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Abstract
Transformer-based multimodal models often require expensive, full-model training 
on task-specific all-modality datasets to achieve high accuracy on targeted down-
stream tasks. To reduce this significant cost, we introduce SAFFE, a methodology 
for building accurate, task-specific multimodal models with minimal training, using 
only standard GPU hardware. SAFFE leverages off-the-shelf, pre-trained, frozen 
unimodal encoders for each input modality (e.g., text, image, or audio) and connects 
them through a lightweight, trainable component called the FusionAlign Module 
(FAM). FAM is a bottleneck mid-fusion neural network, trained on the target data-
set to align the outputs of the independently pre-trained unimodal encoders. This 
approach eliminates the need for end-to-end training while maintaining strong accu-
racy for the downstream task. As a proof of concept, we validate SAFFE on image 
retrieval and language understanding tasks. SAFFE-derived models outperform 
state-of-the-art multimodal systems on datasets such as CIFAR-10, ImageNet-100, 
and COCO, achieving competitive results with significantly fewer trainable param-
eters and training time.

Keywords Multimodal fusion · Frozen model · Transformer encoder · Decoder · 
Mid-fusion

1  Introduction and motivation

In recent years, multimodal learning has gained significant attention for its ability 
to process various input modalities concurrently, such as text, images, and audio, to 
enhance the prediction accuracy of downstream tasks, as integrating multiple modal-
ities provides more comprehensive semantic information compared to approaches 
relying on single modalities in isolation [1–14].

Transformer-based multimodal models attain enhanced prediction accuracy, 
exceeding the performance of traditional convolutional and recurrent neural 
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network-based multimodal techniques  [1, 8, 9, 15–21]. The core architecture of 
Transformer-based multimodal models generally comprises both encoder and 
decoder modules [22]. Furthermore, this new type of multimodal model is highly 
versatile. For instance, by combining text and visual inputs, they can support a 
wide range of tasks, such as image-text retrieval  [18, 20], scene analysis  [18], 
image segmentation  [23, 24], diffusion models  [25, 26], scene graph genera-
tion  [27, 28], visual question answering (VQA)  [21], and generating responses 
that seamlessly integrate textual and visual information.

Nonetheless, developing an effective multimodal model that excels at modern 
downstream tasks presents several challenges. One major hurdle is the computa-
tionally intensive end-to-end training process, which often relies on cloud infra-
structure using up to several thousand compute nodes and can incur costs exceed-
ing millions of dollars  [22, 29]. In addition, these models require large-scale 
datasets—often on the order of petabytes—across all modalities [1, 3, 8, 9, 30], 
and may contain up to trillions of parameters (e.g., ChatGPT, Google Gemini, 
or GPT-J  [31]). The training process must also address discrepancies in learn-
ing dynamics across modalities, account for diverse noise patterns (where cer-
tain modality streams contribute more task-relevant information than others), and 
incorporate specialized input representations [32, 33].

Representative examples of state-of-the-art (SOTA) multimodal models 
include CLIP  [9], OpenCLIP  [34], CoCa  [8], Laion  [30], and Chameleon  [29], 
which focus on image-text fusion. Additionally, models such as VATT  [1] and 
VALOR [35] integrate text, image, and audio modalities. However, training these 
large-scale multimodal models to achieve high accuracy is extremely costly, as it 
requires end-to-end training across all model parameters—which can comprise 
over a billion parameters. As a result, adapting these models to application-spe-
cific downstream tasks typically demands data-center scale compute resources. 
For instance, Chameleon was trained using 3072 GPUs over a total of 428,207 
GPU hours, CLIP was trained for 2 weeks on 256 GPUs, and VATT utilized 256 
TPU v3 chips over a period of 3 days.

Efforts to reduce training expenses have led to the development of modality 
fusion frameworks, such as Flamingo  [18], UniT  [36], BLIP  [20], MAGMA [21], 
and FROMAGe  [19], which build multimodal models by combining existing pre-
trained unimodal encoders and decoders. While these frameworks represent pro-
gress in reducing training costs, they introduce new components that are closely tied 
to their specific encoders and/or decoders. However, these customized components, 
such as the interleaved connection between encoders and decoders, build new atten-
tion mechanisms and introduce new tokens [18, 20, 21, 36, 37] preventing the utili-
zation of off-the-shelf pre-trained models. This dependency on customized integra-
tion still requires significant computational resources. For example, BLIP requires 
8 days of training on eight A100 GPUs, UniT necessitates 3 days on eight V100 
GPUs, Flamingo needs 15 days on TPUv4, and MAGMA demands 1.75 days on 
sixteen A100 GPUs, leading to substantial training expenditures (see Section 4.2 for 
further details).

To address the challenge of building high-accurate multimodal models on evolv-
ing downstream tasks and specific datasets, while minimizing the high training 
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costs, we introduce the Semantic-Alignment Fusion of Frozen Encoders (SAFFE) 
methodology.

SAFFE leverages off-the-shelf, pre-trained, and frozen unimodal encoders for 
each input modality, such as text, image, or audio. These encoders, trained on large, 
general-purpose datasets and widely available from leading AI companies such as 
OpenAI, Meta, Google, LangChain, and Hugging Face, are kept fixed during train-
ing. This approach reduces computational costs and eliminates the need for end-to-
end model training. The use of pre-trained unimodal encoders in our methodology 
to compose task-specific multimodal models offers two key advantages. First, it 
eliminates the need for costly end-to-end training across all modalities (e.g., text, 
image, and audio), as seen in SOTA models like VATT. Second, SAFFE benefits 
from zero-shot learning (ZSL) capability, enabling frozen encoders to work with 
other modalities without prior training, and enhances prediction accuracy across dif-
ferent datasets.

However, no existing methodology effectively integrates independently pre-
trained unimodal encoders in a modality-agnostic manner to build a unified mul-
timodal understanding framework for downstream tasks. To address this gap, we 
introduce the FusionAlign Module (FAM)—a lightweight, trainable bottleneck 
mid-fusion neural network. FAM is trained on the target dataset to align and com-
bine the output representations of frozen unimodal encoders, extracting modality-
specific features while enabling seamless integration across modalities. This design 
eliminates the need for computationally expensive, end-to-end joint training over 
all modality-paired datasets. SAFFE leverages FAM to operate in a truly modality-
agnostic fashion, supporting a wide range of downstream tasks by flexibly incorpo-
rating diverse pre-trained encoders. It maintains a unified architecture for all modali-
ties, simplifying both the training and deployment processes for efficient multimodal 
fusion.

At a high level, our SAFFE methodology involves two sequential stages for 
composing multimodal models tailored to specific downstream tasks and datasets 
(see Figure 1). First, we capitalize on the wealth of existing downloadable off-the-
shelf frozen pre-trained components such as vision encoders, linguistic encoders, or 
audio encoders. Second, we demonstrate that a lightweight training strategy, focused 
solely on aligning the semantics of the output vector spaces of each individual pre-
trained component through the target all-modality datasets, can achieve high predic-
tion accuracy for the corresponding downstream task. In this approach, training is 
confined to the newly introduced FAM unit. It consists of lightweight, fusion-spe-
cific components that leverage bottleneck mid-fusion while leaving the original pre-
trained frozen components untouched (see Figure 2). As a result, SAFFE effectively 
lowers both computational costs and training time for the customized multimodal 
model while delivering high prediction accuracy for the specified downstream task.

To validate the effectiveness of the SAFFE methodology, we conduct an exten-
sive set of experiments in a bimodal setting involving image and text modalities. 
These experiments evaluate various configurations for composing multimodal mod-
els tailored to downstream tasks such as image retrieval and language understanding. 
For benchmarking, we use widely recognized datasets, including ImageNet100 [38], 
CIFAR-100  [39], and COCO [8], and compare SAFFE against SOTA multimodal 



 M. Kulasekara et al. 1114  Page 4 of 31

Fig. 1  Overview of our SAFFE methodology. To build a customized multimodal model (a SAFFE-
derived model) for a given downstream task (e.g., image retrieval), different per-modality frozen com-
ponents depending on the target input modalities (e.g., text and images) are taken from an official reposi-
tory (e.g., Hugging Face and Kaggle). Then, these frozen components are connected with a FAM unit 
(details in Figure 2). FAM is trained with the task-specific dataset for inexpensive semantic alignment of 
every modality-dependent frozen encoder, producing a modality-invariant output vector space for accu-
rate model deployment on the downstream task

Fig. 2  A SAFFE-derived bimodal model with frozen image and text encoders, along with a high-level 
architecture overview of a FAM unit (details in Section 3.2.1). The vertical arrows indicate the outputs 
from the encoders, while the other arrows are the weights (K, Q, V)
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models and SOTA fusion techniques. To support further research and development, 
we release SAFFE as an open-source tool 1 for the research community.

The key contributions of this work include:

• We propose SAFFE, a methodology for flexible composition and efficient train-
ing of multimodal models to achieve high prediction accuracy on targeted down-
stream tasks. SAFFE enables users to select and integrate off-the-shelf, frozen 
encoders for each input modality, tailored to the specific requirements of the 
target task. The fusion of these encoders is facilitated by FAM, a lightweight, 
trainable bottleneck mid-fusion neural network, which is trained exclusively on 
the task-specific dataset. This design significantly reduces the full-model training 
costs typically associated with SOTA multimodal systems, making it practical 
to build accurate models using standard, single-node GPU-based hardware. In 
particular, all experiments in this work were conducted on a single Nvidia RTX 
3060 GPU, with the longest run completing in approximately 2.5 days.

• SAFFE-derived bimodal models for image retrieval tasks achieve optimal mean 
Average Precision (mAP) by training FAM using only the final two layers of 
each pre-trained encoder. This contrasts with SOTA approaches, which typically 
apply full pairwise attention across all Transformer-based encoder layers using 
the entire task-specific dataset. FAM achieves near-optimal performance when 
trained on just 50% of the dataset while requiring fewer than 30 epochs to reach 
maximum mAP. This leads to significant reductions in both computational cost 
and training time.

• By effectively composing SAFFE-derived models, we outperform bimodal archi-
tectures in both mAP and computational efficiency. Our model surpasses Fla-
mingo [18] by 1.3% mAP on the COCO dataset while requiring three orders of 
magnitude fewer trainable parameters (70B vs. 67 M). Furthermore, by training 
only the FusionAlign Module (FAM), SAFFE achieves higher zero-shot accu-
racy than frozen SOTA multimodal models such as ZLaP  [40] on CIFAR-10 
and CIFAR-100, with less than half the trainable parameters (151 M vs. 67 M). 
SAFFE also enables rapid integration of novel linguistic concepts through FAM 
alone. Compared to the SOTA Meta-Learning framework  [41], our approach 
consistently yields significantly higher prediction accuracy after just a single 
training epoch, achieving improvements ranging from 21% to 56%.

2  Background and related work

In this section, we discuss the fundamental concepts underpinning SAFFE, examine 
the prevailing techniques for feature fusion in existing models, and highlight the spe-
cific limitations relevant to our application example that focuses on text and image 
modality fusion.

1 https://github.com/CAPS-UMU/SAFFE.git.
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2.1  Transformers

The Transformer architecture has become a cornerstone in natural language pro-
cessing (NLP) due to its ability to handle various tasks with high accuracy and 
efficiency. The linguistic transformer models, BERT [42], SBERT  [43], and RoB-
ERTa [44], are frequently highlighted for their robust performance across multiple 
NLP tasks. The Transformer architecture has found significant applications in other 
areas of artificial intelligence, notably in computer vision  [45], speech recogni-
tion [46], Anomaly Detection [47], video classification [48] and Video-Audio-Text 
Transformer (VATT) [1], to name a few.

2.1.1  Components of transformers

The primary constituents of a Transformer architecture are the encoders and decod-
ers. These components differ markedly, with each fulfilling unique functions in the 
manipulation and generation of sequential data [22]. Encoders serve as gateways to 
contextual information, converting it into a sequence of vector representations that 
capture the input’s semantic and syntactic attributes. The decoder produces the result 
by combining the output from the encoder with additional vector representation 
information from another modality  [49]. The main building blocks of these popu-
lar Transformer-based models consist of a sequence of Multi-Headed Self-Attention 
(MSA), MCA, and feedforward neural networks. In encoder–decoder architectures, 
the last encoder layer output generated by the encoder is conventionally utilized by 
the decoder via a MCA mechanism, thereby enabling the decoder to concentrate on 
pertinent segments of the input sequence. This interaction between the encoder and 
decoder is crucial for generating contextually relevant outputs, allowing the model 
to produce more coherent and accurate responses based on the input it receives.

2.1.2  Types of transformer‑based models

Language Models: The Transformer text encoder with BERT (Bidirectional 
Encoder Representations from Transformers)  [42] is a groundbreaking model in 
NLP, that leverages the Transformer architecture to understand the context of words 
in a text. BERT’s innovation lies in its ability to process text bidirectionally, mean-
ing it considers the context from both the left and right of a word, which enhances 
its understanding of linguistic nuances. This capability has made BERT a preferred 
choice for various NLP tasks, including text classification, sentiment analysis, and 
information retrieval. Furthermore, BERT’s pre-training on vast amounts of text 
data allows it to capture a wide range of linguistic patterns, making it highly effec-
tive in generating contextual embedding vectors that can be fine-tuned for specific 
applications [42].

Vision models: The Vision Transformer (ViT) [45] encoder is a transformative 
architecture in image processing, leveraging the MSA mechanism to handle image 
data effectively. It divides an image into patches, processes these patches as tokens, 
and uses a Transformer encoder to extract features. This approach allows ViT to 
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capture long-range dependencies and contextual information across the image. 
The architecture’s functionality is enhanced by positional encoding, which helps 
maintain the spatial relationships between patches. The ViT model employs MSA 
to process the sequence of patches. This mechanism enables the model to focus on 
different parts of the image simultaneously, capturing complex patterns and relation-
ships [9, 10, 30]. At the end of the process, the ViT encoder produces a significant 
feature vector for the patches, which is essential for applications such as image clas-
sification, image segmentation, and scene understanding [8, 9, 18, 20].

2.2  Taxonomy of multimodal fusion strategies

Multimodal fusion techniques are essential for integrating diverse data types (e.g., 
image, text, and audio). This creates more robust representations, improving the per-
formance of Transformer-based models across real-world applications by enabling 
contextually richer outputs [6].

As illustrated in Figure 3, these fusion techniques are divided into early fusion, 
mid-fusion, and late fusion, each possessing unique approaches and consequences. 
Early fusion merges multiple data modalities right at the input level, enabling the 
model to benefit from integrated data from the outset [24, 29, 50]. The current state 
of the art indicates that early fusion approaches exhibit reduced precision due to sev-
eral factors, including discrepancies in learning dynamics between modalities, vari-
ations in noise topologies, and distinct input representations among modalities [32, 
33]. Late fusion aggregates the outputs of distinct models that have been trained 
on separate modalities, frequently leading to a more generalized outcome  [5, 51]. 
Bidirectional learning and shared feature representation are not possible with the 
late fusion method  [5, 52]. However, mid-fusion techniques have shown promise 
in addressing these challenges by leveraging the strengths of each modality while 
minimizing their weaknesses, thereby enhancing overall performance in multimodal 
tasks [53]. These methods leverage the strengths of Transformers, such as their abil-
ity to model long-range dependencies and process multiple modalities within a uni-
fied framework [36]. The primary advantages linked to mid-fusion techniques that 

Fig. 3  Multimodal Fusion Strategies. Early Fusion image (left): Cross-modal information is exchanged 
at the initial input stage of the model  [24]. Mid-Fusion image (middle, left): Cross-modal interactions 
are implemented using pairwise MCA mechanisms across subsequent layers. Bottleneck Mid-Fusion in 
SAFFE image (middle, right): We leverage “Bottleneck Mid-Fusion,” which restricts the flow of atten-
tion within a given layer using the proposed FAM units. Late Fusion image (right): Cross-modal infor-
mation is exchanged only after the classification stage, with no interaction between modalities during 
earlier stages. Figure adapted from [3]



 M. Kulasekara et al. 1114  Page 8 of 31

concatenate two modalities of data include the provision of a unified architecture 
that can handle both types of data, allowing for the seamless integration of mul-
timodal information. This is particularly beneficial in tasks such as visual ques-
tion answering and sentiment analysis, where understanding the context from both 
modalities is crucial  [53]. Moreover, bidirectional learning is advantageous for 
tasks requiring an understanding of the relationships among modalities, such as in 
text-image fusion processed by image-to-text and text-to-image generation  [3, 18, 
20]. This approach reduces the need for separate models for each task, simplifying 
design and improving efficiency.

MBT  [3] proposes a novel architecture for audiovisual fusion that restricts the 
flow of cross-modal information through “Tight Bottleneck Fusion” in the model 
(see Figure  3). This mid-fusion model focuses on condensing the most relevant 
information from each modality and sharing only what is necessary with the other 
modality. By doing so, the model avoids the quadratic scaling costs of full pairwise 
attention and achieves performance gains with fewer computational resources. How-
ever, the model proposed by MBT consists of 12 encoders coupled with 4 decoders. 
This comprehensive end-to-end training approach incurs significant computational 
expenses.

2.3  Advanced image‑text fusion techniques

Recent advancements in vision-language models (VLMs) have led to the develop-
ment of innovative frameworks such as BLIP [20], Flamingo [18], and UniT [36], 
each employing unique architectures for effective image-text fusion. BLIP utilizes 
a multimodal mixture of Encoder–Decoder (MED) architecture, enhancing tasks 
such as image-text retrieval and caption generation through pre-trained weights 
from ViT and BERT, while also sharing parameters between encoders and decod-
ers to optimize performance. Flamingo, on the other hand, introduces novel tech-
niques for few-shot learning by bridging vision-only and language-only models, 
employing a Perceiver Resampler to condition a frozen language model with visual 
tokens derived from interleaved visual and textual data. Similarly, UniT adopts a 
transformer architecture with a mid-fusion approach, facilitating concurrent learning 
across various tasks, and integrates multiple encoders and decoders for joint train-
ing, albeit at high computational costs.

FROMAGe [19] grounds a frozen autoregressive LLM in the visual domain, utiliz-
ing a pre-trained visual model to extract embeddings from images and integrate them 
into the LLM’s input space. This model introduces a special [RET] token to improve 
image retrieval based on text input, though it exhibits a bias toward generating regular 
text tokens due to its text-centric pre-training. In contrast, the Frozen framework [52] 
extends the soft-prompting technique of prefix tuning to enable multimodal few-shot 
learning, focusing on open-ended image interpretation while primarily training on 
captioning tasks. This framework employs a pre-trained linguistic model and a visual 
encoder derived from NF-ResNet-50. Pang et al. [54] introduce an innovative approach 
by incorporating frozen Transformer blocks from pre-trained LLMs into visual encod-
ing layers, proposing the "information filtering hypothesis" that these blocks enhance the 
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identification of significant visual tokens. This model employs the LLaMA [55] modal-
ity alongside VIT [45], focusing on image-to-text tasks. The SIGLIP  [37] model fea-
tures a novel pairwise sigmoid loss function designed for image-text pairs, enhancing the 
training efficiency of multimodal models. It was trained using a Base CLIP architecture 
with a batch size of 4000 and a Large LiT model with a batch size of 20,000, involving 
1.8 billion parameters over 5 days on 32 TPU-v4 chips. This innovative approach aims 
to improve the alignment between visual and textual data, advancing language-image 
pre-training capabilities. Lastly, the MAGMA [21] technique trains a linear layer to pro-
ject image representations into the language model’s spatial domain, facilitating vision-
language task assessments without altering other model parameters. This late fusion 
mechanism employs a pre-trained image encoder alongside text decoders and undergoes 
training for 15,000 iterations.

Collectively, these models exemplify the efficacy of Transformer-based architec-
tures in enhancing multimodal tasks; however, the encoder architectures of these 
models are specifically tailored with distinct components. Due to these new compo-
nents, off-the-shelf encoder models are inapplicable in their original form, thereby 
requiring high computational resources to effectively train them.

3  SAFFE methodology

3.1  General procedure

As introduced in Section 1, our SAFFE methodology for multimodal model com-
position targeting a specific downstream task consists of two main phases (see 
Figure 1). In the first phase, the chosen frozen encoders are suitable for particular 
downstream tasks pertinent to the corresponding input modalities. For example, in 
a bimodal scenario combining image and textual data, this involves choosing exten-
sively trained linguistic and vision-based off-the-shelf encoders with zero-shot clas-
sification capabilities, such as those from the Hugging Face, Kaggle repository. In 
the next phase, after connecting the selected input encoders to our FAM unit, we 
train the FAM to achieve semantic alignment and fine-tune the composed multi-
modal model for the downstream task, as shown in Figure  2. As we will explain 
below, the complexity of training FAM depends on the relationship between the 
encoders. This relationship forms the basis of our classification into partially-aligned 
and non-aligned encoders.

3.2  A SAFFE‑derived bimodal model architecture

For the sake of generality in our bimodal scenario, we termed both modalities as 
ModalityA and ModalityB. The frozen models are associated with ModalityA and 
ModalityB and are designed to accept inputs relevant to their corresponding modal-
ities, with the encoders for ModalityA and ModalityB generating hidden states in 
conjunction with pre-trained weights specifically intended for the design of FAM.
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3.2.1  The fusion align module (FAM) unit

As illustrated in Figure  2, our methodology involves training a decoder layer uti-
lizing the hidden state ( hi ) derived from a ModalityB encoder (e.g., an image fro-
zen encoder) that comprises a total of I layers ((Ei) ∶ i = 0...., I − 1 ), which will 
be integrated as inputs into a fusion with the hidden state ( ht ) of a frozen Modali-
tyA encoder (e.g., a text frozen encoder) that consists of a total of T layers ((Et

)∶ t = 0..., T − 1 ), aimed at creating a model for a ModalityA and a ModalityB con-
tent fusion application. The ( hi ) and ( ht ) states, along with their corresponding K, Q, 
and V values, are transmitted to the decoder module; an explanation of the decoder 
module is provided in Subsection 3.2.2. The process of generating the decoder out-
put involves a linear layer that produces the ultimate pooled output.

Transformers require full pairwise attention to enable the encoder–decoder rela-
tionship [22]; however, the MBT manuscript makes the observation that extensive 
pairwise attention across all layers is unnecessary; hence, they propose the bottle-
neck mid-fusion units [3]. Building on these insights, we designed the structure of 
our FAM unit—Figure 4 shows the most complex 2-decoder FAM unit used in our 
experiments—to achieve semantic alignment-driven fusion between ModalityA and 
ModalityB using frozen encoders. FAM employs the mid-fusion technique, utilizing 
off-the-shelf pre-trained encoders to bypass the need for comprehensive training of 
both encoders and decoders.

As we can see, ModalityA and ModalityB inputs are initially processed with the 
frozen unimodal encoder to extract the specific hi and ht states, which are subse-
quently passed through a decoder model to enhance the interaction among modali-
ties. The core concept is to merge a small set of the later few ( t = T − 1 , T − 2 and 
i = I − 1 , I − 2 ; T and I are the numbers of encoders for ModalityA and Modali-
tyB, respectively) hidden states of the frozen encoders using MCA. Due to this 

Fig. 4  Architecture of the most complex FAM unit used in our experiments (Section 4). FAM func-
tions as a mediating element that connects the ModalityB and ModalityA feature vectors. The Keys (K) 
and Values (V) within these layers are sourced from the ModalityB features, while the Queries (Q) are 
generated from the ModalityA inputs. The final two successive layers of K, Q, and V undergo concatena-
tion with two decoders, followed by a linear layer that densifies them, resulting in the generation of an 
output feature vector
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mechanism, our methodology diverges from other prevailing techniques that pre-
dominantly depend on comprehensive attention throughout all layers [3, 20], which 
necessitates substantial computational resources, thus facilitating a more efficient 
and focused fusion process  [54]. The hidden state of the ModalityA and Modali-
tyB encoder encapsulates the information pertaining to ModalityA and ModalityB, 
respectively. The suggested decoder model integrates this information and produces 
a cohesive output that seamlessly merges both modalities, thereby enhancing the 
model’s overall effectiveness for downstream tasks.

Partially-aligned vs. Non-aligned encoders: As we will demonstrate in Sec-
tion 4, our FAM unit architecture has demonstrated effectiveness in a bimodal sce-
nario, utilizing image and text frozen encoders trained on different datasets and orig-
inating from different model owners. For instance, an image frozen encoder such as 
openai/clip-vit-base-patch32 and a text frozen encoder such as sentence-transform-
ers/all-mpnet-base-v2 is designated as SAFFENon−aligned.

Nonetheless, when the semantic alignment of both modalities is less challenging, 
i.e., the frozen encoders belong to the same frozen multimodal model or they have 
already been trained with similar datasets (for instance, a frozen image encoder such 
as openai/clip-vit-base-patch32, and a text frozen encoder such as openai/clip-vit-
large-patch14), it is designated as SAFFEPartially−aligned . Our experiments reveal that 
it is not necessary to train the decoder part of our FAM component but only its lin-
ear layer to achieve high prediction accuracy.

3.2.2  The architecture of the FAM’s decoder module

ModalityB frozen models produce a diverse array of latent components, including 
hidden states, Queries (Q), Keys (K), and Values (V), each characterized by its spe-
cific weights, whereas ModalityA frozen models generate T distinct hidden states, Q, 
K, and V, similarly endowed with their weights. We have devised a training meth-
odology employing pre-trained frozen transformers’ constituents. We represent the 
output of a ModalityA, T encoder layer as ET+1 = Transformer(ET) , and the output 
of a N decoder layer as DN+1 = Transformer(DN).

The SAFFE methodology is not commutative; thus, we regard ModalityA as an 
output modality type for clarification. More specifically, ModalityA generates the Q, 
while ModalityB supplies the K and V utilized within the MCA methodology, as 
shown in Equation 1.

Where the decoder utilizes the MCA, which assimilates the output generated by 
the encoder ET . D0 MSA is derived from the ModalityA encoder as shown in Equa-
tion 2. The decoder unit employs MSA, utilizing the K, Q, and V values along with 
the weight parameters from both encoders to compute the MCA as shown in Equa-
tions 3 and 4. Layer normalization is denoted as LN.

(1)
MCA(ModalityA,ModalityB)

= Attention(WQModalityA,WKModalityB,WVModalityB)
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Ultimately, the outputs generated by these decoders are subsequently fed into the 
linear concluding layer, where they undergo a succession of transformations to yield 
the intended output sequence.

Reusing the weights of the frozen encoder for the FAM’s decoder: The fusion 
of non-aligned encoders is facilitated by the decoder module. This module com-
prises both a MCA mechanism and a MSA mechanism. Instead of establishing new 
weights for the FAM’s decoder, we derive them from the respective weights of the 
original encoder’s subsequent layer (see Figure  4). This weight-sharing approach 
improves the model’s effectiveness, facilitating superior generalization across vari-
ous tasks while preserving a unified representation of both modalities.

3.3  Applicability and constraints

As in any methodology, SAFFE has certain considerations and constraints for its 
effective applicability on multimodal downstream tasks. 

1. FAM unit: The design of this component is critical for effectively fusing modal-
ity-dependent frozen encoders for achieving the highest model performance in a 
target downstream task. Users must explore the design space of the architectural 
components in FAM, especially determining the number and type of decoder 
layers. To assist with this exploration in the context of bimodal image retrieval 
and language understanding tasks, users can refer to the insights summarized in 
our experimental evaluation (Section 4). For other downstream tasks involving 
different modalities and/or other task-specific datasets, the FAM unit will require 
redesign. Our future work will focus on expanding this development roadmap to 
further demonstrate the effectiveness of SAFFE in these other contexts.

2. Frozen encoders: The selection of unimodal encoders plays a crucial role in 
the performance of SAFFE-derived models. A frozen encoder is required for 
each modality, and each must provide access to the Transformer encoder’s 
output, as well as its corresponding KQV values and weights, as needed by 
the FAM unit. Additionally, all encoders must produce outputs with matching 
vector dimensions to enable efficient execution of multi-head self-attention 
(MSA), cross-attention (MCA), and seamless integration. Our evaluation in 
Section 4 demonstrates the impact of different frozen encoders in bimodal 
scenarios, offering practical guidance for model composition. For broader 
deployments involving other modalities, recent research on vector dimension 
alignment [56–58] can support further optimization.

(2)u� = MSA(LN(ht−1)) + ht−1

(3)Z� = MCA(ModalityA,ModalityB) + u�

(4)DN = LN(Z�)
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3. Multimodal Datasets: Training the FAM unit within a SAFFE model requires 
a multimodal dataset, and both the quality and quantity of this data are criti-
cal to the method’s effectiveness. As shown in our evaluation (Section 4.2.2), 
strong semantic alignment can be achieved using only 50% of the dataset, with 
performance close to the optimal. This demonstrates the potential of SAFFE in 
scenarios where multimodal data is scarce for new downstream tasks.

4  Evaluation and results

In this section, we demonstrate the benefits of our SAFFE methodology applied to 
a bimodal case study composed of text and image modalities with image retrieval 
and language understanding tasks. To this end, we initially describe the datasets 
employed for the training and evaluation of multimodal fusion (Section  4.1.1). 
Then, we delve into the experimental setup used to carry out our experiments (Sec-
tion 4.1.2). Finally, we analyze our experimental results (Section 4.2).

4.1  Implementation details

4.1.1  Datasets

In our experiments, we first use three distinct datasets with increasing complexity: 
Dogs vs. Cats  [59], CIFAR-10  [39], and ImageNet100  [38]. Additionally, we use 
CIFAR-100 [39] and COCO [8], for a comparative analysis of our SAFFE-derived 
bimodal models against SOTA approaches. All relevant dataset specifications are 
provided in Table 1.

4.1.2  Experimental setup

Our SAFFE methodology and derived bimodal models are implemented in 
PyTorch [64]. The off-the-shelf vision frozen encoder models are initialized using 
the ViT architecture and are pre-trained [9, 30, 65]. The off-the-shelf frozen encoder 
models dedicated to textual data are initialized using the BERT architecture and are 
also pre-trained [9, 30, 43, 65]. All the off-the-shelf frozen encoder models used in 
our evaluation are acquired from Hugging Face’s Transformers [66] library.

Table 1  Datasets used to evaluate the bimodal case study of our SAFFE methodology

Datasets #Classes Training Set Testing Set Image Size

Dogs vs. Cats [59] 2 22,500 2500 100×100 to 2000×1000
CIFAR-10 [60] 10 50,000 10,000 32×32
ImageNet100 [61] 100 100,000 5000 469×387
CIFAR-100 [62] 100/20 superclasses 50,000 10,000 32×32
COCO [63] 80 117,200 5000 640×480
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For our semantic-alignment fusion experiments, we consider the following con-
figurations (details in Table 2). In case of the SAFFEPartially−aligned , we examine the 
image encoder specified as openai/clip-vit-base-patch32 alongside the text encoder 
designated as openai/clip-vit-large-patch14  [9]. These CLIP frozen models have 
been trained by the OpenAI team using a dataset comprised of 400 million image-
text pairs sourced from the Internet [9]. In this case, as detailed in Section 3.2.1, a 
simple FAM structure consisting of only a linear layer (refer to Figure 4) is sufficient 
to achieve high prediction accuracy (the experimental results are shown below). On 
the other hand, in the case of the SAFFENon−aligned , we use the same image encoder 
as before, openai/clip-vit-base-patch32 [9], but the text encoder is unrelated to the 
image encoder, selecting sentence-transformers/all-mpnet-base-v2  [43]. It utilized 
the pre-trained microsoft/mpnet-base model and was trained on a dataset compris-
ing 1 billion sentence pairs. This more challenging semantic alignment of both types 
of encoders necessitates a more complex FAM unit. In this scenario, our FAM unit 
employs the full architecture depicted in Figure  4. It includes a trainable decoder 
layer for each modality-specific stack of encoder layers, which is responsible for 
generating outputs for the trainable linear layer.

For the training procedure of FAM in our SAFFE-derived bimodal models, we 
employ the weighted Adam [67] optimization algorithm, utilizing a standard learn-
ing rate of 2e−4 [20]. The Adam optimizer effectuates updates to the model param-
eters based on the gradients derived from the task-specific losses. During the infer-
ence phase, we employ a system output vector as the modality representation and 
compute cosine similarity [9] to evaluate the mAP value for the image retrieval task. 
Additionally, we employ a batch size of 30 and set the number of epochs to 50 for 
all experiments. These hyperparameters achieve the highest prediction accuracy for 
the produced SAFFE-derived multimodal models under evaluation. Our training and 
prediction experiments require only commodity hardware; specifically, we use an 
NVIDIA GeForce RTX 3060 GPU with 12.74 TFLOPS of computational power and 
12 GB of GDDR6 memory.

4.2  Experimental results

In this section, we examine the impact of various architectural choices in SAFFE-
derived multimodal models. The analysis focuses on the extent to which the con-
tributions of encoder layers influence the functionality of FAM units in achieving 
optimal output, as well as the effect of the volume of training data on accuracy. 

Table 2  SAFFE-derived models with their associated frozen encoders and features. EL=Number of 
encoder layers and ED=Embedding Dimension

Model Text Encoder Image Encoder EL ED

SAFFEPartially−aligned openai/clip-vit-large-patch14 openai/clip-vit-base-patch32 12 768
SAFFENon−aligned sentence-transformers/all-

roberta-large-v1
openai/clip-vit-base-patch32 12 768
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Ultimately, this analysis pertains to the accuracy associated with the conceptual 
integration of visual and linguistic elements within the framework of FAM.

4.2.1  Analysis with fusion strategies

In general, the FAM unit can take as input P encoder hidden states from a single 
modality, where P can range from one to the total number of encoder layers in the 
frozen model. In our SAFFEPartially−aligned and SAFFENon−aligned models, we conduct 
experiments with P = 1 , a single encoder, and P = 2 , two consecutive encoders as 
shown in Figure 5. Note that in the latter case ( P = 2 ), only the last two consecutive 
layers from both encoder layers are used to train the FAM unit.

For the experimental design, among all the 12 available encoder layers per 
modality (see Table 2), we conduct experiments by selecting a subset of them. The 
purpose of these experiments is to evaluate the mAP values of the FAM unit in the 
bimodal model using the chosen encoder layers for each modality, derived from the 
frozen pre-trained models. Specifically, we select five experimental cases for both 
scenarios: 0, 2, 5, 8, and 11 encoder layers for the SAFFEPartially−aligned model, and 
0,  2,  5,  8,   and 10 encoder layers for the SAFFENon−aligned model for P = 1 case. 
Note that each of these values represents the encoder layer identifier used to train the 
FAM unit. For instance, in the experiment with “5,” we use the fifth encoder layer. 
Additionally, in the non-aligned case, as illustrated in Figure  2, since we use the 
K, Q, and V weights from the next encoder layer, the maximum encoder layer identi-
fier we can test is “10.” These encoders are represented according to their respective 
encoder numbers on the y-axis (“Fusion Layer”) of Figures 6a through 8c.

In the case of P = 2 , the SAFFEPartially−aligned model uses 0, 2, 4, 6, and 10 encoder 
layers with consecutive layers, represented graphically as 0 + 1, 2 + 3, 4 + 5, 6 + 7, 
and 10 + 11 . Similarly, in the SAFFENon−aligned model, we use 0,  2,  4,  6, and 9 

Fig. 5  SAFFE-derived experimental model for analysis. SAFFEPartially−aligned (left): Fusion with sin-
gle encoder (P=1). SAFFEPartially−aligned(middle, left): Fusion with consecutive encoder layers (P=2). 
SAFFENon−aligned(middle, right): Fusion with single encoder (P=1). SAFFENon−aligned (right): Fusion with 
consecutive encoder layers (P=2). The solid arrows indicate the outputs from the encoder, while the 
dashed arrows signify the corresponding weights (K, Q, V)
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encoder layers with consecutive layers, depicted as 0 + 1, 2 + 3, 4 + 5, 6 + 7, and 
9 + 10 in Figures 6a through 8c. Below, we analyze each of these figures.

Figure 6a and Figure 6b presents the outcomes for the SAFFEPartially−aligned and 
SAFFENon−aligned models, respectively, demonstrating the performance metrics (i.e., 
the mAP metric) associated with the datasets under the SAFFE configuration, as 
shown in Table 2. To demonstrate the importance and successful alignment of the 
semantic space of both input modalities of our trainable FAM, the figures addition-
ally show the mAP results when the output from the frozen encoder model (which 
incorporates all encoder layers) is used to directly compute the cosine similarity 
between modalities in the absence of the SAFFE methodology. These results are 
represented in the figures as SAFFE_FREE. As we can see, Figure 6a and 6b shows 
that without the SAFFE methodology, accuracy declines significantly. In contrast, 
SAFFEPartially−aligned and SAFFENon−aligned models achieve higher mAP scores across 
all datasets.

More specifically, in Figure  6a, the SAFFEPartially−aligned model shows that the 
individual encoder layer ( P = 1 ) h11 = 11 (final hidden state) obtains the high-
est mAP value, whereas the concatenation of encoder layers ( P = 2 ) h10 = 10 and 
h11 = 11 (last two hidden states) yields the optimal mAP. Figure 6b illustrates the 
outcomes of the SAFFENon−aligned model, wherein the individual encoder layer 
( P = 1 ) fusion mechanism, characterized by a layer h10 = 10 , yields the highest 
mAP value. Furthermore, the concatenation of the two layers ( P = 2 ) within the 
mechanism, specifically layers h9 = 9 and h10 = 10 (represented as 9+10), results in 
the maximum mAP value. Among these models, the two-layer ( P = 2 ) concatena-
tion demonstrates the highest mAP value. As a result, it suggests that this synergy 

Fig. 6  (a) Partially-aligned and non-aligned (b) fusion of encoders, wherein both text and image encod-
ers facilitate either one encoder layer ( P = 1 ), e.g., 11 in X-axis, or two consecutive encoder layers 
( P = 2 ), e.g., 10 + 11 in X-axis. The mAP for the SAFFE_Free, absent the SAFFE-derived model
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supports performance optimization, indicating potential avenues for further explora-
tion of encoder layer combinations.

Takeways: The final encoder layers effectively gather and condense feature rep-
resentations from the input modalities, enabling a robust representation for the 
semantic alignment and fusion of FAM between modalities. Furthermore, this indi-
cates that the collaborative interaction between these layers enhances overall per-
formance. Furthermore, our experiments indicate that the optimal number of fusion 
layers in the SAFFE methodology is P = 2 . Additional experiments for P > 2 (not 
included in this paper) do not improve accuracy of this downstream task for the 
evaluated datasets with the selected frozen encoders. This finding simplifies the 
model significantly while also drastically lowering computational costs and enhanc-
ing performance.

Analyzing the results across the different datasets, we observe that in the case of 
Dogs vs. Cats dataset, Figure 6a shows that the SAFFEPartially−aligned mode attains a 
peak accuracy (100% mAP) at encoder layer h2 = 2 for P = 1 and at layers h2 = 2 
and h3 = 3 for P = 2 . Likewise, Figure  6b demonstrates that the SAFFENon−aligned 
mode achieves a maximum accuracy (100% mAP) at layer h5 = 5 for P = 1 and at 
layers h6 = 6 and h7 = 7 for P = 2 . These results demonstrate that image retrieval 
tasks involving simple datasets such as Dogs vs. Cats dataset do not need the execu-
tion of all encoder layers (12 layers) from the pre-trained model; rather, the initial 
few encoder layers provide sufficient contextual information for this purpose.

Takeways: This finding suggests that optimizing the use of encoder layers can 
lead to more efficient model performance, allowing for faster training times and 
reduced computational resources while maintaining high accuracy in retrieval tasks.

4.2.2  Semantic‑alignment fusion with scarce training data

This study aims to evaluate the performance accuracy of a SAFFE-derived model 
in relation to the volume of training data used as shown in Table  1. Figure  7 
shows the outcomes for the SAFFEPartially−aligned models in comparison with the 
SAFFENon−aligned , as illustrated in Figure 8, using the SAFFE configurations listed 
in Table 2 with the datasets Dogs vs. Cats, CIFAR-10, and ImageNet100. In addi-
tion, these figures present the optimal mAP values along with the accuracy metrics 
for the non-trained SAFFE-derived model with random weights. To illustrate the 
rapid adaptability of the SAFFE-derived model, we performed training using 100%, 
as well as 50%, 25%, and 10% of the datasets. We report mAP across all scenarios, 
adhering to established models.

As we can see, for the three datasets, Figure  7a,  7b, and  7c (output from 
the SAFFEPartially−aligned model) and Figure  8a,   8b, and  8c (output from the 
SAFFEPartially−aligned models) demonstrate that the accuracy of the model without 
training the SAFFE-derived model is considerably low, especially as the com-
plexity of the dataset increases. However, as expected, when the SAFFE-derived 
model is trained, much higher mAP values are achieved across all datasets. 
All the graphical representations indicate that training on the complete dataset 
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(100%) yields the mAP values across all datasets with both SAFFEPartially−aligned 
and SAFFENon−aligned models. In the case of the SAFFE-derived model utilizing 
a single encoder input (P = 1) , encoder 11 achieves the highest mAP values for 
SAFFEPartially−aligned models, while encoder 10 attains the maximum mAP values 
for SAFFENon−aligned models. When the SAFFE-derived model is implemented 
with a consecutive dual encoder input (P = 2) , encoders 10 and 11 exhibit the 
highest mAP values for SAFFEPartially−aligned model, whereas encoders 9 and 10 
secure the maximum mAP values for SAFFENon−aligned models. Notably, when the 
proportion of training data is diminished, the corresponding highest mAP values 
experience only a marginal reduction. In scenarios involving SAFFEPartially−aligned 
and SAFFENon−aligned models with P = 1 and P = 2 , it is observed that utilizing 

Fig. 7  Training with the Dogs vs. Cats (a), CIFAR-10 (b), ImageNet100 (c) dataset at proportions of 
100%, 50%, 25%, and 10% of the data, utilizing partially-aligned encoders, where both text and image 
encoders provide one ( P = 1 ) or two encoder layers ( P = 2 ) for fusion, results in the highest mAP perfor-
mance alongside the non-trained SAFFE-derived model accuracy at the inference phase



Saffe: Multimodal Model Composition with Semantic‑Alignment… Page 19 of 31  1114 

merely 10% of the training dataset can approximate a performance level similar 
to that achieved with the entire dataset (100%). This observation underscores that 
the model not only demonstrates efficiency but also effectiveness in harnessing 
limited data to optimize performance.

Next, in Figure 9a and 9b, we analyze the number of epochs required for training 
convergence in each case, considering the highest-performing SAFFEPartially−aligned 
model ( 10 + 11 ) and SAFFENon−aligned model ( 9 + 10 ). Both Figure 9a and 9b show 
that 50% of the training dataset attains mAP values that are remarkably close to 
those of the complete dataset training values following an increase in the number 
of training epochs to fit the models more effectively. The increment of training 
epochs (at 50% of data) for the SAFFEPartially−aligned model consisted of 25 epochs 

Fig. 8  Training with the Dogs vs. Cats (a), CIFAR-10 (b), ImageNet-100 (c) dataset at proportions of 
100%, 50%, 25%, and 10% of the data, utilizing non-aligned encoders, where both text and image encod-
ers provide one or two encoder layers for fusion, results in the highest mAP performance alongside the 
non-trained SAFFE-derived model accuracy at the inference phase
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for ImageNet100 and 28 epochs for CIFAR-10, with no requirement for the Dogs 
vs. Cats dataset. Conversely, the supplementary training epochs for the more chal-
lenging SAFFENon−aligned model comprised 10 epochs for ImageNet100, 3 epochs 
for CIFAR-10, and 11 epochs for the Dogs vs. Cats dataset. Additionally, 10% of the 
dataset also approaches slightly below the 50% training dataset threshold with an 
increased number of training epochs. The dataset comprising two classes, Dogs vs. 
Cats, attained the maximum mAP value of 100% utilizing merely 10% of the dataset 
after an increase in the number of training epochs.

Takeways: Our performance analysis of SAFFE-derived models trained on dif-
ferent subsets of the full training dataset shows that they can achieve competitive 
mAP metrics, even in the worst-case scenario (training with only 10%). In general, 
the smaller the training dataset, the more epochs are required for training. However, 
this increase is not significant, with fewer than 30 epochs in the worst case (10%) 
for the most complex and compute-intensive training (ImageNet100 dataset). This 
finding implies that the model’s design is not only robust but also rapidly adaptable, 
enabling efficient generalization even when faced with minimal information. This 
highlights the potential for deploying SAFFE-derived models in scenarios where 
data scarcity is a challenge, such as in specialized medical applications or emerging 
fields with limited datasets.

4.2.3  Encoder layers contribution for semantic‑alignment fusion

This study aims to evaluate the performance accuracy of a SAFFE-derived model 
in relation to the number of encoders contributing to the FAM unit (P = 1, 2, 3, 4) . 
Table  3 shows the results for the SAFFENon−aligned model utilizing the SAFFE 

Fig. 9  (a) Partially-aligned and (b) non-aligned encoder fusion model utilizes the concatenation of the 
hidden states 10 with 11 (10+11) and 9 with 10 (9+10), respectively, resulting in the highest mAP 
attained by the agents corresponding to the respective echo number
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settings outlined in Table 2 with the datasets Dogs vs. Cats, CIFAR-10, and Ima-
geNet100. The table provides the highest mAP value along with the corresponding 
epoch number to the related P values.

According to the findings presented in the table, the configuration comprising two 
encoder layers (P = 2) with the FAM unit demonstrates the most effective attain-
ment of a favorable mPA value with a less number of epochs across all datasets. 
Although configurations with P > 2 reach optimal mAP values, they necessitate 
greater computational power for model training. Thus, the most appropriate number 
of encoders is two (P = 2) from each modality for the FAM unit. These results high-
light the importance of balancing model complexity and computational efficiency, 
as augmenting the number of encoder layers beyond two may yield marginal perfor-
mance improvements but incur considerable expenses in terms of training duration 
and resource allocation.

Takeways: The results demonstrate a substantial relationship between the number 
of encoder layers and the efficacy of the model. In accordance with this, the optimal 
configuration of the FAM unit, which includes two encoder layers from each modal-
ity (p = 2) , improves accuracy across various datasets.

4.2.4  SAFFE‑derived models versus frozen SOTA multimodal models

As explained in Section  2, SOTA multimodal models possess zero-shot learn-
ing capabilities due to their large number of trainable parameters, Transformer-
based architecture, and the extensive datasets used for training. This allows them 
to be effectively deployed for inference even on unseen or partially seen datasets. 
Table 5 presents a comparative analysis of zero-shot best performance across var-
ious SOTA bimodal models on the CIFAR-10 and CIFAR-100 datasets. As shown 
in the table, these models can achieve high mAP values, particularly on the sim-
pler CIFAR-10 dataset, without explicit and costly fine-tuning of their numerous 
trainable parameters (see the second column of the table). However, for a specific 
downstream task such as image retrieval, where the more complex CIFAR-100 
dataset is required for training, fine-tuning these SOTA models becomes highly 
computationally expensive.

To enable more efficient fine-tuning of existing multimodal models for spe-
cific datasets required in a target downstream task, end-users can leverage our 
SAFFE methodology. More specifically, we first select the frozen encoder com-
ponents of interest and then train only the FAM unit using the targeted dataset. 

Table 3  The SAFFE framework integrates novel dual modalities with pre-existing frozen models. We 
performed experiments using varying counts (p = 1, 2, 3, 4) of encoder layers and achieved the highest 
mAP value at the corresponding epoch number

Dataset P = 1 P = 2 P = 3 P = 4

ImageNet100 63.68%/37 66.84%/29 66.90%/39 68.12%/39
CIFAR-10 94.46%/14 94.88%/4 94.98%/9 95.02%/12
Dogs vs. Cats 100%/3 100%/5 100%/8 100%/20
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This new training approach offers two key advantages. First, by training only the 
FAM unit, the computational cost is significantly lower compared to fine-tuning 
the entire stack of encoder and decoder layers in the SOTA model. Second, our 
SAFFE methodology provides full flexibility in composing the fine-tuned mul-
timodal model by allowing the selection of per-modality encoder layers that are 
most efficient for the target downstream task. To demonstrate both benefits, we 
compare the SOTA models with two SAFFE-derived models: SAFFEpartially−aligned , 
configured as shown in Table 2. SAFFENon−aligned , configured as shown in Table 4.

As shown in Table  5, in terms of trainable parameters, our SAFFE-derived 
models require significantly fewer trainable parameters than the SOTA models 
while achieving competitive mAP values on both the CIFAR-10 and CIFAR-100 
datasets. The Vision-Language Pre-training model proposed by Wukong  [68] 
comprises 100 million pairs of Chinese image text gathered from the Internet. 
The ZLaP  [40] represents a contemporary model characterized by a minimal 
number of trainable parameters. This results in substantially lower computational 
costs for fine-tuning. More importantly, the flexibility of our SAFFE methodol-
ogy allows for the composition of a higher-performing SAFFE-derived model—
specifically, the non-aligned variant—by strategically selecting different types 
of frozen encoders. Notably, the SAFFENon−aligned_01 model, which incorporates 

Table 4  The configurations of SAFFE-derived models along with their corresponding frozen models. 
EL=Number of encoder layers and ED=Embedding dimension

Model Text Encoder Image Encoder EL ED

SAFFENon−aligned01
sentence-transformers/all-mpnet-

base-v2
laion/CLIP-ViT-B-32-

laion2B-s34B-b79K
12 768

SAFFENon−aligned_large sentence-transformers/all-roberta-
large-v1

openai/clip-vit-large-patch14 24 1024

SAFFENon−aligned_MAE sentence-transformers/all-roberta-
large-v1

facebook/vit-mae-base 12 768

Table 5  mAP performance of 
SOTA bimodal models and 
SAFFE-derived models

Model # Trainable 
Parameters

CIFAR-10 CIFAR-100

OpenCLIP [34] 1B 93.5 76.2
CN-CLIP [70] 958 M 96.0 79.7
ALIGN [10] 820 M 94.9 76.8
CLIP [9] 400 M 94.9 77.0
Wukong [68] 307 M 95.4 77.1
ZLaP [40] 151 M 93.6 73.3
SAFFENon−aligned_MAE 264 M 81.32 44.6
SAFFEPartially−aligned 67 M 94.72 75.38
SAFFENon−aligned_01 67 M 96.6 77.46
SAFFENon−aligned_large 351 M 97.39 80.94
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a more effective selection of frozen encoders, namely, CLIP and SBERT, in an 
off-the-shelf manner, achieves significantly higher mAP than the partially-aligned 
model. This model achieves the highest accuracy when compared to the SOTA 
model while utilizing the fewest number of trainable parameters (67 M). Further-
more, the SAFFENon−aligned_large model achieves the highest mAP value attained by 
all SOTA and SAFFE models. This model encompasses 351 M parameters; how-
ever, it does not surpass the model with the highest accuracy, namely, the CN-
Clip model(958 M). The encoder models that have been selected are not explic-
itly trained on the target datasets; rather, the chosen pre-trained models extract 
features from the input data and generate a sophisticated vector space through 
their extensive pre-training processes. The FAM unit has the capability to seam-
lessly integrate the encoder layers and produce a new modality-invariant vector 
representation for the input data. This subsequent fusion of encoder layers with 
FAM can enhance the accuracy of the downstream task.

The SAFFENon−aligned_MAE experiment aimed to demonstrate the FAM unit’s 
fusion ability and efficiency with various unimodal encoders. This model inte-
grates the fusion of the MAE-ViT [69] image encoder with the SBERT text encoder 
within its architecture. The MAE [69] (Masked Autoencoder) is a straightforward 
autoencoding approach that reconstructs the original signal from its partial obser-
vations. We employed the MAE-ViT encoder as illustrated in Table 4, utilizing the 
pre-trained MAE-ViT encoder that has been trained on the ImageNet1K dataset. 
Furthermore, we conducted experiments utilizing the CIFAR-10 and CIFAR-100 
datasets, as displayed in result Table 5. The SAFFE model demonstrates exceptional 
accuracy when utilizing the MAE-ViT encoder, even in the absence of prior training 
on those datasets. In this experimental setup, both encoders contribute two encoder 
layers (P = 2) to the FAM unit, with the datasets being exclusively trained using 
the FAM unit. This illustrates the capability of democratic pre-trained encoders and 
models for improved efficacy. It underscores the adaptability and efficiency of the 
SAFFE model. The SAFFE model showcases robustness across different types of 
image data, suggesting its adaptability in various real-world applications.

Takeways: The SAFFE methodology enables the efficient fusion of frozen encod-
ers and flexible composition of multimodal models, enhancing mAP performance 
for a targeted downstream task without the costly fine-tuning of all layers in exist-
ing SOTA multimodal models on the datasets of interest. This approach optimizes 
resource utilization by allowing the model to leverage existing knowledge without 
extensive training, facilitating faster and more efficient deployment in real-world 
applications. 

4.2.5  SAFFE‑derived models versus SOTA fusion‑based models

As explained in Section 2.3, certain SOTA bimodal models, such as BLIP and 
UniT, utilize efficient mid-fusion mechanism while MAGMA implements a late 
fusion mechanism. Since our FAM unit implements a bottleneck mid-fusion 
technique, we aim to assess its effectiveness by comparing two SAFFENon−aligned 
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models with these SOTA fusion models for image retrieval tasks using the 
COCO dataset (details in Table 6).

As we can see in the table, the model SAFFENon−aligned_01 employs a VIT−B/16 
vision encoder, which is characterized by a sequence length of 197 with 16 pixel 
size patches, whereas another model ( SAFFENon−aligned_02 ) utilizes a VIT−B/32 
vision encoder with a sequence length of 49 with 32 pixel size patches. In both 
SAFFE-derived models, the FAM unit has the P = 2 configuration using the last 
encoder layers 9 and 10 of the two (image and text) frozen encoders. In terms of 
computational cost, the VIT-B/32 ( SAFFENon−aligned_02 ) architecture necessitates 
considerably less computational power due to its reduced sequence length, con-
sequently achieving the highest mAP value.

Compared to SAFFE, in spite of their advanced fusion strategies (Sec-
tion  2.3), the seven evaluated SOTA models generally require a significantly 
higher number of trainable encoders and decoders. In contrast, SAFFE-derived 
models adopt a lightweight trainable architecture (FAM) that includes only two 
decoders coupled with a linear layer. This streamlined configuration reduces 
the need for pairwise attention mechanisms and substantially decreases the 
total number of trainable parameters. For instance, the best-performing SAFFE 
model includes just 67 million parameters ( P = 2 ) and achieves the highest 
mAP (67.2). Models such as BLIP [20], Flamingo [18], and UniT [36] depend 
on full pairwise attention across all input modalities to reach their peak mAP. 
However, this approach demands significantly more computational resources, 
as illustrated in Table 6. Likewise, MAGMA [21] employs a massive 6 billion 
parameter decoder-only GPT-J model with 4096-dimensional hidden states, 
further increasing complexity and compute load. Similarly, SigLIP  [37] and 
ALIGN [10] models feature notable requirements as well, as including the need 
for extensive computational power and massive datasets for end-to-end training, 
which can take several days to complete.

Takeaways: SAFFE-derived models—featuring fewer trainable parameters 
and efficient cross-modal fusion via the FAM unit—significantly reduce the com-
putational cost of training compared to the seven evaluated SOTA models, which 
frequently necessitate expensive, comprehensive full pairwise attention mecha-
nisms. SAFFE employs later layer bottleneck mid-fusion techniques to circum-
vent the necessity for extensive training. Consequently, SAFFE models’ training 
can converge much faster using commodity GPU hardware, making them practi-
cal for a wider range of users.

4.2.6  SAFFE‑derived models and fast concept binding

The fast concept binding of visual and linguistic components means the capacity to 
acquire proficiency in a novel language task after being prompted with merely a lim-
ited number of instances within few-shot learning. This study specifically examines 
how accurately fast concept binding can be achieved using SAFFE-derived mod-
els and compares their performance to the state-of-the-art Few-Shot Learning (FSL) 
model [52].
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Following the experimental methodology of the FSL work, we perform image 
classification with the miniImageNet dataset [38] and adopt the same terminology:

• Number of ways: Number of object classes in the classification (e.g., dog vs. 
cat).

• Number of inner shots: Number of unique instances per category (i.e., the num-
ber of images in the dog class).

Image class labels have been substituted with meaningless terms such as (“Blorbin,” 
“Crundle,” etc.) that correspond to actual items (“cat,” “dog,” etc.). We initiated this 
experiment since nonsensical terms carry no (or minimal) intrinsic meaning, to eval-
uate the extent of difficulty introduced by associating visual categories with these 
meaningless words with limited inner shots with few training epochs. Text encoders 
remain “blind” to modalities beyond textual representation, thereby restricting our 
ability to convey visual context to them. For our SAFFE-derived models, we main-
tain the encoder in a frozen state and trained the FAM unit using both 2-way and 
5-way configurations with 1, 3, and 5 inner shots over 1 or 2 epochs.

Table 7 presents the experimental results for the 2-way and 5-way classifications. 
The Meta-Learning [41] framework yields outcomes that surpass those achieved by 
the FSL frozen  [52] model in both the 2 and 5 ways of the experimental design 
under 1 and 5 inner shots. By leveraging a SAFFE-derived model with an improved 
combination of frozen text and image encoders—compared to the rigid architecture 
of the meta-learning—we achieve a higher accuracy in both settings. Additionally, 
training for just two epochs significantly improves accuracy.

We also conducted two more complex experiments: one using 20 distinct super-
classes from the CIFAR-100 dataset and another with the ImageNet100 dataset, 
where all 100 class names were replaced with nonsensical terms. After training 
FAM with both image and nonsensical word modalities, the model derived from 
SAFFE attained a high accuracy of 81.89 on the CIFAR-100 dataset and 60.3 on 
the ImageNet dataset. The CIFAR-100 superclass experiment further demonstrates 

Table 7  Performance of fast concept binding with miniImageNet in 2-way and 5-way tasks. *Number of 
epochs for training

Number of ways 2 5

Inner shots Image/Text backbone 1 3 5 1 3 5

FSL frozentest−blind [52] 1* NF-ResNet-50/Trans-
former Architecture 
[22]

48.5 46.7 45.3 18.6 19.9 19.8

Meta-Learning [41] 1* CLIP-ViT/B-32/GPT-2 58.7 - 65.8 25.1 - 29.6
SAFFENon−aligned 1* CLIP-ViT/B-16/SBERT 80.0 78.0 77.0 30.4 54.0 46.4
SAFFENon−aligned 2* CLIP-ViT/B-16/SBERT 95.0 90.0 96.0 30.0 80.0 74.8
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strong generalization across multiple image categories, providing empirical evi-
dence for our proposed methodology’s effectiveness in integrating new linguistic 
data.

From the previous experiments, we observe that a SAFFE-derived model can 
learn new image name associations when presented with images alongside their 
corresponding descriptions. The model’s ability to use newly introduced words 
improves with additional examples from the same category, and increasing train-
ing epochs further enhances accuracy. The SAFFE-derived model leverages a pre-
trained language model to extract linguistic features, enabling rapid learning and 
seamless interaction between visual and textual modalities—without modifying the 
weights of the frozen encoders. FAM training bridges the gap between these modali-
ties, allowing the trained FAM to generate class names for corresponding images 
using the new linguistic model.

Takeways: The FAM unit rapidly binds various words in languages that incor-
porate visual elements by utilizing pre-trained frozen text and image encoders. This 
capability can facilitate the acquisition of a range of new tasks, as example repre-
sented as a sequence of several interleaved image and text embeddings. This devel-
opment can understand and interpret information about images with various aspects 
and provide associated information. As well, it opens up new avenues for applica-
tions in fields such as automated content creation, accessibility tools for the visually 
impaired, and enhanced human–computer interaction [52].

5  Conclusions and future work

In this work, we present SAFFE, a novel methodology for the flexible and scal-
able composition of multimodal models, specifically tailored to evolving end-user 
downstream tasks. In contrast with existing multimodal models and state-of-the-art 
fusion techniques, SAFFE-derived models eliminate the need for expensive end-to-
end training or full fine-tuning to achieve high accuracy on target datasets. SAFFE 
leverages per-modality off-the-shelf frozen encoders—readily available from major 
AI providers—by selectively integrating only those components necessary for the 
downstream task. This targeted selection avoids over-parameterization and signifi-
cantly reduces the model’s memory footprint. Since these pre-trained frozen encod-
ers are often trained independently and not within a unified multimodal context, 
their output embeddings may be semantically misaligned. To resolve this, we pro-
pose the FusionAlign Module (FAM)—a lightweight, bottleneck mid-fusion unit 
trained solely on the target end-user dataset. FAM aligns the semantic spaces across 
modalities, enabling effective multimodal integration without updating the param-
eters of the frozen encoders.

As a proof of concept, we demonstrate the effectiveness of the SAFFE methodology 
in a bimodal setting involving image and text modalities, applied to image retrieval and 
language-based downstream tasks. Through extensive experiments and ablation studies, 
we evaluate a range of SAFFE fusion strategies that combine various types of frozen 
encoders—both partially aligned and fully non-aligned—across datasets of varying com-
plexity. Our results show that SAFFE can flexibly and efficiently compose high-accuracy 



 M. Kulasekara et al. 1114  Page 28 of 31

bimodal models, achieving improved prediction performance compared to state-of-the-
art methods, while significantly reducing computational costs.

Future research will explore the integration of a third modality—specifically 
audio—while optimizing the FAM unit design to enhance performance and cost 
efficiency in SAFFE-based tri-modal models incorporating text, image, and audio 
inputs. These enhanced SAFFE-derived models will enable new downstream tasks, 
such as image segmentation and Visual Question Answering particularly by leverag-
ing the synergy between text and image modalities.
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