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A B S T R A C T   

Paprika is a spice whose composition and characteristics vary with its geographical origin and additionally is 
illegally adulterated with dyes to improve its appearance. This work proposes a strategy based on Fourier- 
transform near infrared (FT-NIR) analysis and chemometric tools for its authentication and detection of fraud. 
A total of 115 paprika samples were analyzed, including paprika with protected designation of origin (PDO) 
labels from Spain, France and Hungary, and samples from China and Zambia. The proposed orthogonal partial 
least squares-discriminant analysis (OPLS-DA) models allow to distinguish paprika according to its PDO and 
variety, as well as to identify adulteration with Sudan dyes or Congo red. Partial least squares regressions allow 
to quantify the adulterant in paprika from 0.1 to 5 %. Chemometric models achieved high classification success 
rates and suitable linearities. The proposed strategy is presented as a comprehensive and effective tool to ensure 
paprika quality and authenticity, including the detection and quantification of adulteration with commercial 
dyes.   

1. Introduction 

Paprika is a spice obtained by grinding dried fruits of the genus 
Capsicum annuum L. widely used in the food industry as a natural col-
oring and flavouring agent, due to its distinctive taste, flavor and high 
coloring capacity. Paprika is a natural source of nutrients such as min-
erals and vitamins C and E, and bioactive compounds as carotenoids, 
capsaicinoids and phenolic compounds (Baenas et al., 2019). These 
compounds provide anti-inflammatory and antioxidant effects and play 
a key role in the prevention of several diseases, including cardiovascular 
diseases and several types of cancer (Hayman & Kam, 2008; Saini et al., 
2020). The composition of this spice is determined by several factors 
such as the variety of pepper, the geographical origin, the climatic 
conditions or the production process. Therefore, the protection of the 
geographical area has become one of the main tools of certifying the 
authenticity of foods, recognizing their unique and distinctive charac-
teristics. This is indicated by the Protected Designation of Origin (PDO) 
label. In Europe, three areas of paprika production with PDO are from 
Spain (Pimentón de La Vera, Pimentón de Murcia and Pebre bord de 

Mallorca), two from Hungary (Kalocsai fűszerpaprika-őrlemény and Sze-
gedi fűszerpaprika-őrlemény), one from Slovakia (Paprika Žitava) and one 
from France (Piment d’Espelette) (Monago-Maraña et al., 2022). 

Due to their high quality and prize, paprika with PDO is an attractive 
target for adulteration and mislabelling (Sun et al., 2022; Van Asselt 
et al., 2018). Thus, studies to ensure the authentication of paprika have 
grown over the years. The differentiation between Spanish paprikas 
from “La Vera” and “Murcia” has been studied by spectroscopic tech-
niques as ultraviolet–visible (UV–Vis) based on color measurements 
(Palacios-Morillo et al., 2016) and visible near-infrared spectroscopy 
(Vis-NIR) (Monago-Maraña et al., 2021). High-performance liquid 
chromatography (HPLC) coupled to UV (Cetó et al., 2018, 2020), mass 
spectrometry (MS) (Barbosa et al., 2020) and fluorescence detector 
(FLD) (Campmajó et al., 2021) was applied for the differentiation of 
several paprikas with PDO based on phenolic compounds profile of the 
samples. Lighter sample treatment has been proposed, mixing the 
paprika with wax before its determination by energy dispersive X-ray 
fluorescence (ED-XRF) for paprika from “La Vera” (Fiamegos et al., 
2021). 
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On the other hand, adulteration of paprika can be carried out by the 
addition of an external materials, own materials of inferior production 
and colorants (Oliveira et al., 2019). Analytical methodologies have 
been purpose for the identification of adulterated paprika with gum 
arabic (Horn et al., 2018; Oliveira et al., 2020), potato starch and 
annatto (Oliveira et al., 2020), corn flour (Zaukuu et al., 2019), tomato 
skin and red brick dust Galaxy Scientific Inc., 2016), lead oxide (II, IV), 
lead chromate, silicon dioxide and polyvinyl chloride (Horn et al., 
2018). Galvin-King et al. proposed the detection of paprika adulterated 
with spent paprika (after extracting oleoresin), considered a waste 
product (Galvin-King et al., 2020). Moreover, paprika fraud in terms of 
authentication was studied by mixing different regions and cultivars of 
paprika samples (Sun et al., 2022, 2023). The addition of synthetic 
colorants as Congo red (Lohumi et al., 2018), azorubine and cochineal 
red A, as well as natural (sumac and beetroot) colorants (Horn et al., 
2021) has also been explored to ensure the authenticity of paprika. The 
addition of colorants to paprika provide a bright color making it more 
attractive to the consumer as well as being durable and low cost 
(Monago-Maraña et al., 2022). Particular importance has been given to 
the detection of paprika adulterated with Sudan dyes (Sudan I, II, III, IV) 
(Di Anibal et al., 2009, 2011, 2012, 2014, 2015; Galaxy Scientific Inc., 
2016; Gao et al., 2015; Horn et al., 2018; Hu et al., 2017; Jahn et al., 
2015; Lohumi et al., 2017, 2018; Márquez et al., 2019; Mohamed et al., 
2021; Monago-Maraña et al., 2019; Vera et al., 2018). These synthetic 
compounds are illegally food additives commonly used as colorants in 
textiles, plastics and other products, and its degradation in the organism 
may pose a health risk (Liu et al., 2015; Xu et al., 2007). 

Spectroscopic techniques combined with chemometrics have 
demonstrated numerous advantages for the detection of adulterated 
paprika with dyes, being considered the most effective methodology for 
this purpose (Monago-Maraña et al., 2022). Among them, UV–Vis 
spectroscopy has been the most used one (Di Anibal et al., 2009, 2014; 
Márquez et al., 2019; Vera et al., 2018). However, sample pre-treatment 
is necessary prior to analysis by this technique, which require more time 
and involves the use of solvents. Other methods employ Raman (Lohumi 
et al., 2018; Monago-Maraña et al., 2019) and Surface Enhanced Raman 
Spectroscopy (SERS) (Di Anibal et al., 2012; Jahn et al., 2015). Although 
SERS has been used to improve the sensitivity of conventional Raman, 
quantification can be difficult because it depends on the interaction 
analyte-nanoparticles (Monago-Maraña et al., 2019). 1H Nuclear Mag-
netic Resonance (1H NMR) (Di Anibal et al., 2011; Hu et al., 2017) and 
infrared techniques such as Fourier-transform mid-infrared (FT-MIR) 
(Horn et al., 2018; Lohumi et al., 2017) are other spectroscopic tech-
niques used for this purpose. Besides spectroscopic techniques, liquid 
chromatography coupled to tandem mass spectrometry (LC-MS/MS) 
was applied for quantification of dyes in spices including paprika 
(Mohamed et al., 2021). However, this methodology is destructive to the 
sample and requires more analysis time than spectroscopic methods. 

This work proposes a strategy to ensure the authenticity and quality 
of paprika using the sample fingerprint provided by FT-NIR spectros-
copy. From the chemometric models developed based on orthogonal 
partial least squares-discriminant analysis (OPLS-DA) and partial least 
squares (PLS) regressions, the aim is to detect and quantify paprika 
samples adulterated with Sudan II, III, IV and Congo Red, as well as to 
distinguish between different PDOs from Spain, France and Hungary in a 
single analysis. In addition, the variety of paprika samples (hot, sweet 
and smoked) can also be identified by the proposed chemometric 
strategy. To the best of our knowledge, this is the first time that paprika 
authentication has carried out in terms of adulteration and mislabelling 
simultaneously including samples of five different PDO paprikas. Thus, 
the technological challenge that has been achieved is to carry out the 
authentication of paprika samples with a non-invasive instrumental 
strategy which does not require a previous sample treatment and takes 
only a few seconds, thus surpassing the current state of the art. 

2. Materials and methods 

2.1. Paprika samples and adulterants 

In this study, 115 paprika samples from five different countries were 
analyzed: Spain (65), France (14), Hungary (16), China (12) and Zambia 
(8). Spanish samples from two regions with PDO “Murcia” (38) and “La 
Vera” (27), French paprika from “Espelette”, Hungarian samples from 
the two main producing regions “Kalocsa” (9) and “Szeged” (7) with 
PDO, and China and Zambia paprikas, were obtained directly from the 
producers to ensure the authenticity of such samples. Paprika samples 
were of different varieties: hot (26), sweet (51), smoked (22), sweet 
smoked (11) and hot smoked (5). In addition, paprika samples with 
organic certification from Murcia (4) were included. Different types and 
varieties of paprikas were used to enrich the chemometric models by 
covering a wide range of paprika characteristics. Supplementary Table 1 
contains the information of all paprika samples analyzed. Each sample 
was pounded and stored at room temperature until analysis. Sudan dyes 
(II, III and IV) and Congo red adulterant were purchased from Sigma 
Aldrich (St. Louis, MO, USA). 

2.2. Instrumentation and software 

The analysis of paprika samples was carried out using a Multi Pur-
pose Analyzer (MPA) FT-NIR spectrometer from Bruker Optik GmbH 
(Ettlingen, Germany) using the solid sample compartment. The system 
was in combination with OPUS software version 8.5 for the acquisition 
of the spectra. 

Spectral pre-treatment and PLS regressions were carried out by The 
Unscrambler X software version 10.4 from CAMO Software (Oslo, Nor-
way). The construction of the OPLS-DA models was performed using the 
SIMCA software (Umetrics, Sartorius Stedim Biotech AS, Umea, Sweden) 
version 14.1. Python 3.8.8 was used to apply the Kennard-Stone algo-
rithm to the samples to split them into training and validation sets. 

2.3. NIR analysis 

Each paprika was adulterated with each dye (Sudan II, III, IV and 
Congo red) at concentration levels of 0.1, 1 and 5 g/100 g (w/w). 
Therefore, 1495 samples of paprika were analyzed by the proposed 
methodology (115 pure and 1380 adulterated samples). Each mixture 
(0.4 g of sample) was homogenized, placed in a glass vial and immedi-
ately measured by the FT-NIR system using the sphere macrosample 
acquisition mode. A total of 10 aliquots of each paprika sample were 
collected and analyzed. 

Data were collected in reflectance mode with spectral data output 
measured in absorbance units. Spectral data were acquired in a wave-
length range from 12500 to 3600 cm-1 with 8 cm− 1 resolution. For each 
spectrum, 32 scans were collected. A background scan was performed 
before the analysis of each different sample. 

2.4. Multivariate processing 

Firstly, the wavelength interval from 9000 to 3840 cm− 1 was 
selected as the optimum range for chemometric analysis as it contained 
the characteristic NIR bands of the paprika samples. Higher wavelengths 
did not provide relevant information, thus were excluded from further 
processing. The spectra of the 10 aliquots measured for each paprika 
sample were averaged in order to use a representative spectrum. 

The validation procedure was carried out in accordance with the 
recommendations of (McGrath et al., 2018; Riedl et al., 2015). Two 
types of chemometric models were performed for paprika authentica-
tion: OPLS-DA models for the discrimination of adulterated samples as 
well as their differentiation according to their PDO and variety, and PLS 
regressions for each adulterant to determine the dye content in adul-
terated paprika samples. Chemometric models were performed using the 
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80 % of paprika samples for the model training and the remaining 20 % 
were used for the validation. For the sample separation into both sets, 
the Kennard-Stone algorithm was applied. This algorithm aims to cover 
the design space as uniformly as possible by first selecting the two 
samples with the largest distance to be included in the training set. Next, 
the distances between the remaining samples and the two already 
selected samples are calculated. For each candidate, the minimum dis-
tance to the two selected samples is chosen. Then, the sample with the 
maximum value of the minimum distances (maximum-minimum dis-
tance criterion) is selected for the training set until the requested 
number of samples is obtained (Kennard & Stone, 1969). The processed 
spectra of validation and training sets used for the construction of each 
chemometric model can be seen in Figs. S1 and S2. 

The pre-processing of the spectra was carried out consisting of a 
baseline correction using the "baseline offset" function to remove 
interference and background information followed by a normalization 
of the data using the "unit vector normalization". Savitzky-Golay 
smoothing using a window length of 3 points and a polynomial order 
2 was subsequently applied to reduce the instrumental noise. PLS re-
gressions were performed individually for each adulterant using the 
three percentages of adulteration (0.1, 1 and 5 %) and pure samples. The 
suitability of these models was evaluated in terms of statistical param-
eters as the correlation and coefficient of determination (R2) to check the 
linearity, the root-mean-square error (RMSE) to measure the dispersion 
of residual values, and the standard error (SE) and bias of calibration 
and validation sets of samples to measure the accuracy of the model. 

OPLS-DA models were built exploring six different scales: unit vari-
ance (UV), pareto (Par), centring (Ctr), unit variance none (UVN), pareto 
none (ParN) and freeze (Arroyo-Manzanares et al., 2019). The values of 
R2X (cum), R2Y (cum) and Q2 (cum) were used to evaluate the ade-
quacy of the models. R2Y and Q2 are relevant parameters indicating the 
accuracy and the predictive ability, respectively. They all range between 
0 and 1, with values closer to 1 indicating best model fitness. The model 

is acceptable when the value of Q2 is above 0.5 (Bajoub et al., 2016; 
Wang et al., 2014). Prior to model building, a normal probability plot of 
residuals was performed to verify the normal distribution of the data, 
and therefore, no logarithmic transformation was necessary. The sensi-
tivity of the models was expressed as 

∑
True positive/(

∑
True positive 

+
∑

False negative) × 100. 

2.5. Proposed strategy for paprika authentication 

An overview of the proposed strategy is shown in Fig. 1. The first step 
is the analysis of the investigated paprika sample using the FT-NIR 
system under the conditions indicated in section 2.3. The analysis 
does not require a previous sample treatment and takes only a few 
seconds. As a result, the NIR spectrum characteristic of the sample is 
obtained. The spectra of paprika in the wavelength range of 9000 to 
3840 cm− 1 were used to build the chemometric models since it con-
tained the characteristic bands of the samples. The first proposed OPLS- 
DA model allows to detect whether the investigated sample is adulter-
ated with dyes; otherwise, the paprika sample is classified as pure. If the 
sample is considered as pure, two OPLS-DA models are proposed to 
guarantee their authenticity. Paprika is classified according to their 
variety (hot, sweet or smoked) and their PDO in order to ensure its 
quality certification and avoid fraud by false designation of origin. On 
the other hand, if paprika is identified as adulterated, the OPLS-DA 
model of classification according to the type of adulterant allows to 
assign the dye present in the sample. The last proposed step consists in 
determining the amount of dye in the investigated sample, using PLS 
regression models constructed for this purpose. In summary, the pro-
posed strategy consists of four OPLS-DA models, and four PLS regression 
models (one for each adulterant) that would guarantee the authenticity 
of paprika in terms of its registered PDO and adulteration by adding dyes 
with the identification and quantification of adulterated samples. 

Fig. 1. Proposed strategy based on FT-NIR analysis and chemometric models for paprika authentication (T: training set; V: validation set; CR: classification rate).  
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2.6. Classification analysis 

For the construction of the first proposed OPLS-DA model, which 
allows the differentiation between pure and adulterated paprika sam-
ples, a total of 315 samples (115 pure and 200 adulterated) were used. 
Regarding adulterated samples, 200 were selected to ensure equal 
groups: 50 of each adulterant (Sudan II, III, IV and Congo red) including 
the three percentages of adulteration (0.1, 1 and 5 %). Samples were 
partitioned by the Kennard-Stone method into the two sets. The training 
set was composed of 252 samples and the remaining 63 samples were 
used as the validation set. 

The paprika samples classified as pure can belong to paprika with or 
without PDO. The OPLS-DA model for the PDO certification was 
composed of all pure paprika samples with PDO from “Murcia”, “La 

Vera”, “Espelette”, “Szeged” and “Kalocsa”, as well as paprikas from 
China and Zambia. Most samples were from “Murcia” (38 samples), 27 
were from “La Vera”, 14 from “Espelette”, 7 from “Szeged”, 9 from 
“Kalocsa”, 12 from China and 8 from Zambia. Samples were classified 
according to their PDO and China and Zambia paprikas were labelled as 
“Others”. Thus, 115 samples divided into training (92) and validation 
(23) sets were finally used. In addition, an OPLS-DA model was built to 
classify pure samples according to their variety into sweet, hot and 
smoked paprika. Paprika samples analyzed were 26 of the hot variety, 
38 of the smoked variety and 51 of the sweet variety. The training set 
consisted of 92 samples, and the remaining 23 samples were used for the 
validation. 

On the other hand, the OPLS-DA model proposed for the identifica-
tion of the adulterant present in paprika samples was composed of 1380 

Fig. 2. Raw FT-NIR spectra of a pure sample of paprika and adulterated with Sudan II, III, IV and Congo red at 5 % (w/w).  

Fig. 3. Chemical structures of the Congo red, Sudan II, Sudan III, and Sudan IV molecules.  
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spectra, being 345 of each dye (Sudan II, III, IV and Congo red). Model 
training was carried out using 1104 samples and the remaining (276) 
were used for the validation. Finally, once adulterated paprika samples 
are classified according to their adulterant, PLS regressions allow to 
quantify their content in the sample. Pure and adulterated paprika 
samples with the three different concentrations tested were used to 
perform the regressions. Each model was composed of a total of 460 
samples (115 pure and 345 adulterated), which were split into the two 
calibration (368) and validation (92) sets. 

Finally, the proposed chemometric strategy was evaluated by 
analyzing a set of 50 paprika samples from different classes (20 pure 
samples and 30 adulterated samples). 

3. Results and discussion 

3.1. NIR spectra interpretation 

Fig. 2 shows the NIR spectra in the selected region 9000-3840 cm− 1 

of a pure sample of paprika and adulterated with Sudan II, Sudan III, 
Sudan IV and Congo red at 5 %. All of them show a similar pattern, 
differing in the absorbance values. Six regions can be distinguished in 
the spectrum of paprika according to the NIR bands: 9000-7500 cm− 1, 
7500-6050 cm− 1, 6050-5350 cm− 1, 5350-5000 cm− 1, 5000-4500 cm− 1 

and 4500-3840 cm− 1. The first region (9000-7500 cm− 1) shows a wide 
band at 8250 cm− 1 and a slight shoulder at 8600 cm− 1 approximately, 
which are both due to the second overtone of the stretching mode of the 
C–H bond. Bands observed in the next region (7500-6050 cm− 1) are 
associated to the first overtone of the stretching modes of water mole-
cule and OH groups, and to the C–H second combination region (which 
combines stretching and vibrational modes). The two bands located 
within the 6050-5350 cm− 1 region are mainly attributed to the first 
overtone of C–H stretching modes either from CH3, CH2, aliphatic CH, or 
aromatic CH groups. A band corresponding to the first combination 
region of water appears in the 5350-5000 cm− 1 region. Bands appearing 
in the 5000-4500 cm− 1 region are attributed to the first combination 
region of C–H aliphatic bonds (stretching + bending modes), while the 
bands located within the 4500-3840 cm− 1 region are due to the first 
combination region of CH3, CH2, and aromatic C–H stretching and 

bending modes (Westad et al., 2008; Workman & Weyer, 2012). 
Regarding the spectra of adulterated paprika samples, they were 

visually compared in order to examine whether the slight spectral dif-
ferences among them could be correlated to the different chemical 
structure of the azo dye adulterant used in each case. As displayed in 
Fig. 3, the chemical structures of Congo red, Sudan II, Sudan III, and 
Sudan IV molecules share an azo group bonded (on one side) to naphthyl 
and (on the other side) to phenyl ring. Sudan II, Sudan III and Sudan IV 
additionally share a OH group in position 2 of the naphthyl ring, which 
does not appear in Congo red. Congo red has an amino and a sulphonate 
groups attached to the naphthyl ring instead. Sudan III and Sudan IV 
have an additional phenyl-azo group linked to the phenyl ring, while 
Sudan II does not. Finally, Sudan II and Sudan IV have methyl groups in 
their structure, whereas Sudan III does not. The theoretical NIR spectral 
differences expected for previous structural divergences (particularly 
those based on the NIR active vibrations) are summarized in Supple-
mentary Table S2. 

In brief, as evidence in Fig. 4, in which the NIR spectra of the four 
pure adulterants are visually compared, the NIR bands due to amino 
group, located at 6700-6400 cm− 1 and 5100-4700 cm− 1, are exclusive to 
Congo red. The NIR bands of methyl group, specific to Sudan II and 
Sudan IV, are not evident to the naked eye. On the contrary, the NIR 
bands due to OH group, which are common to Sudan II, Sudan III, and 
Sudan IV, are clearly observed within the 5750-5300 cm− 1 and 4050- 
3900 cm− 1 regions. These spectral differences are easily recognizable in 
the NIR spectra of the pure azo dye standards. However, they are less 
evident in the NIR spectra of adulterated paprika samples, in which the 
adulterant mass percentage ranges from 0.1 to 5 % of the composition. 
As visually observed in Supplementary Fig. S3, the NIR spectrum is 
mostly due to the major component (i.e., paprika at 95–99.9 %), whereas 
the characteristic NIR bands of adulterants appear as little intense bands 
and shoulders. Regarding the NIR spectra of adulterated paprika sam-
ples with Sudan II, Sudan III and Sudan IV, slight unspecific baseline 
spectral differences are observed between the pure paprika and the 
adulterated paprika samples, especially within the 5750-5550 cm− 1 

region due to the OH group of Sudan azo dyes. Regarding the Congo red 
adulterated paprika, the NIR bands of amino group (NH2) from Congo 
red are visually identifiable as little intense shoulders in the NIR spectra 

Fig. 4. FT-NIR spectra of Sudan II, III, IV and Congo red.  
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of adulterated paprika, including the first overtone of NH2 stretching 
located at 6600 cm− 1, and the first combination region of NH2 located 
around 5000-4700 cm− 1. These visual evidence are insufficient to 
confidently identify adulterated paprika samples, especially for low 
adulterated samples. Statistical and mathematical analyses are required 
for an effective and confident discrimination of paprika samples. 

3.2. Authentication strategy based on chemometric models 

In order to ensure the authenticity of paprika, this work proposes a 
strategy based on the use of different chemometric models, which allow 
the detection and quantification of adulterated paprika with dyes or the 
classification of the samples according to their PDO and variety (Fig. 1). 

OPLS-DA models were investigated using different scales (UV, Ctr, 
UVN, Par, Freeze, ParN) as pre-treatment methods. Table 1 summarizes 
the results obtained for each OPLS-DA model, including the R2X (cum), 
R2Y (cum) and Q2 (cum) values and the classification rate of training 
and validation sets, including the percentage of sensitivity achieved in 
each category. 

UV and Pareto scaling are commonly used as spectral data processing 
methods. The UV scale analyzes the data based on correlations, using the 
standard deviation as the scaling factor, while Pareto uses the square 

root, getting closer to the original data (Lee et al., 2018; Van den Berg 
et al., 2006). As can be seen in Table 1, all the scales tested provided 
suitable values of classification rates and Q2 values higher than 0.5. 
Generally, the highest values were obtained using the UV scale, there-
fore, it was selected as the optimum scale to carried out the proposed 
strategy for paprika authentication. 

3.2.1. Detection of adulterated paprika samples 
The first proposed OPLS-DA model allows the differentiation be-

tween pure and adulterated paprika samples. Model training was carried 
out using 252 pure and adulterated paprika samples at the different 
concentrations tested, while 63 were used for model validation. All the 
scales tested as pre-treatment methods provided good classification re-
sults, with classification success rates greater than 90 % in all cases. The 
validation of the model was 96.8 % successful, with all adulterated 
samples correctly classified (100 %). Fig. 5a shows the class distinction 
using the UV scale, which provided a Q2 value of 0.740, demonstrating 
the high accuracy of the model. Only two pure samples were mis-
classified as adulterated in the validation set (Supplementary Table S3). 
Therefore, it can be assumed that the proposed model would be a reli-
able tool for the identification of adulterated paprika. 

Table 1 
Data treatment tested and chemometric model information for paprika authentication.   

Model information Classification rate (%) Sensitivity (%) 

Scalinga Components R2X(cum) R2Y(cum) Q2(cum) Calibration Validation Validationb 

OPLS-DA model for the detection of adulterated paprika 
UV 1 + 13+0 0.998 0.784 0.740 98.4 96.8 P (92.9), A (100) 
UVN 1 + 14+0 1 0.716 0.647 97.6 96.8 P (92.9), A (100) 
Par 1 + 11+0 0.996 0.746 0.703 96.4 92.1 P (85.7), A (97.1) 
ParN 1 + 11+0 1 0.738 0.696 97.2 95.2 P (92.8), A (97.1) 
Ctr 1 + 12+0 0.997 0.765 0.715 98.0 93.6 P (89.3), A (97.1) 
Freeze 1 + 11+0 0.997 0.747 0.703 96.4 90.5 P (82.1), A (97.1) 

OPLS-DA model for the classification of paprika according to their PDO 
UV 5 + 11+0 1 0.903 0.837 100 100 M (100), LV (100), S (100), 

K (100), E (100), O (100) 
UVN 6 + 9+0 1 0.853 0.724 100 100 M (100), LV (100), S (100), 

K (100), E (100), O (100) 
Par 6 + 7+0 0.999 0.845 0.733 98.9 100 M (100), LV (100), S (100), 

K (100), E (100), O (100) 
ParN 6 + 7+0 1 0.840 0.734 98.9 100 M (100), LV (100), S (100), 

K (100), E (100), O (100) 
Ctr 5 + 10+0 1 0.882 0.804 100 100 M (100), LV (100), S (100), 

K (100), E (100), O (100) 
Freeze 5 + 11+0 1 0.903 0.837 100 100 M (100), LV (100), S (100), 

K (100), E (100), O (100) 
OPLS-DA model for the classification of paprika according to their variety 

UV 3 + 12+0 0.999 0.832 0.639 97.8 100 H (100), SW (100), SM (100) 
UVN 3 + 13+0 1 0.820 0.547 95.7 95.7 H (83.3), SW (100), SM (100) 
Par 2 + 12+0 1 0.764 0.616 95.7 100 H (100), SW (100), SM (100) 
ParN 3 + 10+0 1 0.728 0.611 94.6 95.7 H (100), SW (90), SM (83.3) 
Ctr 2 + 10+0 0.999 0.713 0.611 89.1 91.3 H (83.3), SW (100), SM (83.3) 
Freeze 2 + 10+0 0.999 0.711 0.625 93.5 95.7 H (100), SW (100), SM (83.3) 

OPLS-DA model for the classification of adulterated paprika according to their adulterant 
UV 3 + 9+0 0.996 0.859 0.854 98.4 99.6 SII (100), SIII (98.3), SIV (100) 

CR (100) 
UVN 3 + 10+0 1 0.834 0.828 98.2 99.3 SII (98.4), SIII (98.3), SIV (100) 

CR (100) 
Par 3 + 9+0 0.996 0.863 0.858 98.5 99.6 SII (100), SIII (98.3), SIV (100) 

CR (100) 
ParN 3 + 9+0 1 0.834 0.830 98.0 99.6 SII (100), SIII (98.3), SIV (100) 

CR (100) 
Ctr 3 + 9+0 0.997 0.855 0.851 98.2 99.6 SII (100), SIII (98.3), SIV (100) 

CR (100) 
Freeze 3 + 9+0 0.996 0.859 0.854 98.4 99.6 SII (100), SIII (98.3), SIV (100) 

CR (100)  

a Unit variance (UV), unit variance none (UVN), pareto (Par), pareto none (ParN), centering (Ctr). 
b Classes: pure (P), adulterated (A), Murcia (M), La Vera (LV), Szeged (S), Kalocsa (K), Espelette (E), Others (O), hot (H), sweet (SW), smoked (SM), Sudan II (SII), 

Sudan III (SIII), Sudan IV (SIV), Congo red (CR). 
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3.2.2. Classification of paprika according to their PDO 
The origin of pure paprika samples can be differentiated using the 

following proposed OPLS-DA model. Samples were classified according 
to their PDO (“Murcia”, “La Vera”, “Espelette”, “Szeged” and “Kalocsa”), 
and China and Zambia paprikas were labelled as “Others”. Model 
training was composed of 92 samples and validation of 23 samples. 
Classification rates for training and validation were higher than 98.9 and 

100 %, respectively. The selected model based on the UV scale provided 
a Q2 value of 0.837. The classification graph of the different classes is 
shown in Fig. 5b. Regarding the validation of the model, all samples 
were correctly classified according to their PDO (Supplementary 
Table S4). 

Fig. 5. OPLS-DA models for the discrimination between pure and adulterated paprika samples (a), the differentiation according to PDO (b), the classification ac-
cording to their variety (c), and the classification of adulterated samples according to their adulterant (d) using a UV scale. 

Fig. 6. PLS models selected for Sudan II (a), Sudan III (b), Congo red (c) and Sudan IV (d), including calibration and validation regressions.  
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Table 2 
Summary of calibration and validation parameters in PLS models for each adulterant.   

Slope R2 Correlation RMSEC RMSEP SEC SEP Bias  

Cal Val Cal Val Cal Val     Cal Val 
Sudan II 0.993 0.971 0.992 0.988 0.996 0.994 0.171 0.224 0.171 0.225 − 1.8E-06 0.003 
Sudan III 0.992 1.01 0.990 0.974 0.995 0.987 0.203 0.316 0.204 0.317 4.8E-06 0.025 
Sudan IV 0.993 1.029 0.991 0.972 0.995 0.988 0.184 0.332 0.184 0.316 − 8.7E-07 0.109 
Congo red 0.996 0.959 0.994 0.986 0.997 0.993 0.145 0.231 0.145 0.229 − 7.4E-06 − 0.039 

Cal: calibration set; Val: validation set. 
R2: coefficient of determination; RMSEC: root-mean-square error of calibration; RMSEP: root-mean-square error of prediction; SEC: standard error of calibration; SEP: 
standard error of prediction. 

Table 3 
Classification of test samples in the OPLS-DA models proposed for paprika authentication.  

Sample Classification 

Pure 

Pure Adulterated Murcia La Vera Espelette Szeged Kalocsa Others Hot Sweet Smoked 

1 + + +

2 + + +

3 + + +

4 + + +

5 + + +

6 + + +

7 + + +

8 + + +

9  –   + +

10 + + +

11 + + +

12 + + +

13 + + +

14 + + +

15 + + +

16 + + – 
17 + + +

18 + + +

19 + + +

20 + + +

Adulterated  

Pure Adulterated Sudan II Sudan III Sudan IV Congo Red 

21  + +

22  + +

23  + +

24  + +

25  + +

26  + +

27  + +

28  + +

29  + +

30  + +

31  + +

32  + +

33  + +

34  + +

35  + +

36  + +

37  + +

38  + +

39  + +

40  + +

41  + +

42  + +

43  + +

44  + +

45  + +

46  + +

47  + +

48  + +

49  + +

50  + +

The “+” sign means correctly classified. 
The “-” sign means incorrectly classified. 
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3.2.3. Classification of paprika according to their variety 
Pure paprika samples were classified using this OPLS-DA model into 

sweet, hot and smoked paprika. Suitable calibration and validation rates 
were achieved, higher than 89.1 and 91.3 %, respectively. A Q2 value of 
0.639 was achieved using the selected UV scale. Fig. 5c shows the class 
separation as hot, sweet or smoked paprika. The classification rate 
achieved was 97.8 %, and all the hot, smoked and sweet samples were 
classified successfully during validation (100%) (Supplementary 
Table S5). 

3.2.4. Classification of adulterated samples according to the type of 
adulterant 

An OPLS-DA model was proposed for the identification of the adul-
terant present in paprika samples classified as non-pure. Model training 
was carried out using 1104 samples and the remaining (276) were used 
for the validation. In this case, the classification and validation rates 
achieved were in all cases higher than 98.2 and 99.3 %, respectively. 
The UV scale pre-treatment achieved a Q2 value of 0.854, demonstrating 
the suitability of the model. The classification graph is shown in Fig. 5d. 
Visually, samples adulterated with Sudan IV are clearly separated, while 
paprika samples adulterated with Sudan II and Sudan III were slightly 
overlapping. Moreover, Congo red samples showed a slight distinction 
between them, due to the different percentages of adulteration. As could 
also be observed spectrally, the paprika samples adulterated with 5 % of 
Congo red clearly showed the NIR band of the amino group (Fig. S3), 
while in the samples with lower adulteration, these bands may be 
overlapped by the paprika bands themselves. The low adulteration of the 
samples and, therefore, the slight spectral differences influenced this 
chemometric classification. Nevertheless, the chemometric model 
created allowed the successfully classification of the samples according 
to their adulterant, achieving a 98.4 % of success rate of model cali-
bration and 99.6 % of the validation. The paprika samples adulterated 
with Sudan II, Sudan IV and Congo red were all correctly classified. Only 
one adulterated paprika with Sudan III was misclassified as Sudan II 
(Supplementary Table S6). 

3.2.5. Quantification of adulteration in paprika samples 
Once adulterated paprika samples are classified according to their 

adulterant, PLS regressions allow to quantify their content in the sample. 
For this purpose, after pre-treatment data based on baseline correction, 
normalization and smoothing of the spectra, PLS regressions were built 
for each dye. Pure and adulterated paprika samples with the three 
different concentrations tested were used to perform the regressions. 
Fig. 6 shows the PLS regressions of Sudan II, Sudan III, Sudan IV and 
Congo red, including calibration and validation sets for each dye. 
Models were evaluated in terms of the suitability of R2, RMSE, SE and 
bias parameters. The number of factors used in these models was also 
investigated as it influences the values of the RMSE and R2. The optimal 
number was considered the factor that provides the minimum error 
value avoiding overfitting and noise in the model (Sadergaski et al., 
2022). Factors were selected by observing the plots of RMSE and vari-
ance versus the number of factors. 

In all cases, good correlations were achieved between the reference 
and predicted adulteration values, being greater than 0.98. Suitable 
linearities with values of R2 in calibration and validation sets higher 
than 0.97 were obtained for all the models. Calibration (RMSEC and 
SEC) and validation (RMSEP and SEP) errors, as well as bias, were closed 
to zero, demonstrating the accuracy of the PLS regressions. The results 
achieved for each model are summarized in Table 2. 

3.3. Application of the proposed strategy 

The proposed chemometric strategy was evaluated by analyzing a 
randomly set of 50 paprika samples from different classes. The classifi-
cation of the samples in each category is shown in Table 3. A total of 44 
paprikas were successfully classified and categorized according to their 

features. Only one pure sample (number 9) was misclassified as adul-
terated but correctly classified in the rest of the OPLS-DA models, and 
one hot paprika sample from Murcia was wrongly classified in the 
smoked category (number 16). Regarding adulterated spectra, all of 
them were correctly classified in their category and the adulterant was 
properly identified. Furthermore, adulterated samples were introduced 
into the PLS models to predict their adulterant concentration. Trueness 
results ranged from 89 to 107 %. The samples showing values furthest 
from the optimum corresponded to an adulteration of 0.1 %, while the 5 
and 1 % adulterations showed concentration prediction values closer to 
the real values. 

4. Conclusion 

The chemometric strategy proposed in this work to ensure the 
authenticity of paprika has proven to be an effective tool. The set of 
chemometric models built for this purpose (4 OPLS-DA and 4 PL S re-
gressions) have been constructed and validated, obtaining satisfactory 
classification and quantification results. Regarding OPLS-DA models, 
validation rates achieved ensure the accurate identification of adulter-
ated paprika (96.8 %), the assignment of the type of adulterant (99.6 %) 
and the classification of pure samples according to their PDO label (100 
%) and variety (100 %). As for the PLS regressions built for Sudan II, 
Sudan III, Sudan IV and Congo red, the error values close to zero and the 
good linearity obtained in all cases, with values of R2 higher than 0.97, 
allow to quantify the adulterant content in paprika efficiently. 
Furthermore, FT-NIR technique allows a non-destructive, fast and sim-
ple analysis of the samples, avoiding the use of any solvent. Therefore, 
this work proposes a comprehensive, fast and efficient method to pre-
vent paprika fraud and to guarantee its quality and safety for 
consumption. 
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of phenolic compounds in paprika by ultrahigh performance liquid chromatography- 
tandem mass spectrometry: Application to product designation of origin 
authentication by chemometrics. Journal of Agricultural and Food Chemistry, 68(2), 
591–602. https://doi.org/10.1021/acs.jafc.9b06054 
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of paprika using HPLC-UV fingerprints. Lwt, 124. https://doi.org/10.1016/j. 
lwt.2020.109153 
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