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ABSTRACT

This thesis investigates the prognostic implications of immune cell dynamics
and gene expression profiles on responses to anti-androgen therapy with
enzalutamide among patients with metastatic castration-resistant prostate
cancer (mCRPC). mCRPC remains a major clinical challenge due to its
heterogeneity and the limited efficacy of treatments to date. By integrating
bioinformatics analyses, clinical data from multicentre trials and laboratory
experiments, the research aims to identify biomarkers that can inform
prognosis, elucidate mechanisms of treatment resistance and guide
personalized therapeutic strategies.

In the initial study, an analysis was conducted on 95 whole blood samples
obtained from patients who had not received enzalutamide or chemotherapy,
as part of a phase II PREMIERE clinical trial. Using the CIBERSORTx
algorithm, the relative proportions of 22 immune cell subsets were quantified.
Elevated monocyte levels were shown to be strongly associated with a
worsening of overall survival (OS), while elevated CD8 + T cell levels were
associated with a longer survival. These observations were independently
validated in 54 patients from an Italian cohort (IRST), suggesting that
peripheral immune composition provides potential predictive value. In
addition, multivariate Cox regression analyses were performed to demonstrate
that CD8+ T cells retained prognostic significance independent of established
clinical and molecular prognostic factors and thus may strengthen the immune
profile as a potential complementary tool in mCRPC risk stratification.

Based on these findings, this thesis proposes a 22-gene prognostic signature
developed by analysing gene expression profiles in peripheral blood. Using
advanced Machine Learning techniques, the most relevant genes were selected
to form this signature. The results demonstrated a strong predictive
performance for OS, superior to existing prognostic models. In addition, it was
validated in an independent cohort, highlighting its potential usefulness in
clinical practice for risk stratification and personalized treatment planning.
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Time-dependent Receiver Operating Characteristic (ROC) curve analyses
further confirmed its robustness over clinically relevant time points,
outperforming existing prognostic models. This signature now offers a
promising tool for personalized treatment planning, allowing clinicians to tailor
their therapeutic strategies based on the individual risk profile of each patient.

A longitudinal analysis of whole blood transcriptomes was performed to
understand the immunomodulatory effects of enzalutamide and its association
with resistance to treatment. Gene expression was analysed from samples
before treatment, after 12 weeks of treatment, and at the time of disease
progression. Differential gene expression between comparisons revealed a
strong suppression of immune-related pathways, in particular those related to
adaptive immunity. Immune cell profile throughout treatment showed a
persistent decrease in CD8+ T cells and an increase in monocytes both at 12
weeks and at the time of progression. These changes indicate that enzalutamide
promotes an immunosuppressive environment, which may hinder anti-tumour
immune responses and favour the development of therapeutic resistance.

To elucidate whether enzalutamide exerts direct effects on immune cells, in
vitro studies were conducted with human T-cell lines (Jurkat, MOLT-4), the
monocyte cell line THP-1 and the B-cell line Raji. Enzalutamide strongly
suppressed T-cell viability and, to a lesser extent, B-cell and monocyte viability
at clinical concentrations by an androgen receptor-independent mechanism,
which resulted in induction of apoptosis. Comparisons with other
antiandrogens showed that darolutamide also reduced T-cell viability, while
bicalutamide, apalutamide and abiraterone acetate did not. The gene
expression profiles of enzalutamide-treated T cells showed up-regulation of
sterol biosynthesis pathways and down-regulation of ribosome biogenesis and
mitochondrial function, suggesting that metabolic dysregulation may be due to
non-specific binding of these drugs to membrane receptors involved in
apoptosis.

These current results significantly underline how enzalutamide profoundly
affects the immune system, thus showing another side of the hitherto unknown
mechanisms of action. Among those observed, lymphocyte suppression may
explain one way in which resistance arises as part of the compromise of host
immunity to tumours. Clinically, the findings appear to suggest that immune
cell phenotyping and gene expression may inform the prognosis of response or
resistance to this treatment. The differential effects of antiandrogens on
immune cells further suggest that antiandrogen selection, based on minimal
immunosuppressive effects, could improve treatment outcomes.
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In summary, this thesis expands knowledge on the interplay of anti-androgen
therapies, immune dynamics, and gene expression in a progressive mCRPC
state, highlighting potential biomarkers for prognosis and underpinning a
mechanism of resistance. It contributes to the developing landscape of
personalised oncology, with the primary aim of enhancing patient results.





RESUMEN

La tesis investiga la compleja interacción entre la terapia antiandrogénica con
enzalutamida, la dinámica de las células inmunitarias y los perfiles de
expresión génica en pacientes con cáncer de próstata metastásico resistente a la
castración (mCRPC), una patología que sigue representando un desafío clínico
de gran magnitud debido a su marcada heterogeneidad y a la limitada eficacia
de las terapias disponibles. Esta enfermedad, que afecta a un porcentaje
significativo de hombres en etapas avanzadas, presenta una supervivencia
global variable, que en muchos casos no supera los 3 años, lo que subraya la
urgente necesidad de nuevos enfoques pronósticos y terapéuticos. Ante la
necesidad de identificar biomarcadores capaces de predecir la evolución de la
enfermedad y de dilucidar los mecanismos que subyacen a la aparición de
resistencia terapéutica, este trabajo integra análisis bioinformáticos, estudios
clínicos en ensayos multicéntricos y experimentos de laboratorio, con el objetivo
de establecer herramientas que faciliten la estratificación del riesgo y la
planificación personalizada de los tratamientos.

El impacto del mCRPC en la salud pública es significativo. Estudios
epidemiológicos recientes indican que, aunque la incidencia del cáncer de
próstata ha disminuido en algunos países gracias a campañas de detección
temprana, la tasa de mortalidad en los estadios avanzados sigue siendo elevada.
La heterogeneidad biológica del mCRPC, caracterizada por diferencias en la
expresión génica y en el microambiente tumoral, complica la predicción de la
respuesta a los tratamientos convencionales. En este contexto, se ha vuelto
imprescindible la búsqueda de biomarcadores que permitan una clasificación
más precisa de los pacientes, posibilitando el desarrollo de estrategias
terapéuticas adaptadas a las características individuales.

En un primer estudio, se analizó la composición inmunitaria en sangre
periférica de pacientes con mCRPC, reclutados en el ensayo clínico de fase II
denominado PREMIERE. En este estudio se evaluaron 95 muestras de sangre
total obtenidas en pacientes que aún no habían recibido tratamiento con
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enzalutamida ni quimioterapia. La cuantificación de los distintos subconjuntos
de células inmunitarias se llevó a cabo mediante el algoritmo CIBERSORTx, el
cual permite descomponer el perfil transcriptómico en porcentajes relativos de
22 tipos celulares inmunitarios. Se observó que los niveles elevados de
monocitos se asociaban fuertemente con un empeoramiento en la supervivencia
global, mientras que mayores proporciones de linfocitos T CD8+ se
correlacionaban con una supervivencia prolongada. Dichas asociaciones se
confirmaron posteriormente en una cohorte independiente de 54 pacientes
pertenecientes al estudio IRST, lo cual sugiere que la composición inmunitaria
periférica constituye un marcador predictivo de valor clínico, capaz de
complementar la estratificación del riesgo basada en factores pronósticos
clínicos y moleculares tradicionales.

Paralelamente, a partir de estos hallazgos se desarrolló una firma pronóstica
basada en perfiles de expresión génica obtenidos de sangre periférica, con el
objetivo de mejorar la predicción de la supervivencia global en pacientes con
mCRPC. Para la construcción de esta firma se aplicaron técnicas de Machine
Learning que permitieron seleccionar, de entre un gran número de genes
diferencialmente expresados, un panel reducido y robusto de 22 genes. Este
modelo predictivo demostró un rendimiento superior en términos de capacidad
discriminativa frente a modelos existentes, validándose tanto en la cohorte de
desarrollo (PREMIERE) como en la cohorte de validación (IRST). El análisis de
las curvas ROC dependientes del tiempo confirmó la solidez del modelo a lo
largo de puntos temporales clínicamente relevantes, evidenciando una mejora
significativa en la capacidad para estratificar el riesgo de muerte en
comparación con otras firmas genéticas previamente publicadas. La utilidad de
esta firma radica en que permite calcular un puntaje de riesgo individual para
cada paciente, lo cual posibilita la adaptación de las estrategias terapéuticas en
función del perfil pronóstico, contribuyendo así a la oncología personalizada.

Además, la tesis profundiza en el estudio longitudinal del transcriptoma de
sangre total, con el fin de comprender los efectos inmunomoduladores de la
enzalutamida y su relación con la resistencia al tratamiento. Se analizaron
muestras obtenidas en tres momentos clave: antes del inicio del tratamiento, a
las 12 semanas de terapia y en el momento en que se evidenció la progresión de
la enfermedad. La comparación entre estos momentos permitió identificar
cambios sustanciales en la expresión génica, revelando una supresión notable
de las vías relacionadas con la inmunidad adaptativa, especialmente aquellas
implicadas en la activación y función de las células T CD8+. De igual forma, se
detectó un aumento en la proporción de monocitos en las muestras obtenidas
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tanto a las 12 semanas como en la progresión, lo que sugiere que el tratamiento
con enzalutamida induce un entorno inmunosupresor que podría dificultar la
respuesta antitumoral y favorecer la aparición de mecanismos de resistencia. La
persistencia de estos cambios a lo largo del tiempo resalta la importancia de
monitorizar la dinámica del microambiente inmunitario como herramienta
pronóstica y como indicador de la efectividad terapéutica.

Para dilucidar si la enzalutamida ejerce efectos directos sobre las células
inmunitarias, se realizaron estudios in vitro utilizando líneas celulares
representativas del sistema inmune. En estos experimentos se evaluó la
respuesta de líneas de células T (como Jurkat y MOLT-4), de monocitos
(THP-1) y de células B (Raji) tras la exposición a concentraciones clínicas del
fármaco. Los resultados demostraron que enzalutamida reduce de manera
significativa la viabilidad de las células T, induciendo apoptosis a través de
mecanismos que resultan independientes de la presencia del receptor
androgénico (AR), dado que las células utilizadas carecían de expresión de
dicho receptor. Este hallazgo es de particular importancia, ya que indica que la
acción citotóxica del fármaco sobre el sistema inmune no depende de la vía
clásica de señalización androgénica, lo que podría tener repercusiones directas
en la respuesta antitumoral. De manera complementaria, se observó que, si bien
las células B y los monocitos también experimentaron una reducción en su
viabilidad, el efecto fue menos pronunciado en comparación con las células T.
Adicionalmente, se realizó una comparación entre distintos antiandrogénicos;
se encontró que, a concentraciones plasmáticas equivalentes, enzalutamida y
darolutamida reducen significativamente la viabilidad de las células T,
mientras que agentes como bicalutamida, apalutamida y el acetato de
abiraterona muestran efectos mínimos sobre estos linfocitos. Esta diferencia en
la acción de los fármacos sobre el sistema inmune podría tener implicaciones
clínicas relevantes, ya que preservar la función de las células T podría
traducirse en una respuesta antitumoral más robusta y en una mejor
supervivencia de los pacientes.

El análisis de los perfiles de expresión génica en las células T tratadas con
enzalutamida aportó información adicional sobre los mecanismos subyacentes
a la inducción de apoptosis. Se observó una regulación al alza de las vías de
biosíntesis de esteroles y del metabolismo del colesterol, lo que podría
interpretarse como un intento de compensación celular frente al estrés inducido
por el tratamiento. En paralelo, se detectó una regulación a la baja de procesos
esenciales como la biogénesis de ribosomas, la función mitocondrial y el
procesamiento del ARN, lo que sugiere una afectación global de la capacidad
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de síntesis proteica y energética de la célula. La combinación de estos cambios
metabólicos resulta en una desregulación que culmina en la activación de rutas
apoptóticas, confirmando la hipótesis de que la enzalutamida induce un daño
celular que trasciende la simple inhibición de la señalización androgénica.

En conjunto, estos hallazgos evidencian que la enzalutamida ejerce un doble
impacto en el tratamiento del mCRPC: por un lado, actúa sobre la vía
androgénica que sustenta la proliferación tumoral, y por otro, modula el
sistema inmune de forma que se favorece un entorno inmunosupresor. La
reducción en la proporción de células T CD8+ –responsables de la respuesta
citotóxica antitumoral– y el aumento concomitante en los monocitos, que
pueden promover procesos proinflamatorios y de reparación, crean un balance
que podría contribuir a la evasión inmunitaria del tumor y al desarrollo de
resistencia al tratamiento. De esta manera, la identificación de estos
biomarcadores inmunitarios no solo tiene valor pronóstico, sino que también
abre nuevas posibilidades para la intervención terapéutica, como la
combinación de antiandrogénicos con estrategias de inmunoterapia que
potencien la función de los linfocitos T.

El desarrollo de la firma pronóstica de 22 genes se erige como una herramienta
fundamental en la personalización del tratamiento para pacientes con mCRPC.
Esta firma, obtenida a partir del análisis de perfiles de expresión génica en
sangre periférica, permite clasificar a los pacientes en función de su riesgo de
progresión y de muerte. La validación de la firma en una cohorte independiente
respalda su robustez y su aplicabilidad clínica, ya que muestra un rendimiento
superior en comparación con modelos previos. La capacidad de predecir de
forma precisa la supervivencia global a través de un análisis mínimamente
invasivo representa un avance significativo en la oncología personalizada, pues
posibilita la identificación temprana de pacientes que podrían beneficiarse de
estrategias terapéuticas más agresivas o, por el contrario, de un manejo más
conservador para evitar efectos adversos innecesarios.

Asimismo, la monitorización longitudinal del transcriptoma de sangre ha
permitido evidenciar que la respuesta a la enzalutamida es dinámica y
evoluciona a lo largo del tiempo. Los cambios en la expresión génica
observados a los 12 semanas de tratamiento, que incluyen una supresión de las
vías asociadas a la inmunidad adaptativa, se mantienen en gran medida en el
momento de la progresión, aunque con matices que sugieren la activación de
mecanismos de resistencia específicos. Esta información es de suma
importancia, ya que permite inferir que, a pesar de una respuesta inicial
favorable, la persistencia de un entorno inmunosupresor podría ser el factor
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determinante que conduzca al fracaso terapéutico. La integración de estos
datos transcriptómicos con el análisis de la composición inmunitaria ofrece una
visión global de la respuesta del paciente, que podría orientar futuras
estrategias de combinación terapéutica orientadas a contrarrestar la evasión
inmune y mejorar la efectividad de los tratamientos antiandrogénicos.

Por otra parte, es relevante situar estos hallazgos en el contexto de los avances
previos en la investigación del mCRPC. Mientras que modelos anteriores
basados en firmas génicas se centraban en un número limitado de genes o en
biomarcadores aislados, la aproximación multidimensional adoptada en este
trabajo permite captar la complejidad del microambiente tumoral y del sistema
inmune. Esta integración no solo optimiza la precisión pronóstica, sino que
también brinda una base sólida para futuras investigaciones que busquen
identificar nuevos blancos terapéuticos y para el diseño de ensayos clínicos que
incorporen estos biomarcadores.

La relevancia clínica de estos resultados radica en la posibilidad de incorporar
biomarcadores inmunitarios y transcriptómicos en la práctica clínica para
identificar de forma precisa a los pacientes con alto riesgo de progresión. Esta
información facilitará la toma de decisiones terapéuticas, permitiendo adaptar
el tratamiento de forma oportuna y personalizada. Además, la variabilidad en
la respuesta de las células inmunitarias a distintos antiandrogénicos sugiere
que la selección del fármaco podría optimizarse para minimizar la
inmunosupresión y potenciar la respuesta antitumoral, lo que abre la puerta a
terapias combinadas con agentes inmunomoduladores.

En definitiva, el trabajo aporta evidencia sólida de que la integración de datos
inmunológicos y moleculares en el manejo del mCRPC avanza hacia una
oncología personalizada, fundamentada en la caracterización precisa del perfil
del paciente. Este enfoque multidimensional no solo mejora la predicción de la
evolución clínica y la supervivencia global, sino que también proporciona
nuevas perspectivas para el diseño de ensayos y el desarrollo de tratamientos
innovadores. La posibilidad de adaptar la estrategia terapéutica en función de
un puntaje de riesgo individual, calculado a partir de la firma pronóstica de 22
genes y el análisis del microambiente inmunitario, representa un avance
significativo para mejorar la calidad de vida y la supervivencia de los pacientes
afectados.

En conclusión, la tesis no solo profundiza en la comprensión de los mecanismos
que rigen la interacción entre la terapia antiandrogénica y el sistema inmune en
el mCRPC, sino que también sienta las bases para futuras investigaciones y
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aplicaciones clínicas. La integración del fenotipo inmunitario y los perfiles de
expresión génica permite una estratificación del riesgo más precisa, lo que se
traduce en una mejor personalización del tratamiento y en la posibilidad de
diseñar intervenciones terapéuticas más efectivas. Estos avances representan un
paso crucial hacia la oncología de precisión en el manejo de una enfermedad
que sigue siendo uno de los mayores retos en la práctica oncológica actual.
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THESIS STRUCTURE

The whole thesis is structured as eight well-differentiated chapters:

The first chapter, Chapter 1, is the introductory chapter that motivates the need
for the study. It outlined and explained some concepts that could be useful for
the reader to reach an adequate understanding of all the topics covered in this
research project. It established the objectives that will serve as the basis for the
entire work.

Chapter 2 presents the hypotheses and objectives, which sets the basis for the
experimental and analytical work developed in the following chapters.

Chapter 3 presents the material and methods used in this work and includes
the design of research, data collection techniques, and experimental techniques
such as microarray analyses, immune cell profiling, and in vitro assays. It also
includes the statistical methods applied.

Chapter 4 initiates the results section by exploring the prognostic significance of
the immune cell profile in the bloodstream of individuals with metastatic
castration-resistant prostate cancer. This chapter also includes the validation of
findings in independent cohorts.

Chapter 5 describes the development and provides the validation of a 22-gene
prognostic signature, which has shown great potency in predicting survival
among mCRPC patients, and elaborates on the mechanism behind it.

Chapter 6 presents clinical and in vitro analyses that show changes in gene
expression and immune cell composition associated with enzalutamide
treatment.

Chapter 7 summarizes the main research findings, their clinical relevance, the
limitations, and implications of the work to suggest possible directions for future
studies.

The conclusions of the thesis in English are summarized in Chapter 8. And
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Chapter 9 presents the conclusions of the thesis in Spanish. These chapters have
underlined the main contributions made by the research and wrapped up its
relevance. It enumerates the scientific output produced and collaborative
projects that have been derived from there.

The final section is dedicated to the bibliography, compiling all references cited
throughout the thesis.

In Chapter 9, the primary contributions of the thesis are detailed, including the
scientific articles published during the research period, the development of a
patent derived from the findings of this work, and the presentations delivered
at international and national congresses. The patent represents a key innovation
resulting from this research, highlighting its practical applications and potential
for broader impact within the field.

Chapter 10 compiles all references cited throughout the thesis, providing the
theoretical and methodological foundation that supports the research.

Chapter 11 acknowledges all contributors to the research, detailing their roles,
and highlighting collaborative efforts that were instrumental in achieving the
research outcomes.

Finally, Chapter 12 is dedicated to annexes, which include supplementary
materials.



1

INTRODUCTION

1.1 Concept of Cancer

The term ”cancer” includes a diversity of diseases that, despite their variability
in origin and manifestations, share a fundamental characteristic: the abnormal
and excessive growth of neoplastic cells. These cells, with an invasive and
destructive capacity, can spread from their origin to other parts of the body via
the circulatory and lymphatic systems, a phenomenon known as metastasis.
This process highlights the aggressive and systemic characteristics of the
disease, which presents in various clinical forms and prognoses, yet is linked by
its genetic basis and its capacity to avoid typical cellular regulatory
mechanisms.

1.2 Oncogenesis

Cancer develops from a gradual accumulation of dynamic modifications in the
genome. Neoplastic cells are able to gain distinct features from normal cells due
to these modifications, which also release them from the homeostatic systems
that govern regular, controlled cell multiplication [1, 2].

In 2000, Hanahan and Weinberg proposed a model based on six key
characteristics of altered cell physiology that are required for tumour
transformation [3]. All cell types share similar changes, each serving as a
means of escape for cancer defence mechanisms. Then, in 2011, they added four
more attributes to this model, emphasizing the importance of the tumour
microenvironment and the complexity of tumour biology [4]. Emerging

1
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hallmarks and facilitating characteristics have recently been introduced [5],
including the activation of phenotypic plasticity, non-mutational epigenetic
alterations, diverse microbiomes, and the influence of senescent cells. The
fourteen fundamental characteristics have been outlined below, highlighting
each critical aspect of the transition from a cell’s typical physiological state to
the cancerous state (Figure 1.1)

Sustaining
proliferative signaling

Unlocking
phenotypic plasticity

Deregulating
cellular

metabolism

Resisting cell
death

Genome
instability &

mutation

Senescent cells

Inducing or accessing
vasculature

Activating invasion &
metastasis

Polymorphic
microbiomes

Tumor-promoting
inflammation

Enabling
replicative
immortality

Avoiding immune
destruction

Nonmutational
epigenetic reprogramming

Evading
growth suppressors

Figure 1.1: Hallmarks of Cancer. This image represents the capabilities of cancer cells
proposed by Hanahan and Weinberg [5]

1. Sustaining Proliferative Signalling: In their normal state, cells need to
wait for an external signal that will give them permission to start
multiplying; one emancipation of cancer cells is from this prerequisite.
The mechanism is the acquisition of a self-stimulating growth ability
that could be achieved by the synthesis of the mitogenic signals
themselves or interfacing with some mitogenic signalling machineries
that would allow growth receptors to remain active even without the
stimulatory ligands. This autonomy involves proliferative signalling
that may not be dependent on any extracellular context.

2. Evasion of Growth Suppressors: While healthy tissues have a number
of anti-proliferative signals to balance the proliferation and survival
together, cancer cells would again develop a different capacity to
overcome these constraints. A prominent example is the disruption of
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the RB1 (retinoblastoma protein) pathway, which controls cell cycle
progression. Mutations in genes such as RB1 deactivate these inhibitory
pathways and promote uncontrolled proliferation.

3. Nonmutational Epigenetic Reprogramming: Alteration of the
tumourigenic phenotype of tumour cells, which is purely epigenetically
regulated and independent of genome instability and mutation, is
associated with the acquisition of distinctive capabilities during both
tumour development and progression.

4. Avoiding immune destruction: Tumour cells develop multiple
strategies that enable evasion from recognition, surveillance, and
destruction by the immune system. These include modulation of
antigen presentation, secretion of immunosuppressive factors, and
recruitment of immune regulatory cells, enabling protracted
unsuspected proliferation counteracted by the immune system.

5. Enabling Replication Capacity: Normal cells are subject to a Hayflick
division limit, at which point they undergo senescence. Activation of
telomerase, or alternative telomere and chromosome end maintenance
mechanisms that allow unlimited replication, allows cancer cells to
bypass senescence.

6. Induction of an Inflammatory Environment: In tissue, tumour cells
induce a general or chronic inflammatory microenvironment that, far
from combating tumour growth and survival, is a substantial element
in neoplastic progression. Chronic inflammation not only provides
growth and survival factors, but also contributes to genomic instability
and tissue remodelling.

7. Polymorphic microbiomes: Microbiome diversity, which encompasses
microbial species and communities that may protect or promote
tumour formation and cancer progression, plays an important role in
tumorigenesis, the malignancy process itself and the response to
treatments.

8. Tissue Invasion and Metastasis: Extending beyond their local growth,
cancer cells turn on invasion capabilities to grow into neighbouring
tissues and have the capacity to seed cancer elsewhere in the body
(metastasize). This process involved restructuring of cell-cell and
cell-matrix interactions, as well as activation of enzymes that degrade
extracellular components that facilitate infiltration and movement of
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cells.

9. Induction of angiogenesis: Tumour cells, in order to maintain this
rapid growth, induce the formation of new blood vessels, in a process
known as angiogenesis. They tip the balance in favour of intravenous
irrigation of the new tissue for continuous supply of oxygen and
nutrients by secreting proangiogenic factors.

10. Senescent Cells in the Tumour Microenvironment: Functionally,
senescent cells of various origins that populate the tumour
microenvironment contribute to tumorigenesis and malignant
progression, through complex interaction networks which pose
challenges.

11. Mutations and genomic instability: Tumour cells exhibit a high rate of
mutations and genomic changes that provide the basis for
heterogeneity and adaptability in their environment. Although this
instability is decisive for the malignant properties, at the same time, it
presents a picture of clear target potential in a targeted therapy
scenario.

12. Resistance to programmed cell death (apoptosis): Apoptosis
functions as a protective mechanism that eliminates damaged or
unneeded cells. However, tumour cells develop ways to evade death, in
particular by switching off genes involved in activating apoptosis. This
blocking of the cellular ‘escape pathway’ allows tumour cells to
accumulate and proliferate.

13. Metabolic reprogramming: Metabolic reprogramming induces tumour
cells to afford high proliferation rates and facilitates their survival
under adverse conditions. A classic example is the Warburg effect, in
which cancer cells switch from a conventional respiratory mechanism,
involving mitochondrial respiration, to aerobic glycolysis even in the
presence of oxygen, thus optimally synthesising precursor
biomolecules and ATP.

14. Unlocking Phenotypic Plasticity: Cancer cells evade or escape
terminal differentiation, adopting phenotypic plasticity that facilitates
tumour pathogenesis through dedifferentiation, blocked differentiation
and transdifferentiation.

This collection of features not only emphasizes the complexity and cunning of
tumour cells on their path to malignancy, but also the multiple means of
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therapeutic interference that could be harnessed in each of these hedging
mechanisms to achieve resolution around oncogenesis.

1.3 The Prostate

The prostate is a glandular organ with the size and shape of a walnut that is
attached to the bladder and lies beneath it. The initial segment of the urethra
passes through it. The terminal section of the vas deferens, or ejaculatory duct,
enters the prostate from above and behind. The primary role of the prostate is
to provide vital secretions to semen, which help to create ejaculates and sustain
sperm viability [6].

1.3.1 Anatomy of the prostate

Structurally, the prostate is divided into mainly five different morphological
zones, as can be seen in Figure 1.2A. The 25% of the glandular tissue is
concentrated in a central zone (A) at the base of the prostate. This zone is
formed by the periurethral submucosal glands. It is the most resistant to
carcinoma and inflammation. There is the anterior fibromuscular tissue (B),
which is largely devoid of glands and is located in front of the urethra. A
transitional region (C) that houses 5% of glandular tissue. This zone is formed
by the periurethral mucous glands. Benign prostatic hyperplasia develops in
this zone. A peripheral zone (D) that constitutes the posterior, lateral, and
apical portions of the glandular tissue and represents 70% of the glandular
tissue. Nearly 80% of prostate tumours in older men develop in this region,
making it the most frequent location of origin for neoplasms [7–9], as well as
being the area examined during the digital rectal examination (DRE). The
region of the periurethral gland (E) is a narrow area with short ducts adjacent
to the prostatic urethra, which surrounds the urethra and is responsible for
producing mucus-like secretions that help protect and lubricate the urethra [6,
10–12].

The normal gland is made up of ducts and acini that are embedded in a
supportive tissue called stroma. These ducts and acini are lined with a single
layer of simple columnar epithelium, which is surrounded by a layer of basal
epithelium. The basal epithelium produces the basement membrane, an
extracellular matrix anchored to stromal cells. These stromal cells are mainly
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smooth muscle myocytes that help with spontaneous contractility and prevent
fluid from stagnating [13] Figure 1.2B. Within the stroma, fibroblasts
predominantly provide support to the ducts in the adult prostate. Paracrine
signalling from fibroblasts is thought to play a crucial role in ductal patterning
during prostate development. The stromal microenvironment is essential in
both prostate development and cancer [14, 15].
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Figure 1.2: Twodiagrams illustrating the anatomyof the prostate gland. (a)Highlights
the central zone (A), anterior fibromuscular stroma (B), transitional zone (C), peripheral
zone (D), and periurethral gland region (E), with their respective structural and
functional roles. (b) Provides a detailed view of the ducts and acini embedded in the
stromal framework, consisting of smooth muscle cells and fibroblasts, which are critical
for prostate development and function. [16]
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1.4 Prostate Cancer (PCa)

1.4.1 Epidemiology: incidence and mortality

PCa is the second most frequently diagnosed cancer after lung cancer and
constitutes 7% of all new cancer cases in men worldwide, this figure rising to
15% in developed areas. According to the last statistics, PCa is the most
common cancer in men and the second leading cause of death in them, with an
estimated 1,414,000 new cancer cases and 375,304 deaths in 2020 [17]
Figure 1.3A. More specifically in Spain, predictions of the number of PCa cases
(PCa) for 2023 reached 29.002 new cases, thus taking the first place
classification as a pathology afflicting male cancer more than colorectal or lung
and bladder cancer [18].

The risk of developing PCa is closely associated with age, with more than 85%
of new diagnoses occurring in individuals over 60 years of age [19, 20]. As a
result, regions with higher life expectancies experience a higher incidence of
this disease. Globally, PCa rates are positively correlated with the Human
Development Index (HDI) and the gross domestic product (GDP), which
means that developed countries generally have higher incidences than
developing countries [20].

The rise in PCa incidence rates may be partly attributed to increased awareness
and access to diagnostic screening. More frequent screening often leads to higher
incidence rates due to overdiagnosis. These regions also have the highest age-
standardized rates of PCa-related deaths.

The incidence rates for prostate cancer have been particularly influenced by
blood prostate-specific antigen (PSA) screening tests. The incidence often
shows great variation between countries and is usually affected by the degree to
which PSA screening has been implemented. Countries in the developed world,
in which screening programmes and, consequently, prostatic biopsies are
common, tend to report higher incidence rates for PCa. However, the
usefulness of PSA screening in general population-based programmes remains
a very controversial issue. While it does identify early-stage PCa, it often detects
rather indolent tumours, which will not benefit from intervention, thereby
exposing individuals to treatments they do not need. In addition, it is poorly
specific for distinguishing those with the indolent rather than more aggressive
and dangerous forms.
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Figure 1.3: Global geographical incidence and mortality of PCa. (A) Global incidence
of PCa in 2022. (B) Global mortality from PCa in 2022.
Global cancer observatory: cancer Today; 2022. Available from:
https://gco.iarc.fr/today/en/dataviz

Despite these challenges, evidence would suggest that PSA screening conveys
an absolute benefit, albeit modest, regarding reduction in PCa related mortality
and the risk of metastatic disease. This benefit is likely to be enhanced by
concurrent advances in treatment. Indeed, during the past decade,
improvements in diagnosis and therapy have led to a decline in PCa mortality,
especially in regions where early detection programmes are widely practised.

Global variations in PCa mortality rates, as shown in Figure 1.3B, highlight the
influence of diverse factors such as genetic susceptibility, environmental
exposures, dietary habits, healthcare access, and the quality of available

https://gco.iarc.fr/today/en/dataviz
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treatment.

In Spain, the incidence of prostate cancer in Spain was 30,316 new cases in 2024
[18], ranking first in terms of new cases in men, as in the rest of Europe. It was
followed by lung cancer and colorectal cancer. The main reason for this
significant increase in incidence, as in other developed countries, is due to the
introduction and widespread use of the PSA test, which has even led to the
undesirable effect of overdiagnosis [21]. The ease of PSA determination from a
blood sample has contributed to the widespread use of this test in primary and
specialized care consultations.

In term of mortality in Spain due to prostate cancer, in 2024 it was the leading
cause of death, accounting for 26.6% of all deaths. Specifically, deaths from PCa
accounted for 5.9% of all cancer deaths, making it the third leading cause of male
mortality after lung and colon cancer [22].

1.4.2 Risk factors

PCa is a multifactorial disease influenced by a combination of genetic,
environmental, and lifestyle-related factors. Numerous studies have identified a
variety of factors that contribute to the risk of developing PCa [23].

Age

PCa predominantly affects older people, with relatively infrequent diagnoses in
people younger than 50 years of age [24, 25]. Beyond this age range, the
incidence of PCa increases exponentially, exceeding the growth rates of other
tumour types. According to this pattern, PCa usually has a moderate growth
rate and a prolonged preclinical phase. Consequently, symptoms and clinical
diagnoses manifest themselves primarily in older men, if they appear at all. In
many cases, men with PCa die of unrelated causes long before the disease
presents noticeable symptoms or manifests itself clinically.

Ethnicity

People of African and Asian ancestry typically show less sensitivity to the disease
[26]. In contrast to other racial and ethnic groups, African-American, Caribbean
and black men living in Europe, for example, have the highest prevalence of PCa
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and tend to develop the disease earlier in life [26, 27]. These people have genetic
similarities that increase their risk of developing cancer, including certain genes
(such as chromosome 8q24) that are more likely to experience mutations [26–28].

Ethnic group prevalence can be associated with the history of European
colonization and the extent of genetic intermingling. According to some
research [26], the genetic makeup of northern Europeans includes a heritable
propensity for PCa. Two common polymorphisms on chromosome 8q24, which
are transmitted by genetic mixing, are present in a subset of patients of
European, European American, and African American origins [29–31].

The uncommon presence of these alleles in indigenous African populations and
other ethnicities implies genetic mixing between Europeans and
African-Americans as a transmission vector. Historical records indicate that
European colonization, particularly by Scandinavian explorers, occurred in the
Caribbean. Concurrently, the transatlantic slave trade introduced a substantial
African population to the region. Consequently, the prevalence of PCa is now
notably high in numerous Caribbean nations.

Family history and genetic factors

Genetic elements are a well-established risk determinant for PCa. The
probability of developing PCa for an individual is known to increase when a
close relative is affected by the same, the risk amplifying if the relative is
diagnosed at an early age. This correlation was clearly demonstrated in a 2003
meta-analysis comprising 33 distinct studies, which concluded that the risk was
particularly high when a sibling, rather than a father, was diagnosed, and
increased further with multiple affected family members. Interestingly, the risk
only slightly increased for second-degree relatives [32].

Remarkably, a mere 9% of PCa patients are classified as familial cases, defined
as having three or more affected family members or two family members
diagnosed before the age of 55 [33]. Not only has the relationship among family
members been recognized, but certain genetic variations have also been
identified as more common among PCa patients. An estimated 10% of PCa
metastatic patients are found to possess mutations in DNA repair genes, a
relationship established in a study involving 692 metastatic PCa patients
without familial history. The proportion of DNA repair gene mutations was
significantly lower in patients with localized PCa, comprising only 4.6%
compared to more aggressive variants [34]. BRCA2, a DNA repair gene, is the
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most frequently mutated in these patients. Current trials are investigating PCa
screening with BRCA mutations [35]. Such trials could signal a future where
early diagnosis is possible for families carrying related mutations, potentially
reducing the incidence of metastatic PCa.

Obesity

Research indicates that obesity is linked to a higher likelihood of mortality and
recurrence in prostate cancer (PCa) patients, as well as an unfavorable
prognosis. Multiple studies have demonstrated that obesity correlates with an
elevated risk of disease recurrence, exacerbation of treatment-related side
effects, emergence of obesity-associated comorbid conditions, premature
disease progression, development of metastatic cancer, and heightened
all-cause and PCa-specific mortality rates. [36–38]. However, the physiological
mechanisms associated with obesity and poor CaP outcomes remain unknown.
Obesity is associated with the disruption of several hormonal pathways in the
body. This alteration may lead to increased levels of insulin and insulin-like
growth factor (IGF), as well as increased oxidative stress and inflammatory
cytokines. Conversely, research indicates that in individuals with obesity, there
is a reduction in adiponectin, testosterone, and sex hormone-binding globulin
concentrations. Such variations in hormone levels and associated cellular
mechanisms can exert a notable influence on general health. [39–41]

Dietary and Nutritional Factors

Dietary factors have been associated with the risk of prostate cancer (PCa). A
diet rich in inflammatory components, such as processed and red meats,
sweetened beverages, and trans fats, is correlated with a greater likelihood of
developing PCa [42]. In turn, adherence to plant-based diets, those rich in
phytoestrogens including, for example, soy, and legumes, and also the elements
that constitute the Mediterranean diet appear to show a limited protective role.
[43, 44].

Lifestyle factors

Physical activity has been shown to play a preventive role, while the higher the
intensity or frequency, the lower the PCa-specific mortality. Sedentary or passive
lifestyles, along with poor exercise, contribute to increased risk [45]. Smoking is
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not directly attributed in most of the literature to the overall risk of PCa [46], but
has been used in conjunction with higher subtype grades and higher mortality
among smokers [47].

Environmental and occupational exposures

Occupational exposure to pesticides, petroleum products, and other industrial
chemicals was associated with an increased risk of PCa in a number of
occupations [48, 49].

Medical and health conditions

Chronic inflammatory diseases, such as prostatitis and autoimmune diseases
such as Sjogren syndrome, may increase the risk of PCa [50]. Type 2 diabetes is
associated with an increased risk of more aggressive disease types [51, 52].
Infectious agents such as human papillomavirus were associated with an
increased risk of developing PCa [53].

1.4.3 Clinical features and diagnosis

Most men with early-stage PCa do not experience symptoms; however, clinical
features can also be present in the early stages, though they are more common
in advanced disease. In advances stages, patients might encounter urinary
issues including burning sensations or pain while urinating, trouble starting or
stopping urination, and a higher frequency of urination during the night.
Additionally, they may experience incontinence and reduced flow rate or
velocity of the urine stream. The presence of blood in urine, known as
haematuria, and in semen can also occur, often along with erectile dysfunction
or painful ejaculation.

As the illness extends past the prostate, further symptoms might manifest, such
as leg or pelvic area swelling, hip, leg, or foot numbness or discomfort, and
bone pain. In case of recurrence of prostate cancer, haematuria or blood in the
urine, difficulty urinating, lower back pain, fatigue, dyspnoea or shortness of
breath and jaundice may occur; these symptoms, if present, usually require
further examination.
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Because early stage PCa is asymptomatic, the detection of this disease is heavily
based on routine diagnostic and screening tools. The suspicion of PCa usually
arises either from elevated PSA levels or abnormalities detected by Digital
Rectal Examination (DRE). The absence of early symptoms underscores how
diagnostic interventions are so crucial in the early identification of the disease
before it progresses to a symptomatic stage.

There are several methods available to achieve this, each contributing to a
comprehensive diagnostic approach.

Digital Rectal Examination

The DRE is still useful today because about 70-80% of PCas originate in the
peripheral zone of the prostate. According to a recent comprehensive analysis,
DRE has a sensitivity of 28.6% and a specificity of 90.7% for the detection of PC
in individuals presenting symptoms [54]. These statistics suggest that many
cases of PCa are not detected through DRE alone, as its low sensitivity means
that it can miss a significant number of cancers, especially in asymptomatic
individuals. Despite these limitations, the high specificity of DRE makes it a
useful initial screening tool to identify prostate abnormalities that warrant
further investigation.

Prostate-Specific Antigen (PSA)

PSA is an enzyme that originates from cells of the prostate glandular
epithelium and plays a vital role in the process of dissolution of semen clots
[55]. Primarily produced in prostate epithelial cells, PSA is released into the
prostatic ducts, with only a negligible amount making its way into the
bloodstream [56]. The penetration of PSA into the bloodstream is constrained
by the histological integrity of the prostate gland, which is made up of basal
cells. Certain pathological conditions such as PCa and prostatitis can cause a
breach of this barrier, particularly affecting the basement membrane of
epithelial cells. This disintegration can lead to an increase in the concentration
of PSA in the bloodstream, a situation that is often observed in tumours. This
results in elevated serum PSA levels (s-PSA) in individuals diagnosed with
PCa compared to those who do not, despite the fact that cancer cells generally
produce less PSA than normal epithelial cells [55, 57, 58].

The efficacy of this test in identifying PCa and tracking its progress is quite low
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[59]. This is attributed to its restricted sensitivity, which stands at 20.5%,
precision that ranges from 62 to 75%, and specificity between 51 and 91% [59].
Factors such as diagnostic or therapeutic interventions, intensive DRE,
prostatitis, ejaculation, prostatic infarction, and benign prostatic hyperplasia
can also contribute to elevated PSA levels. PSA value greater than or equal to
4.0 ng/ml is the consensus standard for further PCa evaluation. However, there
is no universally accepted cutoff value, and repeated evaluation after a few
weeks under standardized conditions for the individual is recommended to
avoid unnecessary biopsies.

Biopsy

The most common technique for detecting PCa is a needle biopsy. Most often,
a transrectal ultrasound guided biopsy is performed. The sampling locations in
the peripheral gland should be bilateral from the apex to the base, as far back as
practicable, and laterally. The cores should be collected from additional suspect
locations. In prostates of at least 30 cm in size, at least eight biopsy samples
are recommended [60], while ten to twelve samples are recommended for larger
prostates [61, 62].

Generally, a prostate biopsy is performed based on clinical findings integrated
with the results of diagnostic tests. One of the main indications for biopsy
includes increased PSA levels. Abnormal DRE findings such as palpable
nodules or asymmetry raise suspicion of PCa and can also indicate a biopsy
even if PSA levels are within normal limits. Imaging techniques, especially
mpMRI, also play an important role in the detection of suspicious lesions and
the assistance in targeted biopsies. Other factors are considered during this
decision-making process, including patient age, overall health, comorbidities,
and the potential therapeutic implications of PCa diagnosis. Shared
decision-making between the physician and the patient is essential, weighing
the risks of biopsy, such as infection or bleeding, against the benefits of early
detection and treatment.

In cases where a transrectal biopsy is contraindicated or where additional tissue
sampling is needed, transurethral resection of the prostate (TURP) may be
performed. This urological intervention, usually performed to relieve urinary
obstruction, may provide tissue for histopathological examination and
incidentally lead to the diagnosis of PCa. [63].
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Magnetic Resonance Imaging (MRI)

In the process of diagnosing PCa, MRI has grown in significance [64]. Its
features include tumour detection, risk classification, staging, and improved
biopsy sampling under MRI guidance. In the past ten years, multiparametric
MRI has become more effective in detecting clinically significant tumours [65].
A radiologist evaluates the images to report the degree of suspicion of PCa.
Furthermore, employing magnetic resonance biopsies makes it easier to find
and sample worrisome prostate regions.

Liquid biopsies

Liquid biopsies represent an advanced diagnostic technique that involves
obtaining a blood sample and analyzing it for indicators of cancer cells, DNA,
or RNA. Circulating Tumor Cells (CTCs) [66] are cancer cells that have
detached from the primary tumor and entered the bloodstream. Additionally,
cell-free DNA (cfDNA) and Cell-Free RNA (cfRNA) are genetic materials
released by cancer cells into the circulatory system [67].

These three entities - CTCs, cfDNA, and cfRNA - offer promising avenues for
diagnosing PCa. Among them, CTCs are particularly significant due to their
increased sensitivity as markers for PCa. This means that a positive CTC test
result can strongly suggest the presence of PCa, even when PSA levels appear
normal, adding another layer of detection beyond traditional methods [68].

Although liquid biopsies represent an exciting innovation in the field of cancer
diagnostics, it is important to recognise that this is a relatively new technology.
As such, further research is paramount to define their optimal utility in the
diagnosis, management, and potential early detection of PCa. Nevertheless, the
potential of liquid biopsies as a valuable diagnostic tool is undeniable,
especially in high-risk individuals, where it may revolutionize the early
detection and treatment of PCa.

Positron Emission Tomography/Computed Axial Tomography (PET/CAT)

PET/CT (Positron Emission Tomography/Computed Tomography) is a
powerful imaging technique that combines two methods to provide detailed
images of the body’s internal structures. PET uses a radioactive tracer to
highlight areas of the body where cells are more active (such as cancer cells),
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while CT provides detailed cross-sectional images of the body. The
combination of these two methods can provide a more accurate diagnosis [69].

1.4.4 Tumour classification

Systems for determining the stage and risk of a prostate tumour vary depending
on the method used, but are essential as therapy is based on the clinical stage of
the tumour. A patient with PCa is usually classified according to the extent of
the tumour, the clinical or pathological stage of the patient, the Gleason grade or
histological grade, and the PSA level.

Tumour Node Metastasis (TNM) classification

Tumour-Node-Metastasis (TNM) classification is a universally recognized
system used to stage cancer, including PCa [70]. This system is based on the
evaluation of the extension of the tumour, the number of lymph nodes affected
and the presence or absence of distant metastases, according to the
classification of The Union for International Cancer Control (UICC)(Table 1.1).

• Tumour (T): The ’T’ in the TNM classification refers to the size and extent
of the main tumour. In the context of PCa, it specifically assesses how
much of the prostate is affected by the cancer and whether it has grown
to nearby tissues. The categories range from T1 (cancer is not detectable
through a physical exam or imaging tests but may be found in a biopsy for
other reasons), T2 (cancer is confined to the prostate without evidence
of extra-glandular extension), T3 (cancer extends beyond the prostate
capsule), to T4 (cancer has invaded tissues adjacent to the prostate).

• Node (N): ’N’ represents lymph nodes, indicating the degree to which
cancer has metastasized to adjacent lymph nodes. The classifications
include two categories: N0, where cancer remains absent from nearby
lymph nodes, and N1, where cancer has spread to one or more nearby
lymph nodes.

• Metastasis (M): The ’M’ in the TNM system signifies metastasis, which
is when cancer spreads from the primary site (in this case, the prostate)
to other parts of the body. The categories are M0 (no distant metastasis)
and M1, which is subdivided further: M1a (cancer has spread to lymph
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nodes away from the prostate), M1b (cancer has spread to bones), and
M1c (cancer has spread to other organs).

Stage Description Stage Description
TX Primary tumour cannot be assessed. T0 No evidence of primary tumour.
T1 Cancer is not detectable through a

physical exam or imaging tests.
T2 Cancer is confined to the prostate.

T1a Tumour incidental histological finding
in 5% or less of tissue resected.

T2a Tumour involves one half of one lobe
or less.

T1b Tumour incidental histological finding
in more than 5% of tissue resected.

T2b Tumour involves more than half of one
lobe, but not both lobes.

T1c Tumour identified by needle biopsy
(e.g. because of elevated PSA).

T2c Cancer involves both lobes.

T3 Cancer has spread beyond the outer
layer of the prostate and may have
spread to the seminal vesicles.

T3b Tumour invades seminal vesicle(s).

T3a Extracapsular extension (unilateral or
bilateral).

T4 Tumour is fixed or invades adjacent
structures.

N0 No regional lymph node metastasis. N1 Regional lymph node metastasis.
M0 No distant spread.

M1 Distant sites.
M1a Cancer has spread to lymph nodes
M1b Cancer has spread to bones.
M1c Cancer has spread to distant organs.

Table 1.1: TNM 2017 classification for PCa

Gleason Score

The Gleason score is a system used to grade the aggressiveness of PCa. It is
based on how the cancer cells look under a microscope. The Gleason score
provides important information for treatment decisions and prognosis [71].
Table 1.2 summarizes the interpretation of Gleason scores.

Gleason Score Interpretation
6 or lower Well-differentiated (low-grade) cancer

7 Moderately differentiated (intermediate-grade) cancer
8-10 Poorly differentiated (high-grade) cancer

Table 1.2: Interpretation of Gleason Scores

The score ranges from 2 to 10, with 2 being the least aggressive and 10 being the
most aggressive. A Gleason score of 6 or less is considered a low-grade cancer.
These cancers are slow-growing and less likely to spread. A Gleason score of
7 is considered an intermediate-grade cancer. These cancers are more likely to
grow and spread than low-grade cancers, but are not as aggressive as high-grade



18 1. Introduction

cancers. A Gleason score of 8, 9 or 10 is considered a high-grade cancer. These
cancers are the most aggressive and the most likely to grow and spread.

The International Society of Urological Pathology (ISUP) and World Health
Organization (WHO) have adopted a new grading system for PCa, known as
the ISUP/WHO grade groups [72, 73]. This system aims to help patients better
understand the behavior of their diagnosed prostate carcinoma. Notably, it
separates Gleason Score (GS) 7 adenocarcinoma into two prognostically distinct
categories: grade group 2 for GS 7(3+4) and grade group 3 for GS 7(4+3). This
distinction provides more precise prognostic information for patients and
clinicians. See Table 1.3 for the Gleason and ISUP grades organisation.

Gleason Score ISUP Grade
2-6 1

7(3+4) 2
7(4+3) 3

8(4+4 or 3+5 or 5+3) 4
9-10 5

Table 1.3: Gleason Score and ISUP grade

Stage

The combination of the T, N and M values allows the oncological stage of each
patient to be determined. The Union for International Cancer Control (UICC) in
the 8th edition of the TNM Classification of Malignant Tumours [70] defined the
stages of PCa described in Table 1.4.

The stage of cancer is a crucial factor in determining the prognosis and guiding
treatment decisions. [74]. Patients with early stage PCa (stages I and II) may be
candidates for active surveillance, radical prostatectomy, or radiation therapy
[75]. In contrast, those with more advanced disease (stages III and IV) often
require multimodal approaches, potentially including hormone therapy,
chemotherapy, or novel targeted therapies [75].

Stage T N M G
Stage I T1, T2a N0 M0 G1
Stage II T2b, T2c N0 M0 G2-4, Any G
Stage III T3, T4 N0 M0 Any G

Stage IV Any T N1 M0 Any G
Any T Any N M1 Any G

Table 1.4: Stages of PCa
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Risk groups

The management of patients diagnosed with PCa varies according to their risk
of progression. The use of cancer prognos tic risk groups plays an important
role in therapeutic treatment decision-making, clinical trial design and outcome
reporting. While several approaches exist, the D’Amico classification remains
one of the most widely adopted [76]. This system uses PSA level (blood test),
Gleason grade (microscopic appearance of the cancer cells), and T stage (size of
the tumour on rectal exam and/or ultrasound) to group men as low,
intermediate, or high-risk (Table 1.5)

Risk Group PSA Level Gleason Score Clinical Stage
Low-Risk 10 6 T1-T2a
Intermediate-Risk 10 - 20 7 T2b
High-Risk >20 8 T2c-T3a

Table 1.5: D’Amico classification system for PCa risk assessment

1.5 Androgen signalling and Androgen Receptor
(AR) in PCa

1.5.1 Androgen action in prostatic development

Steroid hormones known as androgens play a crucial role in the human body.
Although commonly associated with male development, these hormones are
important for both sexes. Their primary function involves the growth and
maintenance of male sexual traits, both primary and secondary.

Androgen synthesis is probably one of the most important parts of male
reproductive physiology and occurs mainly in the testes under the regulation of
the hypothalamic-pituitary-gonadal axis. Figure 1.4. This axis orchestrates
more than 95% of total circulating testosterone, the principal androgen of the
body. The balance of the remaining circulating androgens is contributed by the
adrenal glands, but in lesser amounts. These testicular androgens are the most
important for the development and maintenance of the prostate gland, which is
an important organ of the male reproductive system [77].

Stimulated by an increase in serum testosterone levels during puberty, the size
of a normal prostate increases to 20 grams. This period of rapid growth is
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850  ng/dL. The 95th percentile of men in the 80 to 
99 years old age range has a total T level of 839 ng/
dL (Travison et al. 2017). This finding illustrates that 
at the high end of the natural total T range, there is 
very little drop off due to age. In contrast, the 5th 
percentile of men in the 19 to 39 years old age range 
has a total T level of 304 ng/dL. The 5th percentile of 
men in the 80 to 99 years old age range has a total T 
level of 218 ng/dL (Travison et al. 2017). This mas-
sive reduction in total T levels at the low end of the 
normal range of free T demonstrates that the andro-
gen levels of some groups of men are affected more 
significantly by aging (Fig. 1).

Testosterone effects on organ systems

Androgens such as testosterone and DHT exert their 
actions in a wide variety of tissues by binding to the 
AR. The AR is located in the cytoplasm, and andro-
gens are able to diffuse through the plasma membrane 
and bind to the AR due to their hydrophobic nature 
(Davey and Grossmann 2016). The AR has two dis-
tinct pathways of signaling. The first is referred to 
as the classical or DNA binding dependent pathway, 
which involves the androgen/AR complex entering 
the nucleus and binding to androgen response ele-
ments (AREs) to modulate gene expression (Eder 
et  al. 2001). The classical pathway is speculated 

Fig. 1  Regulation and metabolism of testosterone. Testos-
terone production begins in the hypothalamus when GnRH is 
released into the hypophyseal portal system and acts upon the 
anterior pituitary causing the release of FSH and LH (Plant 
and Marshall 2001). FSH acts on the Sertoli cells of the testes 
to stimulate spermatogenesis (Grinspon et  al. 2018). LH acts 
on the Leydig cells of the testes causing the release of Tes-

tosterone (Choi and Smitz 2014). Testosterone is metabolized 
into DHT by the action of 5α-reductase (Randall 1994). Both 
testosterone and DHT act on the AR with DHT exerting more 
potent effects (Marchetti and Barth 2013). Aromatase converts 
testosterone into estradiol (Stocco 2012) which regulates many 
bodily processes (Schulster et al. 2016)

Figure 1.4: Regulation and Metabolism of Testosterone. Testosterone production
initiates in the hypothalamus, where GnRH (gonadotropin-releasing hormone) is
released into the hypophyseal portal system. This GnRH then acts upon the anterior
pituitary gland, triggering the release of two key hormones: FSH (follicle-stimulating
hormone) and LH (luteinizing hormone) [78].

followed by a period of stabilization, in which the continued presence of
androgens does not cause growth [77]. The transition from growth to steady
state is tightly regulated with a fine balance between cell proliferation and
apoptosis, so that the structural and functional integrity of the prostate is
maintained.

Androgens also appear to play a role in the formation of reproductive organs of
the male embryo. Their secretion is under the regulation of negative feedback
that involves not only the hypothalamic LHRH but also the LH. The
hypothalamus has the responsibility of releasing LHRH, which will act on the
pituitary gland to release LH. LH will also act on the Leydig cells, which will
respond by synthesizing most of the body testosterone, while the remaining is
secreted by the adrenal gland and its androgens. Once synthesized, androgens
circulate in the bloodstream and are absorbed by body tissues, including the
prostate, causing growth and maintenance of the organ.



1.5. Androgen signalling and Androgen Receptor (AR) in PCa 21

1.5.2 AR structure

The AR is encoded by a solitary copy of the AR gene located at chromosome
position Xq11-12. The gene has also been referred to as NR3C4 gene and forms
an essential member of the nuclear receptors (NRs) that play a critical role as a
transcription factor. The receptors exert their action through binding to specific
regulatory sequences found in the promoter regions of DNA upon binding with
hydrophobic ligands and hence play a central role in gene expression. As
reported in different studies [79–81], the importance of this mechanism in gene
regulation has been highlighted, underlining a fundamental role in cellular and
molecular biology.

AR gene belongs to the class I group of nuclear receptors that also include of
the androgen (AR), progesterone (PR), estrogen (ER𝛼 and ER𝛽),
mineralocorticoid (MR) and glucocorticoid (GR) receptors all of which mediate
the cellular responses to the steroid hormones. The AR gene is located on the
long arm of the X chromosome (band q11-12). This gene consists of 8 exons
and, with a length of 2,757 nucleotides, encodes the synthesis of a large protein
of about 110 kDa and 919 amino acid residues. Notably, AR gene expression is
mainly observed in reproductive tissues such as the prostate, ovaries and
endometrium [82].

Functionally, it is the AR gene that serves as the main mediator of androgen
action, which influences the course of male sexual differentiation and even
further contributes to the development and maintenance of male reproductive
tissues [82]. This versatile role points out the central place of AR in human
biological processes. The broad tissue activity it induces underlines its
importance beyond mere reproduction, as well as allowing hypothesising
possible implications for metabolic, neurological and other physiological
systems in humans.

The AR consists of functional domains that allow receptor dimerization, DNA
binding and complexing via cofactors with the basal transcription machinery. It
consists of four functional domains (Figure 1.5):

• N-terminal transactivation domain (NTD): Encodes the
transcriptional activation function 1 (AF1) and is responsible for the
formation of the cellular transcription complex. Within AF1, two
transactivation units (TAU-1 and TAU-5) shape the activity of the
receptor. TAU-5 specifically confers strong constitutive transcriptional
determinant activity and has been shown to be involved in aberrant AR
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activation in some disease states.

• DNA-binding domain (DBD): Encoded by exons 2 and 3, which contain
two zinc finger motifs, it is involved in the specific sequences in the DNA
and the homodimerization of this receptor.

• Ligand binding domain (LBD): It is translated from exons 5-8. This
domain contains AF-2 and binds ligands of androgens, thus constituting
the predominant mode of regulation of the androgen signalling pathway.

• Hinge region: The nuclear translocation signal found in the hinge
region, which divides the DBD from the LBD, is crucial for mediating
the translocation of the active AR into the nucleus.
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safe dose and evidence of clinical efficacy.

Enzalutamide is rapidly absorbed with C
max
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stration of a significant decrease in serum PSA levels of 

all of the first six men. Subsequent cohorts contained both 
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the post-chemotherapy men receiving the highest doses at 

480 and 600 mg/day.

Although the primary aim of these early studies was to 

establish the pharmacokinetics and safety of enzalutamide, 
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for example, results from the Scher et al 201212 study showed 

that at doses ranging from 60 mg to 480 mg per day, positron 

emission tomography (PET) scans indicated that 18-fluoro-

dihydrotestosterone uptake was reduced by approximately 
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18-fluorodihydrotestosterone avid lesions. Doses at 60 mg/

day had a smaller reduction with a mean decrease of less than 

50% when compared to higher doses which achieved a greater 

than 50% reduction. Differences between the higher doses 

were only apparent in the blood serum with enzalutamide 

concentrations at 12 µg/mL at 150 mg/day and .20 µg/mL 
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Figure 1 Androgen receptor (AR) gene, protein and its constitutively active variants.
Notes: (A) Full-length AR gene and protein. The AR gene consists of eight exons. Exon 1 codes for the amino-terminal domain (NTD), which contains the AF1 transactivation 
function. Exon 2 and 3 code for the DNA-binding domain (DBD). The hinge region (H) which contains the nuclear localization signal is encoded by the 5′ region of exon 4. The 
3′ region of exon 4 alongside 5–8 encodes for the ligand-binding domain (LBD), which consists of the second transactivation function AF-2. (B) AR splice variants. The two major 
AR splice variants readily detectable in castration resistant prostate cancer specimens, AR-V7 and AR-V12 (also known as AR3 and AR-Ve567s, respectively) have the ability to 
regulate target gene expression in the absence of full-length AR signaling. Gene expression profiles revealed that these variants regulate genes responsible for cell cycle function as
well as androgen-responsive genes.22 AR-V7 is truncated at the end of exon 3 and lacks the LBD, however contains amino acids from cryptic exon 3 (CE3). AR-V12 splice variant 
is missing exons 5–7, which left the protein with only a small part of the LBD region which is not located at the normal translation frame. AR-V12 is one of the most frequent AR 
splice variants found in 23% of human bone metastasis. It is thought to be responsible for poor disease prognosis, however its precise role remains unknown.23

Figure 1.5: Structure of the AR.The AR gene is situated on the X chromosome (Xq11-12)
and comprises eight exons. It includes exon 1, which encodes the N-terminal domain
(NTD) containing the activation function AF-1. Exons 2 and 3 are responsible for
the DNA-binding domain (DBD). Exon 4 encodes the hinge region, functioning as a
nuclear localization signal, and along with exons 5 through 8, forms the ligand-binding
domain (LBD), which contains the activation function AF-2. AF-1 houses two primary
transactivation units: TAU-1 and TAU-5. [83]

1.5.3 AR activation and mechanisms of action

In the absence of its ligand, AR is found in the cytoplasm, where it forms
complexes with chaperone proteins, such as heat shock proteins (HSP) 70 and
HSP40, to form a mature aporreceptor complex. This form is associated with
additional microtubules and HSPs that ensure the proper conformation of the
receptor to bind ligand. Binding of testosterone or DHT induces a
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conformational change of the LBD, leading to HSP dissociation,
phosphorylation, and dimerization of the AR. This indicates that it has
dimerisation motifs and possesses nuclear localization signals that allow the
AR to translocate to the nucleus Figure 1.6 [82, 84].

In the nucleus, AR binds to AREs resulting in the transcription of specific genes
and interacts with other transcription factors, such as nuclear factor IB (NFIB),
with a far-reaching effect on regulation of genes within PCa cells. Some of the
best known target genes are PSA, transmembrane serine protease type 2
(TMPRSS2), kallikrein 2 (KLK2) and hexokinase 2 (HK2). Significantly,
receptor binding to AREs leads to the recruitment of a set of enzymatic and
regulatory proteins, including histone acetyltransferases, demethylases, as well
as kinases and other co-regulators. Disruption of ligand binding prompts the
re-exposure of nuclear export sites, with the receptor recycled back to the
cytoplasm. There, it associates with the cytoskeleton and primes itself for
interactions with new ligands. The AR has significant genomic action, primarily
regulated through a spectrum of coregulators interaction with it. These
interactions may occur via the N-terminal domain (NTD) and/or the ligand
binding domain (LBD), with the specificity of the cofactor recruitment
determined by the state of the receptor conformation and post-translational
modifications of the receptor domains [85].
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Figure 1.6: Mechanisms of androgen action and AR signalling in prostate cells. [86]
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In addition, there are different AR variants (ARvs) arising from alternative
splicing of mRNA that give rise to variants lacking or containing variable
portions of LBD. In some ARvs, dimerization of can be promoted in the absence
of ligand to AR target genes either through homodimerization or by
heterodimerization with full-length ARs.

1.5.4 Persistent AR signalling in castration-resistant PCa

The paradigm of castration-resistant PCa (CRPC) has undergone significant
evolution in recent years. Initially, the scientific community posited that CRPC
progression was completely independent of androgen signaling, rendering
further hormonal interventions futile [87]. However, contemporary research
has elucidated a more nuanced understanding of CRPC biology. Current
evidence suggests that while subpopulations of truly androgen-independent
neoplastic cells may exist, sustained AR signaling remains a critical driver in
CRPC progression [88, 89]. This persistent AR activity is facilitated through
multiple molecular mechanisms, including AR gene amplification or
overexpression, mutations in the AR gene sequence, intratumoral de novo
androgen synthesis, dysregulation of kinase signaling cascades, alterations in
AR coregulator dynamics, expression of constitutively active AR splice variants
etc.

The recognition of AR reactivation as a central component in CRPC
pathogenesis has catalyzed extensive research efforts aimed at developing novel
therapeutic agents targeting the AR signaling axis [90]. These pharmacological
agents have demonstrated significant clinical efficacy and have been integrated
into the standard treatment protocols for patients with metastatic CRPC. A
detailed discussion of their mechanisms of action will be presented in the
Treatment of advanced PCa section of this thesis.

1.6 Therapeutic approach to PCa

1.6.1 Treatment of localised PCa

In local PCa, Treatment decisions depend on an accurate assessment of the
stage and risk of the disease. In this phase of the disease, low-risk patients
typically do not require extensive staging, as the likelihood of metastasis is low.
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However, for higher-risk categories, thorough imaging is crucial to detect
potential metastases, which plays a pivotal role in guiding treatment choices. In
the treatment of localized PCa, several options are available, each tailored to the
specific stage and aggressiveness of the disease, as well as the patient’s general
health and treatment preferences.

Active surveillance/ watchful waiting

Active surveillance and watchful waiting are conservative management
strategies for PCa that aim to avoid or delay the potential side effects of
definitive treatments while maintaining oncological safety (Table 1.6). These
approaches are particularly relevant for men with low-risk PCa or those with
limited life expectancy due to age or comorbidities [91].

In active surveillance, low-risk patients with PCa are regularly followed up for
PSA tests, DRE, and periodic prostate biopsies to monitor the patient’s condition.
It has the objective of early detection of possible disease progression and offers
an opportunity for curative treatment in such cases. Recent research indicates
that active surveillance is a safe approach for carefully selected patients, with a
risk of cancer-related death or metastasis less than 1% over extended follow-up
periods [92]. However, approximately 25% of patients under active surveillance
will require definitive treatment within 5 years due to disease reclassification or
progression [93].

In watchful waiting, PCa patients who are considered unsuitable for curative
treatment, either due to limited life expectancy or the presence of significant
comorbidities, are managed conservatively. Here, the approach will shift from
trying to cure the disease to monitoring the patient for the appearance of signs
and symptoms caused by progression. In case such symptomatology develops,
palliative treatment is performed to preserve the patient’s quality of life. [94,
95].

Radical prostatectomy

Radical prostatectomy (RP) is a surgical intervention designed to excise the
prostate gland while preserving pelvic organ function. The procedure involves
complete removal of the prostate gland, including the entire capsule and
seminal vesicles, followed by vesicourethral anastomosis [96–98]. Since its
initial description in 1904, the approach has undergone significant evolution,
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Active Surveillance Watchful Waiting

Treatment intent Curative Palliative
Follow-up Predefined schedule Patient-specific
Assessment/markers
used

DRE, PSA, rebiopsy,
optional MRI

Not predefined

Life expectancy >10 years <10 years
Aim Minimize

treatment-related toxicity
without compromising

survival

Minimize
treatment-related toxicity

Comments Only for low-risk patients Can apply to patients at
all stages

Table 1.6: Comparison of active surveillance versus watchful waiting

particularly in recent years with the advent of advanced technologies [99].
Traditional open retropubic and perineal approaches have largely been
replaced by minimally invasive techniques, namely laparoscopic and
robot-assisted radical prostatectomy (RARP) [100–102]. RARP, in particular,
has gained prominence due to its potential benefits in terms of surgical
precision, reduced blood loss, and faster postoperative recovery [103–105].
Although surgical techniques have improved, radical prostatectomy (RP) is still
linked with frequent postoperative issues, including erectile dysfunction, dry
ejaculation due to seminal vesicle resection, altered orgasm quality,
orgasm-related pain, and penile shortening. Additionally, long-term urinary
incontinence is noted as the second most prevalent complication. [106–109].

Radiotherapy

Radiotherapy is a crucial component in the management of PCa, with the
primary aim of eradicating the tumour through precisely targeted therapeutic
radiation while minimizing exposure to adjacent healthy tissues. This approach
is pivotal not only for the effective elimination of cancerous cells but also for
mitigating potential side effects. Currently, there are different modalities of
radiotherapy administration:

The aim of this treatment, like that of surgery, is to eradicate the tumour by
means of a precisely targeted dose of therapeutic radiation, while concurrently
ensuring minimal exposure to adjacent tissues. This approach is pivotal not
only for the effective elimination of cancerous cells, but also for mitigating
potential side effects. There are currently different modalities of radiotherapy
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administration:

1. External Beam Radiation Therapy (EBRT): Using sophisticated
machinery, highly focused radiation beams are precisely targeted at the
tumour and delivered to the prostate gland. This accuracy reduces
exposure to and potential harm to nearby tissues, especially important
organs like the bladder and rectum which are located close to the
prostate. There are several advanced EBRT techniques available, each
with its own distinct strategy and advantages. The choice of EBRT
technique is tailored to the individual patient’s disease characteristics,
overall health status, and treatment preferences

2. Brachytherapy: Brachytherapy places radioactive seeds or pellets right
inside the prostate gland [110, 111]. Depending on the isotope being
utilized, the duration of the radiation delivered by these seeds to the
tumour over a predetermined period can range from days to many
months. Direct implantation ensures that the malignant cells receive an
intense radiation dose while significantly lowering radiation exposure
to the surrounding environment.

Nevertheless, the effectiveness of radiation therapy is intricately linked to
multiple patient-specific elements. These include the cancer’s stage and grade,
the patient’s overall health condition, and personal treatment preferences. It is
crucial for patients to participate in detailed discussions with their oncologist to
establish a personalized treatment plan, considering both the advantages and
possible adverse effects.

Other available Treatments

Apart from these two main modalities, surgery and radiotherapy, there are new
and emerging options for PCa patients. These involve cryotherapy and
high-intensity focused ultrasound. Cryotherapy utilizes freezing techniques in
the destruction of cells that cause PCa. Dehydrating the cells leads to protein
denaturation, direct disruption of cell membranes by ice crystals, vascular
stasis, and microthrombi, which then work in a cascading effect to finally cause
stagnation of the microcirculation, consequently resulting in ischemic
apoptosis. Under transrectal ultrasound guidance, two freeze-thaw cycles are
performed to achieve the desired temperature of –40°C in the medial gland and
the neurovascular bundle [112–114].

High-intensity ultrasound therapy (HIFU) uses specialized transducers to emit
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focused ultrasonic waves, which induce tissue damage through a combination
of mechanical and thermal effects, alongside cavitation processes [115]. The
primary goal of HIFU is to elevate the temperature of the malignant tissues
beyond 65°C, thereby inducing their eradication through coagulative necrosis).
This non-invasive technique has shown promise as a treatment option for PCa
[116].

1.6.2 Treatment of advanced PCa

Despite treatment with surgery or radiotherapy, relapses occur in
approximately 30% of men treated for localized PCa and advanced disease is
associated with poor outcomes. In these patients, treatments are mainly
focused on increasing longevity, slowing disease progression and improving
general well-being, without aiming for the total eradication of the disease. The
cases of advanced PCa can then be divided into three broad categories based on
the absence or presence of metastases and serum testosterone concentrations:

• Metastatic Hormone-Sensitive PCa (mHSPC): represents a disease
entity that includes patients with clinician-assessed, radiologically
documented metastatic disease and normal testosterone grades (>50
ng/dL). A clear distinction should be drawn between those patients
with a ’de novo’ (synchronous) metastatic disease and those with
metachronous recurrent metastatic disease, since these subgroups are
reported to have different baseline prognostic outcomes.

• Non-metastatic castration-resistant PCa (nmCRPC): is a category of
patients with maintained castration levels of testosterone (<50 ng/dL)
without distant metastases on conventional images. These patients
show biochemical progression with increasing PSA during androgen
deprivation therapy (ADT) alone.

• Metastatic castration-resistant PCa (mCRPC): This is the very last and
most lethal stage of the disease, where patients have a castration level
of testosterone along with documented metastatic disease on imaging
studies.



1.6. Therapeutic approach to PCa 29

Surgical castration: Orchiectomy

Orchiectomy is a surgical procedure in which both testicles are removed. This
produces a dramatic and fast decrease in testosterone serum levels to values
below 15 ng/dl, usually within the first 12 hours after surgery. Although this
decrease is permanent, no differences have been found regarding survival or
progression of the disease compared to LHRH analogues [117]. It is indicated
when patients have not followed treatment adequately or in urgent reduction in
serum testosterone levels.

Androgen Deprivation Therapy

Huggins and Hodges in 1941 highlighted the dependence of PCa on androgens
for its growth and spread [118]. This milestone won them the Nobel Prize in
Physiology and marked the beginning of ADT as a mainstay in the treatment of
advanced PCa. Androgens, particularly testosterone, play a critical role in the
development and function of the male reproductive system, including the
prostate gland. In PCa, these hormones bind to Androgen Receptors located on
PCa cells, triggering a cascade of signaling events that lead to cell growth,
division, and survival. ADT aims to disrupt this androgen-driven signaling
pathway by suppressing androgen production or blocking AR activity. This
deprivation of androgens effectively starves PCa cells, causing them to shrink,
slow down their growth, and eventually die.

ADT induces a decrease in prostate size and disease regression by reducing or
inhibiting androgen production. This is achieved by suppressing up to 90-95%
of testosterone production. These therapies fall into several main categories:

• Estrogens:

Estrogens were among the first agents used to inhibit testosterone
production by suppressing the hypothalamic-pituitary-gonadal axis
[118]. Estrogens reduce testosterone levels by providing negative
feedback to the hypothalamus, thus decreasing the secretion of
luteinizing hormone (LH) and follicle-stimulating hormone (FSH),
which are necessary for testosterone production. However, due to
significant cardiovascular side effects, such as thromboembolic events,
their use in clinical practice has largely been replaced by other ADT
strategies [119].

• GnRH Analogues:
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A class of medications known as gonadotropin-releasing hormone
(GnRH) agonists is commonly used to treat PCa. GnRH downregulate
the pituitary gland, reducing LH and FSH production. This results in a
significant decrease in testosterone levels, which can help slow or stop
the growth of PCa cells. However, GnRH agonists initially cause a surge
in LH and FSH levels, temporarily increasing testosterone production
(the ”flare” effect), leading to increased symptoms of PCa, especially in
people with advanced disease. Leuprolide, goserelin, and triptorelin are
commonly prescribed GnRH agonists.

• GnRH antagonists:

GnRH antagonists offer a distinct mechanism of action. Unlike GnRH
agonists, which initially stimulate hormone production before
suppressing it, antagonists bind directly to GnRH receptors, preventing
them from activating the pituitary gland. The competitive blocking of
the GnRH receptor results in a rapid, but reversible, decrease in LH,
FSH and testosterone without any flare. This can be particularly
beneficial for patients with advanced PCa, as it helps to prevent or
minimize the temporary worsening of symptoms that can occur with a
sudden increase in testosterone [120].

GnRH antagonists are generally well-tolerated, with fewer side effects
compared to earlier generations of these drugs. While some patients
may experience histamine-mediated side effects, newer versions have
been developed to minimize these issues [121].

• Androgen biosynthesis inhibitors:

Androgen biosynthesis inhibitors, such as abiraterone acetate,
selectively inhibit the enzyme CYP17A1, which is crucial in the
production of androgens. This enzyme is involved in two steps of
androgen synthesis: converting pregnenolone and progesterone into
their 17𝛼-hydroxylated derivatives, and then converting these into
dehydroepiandrosterone (DHEA) and androstenedione, precursors of
testosterone. By blocking this pathway, abiraterone acetate effectively
reduces the production of testosterone and other androgens not just in
the testes, but also in the adrenal glands and within prostate tumors
themselves [122, 123].

Abiraterone is usually given alongside prednisone, a corticosteroid, to
mitigate side effects associated with its mechanism of action.
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Specifically, by inhibiting CYP17A1, abiraterone also inadvertently
increases levels of mineralocorticoids (e.g., aldosterone), leading to side
effects like fluid retention, hypertension, and hypokalemia. Prednisone
helps to counteract these effects by reducing the production of
adrenocorticotropic hormone (ACTH) from the pituitary gland, which
in turn reduces the production of adrenal steroids, including those that
can cause these side effects [123, 124].

1.6.3 Treatment of Castration-resistant prostate cancer

CRPC is identified by a biochemical recurrence indicated by rising PSA
levels in the blood and/or metastatic spread demonstrated through
imaging studies, despite maintaining castrate-level testosterone (below
50 ng/dL). Patients with CRPC frequently experience pain, discomfort,
and weakness due to metastatic tumours present in bone, lymph nodes,
and soft tissues. During the metastatic stage, CRPC is associated with a
median survival of 2 to 4 years, and there are presently no treatments
capable of curing the disease. Available therapeutic strategies focus on
extending survival and providing symptomatic relief. Among the most
commonly employed options are the use of second generation
anti-androgens, chemotherapy and more recently the use of
radiopharmaceuticals, immunotherapy and the use of PARP
inhibitors.Each of these options addresses different aspects of CRPC
progression, offering a range of mechanisms to manage the disease.

Anti-androgens

Unlike androgen biosynthesis inhibitors, which decrease the levels of
androgens, anti-androgens compete with natural androgens for binding
to the AR, inhibit these hormones from activating the receptor, and
hence stimulate the growth of PCa cells. There are two major divisions
of antiandrogens: steroidal and nonsteroidal.

Steroidal anti-androgens e.g. cyproterone acetate, aside from blocking
the AR, also have directly acting progestogenic activity that further
suppresses LH, hence testosterone production. However, these are not
as commonly used because of associated side effects and elicit
androgenic effects at high concentrations due to partial agonist activity
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[125, 126].

Non-Steroidal Anti-Androgens (NSAA), such as flutamide,
enzalutamide and bicalutamide, are more used in the treatment of PCa.
These compounds exhibit significant affinity for the AR, thereby
hindering its translocation from the cytoplasm to the nucleus. In the
nuclear environment, antiandrogens obstruct AR binding to
deoxyribonucleic acid (DNA), decreasing the transcription of genes
responsive to AR. Consequently, this halts the proliferation of
androgen-dependent prostate cancer (PCa) cells.

Non-steroidal anti-androgens are commonly used for advanced PCa,
usually in combination with ADT, which decreases androgen
production by the testes. The combination is called Combined
Androgen Blockade (CAB) has been reported to have greater efficacy
than monotherapy in some cases. Enzalutamide, a new generation
NSAA, showed activity both in castration-resistant and
hormone-sensitive PCa with significantly prolonged survival in clinical
trials [127, 128]. However, long-term administration of anti-androgens,
particularly NSAA, has attendant side effects like gynaecomastiaa, hot
flashes, and gastrointestinal disturbances. Because they inhibit
androgen action, it is expected to decrease libido and lead to erectile
dysfunction. In most cases, the management involves dose adjustments
and some supportive therapies that help maintain good quality of life
for patients during their treatment.

Chemotherapy

Before 2004, there was no standard of care for first-line and second-line
chemotherapy in PCa treatment. Chemotherapy at that time had the principal
palliative effects; this simply means symptom alleviation without any survival
advantage to patients.

The most commonly used chemotherapeutic agents in PCa are docetaxel and
cabazitaxel. Both drugs bind to tubulin, a protein essential for cell division, and
stabilize microtubules. This stabilization prevents microtubules from
disassembling, which inhibits mitosis and leads to apoptosis. [129, 130].
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Radioactive therapies

Radiopharmaceuticals represent a significant advance in the therapeutic strategy
for metastatic PCa. Targeted radiation involves new treatment approaches that
take advantage of the unique nature of radioactive isotopes to specifically target
and deliver lethal doses to stateruled malignant cells, thus sparing the healthy
tissues surrounding each tumour [131]. Nowadays, the most commonly used
radiopharmaceutical treatments are lutetium and radium

The combination of Lutetium-177 with the ligand PSMA-617
(177Lu-PSMA-617) is gaining recognition as a highly promising treatment
approach for advanced metastatic prostate cancer. The expression of
prostate-specific membrane antigen, a type II membrane glycoprotein, is
significantly elevated in prostate cancer (PCa) cells. PSMA is an excellent target
for both molecular imaging and therapeutics with high specificity.
Lu-PSMA-617 exhibited substantial effectiveness in the management of
mCRPC. In its latest phase III study, called VISION, 177Lu-PSMA-617 standard
care, compared to standard care, has been shown to offer significant OS and
radiographic progression-free survival benefits in patients with PSMA-positive
mCRPC [132]. Numerous additional trials are currently underway to
investigate in more depth its treatment outcomes, as well as its potential use at
earlier stages of the disease [133].

Radium-223, is an alpha-emitter that entraps itself much like calcium at sites of
increased bone turnover. Bone metastases are a common site of PCa spread.
Following uptake by bone, Radium-223 emits high-energy alpha particles that,
in turn, break double strands of DNA in the cancer cells surrounding it,
destroying them [134]. Radium-223 is significantly effective in increasing OS
and delaying time to first symptomatic skeletal event in patients with mCRPC
and bone metastases [135].

1.7 Immunotherapy for castration-resistant prostate
cancer

Immunotherapy has emerged as a transformati ve approach in cancer
treatment, utilizing the immune system of the body to identify and eliminate
malignant cells. Unlike traditional therapies such as surgery, radiation, and
chemotherapy, immunotherapy targets the immune system’s ability to
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recognize cancer-specific antigens, offering the potential for durable responses
and improved survival outcomes. The success of immunotherapy in malignant
neoplasms such as melanoma, lung cancer, and renal cell carcinoma highlights
its potential to redefine the therapeutic landscape in various cancers.

However, prostate cancer presents a unique set of challenges for
immunotherapy. Unlike immunologically ”hot” tumours, which are
characterized by a high mutational burden and abundant tumour-infiltrating
lymphocytes, prostate cancer is considered an ”immune cold” tumour. This
designation reflects a relatively low neoantigen burden, a paucity of cytotoxic
T-cell infiltration, and the presence of immunosuppressive elements within the
tumour microenvironment, such as myeloid-derived suppressor cells and
regulatory T cells.

According to recent studies, AR is a key factor in reducing CD8 + T cell activity,
which is a crucial reason for resistance to immunotherapy in CRPC. By
downregulating vital genes including TNF, granzyme B, and IFNγ in CD8+ T
cells, Guan et al. showed that AR adversely affects the anticancer immune
response [136]. Adding a new dimension of complexity, sex-based differences
further complicate immunotherapy outcomes. Epidemiological data indicate
that men have higher incidence and mortality rates for many malignancies of
non-reproductive organs compared with women [137]. This male bias could be
due to unique molecular and cellular mechanisms of antitumor immunity that
are regulated by genes, hormones, and lifestyle factors [138]. For example, the
X chromosome contains numerous immune-related genes whose inactivation in
females is incomplete, and earlier studies have mentioned that this can result in
increased immune surveillance [139]. However, external factors such as
smoking and obesity reshape the tumour microenvironment in favour of
chronic inflammation or immunosuppression, conditions more common in men
[137].

1.7.1 Current Immunotherapy Strategies for Prostate Cancer

Dendritic cell (DC) based immunotherapy

Sipuleucel-T was the first therapeutic vaccine approved for cancer treatment.
Treatment consists of autologous treatment with peripheral blood mononuclear
cells obtained by leukoapheresis and pulsed ex-vivo with a fusion protein
named PA2024 (Granulocyte-macrophage colony stimulating factor -GM-CSF-
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and prostatic acid phosphatase -PAP-). This treatment fosters dendritic cells
maturation and antigen presentation to the T-cells increasing both humoral and
cellular responses. Sipuleucel-T (Provenge) is currently the only FDA-approved
immunotherapy for prostate cancer. A phase 3 clinical trial demonstrated its
significant contribution to prolonging OS in men with mCRPC, with a 22%
reduction in risk of death and a median survival improvement of 4.1 months.
Despite its benefits in prolonging survival, it does not affect disease
progression, and its high costs and logistic challenges remain barriers to
widespread use [140].

Immune checkpoint inhibitors (ICIs)

Malignant tumour cells have thus far succeeded in elaborating very efficient
mechanisms for evading immune surveillance, among which activation of
immune checkpoints that dampen T lymphocyte cytotoxic functions stands out.
By this way, tumours successfully avoid T cell responses and thereby prevent
immune destruction of tumour cells. Immune checkpoint inhibitors represent a
class of monoclonal antibodies designed to neutralize this process by blocking
particular checkpoint proteins in T cells or tumour cells. While doing this, they
remove the inhibitory signals and restore the immune system’s ability to
eliminate cancer cells. Immune checkpoint inhibitors (ICIs), such as those
targeting programed death-1 (PD-1), its ligand (PD-L1) or cytotoxic T
lymphocyte-associated antigen-4 (CTLA-4) pathways, have shown limited
efficacy as monotherapies for prostate cancer. The immunologically ”cold”
nature of prostate tumours, characterized by low mutation burdens and limited
T-cell infiltration, hampers the response to ICI.

Several studies have addressed the efficacy of PD-1/PD-L1 blockade in
castration-resistant prostate cancer, obtaining variable results: Treatment with
pembrolizumab, an anti-PD1 monoclonal antibody, was studied in
KEYNOTE-028, a phase 1b clinical trial that included 23 mCRPC patients. The
overall response rate was 17% (4/23) with a median duration of response of
13.5 months [141]. A phase 2 study including pembrolizumab, KEYNOTE-199,
that included 258 patients observed a 5% response rate (including 2 complete
responses) with a median duration of response of 16.8 months [142].
Atezolizumab, a PD-L1 inhibitor, obtained a response rate of 8. 6% in a phase 2
study [143].

CTLA-4 can induce immune regulation by binding to CD80 and CD86 and
sending a negative signal to the T cell. Ipilimumab is a monoclonal antibody
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directed towards CTLA4 and blocks its function inducing increased T-Cell
activation. Despite preliminary studies suggesting increased and prolonged
PSA responses in mCRPC, two large randomized phase 3 trials in
post-docetaxel CA184-043 [144, 145] and pre-chemotherapy [146] have failed to
improve OS, although there are preliminary signs of a subgroup of patients
with prolonged treatment responses.

The combination of CTLA4 inhibition and PD1/PD-L1 has increase response
rate and toxicity. The combination of Ipilimumab (3 mg/kg) and nivolumab (1
mg/kg) resulted in a 25% response rate pre-chemotherapy and 10% in the
post-chemotherapy scenario although with 50% of patients with grade 3 or
higher toxicities, including 4/90 treatment-related deaths [147].

The combination of pembrolizumab with enzalutamide obtained a 18% of PSA
decline equal or greater than 50% in a randomised phase 2 trial. However, two
large randomized phase 3 trials in mCRPC (KEYNOTE-641) [148] and metastatic
castration-sensitive prostate cancer (KEYNOTE-991) [149] were closed early for
futility.

Despite these disappointing results in unselected patients, the presence of signs
of activity highlighted the importance of identifying the patients that benefit
the most. Molecular subtypes with greater benefit with immunotherapy
include: patients with mismatch repair deficiency (MMRd) [150], CDK12
biallelic mutations [151] and high-tumour mutational burden [152].

PARP inhibitors

One of the most promising therapeutic strategies to address defective DNA
repair genes is to take advantage of synthetic lethality resulting from the
combination of PARP inhibition with dysfunction of the homologous
recombination pathway. Several PARP inhibitors (iPARP) that differ in their
ability to bind to the enzyme are in various stages of clinical development.

The first strong indications of the efficacy of iPARPs in mCRPC emerged with
the TOPARP-A study (Phase 2) [153], in which olaparib was administered to
patients with genetic alterations in DNA repair and showed a notable clinical
benefit, with long-lasting responses over time. Based on these results,
TOPARP-B [154], also in Phase 2, confirmed olaparib activity at different doses,
demonstrating a particularly marked efficacy profile in carriers of BRCA1/2
mutations. Although some toxicity was observed that required dose adjustment



1.7. Immunotherapy for castration-resistant prostate cancer 37

in some cases, the study supported the use of this drug in advanced prostate
cancer.

The clinical relevance of iPARPs increased with the PROfound trial (Phase 3)
[155], in which olaparib was compared with an alternative inhibitor of
androgen receptor signaling (ARSi). Two cohorts were established according to
the alterations in the genes involved in repair, distinguishing mutations in
BRCA1, BRCA2, and ATM in one cohort, and other alterations in the second.
This study demonstrated a clear benefit in radiological progression-free
survival, as well as OS, especially in people with BRCA2 mutations. In addition,
a more discrete effect was observed in mutations such as ATM, raising doubts
about the efficacy of iPARPs in these specific cases. After positive results were
published in the main cohort, the European Medicines Agency (EMA)
approved olaparib for the treatment of mCRPC with BRCA1/2 mutations,
provided there was progression after iPARP.

In parallel, other iPARPs such as rucaparib were investigated in the TRITON2
study (Phase 2) [156], which included a wide range of genetic alterations in the
DNA repair pathway. The results highlighted significant responses in carriers
of the BRCA1 / 2 mutation, evidenced by radiological evaluation and the
decline in PSA. The next step was the TRITON3 trial (phase 3) [157], where
rucaparib was compared directly against docetaxel or a second ARSi. With this
more demanding comparison, a clear benefit of rucaparib was found in
radiological progression-free survival for BRCA1 / 2 mutations, but the same
advantage was not found in the ATM subgroup. This finding reaffirmed the
hypothesis that iPARP activity is particularly strong in BRCA2 alterations,
remaining more undefined in other genomic defects.

Another iPARP, niraparib, was analyzed in the GALAHAD study (Phase 2)
[158], which focused on patients with biallelic defects in several genes related
to DNA repair. In particular, remarkable responses were described in BRCA1/2
mutations, although it could not be fully clarified whether biallelic alterations
conferred an additional advantage over monoallelic ones reported in other
trials. A subsequent publication confirmed that tumours with BRCA2
mutations, regardless of whether they were somatic or germline, or whether
they were monoallelic or biallelic, are often highly sensitive to iPARP.

In light of these results, it is clear that iPARPs today represent an essential
therapeutic option for mCRPC with alterations in BRCA2 and, to a lesser extent,
BRCA1. However, there is controversy regarding the efficacy in ATM and other
less frequent genes, so new avenues are being explored, such as ATR, ATM, or
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Chk inhibitors, in order to effectively treat these subgroups. However, patients
with mutations in genes such as CDK12 and in genes of the MMR (mismatch
repair) system could respond to immunotherapy, according to the first
available data. This genomic diversity calls for a precision medicine strategy to
target specific therapies to defined mutations, often combining iPARP with
other agents to enhance response and delay resistance.

Combinations of PARP inhibitors and inhibitors of AR signaling.

Preclinical data indicate a synergy between AR inhibition and PARP inhibition,
since AR blockade decreases the expression of homologous
recombination-related genes while PARP1 participates in AR-regulated
transcription. Based on this, three Phase 3 trials (PROpel, MAGNITUDE and
TALAPRO-2) [159–161] have investigated the combination of different iPARPs
and ARSi in first-line mCRPC. MAGNITUDE included a previous molecular
screening that allowed to separate patients according to the presence of
alterations in homologous recombination genes; benefit of the combination
(Niraparib + abiraterone) was only observed in cases with BRCA1/2
mutations, proving futile for the others. In contrast, PROpel (Olaparib +
abiraterone) [159] and TALAPRO-2 (Talazoparib + enzalutamide) [161]
adopted an all-comer approach and also demonstrated an overall benefit in
radiological progression-free survival, with a particularly marked impact on
those with BRCA2 alterations. However, it must be considered that in clinical
practice, most of the patients in mCRPC have already received ARSi at an
earlier stage, and this subgroup was under-represented in these studies. Future
trials in earlier stages, such as metastatic hormone-sensitive prostate cancer, are
expected to help better define the place of these combinations in the therapeutic
strategy.

In August 2023, the FDA approved a combination of niraparib and abiraterone
acetate for treating BRCA-mutated mCRPC [162]. Similarly, in June 2023, the
FDA approved talazoparib in combination with enzalutamide for HRR
gene-mutated mCRPC [161].

Antigen Receptor T-cell (CAR-T) therapy

Chimeric Antigen Receptor T-cell (CAR-T) therapy represents another
promising avenue for prostate cancer treatment. A phase 1 clinical trial
evaluating PSCA-directed CAR-T cell therapy in mCRPC highlighted notable
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responses, including PSA declines and radiographic improvements in some
patients [163]. However, challenges such as toxicity, cytokine release
syndrome, and limited CAR-T cell persistence beyond 28 days remain
significant hurdles. These findings suggest potential for CAR-T therapy in
prostate cancer but underscore the need for further research to optimize dosing
and combination strategies for enhanced efficacy.

1.8 Biomarkers

Biomarkers, also known as biological markers, are measurable indicators that
offer significant insights into normal biological activities, disease-related
processes, or pharmacological responses to treatments. These attributes, which
can be molecular, histological, radiographic, or physiological, provide
quantitative assessments of health and disease conditions, serving as essential
tools for diagnosis, prognosis, and therapeutic monitoring in clinical practice.
The National Institutes of Health Biomarkers Definitions Working Group has
established a comprehensive definition: ”A biomarker is a feature that is
objectively quantified and assessed to serve as an indicator of normal biological
processes, disease-related processes, or pharmacologic responses resulting
from a therapeutic intervention.” [164]. This definition underscores the
versatility and significance of biomarkers across various biological contexts.

During the last ten years, the treatment of metastatic PCa has undergone a sea
change and rewrote our way of management of mCRPC. These advances have
resulted in a more marked survival rate among men suffering from metastatic
PCa, thus instilling new optimism in both the affected men and the clinicians
as well. However, the following section will outline that, even with these recent
advances, there remain several key issues in this arena which require and need
further consideration and a response.

Although current treatments have already demonstrated their clinical utility in
large cohorts of patients, this overall effect varies significantly between
individuals. There is a significant percentage of patients who show little or no
response to treatment [165]. This phenomenon is known as primary resistance.
Another type of resistance is called acquired resistance, in which disease
progression occurs in response to treatment over time after an initial positive
response.

The variability in treatment responses can be largely attributed to the
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traditional approach that applies the same treatment to all patients,
underscoring the need for personalized therapeutic strategies. With the
continued rapid incorporation of multiple active therapies into daily clinical
practice, the therapeutic challenges have only become more pronounced, with
complex clinical decision-making. Identifying the best sequence and
combination remains a major challenge.

These challenges underscore the critical need to find robust predictive and
prognostic biomarkers that allow for appropriate individualization of
therapeutic decisions. Overcoming this challenge requires a better
understanding of the tumour biology underlying primary and acquired
resistance to current therapies. This information is essential to design strategies
to overcome these resistances and thus improve patient outcomes. Biomarkers
that are valid and reliable to predict response and prognosis to treatment are an
important need for personalization of treatments, which can lead to better
quality of life outcomes for patients [166].

Well-designed clinical trials comparing various treatment sequences and
combinations are essential to provide evidence-based guidance for clinicians
through this complex landscape. The search for novel treatment modalities,
including immunotherapies, targeted agents, and combination approaches,
deserves further research to further improve outcomes in patients with
metastatic PCa. The application of advanced technologies in the future,
including artificial intelligence and machine learning combined with clinical
and molecular data, could revolutionize treatment decisions for metastatic PCa.

1.8.1 Types of biomarkers

The BEST (Biomarkers, EndpointS, and other Tools) Resource, a collaborative
effort between the FDA and NIH, has further refined the classification of
biomarkers into seven distinct categories according to their intended use and
biological significance [167].

• Diagnostic Biomarkers: These are the molecular markers that help in
diagnosing cancer or finding out a subtype of cancer. Theoretically, an
ideal diagnostic biomarker should have absolute sensitivity and
absolute specificity, 100% each, rightly identifying every subject with
disease and excluding all others who are healthy. Examples include
PSA in PCa diagnosis, though there are many limitations related to its
use. This has been explained in detail in the section 1.4.3
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• Monitoring Biomarkers: Biomarkers are usually measured serially in
order to follow disease activity, response to therapy, or the effects of
medication or environmental exposures. In the case of PCa, one of the
most common biomarkers used is PSA, which is serially measured after
treatment-most commonly radical prostatectomy or radiation therapy-to
estimate disease control and recurrence.

• Predictive Biomarkers: Such biomarkers help stratify patient
populations according to the likelihood of benefit from a certain
therapeutic intervention or be at risk for an adverse outcome based on
exposure to medical products or environmental agents. For example,
the presence or absence of Androgen Receptor Splice Variant 7 (AR-v7)
in PCa patients would show differential responses to either
taxane-based chemotherapy or AR-targeted therapies.

• Prognostic Biomarkers: These biomarkers reflect the likely course of
the disease in terms of progression, recurrence, or other clinical
outcomes independent of treatment. In PCa, both PSA dynamics and
Gleason scores have been used as prognostic biomarkers for estimating
the risk of recurrence and guiding treatment intensity. Biomarkers of
Susceptibility/Risk: This is because these biomarkers provide details
about the risk that an individual carries of developing a particular type
of cancer in the case where apparent diseases are absent. Among the
genetic markers also come the BRCA2 mutations, which might
pre-dispose one to an enhanced tendency of developing highly
dangerous forms of PCa besides their already well-known connection
with breast as well as ovarian cancers.

1.8.2 Clinicopathological biomarkers

Clinicopathological biomarkers are measurable parameters derived from
clinical data, laboratory tests, and pathological assessments that provide
information on the biological behaviour of tumours and their response to
treatment. These biomarkers are imperative for understanding disease
progression, guiding treatment decisions and predicting patient outcomes,
especially in mCRPC.

Early efforts to develop prognostic models for mCRPC focused on easily
detectable clinical and laboratory parameters. The prognostic factors that were
determined include lactate dehydrogenase (LDH), PSA, Alkaline Phosphatase
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(ALP), Albumin, Gleason Score, Eastern Cooperative Oncology Group (ECOG)
performance status. These factors were integrated into nomograms to predict
OS in patients with mCRPC. More recent research has expanded the repertoire
of clinicopathological biomarkers, such as neutrophil-to-lymphocyte ratio
(NLR), hemoglobin, and the number of bone metastases.

The integration of these diverse biomarkers into clinical practice has
significantly improved our ability to stratify patients, predict treatment
responses, and estimate survival outcomes. This wealth of information allows
for more personalized treatment approaches, potentially improving patient
outcomes and quality of life. Moreover, the ongoing identification and
validation of new biomarkers continue to refine our prognostic models, paving
the way for increasingly precise and effective management strategies in
mCRPC. As research in this field progresses, there is growing interest in
combining clinicopathological biomarkers with molecular and genetic markers.
This integrative approach promises to provide an even more comprehensive
understanding of individual tumour characteristics and patient-specific factors,
further advancing the field of personalized medicine in PCa management.

1.8.3 Molecular biomarkers

Considerable progress has been made in prostate cancer (PCa) research,
particularly in the search for dependable molecular biomarkers. Metastatic PCa
exhibits a distinctive pattern of recurrent mutations, alterations in copy
number, and structural rearrangements in crucial genes and pathways. These
include AR, DNA repair mechanisms, the PI3K-AKT pathway, ERG, regulators
of the cell cycle, the WNT signaling pathway, tumor suppressors such as TP53,
RB1, PTEN, and chromatin modifiers, among others. [168–170]

Several studies have focused on analyzing different molecular biomarkers, such
as AR-V7 [171]. AR-V7 has shown promise in predicting resistance to
AR-targeted therapies in castration-resistant PCa patients [172]. Additionally,
investigations into the inactivation of tumour suppressor genes like PTEN or
the amplification of oncogenes such as c-MYC have provided valuable insights
into PCa progression [173].

An important finding is the TMPRSS2-ERG gene fusion, occurring in roughly
50% of prostate cancer (PCa) cases [174]. The transmembrane protease serine 2
(TMPRSS2), which is a prostate-specific gene influenced by androgens, is
located near the ERG gene on the same chromosome. Research has shown that
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overproduction of ERG in significant PCa cases is driven by its fusion with
TMPRSS2 [175]. Recent investigations reveal that the TMPRSS2-ERG gene
fusion is the predominant variant found in approximately 40% to 70% of PCa
cases [176]. This recurrent genomic rearrangement, which results in the
overexpression of the ERG transcription factor, has shown promise as both a
diagnostic biomarker and a therapeutic target [177, 178].

Despite these promising findings, to date, regulatory bodies have not approved
any of these biomarkers alone as prognostic markers. This process underlines
the complexity of PCa biology, as well as the challenge of translating molecular
discovery into clinically useful tools. Such heterogeneity of PCa really demands
a multiple-face approach-perhaps a combination of many biomarkers-reaching
the sensitivity and specificity required for clinical application.

1.9 Whole blood assay approach to circulating
biomarkers discovery

The clinical utility of circulating biomarkers in revolutionizing PCa
management has become increasingly apparent, driven by rapid technological
advancements and a deeper understanding of tumour biology. CTCs and
circulating cell-free nucleic acids (cfNAs) have emerged as promising tools,
with the ability to analyse tumour-derived macromolecules at an
unprecedented level of detail [179]. The scope of their application continues to
expand, yet the integration of these discoveries into routine clinical practice
remains challenging. The implementation of such advanced techniques is
constrained by the complexity of the methodologies and the specialized
infrastructure required, which are largely confined to academic and research
institutions [180]. Consequently, there has been a growing emphasis on using
biomarker identification techniques that prioritize automation or simplicity of
preanalytical factors. Examining the gene expression of peripheral whole blood
has become a practical and promising strategy for treating metastatic PCa, as
explained in the sections that follow.

1.9.1 Application of whole blood RNA assays in metastatic PCa

Gene expression profiling in whole blood has become an indispensable tool for
the study of molecular mechanisms in solid tumours. This technique allows for
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the analysis of RNA in blood samples, hence providing information on tumour
biology and potential biomarkers. However, by nature, RNA is unstable and
easily degraded by RNases, which are enzymes that cleave RNA. If not processed
appropriately, this may lead to inaccurate results.

Collection systems, such as the PAXgene™ Blood RNA System of Qiagen and
Tempus™ Blood RNA Tubes of Applied Biosystems, have been developed in
this regard. These blood collection systems specially stabilize RNA right after
blood has been drawn. Rapid preservation of RNA and its protection against
degradation mean that these systems ensure that gene expression data will
accurately reflect the biological state of the sample at the time of collection
without introducing artificial changes caused by RNA instability or enzymatic
activity. [181].

In mCRPC, whole blood RNA assays have historically served as a crucial tool
for investigating molecular biomarkers associated with prognosis. These assays
have primarily focused on identifying and validating multigene signatures that
provide insight into disease progression and therapeutic response. Early
studies in this area leveraged the capabilities of multiplexed quantitative
reverse transcription polymerase chain reaction (qRT-PCR) and microarray
platforms to measure the expression of numerous gene transcripts that were
overexpressed in advanced PCa. Some previous studies conducted by Ross et
al. [182], Olmos et al. [183] and Wang et al. [184] investigated several gene
signatures in the context of treatment response and patient outcomes,
demonstrating the potential of whole blood RNA profiling to stratify patients
according to their risk of disease progression and survival.

Ross et al. developed a six-gene model focusing on inflammation, immune
response, and tumour progression. This model stratified patients into low-risk
and high-risk groups, with the high-risk cohort experiencing median survival
rates as low as 7.8 months. Notably, the study highlighted systemic immune
dysregulation, emphasizing the roles of genes such as SEMA4D and ITGAL in
immune evasion, a hallmark of advanced disease [182].

Olmos et al. employed whole blood gene expression profiling to develop a
nine-gene prognostic signature that identified a subgroup of mCRPC patients
with significantly poorer survival outcomes. Using Bayesian latent process
decomposition (LPD), they stratified patients into subgroups, with the LPD1
cohort exhibiting elevated PSA levels, higher lactate dehydrogenase, and
adverse survival metrics. This nine-gene signature, validated through
qRT-PCR, also implicated erythroid progenitor cells (characterized by CD71
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expression) as contributors to poor outcomes, potentially through
immunosuppressive effects [183].

Wang et al. constructed a four-gene model derived from stable co-expression
modules identified through integrative genomic analysis. This model, which
outperformed prior signatures in prognostic accuracy, revealed significant
immune dysregulation. Upregulated genes were associated with myeloid
lineage cells, while downregulated genes were enriched in lymphocytic
pathways, suggesting immune cell-specific shifts that influence patient survival
[184].

Together, these studies underscore the utility of whole blood RNA profiling in
capturing systemic molecular alterations and reflecting the molecular
heterogeneity of mCRPC. By measuring genes involved in AR signalling,
immune response, and cell proliferation, these assays offer valuable insights
into therapeutic vulnerabilities and patient stratification. However, despite
their contributions, several limitations of these foundational studies highlight
the need for further research in the modern therapeutic context.

However, these studies were limited in several important respects. All predated
the widespread use of Androgen Receptor Pathway Inhibitors (ARPIs) such as
abiraterone, enzalutamide, and apalutamide, leaving a gap in understanding
how these biomarkers evolve in response to these modern therapies or
contribute to resistance mechanisms. Moreover, the variability among patient
cohorts, considering disease burden, previous therapies, and clinical features,
obstructed the interpretation of the findings. Furthermore, the absence of
comprehensive immunological profiles in these studies restricted the
investigation of tumor-immune system interactions, an essential factor in the
context of treatments that potentially influence systemic immunity and the
tumor microenvironment.
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HYPOTHESES & OBJECTIVES

2.1 Hypotheses

Prostate cancer is the most frequently diagnosed cancer among men and
represents the second leading cause of cancer-related mortality in the male
population. Despite the marked advancements made in early diagnosis and
first-line treatments, a substantial number of patients with the disease develop
mCRPC, a condition characterized by resistance to ADT, when treatment
options become severely limited. Customizing cancer therapies relies on a more
profound insight into the tumor’s biology and the intricate interactions between
the tumor and its surrounding environment. Advanced PCa has been shown to
induce changes in the tumour microenvironment and in the broader
environment, such as the blood. These changes have been shown to have
prognostic value, including in blood tests (e.g. neutrophil to lymphocyte ratio)
or at the gene expression level. Alterations in peripheral blood immune cell
composition and gene expression profiles may reflect tumour-induced
immunomodulation and could serve as valuable prognostic biomarkers and
therapeutic targets.

We hypothesize that:

(a) The composition of peripheral blood immune cells may be related to
clinical outcomes in patients with mCRPC. Specific patterns in
immune cell proportions may correlate with prognosis, providing
independent prognostic information beyond established clinical
factors.

(b) Gene expression profiles of peripheral blood can serve as robust
prognostic biomarkers in mCRPC, reflecting tumour-induced

46
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alterations in the immune system and hematopoietic environment.

(c) Enzalutamide treatment induces significant immunomodulatory
effects on peripheral blood immune cells, leading to changes in
immune cell composition and gene expression profiles associated
with therapeutic resistance and disease progression.

(d) Dynamic assessment of peripheral blood gene expression and
immune profiling during enzalutamide therapy can identify early
biomarkers of resistance and unveil potential therapeutic
vulnerabilities within the tumour microenvironment.

The goal of evaluating these hypotheses is to enhance our comprehension of the
interplay between the tumour and the immune system in mCRPC, as well as to
identify new prognostic indicators and therapeutic targets that could potentially
improve patient outcomes.
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2.2 Objectives

• Objective 1: Comprehensive assessment of immune cell blood
composition in patients with mCRPC.

In this objective, we assess the feasibility of using CIBERSORT, a machine
learning algorithm previously validated in cancers other than PCa, for
immune cell deconvolution in peripheral blood samples from patients
with mCRPC. We will evaluate associations between detailed profiling
of the subsets of immune cells with key clinical outcomes, including OS
and PFS in pre-treatment patients with mCRPC.

• Objective 2: To develop and validate a whole blood gene expression
signature in mCRPC patients.

To address the prognostic value of genes expressed in pre-treatment
samples, we will analyse the dynamics of gene expression during
disease progression and perform univariate and penalized
multivariable analyses to obtain a parsimonious prognostic model that
can be validated in an external series.

• Objective 3. Dynamic assessment of enzalutamide-induced changes in
the blood immune cells of mCRPC patients.

In contrast to other common cancers, immunotherapy with immune
checkpoint inhibitors has not shown relevant efficacy in PCa. It is often
combined with new anti-androgen therapies, the most common of
which is enzalutamide. The effect of antiandrogen therapies on immune
cells in the microenvironment and in the blood brings conflicting
results. In this study, we will evaluate the effect of new anti-androgen
therapies on blood immune cells from patients diagnosed with mCRPC.

Each of these targets is designed to address different aspects of the complex
molecular and cellular environment associated with mCRPC, providing a
deeper understanding of the interplay between therapy, tumour biology, and
host response.
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MATERIAL AND METHODS

3.1 Study design

The PREMIERE trial (NCT02288936) was a phase 2 translational, multicenter,
single-arm, open-label clinical study designed to evaluate the efficacy and
safety of enzalutamide as a first-line treatment in chemotherapy-naïve patients
with mCRPC. Conducted across 17 hospitals in Spain, the study aimed to
explore the potential of enzalutamide in delaying disease progression and
improving survival outcomes in this patient population. Ethical approval was
obtained from the Germans Trias i Pujol Independent Review Board (IRB) in
Spain (approval number: AC-14-112-R), ensuring adherence to international
ethical standards and protection of participant rights.

To further validate the findings in treatment outcomes, a distinct validation
cohort was formed at the Istituto Scientifico Romagnolo per lo Studio e la Cura
dei Tumori (IRST) located in Meldola, Italy. This cohort was approved by the
IRST Institutional Review Board with approval number REC 2192/2013,
adhering to the same stringent ethical guidelines as the main study.

3.2 Clinical data collection

Prior to treatment initiation, comprehensive baseline demographic and
clinicopathological data were collected. Data collection was standardized
across participating institutions through the provision of a data collection
manual, and a designated data collector at each site ensured adherence to the
defined protocols. Patient data were recorded and managed using a Microsoft
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Excel spreadsheet, with unique identification numbers assigned to maintain
patient anonymity.

The data collection involved a comprehensive set of clinical and biochemical
parameters. Clinical parameters included age, race, Gleason score, PSA levels at
diagnosis, disease stage, ECOG performance status, and sites of metastatic
disease, specifically in bones, liver, lungs, and lymph nodes. Laboratory tests
focused on hematologic parameters like hemoglobin, absolute neutrophil and
lymphocyte counts, the neutrophil-to-lymphocyte ratio, and biochemical
markers such as albumin, lactate dehydrogenase (LDH), and alkaline
phosphatase (ALP).

The study evaluated a variety of clinical endpoints to determine the efficacy of
treatment: PSA response rates, PSA progression-free survival (PSA PFS),
clinical progression-free survival and radiographic progression-free survival,
and the OS as defined in Table 3.1. More information was also obtained
concerning pain as presented, previous treatments-surgery, radiotherapy,
corticosteroids, antiandrogen therapy, GnRH therapy-sequential
determinations of PSA, and important dates such as diagnosis, treatment start,
and progression events. Patients were followed until death or loss to follow-up,
allowing for the calculation of various time-to-event measures, including time
from diagnosis to metastasis and overall follow-up duration.

Clinical Endpoint Definition
PSA response PSA decline of 50% or greater from baseline

(PSAresponse50) or 90% or greater from baseline
(PSAresponse90)

PSA progression-free
survival

Time from treatment initiation until date of PSA
progression

Clinical progression-free
survival

Time from treatment initiation until date of clinical
progression

Radiographic
progression-free survival

Time from treatment initiation until date of radiographic
progression

OS Time from treatment initiation until death from any
cause (death)

Table 3.1: Definitions for clinical endpoints
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3.3 Sample collection

3.3.1 Inclusion criteria

Patients were included in the study based on the following criteria: male
patients aged 18 years or older with histologically confirmed prostate
adenocarcinoma lacking neuroendocrine differentiation or small cell
characteristics; documented metastatic disease with evidence of progression
despite androgen-deprivation therapy (serum testosterone ≤50 ng/dL); ECOG
performance status of 0 or 1; asymptomatic or mildly symptomatic disease
(Brief Pain Inventory Short Form question 3 score <4); and adequate organ
functi on as evidenced by specific laboratory thresholds (e.g., absolute
neutrophil count ≥1500/𝜇L, platelet count ≥100,000/𝜇L, hemoglobin ≥9 g/dL,
bilirubin, Aspartate Aminotransferase (AST), and Alanine Aminotransferase
(ALT) ≤2.5× the upper limit of normal, creatinine ≤2 mg/dL, albumin ≥3.0
g/dL).

The exclusion criteria included any active infections or serious underlying
medical conditions that may impair the effectiveness of the study; any known
brain metastases or leptomeningeal involvement; any history of other
malignancies, except for those patients who had been treated successfully,
without evidence of recurrence, for non-melanoma skin cancer; significant
haematologic, hepatic, or renal dysfunction; history of seizures or conditions
that promote seizures; significant cardiovascular disease; and previous therapy
that might interfere with assay results, including prior cytotoxic chemotherapy,
and abiraterone acetate for PCa.

Every enrolled patient received enzalutamide at the standard oral dosage of 160
mg daily, continuing until either disease progression occurred or they
experienced severe toxicity.

3.3.2 Sample acquisition

The PREMIERE study recruited 98 patients who had not previously undergone
chemotherapy and were diagnosed with mCRPC. This multi-center approach
ensured a diverse patient population, enhancing the generalizability of the study
results. All patients received enzalutamide as a first-line treatment at a standard
dose of 160 mg daily.
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Figure 3.1 outlines the pre-defined time-points. Peripheral blood samples were
collected from patients at three key time points:

• Pre-treatment: Prior to initiation of enzalutamide therapy.

• 12 Weeks of Treatment: After 12 weeks of continuous enzalutamide
therapy.

• At Disease Progression: Upon clinical or radiographic evidence of
disease progression.

A total of 238 whole-blood samples were prospectively collected from
PREMIERE cohort. After quality controls, 3 blood samples were excluded due
to poor RNA integrity.

Enzalutamide 160 mg qd

Enzalutamide 160 mg qd

DERIVATION SET 
- PREMIERE Phase 2 Clinical trial

98 mCRPC patients

2st Blood 
sample
( N = 84 )

3st Blood 
sample
( N = 56 )

1st Blood 
sample
(N = 98)

12 week
Patients 

with no PD

Patients 
with  PD 

after 12W
Dropouts

N=3

VALIDATION SET 
- IRST Phase 2 Clinical trial

2st Blood 
sample
( N = 15 )

1st Blood 
sample
(N = 54)

54 mCRPC patients

Total blood samples 
analysed

N = 306

Pre-Treatment

Pre-Treatment

Figure 3.1: Study profile. Design and workflow of the PREMIERE trial, highlighting the
three predefined time points for blood sample collection: pre-treatment, after 12 weeks
(12W) of enzalutamide therapy, and at disease progression. The IRST trial is presented
as an independent validation cohort, ensuring the robustness of the findings.

The IRST trial served as an independent validation set to validate the findings
from the PREMIERE study, ensuring the robustness and generalizability of the
results. Whole blood samples were obtained that met the same inclusion and
exclusion criteria as those of the PREMIERE cohort, with the distinction that
these patients had previously been treated with abiraterone acetate at 1 g daily
in combination with prednisone 6 mg twice daily, before receiving
enzalutamide as a second-line treatment. Samples were collected both before
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treatment and during tumour progression. In total, 69 whole blood samples
were acquired.

3.4 Microarray analysis

3.4.1 Sample collection and RNA extraction

Blood samples were serially collected from each participant in the study using
PAXgene RNA tubes (PreAnalytiX GmbH, Hombrechtikon, Switzerland) to
maintain RNA integrity. RNA isolation and purification were performed using
the PAXgene Blood RNA Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s protocol, with optimizations for maximum yield and purity.
RNA quantity and quality were assessed using two complementary methods.
Spectrophotometry with a NanoDrop 2000 (Thermo Scientific, Newark, DE,
USA) was used to measure RNA concentration and purity ratios (A260/A280
and A260/A230). Microfluidic electrophoresis using an Agilent 2100
Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) with the RNA 6000
Nano Kit was employed to determine the RNA Integrity Number (RIN). For
subsequent analyses, only RNA samples with a RIN of at least seven were
chosen, thereby guaranteeing high-quality input for further applications.

3.4.2 Microarray hybridization and data acquisition

The GeneChip™ Human Transcriptome Array HTA 2.0 (902162, Affymetrix,
ThermoFisher, Newark, DE, USA) was utilized for microarray analysis in order
to examine comprehensive gene expression profiles. This high-density array
provides comprehensive coverage of all known coding transcripts in the human
genome, as well as various non-coding RNAs.

The hybridization process involved incubating 5.2 µg of biotin-labeled
single-strand DNA (ssDNA) with the GeneChip™ Human Transcriptome
Array HTA 2.0 for 16 hours at 45°C in a GeneChip™ Hybridization Oven 645.
Following hybridization, the arrays underwent washing and staining using the
GeneChip™ Fluidics Station 450 to remove non-specifically bound probes and
amplify the signal. The hybridized and stained arrays were then scanned using
the GeneChip Scanner 3000 7G (Affymetrix, Thermo Scientific, Newark, DE,
USA) at a resolution of 0.7 µm.
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3.4.3 Quality control and preprocessing

Raw microarray data were processed using the Transcriptome Analysis Console
(TAC) Software (version 4.0.1, Thermo Fisher Scientific). Quality control metrics
included examination of background intensity, scaling factors, and hybridization
controls. Arrays failing quality control were excluded from further analysis.

Data preprocessing involved background correction, normalization, and
summarization using the Robust Multi-array Average (RMA) method
implemented in the ”affy” package [185]. Batch effects were identified and
corrected using the ComBat algorithm from the ”sva” package [186].
Logarithmic transformation was applied to stabilize variance across expression
levels.

3.4.4 Probe annotation

Probe set annotation was performed using the ”pd.hta.2.0” package [187],
ensuring accurate mapping to gene symbols and transcript IDs.
Non-informative and control probe sets were filtered out prior to downstream
analysis.

3.5 Differential gene expression analysis

Differentially expressed genes (DEGs) were identified using the limma package
[188]. We performed individual paired-wise comparisons of whole-blood gene
expression (GE) in mCRPC patients treated with enzalutamide. To ensure more
accurate results, the sample numbers were reduced by applying strict filtering
criteria. In the 12-week patient group, we excluded patients with a progression-
free survival (PFS) of less than 3 months and those without a 50% reduction in
PSA levels (PSAresponse50).

Pairwise comparisons were performed between pre-treatment and 12 weeks of
treatment, pre-treatment and disease progression, and 12 weeks of treatment and
disease progression.

Statistical significance was determined using paired t-tests, with p-values
adjusted for multiple comparisons using the Benjamini-Hochberg false
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discovery rate (FDR). Significant DEGs were identified using thresholds of
adjusted p-value (FDR) < 0.05 and absolute log2fold change (|log2FC|) > 1.

3.6 Gene set enrichment analysis

Gene set enrichment analysis was performed using the clusterProfiler [189]
package in the R environment for statistical analysis. Within the R environment,
the normalized enrichment score (NES), p-value, and false discovery rate
(FDR) for all variables and signatures were calculated. The analysis utilized the
Gene Ontology (GO) biological processes/pathways database [190] along with
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [191]. GSEA
was performed using a pre-sorted gene list based on log2FC values. Pathways
with FDR-adjusted p-values <0.05 were considered significantly enriched.

3.7 Immune cell profiling using CIBERSORTx

For the immune cell profiling in our study, we used CIBERSORT [192, 193], a
machine learning algorithm that quantifies 22 different immune cell subtypes.
The platform employs a specific leukocyte gene signature matrix, known as
LM22, which consists of 547 genes that are able to distinguish these immune
cell subtypes.

Normalized gene expression data were uploaded to the CIBERSORTx
platform1, selecting the LM22 database, disabling normalization by quartiles,
and setting the allowances to 1000 to improve the accuracy and reliability of the
deconvolution results. Relative mode was selected to estimate the proportion of
each immune cell type within the sample.

Only samples with a CIBERSORTx deconvolution p-value <0.05 were
considered for further analysis, ensuring high confidence in the estimated
immune cell fractions.

1 https://cibersortx.stanford.edu

https://cibersortx.stanford.edu
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3.8 In vitro Experiments

3.8.1 Cell lines and culture conditions

The cells used in this study were obtained from a private collection at Hospital
12 de Octubre, as well as from the American Type Culture Collection (ATCC).
The following human cell lines were used: Jurkat and MOLT-4 T-cell lines, the
THP-1 monocyte line, the Raji B-cell line, and prostate cancer cell lines LNCaP,
22Rv1, and DU145. All cell lines were cultured in RPMI-1640 medium
supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin, and
100 μg/mL streptomycin, and maintained at 37°C.

3.8.2 Cell viability assays

Cell viability was measured using the CellTiter-Glo Luminescent Cell Viability
Assay (Promega). Cells were plated in white 96-well plates at a density of 1 ×
105 cells/well, treated with the respective drugs, and processed according to the
manufacturer’s protocol. Luminescence was recorded using a BioTek Synergy
HT microplate reader, and viability was calculated relative to untreated controls.

3.8.3 Apoptosis assays

Apoptosis was assessed by Western blot analysis to detect the cleavage of
caspase-3 and poly (ADP-ribose) polymerase (PARP). Protein lysates were
prepared using RIPA buffer containing protease and phosphatase inhibitors,
and protein concentrations were determined using the Bicinchoninic Acid
(BCA) Protein Assay Kit (Thermo Fisher Scientific). Proteins (30 μg per
sample) were separated by SDS-PAGE, transferred to PVDF membranes, and
probed with primary antibodies, including cleaved caspase-3 (Cell Signaling
Technology, 1:1,000), cleaved PARP (Cell Signaling Technology, 1:1,000), AR
(Santa Cruz Biotechnology, 1:500), and GAPDH (Cell Signaling Technology,
1:5,000) as a loading control. Membranes were incubated with HRP-conjugated
secondary antibodies (1:5,000) and visualized using the SuperSignal West
Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific). Images were
captured using a ChemiDoc MP Imaging System (Bio-Rad).
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3.8.4 Use of different antiandrogens

Cells were treated with enzalutamide and other AR inhibitors, including
abiraterone acetate, bicalutamide, apalutamide, and darolutamide, at
physiologically relevant concentrations for 72 hours. Apoptosis was evaluated
by measuring the expression of cleaved PARP and cleaved Caspase 3 using
Western blot analysis. Cells were treated with enzalutamide for 48 hours before
protein extraction and analysis. For gene expression profiling, RNA was
extracted from treated and untreated cells using the RNeasy Mini Kit (Qiagen)
following the manufacturer’s instructions.

3.8.5 Gene expression profiling in cell lines

Total RNA was extracted from treated and control cells using the RNeasy Mini Kit
(Qiagen). RNA quality was assessed using an Agilent 2100 Bioanalyzer. Gene
expression profiling was performed using the Affymetrix Human Transcriptome
Array 2.0. Data preprocessing, normalization, and analysis were conducted as
described in the Section 3.4.

3.9 Statistical analysis

A comprehensive statistical analysis was conducted to determine the
association of gene expression profiles and immune cell compositions with
clinical outcomes in mCRPC patients treated with enzalutamide. All statistical
analyses were performed using R statistical software (version 4.4.1) [194] and
Rstudio [195]. To ensure transparency and reproducibility, all scripts used for
data processing, statistical modelling, and visualization are publicly available at
GitHub repository (https://github.com/enriiquee/thesis-script).

3.9.1 Survival analysis

The main endpoint of the study was OS, defined as the time from the start of
enzalutamide therapy to death due to any cause. Patients alive at last follow-up
were censored at that date. Survival analyses were performed by using the
Kaplan-Meier method and Cox proportional hazards regression models
implemented in ”survival” [196] and ”survminer” [197] packages.

https://github.com/enriiquee/thesis-script
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Univariate analysis

The univariate Cox proportional hazards regression model was used to identify
the relationship between OS and individual variables, including immune cell
proportions estimated from gene expression data and the expression levels of
specific genes. Variables with a p-value less than 0.05 were considered
statistically significant and included in further analyses. The Kaplan-Meier
survival plot was used to compare OS between subgroups of patients. Based on
median values of immune cell proportions or risk scores from prognostic
models, patients were divided into ”high” and ”low” groups. The log-rank test,
a non-parametric method, was used for testing the difference in survival
distribution between the two groups.

Multivariable analysis

Multivariable Cox proportional hazards regression models were constructed for
the various potential confounders. Clinical factors included ECOG performance
status, pattern of metastatic spread, PSA levels, ALP, lactate dehydrogenase
(LDH), pain score assessed by the Brief Pain Inventory, neutrophil-lymphocyte
ratio (NLR), and corticosteroid use. Molecular variables studied included the
presence of CTC and AR gene amplification detected in circulating tumor DNA.

In the multivariable model, backward stepwise selection was used to identify
significant predictors. The model iteratively dropped variables according to the
Akaike Information Criterion, AIC, toward the most parsimonious model that
best fit the data. This approach balances model complexity with explanatory
power, reducing the risk of overfitting.

3.9.2 Development and validation of prognostic models

The candidate genes were identified using univariable Cox regression analyses
on DEGs, taking into consideration genes with a p-value less than 0.05. These
candidate genes were further used with machine learning techniques to
develop predictive models for risk stratification of the patients concerning
adverse outcome.

First, the lasso regression was a type of regularized Cox regression applied for
variable selection and shrinkage. It conducts feature selection by shrinking the
coefficients of less important variables to zero using the L1 penalty controlled
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by the parameter λ. For Lasso, the penalty parameter λ was optimized
separately with 10-fold cross-validation in order to minimize partial likelihood
deviance for enhanced model generalizability. This is particularly useful in
high-dimensional data analyses, as it handles multicollinearity and selects the
most relevant features for the predictive model.

Complementary to the Lasso regression, Elastic Net regression was also
performed, which contains features of both L1 and L2 penalties. Just like Lasso,
the best value for the parameter λ in Elastic Net is also chosen by performing a
grid search through possible values to strike an optimal balance among feature
selection, coefficient shrinkage, and overall model performance.

To evaluate the performance of the model, several statistical parameters were
taken into account. First, the C-index was calculated as a measure of the model’s
discrimination ability. An integrated Brier score was calculated to measure the
overall accuracy of survival predictions over time. In addition, time-dependent
receiver operating characteristic analyses were performed with the “timeROC”
package [198], calculating AUCs at several time points, for instance, at 12, 24, and
36 months, to assess the performance of the models across different timeframes.

The final prognostic model was verified by the independent IRST cohort. Risk
scores for each patient were calculated in accordance with the expression level
of genes in the signature and coefficients derived from Lasso regression.
Patients were divided into two groups: the high-risk group and the low-risk
group, based on the median cutoff value of the risk score. Survival curves were
drawn in accordance with the Kaplan-Meier method for the validation cohort,
and differences in survival among the different risk groups were compared by
the log-rank test.

3.9.3 Data visualization

Principal component analysis (PCA) was performed using the ”prcomp”
function in R to reduce the dimensionality of the gene expression data to
visualize sample clustering based on treatment time points, including
pre-treatment, 12 weeks, and progression. ”hclust” function was performed for
hierarchical clustering analysis with Euclidean distance and complete linkage
to group the samples of similar expression profiles and make it easier to
identify patterns linked to treatment response and disease course. Boxplots
were generated using the ”ggplot2” package [199] for the visualization of the
distribution of immune cell proportions and gene expression levels.
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PROGNOSTIC IMPLICATION OF BLOOD
IMMUNE CELL COMPOSITION IN

MCRPC

4.1 Introduction

The prognosis for metastatic prostate cancer (PCa) shows considerable
variability, with survival times ranging from a few months to several years
[200]. Numerous prognostic factors and variant prognostic models have been
developed based on specific clinical contexts and treatment regimens.

The peripheral blood of patients with mCRPC offers prognostic insights beyond
merely identifying tumour constituents. This arises from a complex interaction
among the tumour, bone marrow, and host immune system. Prior studies have
demonstrated the prognostic significance of whole-blood RNA signatures [182,
183], notably in genes related to hematopoiesis and immune function.
Additionally, blood composition assessed through specific cellular elements in
the complete blood count, such as an elevated neutrophil-to-lymphocyte ratio
(NLR), can also serve as a prognostic indicator [201–207]. An enhanced
understanding of the dynamic interactions between cancer and immune cells
could yield vital prognostic information regarding mCRPC.

The composition of immune cells in the blood comprises over 22 unique cell
types that can be identified either by flow cytometry or recently by blood cell
deconvolution using gene expression arrays. CIBERSORT-X is a machine
learning deconvolution algorithm validated for blood immune cell analyses
[192, 193]. This approach provides technical benefits for the analysis of samples
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in central reference laboratories and offers a methodology suitable for
implementation in multicenter clinical trials.

This chapter focuses on elucidating how various immune cell populations
influence the prognosis of patients with mCRPC. We conducted analyses on
pre-treatment blood samples that were prospectively collected from
participants in a phase 2 multicenter biomarker study, which evaluated the
deployment of enzalutamide as an initial treatment for mCRPC. The findings
were subsequently confirmed in a separate cohort of mCRPC patients.

4.2 Material and methods

4.2.1 Study design and data collection

In this chapter, only the pretreatment patients described in Section 3.3 are used.
The RNA-seq expression data were analysed following the protocols described
in Section 3.4 of the Microarray analysis chapter.

4.2.2 Inference of immune cell profiling

For the immune cell profiling in our study, we used CIBERSORT. This tool has
been explained in detail in Section Immune cell profiling using CIBERSORTx

4.2.3 Statistical analysis

All statistical analyses were performed using R software (version 4.4.1) [194].
The survival analyses utilized the Cox proportional hazards regression model
[208], the log-rank test [209], and the Kaplan–Meier approach [210]. Hazard
ratios (HRs) were presented as relative risks with their associated 95%
confidence intervals (CIs). A two-tailed 𝑝 < 0.05 was regarded as statistically
significant. Survival curves were developed to illustrate the effects of different
immune cell populations on patient outcomes. Patients were classified into
’high’ and ’low’ groups, defined by whether their immune cell counts were
above or below the median values, respectively. This stratification method
facilitates an unbiased comparison of survival outcomes across the groups. The
relationship between immune cell proportions and patient survival was
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analyzed using multivariate Cox proportional hazards models. This analysis
adjusted for confounding factors such as ECOG performance status, disease
dissemination pattern, PSA levels, ALP, LDH, Brief Pain Inventory pain scores,
NLR, and corticosteroid usage. These adjustments enabled a thorough
assessment of each variable’s independent impact on survival outcomes.

4.3 Results

4.3.1 Study population

The study included 152 chemotherapy-naïve individuals diagnosed with
mCRPC, from whom blood samples were collected prior to commencing
enzalutamide treatment. The PREMIERE cohort consisted of 98 patients who
were part of a phase 2 clinical trial focused on biomarkers. All participants had
whole-blood samples accessible for pre-treatment analysis. Gene expression
data arrays were obtained for 95 participants, while three were excluded due to
technical issues stemming from low-quality RNA (Figure 4.1).

The characteristics of the patients for the PREMIERE cohort are described in
Table 4.1.

95 mCRPC patients 54 mCRPC patients

TRAINING SET
(PREMIERE)

VALIDATION SET
(IRST)

98 mCRPC patients

Dropouts
N=3

Blood sample

54 mCRPC patients

Blood sample

Figure 4.1: Consort diagram. This study analyses pre-treatment whole blood samples
from mCRPC patients prospectively treated with enzalutamide, including PREMIERE
cohort comprised of 98 patients from a phase 2 biomarkers clinical trial, and an
independent validation cohort (IRST) including 54 patients
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Patient characteristics Values Patient characteristics Values
Age median (range) 77 (57-95) Metastases N (%)
OS [months] 34.35 (2.3-44.69) Bone metastasis (BM) 80 (81.63 %)
PFS [months] Visceral metastasis (VM) 17 (17.35 %)
PSA 10.86 (0.92-44.68) Lung 16 (16.33 %)
Rad. 16.57 (0.89-44.68) Liver 4 (4.08 %)
Death Lymph nodes metastasis 47 (47.96 %)

Yes 50 (51.02 %) Metastases N (range) 2 (0-10)
No 48 (48.98 %) PSA basal [ng/mL] 24.95 (0.59-4318.78)

Gleason score PSA kynetics
<= 7 53 (54.08 %) PSA50%

>7 43 (43.88 %) Yes 81 (82.65 %)
ECOG score No 17 (17.35 %)

0 53 (54.08 %) PSA90%
1 45 (45.92 %) Yes 52 (53.06 %)

Primary treatment No 46 (46.94 %)
Yes 45 (45.92 %) Sero albumin [g/L] 4.16 (3.29-5)
No 53 (54.08 %) Haemoglobin [g/L] 13.2 (7.5-17.3)

Surgery ALP
Yes 22 (22.45 %) High 28 (28.57 %)
No 76 (77.55 %) Low 70 (71.43 %)

Radiotherapy LDH
Yes 25 (25.51 %) High 31 (31.63 %)
No 73 (74.49 %) Low 66 (67.35 %)

Pain NLR
Mild (≤ 3 BPI score) 52 (53.06 %) <= 5 90 (91.84 %)

No pain 45 (45.92 %) >5 8 (8.16 %)
Bicalutamide CTCs

Yes 85 (86.73 %) Yes 35 (35.71 %)
No 13 (13.27 %) No 63 (64.29 %)

Table 4.1: Patients’ characteristics. Characteristics of patients included in the
PREMIERE clinical trial

4.3.2 Immune cell composition in peripheral blood

The relative proportions of 22 immune cell types in peripheral blood of the
PREMIERE cohort were quantified using the CIBERSORT algorithm. The
distribution of immune cell subsets is illustrated in Figure 4.2. Neutrophils
constituted the predominant immune cell population, with a median
proportion of 62.5% (interquartile range [IQR]: 55.0%–69.8%). Resting natural
killer (NK) cells were the second most abundant cell type (median: 8.3%, IQR:
5.6%–11.2%), followed by resting memory CD4+ T cells (median: 7.4%, IQR:
5.4%–10.0%), monocytes (median: 6.5%, IQR: 4.7%–9.1%), and CD8+ T cells
(median: 5.2%, IQR: 3.4%–7.8%). Memory B cells and resting mast cells were
present in lower proportions.
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Figure 4.2: Blood immune-cell composition. The figure shows the relative proportion
of immune cell components in the blood in the PREMIERE set.

4.3.3 Association of immune cell subsets with OS

To assess the prognostic value of distinct immune cell subsets, Cox regression
analyses were conducted to determine the impact of specific immune cell types
on overall survival (OS) within the PREMIERE cohort. The findings are detailed
in Table 4.2.

Elevated monocyte levels were significantly associated with shorter OS (hazard
ratio [HR] 1.96, 95% confidence interval [CI] 1.11–3.45; 𝑝 < 0.019). Specifically,
an increase of one unit in the proportion of monocytes doubles the risk of death.
In contrast, higher levels of CD8+ T cell infiltrates were associated with improved
OS, with an HR of 0.51, 95% CI 0.29–0.90; 𝑝 < 0.018, indicating that patients with
higher levels of these cells had approximately half the risk of death compared
to those with lower levels. Although activated dendritic cells showed a trend
toward significance, this did not reach the statistical threshold (HR 1.65, 95% CI
0.94–2.89; 𝑝 = 0.081).

For visualizations, the median proportions of infiltrated monocytes and CD8+
T cells in samples stratified patients into the ”high” and ”low” groups.
Kaplan-Meier survival analyses showed that those with high levels of
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Blood Immune Cell Type HR (95% CI) p Value
B cells Memory 1.21 (0.69–2.12) 0.506
T cells CD4 memory, resting 0.72 (0.41–1.26) 0.252
Plasma cells 1.32 (0.76–2.31) 0.323
T cells CD8 0.51 (0.29–0.9) 0.018
T cells CD4-naive 1.11 (0.64–1.94) 0.71
T cells CD4 memory, activated 0.87 (0.50–1.51) 0.617
NK cells, resting 0.92 (0.53–1.61) 0.78
Monocytes 1.96 (1.11–3.45) 0.019
Neutrophils 0.98 (0.56–1.71) 0.935
Dendritic cells, activated 1.65 (0.94–2.89) 0.081
Mast cells, resting 0.92 (0.53–1.61) 0.775

Table 4.2: Univariate Cox regression analyses of immune cell subsets and OS in the
PREMIERE cohort

monocytes demonstrated considerably worse median OS when compared with
the low-infiltration group (32.2 months vs 40.3 months; log-rank p = 0.018;
Figure 4.3A. Similarly, patients with low levels of CD8+ T cells had a lower
median OS than patients with high levels of CD8+ T cells: 31.8 months versus
40.3 months, log-rank p = 0.009; Figure 4.3B.

4.3.4 Validation in an independent cohort

These findings were validated in a separate validation cohort (IRST) of 54
mCRPC patients treated with enzalutamide.

The adverse prognostic impact of elevated monocyte levels was replicated in
the IRST cohort (HR 5.41, 95% CI 2.60–11.29; 𝑝 < 0.001). Interestingly, the effect
size of the hazard ratio in the IRST cohort was greater, which reinforces that a
higher number of monocytes has a constant and positive impact on survival
status. Again, the interaction that improved OS based on an increasing
proportion of CD8+ T cells was reaffirmed within this model [HR 0.48, 95% CI
0.25–0.92; p = 0.027]. A summary of these findings is provided in Table 4.3, and
the associated Kaplan–Meier plots for OS in this cohort are shown in
Figure 4.3C and Figure 4.3D.

A summary of these findings is provided in Table 4.3, and the associated Kaplan–
Meier plots for OS in this cohort are shown in Figure 4.3C and Figure 4.3D.
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Figure 4.3: Kaplan–Meier survival curves for monocytes and CD8+ T cells in
PREMIERE and IRST cohorts. (A) OS based on monocyte level in the PREMIRE cohort.
(B) OS based on CD8 T-cell level in the PREMIRE cohort. (C) OS based on monocyte
level in the IRST cohort. (D) OS based on CD8 T-cell level in the IRST cohort.
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Blood Immune Cell Type HR (95% CI) Pa
B cells memory 0.88 (0.46-1.67) 0.695

Plasma cells 1.66 (0.87 -3.14) 0.123
T cells CD8 0.48 (0.25 -0.92) 0.027

T cells CD4 naive 0.47 (0.25 -0.91) 0.023
T cells CD4 memory resting 0.65 (0.34 -1.24) 0.194

T cells CD4 memory activated 0.68 (0.36 -1.29) 0.235
NK cells resting 0.98 (0.52 -1.85) 0.943

Monocytes 5.41 (2.60 -11.29) 0.001
Dendritic cells activated 2.49 (1.28 -4.81) 0.006

Mast cells resting 0.83 (0.44 -1.56) 0.557
Neutrophils 1.08 (0.57 -2.05) 0.811

Table 4.3: Univariate Cox regression analyses of immune cell subsets and OS in the
validation cohort

4.3.5 Multivariate analysis

Multivariate Cox regression analyses adjusting for established clinical prognostic
factors were performed to assess the independence of the prognostic significance
of monocyte and CD8+ T cells. ECOG performance status, metastatic spread
pattern (bone-only vs. visceral involvement), log-transformed PSA levels, ALP,
LDH, pain score (BPI), neutrophil to lymphocyte ratio (NLR) and corticosteroid
use were included in the multivariate model. The results are shown in Table 4.4.

In this adjusted model, the levels of CD8+ T cells were still significantly
associated with OS: HR 0.63, 95% CI 0.41-0.98; 𝑝 = 0.040, while this means that
their prognostic value is independent of other clinical factors. Likewise, in the
multivariate analysis, the statistical significance was not held by the levels of
monocytes: HR 1.05, 95% CI 0.74-1.49; 𝑝 = 0.770, suggesting their prognostic
impact might be mediated by other clinical variables. In particular, higher LDH
levels (HR 1.91, 95% CI 1.02–3.60; p = 0.045) and higher log-transformed PSA
levels (HR 1.44, 95% CI 1.18–1.76; p = 0.001) were independently associated
with worse OS.

In addition, we performed a multivariate analysis including molecular
prognostic markers such as AR gene amplification (AR gain) and the presence
of circulating tumour cells (CTCs). In this model (Table 4.5), CD8+ T cell levels
continued to show independent prognostic value (HR 0.54, 95% CI 0.35–0.83;
𝑝 = 0.006). AR gain (HR 6.17, 95% CI 2.83–13.46; 𝑝 < 0.001) and the presence of
CTCs (HR 4.63, 95% CI 2.58–8.31; 𝑝 < 0.001) were both strongly associated with
poorer OS.
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Prognostic HR (95% CI) p Value
LDH_Mod 1.91 (1.02–3.60) 0.045
ALP_Mod 1.84 (0.99–3.342) 0.055

Pattern Of Spread 1.08 (0.24–4.82) 0.922
BPI 0.59 (0.30–1.14) 0.117

LogPSA 1.44 (1.18–1.76) 0.001
NLR 0.70 (0.36–1.34) 0.279

Monocytes 1.05 (0.74–1.49) 0.770
CD8 T cells 0.63 (0.41–0.98) 0.04

ECOG 1.33 (0.71–2.50) 0.371
Table 4.4: Multivariate Cox regression analysis including clinical variables

HR (95% CI) p Value
ARgain 6.17 (2.83–13.46) <0.001

T cells CD8 0.54 (0.35–0.83) 0.006
CTCs 4.63 (2.58–8.31) <0.001

Table 4.5: Multivariate Cox regression analysis including molecular variables

4.4 Summary

In this chapter, we have demonstrated that the composition of peripheral blood
immune cells, in particular the proportions of monocytes and CD8+ T cells,
holds a significant prognostic value in mCRPC patients. Applying the
CIBERSORT algorithm to pre-treatment blood gene expression of patients, we
determined that high monocytes exhibit a negative effect on OS, while their
survival improves with higher proportional abundances of CD8+T cells. These
findings have been subjected to internal validation in a second set apart from
our series, increasing external validity and clinical utility in perspective.

Notably, the prognostic value of CD8+ T cells remained after adjustment for
established clinical and molecular prognostic variables, including ECOG
performance status, levels of PSA, ALP, lactate dehydrogenase, NLR, AR gene
amplification, and the presence of CTCs. This underlines the potential value of
CD8+ T cell levels as a possible independent biomarker for the risk
stratification of patients with mCRPC.

Our study demonstrates the feasibility and utility of gene expression-based
immune cell profiling using CIBERSORT in a multicenter clinical trial setting.
This approach offers a practical and scalable method for assessing immune cell
populations without the need for complex flow cytometry techniques and is
thus suitable for large-scale clinical applications.



70 4. Prognostic implication of blood immune cell composition in mCRPC

Thus, the identification of monocyte and CD8+ T-cell biomarkers has enormous
implications in terms of prognosis and treatment of mCRPC. This should not
only improve the immune profile in clinical management, aiding in better
stratification of patients, but should also aid in therapeutic choice to include
those who are likely to benefit from the use of immunotherapeutic
interventions alone or in combinations of immune-modulating therapies. In
addition, variations in immune cellular composition measured over time may
indicate plausible response to treatment and disease development.

In summary, our findings point to circulating monocytes and CD8+ T cells as
significant predictors of clinical outcomes in patients with mCRPC. Immune
cell profiles may add significant value to clinical protocols regarding risk
stratification and treatment personalization with a view to improving outcomes
in advanced prostate cancer. These findings warrant further investigation of
immunological biomarkers and therapeutic strategies in mCRPC.
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PROGNOSTIC GENE EXPRESSION
SIGNATURE IN MCRPC:

DEVELOPMENT, VALIDATION AND
ANALYSIS OF DISEASE PROGRESSION

5.1 Introduction

The management of mCRPC remains a significant challenge in oncology, and
patients exhibit various responses to available treatments. In recent years, the
emergence of high-throughput genomic technologies has facilitated the
development of more individualized strategies for predicting cancer outcomes
and tailoring treatment plans. Gene expression signatures, in particular, have
emerged as powerful tools for stratifying patients and predicting disease
outcomes.

In this chapter, we used an integrated machine learning approach to develop a
novel gene expression-based signature that predicts the prognosis in mCRPC.
Our approach combined the power of multiple machine learning algorithms
like LASSO, Ridge regression, Elastic Net regression, and RSF to identify a
robust set of genes associated with OS. This integrative approach allowed us to
leverage the strengths of each technique while ensuring model generalizability
and reproducibility.

The study utilized gene expression data from the PREMIERE trial, a multicenter
phase II clinical trial of enzalutamide in mCRPC, and validated the findings in
an independent cohort from the IRST study. Peripheral blood samples were
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analyzed to capture the systemic molecular landscape of mCRPC, reflecting
both the tumour microenvironment and the host’s response to therapy. We
found a 22-gene prognostic signature that demonstrated strong predictive
performance across both cohorts by integrating state-of-the-art computational
tools with rigorous statistical evaluation.

The prognostic signature developed in this chapter has the potential to
significantly impact clinical practice. It could enable more accurate risk
stratification of patients, inform treatment selection, and ultimately improve
patient outcomes and quality of life. Furthermore, elucidating the biological
pathways represented by signature genes may provide novel insights into the
mechanisms of disease progression and therapeutic resistance in mCRPC,
potentially revealing new therapeutic targets.

5.2 Material and methods

All patients included in this analysis were selected from the PREMIERE and IRST
studies. Genomic data were previously processed and explained in the Material
and Methods section of this thesis. Here, we detail the specific selection and
analysis methods applied to the pre-treatment patients to derive the prognostic
gene signature.

5.2.1 Processing of gene expression data

As explained in the Material and Methods section of this PhD thesis, this and
the following chapters will use samples from PREMIERE and IRST studies, as
well as genomic results obtained from microarray analysis conducted following
the protocols outlined in Section 3.4 of the Microarray analysis chapter and
Differential gene expression analysis chapter.

5.2.2 Univariate Cox Proportional Hazards Regression

Univariate Cox proportional hazards regression was explored to find out the
relationship between OS and DEG expression levels. Each gene was separately
analysed for its possible prognostic value. This was done using the survival
package in R, where for each gene, a calculation of HRs and p-values was
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performed. Those genes whose p <0.05 were considered significant for survival
and were therefore selected as further candidate predictors for modelling.

5.2.3 Development and validation of prognostic gene signature

We explored both linear and nonlinear modelling strategies to derive a robust
prognostic gene signature from candidate predictors. Linear methods included
L1-regularized (LASSO), L2-regularized (Ridge), and their combination
through the Elastic Net algorithm, while Random Forests provided a non-linear
alternative. These penalized Cox models, Lasso and Ridge and Elastic Net, were
performed using the ”glmnet” package [211], while RSF was fit by using the
”randomForestSRC” package [212]. Model training and hyperparameter tuning
have been executed in a 10-fold cross-validation manner with the aim of
robustness in performance and avoidance of overfitting.

In penalized Cox models, hyperparameter tuning was performed by
minimizing the partial likelihood deviance over a range of penalty strengths.
For Elastic Net, an additional hyperparameter, alpha, was optimized to balance
L1 and L2 regularization. Optimal hyperparameters were identified by selecting
the parameter combination that produced the lowest partial likelihood
deviation across all cross-validation folds. For RSF, two primary
hyperparameters, ntree and nodesize, were systematically varied via grid
search, and each configuration was evaluated by measuring concordance
indices to determine the combination displaying consistent predictive
performance.

From these compared models, the final prognostic signature was chosen to
balance performance considering the C-index, which quantifies the ability of
each algorithm to distinguish between the high- and low-risk patient groups.
Following cross-validation, the final models were retrained on the entire
dataset, and the C-index was recalculated to confirm their predictive
performance.

5.2.4 Validation of the prognostic signature

The independent IRST cohort was utilized to validate the prognostic signature.
Risk scores for patients were obtained by calculating gene expression levels
against the coefficients of the final model. Based on the median risk score,
patients were categorized into high-risk and low-risk groups. Kaplan-Meier
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survival analyses were conducted, and the divergence between the risk groups
was evaluated using the log-rank test.

Time-dependent ROC analyses were performed at clinically relevant time points
(12, 18, 24, 30, 33, and 36 months). The predictive performance of our signature
was compared with established prognostic models from Olmos et al. (15-gene
signature) [183], Ross et al. (6-gene signature) [182], and Wang et al. (4-gene
signature) [184].

5.3 Results

Our study aimed to develop and validate a robust gene expression signature to
predict OS in patients with mCRPC. Our analysis of gene expression profiles
revealed 1,920 DEGs between progression and pre-treatment samples. This
robust set of DEGs formed the foundation for our subsequent analyses aimed at
developing a prognostic gene signature for mCRPC.

5.3.1 Univariate Cox regression

To refine our list of candidate genes, we performed univariate Cox proportional
hazards regression on each of the 1,920 DEGs. This rigorous statistical
approach identified 74 genes significantly associated with OS (Log-rank P
<0.05). These genes represent potential prognostic markers and offer insights
into the molecular mechanisms underlying mCRPC progression.

5.3.2 Development and validation of prognostic models

We employed four advanced machine learning techniques to develop
prognostic models: Ridge regression, Lasso regression and Elastic Net
regression. Model performance was evaluated using 10-fold cross-validation,
with the concordance index (c-index) serving as our primary metric of
discriminative ability. All validations were carried out using an independent
dataset, IRST, to ensure robust assessment of model generalizability.

Table 5.1 summarizes the performance of these models, including the number of
genes retained, training c-index, and validation c-index on the IRST dataset.
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Model Number of Genes Training C-index Validation C-index
Ridge 74 0.826 0.737
Lasso 22 0.868 0.774
Elastic Net 23 0.873 0.772

Table 5.1: Comparison of regularized regression models

Ridge regression

Ridge regression, which applies L2 regularization to all features, was the first
model trained on the candidate genes identified through univariate analysis.
The model aims to retain all genes while shrinking their coefficients toward
zero, reducing the risk of overfitting when many genes are weakly correlated
with the outcome. Ridge regression performed well, achieving a train c-index
of 0.826. The test c-index of Ridge regression on an independent dataset set was
0.737, indicating good generalization ability. Ridge regression is particularly
suitable for high-dimensional data where many features contribute marginally
to the outcome.

Lasso regression

Lasso regression was applied to further reduce the dimensionality of the data
by penalizing the absolute value of the coefficients (L1 regularization), driving
some coefficients to zero and thus performing variable selection. This approach
identified a subset of the most relevant genes while discarding less informative
features.

Lasso regression, employing L1 regularization, emerged as our top-performing
model. It achieved a training c-index of 0.868 and a test c-index of 0.774 on the
IRST validation set, demonstrating superior generalization capability.
Crucially, Lasso regression distilled our initial gene set to a focused 22-gene
signature, capturing the most informative prognostic markers for mCRPC.

Elastic Net regression

Elastic Net regression combines both L1 and L2 penalties, offering a balance
between Ridge and Lasso regression. This method is especially useful when
multiple features are correlated, as it retains the advantages of both
regularization techniques. Elastic Net showed comparable performance to
Lasso, with a training c-index of 0.873 and a test c-index of 0.772 on the IRST
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dataset. This method identified a 23-gene signature, providing a balance
between model parsimony and comprehensive gene representation.

5.3.3 Gene model (Content censored)

Given its optimal performance in terms of both parsimony and predictive
power, we selected the Lasso regression model for our final 22-gene prognostic
signature. The coefficients of this model, which represent the contribution of
each gene to the overall prognostic score, are presented in Table 5.2. These
coefficients can be used to calculate a risk score for individual patients, with
higher positive coefficients indicating genes associated with a poorer prognosis
and negative coefficients indicating genes associated with a better prognosis.

Note

This section has been removed in this version because it is subject to technology
protection and/or knowledge transfer processes. The original content is only
available in the unabridged version of the thesis, temporarily restricted by the
General Doctoral Commission of the University of Murcia.

Gene Coefficient Gene Coefficient

G***1 0.517364 G***12 0.119308
G***2 0.469121 G***13 0.100680
G***3 0.290974 G***14 0.058931
G***4 0.290191 G***15 0.021022
G***5 0.287535 G***16 0.011279
G***6 0.235089 G***17 0.007688
G***7 0.231427 G***18 -0.039713
G***8 0.178509 G***19 -0.120376
G***9 0.131916 G***20 -0.168221

G***10 0.129305 G***21 -0.224362
G***11 0.128270 G***22 -0.310436

Table 5.2: Lasso regressionmodel coefficients (Gene names censored due to patenting
process)

5.3.4 Time-Dependent ROC analysis and model comparison

To evaluate the dynamic predictive accuracy of our 22-gene signature and
compare it with existing models, we performed a time-dependent Receiver
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Time
(months)

PREMIERE Cohort IRST Cohort
AUC 95% CI Lower 95% CI Upper AUC 95% CI Lower 95% CI Upper

12 0.972 0.944 1.000 0.813 0.638 0.933
18 0.898 0.796 0.981 0.834 0.690 0.950
24 0.936 0.878 0.981 0.826 0.711 0.928
30 0.905 0.821 0.975 0.842 0.726 0.943
33 0.897 0.796 0.966 0.830 0.714 0.945
36 0.898 0.805 0.966 0.829 0.697 0.944

Table 5.3: Time-Dependent AUC values for our 22-gene signature

Operating Characteristic (ROC) analysis using the riskRegression R package
[213]. We assessed the models at clinically relevant time points (12, 18, 24, 30,
33, and 36 months) in both the PREMIERE development cohort and the IRST
validation cohort. Table 5.3 presents the Area Under the Curve (AUC) values at
these time points for our model in both cohorts:

Our 22-gene signature demonstrated excellent predictive accuracy across all
time points in both cohorts. In the PREMIERE cohort, the AUC values ranged
from 0.897 to 0.972, indicating a consistently high level of discrimination. The
model’s performance in the IRST validation cohort was also robust, with AUC
values ranging from 0.813 to 0.842, confirming the signature’s generalizability
to an independent dataset. To contextualize the performance of our signature,
we compared it with three established prognostic models: Olmos et al.
(15-gene), Ross et al. (6-gene), and Wang et al. (4-gene). Figure 5.1 illustrates
the ROC curves for all models in both the PREMIERE and IRST cohorts.

In the PREMIERE cohort, our 22-gene signature achieved an AUC of 0.891 (95%
CI: 0.807-0.974), significantly outperforming the Olmos et al. model (AUC =
0.757, 95% CI: 0.646-0.867), the Ross et al. model (AUC = 0.611, 95% CI:
0.489-0.734), and the Wang et al. model (AUC = 0.633, 95% CI: 0.509-0.757).
The superior performance of our signature was further validated in the IRST
cohort, where it achieved an AUC of 0.958 (95% CI: 0.911-1.000), again
surpassing the Olmos et al. model (AUC = 0.893, 95% CI: 0.801-0.985), the Ross
et al. model (AUC = 0.744, 95% CI: 0.599-0.888), and the Wang et al. model
(AUC = 0.830, 95% CI: 0.716-0.944). These results demonstrate the robust and
consistent prognostic power of our 22-gene signature across different patient
populations and over extended follow-up periods. The significant improvement
in predictive accuracy over existing models underscores the potential clinical
utility of our signature in guiding treatment decisions and risk stratification for
patients with mCRPC.
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Figure 5.1: Curves comparing our 22-Gene signature with existing models. (A)
PREMIERE cohort (B) IRST cohort

5.4 Summary

In this chapter, we have developed and validated a novel 22-gene expression
signature derived from peripheral blood samples that robustly predicts OS in
patients with mCRPC. Using advanced machine learning techniques, especially
Lasso regression, we distilled a large set of differentially expressed genes into a
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focused panel that demonstrates superior prognostic performance compared to
existing models. It has been rigorously validated within an independent cohort,
identifying the generalizability and clinical relevance of the signature. Previous
efforts, such as the six-gene model by Ross et al., the nine-gene model by Olmos
et al., and the four-gene model by Wang et al., laid the groundwork for
blood-based prognostic signatures in mCRPC.

Our 22-gene signature holds great promise for impacting clinical practice in
that it will enable much more precise risk stratification of patients with mCRPC.
Clinicians will be better positioned to tailor treatment strategies, possibly
opting for more aggressive or alternative therapies for high-risk patients while
avoiding unnecessary side effects for low-risk patients.

Furthermore, since the signature is from peripheral blood, it represents a
minimally invasive biomarker that can be easily integrated into clinical
workflows. The superior predictive accuracy of our model, compared to
existing gene signatures, underscores the importance of leveraging
high-throughput genomic data and advanced analytics methods in the quest for
personalized cancer care. Future studies should be conducted to validate the
signature in larger studies and diverse patient populations, and to explore the
biological functions of identified genes to uncover novel targets. In summary,
we identified a 22-gene prognostic signature that represents, to date, a very
significant step forward in personalised mCRPC treatment, which could
improve patient outcomes by timely administration of more appropriate
effective therapies.
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DYNAMICS OF IMMUNE CELLS
ASSOCIATED WITH ANTIANDROGEN

THERAPY IN MCRPC

6.1 Introduction

Castration-resistant prostate cancer (CRPC) continues to pose a considerable
clinical challenge, even with the progress made in recent therapeutic
developments. Approximately 20-30% of patients develop resistance to
treatment, with metastatic progression resulting in a survival rate of only 15-36
months [214]. The heterogeneous nature of PCa, characterized by diverse
molecular signatures and varying sensitivities to treatment, is a primary
contributor to this resistance. As the disease progresses, it becomes increasingly
heterogeneous, leading to a diverse collection of cells with distinct molecular
signatures and differential levels of sensitivity to treatment. This heterogeneity
is the main source of resistance, making its correct assessment essential for
proper prognosis and the development of effective therapies.

Blood-based approaches offer a minimally invasive method to stratify patients
based on tumour biology, which is particularly relevant for mCRPC patients
where biological heterogeneity and stratification approaches are limited. The
interaction between mCRPC and the hematopoietic and immune systems leads
to changes detectable in peripheral blood, potentially yielding valuable
prognostic information. Previous studies have hypothesized that the interaction
between immune cell components and cancer tissue leads to changes in general
expression levels in blood, which could provide prognostic information about
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mCRPC.

In this chapter, we investigate the dynamics of immune cells and gene
expression patterns associated with antiandrogen therapy in mCRPC. Emerging
evidence suggests that enzalutamide, while primarily targeting AR signaling,
may also have significant effects on the immune system [215]. Understanding
these immunomodulatory effects is crucial, as they may contribute to both the
therapeutic efficacy and the development of resistance to enzalutamide.

Our objective in this study is to uncover novel biomarkers and therapeutic
targets for enzalutamide-resistant mCRPC, with a particular focus on the
immune-related changes induced by the treatment. By analyzing blood
samples taken prior to treatment, at the 12-week point of enzalutamide
treatment, and after progression, we aim to ascertain the overexpressed genes
in each condition, identify putative pathways implicated in the development of
enzalutamide resistance, and characterize the immunomodulatory effects of
enzalutamide. This research seeks to provide insights into the complex
interplay between antiandrogen therapy and the immune system in mCRPC.

6.2 Material and methods

All the methodologies applied in this work have been carried out following the
protocols described in the sections Material and Methods chapter and related
sections.

6.2.1 Differential expression analysis and identification of
DEGs

The identification of differentially expressed genes (DEGs) followed the
detailed preprocessing and analysis process in Differential gene expression
analysis section. This included rigorous quality control, normalization, and
statistical analysis using ”limma” package. Thresholds for the selection of
DEGs ( P-value < 0.05, Q-value < 0.01 and |log2FC| > 0.3) were set as in the
previous description.
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6.2.2 Gene set enrichment analysis

GSEA was performed using the approach described in Gene set enrichment
analysis section using the clusterProfiler package and curated gene sets from
GO and KEGG databases. It allowed the identification of biological processes
and pathways associated with the DEGs identified in this study, using the same
statistical thresholds (FDR<0.05) and methodological parameters.

6.2.3 Immune cell profiling

Immune cell profiling by CIBERSORTx was performed as described in Immune
cell profiling using CIBERSORTx section, focusing on deconvolution of immune
subtypes from transcriptomic data. To further investigate functional impacts, in
vitro experiments targeted immune populations including T cells, monocytes,
and B cells, using methodologies consistent with those outlined in.

6.2.4 In vitro studies on immune cell populations

The In vitro experiments employed immune cell lines (Jurkat, MOLT-4, THP-1,
and Raji) and prostate cancer cell lines (LNCaP, 22Rv1, and DU145),
maintained under the conditions described in In vitro Experiments section. Cell
viability was measured using the CellTiter-Glo assay, and apoptosis was
assessed via Western blot to detect cleaved caspase-3 and PARP, following the
protocols previously outlined. Drug treatments included enzalutamide and
other AR inhibitors (abiraterone acetate, bicalutamide, apalutamide, and
darolutamide), administered at concentrations specified earlier.

Gene expression profiling was conducted using the Affymetrix Human
Transcriptome Array 2.0, with RNA extraction, quality control, and data
analysis performed as described in Microarray analysis section.

6.2.5 Statistical analysis

All statistical analyses were performed using R (version 4.4.0) and figures
described in Statistical analysis section
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6.3 Results

To elucidate the molecular mechanisms underlying the response to
enzalutamide in mCRPC patients, we performed a comprehensive longitudinal
analysis of whole-blood transcriptomes. Our time-course study design allowed
us to capture the dynamic changes in gene expression profiles at key clinical
milestones: pre-treatment, early response (12 weeks), and disease progression.

6.3.1 Enzalutamide-induced changes in whole-blood gene
expression

Initial exploratory data analysis using principal component analysis (PCA)
revealed distinct temporal clustering of samples. In Figure 6.1A compares
pre-treatment samples with those collected after 12 weeks of enzalutamide
therapy. The clear separation between these two groups along the first
principal component axis demonstrates a pronounced shift in gene expression
profiles following treatment initiation. This distinct clustering indicates that
enzalutamide induces a rapid and consistent transcriptomic response within
the first 12 weeks of treatment. In Figure 6.1B, pre-treatment samples are shown
with those obtained at the time of disease progression. The persistent
separation between these groups suggests that the transcriptomic alterations
induced by enzalutamide are largely maintained even as the disease progresses.
This observation implies that while the treatment continues to exert a strong
influence on gene expression, the development of resistance may involve more
subtle changes or alterations in specific pathway activities rather than a
wholesale reversion to the pre-treatment state. Figure 6.1C presents a
comparison between 12 weeks samples and those collected at progression.
Interestingly, these two groups show a greater degree of overlap in the PCA
plot, indicating a more nuanced transition in gene expression patterns as
patients move from initial response to treatment resistance. This partial overlap
suggests that the development of resistance is a gradual process, potentially
characterized by patient-specific alterations in gene expression superimposed
on the broader enzalutamide-induced transcriptomic landscape.
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Figure 6.1: Principal Component Analysis (PCA) of whole-blood transcriptomes
reveals distinct temporal patterns in response to enzalutamide treatment in mCRPC
patients. (A) PCA plot comparing pre-treatment (green triangles) and 12-week
treatment (blue triangles) samples. (B) PCA plot of pre-treatment (green triangles)
versus progression (red circles) samples. (C) PCA plot comparing 12-week treatment
(blue triangles) and progression (red circles) samples.

6.3.2 Hierarchical clustering analysis

Our PCA results were further corroborated and extended by unsupervised
hierarchical clustering analysis to provide additional detail about the temporal
dynamics of gene expression patterns after enzalutamide treatment
(Figure 6.2). In Figure 6.2A, the dendrogram indicates a perfect separation
between pretreatment and 12-week samples. These results stress the rapidity
and coherence of the transcriptomic remodeling induced by enzalutamide. This
clear delineation supports the notion of a robust early response signature across
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patients. Similarly, Figure 6.2B shows a perfect separation between
pre-treatment and progression samples, indicating that while resistance has
taken hold, the global transcriptome remains significantly different from the
treatment-naïve state. This durability in difference would imply that resistance
mechanisms themselves may involve pathway-specific rather than global
reverting expression modifications. Intriguingly, the clustering of 12-week and
progression samples (Figure 6.2C) reveals a more complex pattern: although
there is a certain degree of separation, there is also considerable intermingling
of samples from these two time points. This would suggest a more
nuanced-and perhaps patient-specific-evolution of gene expression as
resistance develops. This less pronounced separation between these later time
points indicates that subtle transcriptomic changes superimposed on the overall
enzalutamide-induced expression landscape underlie the transition to a
resistant state.

6.3.3 Differential gene expression analysis

We therefore performed pairwise DGE analyses comparing key time points in
order to quantify the extent of transcriptional reprogramming induced by
enzalutamide treatment. To ensure more accurate results, the sample numbers
were reduced by applying strict filtering criteria. In the 12-week patient group,
we excluded patients with a progression-free survival (PFS) of less than 3
months and those without a 50% reduction in PSA levels (PSAresponse50).
This approach revealed substantial and dynamic changes in gene expression
profiles throughout the course of treatment 6.1.

Comparison Number of DEGs Upregulated Downregulated
12 weeks vs. Pre-treatment 4,162 1,832 2330

Progression vs. Pre-treatment 1,774 716 1058
Progression vs. 12 weeks 517 347 170

Table 6.1: Summary of DEGs across treatment time points

The most pronounced changes were observed when comparing the 12-week
time point to pre-treatment, with 4,162 genes showing significant differential
expression. This finding underlines rapid and extensive transcriptomic
remodeling upon enzalutamide treatment. Noticeably, there was a slight bias
toward downregulation, with 2,330 genes downregulated compared to 1,832
upregulated. This may reflect the suppressive action of enzalutamide on
specific cellular processes. A comparison of the progression samples to
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Figure 6.2: Unsupervised hierarchical clustering of whole-blood transcriptomes
reveals distinct temporal patterns in mCRPC patients treated with enzalutamide. (A)
Clustering of pre-treatment (green) versus 12-week (blue). (B) Pre-treatment (green)
versus progression (red). (C) Clustering of 12-week (blue) versus progression (red).
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pre-treatment revealed 1,774 differentially expressed genes, suggesting that
although some of the early treatment-induced changes persist, there is a
significant shift in the transcriptome as resistance develops. Interestingly, this
comparison exhibited a greater bias toward downregulation, with 1,058 genes
downregulated versus 716 upregulated. Such a trend might indicate that one
component of the development of resistance includes the active suppression of
some enzalutamide-induced changes. Therefore, the transition from week 12 to
progression was characterized by subtle changes, represented by 517
differentially expressed genes. On the contrary, compared with other
comparisons, this transition was mainly characterized by an upregulated gene
prevalence over the downregulated one: 347 versus 170, respectively. This
upregulation might reflect the turning on of specific resistance mechanisms
during disease progression. These dynamic changes in gene expression
patterns provide important insight into the molecular mechanisms that
underlie the response to enzalutamide and the emergence of treatment
resistance in mCRPC patients. Identification of time point-specific and
consistently altered gene sets is a rich resource for further functional studies
and potential biomarker development.

To further elucidate the relationships between differentially expressed genes
across different time points, we generated a Venn diagram to visualize the
overlap of DEGs between comparisons (Figure 6.3). This analysis provides
insights into the persistence and evolution of gene expression changes
throughout the course of treatment. Notably, the most profound impact on
gene regulation occurs at the initiation of treatment, as evidenced by the
substantial number of differentially expressed genes (2,832) when comparing
the 12-week time point to pre-treatment samples. This observation underscores
the rapid and extensive transcriptomic remodeling induced by enzalutamide.

The analysis also highlights the dynamic nature of gene expression changes over
time. While many genes show persistent differential expression, there are also
unique sets of genes associated with specific stages of treatment. For instance,
267 genes are uniquely differentially expressed when comparing progression to
pre-treatment samples, but not at the 12-week time point. These genes may be
indicative of specific resistance mechanisms that emerge over time or adaptive
responses that only become apparent with prolonged treatment.
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Figure 6.3: Venndiagram showing the overlap ofDEGs across different treatment time
point comparisons in mCRPC patients treated with enzalutamide.

6.3.4 Gene set enrichment analysis reveals dynamic pathway
regulation

To interpret the functional implications of the DEGs, we performed GSEA using
GO Biological Processes. The top enriched pathways for each comparison are
summarized in Table 6.2.

Enrichment plots illustrating the significance and directionality of these
pathways are presented in Figure 6.4 revealing significant alterations in several
biological pathways throughout the course of enzalutamide treatment. At 12
weeks of treatment (Figure 6.4A), we observed a marked downregulation of
immune-related pathways, particularly those associated with B-cell activation
and signaling, as well as antigen processing and presentation (FDR < 0.05).
Conversely, pathways involved in chemical stimulus detection and response
were significantly upregulated (FDR < 0.05), suggesting a novel effect of
enzalutamide on sensory perception processes.

The interesting observation was that the progression samples shared a similar
pathway modulation compared to the samples at 12 weeks, where
immune-related pathways were persistently downregulated and processes
related to chemical stimulus remained upregulated. This consistency supports
the idea that such changes are integral to the mechanism either of action of the
drug or to the adaptive response of the tumour. The distinctive features of the
progression samples are then also reported. Curiously, there is a significantly
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Progression vs. Pre-treatment
GO Term Description

GO:0050911 Detection of chemical stimulus involved
GO:0007608 Sensory perception of smell
GO:0050907 Detection of chemical stimulus involved in sensory perception
GO:0007606 Sensory perception of chemical stimulus
GO:0009593 Detection of chemical stimulus
GO:0050906 Detection of stimulus involved in sensory perception
GO:0061515 Myeloid cell development
GO:0016064 Immunoglobulin mediated immune response
GO:0019724 B cell mediated immunity
GO:0030099 Myeloid cell differentiation

12 weeks vs. Pre-treatment
GO Term Description

GO:0030099 Myeloid cell differentiation
GO:0050911 Detection of chemical stimulus involved in sensory perception of smell
GO:0050907 Detection of chemical stimulus involved in sensory perception
GO:0007608 Sensory perception of smell
GO:0016064 Immunoglobulin mediated immune response
GO:0019724 B cell mediated immunity
GO:0030218 Erythrocyte differentiation
GO:0050853 B cell receptor signaling pathway
GO:0007606 Sensory perception of chemical stimulus
GO:0030217 T cell differentiation

12 weeks vs. Progression
GO Term Description

GO:0006457 Protein folding
GO:0002831 Regulation of response to biotic stimulus
GO:0008380 RNA splicing
GO:0006397 mRNA processing
GO:0000377 RNA splicing, via transesterification
GO:0000398 mRNA splicing, via spliceosome
GO:0050684 Regulation of mRNA processing
GO:0000375 RNA splicing, via transesterification reactions
GO:1903311 Regulation of mRNA metabolic process
GO:0033044 Regulation of chromosome organization

Table 6.2: Summary of top enriched biological pathways identified by GSEA across
comparisons
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upregulated keratinization pathway-FDR <0.05- Figure 6.4B possibly implying
epithelial-mesenchymal transition or other adaptation mechanisms
evolutionarily linked to disease progression.

Comparing these samples to the progression and 12-week samples Figure 6.4C,
we observed a concomitant upregulation of pathways relating to mRNA
splicing and DNA detoxification and downregulation of pathways relating to
DNA and protein conformation and mRNA metabolic processing. These
models emphasize the dynamic nature of transcriptomic remodelling in this
disease accustomed to developing treatment resistance.

6.3.5 Effect of enzalutamide and/or tumour progression on the
immune cell components in blood

To evaluate the immune landscape dynamics during enzalutamide treatment
and tumour progression, we analyzed immune cell proportions at three key
time points: pre-treatment (baseline), 12-week treatment, and progression.
Immune subsets were estimated using CIBERSORTx, which deconvolutes
transcriptomic data into proportions of 22 immune cell types. Comparisons
were performed for (A) progression vs. pre-treatment, (B) 12 weeks vs.
pre-treatment, and (C) progression vs. 12 weeks. A validation cohort was also
analyzed for progression vs. pre-treatment to confirm the reproducibility of
findings.

In the progression vs. pre-treatment comparison (Figure 6.5A), significant
changes were observed in several immune cell subsets. CD8+ T cells exhibited
a marked reduction at progression (𝑝 < 0.001), while monocytes and resting
mast cells were significantly increased (𝑝 < 0.001). These results suggest that
tumour progression is associated with a suppression of cytotoxic immune
responses and a shift toward a myeloid-dominated immune profile, potentially
promoting an immunosuppressive tumour microenvironment.

The 12 weeks vs. pre-treatment comparison (Figure 6.5B) revealed similar
patterns of immune remodeling. Monocytes, resting NK cells, and resting mast
cells were significantly increased (𝑝 < 0.001), while memory B cells and CD8+
T cells were significantly reduced (𝑝 < 0.001). These findings indicate that
enzalutamide treatment induces rapid and significant changes in the immune
landscape, characterized by the suppression of adaptive immune subsets such
as CD8+ T cells and memory B cells, along with an increase in innate immune
cells like NK cells and monocytes.
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Figure 6.4: Gene Set EnrichmentAnalysis (GSEA) of differentially expressed genes in
mCRPC patients treated with enzalutamide. (A) GSEA results comparing progression
samples to pre-treatment samples. (B) GSEA results comparing 12-week treatment
samples to pre-treatment samples. (C) GSEA results comparing progression samples
to 12-week treatment samples.
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In the progression vs. 12 weeks comparison (Figure 6.5C), memory B cells and
monocytes were significantly increased (𝑝 < 0.001), while resting NK cells were
significantly reduced (𝑝 < 0.001). These findings suggest that as resistance to
enzalutamide develops, adaptive immune components such as memory B cells
increase, possibly reflecting tumour-driven recruitment or immune
compensation. Meanwhile, the continued rise in monocytes reinforces their
potential role in maintaining a pro-tumourigenic or immunosuppressive
environment. The reduction in resting NK cells may indicate a weakening of
innate immune surveillance as the tumour progresses.

To validate these findings, we analyzed a second independent cohort
comparing progression vs. pre-treatment samples. Consistent with the
discovery cohort, this analysis confirmed the significant reduction in CD8+ T
cells (𝑝 < 0.01) and the significant increase in monocytes (𝑝 < 0.01) at
progression (Figure 6.6). This reproducibility across cohorts highlights the
robustness of the observed immune shifts and their potential relevance in
understanding treatment resistance in mCRPC.

6.3.6 In vitro characterization of enzalutamide’s effects on
immune cell populations

Given the immunosuppressive effects observed of enzalutamide in mCRPC
patients, we conducted In vitro experiments to investigate the direct impact of
enzalutamide on key immune cell populations. We focused on T cells,
monocytes, and B cells, utilizing established human cell lines: Jurkat and
MOLT-4 for T cells, THP-1 for monocytic cells, and Raji for B cells. Our studies
included viability assays, apoptosis assays, and gene expression profiling to
elucidate the mechanisms underlying enzalutamide’s effects on these immune
cells.

6.3.7 Enzalutamide reduces viability of T Cells independently
of AR expression

We first assessed the effect of enzalutamide on T-cell viability using the Jurkat
cell line. Cells were treated with increasing concentrations of enzalutamide
(1–100 𝜇M) for 48 hours, and cell viability was measured using the
CellTiter-Glo. Enzalutamide significantly reduced the viability of Jurkat cells in
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Figure 6.5: Boxplots comparing the relative proportions of 22 immune cell subsets
in peripheral blood across key treatment time points in mCRPC patients. (A)
Progression vs. Pre-treatment, (B) 12-week vs. Pre-treatment, and (C) Progression
vs. 12-week. Statistically significant changes are highlighted (*𝑝 < 0.01). Persistent
reductions in CD8+ T cells and increases in monocytes were observed across
comparisons.

a dose-dependent manner Figure 6.7A, with an IC50 of approximately 18.71 𝜇M
(Figure 6.7B).

To determine whether this cytotoxic effect was mediated through AR signaling,
we examined AR expression in Jurkat cells compared to prostate cancer cell
lines known to express AR (LNCaP and 22Rv1) and an AR-negative prostate
cancer cell line (DU145). Western blot analysis confirmed that Jurkat cells do
not express AR, while LNCaP and 22Rv1 cells showed strong AR expression
(Figure 6.8). DU145 and Jurkat cells served as AR-negative controls. These
results indicate that enzalutamide’s effect on T-cell viability is independent of
AR signaling.

To determine whether loss of viability was due to apoptosis, we measured the
activation of apoptotic markers in Jurkat cells exposed to clinically relevant
plasma concentrations of enzalutamide (35.7 𝜇M). Cells were treated for 24
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Figure 6.6: Validation cohort: Boxplots comparing the proportions of CD8+ T cells
and monocytes between progression and pre-treatment samples. Results confirm
the significant reduction in CD8+ T cells and increase in monocytes at progression,
consistent with findings from the discovery cohort (*𝑝 < 0.01).

hours with enzalutamide and cleavage of Caspase-3 and PARP were
determined by Western blot. Enzalutamide promoted marked cleavage of
Caspase-3 (Figure 6.9A) and PARP (Figure 6.9B) compared to untreated
controls, indicating induction of apoptosis. These observations suggest that the
pro-apoptotic effects of enzalutamide on T cells are mediated through an
AR-independent mechanism.

6.3.8 Differential sensitivity of immune cell types to
enzalutamide

We extended our investigation to other immune cell lines to assess the broader
impact of enzalutamide. Thus, we treated the following lymphocytic cell lines:
Jurkat, MOLT-4 (T cells), THP-1 (monocytes) and Raji (B cells) with
enzalutamide at 25 𝜇M concentrations for 24, 48, and 72 hours. Treatment of the
cell line resulted in the loss of its viability at all tested concentrations and time
intervals in a concentrationand time-dependent manner, despite
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Figure 6.7: Enzalutamide reduces cell viability in Jurkat T cells. (A) Dose-dependent
reduction in viability after 72 hours. (B) Representative dose-response curve relative to
untreated controls.

Figure 6.8: Western blot analysis of AR expression in various cell lines. Jurkat T cells
do not express AR, while LNCaP and 22Rv1 prostate cancer cells are AR-positive. DU145
prostate cancer cells and Jurkat cells cultured in charcoal-stripped FBS (CS-FBS) are AR-
negative controls. GAPDH is used as a loading control.
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Figure 6.9: Enzalutamide treatment with Jurkat cells. (A) Western blot analysis
showing cleavage of Caspase-3 after 24-hour treatment with enzalutamide (35.7 μM),
indicating activation of apoptosis. (B) Western blot analysis showing cleavage of PARP
under the same conditions, further confirming apoptotic activity.

inter-individual variations  (Figure 6.10A). At 24 hours, Jurkat cells exhibited a
significant reduction in viability to less than 55% compared to untreated
controls. Raji B cells also showed a substantial decrease in viability to
approximately 60%. MOLT-4 T cells and THP-1 monocytes were less affected at
this early time point, with viability remaining around 80%. Over extended
treatment durations (48 and 72 hours), all cell lines exhibited further
reductions in viability, indicating that prolonged exposure enhances the
cytotoxic effects of enzalutamide. Notably, Jurkat cells continued to show the
most significant decrease in viability, reinforcing their heightened sensitivity.

We also confirmed that MOLT-4, THP-1, and Raji cells do not express AR by
Western blot analysis (Figure 6.10B), reinforcing that the observed effects are
independent of AR signaling.

6.3.9 Comparative analysis of AR inhibitors on t-cell viability

To determine whether the cytotoxic effects observed with enzalutamide are
unique to this compound or shared among other antiandrogens, we evaluated
the impact of several clinically relevant antiandrogens on the viability of Jurkat
T cells. Cells were treated for 48 hours with plasma equivalent concentrations
of bicalutamide (20 𝜇M), enzalutamide (25 𝜇M), darolutamide (25 𝜇M),
apalutamide (10 𝜇M), and abiraterone acetate (5 𝜇M).

Our results demonstrated that enzalutamide and darolutamide significantly
reduced Jurkat cell viability, with viability decreasing to less than 50%
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Figure 6.10: Effects of enzalutamide on viability across different immune cell lines.
(A) Cell viability analysis of Jurkat (T cells), Raji (B cells), MOLT-4 (T cells), and THP-
1 (monocytes) treated with 25 μM enzalutamide for 24, 48, and 72 hours. The graph
demonstrates a concentration- and time-dependent reduction in cell viability, with Jurkat
cells showing the most pronounced sensitivity. (B) Western blot analysis confirming
the absence of AR expression in MOLT-4, THP-1, and Raji cells, suggesting the observed
cytotoxic effects are independent of AR signaling.

compared to untreated controls (Figure 6.11. In contrast, bicalutamide,
apalutamide, and abiraterone acetate had minimal effects on cell viability, with
viability remaining above 80%. These findings indicate that enzalutamide and
darolutamide exert more pronounced cytotoxic effects on T cells compared to
other antiandrogens.
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Figure 6.11: Comparison of antiandrogens on Jurkat T-cell viability. Cells were treated
with clinically relevant plasma concentrations of bicalutamide (20 𝜇M), enzalutamide
(25 𝜇M), darolutamide (25 𝜇M), apalutamide (10 𝜇M), and abiraterone acetate (5 𝜇M)
for 48 hours. Cell viability was assessed by MTT assay. Data represent mean ± SD of
three independent experiments. **𝑝 < 0.01 compared to control.

6.3.10 Gene expression profiling reveals modulation of
apoptotic and immune pathways

To investigate the molecular changes induced by enzalutamide in T cells, we
performed gene expression profiling using microarrays. We treated Jurkat T
cells with 35 𝜇M for 24 hours in three biological replicates for both
enzalutamide-treated cells and DMSO-treated controls. RNA was extracted and
analyzed using Affymetrix Human Transcriptome Array 2.0 microarrays.

DEGs detected were 1,077, while logFC was ≥ 1 with p value < 0.05. We use
GSEA and KEGG pathway analysis as ways of exploring the change in gene
expression in systems biology and biological pathways targeted by
enzalutamide treatment. We conducted a GSEA and KEGG pathway analysis.
GSEA revealed a significant enrichment of genes involved in sterol biosynthesis
and cholesterol metabolism pathways Figure 6.12A. Conversely, GSEA also
identified significant downregulation of pathways related to ribosome
biogenesis, mitochondrial translation, and RNA processing.

The analysis of the KEGG pathway corroborated these findings Figure 6.12B. The
Steroid Biosynthesis Pathway was significantly up-regulated, aligning with the
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GSEA results. Additionally, KEGG analysis highlighted the downregulation of
pathways such as Ribosome and Oxidative Phosphorylation, further supporting
the impact of enzalutamide on protein synthesis machinery and mitochondrial
function.

These results suggest that enzalutamide causes prominent changes in metabolic
pathways in T cells by upregulating sterol and cholesterol biosynthesis while
downregulating protein synthesis and mitochondrial functions. Such an
up-regulation of the metabolic pathways in lipid biosynthesis could point to a
compensatory process or stress for the preservation of cellular membrane
integrity. However, down-regulation of pathways related to ribosome
biogenesis and mitochondrial translation may indicate compromise in protein
synthesis and energy production capability, which will ultimately culminate in
disrupted cell functionality and viability.

6.4 Summary

Our integrated longitudinal analysis of mCRPC patients treated with
enzalutamide has revealed key aspects of the dynamic interplay between
antiandrogen treatment, immune modulation, and disease progression. We
demonstrated that enzalutamide treatment causes rapid and profound
transcriptomic changes in peripheral blood, particularly with regard to
immune-related pathways.

In particular, suppression of adaptive immune responses was characterized by
a marked reduction in CD8+ T cells and memory B cells, with an increase in
monocytes and innate immune cells, which was evident from 12 weeks of
treatment and persisted throughout disease progression.

These data suggest that enzalutamide exerts an immunosuppressive effect
impairing antitumour immunity, thus contributing to the development of
therapeutic resistance. These were further corroborated by our In vitro studies
showing that enzalutamide induces AR-independent apoptosis of T cells, an
off-target effect of this drug that was previously unknown.

These differential sensitivities of the various antiandrogen therapies to immune
cells suggest a role for immunomodulatory properties in the choice of treatment
strategies in patients with mCRPC. In particular, although enzalutamide and
darolutamide display potent cytotoxic effects against T cells, other AR



6.4. Summary 103

(A)

−2 0 2 −2 0 2

rRNA processing

ribosome biogenesis

rRNA metabolic process

ncRNA processing

mitochondrial gene expression

ribosomal small subunit biogenesis

maturation of SSU−rRNA

tRNA metabolic process

mitochondrial translation

ribonucleoprotein complex biogenesis

steroid metabolic process

organic hydroxy compound biosynthetic process

steroid biosynthetic process

alcohol biosynthetic process

sterol metabolic process

cholesterol metabolic process

secondary alcohol metabolic process

secondary alcohol biosynthetic process

cholesterol biosynthetic process

sterol biosynthetic process

NES

p.adjust

1e−07

2e−07

Count

50

100

150

200

Down-regulated at Treatment with Enza Up-regulated at Treatment with Enza

(B)

Down-regulated

Up-regulated

Figure 6.12: Enrichment and pathway analysis of gene expression changes induced
by enzalutamide in Jurkat T cells. (A) GSEA enrichment plot in enzalutamide-treated
Jurkat T cells. (B) KEGG pathway map in enzalutamide-treated cells.
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inhibitors demonstrated minimal effects, suggesting alternative therapies with
better preservation of immune function.

Clinically, our findings emphasize the integration of immunological
assessments in the management of mCRPC. Monitoring immune cell
populations and gene expression may provide biomarker information on
treatment decisions and identify patients prone to immunosuppression and
resistance. Furthermore, the potential immunosuppressive effects of
enzalutamide should be carefully considered in the design of combination
treatments, especially with immunotherapeutic agents. Together, the study in
this article highlights how our investigation of enzalutamide’s influence on the
immune system reveals complexity and significant effects in patients with
mCRPC. An explanation of these immunomodulatory actions is needed to
maximize therapy and ultimately benefit patients in advanced prostate cancer.





7

DISCUSSION

mCRPC is one of the leading causes of cancer death in men and constitutes one of
the biggest challenges for cancer immunotherapy. Despite recent developments
in treatment, mCRPC remains currently incurable, with variable survival rates
and outcomes ranging from a few months to several years.

In this thesis, we have conducted a comprehensive investigation of the
prognostic significance of blood gene expression signatures and immune cell
dynamics in patients with mCRPC who undergo enzalutamide treatment,
integrating bioinformatics analysis, clinical data, and laboratory experiments to
address the main gaps in mCRPC research. Our multifaceted approach
encompassed the evaluation of the composition of blood immune cells and
their prognostic implications (Chapter 4), the development and validation of a
novel 22-gene prognostic signature (Chapter 5), and the exploration of the
immunomodulatory effects of enzalutamide and other antiandrogens on
immune cells both in vivo and In vitro (Chapter 6). The integration of
bioinformatics and clinical oncology provided profound insight into the
molecular underpinnings of mCRPC progression and resistance to treatment.

Peripheral blood analysis in patients with mCRPC provides not only the
possibility of identifying tumour components, but also prognostic information.
This prognostic data results from the intricate interactions among the tumor,
bone marrow, and the host’s immune system. Blood samples from individuals
with mCRPC have previously been shown to provide prognostic information
for the disease beyond the simple identification of tumour components. This is
supported by studies involving analysis of gene expression [182, 183, 216] and
evaluating relative cell proportions in blood counts, specifically focussing on
the neutrophil to lymphocyte ratio (NLR) [201–206]. Analyses of gene
expression in whole blood have been shown to be significant prognostic

107
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indicators in advanced prostate cancer. Specifically, Olmos et al. [183]
discovered a nine-gene signature linked to the T cell immune response, whereas
Ross et al. [182] formulated a six-gene signature associated with the regulation
of cellular immunity and monocyte differentiation. Notably, this research is
pioneering in assessing the roles of 22 distinct immune cell components in
blood, which are generally not reported in clinical trial blood tests.

Assessing the composition of immune cells within the blood is crucial for
comprehending the dynamic interplay between cancer and the immune system,
offering significant prognostic information for diseases like mCRPC.
Technological advances now facilitate detailed analyses of these elements.
CIBERSORT is an advanced deconvolution technique that deciphers cell
composition using gene expression data [192, 193]. It applies linear support
vector regression (SVR) for precise deconvolution of gene expression mixtures
from these tissues. The method has shown a high correlation with the
conventional flow cytometric technique and, therefore, is considered quite
accurate and reliable by many studies [217–219].

In this chapter, our objective was to improve our understanding of the
prognostic environment in mCRPC by examining the involvement of various
types of immune cells. To achieve this, we rigorously evaluated pre-treatment
blood samples from patients participating in an innovative phase 2 multicenter
study. The study specifically aimed to assess the therapeutic effectiveness of
enzalutamide as an initial treatment for mCRPC. Recognising the paramount
importance of repeatability and applicability in biomarker studies, we included
an independent validation group of patients with mCRPC. This group was vital
in confirming the reliability and potential clinical value of our initial results,
providing a robust basis for potentially personalized treatment approaches.

This study represents an initial effort in assessing the practicality of blood
immune profiling in patients enrolled in a multicenter clinical trial. It explores
the prognostic impact of blood CD8 T cells in individuals with mCRPC. We
analyzed twenty-two types of blood immune cells in pre-treatment samples
from mCRPC patients taking part in a multicenter phase 2 biomarker clinical
trial using enzalutamide. Our findings indicated that elevated monocyte levels
and reduced CD8 T-cell counts were linked to poorer survival outcomes. These
findings were corroborated in a separate cohort of mCRPC patients. Low CD8
T-cell levels remained an independent prognostic factor when incorporated into
a validated clinical prognostic model. This study validates the feasibility of
analyzing immune cell components at a centralized laboratory using samples
obtained from patients in a multicenter clinical trial. The results hold potential
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for patient stratification in future studies, especially in clinical trials concerning
agents that stimulate immune cells.

To analyze the composition of immune cells in blood, we employed
CIBERSORT, a machine learning method designed to determine the cellular
makeup of complex tissues from gene expression data. CIBERSORT has been
shown to precisely quantify the immune-cell components of blood samples
[192, 193, 220], correlating well with flow cytometry methods for detailing the
phenotypic range of the twenty-two immune-cell subsets evaluated in this
study [220]. This methodological approach not only improves reproducibility
among different studies but also offers a scalable solution for regular clinical
evaluation.

Currently, several prognostic models for mCRPC are available, depending on
the clinical context and the treatments chosen. A specific model for
chemotherapy-naïve mCRPC patients treated with enzalutamide was
constructed using clinical data from both the PREVAIL phase 3 trial and our
own study scenario and treatments. Recently, we improved this model by
incorporating molecular factors such as circulating tumour cells (CTCs) and
amplification of the AR in plasma DNA [221]. Through multivariate analysis,
we examined the independent prognostic importance of these cellular
components compared to validated clinical models, finding that the proportion
of CD8 T-Cell lymphocytes retained independent prognostic value.
Interestingly, in our cohort, NLR was not prognostic, likely due to the
prevalence of low NLR in patients primarily with low tumour burden.

Various elements, such as steroid therapies, may impact the composition of
immune cells in the blood and act as confounding factors in prognostic
assessments. Steroid use is associated with elevated neutrophil levels and
reduced lymphocyte numbers [222]. We observed that a minor segment of our
patient cohort was initially on low-dose steroids, specifically 6 patients taking
low-dose prednisone (≤ 10 mg). To account for potential confounding effects of
steroids on the prognostic relevance of immune-cell components, we
incorporated steroid usage into a comprehensive multivariate analysis that
included recognized clinical and laboratory factors alongside the prognostic
immune cell components. Steroid usage did not alter prognostic significance for
CD8 T-Cells or monocytes, and was not prognostically significant.
Consequently, we conclude that the small group of patients on low-dose
steroids did not influence the previously reported prognostic significance of
these immune cell components, thus bolstering the reliability and applicability
of our findings.
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While our study offers innovative contributions, we acknowledge certain
limitations. The evaluation of immune-cell composition using CIBERSORT, like
all methods based on gene expression, can be restricted by the accuracy of the
reference profiles, which may vary under specific conditions. Additionally,
certain cell types might be consistently overestimated or underestimated,
though inter-group relative comparisons can mitigate this effect. Despite these
challenges, it continues to be a validated method for evaluating and monitoring
immune cell populations within complex tissues, including blood. A further
constraint concerns the inclusion of patients with asymptomatic or minimally
symptomatic chemotherapy-naïve mCRPC. Although this scenario is the most
prevalent in the clinical, it would be insightful examining the immune elements
in the blood of patients with other clinical characteristics, such as those
experiencing pain or exhibiting aggressive or neuroendocrine disease features,
and those undergoing alternative treatments like other AR pathway inhibitors
(ARPIs), docetaxel, 177Lu-PSMA or Radium-223.

Ultimately, our results suggest the need to reconsider the integration of immune
profiles into clinical studies. They pave the way for further exploration into the
prognostic and/or predictive importance of immune cell components in clinical
trials. This approach may be particularly beneficial for immunotherapy trials.
These findings were recently published by Perez-Navarro E, et al. [223]

Currently, our therapeutic decisions are based on the clinical features and safety
profile of the treatments. To individualize treatment, it is essential to dissect
tumour heterogeneity at both the clinical and biological levels. To address
clinical heterogeneity, we have nomograms that include the most significant
clinical prognostic factors [224] and to address biological heterogeneity, we
need to integrate qualified biomarkers. An ideal biomarker in mCRPC must be
reliable, reproducible, easy to obtain, preferably by a minimally invasive
method, able to capture tumour heterogeneity and dynamism, and repeatable
in the different clinical scenarios in which it is used.

Peripheral blood studies are an ideal source of biomarkers. The so-called liquid
biopsy aims to capture tumour-related information from blood samples.
Studies included in this heading include the study of circulating tumour cells
(CTCs) [225], nucleic acids (plasma DNA)[226], circulating RNA and
microvesicle studies [227].

In previous work, we presented findings from a phase 2 multicenter clinical
study that focused on biomarkers in chemo-naïve mCRPC patients treated with
enzalutamide as a first-line therapy. The study’s main goal was to explore the
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link between TMPRSS2-ERG and the drug’s effectiveness, yet no significant
correlation was found. Nonetheless, our analysis revealed that circulating
tumor cells (CTCs) measured by AdnaTest® and AR gain were significant,
independent prognostic factors. Furthermore, we performed external validation
of a clinical prognostic model from the PREVAIL trial, noting that both CTCs
and AR gain enhanced the model’s prognostic accuracy. Consequently, we
formulated a streamlined model comprising clinical variables and AR gain,
validated using an independent cohort of mCRPC patients undergoing
enzalutamide treatment in a comparable clinical context.

Prior investigations into the predictive significance of TMPRSS2-ERG concerning
novel antiandrogens have yielded inconsistent outcomes with abiraterone. An
early phase I/II trial involving abiraterone observed heightened PSA responses
in tumors displaying TMPRSS2-ERG fusion [89, 228]. Our findings involving
patients administered enzalutamide, in conjunction with earlier research with
abiraterone, suggest that the TMPRSS2-ERG fusion gene is of limited utility as a
predictive biomarker in mCRPC subjected to anti-androgen treatments.

Additionally, we assessed plasma AR-gain alongside other prospective
biomarkers such as CTCs identified via AdnaTest® and AR-V7 expression
within CTCs. Our prior publication documented the correlation between
plasma AR-gain and negative outcomes to enzalutamide treatment after a
median follow-up period of 11 months. These results were updated with a
median follow-up of 37 months that confirms its strong independent prognostic
value in first line mCRPC. AR-gain prognostic value was independent of other
clinical and molecular prognostic variables. We observed a numerical increase
in AR gain in AR-V7 positive patients compared with AR-V7 negative and CTC
negative (40% vs 17% vs 8%). This result, although limited by the low numbers,
agreed with previous publications in prostate cancer metastatic tissue, that
observe an association between AR gain and AR-V7 expression in prostate
cancer metastases [229].

Our study demonstrated that AdnaTest® enables the detection of CTCs in
approximately one-third (35%) of patients with low to intermediate risk
mCRPC. Furthermore, CTCs serve as a robust and independent prognostic
biomarker. Additionally, landmark survival analysis revealed that the
conversion of CTC status at 12 weeks of therapy is correlated with treatment
outcomes, indicating a positive prognosis when CTCs become negative and a
negative prognosis when they become positive. However, prospective
randomized clinical trials are needed in order to fulfil the Prentice criteria [230]
and fully qualify as a meaningful biomarker for regulatory matters. AR-V7 in
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CTCs has previously demonstrated clinical value in mCRPC patients treated
with a new anti-androgen therapy [171, 231]. In this first-line study, we
observed a low detection rate for AR-V7 (5% of all patients; N= 5/98) and low
PSA50 response rate (40% vs 82%). These results are consistent with a recently
published phase 3 trial [232] in this same scenario, with a detection rate of
7-10% (N=38/953) and a response rate of 42% in 19 patients treated with
enzalutamide. These results have been recently published by Fernandez-Perez
MP et al. [221] (Annex 12.1), Perez-Navarro E et al. [223] (Annex 12.2).

The investigators of the pivotal trial of enzalutamide in first-line mCRPC
published a clinical prognostic model able to stratify patients based on
pre-treatment clinical variables. The initial model suffered from constraints due
to the absence of external validation and lack of molecular variables. By
validating this clinical prognostic model, we achieved a C-index of 0.70 and
found that both circulating tumor cells (CTCs) and AR gain were independent
variables enhancing the model’s prognostic capability. Subsequently, we
developed a streamlined clinical-molecular model incorporating three
variables: AR gain, ALP, and PSA, which underwent independent validation.
Lactate dehydrogenase (LDH) has been a frequent choice in various prognostic
models for mCRPC, including those incorporating CTCs [225, 233].
Interestingly, LDH did not prove significant in our penalized regression model.
This could be due to LDH’s association with high-risk factors not captured by
our model, potentially explaining the absence of statistical significance. In this
phase 2 biomarker trial, we presented further evidence with extensive
follow-up concerning the prognostic influence of AR gain alongside other
biomarkers, including CTCs and AR-V7 in chemo-naïve mCRPC patients. We
demonstrate the enhancement of clinical prognostic models through AR gain
and propose a novel parsimonious model with plasma AR gain. Further
investigations featuring extensive biomarker panels and detailed clinical
datasets are necessary to reformulate prognostic models in prostate cancer.

Clinical prognostic models for mCRPC, such as the model for patients receiving
first-line enzalutamide [234], aim to address the condition’s heterogeneity. This
particular model requires external validation and may benefit from
enhancements that incorporate molecular data.

Blood cells interact with tumour cells in tissue, especially in the bone marrow.
This interaction generates changes in expression, chromosomal alterations, and
epigenetic changes in stromal cells associated with tumour aggressiveness.

Peripheral blood (PB) expression profiling has been shown to have diagnostic
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and prognostic capabilities in multiple malignancies [235–238]. Peripheral
blood expression profiles with prognostic ability have also been described in
mCRPC. The first study published by Olmos D. et al. [183], conducted at the
Royal Marsden/Institute of Cancer Research-UK, identifies a signature in the
peripheral blood of mCRPC. Cancer Research-UK, identifies a signature
composed of 9 genes with the capacity to identify a subgroup of patients with
very aggressive tumours with prognostic patients with highly aggressive
tumours with a decreased median survival of (10.7 vs. 25.6 months). This
signature was associated with other poor prognostic factors such as elevated
PSA or presence of CTCs. This signature, which was obtained from the selection
of genes studied by gene expression arrays that were validated by RT-PCR, is
composed of the following genes: HMBS, TMCC2, SNCA, SLC4A1, STOM,
GABRARAPL2, TERF2IP, RIOK3, and TFDP1. These genes are predominantly
expressed by immature erythroid cells CD71+ (transferrin receptor), possibly
related to the movement of haematopoietic cells from the bone marrow and, to
a lesser extent, genes involved in a decrease in the immune response.
Independently, researchers at Dana Farber Cancer [182] identify a signature
composed of 6 genes capable of identifying a group with a very adverse
prognosis (7.8 vs 34.9 months) and independent of known clinical prognostic
factors. This gene signature, which was obtained by studying by RT-PCR a
pre-selected subgroup of genes involved in inflammatory processes, includes
the following genes: C1QA, TIMP1, and CDKN1A which are related to an
enrichment in macrophages; ITGAL which is expressed in natural killer (NK)
cells; and ABL2 and SEMA4D which are enriched and involved in motility,
immune surveillance function and T cell activity. A third study, carried out
jointly by researchers from the above groups, identifies a prognostic signature
composed of 4 genes and a prognostic signature composed of four genes that is
more prognostic than the previous ones [184]. To this end, it again analyses the
expression data published by Dr. Olmos using computational techniques
including the elastic-net technique and is validated in 2 independent cohorts.
Although these signatures include different genes, together they identify a
subgroup of patients with very poor prognosis associated with bone marrow
infiltration and immune system dysfunction. These studies suggest that tumour
progression is associated with a decrease in the expression of genes related to
lymphocyte activation and cytotoxic function and an increase in genes related
to type 2 macrophages, associated with tumour progression. These results are
consistent with findings observed in serial samples of tumour tissue treated
with anti-CTLA4, demonstrating low pre-treatment lymphocyte infiltration in
relation to other tumours and post-treatment associated immuno-regulatory
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mechanisms lymphocyte mechanisms together with M2-type macrophage
activation [239], which may explain the limited efficacy of these treatments.

In this thesis, we develop a 22-gene prognostic signature derived from
peripheral blood gene expression profiles. We applied high-throughput
microarray data from the PREMIERE trial and, after stringent preprocessing
and quality control procedures, focused our analysis on well-characterized
transcripts with consistent expression patterns. First, DEG associated with OS
were identified by univariate Cox regression. This gave us a large pool of
candidate biomarkers. These candidates were further polished and confirmed
through a variety of supervised learning approaches, including linear and
non-linear methods. For linear models, these included L1-regularized
regression, L2-regularized regression, and their combination in the Elastic Net
model that balances L1 and L2 penalties. In addition to these, Random Survival
Forests were considered to possibly uncover complex nonlinear relationships
among gene predictors. Every model was subjected to systematic
hyperparameter tuning within a 7.3. Dynamics of immune cells in response to
antiandrogen therapy 10-fold cross-validation framework to optimize the
C-index. From these models, LASSO and Elastic Net emerged as the leading
contenders, predominantly due to their strong predictive capacity. The
signature demonstrated excellent predictive performance, with high
concordance indices (C-indices) in both the training cohorts (0.868) and the
validation cohorts (0.774), and maintained its prognostic value across multiple
clinically relevant time points, as evidenced by time-dependent ROC analyses.

The signature outperformed existing models, such as those by Olmos et al.
[183], Ross et al. [182] and Wang et al. [216], in both the PREMIERE training
cohort and the MELDOLA validation cohort. The strength of our model lies in
its rigorous statistical foundation and validation. Using Lasso regression, we
effectively reduced dimensionality and selected the most relevant genes from a
large pool of candidates identified through univariate Cox regression analysis.
Time-dependent ROC analyses further confirmed the robustness of our
signature across clinically relevant time points, indicating its potential utility in
guiding treatment decisions and risk stratification.

The identification of this 22-gene signature has significant clinical implications.
It provides a robust tool for risk stratification, enabling clinicians to tailor
treatment strategies based on individual patient risk profiles. High-risk
patients, as identified by our signature, may benefit from more aggressive or
alternative therapeutic interventions, including enrolment in clinical trials
investigating novel agents. Conversely, low-risk patients might avoid
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unnecessary side effects associated with intensive treatments.

We have applied for an invention related to methods for predicting the
progression of prostate cancer, specifically mCRPC, in an individual. The
invention employs gene expression profiling combined with predictive
modeling to assess the likelihood of OS and biochemical recurrence following
treatment. Details of the application of the invention are available in the
annexes. (HE-Ref. 909 356; Annex 12.3).

Immunotherapy has been revolutionary over the past several years, particularly
immunocheckpoint inhibitors (ICI) that are already available in clinical
settings. However, ICIs in PCa have shown disappointing results compared to
other malignancies [142, 144, 145]. The PCa immune microenvironment may be
inhospitable to immune cells and soon develop immune-tolerance strategies
that can promote tumour growth, dissemination, and immune evasion.

Several efforts have been made to improve immunotherapy development in
prostate cancer. Zhao et al. [218] interrogated the immune landscape using
gene expression data from 9393 primary prostate tissue obtained from
prostatectomy. Deconvolution using CIBERSORT revealed that tumour
infiltration by macrophages and T lymphocytes conferred a worse prognosis,
while mast cells, natural killers (NK) and dendritic cells (DC) were associated
with an improved prognosis. Despite the huge number of samples included in
the analyses, this study is limited by the study of only localized disease and the
estimation of cell populations. However, the authors identify PD-L2 as a
relevant biomarker for immune tolerance in PCa. Consistent with previous
results, Jairath et al. [217] recently analysed TCGA RNA-Seq data and
identified that localised prostate cancer subtypes enriched with macrophages
and plasma cells depleted localized prostate cancer subtypes were associated
with a worse prognosis.

Since immunotherapy is currently aimed at treating distant and lethal diseases,
there is a pressing need to address the different stages of prostate cancer,
including metastatic tissue in an androgen-deprived environment. In
particular, ADT is associated with a short-term increase in the number of naïve
T cells and Th-1 cells and a decrease in the number of T-regs, supporting the
antitumor immune response to ADT [240]. However, emerging evidence
suggests that anti-androgens, including enzalutamide, may have
immunosuppressive effects on T cell priming [241]. These results suggest that
the correct timing of ADT when treating PCa in combination with other
immunotherapies is crucial to avoid unintended immunosuppressive effects. In
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fact, sequencing of a therapeutic vaccine (Prostvac) and nilutamide
demonstrated that using Prostvac first, followed by nilutamide, prolonged
survival compared to reverse sequence [242].

The tumour microenvironment represents a complex medium in which innate
immunity enhances tumour progression, metastases, and resistance to
treatment, including resistance to castration [243] and to immunotherapy.
However, the precise determinants that trigger a specific immunological
landscape are not fully understood. Different genetic backgrounds have been
shown to profoundly influence the composition of the tumour
microenvironment, inducing diverse immune-cell components with different
natures and roles. Bezzi et al. [244] demonstrated that gene-specific intrinsic
pathways are at the core of various pro-tumour immune cell recruitment and
infiltration. The loss of PTEN has been shown to be associated with an
increased number of mononuclear myeloid derived suppressor cells
(Mo-MDSCs; Gr-1+CD11b+ cells). These cells support prostate tumour
growth and metastases by opposing the senescence response essential for
immunosuppression by expressing Arginase 1 (Arg1) and inducible nitric
oxidase (iNOS) [245]. TP53 directly regulates the expression of CXCL17 at the
promoter, and loss of TP53 is associated with up-regulation of CXCL17
expression. This cytokine acts as a cell attractant for Mo-MDSCs. Genetically
modified prostate cancer models have increased intratumoural Gr-1+CD11b+
cells that exhibit a tumour-promoting phenotype associated with
T-reg-mediated antitumour immunosuppression. Mo-MDSCs observed at an
earlier stage are subsequently derived from PMN cells and macrophages. In
silico analysis of the TCGA data supports these findings in humans. This
interaction between PTEN and P53 defective tumours and MoMDSCs can be
druggable. Vidotto et al. [246] observed using in silico analysis that gene
expression in a human data set increased Treg infiltration (FOXP3) in
PTEN-deficient prostate cancers. CXCR2 has been shown to increase the
immunosuppressive tumour microenvironment and drives tumour progression
through the attraction of Gr-1 + CD11b + cells. Inhibition of CXCR2, using
SB225002, inhibits the attraction of Gr-1 + CD11b + cells, which subsequently
inhibits tumour growth. Navarixin (MK-7123) is a CXCR2 inhibitor currently in
clinical trials in prostate cancer in combination with pembrolizumab or
enzalutamide. Further understanding of the complex interaction between the
genetic background and its targeted agents, and the immune components of the
TME is key to drive tailored immunotherapy. In addition, we need to unravel
complex interactions between both components and its variation in diverse
scenarios
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Despite these promising insights, immune-checkpoint inhibitors including
anti-CTLA4 and anti-PD1/PD-L1 therapies—have so far failed in advanced
prostate cancer [138, 142, 144, 147, 247, 248]. Two large randomized trials in
metastatic castration-resistant disease, combining enzalutamide with
anti–PD-L1 (atezolizumab; IMbassador 250 [249]) or with anti-PD1
(pembrolizumab; KEYNOTE-641 [250]), did not improve survival; similarly,
the phase 3 KEYNOTE-991 trial of ADT plus enzalutamide and pembrolizumab
in metastatic castration-sensitive disease ended for futility [149].

Host-immune interactions with sex hormones could explain this lack of success,
as well as gender differences in incidence and mortality across many cancers
[137, 138, 251]. Prostate cancer intimately interacts with the immune system
during initiation and progression [16, 252, 253], and androgens drive
tumourigenesis while also suppressing T cells and IFN-γ production. As the
standard of care in advanced disease, ADT, whether chemical (GnRH
analogues or antagonists) or surgical (orchiectomy) can enhance antitumor
immunity [254–256], regenerate the thymus [257], and increase intratumoural
CD4+, CD8+ T cells, and macrophages in localized tumours when used
preoperatively [258, 259]. ADT is also capable of inducing new antibody
specificities in patients [260, 261].

Although prostate cancer is considered a ”cold” tumour, compared to other
cancers, immune infiltrates can be commonly observed in primary and
metastatic tissue of advanced prostate cancer. Several immune populations,
including CD4, CD8 lymphocytes, NK, and monocytes, are commonly observed
in the tumour microenvironment of metastatic prostate cancer [136].
Furthermore, ADT increases PD-1 blockade through direct interactions of
androgen receptors in T cells, boosting IFN-γ–mediated activity and creating a
CD8+ T-cell signature linked to responses. Interestingly, although the
combination of ADT, enzalutamide, and anti-PD1 was synergistic,
enzalutamide alone did not enhance PD-1 blockade in preclinical models [136].
Parallel synergy was clinically observed in the PRIME-CUT phase 2 trial
(NCT03951831), where metastatic sites such as liver, bone, lung and lymph
nodes became highly infiltrated by CD8+, CD4+ T cells, and Tregs under
combined ADT and anti-PD1 [262]. These findings suggest that lowering
plasma testosterone may differ from directly blocking the AR with
enzalutamide, which can have off-target effects. Consequently, while ADT
combined with enzalutamide and anti-PD1 seems promising, enzalutamide
alone may not recapitulate the same immune synergy [136]. Together, these
results underscore the intricate interplay between sex hormones and immune
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responses in prostate cancer and highlight the importance of aligning genomic
characteristics, TME complexity, and therapeutic sequencing (particularly the
timing of ADT and immunotherapies) to develop more effective individualized
treatment approaches.

Integrating our results from the three chapters provides a comprehensive
overview of the role of the immune system in the prognosis and treatment in
mCRPC. The identification of both monocytes and CD8+ T cells as significant
prognostic markers underlines the importance of immune surveillance and
regulation in disease progression. We developed a 22-gene prognostic signature
that could be of value in personalized medicine, allowing clinicians to predict
outcomes in patients with greater certainty. Our finding on the off-target effects
of enzalutamide and other antiandrogens on T-cell survival has revealed one
mechanism by which resistance to this drug arises. This implies that the
depletion of cytotoxic T cells and the perturbation of immune cell dynamics are
indicative of a more permissive environment for enzalutamide-induced tumour
growth. These findings also underscore the need for evaluation of treatment in
mCRPC, not only targeting direct antitumor effects but also considering
impacts on the immune system.

Inclusion of immune profiling in clinical trials will allow the selection of
therapies with the least effect on immunosuppression that could result in
improvement of combination treatments involving immunotherapies.

Although our studies contribute significantly to the knowledge about mCRPC,
several limitations should be underlined: Despite rigorous selection and
validation, patient cohorts were relatively small and findings may need
validation in larger and more diverse populations. Immune cell profiling relies
on computational deconvolution algorithms, which, for all their power, cannot
compete with direct measurements such as flow cytometry in capturing the full
details of the immune landscape. The extension of patient cohorts to include all
ethnicities and stages of disease in future studies would provide a better
generalization of the findings. Further immune cell types, including regulatory
T cells and myeloid-derived suppressor cells, could be studied to provide a
deeper understanding of the immune dynamics in mCRPC. Longitudinal
studies of immune changes through different treatment modalities would also
be informative in identifying optimal therapeutic windows and strategies.

In addition, a deeper investigation of the molecular processes that determine
the AR-independent action of antiandrogens on immune cells might show new
targets for reducing immunosuppression. Future research into combination
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regimens with other such immune-activating agents will hopefully unlock
synergies to breakthrough resistance in a clinical attempt to improve patient
outcomes.
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CONCLUSIONS

The following are the final conclusions that can be drawn from the results
obtained in this thesis:

• Conclusion 1.- A comprehensive evaluation of the composition of
immune cells in mCRPC patients has shown that high levels of
monocytes prior to treatment and reduced proportions of CD8+ T cells
in peripheral blood are independently associated with poorer OS in
patients with mCRPC. These findings highlight the critical role of host
immune responses and how immune profiling could add value to risk
stratification.

• Conclusion 2.- We have identified a new peripheral blood 22-gene
expression signature that is a strong predictor of patient outcome in
mCRPC. This signature has been validated in an independent data set
and outperforms existing blood-based prognostic models. A patent has
been sought and is currently being evaluated.

• Conclusion 3.- Treatment with enzalutamide is associated with changes
in immune cell composition in the blood of patients with mCRPC,
including a decrease in CD8-T cells. In vitro experiments demonstrate
decreased survival induced by enzalutamide in an AR independent
manner. This off-target effect might be variable between different AR
targeting agents.

122
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CONCLUSIONES

A continuación se exponen las conclusiones finales que se pueden extraer de los
resultados obtenidos en esta tesis:

• Conclusión 1.- Una evaluación exhaustiva de la composición sanguínea
de las células inmunes en pacientes con CPRCm ha demostrado que los
niveles elevados de monocitos antes del tratamiento y las proporciones
reducidas de células T CD8+ en sangre periférica se asocian de forma
independiente con una peor supervivencia global en pacientes con
cáncer de próstata metastásico resistente a la castración. Estos hallazgos
ponen de relieve el papel fundamental de las respuestas inmunitarias
del huésped y cómo los perfiles inmunológicos podrían añadir valor a
la estratificación del riesgo.

• Conclusión 2.- Hemos identificado una nueva firma de expresión de 22
genes en sangre periférica que es un fuerte predictor del resultado de
los pacientes con cáncer de próstata metastásico resistente a la
castración. Esta firma ha sido validada en un conjunto de datos
independiente y supera a los modelos de pronóstico basados en sangre
existentes. Se ha solicitado una patente, que se está evaluando
actualmente.

• Conclusión 3.- El tratamiento con enzalutamide se asocia con cambios
en la composición inmune de la sangre de pacientes con CPRCm,
incluyendo descenso en linfocitos T CD8. Experimentos in vitro
demuestran una menor supervivencia inducida por la enzalutamida de
forma independiente del receptor de andrógenos. Este efecto,
independiente de la diana, puede ser variable entre los distintos agentes
dirigidos frente al receptor androgénico.

125
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