T 7ee [ 7as | oo | oaor | assess
I 430 | 1517 | 0407 | o2a7 | gz109 |
""" 1 | 7| 2463 | 03183 | o247 | o010 | 40110 |
“““ F T e T e [ ooed |7 T omso | TTooe [ Tiesse |
I o766 [ oois | o001 | Tooss | em |
“““ T 0 | o [ Tomeer |7 Tomss | Tooss [ aree
""" 1| 11| o245 [ "oo0006 | o003 | o020 [ 119 ]
T e 01329 | 00001 | 0020 | oot2 | 0471

2 0 14.40 79.63 4.500 4.200 79.630
""" 2 |+ | 1000 | 4018 | 3s00 | 820 | 8360 |
""" 2 | 2 | 17es | as210 | 8200 | 2246 | 1728406 |
""" 2 | 3 | 12430 | 14767 | 2246 | 1576 | 1181420 |
""" 2 |4 | “ser | s045 | 1576 | 1106 | o738 |
""" 2 | s | sest | 172 | 1106 | o7 | 51513 |
e T e T 4149 | 58 | o776 |  os45 | 376970 |
""" 2 |7 | 2878 | 2013 | os4 | oss2 | 257675 |
”””” 2 | 8 ] 199 | oesr | o3 |  oz28 |  “i7e101 |
"""" 2 | e ] "1aes | o234 | o028 | o188 | 120213 |
I R 0958 | 008 | o188 | o132 | 82060 |
I 0665 | 00274 | 0132 | o0e3 | 56.158 |
I 0461 | 00094 | 0093 |  o00e5 | 3833 |
| 3 0 9.30 88.09 4.000 1.900 88.090
s T 1000 | 13 | 2000 | 180 | 22720 |
s e 4004 | 33396 | 1900 | 138 | 1335844 |
_____ 3 | 8 | Teee0 [ 12120 |7 Tims2 | Toess [ Toeseee |
_____ 3 | a4 | T 21es [ ases | oess | oesa | 703742 |
_____ 3 | s | "te1s [ 1596 | oesa | oass | 7 si09ss |
_____ 8 | e | "t1es [ s7re | oass | os2t | 7 a0876 |
_____ 8 | 7 | esw [ 2102 | Tosa1r | o2 | T2ee128 |
_____ 3 | 8 | "es3s | o7 | o225 | o1se | T1esar2 |
_____ 3 |9 | 4 [ o277 | Toass | omtn T Tiaisia ]
_____ 3 | 10 | "3sse8 | ot00s | oan1 | ooz | Tio2916 |
_____ 3 | n | 2838 | ooss | o077 | oosa | T Tmnr ]

3 12 1949 | 00182 | 0054 | o038 | 54212 ]
On each kidney total volume of all branches 5950.92 5536.15 4840.17
Difference with plastic casts, B in Table 1 8.07 21.97 18.75
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Table 4. Correlation coefficients when comparing data groups contained in Table 1 with that pertaining to kidney 1, 2 and 3 in Tables 2 and 3.

Table 1 data
compared with

length Volume

Diameter of
largest base

Diameter of
smallest base

Kidney number 1 2 2

) I

2 | 3 12

Table 2 data

Lenght 0.71
Volume -

Diameter of
largest base -

Diameter of
smallest bsse

0.89

0.17 s

0.97 0.99

c 0.97

Table 3 data

Lenght 0.06 0.82
Volume -

Diameter of
largest base

Diameter of
smallest base -

0.33

PSR WS ST B ST CESCT ST e I0ET A [

0.98 0.99 0.87 -
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I I
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I |
I |

- 0.98 0.99 0.97

T
|
|
i
|
I
I
I
1
i
i
!
I
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to the plastic casts (Table 1).

Although the programme carries out all its
calculations using 8-digit real numbers, these are later
rounded down to only 2, 3, or 4, as can be seen from the
Tables.

Discussion

With the aid of the results that we have obtained, let
us now return to the question we first posed at the
beginning of this work: could the fractal dimension be
that unique number which can serve to define an organ
in a species? In order to answer this question, it is
helpful to divide it into three. Is the arterial tree of the
kidney a fractal organ? Does our method allow us to
calculate the fractal dimension of an organ? Is the fractal
dimension unique for an organ?

It is very difficult to answer the first of these
questions because nobody has yet defined a fractal
objectively. But we can say that the arterial tree of the
kidney is a fractal organ, for three usual reasons: because
of its aspect (Gleick, 1987; Goldberger and West, 1987;
Goldberger et al., 1990); because we have been able
(with the aid of our fractal programme) to construct
theoretical fractal trees that have the same volume as the
organ; and because an object is fractal if the pattern with
which its structures have been constructed is also a
fractal (Mandelbrot, 1987).

If the arterial tree of the kidney has a specific
property, such as being fractal, this is important for the
complete organ because «the structure of the vascular
network in the organs is so characteristic that its aspect
allows the diagnosis of the organ and even of the tissue
to which it belongs» (Djavakhichvili and Komakhjidza,
1970).

With respect to the second question (does our method
allow us to calculate the fractal dimension of an organ?)
we can again answer this in the affirmative. The data
contained in Tables 2-4 shows us that various fractal

dimensions are possible for the template of each kidney,
using our fractal programme.

As our fractal pattern we have chosen a V-shape for
our fractal programme (Fig. 1) because it is very similar
to the actual dichotomic bifurcations observed in the
plastic casts.

We do not suggest that our fractal programme
constructs an exact template of each plastic cast, because
variations exist between each of these, as shown by the
measurements taken from them (Table 1); we have been
looking for similarities, rather than differences, with the
aid of a model that simplifies reality, applying to our
work what Lefevre (1983) has said with regards to the
lung, namely «modeling the pulmonary arterial tree is
considered as an optimal synthesis of the problem at the
teleonomical optimization of a fractal model of the
whole lung».

Our fractal programme carries out all its calculations
with 8-digit real numbers, although later these are
rounded down to maximum the first four decimal figures
because this is the highest degree of precision that we
can obtain when taking measurements directly from the
plastic casts (Table 1). This is also the reason why the
fractal dimensions used by the fractal programme
change in increments of 0.01 units, which is the grade of
sensibility; experimentally we observed less increments
were not profitable.

The maximum of 12 levels of dichotomic bifurcations
that we have counted in the three plastic casts of the
kidneys represent 212 branches, corresponding in man to
220 (Poirier, 1977). This data, drawn from only three
kidneys, has no statistical value, but we have thought it
was enough for this first work.

When comparing the volumes calculated by the
fractal programme with respect to the volumes of the
plastic casts, we allow for an error of + 0.05%, a level
which is habitually accepted in biological research. The
volume of both the efferent arterioles (Fig. 8) and of the
glomeruli are excluded in the volume of the plastic casts,
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whilst the theoretical volumes are calculated down to the
glomerulus.

But can we say that the fractal dimension of an organ
is unique? With the data that is now available to us
(Table 1) and with the calculations of our fractal
programme, we consider that the most representative
number is only one which appears in all results of three
kidneys; namely 1.94 (Table 2).

According to our calculation system, only one set of
measurements is necessary, but for the purpose of this
investigation we used the 13 sets one after the other, in
order to determine which of them provided the most
useful data.

If we accept this value of 1.94 as valid, this means
that the true fractal dimension of the skeleton of the
fractal tree (which appears as a line in Fig. 2) is 1.39 (=

.94) because, in the calculation (see Appendix), the
fractal dimension has only intervened in two of the three
lengths (height and radius) on each truncated cone (Fig.
4) which form part of the theoretical fractal tree.
Therefore the fractal dimension of the fractal tree as a
whole is 2.7 (= 1.393), a value which is similar to those
resulting from the application of other methods. Thus
arterial and venous casts of a kidney have a fractal
dimension of between 2 and 3 (Sernetz et al., 1985), as
does the lung alveolar-capillary (Goldberger and West,
1987). The yolk vessels of a chicken embryo incubated
for 4 days have a fractal dimension of 5/3 (Tsonis and
Tsonis, 1987).

Using the value of 1.94, and once again employing
our fractal programme, we have calculated the
measurements of the Branches of the fractal trees
corresponding to the three kidneys, using as input the
data from the plastic casts of either Branch 1 or Branch 2
respectively (Tables 2, 3). These measurements have a
very high correlation (Table 4) with their equivalents
from the plastic casts (Table 1), a fact which we have
interpreted as support for the method that we have used
to calculate and select the figure of 2.7 as the fractal
dimension of the kidney.

We suggest that the technique that we have
constructed and, we believe, proved in this work, will be
useful in carrying out more extensive and systematic
statistical studies on fractal morphometrics, using either
our fractal programme or a similar one. These extended
studies will allow for the calculation of the fractal
dimension not only of the kidney but also of other
organs, thus enabling us to prove whether these are equal
or different; later these studies could be expanded to
include those pathologies originating from arterial
alterations. If the results obtained reveal significantly
different values, then we will have available to us a new
and more objective taxonomy.

Appendix
An object is fractal if the pattern with which its

structure has been constructed is also a fractal
(Mandelbrot, 1987). The pattern we have chosen is a V-

shaped fractal (Fig. 1) because it is similar to the actual
dichotomic bifurcations which we observed on the
plastic casts. The repetition of the pattern at different
scales forms the skeleton of the fractal tree (Figs. 2, 3).

Calculation of the fractal dimension of our pattern

*#% In the calculation of the fractal dimension we have
employed the Hausdorff-Besicovitch formula (Abbot,
1981):

L =L (AX) P-1 where

L is the Hausdorff invariant length, so called because
it always has the same value for each pattern,
independent of the scale of the fractal pattern V (Fig. 1).

L is a part of the total length of the fractal tree, made
up by adding together the lengths of all the fractal
patterns whose arms have a value equal to AX.

AX is the length of each arm, or branch, of the fractal
pattern (V) according to the resolution used in each case.

D is the fractal dimension

e¢ The fractal pattern is constructed by way of a basic
line (Fig. 9) where: L, = AX,

* In Figure 3 the Hausdorff-Besicovitch formula
(Abott, 1981) gives:

L =L,* (AXy) P-1 (1)

(In this and in all subsequent formulae * represents
the multiplication sign).

ee In Figure 10 we can see how the initial straight line
(Fig. 9) appears after the application, for the first time,
of the fractal pattern (V) (Fig 1), where:

L|= 2*AX
Lol Lo Lo

2
aX=| 2] |22 =2 x| 2
m m m

AX

W

]

Fig. 9. Starting line for the calculation of the fractal dimension
(Hausdorff-Besicovith dimension). L, is the initial length of the fractal
tree when the only arm, or branch, of the fractal pattern measures X, .
AXo is the initial length of the fractal pattern.
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<—3

Y.

Fig. 10. V-shaped fractal model and its measurements after the
first bifurcation. L, is the initial length of the fractal tree when the

only arm, or branch, of the fractal pattern measures AX, . AX, is
the initial length of the fractal pattern. AX, is the initial length of

each arm, or branch, of the fractal pattern after the first bifurcation.
m is a fixed value which makes L, become smaller in successive

ramifications. 9 is half the value of the angle formed by the two
arms of the fractal pattern.

e

we now take logarithms (log)

D-]

0=log (2 * 2 * [ml])+ (D-1) * 1og(\/7 # [ém
simplifying
g JBER
o]

« As D to have significance, must be greater than

where: m is a fixed value for each fractal
tree constructed by the programme; m makes L,
become smaller and, in this way, the scaling
of the fractal pattern changes in succesive ramifications.

L AX
AXy=V2* —°]=\/~* —mo
m

L
L1=2*ﬁ *[—0}
m

« We apply the Hausdorff-Besicovith formula
(Abbott, 1981)

D-1

L=L,(Ax1)”‘=(z*ﬁ*[%])*(ﬁ*{“"]) o)

m

« « To calculate D, which is the fractal dimension of
our pattern we divide formula (2) by (1);

D-1

S ey

m m

L _
. Lo*(ax)”

simplifying

zero, the programme only needs to calculate those
values where m is greater than Thus: v2(v2=1.414213562).

1.414213562

| (1.414213562)
0g fJ———
m

D-=-

« « Each fractal tree constructed by the programme
is different from the rest in the fractal dimension
of its pattern and this is because m changes.
The changes to m give rise to changes in the
length of the arms for each V-shaped fractal form (Figs.
1,2).

The construction of volumes associated with the
fractal pattern

The programme constructs fractal trees
by the repetition of the V-shaped fractal pattern
(Fig. 1) at different scales (Figs. 2, 3). Whilst the
plastic cast is tridimensional and has a volume,
the V-shaped form does not. In order to obtain volumes
for the programme to compare, it is necessary to
create them from each fractal tree; to that end,
the programme uses each arm, or branch, of the
V-shape as a skeleton or control axis around which
to construct a truncated cone (Fig. 4).

The programme calculates the total volume
of each fractal tree which it has constructed by
totalling the volumes of all the truncated cones,
which have themselves been constructed around
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the fractal tree, this tree having been formed by
the union of V-shaped fractal patterns (Fig. 1) repeated at
different scales (Figs. 2, 3).

The volume of each truncated cone is:

According to the formula Vis the volume of the

V=;—*[n*h*(R2+r2+R*r)]

truncated cone, h is its height, R the radius of the largest
base, and r that of the smallest base; * is the
multiplication sign, and = 3.141592654.

Two truncated cones, constructed around the
two arms, or branches, of a V-shaped fractal meet
at a point (Fig. 4A, B); a third truncated cone,
arising from an earlier ramification also meets
at that point. The connection between these
three truncated cones gives rise to a geometrical
body (Fig. 4A, B) whose volume we have calculated by
way of aleatory Montecarlo type system.

V =0.896 3

In this formula V represents the volume of the
geometrical body made up by the connection of the three
truncated cones. In the same geometrical body r
represents the height and the radius of the largest base
(Fig. 4B).

In the calculations performed by the programme
R andr are always related in the successive branches of
the fractal trees by a coefficient equivalent to:

(R - r) * Proportional Factor to Dimension
Fractal where Proportional Factor to Dimension
Fractal = the relationship of length which exists between
the arms of any two successive ramifications, AX of the
fractal tree which has been constructed. Its value is:

V2

I
Proportional Factor to Dimension Fractal = [~]
m

n is the ordinal number of the bifurcation considered
(L venen 12D,

m is a fixed value for each fractal tree constructed
by the programme, which causes the length of
the arms of the fractal pattern to became smaller, and

thus its scaling changes in each successive ramification.

Acknowledgements. The authors thank Dr. José Garay de Pablo
for calculating the volume bifurcations of the succesive cones in the
fractal shape. We thank Ciba-Geigy Enterprise for supplying the plastic
resin, Dr. José Garcia Esteve for his fractal literature, and Carmen
Martin Carcia for her assitance in the translation of the manuscript.

References

Abbot L.F. and Wise M.B. (1981). Dimension of a quantum-mechanical
path. Am. J. Phys., 49, 37-39.

Barnsley M. (1988). Fractals everywhere. Academic Press, INC. LTD.
London.

Djavakhichvilli N.A. and Komakhjidza M.E. (1970). Regularité de la
structure du reseau des capillairies sanguins. Comp. Res. Assoc.
Anat. 145, 203-207.

Fuller P.M. and Huelke D.F. (1973). Kidney vascular supply in the rat,
cat and dog. Acta Anat. 84, 516-522.

Gleick J. (1987). Caos. Seix-Barral. Barcelona.

Goldberger A.L. and West B.J. (1987). Fractals in physiology and
medicine. Yale J. Biol. Med. 60, 421-435.

Goldberger A.L., Rigney D.R. and West B.J. (1990). Caos y fractales en
la fisiologia humana. Scien. Am. 4, 30-38.

Lefevre J. (1983). Teleonomical optimization of a fractal model of the
pulmonary arterial bed. J. Theor. Biol. 102, 225-248.

Mandelbrot P. (1987). Los objetos fractales. Tusquets. Barcelona.

Meakin P. (1986). A new model for biological pattern formation. J.
Theor. Biol. 18, 101-113.

Nickel R. Schummer A. and Seiferle E. (1973). Anatomy of the dog
kidney. In: The viscera of the domestic mammals. Verlag Paul
Parey. Berlin-Hamburg, pp 282-288.

Poirier J. (1977). Histologia Humana. Marban. Madrid.

Sernetz M., Gelleri B. and Hofmann J. (1985). The organism as
bioreactor. Interpretation of the reduction law at metabolism in terms
of heterogeneous catalysis and fractal structure. J. Theor. Biol. 117,
209-230.

Tsonis A.A. and Tsonis P.A. (1987). Fractals: A new look at biological
shape and patterning. Persp. Biol. Med. 30, 355-361.

Weibel E.R. and Gémez D.M. (1962). Architecture of the human lung.
Science 137, 577-585.

Accepted May 2, 1992



