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RESUMEN 
Esta tesis doctoral aborda en profundidad la ecología microbiana del suelo, centrándose en los procesos 

que regulan los ciclos biogeoquímicos del fósforo (P), nitrógeno (N) y carbono (C) en suelos agrícolas y 

naturales. A través de la integración de enfoques multi-ómicos, que incluyen metagenómica, 

metaproteómica, metatranscriptómica y genomas ensamblados a partir de metagenomas (MAGs), se 

analiza la composición funcional y taxonómica del microbioma del suelo, su especialización ecológica y 

su respuesta a factores ambientales clave como las prácticas de fertilización, la fenología del cultivo y la 

descomposición de materia orgánica. Los resultados de esta tesis no solo confirman las hipótesis iniciales, 

sino que revelan dimensiones hasta ahora poco exploradas del funcionamiento microbiano en 

ecosistemas terrestres, aportando conocimientos aplicables tanto al avance de la ciencia básica como al 

diseño de estrategias para una agricultura sostenible. 

 

Uno de los hallazgos más relevantes de este estudio es la identificación de gremios microbianos altamente 

especializados dentro de los ciclos del fósforo, nitrógeno y carbono. En el caso del fósforo, se observa 

una clara diferenciación funcional entre los microorganismos implicados en la solubilización del fósforo 

inorgánico y aquellos responsables de la mineralización del fósforo orgánico. Esta separación se refleja 

en la composición taxonómica: las Actinobacteria albergan genes implicados en la solubilización de 

fósforo inorgánico, pero no en la mineralización del fósforo orgánico, lo que sugiere una adaptación 

evolutiva a fuentes específicas de este nutriente. De este modo, se pone de manifiesto la importancia de 

considerar no solo la disponibilidad total de fósforo en el suelo, sino también la diversidad funcional de los 

microorganismos involucrados en su transformación. A ello se suma el descubrimiento del papel relevante 

de las arqueas en el ciclo del fósforo, cuya contribución ha sido históricamente subestimada. Esta tesis 

demuestra que diversos taxones arqueales contienen genes relacionados con el metabolismo del fósforo, 

lo que sugiere que desempeñan funciones complementarias o incluso esenciales junto a las bacterias en 

la regulación de este ciclo. Asimismo, el análisis metaproteómico permitió identificar enzimas clave como 

la fosfatasa alcalina codificada por el gen phoX, la cual se encontró abundantemente expresada en 

agroecosistemas de maíz y puede emplearse como biomarcador para monitorizar la disponibilidad de 

fósforo en suelos agrícolas. 

 

Este hallazgo no solo aporta información sobre la funcionalidad del microbioma edáfico, sino que también 

sugiere posibles aplicaciones prácticas. El desarrollo de biosensores basados en la actividad de phoX 

podría convertirse en una herramienta útil para la gestión del fósforo en sistemas agrícolas, facilitando la 

toma de decisiones sobre el momento óptimo para aplicar fertilizantes o enmiendas orgánicas. Además, 

el papel de las arqueas en la regulación de este ciclo reabre el debate sobre su inclusión en modelos de 

predicción de la dinámica de nutrientes, históricamente centrados en bacterias y hongos. 

 

En cuanto al ciclo del nitrógeno, los datos muestran que los nichos funcionales microbianos están muy 

bien definidos, con poca superposición entre grupos funcionales. Las Nitrososphaeraceae, por ejemplo, 

se presentan como nitrificantes especializados que carecen de genes relacionados con la fijación de 



 

  
 

nitrógeno molecular o con rutas de transporte de nitrógeno, lo que refuerza la existencia de funciones 

ecológicas diferenciadas. Este patrón se repite en los desnitrificantes, que forman gremios agrupados 

taxonómicamente asociados a rutas metabólicas específicas. Las técnicas metagenómicas y 

metaproteómicas permitieron no solo detectar la presencia de estos gremios, sino también vincularlos con 

enzimas funcionales como la glutamina sintetasa (GlnA), cuya relevancia en la asimilación de nitrógeno 

ha sido escasamente reconocida en estudios anteriores. Además, mediante reconstrucciones de MAGs, 

se confirmó la implicación de determinadas familias bacterianas, como Propionibacteriaceae, en procesos 

de desnitrificación, aportando una visión más detallada de los actores microbianos que regulan el ciclo 

del nitrógeno. 

 

Un aspecto clave de este trabajo es la demostración de que la fenología del cultivo es el principal factor 

que determina la abundancia y actividad de los genes implicados en el ciclo del nitrógeno, superando 

incluso el efecto de la fertilización. Las diferentes fases del desarrollo vegetal condicionan la expresión de 

genes responsables de procesos como la nitrificación y la desnitrificación, lo que sugiere que las 

estrategias de fertilización deberían adaptarse no solo a la composición del suelo, sino también al 

momento fenológico del cultivo para optimizar el uso del nitrógeno y reducir pérdidas ambientales. No 

obstante, los distintos tratamientos de fertilización también muestran efectos significativos. Los 

fertilizantes minerales, como NPK y estruvita, tienden a estimular rutas metabólicas como la nitrificación 

y la reducción disimilatoria de nitrato a amonio (DNRA), mientras que las enmiendas orgánicas promueven 

una mayor diversidad microbiana y una actividad funcional más diversa, aunque su eficacia depende de 

una gestión adecuada que garantice la sincronía entre la liberación de nutrientes y la demanda del cultivo. 

 

El hallazgo de que la fenología modula de manera más decisiva que la fertilización la expresión de genes 

clave del nitrógeno tiene profundas implicaciones agronómicas. Sugiere, por ejemplo, que la eficiencia de 

uso del nitrógeno podría mejorarse no solo ajustando dosis de aplicación, sino también modificando el 

calendario de fertilización en función de los momentos de máxima actividad microbiana, en estrecha 

sincronía con las necesidades fisiológicas del cultivo. 

 

En el ciclo del carbono, los resultados de esta tesis cuestionan la visión tradicional que otorga un papel 

predominante a los hongos en la descomposición de la materia orgánica compleja. Se identificaron 

gremios bacterianos altamente especializados en la degradación de biopolímeros como la quitina, los β-

1,3-glucanos y la celulosa. Entre ellos, destacan géneros como Chitinophaga y Pedobacter, 

especializados en la degradación de quitina, Terriglobus en la degradación de β-1,3-glucanos y 

Asticcacaulis en la degradación de celulosa. Estos resultados evidencian que las bacterias desempeñan 

un papel clave, y en algunos contextos dominante, en la descomposición de compuestos complejos de 

origen vegetal y microbiano. Este hallazgo se vio reforzado por análisis metatranscriptómicos, que 

demostraron que la actividad metabólica de estos descomponedores bacterianos era alta y que, en 

muchos casos, superaba a la de grupos tradicionalmente considerados como los principales 

descomponedores. A pesar de que las Proteobacteria presentaban la mayor abundancia de genes en 



 

  
 

términos generales, no eran las más activas desde el punto de vista transcripcional, lo que subraya la 

necesidad de adoptar una perspectiva funcional al estudiar el papel ecológico de los microorganismos, 

más allá de su mera presencia o abundancia relativa. 

 

Este cambio de paradigma en el papel relativo de bacterias y hongos en la descomposición de materia 

orgánica puede tener efectos importantes en el diseño de estrategias de manejo del carbono en suelo. 

Por ejemplo, podría promover el uso de inoculantes bacterianos especializados en la degradación de 

compuestos recalcitrantes, o incluso inspirar prácticas agrícolas que favorezcan las condiciones de 

actividad óptima para dichos grupos. 

 

En conjunto, los resultados obtenidos permiten afirmar que la fenología del cultivo es el principal impulsor 

de los cambios funcionales en las comunidades microbianas del suelo, condicionando la expresión de 

genes clave en los ciclos de fósforo y nitrógeno. Esta observación tiene importantes implicaciones 

prácticas, ya que indica que las estrategias de manejo de nutrientes deben estar estrechamente alineadas 

con el desarrollo fenológico de los cultivos. Por ejemplo, genes relacionados con la solubilización del 

fósforo y con la nitrificación presentan variaciones significativas a lo largo de las etapas de crecimiento de 

las plantas, lo que sugiere que la aplicación de fertilizantes o biofertilizantes debería ajustarse 

temporalmente para maximizar su eficacia. Asimismo, aunque los efectos de la fertilización son 

secundarios respecto a la fenología, siguen siendo relevantes: los insumos minerales estimulan rutas 

metabólicas específicas, mientras que las enmiendas orgánicas requieren una mayor planificación para 

evitar pérdidas por mineralización temprana o inmovilización de nutrientes. Este enfoque permite diseñar 

esquemas de fertilización más eficientes, que equilibran el suministro de nutrientes con la dinámica 

microbiana del suelo. 

 

Desde el punto de vista metodológico, esta tesis aporta importantes innovaciones al demostrar la utilidad 

de integrar múltiples capas de datos ómicos en el estudio de la ecología microbiana del suelo. La 

metagenómica permitió establecer un marco general sobre la diversidad y el potencial funcional de las 

comunidades microbianas. La metaproteómica y la metatranscriptómica ofrecieron información detallada 

sobre la actividad enzimática y la expresión génica bajo diferentes condiciones ambientales y prácticas 

de manejo. Por su parte, la reconstrucción de genomas a partir de metagenomas permitió identificar 

nuevos taxones con funciones específicas, ampliando el repertorio de microorganismos relevantes para 

el funcionamiento de los ciclos biogeoquímicos. Esta integración ha permitido descubrir nuevos actores 

microbianos implicados en procesos clave como la degradación de celulosa o quitina, así como enzimas 

subestimadas como la GlnA en la asimilación de nitrógeno. La profundidad y resolución de este enfoque 

multi-ómico ofrece nuevas posibilidades para el desarrollo de herramientas diagnósticas y estrategias de 

intervención en la agricultura. 

 

Además de su contribución al conocimiento básico, esta tesis ofrece importantes oportunidades para el 

diseño de nuevas herramientas biotecnológicas aplicadas al manejo sostenible de los suelos agrícolas. 



 

  
 

El descubrimiento de taxones microbianos altamente especializados, junto con la identificación de 

biomarcadores funcionales como phoX y GlnA, abre la posibilidad de desarrollar kits moleculares para el 

diagnóstico rápido del estado funcional del suelo. Estos biomarcadores podrían integrarse en sistemas 

de agricultura de precisión, facilitando la toma de decisiones sobre el momento y tipo de fertilización, la 

aplicación de biofertilizantes o la rotación de cultivos, en función del estado real de la microbiota edáfica 

y no solo de parámetros químicos convencionales. 

 

Igualmente, la capacidad predictiva derivada de la integración de datos ómicos con algoritmos de 

aprendizaje automático permite anticipar respuestas funcionales del microbioma del suelo frente a 

distintos escenarios de manejo, como cambios en el tipo de cultivo, eventos climáticos extremos o la 

introducción de nuevas prácticas agronómicas. Estos modelos podrían implementarse en plataformas 

digitales de apoyo a la gestión agrícola, convirtiendo el conocimiento generado por esta investigación en 

una herramienta efectiva para productores, técnicos y responsables de políticas públicas. 

 

Por otro lado, la constatación del impacto de la fenología sobre la expresión funcional de los ciclos 

biogeoquímicos plantea nuevos desafíos para la investigación ecológica, particularmente en la necesidad 

de realizar muestreos más ajustados temporalmente. Esta perspectiva también puede ser útil para 

estudios de cambio climático, ya que las alteraciones fenológicas inducidas por el aumento de 

temperaturas pueden desincronizar los procesos microbiológicos del suelo respecto a las necesidades 

del cultivo, generando desequilibrios que comprometan la productividad y la eficiencia en el uso de 

nutrientes. 

 

A la luz de los resultados, se destaca la importancia de fomentar líneas de investigación interdisciplinarias 

que integren microbiología del suelo, agronomía, ciencia de datos y ecología funcional. Además, resulta 

necesario impulsar estudios de largo plazo en parcelas experimentales para validar la estabilidad de los 

gremios microbianos identificados y su respuesta sostenida ante diferentes regímenes de manejo. La 

evolución de estos sistemas bajo un contexto de intensificación sostenible debe ser evaluada no solo en 

términos de productividad, sino también de estabilidad funcional, diversidad y servicios ecosistémicos. 

 

Más allá del ámbito científico y técnico, los resultados de esta tesis también tienen importantes 

implicaciones sociales y políticas. La comprensión profunda del papel que desempeñan los 

microorganismos del suelo en los ciclos de nutrientes puede contribuir a transformar los modelos agrícolas 

actuales, excesivamente dependientes de insumos externos, hacia sistemas más autosuficientes y 

basados en procesos ecológicos. Esta transición es fundamental en un contexto global marcado por la 

crisis climática, la pérdida de biodiversidad y la necesidad urgente de garantizar la seguridad alimentaria 

a largo plazo. 

 

Asimismo, los conocimientos generados por esta investigación pueden servir de base para diseñar 

políticas públicas que reconozcan explícitamente la importancia de la salud microbiana del suelo como 



 

  
 

componente esencial de la sostenibilidad agrícola. Por ejemplo, los programas de incentivos 

agroambientales podrían incorporar indicadores funcionales del microbioma como criterios de elegibilidad 

o éxito, incentivando prácticas que favorezcan su diversidad y funcionalidad. 

 

En el ámbito de la educación y la formación, esta tesis resalta la necesidad de integrar de manera 

transversal la ecología microbiana en los programas de estudios agronómicos, biotecnológicos y 

ambientales. La capacidad de interpretar datos ómicos y traducirlos en recomendaciones prácticas será 

cada vez más demandada, tanto en el sector académico como en el profesional. De este modo, se 

propone fomentar una nueva generación de investigadores y técnicos con competencias 

interdisciplinares, capaces de abordar la complejidad de los agroecosistemas desde una perspectiva 

sistémica e informada por los avances de la biología molecular y la bioinformática. 

 

Finalmente, esta investigación constituye una aportación concreta al paradigma emergente de la gestión 

regenerativa de suelos, que no solo se limita a conservar los recursos existentes, sino que busca restaurar 

sus funciones ecológicas a través de una intervención inteligente basada en evidencia científica. El 

reconocimiento del suelo como un sistema biológicamente activo y dinámico, cuya funcionalidad depende 

en gran medida de sus comunidades microbianas, representa un cambio de enfoque fundamental con 

profundas repercusiones ecológicas, económicas y sociales. 

 
  



 

  
 

 
  



 

  
 

ABSTRACT 
 
This doctoral thesis provides an in-depth exploration of soil microbial ecology, focusing on the processes 

that regulate the biogeochemical cycles of phosphorus (P), nitrogen (N), and carbon (C) in both agricultural 

and natural soils. By integrating multi-omics approaches—including metagenomics, metaproteomics, 

metatranscriptomics, and metagenome-assembled genomes (MAGs)—this study analyzes the functional 

and taxonomic composition of the soil microbiome, its ecological specialization, and its responses to key 

environmental factors such as fertilization practices, crop phenology, and the decomposition of organic 

matter. The findings of this thesis not only support the initial hypotheses but also uncover previously 

underexplored dimensions of microbial functioning in terrestrial ecosystems, contributing knowledge that 

is applicable both to basic science and to the development of strategies for sustainable agriculture. 

 

One of the most significant findings of this study is the identification of highly specialized microbial guilds 

involved in the phosphorus, nitrogen, and carbon cycles. In the case of phosphorus, a clear functional 

differentiation is observed between microorganisms involved in the solubilization of inorganic phosphorus 

and those responsible for the mineralization of organic phosphorus. This separation is mirrored in 

taxonomic composition: Actinobacteria harbor genes associated with inorganic phosphorus solubilization 

but not with organic phosphorus mineralization, suggesting an evolutionary adaptation to specific nutrient 

sources. This highlights the importance of considering not only total phosphorus availability in soil but also 

the functional diversity of the microorganisms involved in its transformation. Additionally, the study 

uncovers the previously underestimated role of archaea in the phosphorus cycle. It demonstrates that 

various archaeal taxa possess genes related to phosphorus metabolism, suggesting that they may perform 

complementary or even essential functions alongside bacteria in regulating this cycle. Metaproteomic 

analysis also identified key enzymes such as the alkaline phosphatase encoded by the phoX gene, which 

was abundantly expressed in maize agroecosystems and may serve as a biomarker for monitoring 

phosphorus availability in agricultural soils. 

 

This discovery not only enhances our understanding of the soil microbiome’s functional capabilities but 

also suggests potential practical applications. The development of biosensors based on phoX activity could 

become a useful tool for phosphorus management in agricultural systems, informing decisions about 

optimal timing for fertilizer or organic amendment applications. Furthermore, the role of archaea in 

regulating this cycle reopens the debate about their inclusion in nutrient dynamics models, which have 

historically focused on bacteria and fungi. 

 

Regarding the nitrogen cycle, the data reveal that microbial functional niches are well-defined, with minimal 

overlap between functional groups. For example, Nitrososphaeraceae appear as specialized nitrifiers 

lacking genes associated with nitrogen fixation or nitrogen transport pathways, reinforcing the existence 

of distinct ecological roles. This pattern is also evident in denitrifiers, which form taxonomically clustered 

guilds associated with specific metabolic pathways. Metagenomic and metaproteomic techniques not only 



 

  
 

detected the presence of these guilds but also linked them to functional enzymes such as glutamine 

synthetase (GlnA), whose relevance in nitrogen assimilation has been largely overlooked in previous 

studies. Moreover, MAG reconstruction confirmed the involvement of specific bacterial families, such as 

Propionibacteriaceae, in denitrification processes, offering a more detailed understanding of the microbial 

actors that govern the nitrogen cycle. 

 

A key aspect of this work is the demonstration that crop phenology is the primary factor influencing the 

abundance and activity of genes involved in the nitrogen cycle, surpassing even the effects of fertilization. 

The different stages of plant development shape the expression of genes responsible for processes such 

as nitrification and denitrification, suggesting that fertilization strategies should be tailored not only to soil 

composition but also to the phenological stage of the crop. This would optimize nitrogen use efficiency and 

minimize environmental losses. Nonetheless, the type of fertilization also exerts significant effects. Mineral 

fertilizers such as NPK and struvite tend to stimulate metabolic pathways including nitrification and 

dissimilatory nitrate reduction to ammonium (DNRA), whereas organic amendments promote greater 

microbial diversity and broader functional activity. However, their effectiveness depends on proper 

management to synchronize nutrient release with crop demand. 

 

The finding that phenology more decisively modulates the expression of key nitrogen-related genes than 

fertilization carries substantial agronomic implications. For instance, nitrogen use efficiency could be 

improved not only by adjusting application rates but also by modifying the timing of fertilization to align with 

periods of peak microbial activity and the physiological demands of the crop. 

 

With respect to the carbon cycle, this thesis challenges the traditional view that fungi play a predominant 

role in the decomposition of complex organic matter. Highly specialized bacterial guilds were identified as 

key degraders of biopolymers such as chitin, β-1,3-glucans, and cellulose. Notable examples include the 

genera Chitinophaga and Pedobacter for chitin degradation, Terriglobus for β-1,3-glucans, and 

Asticcacaulis for cellulose breakdown. These findings underscore the crucial—and in some contexts 

dominant—role of bacteria in the decomposition of complex plant- and microbe-derived compounds. This 

conclusion was further supported by metatranscriptomic analyses, which revealed that the metabolic 

activity of these bacterial decomposers was high and often exceeded that of groups traditionally regarded 

as the principal decomposers. Although Proteobacteria exhibited the highest gene abundance overall, they 

were not the most transcriptionally active, emphasizing the need to adopt a functional perspective when 

assessing the ecological role of microorganisms, beyond their mere presence or relative abundance. 

 

This paradigm shift in the relative roles of bacteria and fungi in organic matter decomposition could 

significantly influence the design of soil carbon management strategies. For example, it may promote the 

use of bacterial inoculants specialized in the degradation of recalcitrant compounds, or even inspire 

agricultural practices that favor optimal activity conditions for these microbial groups. 

 



 

  
 

Overall, the results obtained confirm that crop phenology is the primary driver of functional changes in soil 

microbial communities, shaping the expression of key genes involved in phosphorus and nitrogen cycling. 

This finding has important practical implications, as it suggests that nutrient management strategies should 

be closely aligned with the phenological development of crops. For instance, genes related to phosphorus 

solubilization and nitrification exhibit significant temporal variation across plant growth stages, indicating 

that the timing of fertilizer or biofertilizer application should be carefully adjusted to maximize efficacy. 

Although the effects of fertilization are secondary to those of phenology, they remain relevant: mineral 

inputs stimulate specific metabolic pathways, while organic amendments require more precise planning to 

avoid early mineralization losses or nutrient immobilization. This approach enables the design of more 

efficient fertilization schemes that balance nutrient supply with soil microbial dynamics. 

 

From a methodological standpoint, this thesis introduces significant innovations by demonstrating the 

value of integrating multiple layers of omics data in the study of soil microbial ecology. Metagenomics 

provided a broad framework for assessing microbial diversity and functional potential. Metaproteomics and 

metatranscriptomics offered detailed insights into enzymatic activity and gene expression under different 

environmental conditions and management practices. Genome reconstruction from metagenomes 

enabled the identification of new taxa with specific functions, thereby expanding the repertoire of 

microorganisms relevant to the functioning of biogeochemical cycles. This integrative approach revealed 

novel microbial players involved in key processes such as cellulose or chitin degradation, as well as 

underestimated enzymes like GlnA in nitrogen assimilation. The depth and resolution afforded by the multi-

omics framework open up new possibilities for developing diagnostic tools and targeted intervention 

strategies in agriculture. 

 

In addition to advancing basic knowledge, this thesis also provides key opportunities for designing new 

biotechnological tools to support sustainable soil management in agricultural systems. The discovery of 

highly specialized microbial taxa, along with the identification of functional biomarkers such as phoX and 

GlnA, paves the way for the development of molecular kits for rapid diagnosis of soil functional status. 

These biomarkers could be integrated into precision agriculture systems, helping guide decisions on the 

timing and type of fertilization, the application of biofertilizers, or crop rotation, based on the actual 

condition of the soil microbiota rather than conventional chemical parameters alone. 

 

Furthermore, the predictive capacity derived from integrating omics data with machine learning algorithms 

allows for the anticipation of functional responses of the soil microbiome to various management scenarios, 

such as changes in crop type, extreme weather events, or the introduction of new agronomic practices. 

These models could be implemented in digital decision-support platforms for agricultural management, 

transforming the knowledge generated by this research into a practical tool for farmers, technical advisors, 

and policy makers alike. 

 



 

  
 

On the other hand, the demonstrated impact of phenology on the functional expression of biogeochemical 

cycles presents new challenges for ecological research, particularly in the need for temporally refined 

sampling strategies. This perspective may also prove valuable in climate change studies, as phenological 

shifts driven by rising temperatures could desynchronize soil microbial processes from crop requirements, 

leading to imbalances that compromise both productivity and nutrient use efficiency. 

 

In light of these findings, the importance of promoting interdisciplinary research lines that integrate soil 

microbiology, agronomy, data science, and functional ecology becomes evident. Additionally, long-term 

studies in experimental plots are needed to validate the stability of the identified microbial guilds and their 

sustained responses to different management regimes. The development of these systems within a 

framework of sustainable intensification must be evaluated not only in terms of productivity but also in 

relation to functional stability, biodiversity, and ecosystem services. 

 

Beyond the scientific and technical spheres, the results of this thesis also hold important social and political 

implications. A deep understanding of the role of soil microorganisms in nutrient cycling may help shift 

current agricultural models—overly reliant on external inputs—towards more self-sufficient systems 

grounded in ecological processes. This transition is critical in a global context marked by climate crisis, 

biodiversity loss, and the urgent need to ensure long-term food security. 

 

Moreover, the knowledge generated by this research can serve as a foundation for public policies that 

explicitly acknowledge the importance of soil microbial health as a key component of agricultural 

sustainability. For instance, agri-environmental incentive programs could incorporate functional indicators 

of the microbiome as eligibility or performance criteria, thereby encouraging practices that support 

microbial diversity and functionality. 

 

In the realm of education and training, this thesis underscores the need to mainstream microbial ecology 

within agronomic, biotechnological, and environmental curricula. The ability to interpret omics data and 

translate it into practical recommendations will become increasingly valuable in both academic and 

professional sectors. In this sense, fostering a new generation of interdisciplinary researchers and 

practitioners capable of addressing the complexity of agroecosystems from a systems-based 

perspective—grounded in molecular biology and bioinformatics—is a priority. 

 

Ultimately, this research contributes concretely to the emerging paradigm of regenerative soil 

management, which goes beyond the conservation of existing resources to actively restore ecological 

functions through scientifically informed and intelligent intervention. Recognizing soil as a biologically 

active and dynamic system—whose functionality largely depends on its microbial communities—

represents a fundamental shift in perspective with profound ecological, economic, and social implications. 
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GENERAL INTRODUCTION 

1. Soil: A fundamental resource and its functions  

Soil is an essential resource for agriculture, as it provides a physical and chemical medium through which 

plants acquire the nutrients required for their growth and development (Delgado & Gómez, 2024). This 

medium is primarily composed of particles of sand, clay, silt, and organic matter, which interact in complex 

ways to determine the structure and fertility of the soil. The proportion of these components influences the 

soil's ability to store water, nutrients, and support microbial life, which is crucial for the sustainability of 

agronomic systems (Kome et al., 2019; Russell et al., 1997). Additionally, soil regulates water availability, 

participates in the storage and release of essential nutrients, and acts as a reservoir of biodiversity 

(Havlicek & Mitchell, 2014; Nielsen et al., 2015; Turbé et al., 2010). It also functions as a buffer, regulating 

temperature, retaining moisture, and protecting plant roots from extreme climatic variations (Saco et al., 

2021). 

 

Beyond its ecological significance, soil performs critical functions that are essential for ecosystem health 

and agricultural productivity. These functions are summarized in Figure 1. These functions include carbon 

sequestration, water filtration, nutrient cycling, climate regulation, and biodiversity support (Smith et al., 

2015). Soil facilitates the decomposition of organic matter and the recycling of essential nutrients, enabling 

plant growth and maintaining ecosystem balance (Horwath, 2007). By storing organic carbon, soil 

contributes to mitigating climate change and regulating greenhouse gas emissions (Rosenzweig & Hillel, 

2000). Furthermore, soil acts as a natural filter, improving water quality and controlling water flow within 

the environment (Pierzynski et al., 2005). Simultaneously, it serves as a habitat for countless 

microorganisms that sustain biodiversity, which underpins all other functions (Prasad et al., 2021). Soil 

also plays a key role in climate stabilization through its involvement in regulating the cycles of phosphorus, 

nitrogen, carbon, and water (Goh, 2004). Further, it provides a stable foundation for crops, infrastructure, 

and ecosystems, ensuring human and environmental resilience (F. Shah & Wu, 2019).  

 

The ability of soil to deliver these ecosystem services is integral to sustainable agricultural practices and 

is closely linked to global and European environmental and agricultural policies, such as the EU Green 

Deal, the EU Soil Mission, and the Directive on Soil Health. These initiatives emphasize the importance of 

preserving and enhancing soil functionality to combat climate change, ensure food security, and protect 

biodiversity across Europe (Creamer et al., 2010; Montaldo, 2022; Panagos et al., 2024). For instance, the 

EU Green Deal aims to achieve carbon neutrality by 2050, with soil's role in carbon sequestration being 

pivotal to this goal (Panagos et al., 2022). Similarly, the EU Soil Mission focuses on restoring soil health 

to ensure that 75% of European soils are in good condition by 2030 (Efthimiou, 2025). Meanwhile, the 

Directive on Soil Health establishes guidelines to maintain soil functionality and prevent its degradation 

(Lehmann et al., 2020). Understanding and prioritizing the multifaceted roles of soil enables the 

development of strategies aligned with these policies, thereby contributing to a more sustainable and 

resilient future. 
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Figure 1: Schematic diagram of soil functions, (Baveye et al., 2020). 

 

Soil health is a critical factor that directly influences productivity (T. Yang et al., 2020). The term "soil 

health" refers to the soil's capacity to function as a living ecosystem, maintaining its biological, chemical, 

and physical properties to support the productivity of plants and animals, while also improving air and 

water quality and promoting biodiversity (Lehmann et al., 2020). Healthy soil not only ensures an efficient 

supply of nutrients and water but also mitigates environmental impacts, reduces greenhouse gas 

emissions, and supports sustainable agricultural systems. However, intensive agricultural practices, such 

as the excessive use of fertilizers and heavy machinery, often negatively impact these functions, leading 

to issues like compaction, loss of organic matter, and erosion (Gavrilescu, 2021; Kibblewhite et al., 2007). 

A fundamental pillar of soil health is its biological component, which includes biodiversity and microbial 

activity. Microorganisms are essential for soil processes such as nutrient cycling, organic matter 

decomposition, and soil aggregate stabilization (Condron et al., 2010). Microbial communities, among 

other factors, acts as an indicator of soil resilience and its ability to recover from disturbances (Philippot 

et al., 2021). Soil degradation, caused by factors such as erosion, salinization, or contamination, not only 

affects its physical and chemical properties but also leads to a loss of microbial biodiversity (Haj-Amor 

et al., 2022). This decline in microbial diversity poses a threat to the long-term sustainability of agriculture 

(Haj-Amor et al., 2022; Hossain et al., 2020). For instance, a reduction in the abundance and diversity of 

nitrogen-fixing bacteria or phosphorus-solubilizing microorganisms affects nutrient availability for crops, 

exacerbating challenges to maintaining optimal productivity. In this context, the study of soil microbiomes 

becomes especially relevant, as they not only constitute an essential biological component of the soil but 
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are also responsible for many of the processes that determine its sustainability and functionality. 

Understanding the role of microorganisms in soil is key to addressing current challenges in soil degradation 

and ensuring long-term sustainable agricultural and forest systems. 

 

2. The importance of the soil microbiome 

Soil microbial biodiversity is an essential component of agricultural ecosystems, playing a critical role in 

the sustainability and functionality of these systems. This term refers to the variety and complexity of 

microorganisms present in the soil, including bacteria, fungi, archaea, viruses, microscopic algae and 

protozoa. These microorganisms not only coexist but also interact with one another and with plants, 

forming a network of symbiotic and competitive relationships that sustain fundamental biological processes 

vital to terrestrial life (Figure 2) (Hartmann & Six, 2023). 

 

 
Figure 2: Microbial key functions in the plant-soil system. Image created at app.biorender.com.  

 

One of the most significant contributions of soil microorganisms is their involvement in nutrient cycling, a 

process essential for maintaining soil fertility. These microorganisms decompose organic matter, releasing 

key nutrients such as nitrogen, phosphorus, and carbon-rich compounds that are subsequently reused by 

plants and microbes. This process ensures a constant nutrient dynamic within natural and agricultural 

ecosystems, thereby promoting their sustainability and productivity (Bhowmik et al., 2017; Jacoby et al., 

2017). Without soil microbiomes, soil biogeochemical cycles would be severely disrupted. In addition to 

their chemical impact, soil microorganisms enhance the physical properties of soil. Microbial exudates, 

including numerous metabolites such as sugars, amino acids and organic acids, contribute to the formation 

of soil aggregates, which improve soil structure and promote water retention and aeration (Bronick & Lal, 

2005; Costa et al., 2018) and to soil regeneration. These improvements benefit roots development and, 

consequently, plant growth (Gabasawa et al., 2024). On a biological level, microbial biodiversity also 
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regulates pathogen populations and promotes plant growth through the production of phytohormones and 

antimicrobial compounds (Ortíz-Castro et al., 2009). 

 

3. The phosphorus cycle and the contribution of microorganisms to its 
dynamics 

Phosphorus is an indispensable macronutrient for plants, playing a crucial role in key metabolic processes 

such as photosynthesis, energy transfer, and nucleic acid synthesis. However, its availability in soils is 

extremely limited, as the majority is present in insoluble forms or chemically bound to minerals and organic 

compounds that are inaccessible to plants (García-Díaz et al., 2024). Moreover, natural sources of 

phosphorus, such as phosphate rocks, are non-renewable resources that are being rapidly depleted due 

to intensive extraction for fertilizer production. This issue is further compounded by European regulations 

that restrict the exploitation of natural phosphates to reduce associated environmental impacts, thereby 

encouraging the transition to more sustainable strategies such as recycling and improving phosphorus use 

efficiency (Bastida et al., 2023; Brownlie et al., 2021; García-Díaz et al., 2024). 

 

Microorganisms play a critical role in the phosphorus cycle by mediating its mineralization, solubilization, 

and transport (J. A. Siles et al., 2022). The process of phosphorus mineralization is primarily carried out 

by bacteria and fungi, which decompose phosphorus-rich organic compounds, such as phytates, proteins, 

and nucleic acids, through the secretion of phosphatase enzymes  (D. L. Jones & Oburger, 2011; Ramos 

Cabrera et al., 2024). These enzymes act on organic forms of phosphorus, converting them into inorganic 

forms, such as phosphates (H₂PO₄⁻ and HPO₄²⁻) (Figure 3), which plants can assimilate (Nannipieri et al., 

2011). These processes are regulated by genes such as phoA, phoD, phoX and phyA (alkaline 

phosphatase, alkaline phosphodiesterase, calcium-dependent alkaline phosphatase, and acid 

phosphatase/phytase, respectively), which encode enzymes responsible for hydrolyzing phosphate esters 

and phytates, releasing plant-available inorganic phosphate (Garaycochea et al., 2023). However, in soils, 

phosphorus is often present in insoluble forms, such as calcium, iron, and aluminum phosphates, which 

are not directly accessible to plants (Barroso & Nahas, 2005). In this context, bacteria and archaea play 

an essential role in phosphorus solubilization, facilitating its release. Bacteria such as certain 

Pseudomonas, Bacillus, and Enterobacter species, along with some archaeal species, secrete organic 

acids such as citric acid and acetic acid, which lower soil pH and solubilize insoluble phosphate 

compounds, thereby releasing phosphorus in a form that plant roots can absorb (Ayangbenro & Babalola, 

2021). This process is regulated by genes such as gcd and pqqC (glucose dehydrogenase and 

pyrroloquinoline quinone synthase C), which are involved in the synthesis of acids such as gluconic acid, 

which is crucial for mobilizing insoluble phosphorus (L. Pan & Cai, 2023). Through this process, bacteria 

and archaea enhance phosphorus availability for plants, particularly in soils with limited access to this 

nutrient (Richardson & Simpson, 2011). Additionally, mycorrhizal fungi also contribute to phosphorus 

solubilization. Through their hyphal networks, these fungi secrete organic acids that dissolve phosphate 

minerals, further increasing phosphorus availability in the soil (Andrino et al., 2021). 



 

  10 
 
 

 

In the context of phosphorus transport, phosphorus-solubilizing bacteria play a central role by colonizing 

the rhizosphere—the soil zone surrounding plant roots—and employing active mechanisms to transfer 

phosphorus from the soil to the vicinity of plant roots (Rawat et al., 2021). This process is regulated by 

genes such as pstSCAB and phoU (phosphate-specific transport system and PhoU negative regulator), 

which encode a high-affinity transport system for phosphates, and by genes such as phoR and phoB 

(PhoR histidine kinase sensor and PhoB response regulator), which adjust the expression of transport 

genes depending on the availability of phosphorus in the environment (Lubin et al., 2015). This integrated 

system of phosphorus mineralization, solubilization, and transport, mediated by bacteria and archaea, not 

only enhances phosphorus availability in soils but also contributes to the sustainability of agroecosystems 

by reducing the need for external inputs such as chemical fertilizers (Bargaz et al., 2018). 

 

 
Figure 3: Phosphorus cycle in the soil. This figure illustrates the sources of phosphorus input into the soil, the 

pathways through which phosphorus becomes available or unavailable for plant uptake, and the pathways of 

phosphorus loss or removal. It also includes the role of microorganisms in the key processes of the phosphorus cycle 

and some examples of the genes involved in each of these processes. Image created at app.biorender.com.  
 

4. The nitrogen cycle and the contribution of microorganisms to its 
dynamics 

Nitrogen is an essential nutrient for the growth and development of plants, as it is a key component of 

proteins, nucleic acids, and other vital compounds (Bastida et al., 2009a). However, despite nitrogen 

making up approximately 78% of the Earth's atmosphere in the form of nitrogen gas (N₂), plants cannot 

utilize it directly, making nitrogen one of the most limiting nutrients for plant growth (Cocking, 2000). 
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Consequently, it is crucial for nitrogen to undergo a series of transformations to become available in forms 

that plants can absorb and use. This process is governed by a series of chemical transformations in the 

nitrogen cycle, in which microorganisms play a fundamental role. 

 

In the nitrogen cycle, nitrogen-fixing bacteria, such as those of the Rhizobium genus, establish symbiosis 

with the roots of leguminous plants, forming root nodules where atmospheric nitrogen (N₂) is converted 

into ammonium (NH₄⁺) through the enzyme nitrogenase (Brochado et al., 2023). In addition to these root-

associated nitrogen fixers, free-living nitrogen-fixing bacteria, which are not associated with plant roots, 

also play a critical role in the nitrogen cycle. These bacteria, including genera such as Azotobacter and 

Clostridium, are capable of fixing atmospheric nitrogen in soil and aquatic environments. Free-living 

nitrogen fixers contribute to nitrogen availability in ecosystems by converting N₂ into forms that can be 

utilized by plants and other organisms (Reed et al., 2011). This process is mediated by genes such as 

nifH, nifD, and nifK, which encode the structural components of nitrogenase, the enzyme responsible for 

nitrogen fixation (Dos Santos et al., 2012). Additionally, regulatory genes like nifA play a crucial role in 

controlling the expression of nitrogenase in response to environmental conditions, such as oxygen levels 

and nitrogen availability (Martinez-Argudo et al., 2004). This ammonium is then incorporated into the soil, 

where it can be directly utilized by plants or further transformed by other microorganisms into more 

accessible forms.  

 

Nitrifying microorganisms, including ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea 

(AOA), and complete ammonia oxidizers (comammox), play a central role in the nitrification process. 

These microorganisms oxidize ammonium (NH₄⁺) into nitrites (NO₂⁻) and subsequently into nitrates 

(NO₃⁻), which plants absorb as a primary nitrogen source (Fenice, 2021; Norton, 2008). The first step of 

nitrification, the oxidation of ammonium to nitrite, is primarily carried out by ammonia-oxidizing bacteria 

(AOB) and archaea (AOA) through the enzyme ammonia monooxygenase (AMO), which is encoded by 

genes such as amoA, amoB, and amoC (Martikainen, 2022). In the second step, nitrite is oxidized to nitrate 

by the enzyme nitrite oxidoreductase, encoded by genes like nxrA and nxrB, which are crucial for 

sustaining nitrification in both bacterial and archaeal communities (Pester et al., 2014). Moreover, 

complete ammonia oxidizers (comammox) can perform both steps of the nitrification process, from 

ammonium to nitrate, highlighting the diverse metabolic pathways involved. These genes are highly 

conserved among nitrifying microorganisms and are essential for maintaining nitrogen cycling in 

agricultural and natural ecosystems (Qin et al., 2024; Stein & Klotz, 2016). 

 
On the other hand, denitrifying bacteria, such as Pseudomonas and Clostridium species, play a crucial 

role in returning nitrogen to the atmosphere in the form of nitrogen gas (N₂) or nitrous oxide (N₂O), thus 

closing the cycle and regulating nitrogen concentrations in the soil  (Figure 4). Denitrification involves a 

series of enzymes encoded by specific genes. The reduction of nitrates to nitrites is mediated by nitrate 

reductase, encoded by the genes narG, narH, and narI (Hamada & Soliman, 2023). Nitrite is further 

reduced to nitric oxide (NO) by nitrite reductase, encoded by nirS or nirK (Pold et al., 2024). The final 
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steps, the reduction of nitric oxide to nitrous oxide and nitrogen gas, are mediated by nitric oxide reductase 

(norB) and nitrous oxide reductase (nosZ), respectively (Torres et al., 2016). These genes are tightly 

regulated in response to environmental oxygen levels and nitrate availability.  

In addition to these processes, ammonification, which converts organic nitrogen compounds into 

ammonium, is another critical step in the nitrogen cycle. This process is facilitated by enzymes such as 

glutamate dehydrogenase, encoded by the gdh gene, and urease, encoded by ureC, which hydrolyze 

organic nitrogen compounds into ammonium (Jin, 2017). Other genes, such as asnB (asparagine 

synthetase B), play a role in the breakdown of nitrogen-containing organic molecules like asparagine. 

Regarding nitrogen assimilation, where plants and microorganisms incorporate inorganic nitrogen into 

organic molecules, genes such as nasA, nirB, and nirD (R. Hu et al., 2022) encoding nitrate and nitrite 

reductases, are mainly involved in the reduction of nitrates and nitrites into ammonium for incorporation 

into amino acids and other organic compounds. 

The nitrogen cycle is complex and includes a variety of transformations beyond those discussed. Recent 

studies have highlighted additional pathways such as Anammox (anaerobic ammonia oxidation) and 

DNRA (dissimilatory nitrate reduction to ammonium), which play important roles under specific 

environmental conditions. For example, anammox occurs in waterlogged soils like rice paddies where 

oxygen is limited, while DNRA dominates in carbon-rich anaerobic environments such as fertilized 

agricultural soils, helping retain nitrogen as ammonium. These processes influence nitrogen availability 

and greenhouse gas emissions in terrestrial ecosystems (Hamada & Soliman, 2023; P. Wu et al., 2022). 

Furthermore, the discovery of complete ammonia oxidizers (comammox) has expanded our understanding 

of nitrification, as these microorganisms can perform both the oxidation of ammonium to nitrite and the 

subsequent oxidation of nitrite to nitrate (Qin et al., 2024; Stein & Klotz, 2016). These transformations are 

not only essential for plant nutrition but also regulate environmental contamination by minimizing the 

accumulation of reactive nitrogen species, such as nitrates, which can leach into groundwater and 

contribute to issues such as eutrophication (Khan & Mohammad, 2014). 

5. The carbon cycle and the role of  microorganisms in its dynamics 

Carbon is another essential element for plants and represents a fundamental component of organic matter, 

ranging from carbohydrates to proteins and nucleic acids (Paul, 2016). Indeed, carbon forms the basis of 

all biomass and is the primary constituent of living organisms (Senesi & Loffredo, 1998). While carbon in 

the form of CO₂ is directly available to plants through photosynthesis, the transformation of carbon into 

organic forms via biological and biogeochemical processes is essential to sustain its cycle and availability 

within ecosystems (Cole et al., 2021). The carbon cycle is the process by which carbon is exchanged 

among the atmosphere, living organisms, and soil, regulating the availability of this element in the 

biosphere (Cole et al., 2021). 
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This cycle is critical for maintaining ecosystem balance, as carbon is a key element for life, but it can also 

become a challenge when accumulated in excess, as observed with the rising levels of atmospheric CO₂ 

caused by the burning of fossil fuels (Fu et al., 2022). 

 
Figure 4: Nitrogen cycle in the soil. This figure illustrates the main nitrogen transformations in the soil and their 
interactions with plants, animals, and microorganisms. It includes processes such as nitrogen fixation from the 

atmosphere by bacteria in soil, ammonification by decomposers, nitrification of ammonium (NH₄⁺) into nitrites (NO₂⁻) 

and nitrates (NO₃⁻), and the assimilation of these compounds by plants. Denitrification is also depicted, where 

bacteria and archaea convert nitrates into gaseous nitrogen (N₂), completing the cycle. It also includes some genes 

involved in each of these processes. Image created at app.biorender.com.  

 
The carbon cycle comprises several stages that involve both biological and geological processes. Carbon 

is absorbed by plants through photosynthesis, a process in which plants take up CO₂ from the atmosphere 

and, using solar energy, convert it into organic compounds, primarily sugars, which serve as the foundation 

of the food chain (Janssen et al., 2014). These organic compounds are transferred to primary consumers 

(herbivores), which are then consumed by carnivores, continuing through the trophic chain. When 

organisms die, the carbon contained in their biomass is returned to the environment as CO₂, primarily 

through the decomposition of organic matter by decomposer microorganisms such as bacteria and fungi 

(Condron et al., 2010). These microorganisms play a crucial role in carbon mineralization, transforming 

complex organic compounds into CO₂ and other minor products (Horwath, 2007). Additionally, carbon can 

be stored long-term in the soil as organic matter through biological carbon capture, forming what is known 

as carbon sinks (Farrelly et al., 2013) (Figure 5). Some of the carbon in the soil is converted into long-term 

organic carbon, which remains stored for centuries, contributing to the regulation of atmospheric CO₂ 

levels (Eglin et al., 2010). Processes such as humus formation and the accumulation of soil organic matter, 
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also referred to as carbon sequestration, help mitigate the effects of climate change by reducing 

atmospheric CO₂ concentrations (Gerke, 2022). 

 

Microorganisms play an essential role in the carbon cycle, not only in the decomposition of organic matter 

but also in the processes of carbon fixation and release. During decomposition, bacteria and fungi break 

down organic residues and release CO₂ into the atmosphere, a process known as microbial respiration 

(Abatenh et al., 2018). Furthermore, some microorganisms can fix carbon into organic forms through 

biosynthesis processes, thereby contributing to biomass production. 

 

 
Figure 5: Carbon cycle in the soil. It shows CO₂ absorption by trees during photosynthesis, the release of root 

exudates, and the decomposition of leaf litter by microorganisms. These processes contribute to the formation of Soil 

Organic Carbon (SOC), microbial respiration, and microbial turnover. The figure also highlights the interactions within 
the soil food web, where carbon is exchanged between microorganisms and other soil organisms. Image created at 

app.biorender.com.  

 

One of the primary tools utilized by microorganisms to break down complex organic materials is a 

specialized group of enzymes known as CAZymes (Carbohydrate-Active enzymes). These enzymes are 

crucial to the carbon cycle due to their ability to degrade, modify, and synthesize carbohydrates, enabling 

the decomposition of organic matter as well as the storage or release of carbon (López-Mondéjar et al., 

2022).  
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CAZymes play a pivotal role in terrestrial ecosystems by facilitating the recycling of carbon in various 

forms, thereby contributing to the balance of this element in the biosphere (Andrade et al., 2017). 

CAZymes encompass several classes and families of enzymes, each with specific functions and 

substrates (Lombard et al., 2014), forming a highly coordinated system for breaking down and 

transforming the diverse components of organic matter. 

Glycoside hydrolases (GHs) are a prominent class of CAZymes that hydrolyze glycosidic bonds in 

carbohydrates. These enzymes are responsible for degrading structural polysaccharides such as 

cellulose, hemicellulose, and starch, which are abundant in plant material. For example, cellulases 

hydrolyze cellulose into glucose, while xylanases target hemicellulose, breaking it down into xylose (Sime 

et al., 2024). Auxiliary activities (AAs) represent another essential class of CAZymes. This group includes 

oxidoreductases such as laccases and peroxidases, which act on lignin and other complex plant polymers. 

These enzymes play a pivotal role in oxidizing or modifying highly recalcitrant compounds, enabling their 

breakdown into smaller, more accessible molecules that can be recycled within the ecosystem (Chirania 

et al., 2022). Complementing these activities, carbohydrate esterases (CEs) remove ester groups from 

polysaccharides, thereby increasing their accessibility for enzymatic attack. For instance, acetylxylan 

esterases and pectin esterases specifically target acetylated xylan and pectin, respectively (Armendáriz-

Ruiz et al., 2018). Polysaccharide lyases (PLs) are another key group of CAZymes, responsible for 

cleaving polysaccharides such as pectin and alginate via non-hydrolytic mechanisms. This action 

facilitates the breakdown of complex plant residues into smaller components (Q. Lyu et al., 2018). 

Glycosyltransferases (GTs) are enzymes that catalyze the transfer of sugar moieties to form glycosidic 

bonds, contributing to the biosynthesis of structural polysaccharides like cellulose and chitin (Guidi et al., 

2023) (Figure 6). Finally, another important group of CAZymes are the carbohydrate-binding modules 

(CBMs), which are non-catalytic domains that bind specifically to carbohydrates such as cellulose or chitin. 

By stabilizing the interaction between the enzyme and its substrate, CBMs enhance enzymatic efficiency 

and facilitate the degradation process (Q. Shi et al., 2023). Together, these families of CAZymes form an 

integrated enzymatic network that allows microorganisms to degrade, modify, and recycle the diverse 

array of carbohydrates present in organic matter. This process not only supports the decomposition of 

plant and microbial residues but also contributes to carbon recycling and sequestration within ecosystems. 

In soils, carbohydrate-active enzymes (CAZymes) play a crucial role in the decomposition of organic 

matter, facilitating carbon recycling and soil sustainability. In forests soils in particular, where there is a 

high accumulation of organic matter from plant origin, these enzymes are actively involved in breaking 

down complex plant residues, such as leaves, branches, and roots, through the action of glycoside 

hydrolases, such as cellulases and xylanases, which degrade structural components like cellulose and 

xylans. This process releases simple sugars that are subsequently utilized by soil microorganisms as an 

energy source (Algora et al., 2022). Additionally, lignin-modifying enzymes, including laccases, oxidases 

and peroxidases, are essential for the degradation of lignin, a highly recalcitrant polymer found in plant 
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cell walls. This degradation allows the carbon trapped in lignin to be released and reintegrated into the 

biogeochemical cycle (Algora et al., 2022). 

 

Figure 6: Enzymatic degradation of plant and microbial polymers in soil. This figure highlights the breakdown of key 

plant components—cellulose, hemicelluloses, pectin, and lignin—by specific enzyme families. Additionally, it includes 
the degradation of fungal-derived polymers (chitin and β-glucans) and bacterial-derived peptidoglycan. The figure 

identifies major enzyme activities involved in these processes, such as cellulases, hemicellulases, pectinases, lignin-

modifying enzymes, chitinases, β-glucanases and peptidoglycanases, and also the main CAZyme families including 

these activities. Image created at app.biorender.com. 

 
Moreover, forest soils also present a high amount of organic matter from microbial origin (dead mycelium 

from mycorrhizal and saprotrophic fungi and dead bacterial biomass), that is degraded by the action of 

chitinases, betaglucanases and peptidoglycanases contributing to the recycling of carbon in the ecosystem 

(López-Mondéjar et al., 2020).Collectively, these enzymatic activities not only break down organic 

residues but also promote the transformation and utilization of modified structural carbohydrates, as 

facilitated by transferases and esterases, which in turn support microbial growth and biomass production 

(López-Mondéjar et al., 2022; Sime et al., 2024). This microbial metabolism is fundamental not only for 

residue degradation but also for the formation of humus, a key component for soil fertility and long-term 

carbon storage (L. Chen et al., 2023). In this way, CAZymes act as a critical link between biological and 

geological processes through carbon recycling while also contributing to primary productivity in forests by 

returning nutrients to the soil. In the context of climate change, these enzymes gain additional significance, 

as soil microorganisms, through their enzymatic actions, regulate carbon fluxes by either releasing it or 

sequestering it in stable forms depending on environmental conditions. This underscores their key role in 

climate change mitigation and global carbon dynamics (Yuan et al., 2023). 
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6. Agroecosystems and fertilization: Challenges and opportunities 

Modern agriculture is a fundamental pillar in ensuring global food security, with fertilizers playing a critical 

role in sustaining it. Without fertilizers, agriculture systems would be unable to meet the growing food 

demands of an ever-increasing global population (Mbene et al., 2023). However, conventional fertilizers, 

such as those based on nitrogen (N), phosphorus (P), and potassium (K) (NPK), face limitations that 

threaten their long-term sustainability. On one hand, their production relies on non-renewable resources 

like phosphate rock; on the other, their manufacturing and transportation entail significant economic costs, 

making them less accessible to small-scale farmers (Chojnacka et al., 2019; Cordell et al., 2009). Beyond 

economic and availability challenges, the intensive use of chemical fertilizers has led to severe 

environmental and ecological issues (Chandini et al., 2019). Excessive application has resulted in soil 

degradation, affecting not only its physical and chemical properties but also its biological component: the 

soil microbiome (Chandini et al., 2019; Hartmann & Six, 2023). These microbial communities, essential for 

processes such as nutrient cycling (i.e., N and P), organic matter decomposition, and soil aggregate 

stabilization, are disrupted by the accumulation of salts, soil acidification, and nutrient leaching, which 

diminish both their biodiversity and functionality (Rath & Rousk, 2015; Silva et al., 2022). Therefore, while 

conventional fertilizers remain essential for agricultural productivity, there is an urgent need to identify 

alternative sources that are economically viable, environmentally responsible, and have a positive or 

neutral impact on the functionality of soil microbiomes. In this sense, the application of organo-mineral 

fertilizers emerges as a sustainable and effective alternative to address the challenges posed by soil 

degradation while simultaneously enhancing soil functionality (García-Díaz et al., 2024a). These fertilizers 

combine the benefits of organic matter—such as improved soil structure, water retention, and microbial 

stimulation—with the targeted nutrient supply provided by mineral fertilizers, thereby boosting microbial 

activity. Furthermore, practices such as reduced tillage, the use of cover crops, and the integration of 

compost and biochar can complement these efforts by promoting a more balanced and resilient soil 

microbiome (Lehmann et al., 2020). 

 
These fertilizers combine organic materials, such as plant residues, composted manure, or sewage 

sludge, with inorganic nutrient sources or minerals like struvite, thereby efficiently providing essential 

elements like phosphorus. Fertilizers derived from sludge integrate nutrients recovered from waste 

generated during wastewater treatment processes (García-Díaz et al., 2024; Solon et al., 2019). When 

applied to soil, sludge not only enhances phosphorus recycling but also increases organic carbon and 

nitrogen content, as well as the biomass and activity of beneficial soil microbiota, ultimately improving soil 

fertility and functionality (Bastida et al., 2008). However, the use of sewage sludge presents certain 

challenges that necessitate regulatory oversight. The Council Directive of June 12, 1986 (86/278/EEC), 

aimed at protecting the environment—particularly soil safety in agricultural applications of sewage 

sludge—addresses these concerns. Sewage sludge often contains elevated levels of heavy metals and 

pathogens, which may pose risks to human, animal, and plant health (García-Díaz et al., 2024a; Usman 

et al., 2012). Therefore, it is essential to subject sludge to treatment processes that ensure safe utilization 

under appropriate conditions. Treatments such as thermal stabilization and anaerobic digestion are 
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effective in significantly reducing pathogen levels (Frost et al., 2022; García-Díaz et al., 2024a; Shao et al., 

2019).  

 

Struvite (MgNH₄PO₄·6H₂O) is another promising alternative, consisting of a magnesium ammonium 

phosphate salt recovered through precipitation and crystallization processes from waste water and sewage 

sludge (Ruiz-Navarro et al., 2023). It plays a crucial role in the phosphorus cycle by enhancing the 

availability of this essential nutrient to plants more efficiently than conventional fertilizers (Krishnamoorthy 

et al., 2021). As a sustainable source of phosphorus, struvite reduces dependence on non-renewable 

reserves such as phosphate rock (Bastida et al., 2023; Ruiz-Navarro et al., 2023). Phosphate rock, a 

natural source of phosphorus, is becoming increasingly scarce. Global phosphate rock resources are 

estimated at approximately 40,000 Mt of phosphorus (equivalent to 300,000 Mt of phosphate rock) (Bastida 

et al., 2023). The production of conventional phosphorus fertilizers derived from phosphate rock faces 

significant challenges due to the anticipated depletion of this mineral reserve and the fact that many 

phosphate rock mines are situated in regions of geopolitical instability (Bastida et al., 2023). Additionally, 

the scarcity of alternative phosphorus sources, coupled with stricter European Union regulations—such as 

limits on cadmium content in fertilizers—emphasizes the urgent need to develop sustainable phosphorus 

sources to ensure the continued maintenance of crop production (Bastida et al., 2023; García-Díaz et al., 

2024). 

 

Alternative phosphorus fertilizers like sludge and struvite offer advantages due to their gradual phosphorus 

release, minimizing the risk of leaching and water contamination (Yesigat et al., 2022). Their incorporation 

into agricultural systems promotes the efficient use of phosphorus, contributing to soil sustainability and 

the responsible management of finite resources. In this context, mineral and organic fertilizers, as those 

derived from sludge or struvite present promising alternatives. These approaches minimize the depletion 

of non-renewable resources, improve soil structure, and contribute to long-term regeneration (García-Díaz 

et al., 2024a). By promoting microbial diversity and enhancing critical biogeochemical cycles, they offer a 

more sustainable solution for maintaining soil health and productivity without the negative environmental 

impacts associated with conventional fertilizers (García-Díaz et al., 2024a). These strategies align with the 

Sustainable Development Goals (SDGs), particularly those addressing food security and environmental 

sustainability. By balancing agricultural productivity with resource conservation, they provide a pathway to 

sustainable farming systems that preserve natural ecosystems while ensuring global food security. 

 

7. Natural soils: influence on the carbon cycle 

Natural soils, such as those found in forests, grasslands, and undisturbed ecosystems, play a fundamental 

role in the global carbon cycle. Unlike agricultural soils, which are subject to intensive management 

practices, natural soils act as long-term carbon sinks, storing large amounts of organic carbon in the form 

of stable organic matter and humus (Fageria, 2012; Farrelly et al., 2013; Goh, 2004). Forest soils, for 

example, are among the largest carbon (C) reservoirs on Earth, playing a critical role in global 
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biogeochemical cycles. Covering over 40 million km², forests store vast amounts of organic matter, with 

soils alone holding 44% of the estimated 861 Pg of C in these ecosystems (Y. Pan et al., 2011). Forest 

soils act as major carbon sinks, receiving tons of litter annually and supporting microbial processes 

essential for decomposition and nutrient cycling. This storage not only contributes to soil fertility but also 

plays a crucial role in mitigating climate change by reducing atmospheric CO₂ concentrations.  

 

In natural soils, carbon dynamics are closely linked to interactions among vegetation, microorganisms, 

and environmental conditions. The decomposition of organic matter, including leaves, branches, and roots, 

is a key process in which soil microorganisms—such as bacteria, and fungi—break down complex 

compounds such as cellulose, hemicellulose, and lignin (Bani et al., 2018; Condron et al., 2010). This 

process releases carbon in the form of CO₂ while transforming a fraction into stable compounds that 

accumulate in the soil. In addition to recycling essential nutrients for plant growth, this decomposition 

process contributes to humus formation, a critical component for soil carbon stability (Horwath, 2007). 

 

The biodiversity of forest soils is a determining factor in their capacity to store carbon. A diverse array of 

plant and microbial species enhances carbon stability by increasing decomposition efficiency and the 

formation of stable organic compounds (Lange et al., 2015). For instance, mycorrhizal fungi, which 

establish symbiotic associations with plant roots, not only facilitate nutrient uptake but also contribute to 

soil aggregate formation, protecting organic carbon from microbial degradation (Frey, 2019). Furthermore, 

the diversity of decomposer microorganisms, such as saprotrophic bacteria and fungi, ensures efficient 

breakdown of plant residues, promoting the accumulation of carbon in stable forms (Bani et al., 2018; 

Condron et al., 2010).  

 

However, global change threatens the stability of natural soils. Human activities such as deforestation, 

forest management, and land-use changes, along with climate-driven stressors like rising temperatures, 

prolonged droughts, increased fire frequency, and invasive pests, are altering soil carbon dynamics 

(Baldrian et al., 2023). These activities not only reduce the capacity of soils to store carbon but also release 

large amounts of CO₂ into the atmosphere, and risk turning forest soils from carbon sinks into net sources 

of CO₂,	with profound implications for climate feedback loops (Smith et al., 2016). For example, the 

conversion of forests into agricultural land or pastures drastically reduces soil organic carbon content due 

to vegetation loss and the disruption of microbial communities that regulate the carbon cycle (Verchot, 

2010).  

 

Microbial communities, including bacteria and fungi, are fundamental to forest soil function. They regulate 

carbon turnover, decomposition, and nutrient availability, shaping ecosystem resilience. Understanding 

how these microbial-driven processes respond to environmental changes is crucial for predicting the future 

health of forest soils and their role in global carbon and nutrient cycles. Additionally, studying the biological 

and ecological mechanisms that regulate the carbon cycle in natural soils provides valuable insights for 
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developing sustainable management strategies applicable to agricultural and forest systems (Gower, 

2003). 

 

8. Omics approaches: A new era in the study of soil microorganisms 

The study of microorganisms involved in the phosphorus, nitrogen, and carbon cycles has traditionally 

been challenging due to the immense complexity and diversity of soil microbial communities. The advent 

of Meta-omics approaches has revolutionized the way soil microorganisms are studied, offering 

unprecedented insights into their structure, function, and dynamics  (V. Kumar et al., 2021). These cutting-

edge analytical tools enable the comprehensive investigation of whole microbial communities and their 

interactions with the environment, providing critical information about their role in biogeochemical cycles 

and ecosystem functioning. Advances in next-generation sequencing (NGS), mass spectrometry, and 

bioinformatics tools capable of analyzing large datasets have driven the rise of meta-omics approaches 

(Kulski, 2016). 

 

Meta-omics disciplines encompass various methodologies, including genomics, transcriptomics, 

proteomics, metabolomics, phenomics, and ionomics, each targeting specific molecular layers of biological 

systems (Figure 7). The term "meta" in meta-omics refers to the study of the collective set of all genes, 

transcripts, proteins, metabolites, etc., present in a particular sample, rather than focusing on a single 

organism or genome. For example, metagenomics involves analyzing the entire genetic material present 

in an environmental sample, providing insights into the diversity and functional potential of microbial 

communities. This contrasts with traditional omics approaches, which typically examine specific, individual 

molecular components (e.g., the genome, transcriptome, or proteome) of a single organism or biological 

system. 

 

By employing approaches such as metagenomics, metatranscriptomics, metaproteomics, and the analysis 

of metagenome-assembled genomes (MAGs), researchers can explore microbial communities in their 

entirety, including uncultivable microorganisms that were previously inaccessible (Blakeley-Ruiz et al., 

2019). These techniques allow scientists to link microbial taxonomy with functional capabilities, revealing 

the mechanisms that regulate critical processes like nutrient cycling, organic matter decomposition, and 

greenhouse gas fluxes (Vailati-Riboni et al., 2017). This integrative view of soil ecosystems is particularly 

valuable in agriculture, where understanding how microorganisms contribute to nutrient availability, soil 

health, and sustainability is essential (Van Emon, 2016).  

 

Meta-omics approaches have proven indispensable for addressing key sustainability challenges in 

agricultural systems, such as soil fertility loss, greenhouse gas emissions, and inefficient fertilizer use 

(Wallace et al., 2017). By providing detailed insights into the structure and function of soil microbiomes, 

these techniques bridge the gap between microbial diversity and their functional roles, enabling the design 

of microbiota-based strategies to enhance productivity while minimizing environmental impacts (Djemiel 
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et al., 2022). Furthermore, they support the identification of potential bioindicators of soil health, the 

development of biotechnological solutions like biofertilizers and biopesticides, and the creation of real-time 

monitoring tools to assess soil quality and functionality. 

 

The integration of taxonomy with function underscores the transformative potential of meta-omics for 

advancing both scientific understanding and practical applications, marking a new era in soil microbiology. 

 

 
Figure 7: Overview of omics disciplines: This diagram highlights the key omics approaches—genomics, 

transcriptomics, proteomics, metabolomics, phenomics, and ionomics—and their roles in studying DNA, RNA, 

proteins, metabolites, phenotypes, and essential ions to understand microbial communities and their functions. 

8.1. Metagenomics: Exploring genetic potential 

Metagenomics involves the direct extraction and sequencing of DNA from microbial communities present 

in environmental samples. This approach provides access to the metagenome, which represents the 

complete set of genetic material within a community, including both cultivable and non-cultivable 

microorganisms (Garza & Dutilh, 2015). This technique not only identifies which microorganisms are 

present in a soil sample but also predicts their functional capabilities through the annotation of genes 

associated with key metabolic processes (Prakash & Taylor, 2012). Metagenomic analysis begins with the 

collection of environmental samples, such as soil, which harbor diverse microbial communities. Genomic 

DNA is extracted using specialized protocols to ensure its quality. The DNA is then fragmented and 

prepared into a library compatible with sequencing technologies such as Illumina (short-reads, where the 

DNA is fragmented into smaller pieces, typically 2x150bp), PacBio (long-reads, where the DNA is not 

fragmented but the desired size is selected, typically 15,000-20,000bp), or Oxford Nanopore (long-reads, 

where the DNA is not fragmented and is passed directly through a nanopore, resulting in ultra-long reads, 

ranging from 100,000-300,000bp) (Thomas et al., 2012). After sequencing, the raw data undergo 

bioinformatics processing to transform the billions of short or long reads into meaningful biological 

information. This includes quality filtering, assembly (using tools such as MEGAHIT or metaSPAdes for 

short reads), gene prediction (using Prodigal or MetaGeneMark) and taxonomic/functional annotation 

(using databases such as NCBI, KEGG or COG) (Aramaki et al., 2020; Grünberger et al., 2022; Kanehisa 
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et al., 2016; Kang et al., 2019; D. Li et al., 2015; Love et al., 2014; Mikheenko et al., 2016; Pruitt et al., 

2009; Uritskiy et al., 2018). This metagenomic analysis process is illustrated in Figure 8. 

 

 
Figure 8: Overview of the metagenomic analysis workflow: From soil sample collection to DNA extraction, followed 

by library preparation, sequencing, and analysis. The process culminates in the assembly of genomic sequences 

and the use of specialized tools and software for further analysis and reconstruction of microbial genomes. Image 

created at app.biorender.com.  

 

In the context of agricultural soils, metagenomics allows the identification of genes linked to nutrient cycles, 

such those involved in nitrogen fixation (e.g., the nifH gene) (Wolińska et al., 2017), and phosphorus 

mineralization, solubilization or transport (e.g., genes encoding phosphatases) (Liao et al., 2023), and the 

decomposition of organic matter (e.g., genes coding for cellulases and lignin-modifying enzymes) (C. 

Wang et al., 2016). Furthermore, it can track genes associated with agriculturally relevant processes, such 

as pest and disease resistance, or identify microorganisms involved in carbon sequestration within the soil 

(Jagadesh et al., 2024). Thus, metagenomics enables the construction of functional gene catalogs 

regulating the carbon, nitrogen, and phosphorus cycles, providing deep insights into how agricultural 

practices influence the soil microbiota and, consequently, its fertility and sustainability (G. C. Kumar et al., 

2021; J. A. Siles et al., 2022). 

 

Compared to other molecular tools like amplicon sequencing or metabarcoding, which target specific 

marker genes, metagenomics offers significant advantages when studying soil microbial communities. 

Amplicon sequencing focuses on amplifying and sequencing specific genetic markers, such as the 16S 

rRNA gene for bacteria and archaea or the internal transcribed spacer (ITS) for eukaryotes, allowing for 

taxonomic identification. This approach provides high-resolution taxonomic information but is limited in 

terms of functional diversity and does not offer insights into the metabolic functions of microorganisms 

(Ramazzotti & Bacci, 2018). This method offers relatively low resolution in terms of functional diversity, as 
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it can only provide taxonomic information about the microorganisms present in the sample. (M. Liu et al., 

2020). 

 

In contrast, metagenomics goes beyond marker gene sequencing by directly sequencing the entire genetic 

material from environmental samples, without the need for amplification. This approach enables a 

comprehensive analysis of the genetic and functional potential of all microorganisms, including bacteria, 

archaea, eukaryotes, and viruses. By sequencing all the DNA in a sample, metagenomics offers deeper 

insights into both the taxonomic composition and the metabolic functions of microbial communities (Pérez-

Cobas et al., 2020). 

 

While marker gene sequencing can infer taxonomic composition, it does not provide direct information on 

the metabolic functions of microorganisms (Langille et al., 2013). Moreover, amplification biases can occur 

due to the use of specific primers, potentially limiting the detection of certain microorganisms (Abellan-

Schneyder et al., 2021). Metagenomics, by analyzing the entire DNA content, avoids these biases and 

can detect non-cultivable or low-abundance microorganisms that might be overlooked by 16S rRNA-based 

techniques (Ramazzotti & Bacci, 2018). Furthermore, metagenomics provides access to the full functional 

potential of the community by directly identifying genes associated with specific metabolic pathways, such 

as nitrogen fixation, cellulose degradation, or phosphorus mobilization (De Filippo et al., 2012). This is 

particularly valuable in agricultural and natural soil studies, as it connects microbial composition with 

functional activity, revealing how these communities regulate essential processes for soil fertility and the 

balance of biogeochemical cycles (Liao et al., 2023). Metagenomics also facilitates the study of symbiotic 

interactions and metabolic networks within microbial communities, which are fundamental for 

understanding the dynamics influencing soil health and sustainability (Jagadesh et al., 2024). Overall, 

while amplicon sequencing is useful for obtaining a general taxonomic overview, metagenomics enables 

a comprehensive analysis that encompasses both microbial diversity and functionality. 

8.2. Metatranscriptomics: Analyzing gene expression 

Metagenomics provides information about the genetic potential of microbial communities. 

Metatranscriptomics takes this a step further by analyzing the active transcriptome—that is, the set of RNA 

molecules transcribed in an environmental sample at a given point in time (Shakya et al., 2019). This is 

crucial for understanding which genes are actively expressed and how microorganisms respond to 

environmental stimuli, offering a dynamic perspective on microbial function. Unlike metagenomics, which 

provides a static view of genetic diversity, metatranscriptomics captures real-time functional activity within 

microbial communities, linking genetic potential to metabolic activity (A. Kumar & Yadav, 2024). 

The metatranscriptomic analysis begins with RNA extraction from environmental samples, such as soil. 

Due to the labile nature of RNA, this step requires rigorous protocols to preserve its integrity and prevent 

degradation (Reck et al., 2015). Once extracted, RNA is purified to remove contaminants, including DNA 

molecules that could interfere with subsequent analyses. The purified RNA is then converted into 
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complementary DNA (cDNA) through reverse transcription. This cDNA serves as a stable template for 

sequencing, which is typically performed using high-throughput platforms such as Illumina or Oxford 

Nanopore (Grünberger et al., 2022; A. Kumar & Yadav, 2024). The obtained sequences undergo 

bioinformatic processing, which includes quality control, mapping to reference genomes or metagenomes, 

and functional annotation. This workflow enables the identification of actively transcribed genes and the 

quantification of their expression levels, providing insights into microbial responses to environmental 

conditions (Shakya et al., 2019). Figure 9 presents a schematic overview of the entire metatranscriptomic 

analysis process. 

 

Figure 9: Overview of the metatranscriptomic analysis workflow: From sample collection and preservation, followed 
by RNA isolation and the preparation of a sequencing library. This is succeeded by high-throughput sequencing, de 

novo assembly, and bioinformatic processing using specialized tools and software. Image created at 

app.biorender.com.  

Metatranscriptomics plays a fundamental role in elucidating microbial contributions to biogeochemical 

cycles (A. Kumar & Yadav, 2024). For instance, in the nitrogen cycle, the expression of genes involved in 

nitrification (e.g., amoA, encoding ammonia monooxygenase) and denitrification (e.g., nirS, encoding 

nitrite reductase) can be quantified, offering a snapshot of microbial activity under specific conditions (K. 

Yu & Zhang, 2012).. In the phosphorus cycle, this technique can detect the expression of genes encoding 

phosphatases, which mobilize inorganic phosphorus and are often among the most highly expressed in 

nutrient-limited soils (Xu et al., 2020). Similarly, in the carbon cycle, transcripts encoding cellulases, 

hemicellulases, and other enzymes involved in the degradation of complex or simple organic matter can 

be identified (López-Mondéjar et al., 2019). In forest ecosystems, metatranscriptomics has emerged as an 

essential tool for understanding microbial responses to environmental changes and ecosystem dynamics, 

such as organic matter decomposition, nutrient cycling, and climate stress (Sharuddin et al., 2022). By 

linking microbial gene expression to soil conditions, this technique enables the identification of key 
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biogeochemical processes that sustain soil fertility and contribute to carbon storage. Furthermore, it 

provides insights into the activity of enzymes involved in the degradation of plant and microbial biomass, 

helping to reveal the functional roles of specific microorganisms (Žifčáková et al., 2017). 

Metatranscriptomics also facilitates the detection of bioindicators of soil health, opening new possibilities 

for adaptive monitoring and the sustainable management of ecosystems (Sharuddin et al., 2022) 

While metagenomics remains the most widely used omics approach due to its lower cost and well-

established workflows, metatranscriptomics offers unique advantages by directly linking microbial activity 

to environmental processes. However, its application requires advanced laboratory techniques, 

bioinformatics expertise, and careful data interpretation, as RNA profiles can vary significantly depending 

on environmental conditions and sampling timing (Shakya et al., 2019). Furthermore, similar to 

metaproteomics (see below), this approach represents an additional analytical step that relies on prior 

metagenomic data, making it even more expensive. Additionally, challenges such as RNA instability, the 

complexity of soil matrices, and the dominance of ribosomal RNA (rRNA) in total RNA extracts must be 

addressed to achieve reliable results (R. K. Yadav et al., 2016). 

8.3. Metaproteomics: direct functional analysis 

As in the case of metatranscriptomics, metaproteomics also takes it a step further than metagenomics by 

analyzing the proteins expressed in an environmental sample (T. Schneider & Riedel, 2010). This is crucial 

for understanding which genes are being translated into functional proteins at a given moment, offering a 

more direct functional perspective. Metaproteomics relies on the analysis of proteins present in the soil 

using advanced mass spectrometry techniques, such as LC-MS/MS analysis. Figure 10 illustrates the 

workflow of a metaproteomic analysis, which begins with the extraction of environmental samples, such 

as soil, followed by protein extraction, where proteins are carefully isolated from the complex matrix. This 

is typically followed by protein digestion, where enzymes like trypsin are used to break down proteins into 

smaller peptides, which are more suitable for mass spectrometry analysis (Nebauer et al., 2024). The 

peptides are then separated using techniques like liquid chromatography (LC), which ensures that the 

peptides are resolved according to their properties, such as size and charge (Nebauer et al., 2024). 

Following separation, the peptides are identified and quantified using mass spectrometry (e.g., LC-

MS/MS), a powerful technique that measures the mass-to-charge ratio of ions and generates a spectrum 

that can be used to infer the protein composition of the sample (Nebauer et al., 2024). Finally, the resulting 

data undergoes bioinformatics analysis, where computational tools are applied to match the peptide 

spectra with known protein databases, enabling the identification of proteins and the quantification of their 

relative abundance (Nebauer et al., 2024). These tools allow the identification of specific proteins 

associated with key functions in biogeochemical cycles (Tartaglia et al., 2020). For instance, in the nitrogen 

cycle, proteins involved in nitrification (such as ammonia monooxygenase) or denitrification (such as nitrite 

reductases) can be detected and quantified, providing insight into the metabolic activity of the 

microorganisms involved (Jose et al., 2020). Similarly, in the carbon cycle, enzymes that degrade complex 

organic polymers, such as cellulose and lignin, can be identified (Chirania et al., 2022), while in the 
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phosphorus cycle, phosphatases and other proteins responsible for mobilizing immobilized phosphorus 

can be tracked (Islam et al., 2024). 

 

While metagenomics offers an accessible and cost-effective approach for studying microbial communities, 

metaproteomics holds a clear advantage in linking phylogenetic structure with functional activity (Starke 

et al., 2019). However, metaproteomics requires complex sample extraction protocols—still under 

development—and sensitive, expensive equipment that is accessible only to a limited number of 

laboratories worldwide. Additionally, metaproteomics also relies on prior metagenomic analysis for 

accurate protein annotation (Starke et al., 2019). In the context of agricultural soils, metaproteomics 

enables the correlation of microbial activity with soil conditions (Bastida & Jehmlich, 2016).  

 

 
Figure 10: Overview of the metaproteomic analysis workflow: From protein extraction from soil samples to enzymatic 
digestion, followed by mass spectrometry analysis. The workflow concludes with data processing for protein 

identification and quantification, bioinformatic mapping of proteins to metabolic pathways. Image created at 

app.biorender.com.  

8.4. Assembly and analysis of MAGs: Reconstruction of microbial genomes 

The assembly of MAGs (Metagenome-Assembled Genomes) is an advanced technique that enables the 

in silico reconstruction of individual bacterial and archaeal genomes from metagenomic data (C. Yang 

et al., 2021). This process employs bioinformatic algorithms to cluster contigs—assembled DNA 

fragments—into bins based on sequence composition, coverage, and taxonomic markers. These contigs 

are then assembled into draft genomes or MAGs, which primarily represent the genetic composition of 

bacterial and archaeal communities. Reconstruction of prokaryotic genomes is generally more 
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straightforward due to the absence of introns, which simplifies assembly (Thomas et al., 2012). In contrast, 

the assembly of eukaryotic genomes poses greater challenges because of their complex genomic 

architecture, including introns. However, recent advances in long-read sequencing technologies and the 

expansion of eukaryotic genome databases are improving the annotation of fungal and other eukaryotic 

sequences, despite persistent limitations (Saraiva et al., 2023). In recent years, this approach has been 

instrumental in the discovery of novel taxa and previously unrecognized phylogenetic lineages in soil (Ma 

et al., 2023; Nayfach et al., 2021).     

 

The process begins with high-quality metagenomic sequencing data, which are processed using various 

bioinformatic tools to filter, assemble, and bin DNA fragments into individual genomes (C. Yang et al., 

2021). The resulting MAGs range from partial to nearly complete genome sequences, depending on 

sequencing depth and computational methods (L.-X. Chen et al., 2020). A major advantage of MAG 

assembly is its ability to recover genomic information from uncultivable or difficult-to-culture organisms, 

such as many environmental microbes that play essential roles in biogeochemical cycles (Grossart et al., 

2020). Unlike traditional shotgun sequencing, which produces fragmented data that are often difficult to 

interpret, MAGs provide a more coherent representation of individual microbial genomes, facilitating the 

association of specific metabolic functions with particular taxa (C. Yang et al., 2021). 
 

In the study of agricultural soils, the analysis of MAGs has been essential for identifying key 

microorganisms that regulate the cycles of phosphorus, nitrogen, and carbon (X. Hu et al., 2025). For 

instance, genomes of nitrogen-fixing bacteria, such as those of the genus Rhizobium, can be 

reconstructed. This not only provides information about their metabolic potential but also sheds light on 

their adaptation to soil conditions, their interactions with other organisms, and their response to agricultural 

practices (Zhu et al., 2024). Moreover, the ability to reconstruct MAGs allows researchers to delve deeper 

into the functional attributes of these microorganisms, such as the presence of key enzymes involved in 

nutrient cycling or their capacity to degrade pollutants (Nagar et al., 2023). Additionally, MAG assembly 

enables the tracking of the evolution of genes of interest, such as those related to antibiotic resistance or 

tolerance to environmental stress (Nagar et al., 2023). This is particularly relevant in agricultural soils, 

where the intensive use of fertilizers and pesticides can impose selective pressure on microbial 

communities, impacting their diversity and functionality.  
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OBJECTIVES AND HYPOTHESES 
This Doctoral Thesis employs innovative meta-omics approaches to investigate soil microbial communities 
and their roles in carbon, nitrogen, and phosphorus cycling in natural and agricultural soils. It examines 

molecular processes such as phosphorus solubilization, nitrogen transformation, and carbon turnover, 

linking microbial taxonomy with function through bioinformatics. The study highlights key microbial 

contributors, their ecological roles—particularly in forest soils—and their responses to agricultural 

practices. The findings support sustainable strategies to enhance soil fertility, reduce nutrient deficiencies, 

and minimize agriculture’s environmental impact, informing advances in biofertilizers and soil health 

management (Figure 11). 

The specific objectives of this PhD Thesis are: 

 

i) Chapter 1: To evaluate the responses of microbial communities in agricultural soils to 

conventional and alternative fertilization strategies, with a particular focus on key processes in 

the phosphorus (P) cycle, utilizing metagenomics and metaproteomics to investigate 

community composition and functional dynamics. 

ii) Chapter 2: To evaluate the responses of microbial communities in agricultural soils to 

conventional and alternative fertilization strategies, with a particular focus on key processes in 

the nitrogen (N) cycle, utilizing metagenomics and metaproteomics to investigate community 

composition and functional dynamics. 

iii) Chapter 3: To analyze decomposer microbes in forest soils, this study uses metagenomics, 

metatranscriptomics and Metagenome-Assembled Genomes (MAGs) to identify polymer-

specialized guilds, distinguishing generalists from specialists and their carbon cycling roles. 

 

 
Figure 11: Conceptual figure of the thesis and its chapters. 
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CHAPTER 1 

Contrasting fertilization and phenological 

stages shape microbial-mediated phosphorus 

cycling in a maize agroecosystem. 
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CHAPTER 1 

1. INTRODUCTION 

Phosphorus (P) is a crucial macronutrient that plays a central role in ecosystem productivity and 
agricultural yields. Despite its essential function, phosphorus is widely recognized as a limiting nutrient in 

terrestrial ecosystems (George et al., 2016). To address this limitation, significant amounts of phosphorus 

are added to agro-ecosystems, predominantly sourced from phosphate rock deposits. However, the 

scarcity of such resources (Brownlie et al., 2021) and the implementation of stricter regulations within the 

European Union, such as limits on cadmium content, underscore the urgency of identifying sustainable 

alternatives to maintain crop productivity. Among these alternatives, P-rich byproducts such as sewage 

sludge and struvite have garnered attention as potential sources of P, as well as other key nutrients like 

carbon (C) and nitrogen (N). Struvite, a mineral comprising ammonium and magnesium (Mg) phosphate 

that can be recovered from wastewater treatment facilities, offers a promising substitute for conventional 

phosphorus fertilizers (Bastida et al., 2019a). Additionally, struvite provides supplementary nutrients such 

as Mg and N (Bastida et al., 2019a). Studies have shown that plants fertilized with struvite exhibit improved 

biomass and phosphorus uptake compared to traditional phosphorus sources (Hertzberger et al., 2020). 

Similarly, nutrient-rich sewage sludge has demonstrated efficacy comparable to superphosphate in 

promoting crop production, with the potential to replace soluble phosphate fertilizers (Figueiredo et al., 

2021). 

The predicted global scarcity of phosphorus fertilizers in the coming decades highlights the necessity of 

better understanding the microbial processes that regulate soil phosphorus availability (Chowdhury et al., 

2017). Although inorganic orthophosphate ions are directly accessible to plants, various soil processes 

can reduce phosphorus availability. Fresh inorganic phosphorus is only partially absorbed by plants, with 

the remainder immobilized in forms that are insoluble and inaccessible (J. A. Siles et al., 2022). Organic 

phosphorus, on the other hand, exists in diverse molecular forms but is often not bioavailable due to its 

high molecular weight, requiring enzymatic hydrolysis for plant uptake (Kafle et al., 2019). Soil 

microorganisms play a pivotal role in this process, facilitating inorganic phosphorus solubilization via the 

release of organic acids and mineralizing organic phosphorus through enzymatic activity. These microbial 

processes release plant-available phosphorus into the soil. However, phosphorus availability in soil is 

influenced not only by the chemical properties of fertilizers (e.g., organic vs. mineral) and edaphic factors 

such as texture, pH, and cation exchange capacity (Kafle et al., 2019; Ruiz-Navarro et al., 2023; J. A. Siles 

et al., 2022) but also by the plant's growth stage and its interactions with soil microbial communities. Plants 

exhibit varying phosphorus demands during different phenological stages. In maize, a staple crop of global 

importance (Soto-Gómez & Pérez-Rodríguez, 2022), phosphorus requirements are especially high during 

early developmental stages such as germination and flowering (Barry & Miller, 1989). To meet these 

demands, plants employ dynamic strategies to acquire P, often involving symbiotic relationships with soil 

microbes (Richardson et al., 2011; J. A. Siles et al., 2022). In response to phosphorus limitation, certain 
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soil microorganisms activate specific genes that mediate organic phosphorus mineralization, inorganic 

phosphorus solubilization, phosphorus transport, and adaptation to phosphorus starvation (Dai et al., 

2020). For example, microbes can mineralize organic phosphorus through phosphatase enzymes encoded 

by genes such as phoA, phoD, and phoX, or solubilize inorganic phosphorus using genes like gcd and 

pqqC (J. A. Siles et al., 2022). 

Organo-mineral fertilization has been shown to influence the abundance of microbial populations carrying 

genes involved in the phosphorus cycle, including phoC, phoD, phnX, and gcd (Wan et al., 2020). 

Advances in multi-omic technologies, such as metagenomics and metaproteomics, offer powerful tools for 

exploring these microbial processes in detail (Bastida et al., 2021a; Liang et al., 2020; Miller et al., 2023a; 

Starke et al., 2019a). These approaches provide insights into the functional roles of soil microbial 

communities in the phosphorus cycle, allowing researchers to identify and quantify both genes and 

proteins that are key to phosphorus cycling (Starke et al., 2019a). Importantly, while byproducts like 

struvite and sewage sludge can influence microbial mechanisms of phosphorus provision by altering the 

abundance of functional genes and microbial taxa, the plant phenological stage may also play a critical 

role in shaping these processes. However, the relative contributions of fertilization and plant phenology to 

the dynamics of soil microbial communities remain poorly understood. 

In this study, we aim to investigate the effects of struvite, sewage sludge, and their combination, alongside 

different phenological stages of maize, on the taxonomic composition and abundance of genes and 

proteins associated with organic phosphorus mineralization, inorganic phosphorus solubilization, and 

phosphorus starvation responses. Considering the distinct chemical composition of these fertilizers, with 

sewage sludge containing a fraction of organic phosphorus not present in struvite, we hypothesize the 

following: (i) these materials will differentially influence the abundance of genes involved in the phosphorus 

cycle, as well as the microbial populations harboring these genes; and (ii) the phenological stage of maize 

will modulate the abundance of specific genes and microbial taxa associated with soil phosphorus cycling. 

Additionally, the study includes a novel focus on the archaeal community involved in the phosphorus cycle, 

which has often been overlooked in favor of bacterial communities, despite the recognized abundance and 

diversity of archaea in phosphorus-deficient soils (J.-T. Wang et al., 2022). 

 

2. MATERIALS AND METHODS 

2.1. Site description, experimental design and sampling 

The study was conducted at an experimental field located at ITAP (Santa Ana, Albacete, SE Spain) 

(38°53′39.8″N 1°59′18.0″W), situated in a semi-arid Mediterranean region. The pre-experimental physical 

and chemical properties of the soil are detailed in Table 1. The experiment consisted of 16 plots, each 

measuring 18.75 m², separated by aisles 1 m in width (Figure 12). Maize (var. P0937) was planted on May 

18, 2022 (Figure 13). The objective of this study was to assess the impact of partially replacing 

conventional NPK mineral fertilization with struvite, sludge, or their combination (Barquero et al., 2024). A 
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randomized block design was used, with four treatments and four replicates per treatment. The treatments 

were: (i) conventional NPK mineral fertilization (NPK); (ii) organic fertilization using thermostabilized sludge 

(SLU); (iii) mineral fertilization with struvite (STR); and (iv) combined organo-mineral fertilization with both 

struvite and sludge (STRSLU) (Barquero et al., 2024). The concentrations of organic carbon, total nitrogen, 

and phosphorus in the struvite were 0.13, 5.80, and 16.30 g 100 g⁻¹, respectively, while those in the sludge 

were 29.08, 4.92, and 4.14 g 100 g⁻¹, respectively. A full chemical profile of both materials is provided in 

Table 2. 
 
Table 1: Characteristics of the initial field soil before starting the assay. 
 

  Average Standard deviation 
Sand % 33.8 2.97 
Silt  % 39.8 3.05 
Clay % 26.4 1.77 
pH  8.5 0.27 
Electrical conductivity µS/cm 131.3 14.84 
Organic matter % 2.90 0.21 
Total C  g/kg 57.96 1.67 
Total N g/kg 1.20 0.084 
Total P g/kg 0.64 0.04 
Available P (Olsen)  mg/kg 20.24 3.01 
Water-Soluble N mg/kg 13.27 2.88 

 

 

 
Figure 12: General view of the trial carried out in Santa Ana (Albacete, Murcia, SE Spain). 
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Figure 13: Maize planted in Santa Ana (Albacete, Murcia, SE Spain). Vegetative stage. Day 44. 

Table 2: Characterization of struvite and sludge used in fertilizers. 

 
Struvite Sludge 

Organic C (g/100g) 0.13 29.08 
Total N (g/100g) 5.80 4.92 
Al (mg/Kg) 9,08 12629,32 
As (mg/Kg) 0,16 5,79 
Be (mg/Kg) 0,05 0,35 
B (mg/Kg) <0,01 <0,01 
Ca (g/100g) 0,16 4,08 
Cd (mg/Kg) <0,01 0,94 
Co (mg/Kg) <0,01 7,31 
Cr (mg/Kg) 4,17 59,65 
Cu (mg/Kg) 0,11 260,74 
Fe (mg/Kg) 529,89 21521,25 
K (g/100g) 0,05 0,44 
Mg (g/100g) 11,31 1,97 
Mn (mg/Kg) 692,37 373,91 
Mo (mg/Kg) 0,46 9,25 
Na (g/100g) 0,002 0,12 
Ni (mg/Kg) 0,16 23,45 
Pb (mg/Kg) 0,62 63,55 
P (g/100g) 16,30 4,13 
Si (mg/Kg) 23,64 673,60 
S (g/100g) 0,005 1,98 
V (mg/Kg) <0,01 26,27 
Zn (mg/Kg) 0,63 770,34 
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Struvite, sludge, or their mixture were incorporated during the basal fertilization phase, as outlined in Table 

3. To achieve the target fertilization rates for maize (≈192 UFN, 225 UFP, and 281 UFK), all forms of 

phosphorus, nitrogen, and potassium were applied during the initial fertilization phase, and additional 

nitrogen fertilization (using ammonium nitrate, NAC27) was provided during subsequent dressing stages 

(Table 3) (Barquero et al., 2024). To meet the crop's nutrient demands, supplemental superphosphate, 

potassium sulfate, and calcium ammonium nitrate (NAC27) were applied (Table 3).  

Basal fertilization was performed on May 13, 2022, while additional applications of nitrogen were 

conducted on June 20, 2022, and July 8, 2022, coinciding with the V4 and V8 growth stages (Ritchie, S.W 

& J.J. Hanway, 1982). Irrigation was supplied as needed throughout the growing season (Barquero et al., 

2024). 

Table 3: Detail of the fertilization carried out in the evaluated treatments. 
 

Treatment Product Application Doses (Kg ha⁻¹) 
N (Kg 
ha⁻¹) 

P (Kg 
ha⁻¹) 

K (Kg 
ha⁻¹) 

NPK conventional 9-23-30  Basal 712    
 Superphosphate Basal 338    
 Potassium sulfate Basal 135    
 NAC27 Dressing 474    
    192,06 98,82 233,313 
SLUDGE Sludge Basal 1306    
 Superphosphate Basal 560    
 Potassium sulfate Basal 549    
 NAC27 Dressing 474    
    192,23 98,82 233,55 
STRUVITE Struvite Basal 602    
 Potassium sulfate Basal 562    
 NSA26 Basal 111    
 NAC27 Dressing 474    
    191,75 98,85 233,52 
STRUVITE+SLUDGE Struvite Basal 301    
 Sludge Basal 653    
 Superphosphate Basal 71    
 Potassium sulfate Basal 455    
 9-23-30  Basal 165    
 NAC27 Dressing 474    
    192,41 98,98 232,92 

 

Sampling was conducted at two distinct time points. The maize growth stages were classified using the 

phenological scale described by (Ritchie, S.W & J.J. Hanway, 1982). The selected sampling points 

corresponded to the phenological stages with the highest phosphorus demand: germination (V1) and 

flowering (R1) (Ritchie, S.W & J.J. Hanway, 1982). Soil samples from the rhizosphere were collected 

directly from the root zones by combining soil from five plants within each plot. This composite sample was 

obtained by shaking the roots of each plant in a plastic zip-lock bag. The collected soil samples were 
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sieved to 2 mm, with a portion stored at −20 °C for DNA extraction and the remainder air-dried for ent 

chemical analyses (Barquero et al., 2024). 

Olsen phosphorus was determined using ICP-OES following extraction with 0.5 M NaHCO₃ (Olsen & 

Sommers, 1982). The chemical composition of dried sludge and struvite samples was analyzed through 

inductively coupled plasma optical emission spectroscopy (ICP-OES) (Barquero et al., 2024). 

2.2. DNA Extraction and Shotgun Sequencing 

DNA was extracted from 32 composite soil samples collected during two phenological stages (germination 

and flowering) using the DNeasy PowerSoil kit (Qiagen), following the protocol provided by the 

manufacturer. The extracted soil DNA was then utilized to prepare metagenomic libraries with the 

NEBNext® Ultra™ DNA Library Prep Kit (New England BioLabs), optimized for Illumina platforms, in 

accordance with the manufacturer’s guidelines.  

DNA fragmentation was achieved via acoustic shearing using a Covaris S220 instrument. The fragmented 

DNA underwent purification, end-repair, and adenylation at the 3′ ends, followed by adapter ligation and 

enrichment via limited-cycle PCR (Barquero et al., 2024). 

To verify the quality of the DNA libraries, an Agilent 5300 Fragment Analyzer (Agilent Technologies) 

equipped with an NGS Kit was used, while quantification was performed with a Qubit 4.0 Fluorometer 

(Invitrogen). The libraries were multiplexed before loading onto the Illumina NovaSeq 6000 platform, 

adhering to the manufacturer’s instructions.  

Sequencing was performed using a paired-end (PE) configuration of 2 × 150 bp (Barquero et al., 2024). 

After sequencing, image analysis and base calling were conducted using NovaSeq Control Software 

version 1.7. The raw sequencing data generated in the form of .bcl files were converted to .fastq files and 

demultiplexed using Illumina bcl2fastq software version 2.20 (J. A. Siles, De la Rosa, et al., 2024). Library 

preparation and sequencing were carried out at Genewiz Europe (Leipzig, Germany). 

2.3. Metagenomic analysis 

The metagenomic libraries were processed following the methodology initially described by Žifčáková et al. 

(2016), with certain adaptations. The complete code used for the metagenomic analysis is available in the 

repository at https://github.com/mariabelen-

bm/Doctoral_Thesis/blob/78fb7483aff71e570633d6b3a8f0bb666fe368de/metagenomics_pipeline_chapt

ers_1_2.sh. The complete pipeline is also shown in Annex 1. Additionally, the Python scripts employed 

during the metagenomic pipeline are included in Annex 2. Raw sequencing data were analyzed using 

bioinformatics tools in a command-line environment (Shell), employing specialized software suites and 

Python scripts (v3.6).  
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The metagenomic workflow began with environment setup via Conda, which facilitated the installation of 

essential tools, including Khmer (https://anaconda.org/bioconda/khmer) and FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Quality control of raw sequences was 

carried out using FastQC (v0.12.0), with reads exhibiting quality scores below 30 or lengths shorter than 

50 bases excluded from further analysis. Subsequently, median normalization was applied to minimize 

noise and retain sequences of interest, using a k-mer size of 20 and a minimum coverage threshold of 20 

for sequence retention (Barquero et al., 2024). 

 

Assembly of the processed data was conducted using MEGAHIT (v1.2.9) (D. Li et al., 2015), and the 

quality of assemblies was assessed with MetaQUAST (v5.2.0) (Mikheenko et al., 2016). Gene prediction 

was performed with FragGeneScan (Rho et al., 2010), and alignment of reads was carried out using 

Bowtie2 (v2.4.1) (https://bowtie-bio.sourceforge.net/bowtie2/index.shtml). During the alignment process, 

base-level normalization was implemented, and functional annotations were generated using multiple 

reference databases.  

 

The NCBI nr database (https://www.ncbi.nlm.nih.gov/) was primarily used for taxonomic identification. For 

functional categorization, the KOG, KEGG, and dbCAN databases were employed: KOG facilitated the 

classification of sequences into conserved eukaryotic orthologous groups, KEGG enabled the assignment 

of sequences to metabolic pathways and biological processes, and dbCAN was specifically utilized for 

identifying carbohydrate-active enzymes, such as hydrolases and lyases (L. Huang et al., 2018; Kanehisa 

et al., 2016; Tatusov et al., 2003). This approach, following the methodology outlined by Žifčáková et al. 

(2016) and Žifčáková. (2017). 

 

The results were organized into functional categories for improved interpretation. Specifically, the 

functional group associated with organic phosphorus mineralization encompassed genes encoding 

enzymes such as phytases (3-phytase), C-P lyases (phnG, phnH, phnI, phnJ, phnK, phnL, and phnM), 

alkaline phosphatases (phoA, phoD, phoX), and acid phosphatases (aphA and phoN) (Barquero et al., 

2024). The group related to inorganic phosphorus solubilization included genes for quinoprotein glucose 

dehydrogenases (gcd), inorganic pyrophosphatases (ppa), polyphosphate kinases (ppk1), and 

pyrroloquinoline quinone synthases (pqqC). Finally, the starvation phosphorus regulon comprised genes 

coding for the phosphate regulon response regulator (phoB and phoR) and its inhibitor protein (phoU) (J. 

A. Siles et al., 2022). A comprehensive summary of these genes and their classification is provided in 

Table 4.  

 

Given the complexity of the dataset, for the taxonomical analyses of each gene, we plotted the top 

dominant microbial populations for those genes that showed significant influence of fertilization treatment 

and/or phenological stage. Raw sequence data have been deposited in NCBI under BioProject accession 

number PRJNA1118481 (Barquero et al., 2024). 
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Table 4: Details on the 20 functional genes studied in the present work related to the phosphorus cycle. 

Pathway Gene Enzyme KEGG ID 
Organic P mineralization phoA Alkaline phosphatase A K01077 
 phoD Alkaline phosphatase D K01113 
 phoX Alkaline phosphatase X K07093 
 phoN Acid phosphatase class A K09474 
 aphA Acid phosphatase class B K03788 

 
3-
phytase 3-phytase K01083 

 phnG C–P lyase multienzyme complex K06166 
 phnH C–P lyase multienzyme complex K06165 
 phnI C–P lyase multienzyme complex K06164 
 phnJ C–P lyase multienzyme complex K06163 
 phnK C–P lyase multienzyme complex K05781 
 phnL C–P lyase multienzyme complex K05780 
 phnM C–P lyase multienzyme complex K06162 
Inorganic P solubilization ppa Inorganic pyrophosphatase K01507 
 ppk1 Polyphosphate kinase K00937 

 gcd 
Quinoprotein glucose 
dehydrogenase K00117 

 pqqC 
Pyrroloquinoline quinone synthase 
C K06137 

P-starvation response 
regulation phoB 

Phosphate regulon response 
regulator K07657 

 phoR 
Phosphate regulon sensor 
histidine kinase K07636 

 phoU PhoR/phoB inhibitor protein K02039 
 

2.4. Protein extraction and Mass spectrometry analyses 

Proteins were extracted following established methodologies (Bastida et al., 2014; Chourey et al., 2010). 

To lyse cells and disrupt soil aggregates, samples were boiled for 10 minutes at 100 °C in a sodium dodecyl 

sulfate (SDS) buffer. Protein separation was achieved using 12 % SDS-PAGE, and gels were 

subsequently stained with colloidal Coomassie brilliant blue to visualize the proteins. The protein mixture 

for each sample was excised as a single gel slice. Further processing included the reduction and alkylation 

of cysteine residues, in-gel tryptic digestion, peptide elution, and desalting (Bastida et al., 2016). Prior to 

LC-MS analysis, peptide lysates were reconstituted in 0.1 % formic acid (Barquero et al., 2024). 

 

For LC-MS/MS analysis, 5 μL of peptide lysate, equivalent to 1 μg of peptides, was injected into a 

nanoHPLC system (UltiMate 3000 RSLCnano, Dionex, Thermo Fisher Scientific). Initial trapping was 

performed on a C18-reverse phase trapping column (C18 PepMap100, 300 μm × 5 mm, 3 μm particle 

size, Thermo Fisher Scientific), followed by separation on an analytical C18-reverse phase column 

(Acclaim PepMap100, 75 μm × 25 cm, 3 μm particle size, nanoViper, Thermo Fisher Scientific). Peptides 

were ionized with a Nanospray Flex™ Ion Source and analyzed on an Orbitrap Exploris™ 480 mass 

spectrometer (Thermo Fisher Scientific) as outlined by Castañeda-Monsalve et al. (2024). 
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For further nanoLC-MS measurements, 1 μg of peptides was injected into a Vanquish Neo nanoHPLC 

system (Thermo Fisher Scientific). The peptide trapping and separation utilized a two-column setup: a 

trapping column (Acclaim PepMap 100, 75 μm × 2 cm, 3 μM particle size, Thermo Fisher Scientific) and 

an analytical column (Double nanoViper™ PepMap™ Neo, 75 μm × 150 mm, 2 μM particle size, Thermo 

Fisher Scientific). Separation was achieved using a two-phase gradient with mobile phases A (0.01 % 

formic acid in water) and B (80 % acetonitrile, 0.01 % formic acid in water). The gradient consisted of an 

initial increase in phase B from 4 % to 30 % over 95 minutes, followed by a rise to 55 % over 40 minutes, 

maintaining a flow rate of 300 nL/min (Barquero et al., 2024). 

 

Mass spectrometric analysis employed an Orbitrap Exploris™ 480 instrument. MS parameters included a 

scan range of 350–1550 m/z, resolution of 120,000, automatic gain control (AGC) target of 3,000,000, and 

maximum injection time of 100 ms. For MS/MS, the 10 most intense precursor ions were selected with an 

isolation window of 1.4 m/z, resolution of 15,000, AGC target of 200,000, and maximum injection time of 

100 ms. Dynamic exclusion was applied for 20 seconds, with a minimum intensity threshold of 8,000 ions 

(Castañeda-Monsalve et al., 2024). 

 

Data processing was carried out using Proteome Discoverer software (v2.5.0.400, Thermo Fisher 

Scientific) and the SequestHT search engine. The search settings included trypsin specificity (allowing up 

to two missed cleavages), precursor mass tolerance of 10 ppm, and fragment mass tolerance of 0.02 Da. 

Carbamidomethylation of cysteine was set as a fixed modification. False discovery rates (FDR) were 

controlled at 1 % using Percolator (Käll et al., 2007). Protein identification was performed using a database 

created from the soil metagenome (Barquero et al., 2024). The raw data have been deposited in PRIDE 

(https://www.ebi.ac.uk/pride/) under the accession number PXD052073. 

 

Proteins associated with phosphorus and nitrogen cycle genes were analyzed using the same approach 

previously described for metagenomics, based on the KEGG database. The relative abundance of proteins 

was calculated by normalizing their frequency (i.e., detection count) in the sample, considering contig 

length, read length, and the number of reads per sample. Normalized values were scaled by multiplying 

by a factor of 100,000 to enhance data interpretability and facilitate comparisons between samples 

(Barquero et al., 2024). 

2.5. Statistical Analysis 

The impact of various fertilization treatments and phenological stages on the abundance of functional 

genes, as well as the microbial populations carrying these genes, was assessed using ANOVA 

implemented in R (R-Core-Team, 2023) with the "stats" package. Prior to analysis, the data were tested 

to ensure normality and homoscedasticity. The same statistical procedure was applied to evaluate the 

effects of fertilization treatments and phenological stages on the availability of phosphorus (Olsen 

phosphorus), total nitrogen and water-soluble nitrogen (WSN) (Barquero et al., 2024). 
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To visualize how treatments and phenological stages influenced the functional composition of bacterial 

and archaeal communities, including genes involved in organic phosphorus mineralization, inorganic 

phosphorus solubilization and phosphorus starvation response regulation, non-metric multidimensional 

scaling (NMDS) was conducted. The dataset of gene abundances underwent a base-10 logarithmic 

transformation before ordination, which was performed using the Bray-Curtis dissimilarity index via the 

metaMDS() function in the "vegan" package (Oksanen et al., 2019) in R (R-Core-Team, 2023). 

Data visualization was facilitated by generating heatmaps and bar charts using the "ggplot2" package 

(Wickham, 2016). To examine potential linear relationships among genes involved in the phosphorus 

cycle, as well as their associations with Olsen phosphorus, Pearson correlation analysis was performed. 
The correlation matrix was calculated using the cor() function from the "corrplot" package (Taiyun, 2017) 

in R, and statistical significance was determined using the cor.mtest() function. A 95% confidence level 

was applied for significance testing. 

 

3. RESULTS 

3.1. Olsen phosphorus 

The soil Olsen phosphorus content demonstrated a statistically significant relationship with the 

phenological stage (P = 3e-06), as well as with the interaction between fertilization and phenological stage 

(P = 3e-06) (Figure 14). However, no significant effects were observed among the fertilizer treatments 

themselves. During the germination stage, the combination of struvite and sludge resulted in the lowest 

Olsen phosphorus content. In contrast, during the flowering stage, the traditional NPK treatment exhibited 

the lowest Olsen phosphorus content, whereas both the sludge treatment and the struvite plus sludge 

combination showed higher Olsen phosphorus levels (Figure 14) (Barquero et al., 2024). 

 

Figure 14. Phosphorus Olsen content during germination and flowering in soils supplemented with the four fertilizers: 

NPK, Sludge, Struvite and Struvite + Sludge. The ANOVA test carried out to check if there were significant (P < 0.05) 

effects between fertilizers (F), phenology (P) and the interaction between fertilization and phenology (F:P) has been 
added to the boxplot. 
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3.2. The abundance of phosphorus genes in the bacterial and archaeal 
community  

A total of 813,089 reads were annotated with genes, out of which only 208 were linked to fungi. Of these, 
merely three were associated with phosphorus-related genes, so this domain was not further explored. 

Within the remaining reads, 9998 were attributed to bacteria harboring phosphorus-cycling genes, while 

archaea accounted for 188 reads (Barquero et al., 2024). The identified phosphorus genes were 

grouped into three functional categories: organic phosphorus mineralization, inorganic phosphorus 

solubilization, and phosphorus-starvation response regulation (Figure 15). Fertilization treatments 

influenced the abundance of genes in the organic phosphorus mineralization category exclusively for 

archaea, while the bacterial community showed no such effect (Figure 15). However, the interaction 

between fertilization and phenological stage had an impact on the abundance of bacterial genes involved 

in organic phosphorus mineralization. For instance, in the case of sludge fertilization, the abundance of 

these genes peaked during germination but decreased during flowering. In contrast, for the combined 

treatment (struvite plus sludge), the opposite trend was observed (Barquero et al., 2024). 

 

Figure 15: Phosphorus genes abundance of organic phosphorus mineralization, inorganic phosphorus solubilization 

and phosphorus -starvation response regulation categories in soils supplemented with the four fertilizers (NPK, 

Sludge, Struvite and Struvite + Sludge) during germination and flowering. Figs. A, B and C correspond to gene 
abundance in the bacterial community, while Figs. D, E and F correspond to gene abundance in the archaeal 

community. The ANOVA test carried out to check if there were significant (P < 0.05) effects between fertilizers (F), 

phenology (P) and the interaction between fertilization and phenology (F:P) has been added to the boxplot. 
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The phenological stage of maize, rather than fertilization, influenced the abundance of genes associated 

with inorganic phosphorus solubilization in both bacterial and archaeal communities. Specifically, within 

the bacterial community, the abundance of these genes was consistently higher during germination 

compared to flowering across all fertilization treatments. Genes involved in phosphorus-starvation 

response regulation were not significantly affected by individual factors, but their abundance was 

influenced by the interaction between fertilization and phenological stage in the bacterial community 

(Figure 15). For example, during flowering, fertilization treatments including sludge—either alone or in 

combination with struvite—resulted in an increased abundance of these genes, whereas the opposite trend 

was noted during germination (Barquero et al., 2024). 

Non-metric multidimensional scaling (NMDS) analysis indicated that neither fertilization treatments nor 

phenological stages significantly altered the functional structure of the bacterial community associated with 

the phosphorus cycle (Figure 16) (Barquero et al., 2024). However, the functional structure of the archaeal 

community was significantly influenced by phenological stage (Figure 16). 

 

Figure 16: NMDS analysis based on Bray-Curtis dissimilarities of phosphorus gene abundance between soils 

supplemented with the four fertilizers (NPK, Sludge, Struvite and Struvite+Sludge) during germination and 

germination. A) Bacteria; B) Archaea. The ANOVA test carried out to check if there were significant (P<0.05) effects 

between fertilizers (F), phenology (P) and the interaction between fertilization and phenology (F:P) has been added 

to the boxplot. 

Overall, in both bacterial and archaeal communities, genes involved in inorganic phosphorus solubilization 

and phosphorus-starvation response regulation were more abundant than those related to organic 

phosphorus mineralization (Barquero et al., 2024). An exception to this was the phoD gene, which was 

highly abundant in archaea (Figure 17). Within bacterial genes associated with organic phosphorus 

mineralization, several Carbon-Phosphorus lyases, such as phnG, phnH, phnI, phnJ, and phnL, were 

significantly affected by fertilization treatments (P < 0.05). Moreover, the abundance of phnG, phnJ, and 

phnL genes was significantly influenced by phenological stage (P < 0.05), displaying contrasting patterns. 



 

  47 
 
 

For instance, the abundance of phnL was notably lower in the combined struvite and sludge treatment, a 

trend that was also apparent for the phnG gene during germination. In contrast, genes encoding 

phosphatases, such as phoD and phoX, were not affected by fertilization treatments (Barquero et al., 

2024). 

 

Figure 17: Heatmap of the logarithm in base 10 of the abundance of the different phosphorus genes grouped in the 
categories of organic phosphorus mineralization, inorganic phosphorus solubilization and phosphorus -starvation 

response regulation in soils supplemented with the 4 fertilizers (NPK, Sludge, Struvite, Struvite + Sludge) during 

germination and flowering. A) Bacterial community; B) Archaeal community. The ANOVA test carried out to check if 

there were significant (P < 0.05) effects between fertilizers (F), phenology (P) and the interaction between fertilization 

and phenology (F:P) has been added to the boxplot. 
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Among bacterial genes involved in inorganic phosphorus solubilization, the gcd gene, which encodes 

quinoprotein glucose dehydrogenase, was significantly influenced by fertilization, phenology, and their 

interaction (P < 0.05) (Figure 17). This gene exhibited the highest abundance in the NPK treatment during 

germination but dropped sharply under sludge fertilization. Additionally, the abundance of gcd decreased 

during flowering compared to germination for treatments involving struvite, the combined organo-mineral 

application, and NPK. Furthermore, genes related to phosphorus-starvation response regulation, such as 

phoB and phoU, were the only ones influenced by fertilization. The phoB gene, encoding the phosphate 

regulon response regulator, showed the highest abundance under NPK fertilization during flowering, while 

phoU, encoding the PhoR/phoB inhibitory protein, was most abundant in soils fertilized with struvite plus 

sludge during germination (Barquero et al., 2024). 

Within the archaeal community, only the genes ppk1 and phnG were significantly influenced by fertilization, 

phenology, and their interaction. The ppk1 gene, which encodes polyphosphate kinase involved in 

inorganic phosphorus solubilization, displayed its highest abundance in soils treated with sludge during 

germination. Furthermore, the abundance of ppk1 was consistently greater in soils amended with sludge, 

struvite, or their combination compared to NPK during germination. Meanwhile, phnG, a gene encoding a 

Carbon-Phosphorus lyase, was more abundant in soils fertilized with NPK, sludge, or the combined struvite 

plus sludge treatment, particularly during flowering (Figure 17) (Barquero et al., 2024). 

3.3. Taxonomic distribution of phosphorus cycle genes in bacterial 
communities across treatments and phenology 

Genes related to the phosphorus cycle in soil were assigned to taxa belonging to 17 bacterial phyla, being 

particularly abundant in Acidobacteria and Actinobacteria. Figure 18 shows the top-dominant taxa 

harboring bacterial phosphorus-cycle genes. This figure is limited to those genes that showed significant 

differences in their abundances across treatment, phenology, and/or their interaction in Figure 17. 

Importantly, we observed a relevant functional clustering across taxa. Thus, there was a pattern in which 

top-dominant populations harboring genes for inorganic phosphorus solubilization and phosphorus 

starvation regulon were not dominant (or even absent) in harboring genes of organic phosphorus 

mineralization. Nevertheless, there were some exceptions. For instance, some populations, such as 

Microvirga and Hyphomicrobium, contained genes for phosphorus solubilization and phosphorus 

starvation regulon, but also genes involved in organic phosphorus mineralization (Barquero et al., 2024). 

Regarding inorganic phosphorus solubilization and phosphorus-starvation response genes, Luteitalea 

(Acidobacteria) and Nocardioides, Solirubrobacter, Blastococcus, Rhodocytophaga and Streptomyces 

(Actinobacteria) were the predominant microorganisms harboring ppk1 and phoU. ppk1 was particularly 

abundant in Ilumatobacter and Microvirga in NPK and organo-mineral treatments, respectively. The gcd 

gene was only found in three populations (Brevundimonas, Rhodocytophaga and Luteitalea). The 

abundance of the gcd gene in Luteitalea peaked in the struvite treatment at the flowering stage of maize. 
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Figure 18: Heatmap of the logarithm in base 10 of bacterial taxonomic abundance in phosphorus genes grouped into 

organic phosphorus mineralization, inorganic phosphorus solubilization and phosphorus-starvation response 

regulation categories in soils supplemented with the four fertilizers during germination and flowering. Fertilizers on 
the x-axis are abbreviated: SLU (Sludge), STR (Struvite) and STRSLU (Struvite+Sludge). Taxonomy has been 

grouped into phylum, class and genus. The image shows the genes that showed significant differences between 

fertilizers or between phenology. Only the 15 most abundant bacterial genera for each gene are displayed. 

Further, the relative abundance of phoB and phoU genes, involved in the phosphorus-starvation response 

regulation, was higher in Mesorhizobium and Ilumatobacter, respectively. The abundance of phoB in 

Mesorhizobium was also phenology-dependent, with greater values in sludge treatments during the 

flowering stage. Additionally, the abundance of phoB in Rhizobium responded to treatment and phenology, 

and was greater in the sludge treatment at the flowering stage (Barquero et al., 2024). Regarding genes 

associated with organic phosphorus mineralization, in the case of phnG, Peribacillus, Reyranella, and 

Rhizobium were the most abundant bacteria harboring this gene under the NPK treatment. The phnI gene 

was associated with Devosia, and the phnL gene was mainly linked to Nordella, and both peaked in the 

flowering stage (Figure 15) (Barquero et al., 2024). 
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3.4. Taxonomic distribution of phosphorus cycle genes in archaeal 
communities across treatments and phenology 

Despite the limited number of genes associated with archaea, we were able to assign them to several taxa 
that revealed specific patterns. Genes related to the phosphorus cycle in soil were assigned to taxa 

belonging to 3 archaeal phyla, being particularly abundant in Thaumarchaeota (Figure 19). Figure 19 

shows the abundance of phosphorus cycle genes in the top dominant archaeal populations for each gene. 

The paa gene, involved in inorganic phosphorus solubilization, was widely represented in different 

archaeal populations, including members of Crenarchaeota, Euryarchaeota and Thaumarchaeota. These 

results contrasted with other genes of inorganic phosphorus solubilization such as ppk1 (exclusively 

associated to Methanosphaerula) and pqqC, which was found only in Nitrosocosmicus and 

Nitrososphaera. The microorganism mainly associated with phoD was Nitrosopumilus, which was more 

represented in the struvite treatments. The abundance of this gene in this microorganism was much higher 

than that found in the Euryarchaeota populations harboring it. In fact, the abundance of phoD, phnG and 

phnJ was low in the Euryarchaeota populations harboring it. Regarding the effects of fertilization treatment 

and phenology, the abundance of Natrialba harboring the phnG gene was influenced by the combination 

of treatment and phenology, being more abundant during germination in the organo-mineral treatment. 

The abundance of Halococcus harboring the phoD gene was affected solely by the treatment (Figure 19). 

Conversely, concerning genes associated with inorganic phosphorus solubilization, the abundance of 

Methanosphaerula harboring the ppk1 gene was the highest in the organo-mineral treatment, particularly 

during germination (Barquero et al., 2024). 

3.5. Abundance and microbial origin of identified proteins by metaproteomics 

Metaproteomics allowed the detection and quantification of 311 proteins, with only 0.96% related to the 

phosphorus cycle. The phosphorus-related enzymes identified were phoR, phoX, and 3-phytase. Among 

these, only the abundance of 3-phytase was significantly influenced by fertilizer (P = 0.007), as well as by 

phenology (P = 0.001) and the interaction of fertilizer and phenology (P = 0.011) (Figure 17).  

Regarding the taxonomic distribution of these enzymes, we observed that phoR was predominantly 

harbored by Nitrospirae, a genus also highly represented in the metagenome. Its abundance was found 

to be statistically influenced by fertilizer (P = 0.001) and the combination of fertilizer and phenology (P = 

0.0024), being more abundant in the organo-mineral fertilizer during germination. In contrast, phoX, an 

alkaline phosphatase, showed higher abundance in Phytohabitans, Skermanella, and Solirubrobacter. 

Notably, Phytohabitans, unlike the other two genera, was not among the most abundant in the 

metagenome (Figure 20). Finally, regarding 3-phytase, which was exclusively harbored by the genus 

Nonomuraea, it did not feature among the most abundant genera in the metagenome. 
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Figure 19: Heatmap of the logarithm in base 10 of archaeal taxonomic abundance in phosphorus genes grouped into 

organic phosphorus mineralization, phosphorus inorganic  solubilization and phosphorus -starvation response 

regulation categories in soils supplemented with the four fertilizers during germination and flowering. Fertilizers on 

the x-axis are abbreviated: SLU (Sludge), STR (Struvite) and STRSLU (Struvite+Sludge). Taxonomy has been 

grouped into phylum, class and genus. 

3.6. Correlations between Olsen phosphorus content and the relative 
abundance of genes 

With respect to the bacterial community (Figure 21A), we observed a significant positive correlation 

between Olsen phosphorus and the phnG gene, and between the phnM and phnL genes, all corresponding 

to the organic phosphorus mineralization category. In addition, both genes (phnM and phnL) showed a 

significant negative correlation with the gcd gene, which belongs to the inorganic phosphorus solubilization 

category. The phnL gene also showed a significant negative correlation with the phoU gene, which is 

involved in the category of regulation of the response to phosphorus starvation. As for the archaeal 

community (Figure 21B), we similarly found a positive correlation between the phnG gene and Olsen 

phosphorus, as well as a strong significant positive correlation between the ppa and phoU genes, which 
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are associated with inorganic phosphorus solubilization and regulation of the response to phosphorus 

stress, respectively. 

Figure 20: Heatmap of the logarithm in base 10 of the results obtained in proteomics. A) Abundance of phosphorus 

genes identified in metaproteomics grouped in the categories of organic phosphorus mineralization, inorganic 
phosphorus solubilization and phosphorus-starvation response regulation in the different soils supplemented with the 

four treatments (NPK, Sludge, Struvite and Struvite+Sludge) during germination and flowering; B) Abundance of 

bacterial populations harboring different phosphorus genes grouped into organic phosphorus mineralization, 

inorganic phosphorus solubilization and phosphorus-starvation response regulation categories in the different soils 

supplemented with the four fertilizer treatments during germination and flowering. Taxonomy has been grouped into 

phylum, class and genus. The ANOVA test carried out to check if there were significant (P < 0.05) effects between 

fertilizers (F), phenology (P) and the interaction between fertilization and phenology (F:P) has been added to the 
boxplot. 

 

4. DISCUSSION 

4.1. Abundance of phosphorus-related genes and enzymes and the 
associated microbiome 

Our findings revealed that both bacterial and archaeal communities displayed a higher prevalence of genes 

associated with inorganic phosphorus solubilization and the regulation of phosphorus starvation responses 

compared to those involved in the mineralization of organic phosphorus. This result contrasts with prior 

studies that reported a higher abundance of genes linked to organic phosphorus mineralization (L. Liu 

et al., 2023; Wan et al., 2020). These discrepancies can be attributed to variations in soil characteristics 

across different investigations. Specifically, in the semiarid soils of our study, the elevated pH promotes 

phosphorus immobilization within minerals (Ruiz-Navarro et al., 2023), which differs from the 

environmental conditions described in the aforementioned research. As a result, our study highlighted 
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genetic elements primarily associated with mineral phosphorus solubilization, reflecting the limited 

bioavailability of phosphorus in these soils. This finding aligns with the long history (>20 years) of 

conventional fertilization in the studied field, during which phosphorus has likely accumulated in soil 

mineral particles (Bastida et al., 2023). 

 

Figure 21: Correlation analysis of identified phosphorus genes and total phosphorus and phosphoruss Olsen. A) 

Bacteria; B) Archaea. Negative correlations are represented in blue, while positive ones, in red. The asterisks 

represent those positive or negative correlations that were found to be statistically significant in the correlation test. 
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Interestingly, the results from our metagenomic analysis differed from the metaproteomic approach, which 

identified the most abundant proteins as those involved in organic phosphorus mineralization and the 

regulation of phosphorus starvation responses. This discrepancy suggests a decoupling between the 

abundance of genes and the expression of proteins (Starke et al., 2019), consistent with prior studies 

demonstrating that a greater abundance of genes does not necessarily correlate with higher expression 

levels (Fierer et al., 2012). Notably, while several alkaline phosphatases involved in organic phosphorus 

mineralization were detected, existing literature has predominantly focused on phoD, a gene known to be 

present across many bacterial phyla and widely distributed in environmental samples (Ragot et al., 2015). 

Nevertheless, despite the inherent limitations of current metaproteomic techniques—such as reduced 

protein extraction efficiency and low identification rates—our approach utilized an ad hoc metagenome for 

each sample to improve protein annotation. The predominance of the phosphatase encoded by phoX in 

our soils underscores its critical role in the phosphorus cycle of Mediterranean agroecosystems (Ragot 

et al., 2017). 

 

From a taxonomic perspective, our study highlights the existence of functional niches related to 

phosphorus transformation processes that are clustered within distinct microbial groups. Specifically, 

microorganisms involved in inorganic phosphorus solubilization did not typically carry genes for organic 

phosphorus mineralization or phosphorus starvation response regulation. Conversely, microorganisms 

associated with the latter two categories tended to share genes, suggesting the organization of functional 

guilds or niches linked to the soil phosphorus cycle. For example, genera belonging to Acidobacteria and 

Actinobacteria were predominant in harboring ppk1 and phoU, genes associated with inorganic 

phosphorus solubilization and phosphorus starvation regulation, respectively. The ppk1 gene encodes an 

enzyme central to the synthesis and degradation of polyphosphates (Achbergerová & Nahálka, 2011). 

Moreover, our metaproteomic data revealed that phoR, a gene associated with phosphorus starvation 

response regulation, was exclusively identified in members of the phylum Nitrospirae —a group highly 

represented in the metagenome. This phylum, known for its pivotal role in the nitrogen cycle (Al-Ajeel 

et al., 2022), has recently been implicated in sensing phosphorus deficiency (Han et al., 2018), where 

phoR may serve as a key regulatory gene. 

 

Our findings also demonstrated that while bacterial communities harbored a relatively higher abundance 

of genes linked to mineral phosphorus solubilization compared to organic phosphorus mineralization, the 

phylogenetic distribution of dominant phosphorus solubilizers was constrained. This contrasts with the 

broader taxonomic distribution of ppk1, phoU, and other genes related to organic phosphorus 

mineralization. For instance, Luteitalea, a genus recognized for its role in phosphorus solubilization 

(Valenzuela et al., 2022), was one of only three major genera harboring the gcd gene in our study. 

Similarly, Brevundimonas, which also contained gcd, emerged as a notable contributor to phosphorus 

solubilization and enhanced crop productivity (Zaim & Bekkar, 2023). Overall, the phylum Proteobacteria 

included numerous members encoding phosphorus solubilization genes. Furthermore, comparative 

studies on phosphorus availability in reforested versus agricultural soils have reported a taxonomic 
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distribution of the gcd gene, similar to that observed in our study, primarily encoded by members of 

Acidobacteria and Bacteroidetes (X. Wu et al., 2022). 

 

Our metaproteomic data also identified the phoX protein in genera such as Phytohabitants, Skermanella, 

and Solirubrobacter. However, little is known about the roles of Phytohabitants and Skermanella in the 

phosphorus cycle. Notably, Phytohabitants was not among the most abundant genera in the metagenomic 

data, reinforcing the notion that microorganisms with lower genetic abundance for specific genes can still 

exhibit high protein expression levels. Additionally, Solirubrobacter has been previously studied as a key 

genus involved in phosphorus mobilization (X. Yang et al., 2024). 

 

In the case of archaea, research on their role in the phosphorus cycle remains limited, though recent 

studies have emphasized their importance in modulating soil stoichiometry under phosphorus-deficient 

conditions (J.-T. Wang et al., 2022). Our findings showed that bacterial reads of phosphorus-related genes 

significantly outnumbered those from archaea, a disparity that reflects the lower sequencing recovery of 

phosphorus-related archaeal genes. Similar to bacteria, archaeal genes associated with inorganic 

phosphorus solubilization and phosphorus starvation regulation were more abundant than those related 

to organic phosphorus mineralization. The phylogenetic distribution of the ppa gene, encoding an inorganic 

pyrophosphatase involved in phosphorus solubilization, was widespread among archaea, including 

members of Crenarchaeota, Euryarchaeota, and Thaumarchaeota. In contrast, ppk1 was confined to the 

genus Methanosphaerula within the phylum Euryarchaeota, and pqqC was only detected in 

Nitrosocosmicus and Nitrososphaera of the phylum Thaumarchaeota. These genera, known for their roles 

in the nitrogen cycle (Rodriguez et al., 2021), may require phosphorus for general metabolic processes, 

as demonstrated by recent findings on their diverse nutrient acquisition strategies under low phosphorus 

availability (J. Zhao et al., 2023). 

4.2. Influence of fertilization on the functionality of the phosphorus-
associated microbiome 

Our results demonstrate that different types of fertilizers, in conjunction with crop phenology, interacted 

with the abundance of bacterial genes associated with organic phosphorus mineralization 

and phosphorus starvation. In the case of archaea, fertilization treatments significantly affect the 

abundance of genes involved in organic phosphorus mineralization, underscoring the sensitivity of this 

relatively unexplored microbial group in agroecosystems to fertilization strategies. Overall, our results 

demonstrated that, despite the extensive history of fertilizer inputs, prokaryotic communities rapidly 

respond to contrasting fertilizers with high phosphorus content (Y. Wang et al., 2016). 

Among the bacterial genes involved in inorganic phosphorus solubilization, the abundance of gcd was 

significantly influenced by fertilization treatments, particularly those supplemented with struvite. Here, we 

observed a higher abundance of the gcd gene in soils fertilized with NPK, struvite, and organo-mineral 

fertilizers, but not in the sludge treatment. Likely, treatments including a highly mineral source 
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of phosphorus would induce a greater abundance of this gene, potentially 

enhancing phosphorus solubilization. These results contrast with previous research in which gcd showed 

higher abundance in soils fertilized with organic manure (J.-T. Wang et al., 2022). Luteitalea was the 

predominant genus harboring ppk1 and phoU, being more abundant in organo-mineral and struvite 

treatments, respectively. This genus has been identified as important in the decomposition of organic 

matter, in the carbon cycle, and in nitrogen fixation in soils (C. Lyu et al., 2023), and our findings also 

highlight a potential role of this genus in the phosphorus cycle. 

Consistent with previous studies (Y. Shi et al., 2020) that observed a decrease in the abundance of 

ammonia-oxidizing archaea such as Nitrososphaera or Nitrosopumilus with organic amendments, we 

found a higher abundance of phoU in Nitrososphaera and of phoD in Nitrosopumilus in struvite-amended 

soils. This pattern can be attributed to struvite's ammonium-rich nature (Martines et al., 2010), which 

makes it a favorable substrate for ammonia-oxidizing archaea. 

4.3. Influence of phenology on the functionality of the phosphorus-associated 
microbiome 

According to our hypothesis, phenological stage modulated the overall abundance of genes involved in 

inorganic phosphorus solubilization in both bacteria and archaea. In contrast, the overall abundance of 

genes involved in organic phosphorus mineralization was not influenced by crop phenology. Specifically, 

the abundance of genes related to inorganic phosphorus solubilization was lower during flowering 

compared to germination in the bacterial community, while the opposite trend was observed in archaea. 

Both phenological stages, germination and flowering, are highly demanding in phosphorus (Barry & Miller, 

1989). It is possible that the plant modulates the bacterial community in the stages prior to flowering (i.e., 

germination) to increase the release of phosphorus from minerals and organic matter (Fontaine et al., 

2024). Thus, afterwards the rest of phosphorus is less soluble, producing a greater accumulation of 

phosphorus in the flowering stage. Besides the overall abundance of genes, our findings suggest that the 

functional composition of archaeal genes involved in phosphorus cycling was more sensitive to 

phenological stages than that of bacterial genes, as demonstrated by NMDS analysis. This sensitivity may 

arise from a lower level of functional redundancy within the phosphorus cycle among archaea. However, 

previous research has emphasized that despite bacteria possessing a larger repertoire of phosphorus 

cycle-related genes compared to archaea, both microbial communities demonstrate notable redundancy, 

particularly within the genes of the Pho regulon (K. D. Schneider et al., 2019; J. A. Siles et al., 2022). 

 

When examining genes related to inorganic phosphorus solubilization, we noted significant differences in 

ppk1 gene abundance in Nocardioides and Sphingomonas across phenological stages and fertilization 

treatments. The abundance of ppk1 in Nocardioides exhibited higher abundance during germination, which 

might highlight its role in phosphorus mobilization for plant growth (Shen et al., 2023). Additionally, 

Sphingomonas was more abundant in sludge-treated soils during germination, contrasting with studies 

linking its presence to lower soil phosphorus content (Lagos et al., 2016). Further, in the case of archaea, 
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the increased abundance of the ppk1 gene with alternative fertilization treatments during germination might 

indicate that archaea have the potential to mobilize inorganic phosphate supplies, as energy and nutrients 

are required for germination and growth. Indeed, some rhizospheric archaea possess attributes that 

promote plant growth and aid in nutrient management, such as the solubilization of phosphorus, potassium 

(K), and zinc (Zn) (Naitam & Kaushik, 2021). Variations were also observed in microbes with regulatory 

genes for the response to phosphorus starvation. Specifically, Mesorhizobium and Rhizobium (both 

harboring phoB) showed higher abundance during flowering in sludge-treated soils. Mesorhizobium, 

known for its phosphate solubilization capabilities and its role as a plant growth promoter (Walia et al., 

2017), along with Rhizobium, are crucial organisms that facilitate both nitrogen (N) fixation and phosphorus 

solubilization (Muleta et al., 2021). 

 

The abundances of genes involved in organic phosphorus mineralization, such as phnG, phnJ, and phnL 

for bacteria and phnG for archaea, varied between germination and flowering stages across fertilization 

treatments. Notably, phnG showed temporal variations, especially during flowering, aligning with greater 

Olsen phosphorus levels, suggesting that this gene might play a key role in available phosphorus provision 

in this agroecosystem. This finding is supported by the increased presence of phnG gene in soils fertilized 

with sludge and sludge plus struvite during flowering. These observations reinforce the hypothesis that the 

phenological stage of maize could influence the abundance of specific uptake-related phosphorus cycle 

genes related to nutrient uptake (Duchin et al., 2020; Yep et al., 2020). In the taxonomic distribution within 

the bacterial community, we observed that certain microorganisms hosting genes implicated in organic 

phosphorus mineralization, including various C-single bond-P lyases such as phnI, phnJ, phnH, and phnL, 

exhibited phenological variations. For example, Devosia had greater phnI abundance during germination 

in NPK-treated soils, consistent with prior studies indicating its enrichment in soils with limited phosphorus 

availability (Gao et al., 2024). In the archaeal community, interestingly, we highlight that, although our 

study identified Natrialba as a host of genes related to organic phosphorus mineralization, previous 

research has highlighted its role as one of the most significant phosphate-solubilizing archaea (A. N. Yadav 

et al., 2015), suggesting that this genus may contain genes associated with inorganic phosphorus 

solubilization that were not identified in our study. 

 

5. CONCLUSIONS 

Our research offers fresh insights into the critical microbial taxa, genes, and proteins associated with the 
phosphorus cycle in Mediterranean agroecosystems, utilizing an integrated approach that combines 

metagenomics and metaproteomics. Aligning with our hypotheses, we found that the crop's phenological 

stage plays a more pivotal role than fertilization practices in shaping the relative abundance of phosphorus 

cycle-related genes, particularly those involved in the solubilization of inorganic phosphorus by bacterial 

and archaeal communities. While prior studies have acknowledged the influence of phenology on soil 

microbial communities, our findings stand out in demonstrating that the phenological stage exerts a greater 
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impact than fertilization practices. This knowledge paves the way for the development of phosphorus 

fertilization strategies that account more thoroughly for plant phenology. 

Additionally, our results reveal notable taxonomic clustering of functional processes related to the 

phosphorus cycle, with plant growth stages exerting a significant influence. For example, within the 

dominant bacterial populations carrying phosphorus-related genes, microbes harboring genes for the 

solubilization of inorganic phosphorus were typically distinct from those carrying genes for the 

mineralization of organic phosphorus. This distinction was particularly evident in members of the phylum 

Actinobacteria. Moreover, our study underscores the significant impact of phenology on archaeal 

communities and the associated phosphorus-related genes—a subject that has received relatively little 

attention in the scientific literature. These findings highlight the promising potential of archaea to contribute 

to the phosphorus cycle in agroecosystems. Nonetheless, we acknowledge the need to address certain 

methodological challenges in metaproteomics and the importance of refining metagenome database 

curation for more accurate insights in multi-omic approaches. 

Our work also confirms the initial hypothesis regarding the impact of distinct fertilization treatments on the 

abundance of critical genes regulating phosphorus cycling. We observed markedly different responses to 

fertilizers in terms of the abundance of genes linked to organic phosphorus mineralization in both bacterial 

and archaeal communities. Additionally, fertilizer types influenced genes regulating phosphorus-starvation 

responses, with these effects being particularly pronounced in bacterial taxa. Importantly, our findings 

demonstrate complex interactions between fertilizer type and crop phenology, which collectively drive 

nuanced shifts in the abundance of phosphorus cycling genes across various functional categories in 

bacterial and archaeal populations. 

Lastly, the integration of metaproteomics with metagenomics significantly enhances our understanding of 

the phosphorus cycle by identifying abundant enzymes that may otherwise be overlooked. For example, 

the enzyme alkaline phosphatase, encoded by the phoX gene, emerged as a key player in phosphorus 

cycling in this maize agroecosystem. This enzyme, although often disregarded in previous studies, 

appears to play an essential role in the microbial phosphorus cycle. 
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CHAPTER 2 

Phenology shapes nitrogen cycling more 
than fertilization: multi-omic evidence of 
microbial guild specialization in a maize 

agroecosystem. 
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CHAPTER 2 

1. INTRODUCTION 

Nitrogen (N) is an essential macronutrient for plant growth, development and yield (Sun et al., 2020). In 

plants, nitrogen is a highly required element, as it is used to produce amino acids and nucleotides, the 

building blocks of proteins and nucleic acids, respectively (Bloom, 2015). In fact, the availability of nitrogen 

nitrogen from the environment often limits the productivity of agroecosystems. Due to the physicochemical 

properties of soil, plants often have limited access to this resource, leading to nutrient deficiencies (B. 

Zhao et al., 2024). Given its importance, large amounts are usually applied as fertilizers, which can lead 

to problems for ecosystem health. Besides conventional mineral sources of nitrogen, whose prices are 

increasing, recycled materials can be used therefore contributing to circular economy. Among these 

sources, byproducts of mineral (i.e., struvite) and organic (i.e., sludges) character are important sources 

of nitrogen for agroecosystems. In the case of struvite, it is a crystalline mineral compound 

(MgNH₄PO₄·6H₂O) composed of magnesium, ammonium, and phosphate (Bastida et al., 2019b). It 

typically forms in wastewater treatment plants, particularly in the presence of high concentrations of these 

ions. Struvite contains an important amount of nitrogen (nearly 5%) that can be  source of these 

macronutrient in agroecosystems. Similarly, the content of nitrogen nitrogen in sludge is variable but can 

be around 5%, with a more organic nature. These byproducts contain not only nitrogen nitrogen but also 

other essential nutrients and elements, including magnesium (Mg) and phosphorus (P) (Chojnacka et al., 

2023; Ha et al., 2023). It has been shown that struvite can be used as a slow-releasing nitrogen-fertilizer 

for plants (L. Wang et al., 2023), while sludge fertilization leads to an increase in biomass nitrogen 

(Petersen et al., 2003). Further, the high content of organic carbon in sludges can benefit soil health and 

promote microbial activity and biomass and the soil organic matter in semiarid soils (J. A. Siles, Gómez-

Pérez, et al., 2024). 

 

In addition to the chemical nature of nitrogen fertilizers (i.e., organic vs. mineral) and soil edaphic 

properties, soil N availability can be influenced by plant growth stages and associated soil microbes (Legay 

et al., 2020). Plants have different nutritional demands depending on their phenological stage. This 

prompts plants to develop various dynamic strategies to acquire nitrogen, one of which is forming 

associations with soil microbes that can modulate the nitrogen cycle (Tao et al., 2019; B. Zhao et al., 2024). 

In the face of nitrogen scarcity, soil microbial communities respond by regulating the expression of genes 

involved in denitrification, nitrification, dissimilatory nitrate reduction to ammonium (DNRA), assimilatory 

nitrate reduction to ammonium (ANRA), N2 fixation and N transport (Kelly et al., 2021). In this context, soil 

microbes exhibit their nitrifying potential through the action of genes such as pmoA-amoA or pmoB-amoB 

and denitrifying nitrates or nitrites by regulating genes such as nosZ or nosC (Mosley et al., 2022). It is 

therefore crucial to emphasize how various byproducts rich in nitrogen, such as struvite and sludge, can 

modulate soil microbial communities and their contribution to the overall nitrogen cycle (Kelly et al., 2021). 

For instance, the application of organic amendments has been shown to increase the abundance of 

denitrification genes, such as nirK, which are associated with nitrous oxide (N₂O) emissions (Y. Yang et al., 
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2022). Additionally, depending on the environment, organic amendments have also been observed to 

increase the abundance of nitrification genes, highlighting their role in influencing both nitrification and 

denitrification processes (Bastida et al., 2009). Similarly, fertilization with struvite has caused changes in 

the relative abundance of amoA and nosZ genes, suggesting that struvite can affect both nitrification and 

denitrification processes (Carreras-Sempere et al., 2024). However, the interaction between the effects of 

these products on gene abundance and plant growth stages is not adequately considered and warrants 

further attention, given the complex plant-soil-microbe interactions and the varying plant nitrogen demands 

throughout the growth cycle. In this sense, employing multi-omics approaches such as metagenomics and 

metaproteomics, together with the recovery of metagenome-assembled genomes (MAGs), represents a 

significant advancement in understanding the microbial contribution to soil nitrogen cycling (Bastida et al., 

2021; Miller et al., 2023; Starke et al., 2019).  

 

Among these, the analysis of MAGs has emerged as a cutting-edge tool, providing a more comprehensive 

and high-resolution perspective on microbial community structure and functional potential. MAGs allow the 

reconstruction of near-complete genomes from complex microbial communities (L.-X. Chen et al., 2020), 

enabling the identification of specific microbial taxa and their functional roles in the nitrogen cycle with 

unprecedented precision. The combination of these Meta-omics approaches helps in the identification and 

quantification of genes and key microbial players potentially involved in the nitrogen cycle, along with 

proteins that are directly responsible for functional processes (Starke et al., 2019).  

 

In this study, we partially substituted conventional mineral fertilizers with struvite, sludge, and their organo-

mineral combination, and investigated the effects of these fertilization strategies on the abundance and 

taxonomic origin of key functional genes and proteins related to the nitrogen cycle, such as those involved 

in nitrification, denitrification, DNRA, ANRA, N₂ fixation, and N transport. We further explore how 

phenological stage of maize interact with soil microorganisms and the potential functionality related to 

nitrogen cycle. This study was carried out in a maize field trial, given the crop's global importance as the 

top cereal in terms of production volume and its anticipated role as the most widely cultivated and traded 

crop in the coming decade (Erenstein et al., 2022). Our research also focused in archaea given their critical 

role on the N cycle. (Offre et al., 2013).  

 

Given the distinct chemical nature of fertilizers, where struvite contains ammonium, a plant-available form 

of nitrogen, and sewage sludge contains both ammonium and nitrate and organic nitrogen forms, we 

hypothesize that: i) these materials will differently impact the abundance of genes involved in nitrogen 

cycling and the bacterial and archaeal populations that harbor these genes, and ii) the phenological stage 

of maize will shape the abundance of specific genes and microbes related to nitrogen cycling in the soil, 

thus influencing the taxonomic clustering of nitrogen-functional processes.  
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2. MATERIALS AND METHODS 

2.1. Experimental setup and sampling  

The experiment was carried out during the 2022 maize-growing season in the experimental fields of ITAP 

(Santa Ana, Albacete, SE Spain; 38°53'39.8” N, 1°59'18.0” W), a semi-arid Mediterranean region, as 

described in Barquero et al. (2024) (Figure 12), as outlined in Chapter 1. Soil properties prior to the 

experiment are described in detail in Table 1. A total of 16 plots, each measuring 18.75 m² and separated 

by 1-meter-wide paths, were established. The maize crop (var. P0937) was sown on May 18, 2022. The 

experimental design follows a completely randomized block design with four fertilization treatments, each 

replicated four times. The treatments included: i) mineral NPK fertilization (NPK); ii) organic fertilization 

with thermostabilized sludge (SLU); iii) mineral fertilization using struvite (STR); and iv) a combination of 

struvite and sludge (STRSLU). Nutrient compositions of both struvite and sludge are detailed in Table 2. 

These treatments were applied to partially substitute conventional mineral fertilization. Briefly, struvite 

contained 0.13, 5.80, and 16.30 g 100g-1 of organic carbon, total nitrogen, and total phosphorus, 

respectively, while sludge contained 29.08, 4.92, and 4.14 g 100g-1 of these nutrients. Fertilizers were 

applied to satisfy maize's nutritional requirements, approximately 192 kg ha-1 of nitrogen (N), 225 kg ha-1 

of phosphorus (P), and 281 kg ha-1 of potassium (K) in all treatments. All nutrients were incorporated during 

the initial fertilization stage on May 13, 2022, with subsequent nitrogen applications at phenological stages 

V4 and V8 (June 20 and July 8, 2022, respectively) as per Ritchie, S.W & J.J. Hanway, 1982, classification 

(see Table 3 for details). For this purpose, superphosphate, potassium sulfate, and calcium ammonium 

nitrate (NAC27) were applied as required to satisfy plant demands. Irrigation was conducted as needed 

throughout the crop cycle. Soil samples from rhizosphere were collected during two phenological stages: 

germination (V1) and flowering (R1) (Ritchie, S.W & J.J. Hanway, 1982), selected as these represent the 

periods of greatest nitrogen demand. Rhizospheric soil samples were collected by pooling soil from five 

plants per plot to generate representative samples. Afterwards, samples were sieved to 2 mm and stored 

at -80ºC for DNA extraction or air-dried for chemical analyses. 

2.2. Soil analyses 

Water soluble nitrogen (WSN) was measured in a C/N analyzed (Multi N/C 3100, Analytic Jena, Germany). 

Total nitrogen was assessed using Elemental Analyzer (C/N Flash EA 112 Seres-Leco Truspec) (García-

Díaz et al., 2024). Urease activity (E.C. 3.5.1.5) was determined following the method described by 

Kandeler and Gerber (1988). An aqueous solution of urea (0.48%) was used as the substrate, combined 

with a 0.06 M borate buffer at pH 10. The NH4+ generated was extracted using a 7.4% KCl solution and 

quantified through a modified indophenol reaction (Kandeler & Gerber, 1988). 

2.3. DNA extraction and shot-gun sequencing 

Soil DNA was extracted using the DNeasy PowerSoil kit (Qiagen), following the procedures outlined by 

the manufacturer. For the preparation of metagenomic libraries, the extracted DNA was fragmented via 

acoustic shearing using a Covaris S220 ultrasonicator. The fragmented DNA underwent purification, 3' 
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adenylation, end-repair, and adapter ligation. A limited-cycle PCR was subsequently performed to enrich 

the libraries. Library validation was achieved using an NGS Kit with an Agilent 5300 Fragment Analyzer 

(Agilent Technologies), while quantification was carried out using a Qubit 4.0 Fluorometer (Invitrogen). 

Prior to sequencing, DNA libraries were multiplexed and loaded into the Illumina NovaSeq 6000 platform 

(Illumina), which was configured for paired-end sequencing (2 × 150 bp). This step was performed in strict 

accordance with the manufacturer’s protocol. Image processing and base calling were managed using 

NovaSeq Control Software (v1.7), while .bcl files were transformed into demultiplexed .fastq files using the 

Illumina bcl2fastq software (v2.20) (J. Siles et al., 2024). The sequencing procedures were carried out at 

Genewiz Europe (Leipzig, Germany), as previously described in Barquero et al. (2024). 

2.4. Metagenomic analysis 

The metagenomic libraries were processed following the methodology initially described by Žifčáková et al. 

(2016), with certain adaptations. The complete code used for the metagenomic analysis is available in the 

repository at https://github.com/mariabelen-

bm/Doctoral_Thesis/blob/78fb7483aff71e570633d6b3a8f0bb666fe368de/metagenomics_pipeline_chapt

ers_1_2.sh. The complete pipeline is also shown in Annex 1. Additionally, the Python scripts employed 

during the metagenomic pipeline are included in Annex 2. 

 

Briefly, quality control of raw reads was performed using FastQC (v0.12.0) 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), discarding sequences with a quality score 

below 30 or length shorter than 50 bp. Normalization using k-mer counting (k = 20) with minimum coverage 

of 20 was conducted prior to assembly using MEGAHIT (v1.2.9) (D. Li et al., 2015). Assembly quality was 

evaluated with MetaQUAST (v5.2.0) (Mikheenko et al., 2016), while gene prediction was carried out using 

FragGeneScan (Rho et al., 2010), and alignment was conducted using Bowtie2 (v2.4.1) (https://bowtie-

bio.sourceforge.net/bowtie2/index.shtml). Taxonomic identification was primarily performed using the 

NCBI nr database (https://www.ncbi.nlm.nih.gov/). For functional annotation, the KEGG database and was 

employed: KEGG enabled the assignment of sequences to metabolic pathways and biological processes, 

while dbCAN was specifically utilized for identifying carbohydrate-active enzymes, such as hydrolases and 

lyases (L. Huang et al., 2018; Kanehisa et al., 2016; Tatusov et al., 2003). Additionally, annotations were 

linked to nitrogen cycle genes as described in Žifčáková et al. (2016) and (Žifčáková, 2017). The results 

are presented within functional groups related to the nitrogen cycle. For instance, nitrification includes 

genes encoding ammonia monooxygenases (pmoA-amoA, pmoB-amoB, pmoC-amoC) and 

hydroxylamine oxidoreductase (hao). Denitrification encompasses genes encoding nitrate reductases 

(narI, narV, narJ, narW, napA, napB, napC), nitrite reductases (nirK, nirS), nitric oxide reductases (norB, 

norC), and nitrous oxide reductase (nosZ). Combined nitrification and denitrification category includes 

genes encoding both nitrate and nitrite oxidoreductases (narG, narZ, nxrA, narH, narY, nxrB). These 

genes are included in the denitrification/nitrification category because they play crucial roles in both 

processes. Specifically, narG and narZ encode the alpha subunits of nitrate reductase, which catalyzes 

the reduction of nitrate (NO₃⁻) to nitrite (NO₂⁻), a key step in denitrification. On the other 
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hand, nxrA encodes the alpha subunit of nitrite oxidoreductase, which is involved in the oxidation of nitrite 

(NO₂⁻) to nitrate (NO₃⁻), a central reaction in nitrification. Similarly, narH, narY, and nxrB encode 

additional subunits of these enzymes, supporting their functionality in both pathways. Dissimilatory nitrate 

reduction to ammonium (DNRA) features genes encoding cytochrome c nitrite reductase (nrfA, nrfH) and 

assimilatory nitrite reductases (nirB, nirD). Assimilatory nitrate reduction to ammonium (ANRA) includes 

genes encoding nitrate and nitrite reductases (nasC, nasA, narB, nirA). N₂ fixation encompasses genes 

encoding nitrogenase components (nifH, nifD, nifK). N transport involves genes encoding nitrate/nitrite 

transporters (nrtA, nasF, cynA, nrtB, nasE, cynB, nrtC, nasD, nrtD, cynD). Lastly, general N metabolism 

includes genes encoding glutamine synthetase (glnA, GLUL), glutamate dehydrogenase (GLUD1_2, 

gdhA), and nitric oxide dioxygenase (NAO) (Kelly et al., 2021). The details of each gene can be seen in 

Table 5. Due to the intricate nature of the dataset, the taxonomic analyses focused on the dominant 

microbial populations associated with genes significantly influenced by fertilization treatments and/or 

phenological stages. The raw sequencing data have been uploaded to NCBI and are available under the 

BioProject accession number PRJNA1118481. 

2.5. Analysis of metagenome-assembled genomes (MAGs) 

The analysis of MAGs was carried out using a pipeline specifically designed for reconstructing microbial 
genomes from environmental samples, following methodologies adapted from several established 

approaches. The complete code used for the analysis of MAGs is available in the repository at 

https://github.com/mariabelen-

bm/Doctoral_Thesis/blob/78fb7483aff71e570633d6b3a8f0bb666fe368de/MAGs_pipeline_chapter_2.sh. 

A detailed explanation of the steps is also provided in Annex 3.  

The analysis was performed in a command-line environment (Shell), utilizing a combination of specialized 

bioinformatics tools and software for MAG reconstruction, quality assessment, taxonomic and functional 

annotation, and relative abundance quantification. The workflow began with the grouping of assembled 

contigs into bins, representing individual microbial genomes, using the MetaWRAP pipeline (Uritskiy et al., 

2018), which combines algorithms such as MetaBAT2, MaxBin2, and CONCOCT (Alneberg et al., 2013; 

Kang et al., 2019; Y.-W. Wu et al., 2014). To ensure high-quality results, bins were refined by selecting 

those with a completeness score of ≥50% and contamination of ≤10%. Quality assessment was further 

carried out with CheckM2 (Chklovski et al., 2023), which validated the completeness and contamination 

of the refined MAGs. Taxonomic classification was performed using GTDB-Tk (Chaumeil et al., 2022) with 

the Genome Taxonomy Database (GTDB) version 2.4.0, providing a standardized taxonomic framework. 

To verify the genomic consistency of the MAGs and rule out contamination, the Genomic UNcertainty 

Calculator (GUNC) was employed (Orakov et al., 2021). The relative abundance of MAGs in each sample 

was determined by mapping metagenomic reads to the reconstructed genomes using CoverM with the 

minimap2-sr algorithm (H. Li, 2018). Additionally, functional annotation of the MAGs was conducted with 
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the DRAM pipeline (Shaffer et al., 2020), which assigned metabolic functions based on multiple databases, 

including KOfam and dbCAN2 (Aramaki et al., 2020; H. Zhang et al., 2018).  

2.6. Protein extraction and LC-MS analysis 

Protein extraction and mass spectrometry followed protocols previously optimized for similar studies 

(Barquero et al., 2024; Bastida et al., 2014b; Chourey et al., 2010b). Proteins were extracted from soil 

samples via SDS buffer boiling, resolved by 12% SDS-PAGE, and visualized using colloidal Coomassie 

staining. Proteins were subsequently reduced, alkylated, and digested with trypsin, followed by peptide 

desalting. Peptides were analyzed using nanoHPLC-MS/MS (Thermo Fisher Scientific) as described in 

Bastida et al. (2016). Briefly, 1 μg of peptides was injected into a Vanquish Neo nanoHPLC coupled to an 

Orbitrap Exploris™ 480 mass spectrometer. Peptides were trapped and separated on C18 reverse-phase 

columns with a two-step gradient (4%-30% B over 95 minutes, followed by 30%-55% B over 40 minutes; 

mobile phase B = 80% acetonitrile with 0.01% formic acid). Data were acquired with a resolution of 120,000 

for MS1 and 15,000 for MS/MS. Processing was performed using Proteome Discoverer (v2.5.0.400) with 

SequestHT and FDR-controlled at 1%. Results were annotated using KEGG, and protein abundances 

were normalized as previously described in Barquero et al. (2024). Raw proteomics data have been 

deposited under PRIDE accession PXD052073. 

2.7. Statistical analysis 

To evaluate the impact of fertilizer treatments and phenological stages on the abundance of functional 

genes and the populations that harbor them, an ANOVA was performed in R (R-Core-Team, 2023) using 

the “stats” package. Previously, the normality and heteroscedasticity of the data were checked. To 

evaluate the effects of fertilization treatments and phenological stages on the functional structure of 

bacterial and archaeal communities-including genes involved in denitrification/nitrification, denitrification, 

nitrification, DNRA, ANRA, N2 fixation, N transport, and general N metabolism, the abundance data were 

subjected to non-metric non-restricted multidimensional scaling (NMDS) (Borcard et al., 2018). Prior to 

NMDS analysis, abundances were log-transformed to base 10, and ordination was performed using the 

Bray-Curtis dissimilarity index via the metaMDS() function of the “vegan” package (Oksanen et al., 2019) 

in R. Pearson correlation analysis was conducted to explore linear relationships among genes involved in 

the N cycle. The Pearson correlation matrix was computed using the cor() function from the “corrplot” 

package (Taiyun, 2017) in R. Subsequently, the significance of the observed correlations was assessed 

using the cor.mtest() function. A 95% confidence level was applied to evaluate statistical significance. For 

the MAGs analysis, statistical tests were conducted to determine significant differences between the 

abundance of different treatments. Initially, the Shapiro-Wilk test was applied to assess the normality of 

the abundance data for each genomic bin and treatment combination (Hanusz et al., 2016). A Kruskal-

Wallis test was performed to evaluate significant differences in abundance across treatments for each 

genomic bin (McKight & Najab, 2010). To further explore these differences, a post-hoc Dunn’s test (Dinno, 

2024) was conducted on the bins with significant Kruskal-Wallis results. Adjusted p-values were calculated 
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using the Bonferroni correction to account for multiple comparisons. Heatmaps and bar charts were 

generated for data visualization using the “ggplot2” package  (Wickham, 2016).  

 
Table 5: Details on the 35 functional genes studied in the present work related to the nitrogen cycle. 

 

 

Pathway Gene Enzyme 
KEGG 
ID 

Nitrification/Denitrification 
narG, narZ, 
nxrA Nitrate/nitrite oxidoreductase K00370 

 
narH, narY, 
nxrB Nitrate/nitrite oxidoreductase K00371 

Denitrification napA Periplasmic nitrate reductase K02567 
 napB Periplasmic nitrate reductase K02568 
 napC Periplasmic nitrate reductase K02569 
 narJ, narW Nitrate reductase assembly protein K00373 
 narI, narV Nitrate reductase catalytic subunit K00374 
 nirK Copper-containing nitrite reductase K00368 
 nirS Cytochrome cd1 nitrite reductase K15864 
 norB Nitric oxide reductase subunit B K04561 
 norC Nitric oxide reductase subunit C K02305 
 nosZ Nitrous oxide reductase K00376 
Nitrification hao Hydroxylamine oxidoreductase K10535 

 pmoA-amoA 
Particulate methane/ammonia 
monooxygenase subunit A K10944 

 pmoB-amoB 
Particulate methane/ammonia 
monooxygenase subunit B K10945 

 pmoC-amoC 
Particulate methane/ammonia 
monooxygenase subunit C K10946 

DNRA nirB Assimilatory nitrite reductase large subunit K00362 
 nirD Assimilatory nitrite reductase small subunit K00363 
 nrfA Cytochrome c nitrite reductase K03385 
 nrfH Cytochrome c nitrite reductase K15876 
ANRA narB Assimilatory nitrate reductase K00367 
 nasB Assimilatory nitrate reductase K00360 
 nasC, nasA Nitrate transporter K00372 
 nirA Ferredoxin-nitrite reductase K00366 

N₂ Fixation nifD 
Nitrogenase molybdenum-iron protein alpha 
chain K02586 

 nifH Nitrogenase iron protein K02591 

 nifK 
Nitrogenase molybdenum-iron protein beta 
chain K02588 

N Transport 
nrtB, nasE, 
cynB Nitrate/nitrite transporter subunit K15577 

 
nrtA, nasF, 
cynA Nitrate/nitrite transporter subunit K15576 

 nrtC, nasD Nitrate/nitrite transporter subunit K15578 
 nrtD, cynD Nitrate/nitrite transporter subunit K15579 
General N Metabolism gdhA Glutamate dehydrogenase K00261 
 glnA, GLUL Glutamine synthetase K01915 

 
GLUD1_2, 
gdhA Glutamate dehydrogenase K00262 

 nao Nitric oxide dioxygenase K03384 
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3. RESULTS 

3.1. Total nitrogen, WSN, and Urease activity 

Total nitrogen content did not show statistically significant differences in relation to fertilization treatments, 

phenological stages, or their interaction. In contrast, WSN exhibited statistically significant differences 

among fertilization treatments (F = 12.3, P = 0.001). For urease activity, phenology (F = 4.18, P = 0.043) 

and the interaction between fertilization and phenology (F = 6.11, P = 0.005) were found to be statistically 

significant (Figure 22). Regarding WSN, the NPK treatment displayed the highest WSN content in both 

phenological stages, while the struvite plus sludge treatment showed the lowest values of WSN (Figure 

22). In the case of urease activity, the struvite plus sludge treatment during germination exhibited the 

highest urease activity, whereas the same fertilization treatment during flowering recorded the lowest 

urease activity. 

 

 

Figure 22: Total nitrogen content, WSN and urease activity during germination and flowering in soils supplemented 

with the four fertilizers: NPK, Sludge, Struvite and Struvite + Sludge. A) Total nitrogen, B) WSN, C) Urease. The 

ANOVA test carried out to check if there were significant (P < 0.05) effects between fertilizers (F), phenology (P) and 

the interaction between fertilization and phenology (F:P) has been added to the boxplot. 

3.2. The abundance of nitrogen genes in the bacterial and archaeal 
community 

The total number of reads with annotated genes was 813,089. Of these, only 152 were associated with 

fungi, and only 4 of them corresponded to nitrogen-related genes, so no further inquiry was made in this 

domain. Of the total reads, 15,083 were attributed to bacteria containing nitrogen-cycling-related genes, 

while the count for archaea was 302. N gene readings in the bacterial community were classified into eight 

categories: denitrification/nitrification, denitrification, nitrification, DNRA, ANRA, N2 fixation, N transport, 
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and general N metabolism. In contrast, the archaeal community's nitrogen gene readings were solely 

classified into two categories: denitrification and nitrification (Figure 23). 

 
Figure 23: Abundance of nitrogen-related genes in soil bacteria and archaea under different fertilization treatments 

(NPK, Sludge, Struvite, and Struvite + Sludge) during germination and flowering. Panels (A) to (H) represent bacterial 

gene abundances for denitrification (A), nitrification (B), denitrification/nitrification (C), DNRA (D), ANRA (E), N₂ 

fixation (F), N transport (G), and general N metabolism (H). Panels (I) and (J) show archaeal gene abundances for 

denitrification (I) and nitrification (J). Results from an ANOVA test assessing the significant effects (P < 0.05) of 

fertilization (F), phenological stage (P), and their interaction (F:P ) are included within the boxplots. 
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In the bacterial community, fertilization treatments only influenced the abundance of genes in the DNRA 

category (Figure 23D). For instance, the abundance of genes involved in this category was higher in the 

NPK and struvite fertilization treatments compared to the other organic fertilization, both during 

germination and flowering. Additionally, in the bacterial community, maize phenology influenced the 

abundance of genes in the denitrification/nitrification and N2 fixation categories (Figure 23C and Figure 

23F). A decrease in the abundance of genes in the denitrification/nitrification category was observed in the 

sludge, struvite, and struvite-plus-sludge fertilizer treatments during flowering. In contrast, gene 

abundances in the NPK treatment remained stable across both phenological stages. Further, the 

abundance of genes involved in N2 fixation decreased significantly in flowering (Figure 23F). Finally, the 

interaction between fertilizer treatments and phenology influenced the abundance of genes in the N2 

fixation and N transport categories in the bacterial community (Figure 23F and Figure 23G). In the N2 

fixation category, a decrease in gene abundance was observed during flowering, particularly in the NPK 

and struvite plus sludge fertilizer treatments. Conversely, in the sludge fertilizer treatment, gene 

abundance was higher during flowering than during germination, contrary to the pattern observed in the 

other fertilizer treatments. In the N transport category, gene abundance in the sludge fertilizer treatment 

was higher during flowering than during germination, whereas in the struvite plus sludge fertilizer 

treatment, gene abundance was higher during germination than during flowering. In the archaeal 

community, no significant differences were found in the abundance of genes in the two studied categories, 

neither between fertilizer treatments nor between phenological stages.  

 

Overall, within the bacterial community, genes involved in denitrification/nitrification, denitrification, 

nitrification, and DNRA were observed to be more abundant than those involved in N2 fixation, N transport, 

and general N metabolism. However, the glnA, GLUL gene, which falls under general N metabolism, 

exhibited a notably high abundance (Figure 24). This gene encodes glutamine synthetase, an enzyme that 

catalyzes the ATP-dependent conversion of glutamate and ammonia into glutamine, playing a central role 

in N assimilation and recycling (Eisenberg et al., 2000). In contrast, within the archaeal community, genes 

related to general N metabolism were more prevalent, with the glnA, GLUL gene again being the most 

abundant (Figure 24).  

 

Among the bacterial genes associated with denitrification/nitrification, the narH, narY, nxrB genes were 

significantly influenced by phenology (P < 0.05), showing higher abundance during germination compared 

to flowering. Within the denitrification category, the napA gene was significantly affected by phenology and 

by the interaction between fertilizer treatments and phenology, while the nisS and nosZ genes were 

significantly influenced by fertilizer treatments (P < 0.05). A higher abundance of the napA gene was 

observed in the NPK, sludge, and struvite plus sludge fertilizer treatments during germination. For the nisS 

gene, higher abundance was noted in the struvite plus sludge fertilizer treatment, particularly during 

flowering. In contrast, the nosZ gene showed higher abundance in the NPK fertilizer treatment during 

germination. In the nitrification category, the pmoA-amoA gene was significantly influenced by fertilizer 

treatments, while the pmoB-amoB gene was influenced by phenology (P < 0.05). 
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Figure 24: Heatmap showing the base-10 logarithm of nitrogen-related gene abundances, grouped into functional 

categories: denitrification/nitrification, denitrification, nitrification, DNRA, ANRA, N₂ fixation, N transport, and general 

N metabolism in bacteria, as well as denitrification, nitrification, and general N metabolism in archaea. Soils were 

supplemented with four fertilizers (NPK, Sludge, Struvite, and Struvite + Sludge) during germination and flowering. 

Panel (A) represents the bacterial community, while panel (B) corresponds to the archaeal community. Results from 

an ANOVA test evaluating the significant effects (P < 0.05) of fertilization (F), phenological stage (P), and their 

interaction (F:P ) are included within the boxplots. 
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The pmoA-amoA gene exhibited higher abundance in the NPK, sludge, and struvite treatments, whereas 

the pmoB-amoB gene was more abundant in the sludge, struvite, and struvite plus sludge fertilizer 

treatments during germination. In the DNRA category, the nrfH gene was significantly influenced by 

fertilizer treatments (P < 0.05), showing higher abundance in the NPK, struvite, and struvite plus sludge 

treatments. In the ANRA category, the narB gene was significantly influenced by fertilizer treatments (P < 

0.05), with higher abundance observed in the NPK, sludge, and struvite fertilizer treatments. Regarding 

N2 fixation, the nifD gene was significantly influenced by fertilizer treatments, phenology, and the 

interaction between fertilization and phenology, while the nifK gene was significantly affected by fertilizer 

treatments and the interaction between fertilization and phenology (P < 0.05). The nifD gene displayed 

higher abundance in the NPK, struvite, and struvite plus sludge treatments during germination, whereas 

the nifK gene was more abundant during germination in the NPK and struvite plus sludge treatments. In 

the N transport category, the nrtB, nasE, cynB gene was significantly influenced by fertilizer treatments 

and phenology, while the nrtC, nasD gene was influenced by fertilizer treatments and phenology. 

Additionally, the nrtA, nasF, cynA genes were significantly impacted by fertilizer treatments and the 

interaction between fertilization and phenology (P < 0.05). The nrtB, nasE, cynB gene exhibited higher 

abundance in the sludge fertilizer treatment during germination, while the nrtC, nasD gene was more 

abundant in the sludge and struvite fertilizer treatments during flowering. The nrtA, nasF, cynA genes 

showed higher abundance in the sludge fertilizer treatment during flowering. Within the archaeal 

community, in the nitrification category, the pmoB-amoB gene was significantly influenced by fertilizer 

treatments, with higher abundance observed in the sludge and struvite fertilizer treatments (P < 0.05). 

3.3. Taxonomic distribution of nitrogen cycle genes in bacterial communities 
across treatments and phenology 

Genes associated with the nitrogen cycle in soil were linked to taxa across 19 bacterial phyla, with 

Acidobacteria, Actinobacteria, and Proteobacteria being particularly abundant (Figure 25). Figure 25 

highlights the most dominant taxa containing bacterial nitrogen-cycle genes. This figure focuses on genes 

that exhibited significant differences in abundance across fertilization, phenology, and/or their interaction, 

as shown in Figure 24. Notably, we found significant functional clustering among the taxa. A pattern 

emerged where dominant populations carried nitrification genes but were not prevalent (or even absent) 

when it came to denitrification genes. However, a few exceptions were observed. For instance, certain 

populations like Bradyrhizobium (Proteobacteria) and Ornithinibacter (Actinobacteria) possessed both 

denitrification and nitrification genes (Figure 25). 

 

In the denitrification/nitrification category, we found that bacterial genera such as Solirubrobacter, 

Rubrobacter, Ornithinibacter, Nocardioides (Actinobacteria), and Bacillus (Firmicutes) were predominant 

in harboring the gene narH, narY, nxrB, with Nocardioides being the most abundant genus, particularly 

prevalent during germination for these genes. In the denitrification category, bacterial genera such as 

Steroidobacter and Thalassospira (Proteobacteria) were identified as carriers of the napA and nirS genes, 

while the genera harboring nosZ were more diverse, including members from the phyla Verrucomicrobia 
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(Opitutus), Proteobacteria (Microvirga), Ignavibacteriae (Melioribacter), Gemmatimonadetes 

(Gemmatimonas), Firmicutes (Planifilum), Chloroflexi (Anaerolinea), Bacteroidetes (Flavitalea), and 

Acidobacteria (Luteitalea). In the nitrification category, the bacterial genera Nitrosospira, Nitrosovibrio, and 

Nitrosomonas (Proteobacteria) were the most abundant, harboring the pmoB-amoB and pmoC-amoC 

genes. Specifically, the abundance of the bacterial genus Nitrosospira in the pmoB-amoB gene was higher 

in the NPK and sludge fertilization treatments across both phenological stages. In contrast, the pmoC-

amoC gene was more abundant in the struvite and struvite plus sludge treatments, regardless of 

phenology. In the DNRA category, a wide diversity of bacterial phyla harboring the nrfH gene was 

observed, with Sorangium, Vitiosangium, and Myxococcus (Proteobacteria) being the most abundant. The 

narB gene, belonging to the ANRA category, was found exclusively in a single bacterial population, 

Ohtaekwangia, from the phylum Bacteroidetes. Similarly, the nifD and nifK genes, part of the N2 fixation 

category, were harbored by Skermanella in the case of nifD, and by Methylohalobius and Azotobacter in 

the case of nifK, with all three populations belonging to the phylum Proteobacteria. In the N transport 

category, we found that the genera Nitrospira (Nitrospirae), Azospirillum, and Rhodoplanes 

(Proteobacteria) were the most abundant carriers of the nrtA, nasF, cynA gene, with Nitrospira being more 

abundant in the NPK treatment during flowering. The most abundant bacterial genus harboring the nrtC, 

nasD gene was Piscinibacter (Proteobacteria). Lastly, it is noteworthy that the nrtB, nasE, cynB gene was 

exclusively found in the genus Pirellula (Plantomycetes). 

3.4. Taxonomic distribution of nitrogen cycle genes in archaeal communities 
across treatments and phenology 

Despite the relatively small number of genes associated with archaea, we successfully assigned them to 

various taxa, revealing distinct patterns. Genes involved in the nitrogen cycle in soil were attributed to taxa 

across three archaeal phyla, with Thaumarchaeota being particularly abundant (Figure 26). Figure 26 

illustrates the abundance of nitrogen cycle genes in the most dominant archaeal populations for each 

gene. The nirK gene, involved in denitrification, was exclusively found in taxa belonging to the phylum 

Thaumarchaeota, while the nosZ gene, also associated with denitrification, was represented solely by the 

archaeal genus Halogranum, from the phylum Euryarchaeota, with higher abundance in the struvite 

fertilization treatment during germination. The nitrification genes pmoA-amoA, pmoB-amoB, and pmoC-

amoC in the archaeal community were harbored by the archaeal genera Nitrososphaera, Nitrosopumilus, 

and Candidatus Nitrosocosmicus, all belonging to the phylum Thaumarchaeota. Additionally, the pmoA-

amoA gene was also found in an archaeal genus from the phylum Crenarchaeota.   

 

Notably, the genus Candidatus Nitrosocosmicus, which harbored the pmoC-amoC gene, showed greater 

abundance during the flowering stage. On the other hand, the glnA, GLUL gene, associated with general 

N metabolism, was widely represented across different archaeal populations, including members of 

Crenarchaeota and Euryarchaeota.
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Figure 25: Heatmap of the logarithm in base 10 of bacterial taxonomic abundance in nitrogen genes grouped into denitrification/nitrification, denitrification, nitrification, 

DNRA, ANRA, N₂ fixation, N transport, and general N metabolism categories in soils supplemented with the four fertilizers during germination and flowering. Fertilizers on 

the x-axis are abbreviated: NPK, SLU (Sludge), STR (Struvite) and STRSLU (Struvite+Sludge). Taxonomy has been grouped into phylum and genus. The image shows 

the genes that showed significant differences between fertilizers or between phenology.
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These findings contrast with another gene in this category, GLUD1_2, gdhA, which was exclusively 

harbored by Nitrososphaera and Candidatus Nitrosocosmicus, both from the phylum Thaumarchaeota. 

The genus Candidatus Nitrosocosmicus, harboring the glnA, GLUL gene, was more abundant in the 

struvite fertilization treatment at both phenological stages, while Nitrososphaera, which carried the 

GLUD1_2, gdhA, was more abundant during flowering. 

 

Figure 26: Heatmap of the logarithm in base 10 of archaeal taxonomic abundance in nitrogen genes grouped into 

denitrification/nitrification, denitrification, nitrification, DNRA, ANRA, N₂ fixation, N transport, and general N 

metabolism categories in soils supplemented with the four fertilizers during germination and flowering. Fertilizers on 

the x-axis are abbreviated: NPK, SLU (Sludge), STR (Struvite) and STRSLU (Struvite+Sludge). Taxonomy has been 

grouped into phylum and genus. The image shows the genes that showed significant differences between fertilizers 
or between phenology. Only the 15 most abundant bacterial genera for each gene are displayed. 

3.5. Abundance and microbial origin of identified proteins  

Metaproteomics enabled the detection and quantification of 311 proteins, with only 1.01% related to the 

nitrogen cycle. The identified nitrogen-related enzymes were nirK, pmoB-amoB, and glnA, GLUL. Among 

these, no significant influence on abundance was observed due to fertilization treatments, phenology, or 

the interaction between fertilization and phenology (Figure 27).  

 



 

  77 
 
 

Regarding the taxonomic distribution of these enzymes, we observed that nirK was predominantly hosted 

by two archaeal genera, Nitrososphaera and Candidatus Nitrosocosmicus (Nitrososphaerales), as well as 

by a bacterial genus, Nitrosospira (Nitrosomonadales). These three genera are highly represented in the 

metagenome, with the two archaeal genera harboring the nirK gene in the metagenome (Figure 27).  

 

The enzyme pmoB-amoB was found in Nitrosospira and Nitrosomonas (Nitrosomonadales), both genera 

belonging to the family Nitrosomonadaceae (phylum Proteobacteria), which also appeared in the 

metagenome, harboring the pmoB-amoB gene (Figure 25). Lastly, the glnA, GLUL enzyme was found 

across a wide diversity of bacterial and archaeal genera. The abundance of this enzyme in the 

proteobacterial genera Reyranella (Hyphomicrobiales) and Sphingomonas (Sphingomonadales) was 

significantly influenced by fertilization treatments (P = 0.001), phenology (P = 0.001), and the interaction 

between fertilization and phenology (P = 0.001). The abundance of the proteobacterial genus Skermanella 

(Rhodospirillales) was also significantly affected by fertilization treatments (P = 0.041) (Figure 27). 

3.6. Taxonomic and functional characterization of reconstructed microbial 
genomes (MAGs)  

A total of 35 bins were recovered, representing the reconstructed genomes of 35 microorganisms. Among 

these, three bins were discarded due to exceeding thresholds of contamination and completeness. In the 

following link, a table can be found with all the MAGs' information (https://github.com/mariabelen-

bm/Doctoral_Thesis/blob/fdb9e4d131bdc1006035d00eb8cfd327566e7665/table_MAGs_chapter_2.xlsx).  

 

From the remaining 32 bins of interest, taxonomic classification at the genus level was achieved for 27 

MAGs. Six bins showed statistically significant differences between fertilization treatments, corresponding 

to microorganisms from the following classes: Gammaproteobacteria (bin 2), Acidimicrobiia (bin 2), 

UBA4738 (bin 9), Blastocatellia (bin 15), Actinomycetes (bin 21), and Binatia (bin 35). Specifically, bins 

bin.2_Gammaproteobacteria, bin.3_ Acidimicrobiia, bin.9_ UBA4738, and bin.21_ Actinomycetes were 

more abundant under the Struvite+Sludge treatment, while bins bin.15_ Pyrinomonadaceae and 

bin.35_UBA9968 were more abundant under the Struvite-only treatment (Figure 28).  

 

Among the reconstructed genomes, archaeal taxa such as the genus Nitrososphaera and bacterial genera 

including Nitrosospira, Luteolibacter, Rubrobacter, Nitrospira, and Arthrobacter were identified as being 

determinant in the metagenome. Additionally, the archaeal family Nitrososphaeraceae and bacterial 

families including Nitrosomonadaceae, Akkermansiaceae, Rubrobacteraceae, Nitrospiraceae, 

Propionibacteriaceae, Bacillaceae, Steroidobacteraceae, Solirubrobacteraceae, Micrococcaceae, and 

Pyrinomonadaceae were detected in the metagenome (Figure 29).  
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Figure 27: Heatmap of the logarithm in base 10 of the results obtained in proteomics. A) Abundance of nitrogen 

genes identified in metaproteomics grouped in the categories of denitrification, nitrification and general N metabolism 

in the different soils supplemented with the four treatments (NPK, Sludge, Struvite and Struvite+Sludge) during 
germination and flowering; B) Abundance of bacterial and archaeal populations harboring different nitrogen genes 

grouped into denitrification, nitrification and general N metabolism categories in the different soils supplemented with 

the four fertilizer treatments during germination and flowering. Taxonomy has been grouped into phylum and genus.  
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Figure 28: Bar plot of the results obtained from MAGs extraction: The x-axis represents the recovered bins, while the 

y-axis indicates the abundance of these bins. The plot illustrates the abundance of each fertilizer treatment (NPK, 
Sludge, Struvite, and Struvite+Sludge) across the different bins. An asterisk (*) above a bin denotes those bins where 

the fertilizer treatments exhibited statistically significant differences. 

 

Focusing on the reconstructed genomes, specific bins were identified as containing nitrogen-related genes 

that matched those observed in the overall metagenome. These bins, along with their associated 

taxonomic families, Included 2 Acidobacteriota (bin.1_Pyrinomonadaceae, bin.15_Pyrinomonadaceae), 1 

Verrucomicrobiota (bin.16_Akkermansiaceae), 3 Nitrospirota (bin.18_Nitrospiraceae, 

bin.20_Nitrospiraceae, bin.7_Nitrosomonadaceae), 5 Thermoproteota (bin.4_Nitrososphaeraceae, 

bin.11_Nitrososphaeraceae, bin.12_Nitrososphaeraceae, bin.13_Nitrososphaeraceae, 

bin.32_Nitrososphaeraceae), 1 Actinomycetota (bin.22_Propionibacteriaceae), 1 Bacillota 

(bin.23_Bacillaceae_H), 2 Pseudomonadota (bin.26_Steroidobacteraceae, bin.27_Steroidobacteraceae), 

1 Actinomycetota (bin.30_Micrococcaceae) (Figure 27). For instance, the archaeal family 

Nitrososphaeraceae, (bin.4_ Nitrososphaeraceae, bin.11_Nitrososphaeraceae, bin.12_ 

Nitrososphaeraceae, bin.13_ Nitrososphaeraceae and bin.32_ Nitrososphaeraceae), harbored genes 

such as GLUD1_2, gdhA , pmoC-amoC, pmoA-amoA, pmoB-amoB, nirK and glnA, which matched those 

detected in the metagenome and were aligned with the contributions of these families to the nitrogen cycle 

as shown in Figure 29. Similarly, bin.22_Propionibacteriaceae contained genes involved with nitrate and 

nitrite reduction, such as narH, narY, nxrB, narG, narZ, nxrA, narJ, narW, narI, narV, gla_GLUL, and glnE, 

as shown in Figure 29, which also matched the metagenomic data. Furthermore, the genus Nitrosospira, 

from the Nitrososphaeraceae family, was found to possess the pmoC-amoC gene, which was consistent 

with its presence in the metagenome. 
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Figure 29: Heatmap of the abundance of nitrogen cycle-related genes recovered in the bins: The x-axis represents 
nitrogen-related genes categorized into functional groups, including Denitrification/Nitrification, Denitrification, 

Nitrification, DNRA, ANRA, N transport, and general N metabolism. The y-axis represents the bins containing these 

nitrogen cycle-related genes. The heatmap displays the copy number of each gene identified in the recovered bins. 

 

3.7. Correlations between nitrogen content, WSN, urease activity and N 
functional groups and relative gene abundance. 

With respect to the bacterial community (Figure 30), significant negative correlations were found between 

WSN and napC, which is involved in denitrification, narB, which belongs to ANRA, and nifH, which is 

associated with N₂ fixation. Significant positive correlations were observed between WSN and nirS, which 

is involved in denitrification (Figure 30B). Regarding urease activity, significant negative correlations were 

detected with napA, which belongs to denitrification, pmoC-amoC, which is associated with nitrification, 

nirA, which is involved in ANRA, nifD, which is associated with N₂ fixation, and nao, which belongs to 

general N metabolism.  

 

Conversely, significant positive correlations were found between urease activity and napB, which is 

associated with denitrification, nirD, which belongs to DNRA, and GLUD1_2 and gdhA, which are involved 

in general N metabolism (Figure 30B). As for the archaeal community, WSN showed a significant positive 

correlation with pmoC-amoC, which is associated with nitrification (Figure 31). 
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Figure 30: Correlation analysis of nitrogen-related categories, genes, and their relationship with total nitrogen, water-

soluble nitrogen (WSN), and urease activity in bacteria. A) Categories, B) Genes. Negative correlations are depicted 
in blue, while positive correlations are shown in red, with asterisks (*) indicating statistically significant correlations 

(positive or negative) as determined by the correlation test. 
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Figure 31: Correlation analysis of nitrogen-related categories, genes, and their relationship with total nitrogen, water-

soluble nitrogen (WSN), and urease activity in archaea. A) Categories, B) Genes. Negative correlations are depicted 

in blue, while positive correlations are shown in red, with asterisks (*) indicating statistically significant correlations 
(positive or negative) as determined by the correlation test. 
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4. DISCUSSION 

4.1. Abundance of nitrogen-related genes and enzymes and the associated 
microbiome 

Bacterial community had a higher abundance of genes associated with denitrification, nitrification and 

DNRA compared to genes involved in N₂ fixation, N transport and general N metabolism. These results 

differ from previous studies reporting a higher abundance of N₂ fixation genes in natural ecosystems, 

where nitrogen availability is typically limited (Reed et al., 2011). The observed differences may be 

attributed to the fact that this is a long-term agricultural assay which has received mineral fertilization 

during years. This likely increased the availability of inorganic nitrogen forms, thereby favoring microbial 

pathways such as denitrification and nitrification. The results align with studies highlighting the dominance 

of denitrification and nitrification genes in agricultural soils under conventional fertilization regimes (Raglin 

et al., 2022; F. Wang et al., 2022). Further, our metagenomic results revealed a notable abundance of 

genes involved in DNRA, particularly within the bacterial community. This suggests that microbial 

communities at our study site may play a critical role in nitrogen retention in the soil by converting nitrate 

into ammonium, a less mobile form of nitrogen (Putz, 2018). However, compare to metagenomic results, 

the most abundant proteins were those involved in general nitrogen metabolism, such as the enzyme glnA 

(GLUL). This observation indicates a decoupling between genetic abundance and protein expression 

levels (Starke et al., 2019) and is consistent with prior studies highlighting that greater genetic abundance 

does not necessarily correlate with higher expression levels (Fierer et al., 2012).  

 

Regarding taxonomic distribution, we identified the existence of functional niches associated with nitrogen 

transformation processes, clustered within specific microbial groups. The taxonomic distribution of 

nitrogen-cycling genes revealed distinct functional clustering among bacterial taxa. For instance, the 

dominance of Acidobacteria, Actinobacteria, and Proteobacteria in harboring nitrogen-cycling genes aligns 

with their known roles in soil N transformations (Fierer et al., 2012). The co-occurrence of nitrification and 

denitrification genes in genera like Bradyrhizobium and Ornithinibacter suggests a potential of these 

populations to adapt to fluctuating nitrogen availability (Kuypers et al., 2018). In contrast, the limited 

diversity of nitrogen-cycling genes in archaea, primarily associated with Thaumarchaeota, reflects their 

specialized role in nitrification and general N metabolism (Stahl & de la Torre, 2012). Our findings highlight 

that microorganisms involved in denitrification and nitrification typically do not harbor genes related to N₂ 

fixation or N transport. In contrast, microorganisms associated with general N metabolism, such as those 

harboring the glnA_GLUL gene, tend to exhibit a shared abundance of genes, suggesting an organization 

into guilds or functional niches linked to soil nitrogen cycling. For example, we observed that genera within 

the Proteobacteria phylum, including Nitrosospira, Nitrosomonas and Nitrosovibrio, were the predominant 

microorganisms carrying nitrification-related genes, consistent with their well-established roles as 

ammonia oxidizers (W. Huang et al., 2020). Similarly, our metaproteomic data revealed that the enzyme 

glnA_GLUL was widely represented across diverse bacterial and archaeal genera, underscoring its central 

role in nitrogen assimilation. This study also demonstrates that, within the bacterial community, although 
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the abundance of genes involved in denitrification and nitrification is relatively higher than those associated 

with N₂ fixation, the functional guilds of denitrifiers and nitrifiers exhibit a relatively narrow phylogenetic 

distribution among the dominant populations. This highlights the highly restricted phylogenetic distribution 

of dominant denitrifiers and nitrifiers in this agroecosystem, in contrast to the genes in the general nitrogen 

metabolism category, which were more broadly distributed taxonomically. For example, Nitrospira 

(Nitrospirae) and Azospirillum (Proteobacteria) were identified as key genera harboring N transport genes 

such as nrtA, nasF, cynA. Additionally, Skermanella (Proteobacteria), which contained the nifD gene 

associated with N₂ fixation, emerged as a significant contributor to the N cycle in agricultural soils (Song 

et al., 2025). Overall, the phylum Proteobacteria encompassed many members carrying denitrification and 

nitrification genes, consistent with its well-established role in nitrogen transformation processes (C. M. 

Jones et al., 2013). 

 

Additionally, the results highlight the specialization of microbial guilds in specific N transformation 

pathways, emphasizing the organization of microbial communities into functional niches. For instance, 

genera such as Sorangium and Myxococcus (Proteobacteria) were predominant carriers of DNRA-related 

genes, while Skermanella and Azotobacter (Proteobacteria) were key carriers of N₂ fixation genes. This 

functional specialization suggests that microbial communities in agricultural soils are organized into guilds 

that optimize resource utilization and minimize competition, as previously proposed (C. Liu et al., 2022). 

However, the limited phylogenetic distribution of certain functional genes, such as narB (ANRA) in 

Ohtaekwangia (Bacteroidetes), underscores the potential vulnerability of this functional process to 

environmental changes, such as shifts in fertilization practices or soil pH. The dominance of denitrification 

and nitrification genes, alongside the low abundance of N fixation genes, suggests that conventional 

fertilization practices may promote nitrogen losses through gaseous emissions and leaching, while limiting 

biological nitrogen inputs (X. Zhang et al., 2015). This is particularly relevant in the context of sustainable 

agriculture, where reducing nitrogen losses and improving nitrogen use efficiency are critical objectives. 

The identification of key microbial taxa involved in nitrogen transformation processes, such as Nitrosospira 

and Skermanella, provides valuable insights for developing targeted strategies to manipulate microbial 

communities and optimize nitrogen cycling in agroecosystems. 

4.2. Influence of fertilization on nitrogen dynamics and microbial functional 
genes 

Our results demonstrate that different fertilization strategies significantly influence the categories of 

nitrogen cycle-related  genes and the functional potential of soil microbial communities in a maize 

agroecosystem. These findings align with previous research emphasizing the importance of fertilization in 

modulating soil microbial functionality and nutrient cycling (Luo et al., 2018). WSN content exhibited 

significant variation among treatments, with NPK consistently showing the highest levels. This may be 

attributed to the readily available inorganic nitrogen forms in synthetic fertilizers (Geisseler & Scow, 2014). 

In contrast, the struvite plus sludge treatment resulted in the lowest WSN values, likely due to slower 

mineralization rates of organic nitrogen sources and the long-term mineral character of struvite (Marzi 
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et al., 2020). The observed correlations between nitrogen content, WSN, urease activity, and gene 

abundance may provide insights into the linkages between soil nitrogen dynamics and microbial 

processes. For instance, the positive correlations between WSN and denitrification genes (e.g., nirS) 

highlight the role of soluble nitrogen forms in driving denitrification activity, as highlighted by Bastida et al. 

(2009). Furthermore, the higher abundance of DNRA-related genes in NPK and struvite treatments aligns 

with the presence of mineral nitrogen sources, which are known to promote DNRA activity (Pandey et al., 

2019). In contrast, organic treatments with slower nitrogen release may limit DNRA activity (Rütting et al., 

2011).  

 

In archaeal communities, functional potential was less affected by fertilization compared to bacteria, 

indicating a more stable functional nitrogen pattern regardless fertilization treatment. However, treatments 

with organic amendments, such as sludge combined with struvite, showed a higher abundance of archaeal 

nitrification genes (e.g., pmoB-amoB), consistent with the sensitivity of ammonia-oxidizing archaea (AOA) 

to slow-release nitrogen sources. The predominance of the glnA (GLUL) gene in both bacterial and 

archaeal communities highlights its central role in nitrogen metabolism under different fertilization 

strategies (Rütting et al., 2011). 

4.3. The role of phenology in the dynamics of nitrogen cycling and microbial 
activity 

Crop phenology played a crucial role in modulating microbial activity and the expression of nitrogen 

cycling-related genes. Changes in phenological stages, particularly between germination and flowering, 

significantly influenced the relative abundance of genes associated with key nitrogen cycling processes, 

such as denitrification/nitrification, N₂ fixation, and N transport. These findings underscore the close 

interaction between plant development and the functionality of the soil microbial community, suggesting 

that plant nutrient demands at different growth stages can shape microbial activity and functional 

composition. Moreover, urease activity, a key enzyme in nitrogen mineralization, was significantly 

influenced by phenology, with higher activity observed during germination compared to flowering. This 

pattern likely reflects the greater nitrogen demand during the early stages of plant growth, which stimulates 

microbial activity to release nitrogen from organic sources. During germination, the availability of easily 

degradable organic substrates, such as those supplied by organic fertilization treatments, may enhance 

urease activity, consistent with previous findings (Gianfreda & Ruggiero, 2006). Genes related to 

denitrification/nitrification also showed higher abundance during germination compared to flowering. This 

pattern may be associated with increased inorganic nitrogen availability in the early stages of plant growth, 

favoring nitrification processes. The subsequent decline in these genes' abundance during flowering could 

reflect a shift in microbial metabolic strategies, potentially driven by increased resource competition or 

changes in soil redox conditions as the plant matures (Kuzyakov & Xu, 2013). Additionally, the influence 

of phenology on N₂ fixation genes was particularly notable, with a significant reduction in their abundance 

during flowering. This trend may relate to a reallocation of microbial resources toward other metabolic 

processes, such as N assimilation, in response to the plant's increased nitrogen demand during flowering 
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(Houlton et al., 2008). Phenology also influenced the abundance of N transport-related genes, suggesting 

that microorganisms adjust their capacity to acquire and mobilize nitrogen based on plant needs. For 

instance, a higher abundance of N transport genes was observed during flowering in the sludge treatment, 

potentially reflecting the increased nitrogen demand required to sustain reproductive growth. This finding 

highlights the capacity of organic amendments, such as sludge, to supply nitrogen at critical stages of crop 

development (Larney & Angers, 2012). The delayed peak in N transport gene abundance during flowering 

suggests a gradual release of nitrogen from organic sources, aligning with the plant's nutrient requirements 

at later phenological stages. This molecular adjustment underscores the importance of tailoring fertilization 

strategies to synchronize nutrient release with plant demands throughout the growth cycle (Fontaine et al., 

2024). 

In the case of the archaeal community, a lower sensitivity to phenological changes was observed 

compared to the bacterial community. However, certain genes associated with nitrification, such as pmoB-

amoB and pmoC-amoC, exhibited significant variations between germination and flowering. This indicates 

that while archaea may possess a lower level of functional redundancy compared to bacteria, they still 

respond to soil condition changes driven by plant development (Aller & Kemp, 2008). Notably, the pmoC-

amoC gene showed higher abundance during flowering within the genus Candidatus Nitrosocosmicus, 

suggesting a more active role for this taxon in nitrification during flowering. 

4.4. Functional and taxonomic insights from microbial genome 
reconstruction (MAGs) in nitrogen cycling 

The reconstruction of microbial genomes (MAGs) provided profound insights into the taxonomic and 

functional diversity of the microbial community, particularly highlighting the role of the archaeal family 

Nitrososphaeraceae in nitrogen transformation processes. Among the 32 high-quality MAGs recovered, 

five bins associated with Nitrososphaeraceae (bin.4_Nitrososphaera, bin.11_JAJNBK01, 

bin.12_JAJNBK01, bin.13_Nitrosocosmicus, and bin.32_Nitrososphaera) harbored key nitrogen-cycling 

genes, including pmoC-amoC, pmoA-amoA, pmoB-amoB, and nirK, which are critical for nitrification and 

denitrification. The presence of these genes aligns with the well-documented role of Nitrososphaeraceae, 

particularly the genus Nitrososphaera, as key ammonia oxidizers in terrestrial environments (Lehtovirta-

Morley et al., 2024; Tourna et al., 2011). The detection of nirK, a gene associated with denitrification, in 

these bins is particularly intriguing, as it suggests a potential dual functionality in nitrogen cycling. While 

Nitrososphaeraceae are primarily known for their role in nitrification, the presence of nirK indicates a 

possible adaptation to fluctuating nitrogen conditions, enabling these archaea to contribute to both 

nitrification and denitrification under specific environmental conditions (Clark et al., 2021; Hetz & Horn, 

2021). This metabolic versatility could provide a competitive advantage in agricultural soils, where nitrogen 

availability is highly dynamic due to fertilization practices. The recovery of multiple Nitrososphaeraceae 

MAGs further underscores their ecological importance in this agroecosystem, consistent with their 

ubiquitous presence in soils and their dominance in ammonia oxidation processes (C. Wang et al., 2024). 

Additionally, the identification of bin.22_Propionibacteriaceae, which contained genes such as narG, narZ, 
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nxrA, and glnA, involved in denitrification and general nitrogen metabolism, highlights the potential for non-

canonical taxa to contribute to nitrogen transformations in agricultural soils (Q. Yang et al., 2024).  

 

The consistency between the MAGs and the overall metagenomic data underscores the robustness of our 

approach in reconstructing and characterizing the functional potential of the microbial community. 

Furthermore, bins associated with the family Nitrospiraceae (bin.18_Nitrospiraceae and 

bin.20_Nitrospiraceae) contained genes such as glnA and GLUL, which are involved in nitrogen 

assimilation and were more abundant in treatments with slow-release nitrogen sources (X. Yang et al., 

2021). This observation aligns with the higher abundance of nitrification-related genes in organic 

treatments, as indicated by the overall metagenomic data. The consistency between the MAGs and 

metaproteomic analyses, particularly for genes such as nirK and glnA, reinforces the contribution of these 

taxa to nitrogen cycling under varying fertilization regimes. 

 

The influence of fertilization on microbial community structure and function was further evidenced by the 

differential abundance of specific MAGs across treatments. Among the 32 high-quality MAGs recovered, 

six bins (bin.2_JACCYU01, bin.3_ZC4RG35, bin.9_WHSQ01, bin.15_Pyrinomonadaceae, 

bin.21_JAKEEW01 and bin.35_UBA9968) showed statistically significant differences between fertilization 

treatments. Bins bin.2_JACCYU01, bin.3_ZC4RG35, bin.9_WHSQ01 and bin.21_JAKEEW01, which were 

more abundant under the struvite plus sludge treatment, corresponded to taxa such as 

Gammaproteobacteria and Actinomycetes, known for their roles in organic matter decomposition and 

nitrogen cycling (Javed et al., 2021; S. Liu & Liu, 2020). These findings suggest that organic amendments, 

such as sludge, promote the abundance of microbial taxa involved in complex organic nitrogen 

transformations. In contrast, bins bin.15_Pyrinomonadaceae and bin.35_UBA9968 -associated with 

Blastocatellia and Binatia, respectively- were more abundant under the struvite-only treatment. 

Blastocatellia, a class within the Acidobacteria phylum, has been linked to organic matter degradation and 

nitrogen assimilation in nutrient-poor soils (Fierer et al., 2012). Similarly, Binatia, a recently described class 

within the Gemmatimonadetes phylum, may contribute to nitrogen mineralization, releasing ammonium 

from organic matter (Yao et al., 2021). Their increased abundance under struvite fertilization highlights 

their potential role in modulating nitrogen availability in semiarid agroecosystems, warranting further 

investigation into their functional contributions to the nitrogen cycle. 

 

5. CONCLUSIONS 

Our study provides new insights into the key microbial players, genes, and enzymes associated with the 

nitrogen (N) cycle in semiarid agroecosystems through the use of combined metagenomics, 

metaproteomics, and reconstructed microbial genomes (MAGs). Consistent with our hypotheses, the 

phenological stage proves to be a more critical factor than fertilizer treatments in influencing the relative 

abundance of nitrogen cycling genes, particularly regarding denitrification, nitrification, and N₂ fixation 

potential of bacterial taxa. While the effects of phenology on soil microbial communities were previously 



 

  88 
 
 

recognized, this finding is novel in highlighting the greater importance of the phenological stage in 

modulating nitrogen cycle and associated microbiomes compared to fertilization practices. This insight 

opens the door to new nitrogen fertilization strategies that more deeply consider the phenological stage. 

 

Furthermore, our results suggest notable taxonomic clustering of functional processes related to the 

nitrogen cycle, profoundly influenced by plant growth stages. Importantly, our findings highlight that 

microorganisms involved in denitrification and nitrification typically do not harbor genes related to N₂ 

fixation or N transport, indicating functional specialization among microbial guilds. Among the 

reconstructed microbial genomes, specific MAGs revealed significant taxonomic and functional insights, 

such as the identification of bins harboring key nitrogen-cycling genes. These MAGs confirmed the 

functional roles of taxa like Nitrososphaeraceae in nitrification and Propionibacteriaceae in denitrification. 

Moreover, metaproteomic approaches enhance the potential of metagenomes by identifying abundant 

enzymes, such as glutamine synthetase coded by glnA, which has been overlooked in numerous studies 

but appears essential for nitrogen cycling in this maize agroecosystem. 

 

Besides a major role of phenology, our study also demonstrates the influence of contrasting fertilizers on 

the abundance of key genes governing nitrogen cycling, thereby confirming the initial hypothesis. We 

observed significantly distinct responses among fertilizers regarding genes involved in DNRA and 

nitrification across both bacterial and archaeal communities, as well as genes associated with N₂ fixation 

and N transport, predominantly within bacterial taxa. Our findings demonstrate that fertilization strategies 

influence both nitrogen dynamics and microbial community functionality in semi-arid agroecosystems. 

While mineral fertilizers like NPK and struvite enhance microbial processes such as DNRA and nitrification, 

organic amendments support a more diverse microbial community but require careful management to 

optimize nitrogen release and minimize losses. 
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Linking genomic potential and functional 

activity: Microbial specialization and niche 

partitioning in the decomposition process 

revealed by multi-omics approaches. 
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CHAPTER 3 

1. INTRODUCTION 

Forest soils are among the most critical carbon (C) sinks on Earth, playing a pivotal role in the global 

carbon cycle by sequestering atmospheric CO₂ and storing it in both biomass and soil organic matter (Lal, 

2005). The capacity of forest soils to act as long-term carbon reservoirs is largely driven by the continuous 

input of organic carbon from plant and fungal sources, which are subsequently decomposed and 

transformed by soil microbial communities (De Deyn et al., 2008; H. Li et al., 2024; Mäki et al., 2017). 

Understanding the dynamics of carbon cycling in forest soils is essential for predicting the responses of 

these ecosystems to environmental changes and for developing strategies to mitigate climate change. 

 

The organic carbon in forest soils originates primarily from two sources: plant-derived compounds, such 

as cellulose, hemicelluloses, and lignin, and fungal-derived compounds, including chitin and β-glucans 

(Ekblad et al., 2013; X. Zhao et al., 2024). Plant biomass, derived from the photosynthetic activity of trees 

and understory vegetation, constitutes the bulk of organic matter input into forest soils. However, fungal 

biomass, particularly in forest litter, also represents a significant carbon source, often exceeding microbial 

biomass in the underlying soil by an order of magnitude (Baldrian et al., 2010). The decomposition of this 

diverse pool of organic matter is a critical process that not only recycles nutrients but also supports 

complex decomposer food webs, which are essential for maintaining soil fertility and regulating carbon 

fluxes (Khatoon et al., 2017). 

 

The decomposition of organic matter in forest soils is mediated by a diverse array of microbial 

communities, including both fungi and bacteria (Algora et al., 2022; Baldrian, 2017; Bani et al., 2018; 

Tláskal et al., 2021). Traditionally, fungi have been regarded as the primary decomposers due to their 

ability to produce a wide range of extracellular enzymes, such as carbohydrate-active enzymes 

(CAZymes), that break down complex biopolymers like lignin and cellulose (Žifčáková, 2017). However, 

recent research has highlighted the significant role of bacteria in this process, particularly in the 

decomposition of fungal-derived biomass (Brabcová et al., 2016; López-Mondéjar et al., 2020). Bacteria 

are now recognized as key players in the decomposition of complex biopolymers, with certain bacterial 

groups specializing in the breakdown of fungal-derived materials, such as chitin and β-glucans (López-

Mondéjar et al., 2018). Despite this progress, the specific substrate preferences of individual microbial 

taxa and their functional roles in decomposition remain poorly understood. 

 

Current knowledge about the preferences of microbial taxa for specific biopolymers is contradictory. Some 

studies suggest that many bacteria are versatile and can utilize carbon from a wide range of sources 

(López-Mondéjar et al., 2018, 2020), while others indicate the existence of specialized microbial guilds 

that target specific biopolymers (Bhatnagar et al., 2018; Brabcová et al., 2016). For example, Urbanová 

et al. (2015) demonstrated that litter of different quality supports distinct bacterial communities, suggesting 

a degree of specialization. Recently, Algora et al. (2022) provided evidence for the existence of substrate-
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specific microbial guilds in forest soils, although their findings also highlighted limitations. While certain 

microbial taxa were enriched on specific biopolymers, this does not necessarily prove their role as primary 

decomposers, as bacteria can act as "cheaters" by exploiting the decomposition products generated by 

other taxa (Berlemont & Martiny, 2013; Tláskal et al., 2021). To address these limitations, this study 

combines metagenomics and metatranscriptomics to analyze not only the genetic potential of microbial 

communities but also the expression of key genes involved in biopolymer decomposition, providing a more 

comprehensive understanding of the functional roles of microbial taxa in situ. 

 

In this study, we investigate the microbial decomposer guilds responsible for breaking down the 

biopolymers that constitute dead biomass in forest soils. Our primary objective is to associate microbial 

community composition with function, a critical step for understanding the decomposition process and its 

role in the carbon cycle. Specifically, we aim to determine whether these guilds are composed of specialist 

taxa with narrow substrate preferences or generalists capable of degrading multiple biopolymers. We also 

explore whether specialization occurs for individual polymers or for groups of polymers of similar origin. 

For example, López-Mondéjar et al. (2016) observed that bacteria growing on cellulose expressed a 

diverse array of enzymes, including xylanases and glucanases, rather than just cellulases, reflecting the 

complex nature of natural substrates where cellulose rarely occurs in isolation. This suggests that even 

specialists may exhibit some degree of metabolic flexibility. By classifying microbial taxa as generalists or 

specialists and assigning them to substrate-specific guilds, we aim to elucidate the ecological strategies 

that underpin the decomposition of dead biomass in forest soils. 

 

Furthermore, we examine the differences in genetic potential for decomposition between generalist and 

specialist taxa, focusing on their enzymatic systems and how gene expression varies across different 

substrates. We hypothesize that the pool of key carbohydrate-active enzymes (CAZymes) encoded by soil 

bacteria is quantitatively similar to that encoded by fungi but qualitatively different. We also hypothesize 

that the contribution of bacteria to decomposition processes is comparable to that of fungi for most 

substrates and is expected to be higher for fungal-derived biopolymers, as suggested by Brabcová et al. 

(2016). Additionally, we propose that the pool of CAZymes expressed by bacterial communities is specific 

to each substrate due to differences in community composition but is similar for substrates of plant origin. 

We further hypothesize that the bacterial community of decomposers is primarily composed of specialists, 

with key taxa specializing in the decomposition of different carbon sources in forest soil, as indicated by 

Algora et al. (2022). These specialists are expected to contain and express specific key genes for the 

decomposition of a particular carbon source. Finally, we propose that a proportion of the bacterial 

community consists of generalists or "cheaters" that contain and express genes coding for enzymes 

involved in the degradation of low-molecular-mass substrates, rather than complex biopolymers. 

 

By addressing these hypotheses, this study aims to provide a deeper understanding of the microbial 

mechanisms driving carbon cycling in forest soils. Through the integration of 

metagenomics,metatranscriptomics and metagenome-assembled genomes (MAGs), we aim to 
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characterize the genetic potential and functional activity of microbial decomposer guilds, shedding light on 

their ecological roles and contributions to carbon dynamics. This work will contribute to more accurate 

models of carbon cycling in forest ecosystems and inform strategies for their sustainable management. 

 

 

2. MATERIALS AND METHODS 

2.1. Site description, experimental design and sampling 

The research was conducted in a temperate forest situated within the Xaverovský Háj Natural Reserve, 

located in northeastern Prague, Czech Republic. The complete methodology applied in this study is 

detailed in Algora et al. (2022). This forest is primarily composed of oak trees (Quercus petraea), 

accompanied by other species such as Carpinus betulus, Tilia spp., Acer spp., and Picea abies, which 

contribute to litter accumulation on the forest floor (Algora et al., 2022) (Figure 32).  

 

 
Figure 32: Forest of the Xaverovský Háj Nature Reserve. 

 

The soil in this area is classified as an acidic cambisol, characterized by well-defined litter, organic, and 

mineral horizons. The litter has a pH of 4.3, with carbon and nitrogen contents of 46.2% and 1.76%, 

respectively. These site characteristics, along with prior studies on litter decomposition, enzymatic 

activities, fungal and bacterial diversity in soil and litter (López-Mondéjar et al., 2015), and the 

decomposition of plant, fungal, and bacterial biomass, have been extensively documented (Algora et al., 

2022; Algora Gallardo et al., 2021; Baldrian et al., 2010; López-Mondéjar et al., 2018; Šnajdr et al., 2008; 
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Větrovský & Baldrian, 2013; Voříšková et al., 2014). To capture the forest's environmental variability, four 

sampling sites were randomly selected: Site 1 (N 50° 5′ 39″, E 14° 37′ 8″), Site 2 (N 50° 5′ 40″, E 14° 36′ 

58″), Site 3 (N 50° 5′ 38″, E 14° 36′ 42″), and Site 4 (N 50° 5′ 41″, E 14° 36′ 4″). These locations shared 

similar topographical conditions, with oak dominating the canopy, except for Site 4, where additional 

species such as Tilia spp. were present. 

The experiment utilized mesh bags containing different biopolymers, which were placed in situ to allow 

microbial colonization. The fungal communities colonizing these mesh bags have been previously studied 

(Algora Gallardo et al., 2021). Each mesh bag (5 × 5 cm, made of nylon with a 0.05 mm mesh size) was 

filled with 4 g of a pure, finely powdered substrate (Figure 33). The substrates included cellulose 

(microcrystalline ca. 0.05 mm, SERVA, Germany), xylan (from beech wood, SERVA, Germany), 

glucomannan (from Konjac, Natural Nutrition, USA), β-1,3-glucan (from yeast cell wall concentrate, 

SOLGAR, USA), β-1,3-1,6-glucan (from Pleurotus ostreatus oyster mushroom, NATURES, Slovakia), 

lignin (alkali lignin, Sigma–Aldrich, USA), pectin (from citrus, Alfa Aesar, Germany), and chitin (from shrimp 

shells, Sigma–Aldrich, USA). All substrates were sterilized using gamma irradiation. While cellulose, xylan, 

glucomannan, lignin, and pectin are of plant origin, β-glucans and chitin are characteristic of fungal 

biomass, with chitin also being present in the exoskeletons of arthropods (Algora et al., 2022). 

Figure 33: Mesh bags with the different biopolymers in the forest. 

Previous studies using this experimental setup have analyzed the fungal and bacterial communities 

colonizing the mesh bags through amplicon sequencing (Algora et al., 2022; Algora Gallardo et al., 2021). 

In this study, we extend these findings by employing metagenomics and metatranscriptomics and 
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recovering MAGs to investigate the functional potential and activity of microbial communities involved in 

the decomposition of these biopolymers. This approach allows us to identify key genes and pathways 

associated with biopolymer degradation and to assess the ecological roles of specific microbial taxa in 

situ. Four mesh bag replicates per substrate were incubated in the bottom layer of the litter horizon across 

each study site for three weeks during August and September 2018. To promote contact with the 

surrounding litter, mesh bags were moistened with sterile water at the time of placement (Algora et al., 

2022). After incubation, the contents of the mesh bags were carefully retrieved (Figure 34), homogenized, 

frozen immediately using liquid nitrogen, and stored at −80 °C for DNA and RNA extraction. Additionally, 

litter samples from each site were collected, cut, frozen with liquid nitrogen, and stored at −80 °C for 

subsequent analysis (Algora et al., 2022). 

Figure 34: Mesh bag colonized by microorganisms, extracted from the forest. 

2.2. Metagenomic analysis  

As described in Algora et al. (2022), before proceeding with DNA extraction, subsamples from the mesh 

bags were subjected to freeze-drying. Total DNA was extracted from 0.15 g of the freeze-dried material, 

in duplicate, using the FastDNA Spin Kit for Soil (MP Biochemicals, USA), following the protocol provided 

by the manufacturer. The DNA extracted from duplicate samples was subsequently pooled and used for 

metagenomic sequencing to analyze the functional potential of the microbial communities involved in 

biopolymer decomposition. The Truseq Free LT kit was used to generate metagenome libraries and 

metagenome was sequenced on an Illumina NovaSeq6000 with a 2 x 250 paired-end runs. To complement 

these analyses, metagenomic sequencing was performed to obtain a comprehensive understanding of the 
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microbial functional potential and taxonomic composition associated with the different biopolymers. The 

methodology originally described by Žifčáková et al. (2016) was followed, with specific adaptations. The 

complete code utilized for the metagenomic analysis is available at https://github.com/mariabelen-

bm/Doctoral_Thesis/blob/78fb7483aff71e570633d6b3a8f0bb666fe368de/metagenomics_pipeline_chapt

er_3.sh and in Annex 4. Additionally, the Python scripts employed during the metagenomic pipeline are 

included in Annex 5. 

Raw sequencing data underwent quality control using FastQC (v0.12.0), with reads filtered to exclude 

those with quality scores below 30 or lengths shorter than 50 bases. Following quality control, median 

normalization was applied to reduce noise, using a k-mer size of 20 and a minimum coverage threshold 

of 20, as described by Barquero et al. (2024). Processed reads were assembled using MEGAHIT (v1.2.9) 

(D. Li et al., 2015), and the resulting assemblies were assessed for quality using MetaQUAST (v5.2.0) 

(Mikheenko et al., 2016). Gene prediction was performed with FragGeneScan (Rho et al., 2010), while 

alignment of reads to assemblies was carried out using Bowtie2 (v2.4.1). Functional and taxonomic 

annotations were generated using a comprehensive set of reference databases, following a rigorous multi-

step approach to ensure accuracy and reliability. For taxonomic annotation, we utilized the NCBI non-

redundant (nr) protein database (Pruitt et al., 2009), complemented by fungal-specific databases from the 

Joint Genome Institute (JGI) to improve the identification of fungal taxa (Grigoriev et al., 2012). Functional 

annotation was performed using the KEGG (Kyoto Encyclopedia of Genes and Genomes) (Kanehisa et al., 

2016) and KOG (Eukaryotic Orthologous Groups) (Tatusov et al., 2003) databases to assign genes to 

metabolic pathways and functional categories . Additionally, carbohydrate-active enzymes (CAZymes) 

were annotated using the dbCAN database, which specializes in the identification of enzymes involved in 

carbohydrate metabolism (L. Huang et al., 2018). To ensure high-confidence annotations, we applied 

stringent filtering criteria: only annotations with E-values lower than 10e-30 were retained, as values above 

this threshold were considered unreliable and disregarded, following the approach described by Tláskal 

et al. (2021). This step was critical to minimize false positives and ensure the accuracy of our functional 

and taxonomic assignments.  

2.3. Metatranscriptomic analysis 

Metatranscriptomic sequencing was conducted to gain a comprehensive understanding of the functional 

activity and taxonomic composition of microbial communities involved in the decomposition of different 

biopolymers in forest soil. The methodology was adapted from the approach described by Tláskal et al., 

(2021), with specific modifications to suit the experimental conditions. The complete pipeline used for the 

metatranscriptomic analysis, including all scripts and detailed steps, is available at 

https://github.com/mariabelen-

bm/Doctoral_Thesis/blob/78fb7483aff71e570633d6b3a8f0bb666fe368de/metatranscriptomic_pipeline_c

hapter_3.sh and in Annex 6.  
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Total RNA was isolated using a NucleoSpin RNA plant kit (Macherey-Nagel) according to the 

manufactirer’s protocol. We successfully extracted RNA from meshbags containing three polymers 

(cellulose, chitin and beta-1,3-glucan) and litter, due to the difficulties of extracting RNA of the rest of 

polymers. The quality and concentration of the extracted RNA were assessed using a Bioanalyzer (Agilent 

Technologies) and a Qubit fluorometer (Thermo Fisher Scientific). Ribosomal RNA was subsequently 

removed using the Ribo-Zero rRNA Removal Kit (Illumina), and the remaining messenger RNA (mRNA) 

was reverse-transcribed into complementary DNA (cDNA) with the NEBNext Ultra II RNA Library Prep Kit 

(New England Biolabs). Sequencing libraries were constructed using the TruSeq Stranded RNA kit 

according to the manufacturer’s guidelines and sequenced on the Illumina NovaSeq platform, generating 

paired-end reads of 150 base pairs. 

The raw sequencing data underwent preprocessing to eliminate adapter sequences and low-quality reads 

using Trimmomatic (Bolger et al., 2014). The cleaned reads were then aligned to a curated database 

comprising reference genomes and metagenome-assembled genomes (MAGs) using Bowtie2 (Langdon, 

2015). Gene expression levels were normalized as transcripts per million (TPM) to account for variations 

in sequencing depth and gene length. Differential gene expression analysis was conducted with DESeq2 

(Love et al., 2014) to pinpoint genes and metabolic pathways exhibiting significant changes in expression. 

Taxonomic classification of the sequences was conducted using the NCBI database (Pruitt et al., 2009) 

and publicly available fungal genomes from the Joint Genome Institute (JGI) (Grigoriev et al., 2012). 

Functional characterization of the expressed genes was performed using the KEGG and CAZy databases 

(L. Huang et al., 2018; Kanehisa et al., 2016), focusing on identifying critical metabolic pathways and 

carbohydrate-active enzymes (CAZymes) involved in the breakdown of plant and fungal material. A false 

discovery rate (FDR) threshold of <0.05 was applied to determine statistical significance. 

2.4. Analysis of Metagenome-Assembled Genomes (MAGs) 

The reconstruction and analysis of metagenomes-assembled genomes (MAGs) were conducted using a 

comprehensive pipeline tailored for environmental metagenomic samples. This workflow integrated 

multiple tools and methodologies to ensure accurate genome recovery, quality assessment, and functional 

annotation. The full pipeline, along with the source code, is accessible at https://github.com/mariabelen-

bm/Doctoral_Thesis/blob/78fb7483aff71e570633d6b3a8f0bb666fe368de/MAGs_pipeline_chapter_3.s, 

with detailed steps provided in Annex 7.  

The initial stage involved binning assembled contigs into genome-like clusters using the MetaWRAP 

pipeline (Uritskiy et al., 2018), which combines advanced algorithms, including MetaBAT2, MaxBin2, and 

CONCOCT. Refinement criteria were applied to retain only high-quality MAGs with a completeness of at 

least 70% and contamination below 10%. The quality of the selected MAGs was further validated with 

CheckM2 (Chklovski et al., 2023) to confirm genomic integrity. Taxonomic classification was performed 

using GTDB-Tk (Chaumeil et al., 2022) based on the Genome Taxonomy Database (GTDB) v2.4.0, 
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ensuring a consistent and robust taxonomic framework. To assess potential contamination and confirm 

genomic reliability, the Genomic UNcertainty Calculator (GUNC) was applied (Orakov et al., 2021). 

To quantify the relative abundance of each MAG across samples, metagenomic reads were mapped to 

the reconstructed genomes using CoverM with the minimap2-sr algorithm (H. Li, 2018). Functional 

annotation was performed through the DRAM pipeline (Shaffer et al., 2020), which utilized diverse 

reference databases, such as GTDB, KOfam, and dbCAN2, to infer the metabolic potential of the MAGs. 

Particular emphasis was placed on identifying and annotating CAZyme families associated with the 

decomposition of distinct biopolymers present in the samples. This approach allowed us to link the 

functional potential of microbial communities to the breakdown of biopolymers that constitute dead 

biomass. By characterizing the distribution and diversity of CAZyme families across the reconstructed 

MAGs, we aimed to assess whether microbial taxa exhibit specific enzymatic repertoires tailored to 

individual biopolymers or broader capabilities targeting groups of biopolymers with shared origins. 

2.5. Biopolymer guild classification 

As described Algora et al. (2022), metagenome-assembled genomes (MAGs) were assigned to specific 
guilds based on their colonization patterns of individual biopolymers. A MAG was classified as part of a 

guild if it exhibited a relative abundance greater than 2% in at least one mesh bag containing a specific 

biopolymer, or if its relative abundance exceeded the maximum observed in litter samples in at least five 

mesh bags of the same biopolymer. Furthermore, MAGs were categorized into three groups: “broad-range 

generalists,” if they were associated with 5–8 guilds; “narrow-range generalists,” if they were present in 3–

4 guilds; and “specialists,” if they were linked to only 1 or 2 guilds. 

2.6. Statistical analyses and phylogenetic 

 
The non-metric multidimensional scaling (NMDS) method was employed to explore the clustering patterns 

of biopolymers and sites based on the relative abundance of CAZyme families, specifically focusing on 

Auxiliary Activities (AAs) and Glycoside Hydrolases (GHs). This analysis aimed to reveal how biopolymers 

are distributed according to their functional CAZyme profiles. Before conducting the NMDS analysis, 

relative abundances were transformed using the square root method (Legendre & Legendre, 2012). 

Ordination was carried out based on the Bray-Curtis dissimilarity index, utilizing the metaMDS() function 

from the vegan package (Oksanen et al., 2019) in R (R-Core-Team, 2023). 

The phylogenetic analysis of MAGs was performed to infer their evolutionary relationships. Taxonomic 

classification of MAGs was conducted using GTDB-Tk v2.3.2 with the classify_wf command and the 

reference GTDB database version r214 (Chaumeil et al., 2022; Parks et al., 2022). The phylogenetic tree 

was constructed employing IQ-TREE v2.2.6, implemented in GToTree v1.8.4 (Lee, 2019). The model 

LG+F+I+R9 was selected based on the Bayesian Information Criterion (BIC), and branch support was 

assessed with 1,000 bootstrap replicates (Kalyaanamoorthy et al., 2017; Nguyen et al., 2015). The 
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resulting tree was visualized and annotated using iTOL (Interactive Tree of Life) (Letunic & Bork, 2021) 

and ggtree v3.8.2 (G. Yu et al., 2017) in R version 4.3.1 (R-Core-Team, 2023), utilizing additional packages 

from the tidyverse suite, including tidylog v1.0.2 and tidyverse v2.0.0 (Wickham et al., 2019).  

To determine whether there were statistically significant differences in the relative abundance of CAZyme 

families across the studied biopolymers, a one-way analysis of variance (ANOVA) was performed. Post 

hoc pairwise comparisons were conducted using the Tukey HSD test to identify specific differences 

between groups. Both analyses were implemented in R version 4.3.1 (R-Core-Team, 2023), utilizing the 

stats package.  
 

3. RESULTS 

3.1. Main characteristics of the metagenome and the metatranscriptome of 
meshbags 

The metagenome sequencing yielded a total of 3,989,347,944 reads, with an average of 22.5 ± 7.2 million 

reads per sample, which were assembled into 17,936,557 contigs over 200 bp in length. In contrast, the 

metatranscriptome sequencing produced a total of 620,946,372 reads, with an average of 31.3 ± 9.1 million 

reads per sample, assembled into 1,332,519 contigs over 200 bp in length.  

 

In Figure 35, the distribution of read counts associated with Bacteria, Fungi, and Other Eukaryota is shown. 

As observed, the metagenome exhibits a higher number of reads associated with the domain Bacteria 

compared to the metatranscriptome, particularly for the phylum Proteobacteria. In the metagenome, 4,229 

contigs were assigned to Bacteria, 1,882 contigs to Fungi, and 3,719 contigs to Other Eukaryota, while 

1,516 contigs did not match any of these classifications. In contrast, the metatranscriptome shows a higher 

read count for Fungi, with Basidiomycota being the most represented phylum, whereas Ascomycota 

dominates in the metagenome. In the metatranscriptome, 794,439 contigs were assigned to Bacteria, 

389,225 contigs to Fungi, and 52,469 contigs to Eukaryota, while 427,304 contigs remained unassigned. 

3.2. Microbial community composition in biopolymer-containing mesh bags 

The taxonomic composition and activity of microbial communities associated with the degradation of 

biopolymers revealed distinct patterns of dominance across different substrates.  

In the metagenome, the bacterial community showed significant variations in abundance depending on 

the biopolymer (Figure 36). For instance, Firmicutes were particularly dominant in substrates such as 

glucomannan, while Bacteroidetes exhibited a marked increase in abundance in chitin. 

Notably, the microbial community associated with litter differed substantially from those found in the 

biopolymer-enriched mesh bags. 
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Figure 35: Taxonomic composition of microbial communities based on metagenomic (left) and metatranscriptomic 

(right) analyses: The abundance of bacterial, fungal, and eukaryotic taxa is shown, highlighting differences in 

taxonomic representation between the DNA (metagenome) and RNA (metatranscriptome) datasets.  

 
The litter community was characterized by a higher abundance of Actinobacteria, which were less 

prevalent in the mesh bags. However, Actinobacteria were also found to be highly abundant in pectin. 

Furthermore, the distribution of Acidobacteria varied significantly across substrates. While this phylum was 

nearly absent in chitin, it was highly abundant in cellulose, xylan, and beta-1,3-glucan. 

 

Further, we selected the 15 most abundant taxa at the genus level from each biopolymer to analyze the 

distribution and specialization of microbial communities. The bacterial microbiome (Figure 37) exhibited 

a diverse distribution across the studied biopolymers, with specific genera showing strong substrate 

preferences. 

 

For instance, the genera Mucilaginibacter and Pedobacter, belonging to the phylum Bacteroidetes, were 

found to colonize chitin exclusively, with no presence detected in other substrates. In contrast, Terriglobus, 

a genus of Acidobacteria, was highly abundant in beta-1,3-glucan but absent in other substrates. Among 

Actinobacteria, the most abundant genera were exclusively associated with litter. Additionally, the 

Cyanobacteria Nostoc was uniquely identified in lignin. Alphaproteobacteria were particularly significant in 

cellulose, with Rhizobium and Sphingomonas being the most prominent genera. These genera were also 

detected in xylan, beta-1,3-glucan, beta-1,3-1,6-glucan, chitin, lignin, and pectin but were absent in 

glucomannan. Betaproteobacteria were notably abundant in pectin and were present in all substrates 

except glucomannan. Gammaproteobacteria, while present across all substrates, showed limited genus-

level specialization in cellulose and pectin, with Pseudomonas being the most significant genus. In 

contrast, Gammaproteobacteria were the most dominant bacterial family in glucomannan. 
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Figure 36: Taxonomic distribution of the bacterial community in the metagenome at the phylum level: The relative 

abundance of bacterial phyla is shown for each biopolymer: cellulose, xylan, glucomannan, beta-1,3-glucan, beta-

1,3-1,6-glucan, chitin, lignin. On the x-axis the different sites are distinguished. 

 
Regarding the taxonomic composition and activity of the fungal communities in the metagenome, we found 

equally different patterns of dominance on the different substrates (Figure 38).  

 

Ascomycota proved to be the most abundant phylum on all substrates. Notably, Basidiomycota showed a 

strong preference for specific substrates, being particularly dominant on cellulose and beta-1,3-glucan, 

while their presence was lower on lignin and completely absent on pectin. In contrast, the Mucoromycota 

showed a marked specialization for glucomannan, beta-1,3-glucan and chitin, with lower presence in 

cellulose, beta-1,3-1,6-glucan, lignin and pectin. Chytridiomycota, on the other hand, were exclusively 

associated with cellulose. A striking observation was the almost exclusive colonization of pectin by 

Ascomycota. 

 

In addition, we selected the 15 most abundant fungal taxa at the genus level from each biopolymer to 

analyze the distribution and specialization of the fungal communities. The fungal microbiome (Figure 39) 

showed a diverse distribution in the biopolymers studied, with specific genera and families showing strong 

substrate preferences. 

 

For example, the fungal class Dothideomycetes, belonging to the phylum Ascomycota, colonized xylan, 

glucomannan, beta-1,3-glucan and lignin, while it was absent on cellulose, beta-1,3-1,6-glucan, chitin and 

pectin. The genus Alternaria, a key representative of this class, was particularly significant in beta-1,3-1,6-

glucan, highlighting its specialized role in the degradation of this substrate. 



 

  103 
 
 

 

 
Figure 37: Taxonomic distribution of the fungal community in the metagenome at the phylum level: The relative 

abundance of fungal phyla is shown for each biopolymer: cellulose, xylan, glucomannan, beta-1,3-glucan, beta-1,3-

1,6-glucan, chitin, lignin, pectin and litter. On the x-axis the different sites are distinguished. 

 

The class Eurotiomycetes (Ascomycota) was highly dominant in chitin, lignin and pectin, with only a 

residual presence in cellulose, glucomannan and xylan, and total absence in beta-1,3-1,6-glucan. Notably, 

the genus Penicillium, a member of this class, colonized almost exclusively pectin and was also highly 

significant in chitin and lignin, underscoring its versatile but specialized role in the degradation of these 

biopolymers. The class Sordariomycetes (Ascomycota) was particularly dominant in beta-1,3-1,6-glucan, 

chitin, lignin and glucomannan, while it was absent in xylan and beta-1,3-glucan. The genera Trichoderma 

and Chaetomium, key representatives of this class, were mainly associated with beta-1,3-1,6-glucan and 

cellulose, respectively. 

3.3. Transcriptional profiles of microbial communities in different 
biopolymers 

The structure and activity of bacterial communities involved in biopolymer degradation, as analyzed 

through metatranscriptomics, revealed clear patterns of dominance and specialization linked to substrate 

type.  

 

At the phylum level, bacterial abundance varied significantly depending on the biopolymer (Figure 40), 

reflecting distinct functional roles within each substrate. 
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Figure 38: Taxonomic distribution of the bacterial community in the metagenome at the genus level: The relative abundance of bacterial genus is shown for each biopolymer: 

cellulose, xylan, glucomannan, beta-1,3-glucan, beta-1,3-1,6-glucan, chitin, lignin, pectin and litter. On the x-axis the different sites are distinguished. 
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Figure 39: Taxonomic distribution of the fungal community in the metagenome at the genus level: The relative abundance of fungal genus is shown for each biopolymer: 

cellulose, xylan, glucomannan, beta-1,3-glucan, beta-1,3-1,6-glucan, chitin, lignin, pectin and litter. On the x-axis the different sites are distinguished. 
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Acidobacteria were prominently active in cellulose and beta-1,3-glucan but were less active in chitin. 

Proteobacteria dominated across most substrates. In contrast, the litter-associated community showed a 

high prevalence of Actinobacteria, which were less active in the biopolymer-enriched substrates. Chitin 

exhibited a distinct microbial profile, with Bacteroidetes and Firmicutes being significantly more active 

compared to other substrates. Additionally, Cyanobacteria were notably active in chitin, with low or absent 

activity in other substrates. Cellulose, however, was uniquely characterized by the presence of 

Planctomycetes, a phylum that was either absent or with low activity in other substrates. 

 

 
Figure 40: Taxonomic distribution of the bacterial community in the metatranscriptome at the phylum level: The 

relative abundance of bacterial phyla is shown for each biopolymer: cellulose, beta-1,3-glucan, chitin and litter. On 

the x-axis the different sites are distinguished. 
 

Furthermore, we investigated the distribution and specialization of bacterial communities by identifying the 

15 most active genera within each biopolymer. The bacterial microbiome (Figure 41) demonstrated a 

diverse presence across the analyzed substrates, with specific genera and phyla exhibiting distinct 

substrate preferences. 

 

For instance, Actinobacteria were highly active in chitin, with Streptomyces emerging as the most 

characteristic and dominant genus within this phylum, specifically colonizing chitin. Likewise, the genera 

Chitinophaga and Mucilaginibacter, both belonging to the phylum Bacteroidetes, were exclusively 

associated with chitin. Similarly, the genus Nostoc (phylum Cyanobacteria) was uniquely found in chitin, 

further emphasizing its niche specialization. Conversely, the phyla Acidobacteria, Firmicutes, and 

Planctomycetes were predominantly found in the transcripts from litter. Within Proteobacteria, 

Alphaproteobacteria played a key role in the degradation of cellulose and beta-1,3-glucan, while their 
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activity in chitin was minimal. Among them, Rhizobium stood out as the most representative genus. In 

contrast, Betaproteobacteria were widely distributed across all substrates, demonstrating high adaptability, 

whereas Gammaproteobacteria were particularly abundant in beta-1,3-glucan and chitin but completely 

absent in cellulose. 

 

 
Figure 41: Taxonomic distribution of the bacterial community in the metatranscriptome at the genus level: The relative 

abundance of bacterial genus is shown for each biopolymer: cellulose, beta-1,3-glucan, chitin and litter. On the x-

axis the different sites are distinguished. 
 

As shown in Figure 42, the fungal community also exhibited distinct patterns of substrate colonization at 

the phylum level in the metatranscriptome.  

 

Ascomycota predominantly colonized chitin, whereas Basidiomycota was the most abundant phylum in 

cellulose. Notably, Mucoromycota was also significantly active in chitin, though its abundance was minimal 

or residual in cellulose and beta-1,3-glucan. Similarly, Oomycota was detected in chitin but appeared only 

marginally in cellulose and beta-1,3-glucan. Additionally, Chytridiomycota was more active in chitin than 

in other substrates. The phylums Ascomycota and Basidiomycota were the dominant colonizers of chitin 

and cellulose, respectively. The presence of Mucoromycota, Oomycota, and Chytridiomycota in chitin, 

albeit at varying levels, suggests a complex interplay of fungal taxa in the degradation of this substrate.  

 

Further, we examined the distribution and specialization of fungal communities by identifying the 15 most 

active genera within each biopolymer. 
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Figure 42: Taxonomic distribution of the fungal community in the metatranscriptome at the phylum level: The relative 

abundance of fungal phyla is shown for each biopolymer: cellulose, beta-1,3-glucan, chitin and litter. On the x-axis 

the different sites are distinguished. 
 

The fungal microbiome (Figure 43) revealed a diverse and substrate-specific distribution, with certain 

genera and classes showing strong preferences for particular biopolymers. 

 

Within the phylum Ascomycota, the genus Lophium was detected in both cellulose and chitin but was 

absent in beta-1,3-glucan. Notably, its presence was more pronounced in chitin than in cellulose. Similarly, 

within the class Eurotiomycetes, Aspergillus emerged as a key colonizer of cellulose and chitin, while it 

was completely absent in beta-1,3-glucan, highlighting its selective role in these biopolymers. The class 

Leotiomycetes exhibited a strong association with chitin, yet it was not detected in any other substrate. 

Likewise, members of the class Sordariomycetes were significantly enriched in chitin but showed minimal 

presence in cellulose or beta-1,3-glucan. In contrast, the class Agaricomycetes (Basidiomycota) played a 

major role in colonizing cellulose and beta-1,3-glucan, while its presence in chitin was minimal.  

 

Within this class, Tulasnella was particularly abundant in cellulose. Meanwhile, the genus Slooffia 

(Microbotryomycetes) was exclusively found in beta-1,3-glucan. The class Tremellomycetes was also 

present in cellulose and beta-1,3-glucan but was entirely absent in chitin, reflecting its distinct substrate 

preferences. Regarding Mucoromycota, the genus Mortierella (Mortierellomycetes) was exclusively 

associated with chitin. Additionally, members of the class Mucoromycetes, including Mucor, were notably 

enriched in chitin but completely absent in cellulose. 
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Figure 43: Taxonomic distribution of the fungal community in the metatranscriptome at the genus level: The relative 

abundance of fungal genus is shown for each biopolymer: cellulose, beta-1,3-glucan, chitin and litter. On the x-axis 

the different sites are distinguished. 

3.4. Functional diversity of enzymes involved in the decomposition of 
polymers of plant and fungal origin. 

The ordination of samples based on CAZyme composition clearly showed a separation between 

substrates for both fungi and bacteria, in both the metagenome and metatranscriptome.  

 

Separation was stronger in metatranscriptome samples, where the CAZyme pool of microbial communities 

growing in cellulose and beta-1,3-glucans were clustered closer together than those being expressed in 

chitin and litter. This pattern was confirmed by NMDS analysis, which evaluated the functional distribution 

of bacterial and fungal communities in relation to biopolymer degradation, considering both metagenomic 

and metatranscriptomic data (Figure 44).  

 

The analysis was based on the grouping of CAZyme families into AAs (Auxiliary Activities) and GHs 

(Glycosyl Hydrolases), allowing for the assessment of differences in microbial functionality based on 

biopolymers and sampling sites. The substrates analyzed in the metagenome included cellulose, xylan, 

glucomannan, beta-1,3-glucan, beta-1,3-1,6-glucan, chitin, lignin, pectin, and litter, while in the 

metatranscriptome, cellulose, beta-1,3-glucan, chitin, and litter were considered. The sampling sites were 

four, identified as 1, 2, 3, and 4. 
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Figure 44: Non-metric multidimensional scaling (NMDS) analysis of functional distribution in bacterial and fungal 

communities as a function of CAZyme families (AAs and GHs). Panel A represents the metagenome information in 
the bacterial community. Panel B represents the metatranscriptome information in the bacterial community. Panel C 

represents the metagenome information in the fungal community. Panel D represents the metatranscriptome 

information in the fungal community. The substrates analyzed in the metagenome include cellulose, xylan, 

glucomannan, beta-1,3-glucan, beta-1,3-1,6-glucan, chitin, lignin, pectin, and litter, while the metatranscriptome 

analysis includes cellulose, beta-1,3-glucan, chitin, and leaf litter. Sampling sites are 1, 2, 3 and 4. 
 

In the case of bacterial communities, the NMDS analysis of the metagenome (Figure 44A) showed 

significant differences in functionality based on substrates (P = 0.001) and the combination of substrates 

and sites (P = 0.001), but no significant differences were observed between sites (P = 0.1). Furthermore, 

we highlight that the pectin substrate is not represented in the bacterial metagenome. This is due to its 

marked dissimilarity compared to other substrates in bacteria, as well as the extremely low abundance of 

associated genes, which is likely a result of fungal dominance in pectin degradation. Consequently, pectin 

appears as a distant outlier in the NMDS ordination, reflecting its minimal contribution to the bacterial 

functional profile. On the other hand, in the analysis of the bacterial metatranscriptome (Figure 44B), a 

significant influence of substrates was observed (P = 0.001), but no significant differences were detected 

either between sites (P = 0.709) or in the combination of substrates and sites (P = 0.685). 
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Regarding fungal communities, the NMDS analysis of the metagenome (Figure 44C) revealed significant 

differences in functionality based on substrates (P = 0.001) and the combination of substrates and sites 

(P = 0.004), but no significant differences were observed between sites (P = 0.059). In the analysis of the 

fungal metatranscriptome (Figure 44D), a significant influence of substrates was observed (P = 0.004), but 

no significant differences were detected either between sites (P = 0.252) or in the combination of 

substrates and sites (P = 0.619). 

 
In the analysis of the functional diversity of enzymes involved in the decomposition of plant- and fungal-

origin polymers, it was observed that in the metagenome, gene assignment to CAZyme families ranged 

from 0.875% to 13.9% in fungi and from 0.183% to 21.2% in bacteria. In the metatranscriptome, the 

percentages of genes assigned to CAZymes in fungi ranged from 1.02% to 20.5%, while in bacteria, they 

varied from 0.576% to 43.7%. 

 

In fungi, the most abundant families in the metagenome were "oxidoreductases" (13.9%) and 

"betaglucanases" (12.8%), whereas in the metatranscriptome, "oxidoreductases" (20.5%) and 

"betaglucanases" (16.1%) predominated. In bacteria, the most prominent families in the metagenome were 

"other hemicellulases" (21.2%) and "alphaglucanases" (18.2%), while in the metatranscriptome, 

"alphaglucanases" (43.7%) and "peptidoglycanases" (23.9%) stood out. These results reflect the relative 

importance of different CAZyme families in the decomposition of polymers, both in fungi and bacteria, and 

their differential contributions in the metagenome and metatranscriptome. 

 

Figure 45 illustrates the distribution of genes (Figure 45A) and transcriptional expression (Figure 45B) of 

CAZyme families associated with the degradation of the studied biopolymers in fungi. In Figure 45A, the 

proportion of genes is distributed across the substrates, reaching values of up to approximately 15%. In 

Figure 45B, the proportion of transcription exhibits greater variability, with some substrates showing higher 

levels of expression. Notably, the transcription of genes related to the degradation of cellulose and beta-

1,3-glucan is significantly higher compared to other substrates, while chitin displays lower transcriptional 

activity. 

 

In fungi, CAZyme families such as cellulases and betaglucanases show high transcriptional activity, 

particularly in the degradation of cellulose and beta-1,3-glucan, respectively. This suggests that fungi play 

a significant role in breaking down these substrates. In contrast, families like chitinases exhibit lower 

transcriptional activity, indicating a reduced role in chitin degradation under the studied conditions. 

Interestingly, in the metagenome (Figure 45A), a higher presence of genes from CAZyme families involved 

in pectin degradation is observed, unlike in bacteria, where their presence is minimal. 

 

Some CAZyme families, such as betaglucanases, cellulases, and oxidoreductases, are highly represented 

in terms of transcription, highlighting their active role in the degradation of cellulose and beta-1,3-glucan. 

Conversely, families like peptidoglycanases, peroxidases, and pectinases show lower representation in 
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both the metatranscriptome and metagenome. A notable observation is that, while CAZyme families 

involved in cellulose and beta-1,3-glucan degradation are highly active in the metatranscriptome, their 

presence in the metagenome is relatively limited (Figure 45A).  

 

This underscores the dynamic transcriptional response of fungi to specific substrates, particularly cellulose 

and beta-1,3-glucan, while also revealing their limited engagement in chitin degradation under these 

conditions. 

 

 
Figure 45: Distribution of genes (A) and transcriptional expression (B) of CAZyme families associated with the 

degradation of biopolymers in fungi. Panel A shows the proportion of genes distributed across substrates: cellulose, 

xylan, glucomannan, beta-1,3-glucan, beta-1,3-1,6-glucan, chitin, lignin, pectin, and litter. Panel B represents the 

proportion of transcription across the substrates: cellulose, beta-1,3-glucan, chitin and litter, highlighting significant 
variations among them. The x-axis distinguishes the different sampling sites. 
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Figure 46 illustrates the distribution of genes (Figure 46A) and transcriptional expression (Figure 46B) of 

CAZyme families associated with the degradation of the studied biopolymers in bacteria.  

 

In Figure 46A, the proportion of genes is relatively evenly distributed across the substrates, with a 

maximum of around 4%. In contrast, Figure 46B reveals a distinct pattern: the proportion of transcription 

varies significantly, reaching up to 20% for substrates such as chitin. Notably, the high expression of 

CAZyme families related to the degradation of cellulose and chitin stands out, particularly in the case of 

chitin. This highlights the significant role of bacteria in chitin degradation, with families such as chitinases 

and peptidoglycanases being highly overrepresented in terms of transcription.  

 

Additionally, differences are observed among sampling sites. Some sites show a higher proportion of 

genes associated with the degradation of certain substrates in the metagenome, while others exhibit higher 

levels of transcription for different biopolymers. For example, in the case of site 2 for the cellulose 

biopolymer, the genes of the mannanases CAZyme family were more abundant than in the other sites 

where this biopolymer was sampled. It is also noted that certain CAZyme families, such as 

alphaglucanases, chitinases, and peptidoglycanases, are overrepresented in terms of transcription, while 

others, such as pectinases and mannanases, show lower relative activity despite being present in the 

metagenome. 

 

When trying to associate the CAZymes with specific phyla, we observed differences between metagenome 

and metatranscriptome (Figure 47). As shown in the metagenomic data (Figure 47A), on the pectin 

substrate, the phylum Ascomycota entirely accounted for all CAZyme families. On the chitin substrate, the 

phylum Mucoromycota predominantly harbored peptidoglycanases and a significant portion of 

peroxidases, while Ascomycota almost exclusively possessed laccases, mannanases, and 

xylanases/xyloglucanases. On the beta-1,3-glucan substrate, the phylum Basidiomycota contained the 

majority of cellulases, alpha-glucanases, and xylanases/xyloglucanases, whereas Ascomycota almost 

entirely accounted for peroxidases, oxidoreductases, and laccases. On the cellulose substrate, 

Basidiomycota was found to possess the majority of cellulases, xylanases/xyloglucanases, and 

mannanases, while Ascomycota almost exclusively harbored peroxidases, oxidoreductases, and 

laccases. 

 

In the metatranscriptomic data (Figure 47B), Basidiomycota was observed to express the vast majority of 

beta-glucanases, peptidoglycanases, laccases, oxidoreductases, and peroxidases. On the beta-1,3-

glucan and cellulose substrates, Basidiomycota accounted for nearly all the studied CAZyme families, with 

the exception of peptidoglycanases, which were also partially expressed by the phylum Mucoromycota. 

 

Similarly, when linking CAZyme content and expression with specific bacterial phyla, we found that in the 

metagenomic data (Figure 47A), on the pectin substrate, the bacterial phylum Actinobacteria 

predominantly harbored cellulases, mannanases, other hemicellulases, and chitinases, while the phylum 
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Proteobacteria contained the majority of peptidoglycanases and arabinogalactanases. On the chitin 

substrate, the phylum Bacteroidetes exhibited the highest abundance of beta-glucanases, pectinases, 

arabinogalactanases, other hemicellulases, mannanases, xylanases/xyloglucanases, and cellulases. On 

the beta-1,3-glucan substrate, the phylum Acidobacteria was found to possess a significant number of 

pectinases, while Bacteroidetes showed a high abundance of mannanases and pectinases. On the 

cellulose substrate, Proteobacteria were identified as the primary carriers of cellulases. 

 

 
Figure 46: Distribution of genes (A) and transcriptional expression (B) of CAZyme families associated with the 

degradation of biopolymers in bacteria. Panel A shows the proportion of genes distributed across substrates: 

cellulose, xylan, glucomannan, beta-1,3-glucan, beta-1,3-1,6-glucan, chitin, lignin, pectin, and litter. Panel B 

represents the proportion of transcription across the substrates: cellulose, beta-1,3-glucan, chitin and litter, 
highlighting significant variations among them. The x-axis distinguishes the different sampling sites. 
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In the metatranscriptomic data (Figure 48B), on the chitin substrate, the phylum Bacteroidetes displayed 

higher expression of xylanases/xyloglucanases, mannanases, pectinases, and beta-glucanases, whereas 

Firmicutes were associated with the expression of cellulases. On the beta-1,3-glucan substrate, 

Bacteroidetes were found to express cello- and xylobiases, cellulases, and arabinogalactanases, while 

Proteobacteria accounted for the entirety of pectinase expression. On the cellulose substrate, 

Proteobacteria dominated the expression of alpha-glucanases, cello- and xylobiases, cellulases, 

mannanases, pectinases, chitinases, other hemicellulases, beta-glucanases, and peptidoglycanases, 

whereas Bacteroidetes were primarily responsible for the expression of arabinogalactanases. 

3.5. Phylogenetic and functional diversity of the MAGs recovered. 

In the present study, a total of 209 metagenome-assembled genomes (MAGs) of high-quality (>70% 

completeness and <10% contamination) were recovered, all belonging exclusively to the domain Bacteria 

(Figure 49). These MAGs were distributed across 9 phyla, including Pseudomonadota (formerly 

Proteobacteria), Acidobacteriota (formerly Acidobacteria), Bacteroidota (formerly Bacteroidetes), 

Patescibacteria, Bdellovibrionota, Myxococcota, Bacillota (formerly Firmicutes), Eremiobacterota, and 

Actinobacteriota (formerly Actinobacteria). Particularly noteworthy is the recovery of MAGs belonging to 

less common phyla in soil, such as Patescibacteria (class Saccharimonadia), Myxococcota, and 

Eremiobacterota. 

 

Regarding the distribution and abundance of the analyzed bins across different biopolymer substrates, a 

classification into guilds (generalists and specialists) and non-guilds was observed, as described in  

(Algora et al., 2022) (Figure 49). This classification was based on the relative abundance of bins in the 

substrates rather than their CAZyme content. The generalists were further divided into two groups: broad-

generalists and narrow-generalists. The classification of these taxa as specialists or generalists was 

determined not only by their abundance in a given substrate but also by their ability to encode and express 

the enzymes required for substrate degradation. Figure 50 summarize the CAZyme activities expressed 

by key bins, categorized into complex plant biomass (LPMOs, cellulases and xylanases, mannanases), 

easy plant biomass (cellobiases, other hemicellulases, arabinogalactanases and pectinases), microbial 

biomass (chitinases, betaglucanases and peptidoglycanases), and reserve compounds 

(alphaglucanases). 

 

Among the broad-generalists, bins belonging to the bacterial genus Rhizobium (e.g., bin.146, bin.159, 

bin.33, bin.6) and Sphingobium (bin.172) within the class Alphaproteobacteria were notable for their 

presence across all studied biopolymers and their activity in the three biopolymers and the litter analyzed 

in the metatranscriptome. Similarly, bins belonging to the genus Paraburkolderia (e.g. bin.209, bin.4) in 

Gammaproteobacteria also were higly active in the all the biopolymers. As for the narrow-generalists, bins 

associated with the genus Flavobacterium (e.g., bin.101, bin.108, bin.64, bin.57, bin.94, bin.129, bin.143, 

bin.79, bin.109, bin.89) primarily colonized the substrates chitin, litter, and beta-1,3-glucan, while other 

Flavobacterium-associated bins were also found in cellulose and beta-1,3-1,6-glucan. 
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Figure 47:  Relative abundance of each CAZyme family associated with fungal phyla across different substrates in the metagenome (Panel A) and the metatranscriptome 

(Panel B).
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Figure 48:  Relative abundance of each CAZyme family associated with bacterial phyla across different substrates in the metagenome (Panel A) and the metatranscriptome 

(Panel B). 
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The phylogenetic distribution of MAGs revealed a remarkable concentration of specialists in certain phyla, 

especially in Proteobacteria, Bacteroidetes and Acidobacteria. Figure 50 shows the expression profiles of 

CAZymes in specialist bins of three key substrates: cellulose, beta-glucan and chitin. 

 

For cellulose, bins bin.151 and bin.207 from the genus Asticcacaulis (Alphaproteobacteria) were identified 

as specialists, expressing various cellulases belonging to the GH5, GH130 and GH26 families (Figure 50A 

and 50B), all of which fall into the category of complex plant biomass. In the case of beta-glucan, bins 

bin.57 and bin.94 of the genus Flavobacterium (Bacteroidetes) showed elevated expression of beta-

glucanases, including enzymes of the GH81 and GH144 families (Figure 50C and 50D), both belonging to 

the microbial biomass category. Regarding chitin degradation, bin.70 of the genus Pedobacter, together 

with bin.152 of the genus Cellvibrio (Gammaproteobacteria), expressed multiple chitinases (GH18 and 

GH20) and peptidoglycanases (GH23 and GH73) (Figure 50E and 50F), all belonging to the microbial 

biomass category. 

 

Additionally, other specialists were observed that, although not shown in the figure, presented outstanding 

activity on some of the substrates tested. For example, bin.188 (Andreprevotia) expressed chitinases of 

the GH18 family associated with chitin degradation, while bin.93 (Terriglobus, Acidobacteria) expressed 

GH55 and GH144, both associated with beta-glucan degradation.  

 

In contrast, other bins such as those of the phylum Eremiobacterota (e.g., bin.15_Tumulicola, 

bin.140_Cybelea) showed activity in the degradation of litter, expressing enzymes such as GH130, GH20 

or CE1, but did not show relevant expression in the specific substrates analyzed (cellulose, beta-glucan 

or chitin). 

 

Several bins with low similarity to previously described taxa were recovered. Among these, bin.21 

JACMQM01 within Bacteroidota, associated with chitin degradation, and bin.155 in Bacteroidia, specialist 

for cellulose degradation, as well as bin.84 UBA1573, bin.114 QFOX01, and bin.177 JAJPHO01 in 

Alphaproteobacteria, are particularly noteworthy. These bins not only represent novel taxa within known 

phyla but may also play key functional roles in the decomposition of specific biopolymers, such as chitin 

and other components of microbial and plant biomass. 

 

4. DISCUSSION 
4.1. Microbial decomposers preferences for different components of dead 

biomass confirms the existence of decomposers guilds 

Our experiment confimed the existence of decomposer guilds in the microbial community of forest soil, as 

previously revealed by Algora et al. (2021, 2022). The specialization patterns observed in the microbial 

community suggest that the decomposition of dead biomass is not a homogeneous process but is 

structured based on the presence of functional guilds both in fungi and bacteria. 
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Figure 49: Phylogenetic tree of bacterial MAGs and their functional roles in biopolymer degradation. The tree is 

differentiated by phyla: The first ring (blue) represents the abundance of genes associated with the degradation of 

substrates: cellulose, xylan, glucomannan, beta-1,3-glucan, beta-1,3-1,6-glucan, chitin, lignin, pectin, and leaf litter. 

The second ring (red) indicates the transcriptional activity of these genes in the substrates: cellulose, beta-1,3-glucan, 

chitin, and litter. The symbols denote guild classification: broad generalists (filled green square), narrow generalists 
(empty green square), and specialists (star).  
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Figure 50: Heatmaps showing the differential expression of CAZymes in selected bins. The Y-axis represents the 

CAZyme IDs, and the X-axis represents the substrates: cellulose, beta-1,3-glucan, chitin, and the presence of litter. 
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The identification of bacterial and fungal genera with distinct biopolymer preferences reveals that 

competition and complementarity among microorganisms are regulated by substrate specificity, indicating 

that the degradation of organic matter in soils is governed by complex ecological interactions (C. Wang & 

Kuzyakov, 2024). The exclusive association of Mucilaginibacter and Pedobacter (phylum Bacteroidetes) 

with chitin, along with the specialization of Terriglobus (phylum Acidobacteria) in beta-1,3-glucan, suggests 

that certain bacterial groups have evolved to exploit specific niches within the organic matter cycle. The 

ability of Bacteroidetes to efficiently decompose chitin aligns with their life strategy as degraders of 

complex polymers, providing them with a competitive advantage in environments rich in this biopolymer 

(J. Huang et al., 2023; Wieczorek et al., 2019). Conversely, the specialization of Acidobacteria in beta-1,3-

glucan suggests that these organisms may play a key role in the degradation of secondary microbial 

biomass (Ivanova et al., 2016), as this polysaccharide is an important structural component of fungal and 

some protist cell walls (Ruiz-Herrera & Ortiz-Castellanos, 2019). This guild-based structuring not only 

reflects differences in enzymatic capacity but also suggests that the coexistence of these groups is driven 

by resource partitioning, reducing direct competition and promoting the coexistence of diverse species 

within the same ecosystem (Nuccio et al., 2020). In fungi, the strong specialization of Penicillium 

(Ascomycota) in chitin and pectin, in contrast with the dominance of Tulasnella (Basidiomycota) in 

cellulose, reinforces the idea that fungal taxonomic distribution is closely linked to substrate composition 

(Bahram et al., 2021; Ye et al., 2019). This pattern aligns with the differential decomposition strategies of 

saprotrophs in Ascomycota and Basidiomycota: while the former are typically associated with the rapid 

degradation of more accessible polymers during the initial stages of decomposition, the latter play a key 

role in the breakdown of more recalcitrant materials such as cellulose and lignin (Brazkova et al., 2022; 

Manici, Caputo, De Sabata, et al., 2024), facilitating carbon mineralization in the later phases of organic 

matter decomposition. 

 

Metagenomic and metatranscriptomic data support this functional differentiation, revealing that the 

expression of genes involved in biopolymer degradation is highly regulated and specific to each guild. The 

high transcription of chitinases and beta-glucanases in Bacteroidetes, compared to the greater expression 

of cellulases and xylanases in Proteobacteria, suggests that bacterial guilds are not only structured at the 

taxonomic level but that their metabolic activity is also defined by the availability of specific substrates 

(Nunan et al., 2020). This reinforces the idea that gene expression in soil microorganisms is tightly 

regulated in response to resource availability (Jansson & Hofmockel, 2018; Saleh-Lakha et al., 2005). The 

same principle is observed in fungi, where the overexpression of cellulose-associated enzymes in 

Basidiomycota and chitinases in Ascomycota confirms the functional specialization of these groups. The 

fact that these associations are reflected not only in taxonomic composition but also in transcriptional 

activity suggests that decomposer guilds are not merely static ecological assemblages but are actively 

engaged in the degradation of their preferred substrates (Beidler et al., 2020; López-Mondéjar et al., 

2018). 
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The existence of decomposer guilds has important implications for carbon cycle dynamics in soils. By 

specializing in the degradation of specific biopolymers, these guilds determine the metabolic rates and 

pathways through which organic matter is processed and recycled in ecosystems (Ferreira et al., 2020; 

Žifčáková, 2017). For instance, an increase in the proportion of chitin in biomass would favor the 

development of chitinolytic microorganisms, whereas greater cellulose availability would stimulate the 

activity of cellulolytic guilds (Algora Gallardo et al., 2021; Hui et al., 2020). This suggests that changes in 

vegetation and litter composition, whether driven by climate variations, wildfires, or land-use modifications, 

can alter the structure and function of soil microbial communities, affecting the efficiency of nutrient 

recycling. A shift in the composition of available substrates could lead to a reconfiguration of decomposer 

guilds, with potential cascading effects on ecosystem stability and soil resilience to environmental 

disturbances (Philippot et al., 2021). Additionally, the presence of microorganisms specialized in poorly 

degradable biopolymers, such as certain Basidiomycota in lignin, may have a direct impact on the 

formation and stability of soil organic matter in the long term (Manici et al., 2024). The differential activity 

of decomposer guilds could influence carbon accumulation or loss in soils, modulating their role as either 

carbon sinks or sources of CO₂ in the context of climate change (Santorufo et al., 2024). 

4.2. Decomposer guilds show different functional diversity of CAZymes for 
each polymer 

The results demonstrate a pronounced functional specialization among decomposer guilds based on the 

biopolymers they degrade, reflected in the diversity and differential expression of CAZyme families in fungi 

and bacteria. This specialization not only suggests the existence of well-defined functional niches within 

soil microbial communities but also indicates an optimization of metabolic strategies in response to 

substrate availability. In fungi, CAZyme activity varies considerably depending on the substrate. The high 

expression of cellulases and beta-glucanases in cellulose and beta-1,3-glucan, respectively, confirms their 

essential role in the decomposition of these plant-derived structural polysaccharides (Pradeep & Edison, 

2022; Selvaraj et al., 2024). This pattern suggests a strong dependence of fungal metabolism on substrate 

chemistry, where efficient cellulose degradation is mediated by the coordinated expression of 

cellobiohydrolases, endoglucanases, and beta-glucosidases (Zang et al., 2018). In contrast, the relatively 

low transcriptional expression of chitinases, despite their presence in the metagenome, implies that fungi 

play a secondary role in chitin degradation under the studied conditions. This finding is notable because, 

although chitin is a key structural component of fungal cell walls and arthropod exoskeletons, its 

degradation appears to be more strongly driven by bacteria, possibly reflecting an evolutionary resource-

partitioning strategy among decomposer groups (Wieczorek et al., 2019). Enzymatic specialization in fungi 

also aligns with well-defined taxonomic patterns. Basidiomycota saprotrophs dominate cellulose 

decomposition, whereas Ascomycota shows a greater affinity for more labile polymers such as chitin and 

pectin, as previously highlighted. This differentiation may be linked to the ecological traits of each phylum. 

Basidiomycota, often associated with wood and lignocellulosic material degradation, have evolved highly 

efficient enzymatic machinery for breaking down cellulose and lignin in later decomposition stages. In 

contrast, Ascomycota, with a greater capacity to degrade accessible polymers, play a key role in the early 
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phases of biomass recycling, allowing them to rapidly colonize decomposing plant matter (Brazkova et al., 

2022; Manici et al., 2024). Bacterial enzymatic specialization follows a distinct dynamic compared to fungi. 

The overexpression of chitinases and peptidoglycanases in chitin degradation highlights the key role of 

bacterial groups such as Bacteroidetes (Mucilaginibacter, Pedobacter) and Actinobacteria (Streptomyces), 

which specialize in decomposing fungal-derived polymers. The high expression of these enzymes in the 

metatranscriptome, despite their lower representation in the metagenome, suggests that transcriptional 

regulation of chitin degradation is highly substrate-dependent (Middelboe et al., 2025). 

 

Another notable aspect is the coexistence of specialists and generalists within bacterial communities. 

While some taxa, such as Chitinophaga (Bacteroidetes phylum), exhibit marked specialization for chitin, 

others, like Alphaproteobacteria (Rhizobium), display greater functional versatility, modulating their 

enzymatic profiles based on substrate availability. This suggests contrasting ecological strategies among 

decomposer bacteria: specialists possess highly efficient enzymatic systems for specific substrates, 

whereas generalists adjust their metabolic machinery to exploit diverse biopolymers depending on 

environmental conditions (Algora et al., 2022). The coexistence of these strategies may confer ecological 

advantages in environments with heterogeneous carbon sources, ensuring microbial community activity 

across varying resource landscapes. Additionally, the ability of certain taxa to dynamically respond to 

substrate shifts could enhance the resilience of soil microbial ecosystems to environmental disturbances 

(Philippot et al., 2021). NMDS analysis supports these observations, revealing clear segregation of 

microbial communities based on substrate type in both metagenomic and metatranscriptomic data. The 

stronger separation in the metatranscriptome indicates that, although genetic potential for polymer 

degradation is widespread among soil microorganisms, the activation of these metabolic pathways is finely 

tuned by substrate composition (C.-C. Chen et al., 2020). Notably, CAZyme expression clusters cellulose 

and beta-1,3-glucan separately from chitin, reinforcing the concept of functionally distinct decomposer 

guilds for biopolymers of different origin. The limited overlap in expression profiles suggests reduced direct 

competition, likely due to resource partitioning and functional complementarity among microbial groups. 

 

The observed enzymatic specialization has broader implications for carbon cycling in ecosystems. The 

functional complementarity between fungi and bacteria indicates that organic matter decomposition is a 

highly structured process, with different organisms playing specialized roles depending on substrate 

chemistry and origin (Condron et al., 2010; Khatoon et al., 2017). Moreover, the coexistence of specialist 

and generalist bacteria may enhance the stability and resilience of decomposition systems. In 

environments with dynamic and heterogeneous biopolymer composition, metabolically flexible organisms 

ensure continuous carbon recycling, even under fluctuating resource availability (Schniete et al., 2024). 

Understanding these interactions is crucial for predicting ecosystem responses to environmental changes 

and for elucidating how microbial biodiversity contributes to long-term biogeochemical cycling. 
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4.3. Guilds are composed of specialist for components of plant biomass and 
fungal biomass 

Our findings demonstrate that microbial guilds are structured by specialization in the degradation of 

specific components of plant and fungal biomass, aligning with the "division of labor" hypothesis. This 

functional segmentation not only optimizes decomposition efficiency but also reduces competition among 

taxa and fosters synergistic interactions, contributing to the stability and resilience of the soil ecosystem 

(Nizamani et al., 2024; Z. Zhang et al., 2021). The observed substrate specialization in bacteria and fungi 

suggests that niche partitioning is a key mechanism in regulating the carbon cycle. Streptomyces and 

Chitinophaga, by focusing on chitin degradation, facilitate the mobilization of carbon derived from fungal 

biomass (McKee et al., 2019), whereas Rhizobium, acting as a generalist, maintains functional flexibility 

within the bacterial guild (Taylor et al., 2020). This balance between specialists and generalists allows 

microbial guilds to adapt to changes in resource availability, promoting community stability (Y.-J. Chen 

et al., 2021a). Similarly, the specialization of Terriglobus in beta-1,3-glucans suggests that certain taxa 

have evolved to exploit specific metabolic niches, minimizing competition with other polysaccharide 

degraders. In fungi, the functional segregation between Aspergillus and Tulasnella supports the hypothesis 

that different taxa have developed distinct enzymatic strategies to maximize cellulose and chitin 

decomposition (D. Li et al., 2023). The co-occurrence of species with complementary metabolic 

capabilities on mixed substrates (e.g., Tulasnella and Mortierella in cellulose and chitin degradation) 

suggests that cooperation within guilds may be a key factor in decomposition efficiency (Albornoz et al., 

2022).  

 

Metatranscriptomic analysis indicates that enzymatic specialization is crucial for guild efficiency. The 

dominance of Chitinophaga and Pedobacter in chitinase expression and the central role of Terriglobus 

and Asticcacaulis in beta-glucan and cellulose degradation demonstrate that degradative activity is not 

evenly distributed among taxa but is instead concentrated in highly efficient specialists (Y.-J. Chen et al., 

2021b). This finding has direct implications for modeling decomposition dynamics, as it allows predictions 

of which taxa will be most active under different environmental conditions and substrate availability. The 

evidence provided by metagenome-assembled genomes (MAGs) reinforces the existence of guilds 

structured by functional specialization.  

 

The presence of generalist bins, such as those of Rhizobium, confirms the importance of functional 

redundancy in maintaining ecosystem stability (Eisenhauer et al., 2023). In contrast, the presence of highly 

specialized bins, such as those of Asticcacaulis and Chitinophaga, suggests that certain taxa have evolved 

to exploit specific resources with high efficiency. Furthermore, the detection of novel bins with low 

taxonomic similarity underscores the still-unexplored diversity of microorganisms involved in biopolymer 

degradation 
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4.4. Digging into MAGs offers a clearer view of the role of specific bacterial 
taxa in biopolymer degradation 

Our MAG-based analysis provided a high-resolution perspective on the functional roles of bacterial taxa—

both known and unknown—in biopolymer decomposition. The recovery of 209 high-quality MAGs 

(completeness >70%, contamination <10%) spanning nine bacterial phyla highlights the vast bacterial 

diversity contributing to carbon cycling, as previously found (López-Mondéjar et al., 2022). One of the most 

striking findings was the clear functional dichotomy observed among MAGs, with generalists capable of 

degrading multiple substrates and specialists adapted to specific polymers. For instance, bins affiliated 

with Rhizobium (Alphaproteobacteria) and Flavobacterium (Bacteroidetes) displayed broad CAZyme 

repertoires, enabling activity across diverse biopolymers. Conversely, specialists such as Asticcacaulis 

(Alphaproteobacteria) and Terriglobus (Acidobacteria) exhibited high expression of enzymes targeting 

specific polymers like cellulose and beta-1,3-glucans, while Chitinophaga and Pedobacter (Bacteroidetes) 

and Cellvibrio (Gammaproteobacteria) were almost exclusively associated with chitin degradation. This 

specialization likely reflects niche adaptation strategies that enhance metabolic efficiency within microbial 

communities (Malard & Guisan, 2023; Pacciani-Mori et al., 2020). The observed partitioning of MAGs into 

generalists and specialists aligns with the "division of labor" hypothesis, where functional differentiation 

optimizes decomposition efficiency. Generalists, with their metabolic flexibility, contribute to functional 

redundancy and ecosystem stability (Y.-J. Chen et al., 2021b). In contrast, specialists drive the breakdown 

of recalcitrant polymers, playing essential roles in later stages of decomposition (Blair et al., 2021).  

 

A particularly intriguing aspect of our findings is the presence of MAGs with low taxonomic similarity to 

reference genomes, suggesting the existence of novel bacterial lineages with putative roles in 

decomposition in forest soil. For example, bin.21 JACMQM01 (Bacteroidota) was strongly linked to chitin 

degradation, potentially representing a new genus with specialized chitinolytic machinery. Additionally, 

bin.84 (UBA1573), bin.114 (QFOX01), and bin.177 (JAJPHO01) (Alphaproteobacteria) lacked close 

genomic relatives yet encoded enzymes indicative of roles in microbial or plant biomass breakdown. In 

addition, we found a MAG affiliated with Patescibacteria (class Saccharimonadia), suggesting novel 

enzymatic pathways involved in biopolymer decomposition. Given the small size of their genomes and 

their possible symbiotic lifestyles, Patescibacteria may play an indirect role in decomposition through 

interactions with other microbial taxa (H. Hu et al., 2024). The metabolic pathways encoded by these 

enigmatic taxa may represent evolutionary adaptations to very specific ecological niches, further 

highlighting the uncultivated microbial diversity of soils.  

 

Future research should focus on isolating or employing single-cell genomics to further characterize these 

novel taxa, particularly those within Patescibacteria and other poorly studied phyla.  
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5. CONCLUSIONS 

Our study provides compelling evidence that soil microbial communities are structured into specialized 

functional guilds based on distinct substrate preferences, fundamentally shaping organic matter 

decomposition in forest ecosystems. Through a MAG-based approach, complemented by metagenomic 

and metatranscriptomic analyses, we demonstrate how this guild-based organization enhances 

decomposition efficiency while maintaining ecosystem resilience through niche partitioning and functional 

complementarity.  

 

The findings reveal clear patterns of substrate specialization among microbial taxa, with bacteria such as 

Chitinophaga and Pedobacter specializing in chitin degradation, Terriglobus in beta-1,3-glucans, and fungi 

such as Tulasnella and Penicillium exhibiting distinct preferences for cellulose and chitin/pectin, 

respectively. Moreover, our analysis highlights the coexistence of generalist and specialist strategies within 

these guilds, with taxa such as Rhizobium maintaining broad metabolic flexibility, whereas others have 

evolved highly efficient, specialized degradation pathways. Importantly, we uncover novel microbial 

diversity, including previously unrecognized taxa such as bin.21 JACMQM01 and rare phyla such as 

Patescibacteria, which contribute to decomposition processes, expanding our understanding of microbial 

players involved in carbon cycling. These findings have significant implications, as they establish a 

framework for classifying microbial decomposers into substrate-specific guilds based on both genomic 

potential and expressed activity, moving beyond phylogenetic classifications to functional ecological traits. 

By linking specific taxa to their functional roles in biopolymer degradation, our study provides a valuable 

resource for interpreting environmental surveys and inferring decomposition processes from microbial 

community composition data.  

 

Furthermore, the identification of key specialist taxa and their associated CAZyme profiles offers potential 

biomarkers for monitoring specific decomposition pathways in response to environmental change. This 

guild-based classification system enhances the accuracy of decomposition models under varying 

substrate availability scenarios, including those driven by climate change, land use shifts, or vegetation 

dynamics. Moreover, the discovery of novel taxa and rare phyla involved in decomposition highlights 

critical gaps in our current understanding of soil microbial diversity and function, pointing to key targets for 

future cultivation efforts and bioprospecting. Ultimately, by bridging the gap between microbial taxonomy 

and ecosystem function, this study provides both conceptual and practical tools for advancing soil ecology. 

The functional classification scheme developed here facilitates more mechanistic interpretations of 

microbial community dynamics, supporting efforts to manage soil ecosystems for carbon sequestration, 

nutrient cycling, and climate change mitigation. Future research should build upon this foundation by 

exploring interactions among these guilds across diverse ecosystems and environmental gradients, as 

well as investigating how guild structure modulates ecosystem responses to global change. 
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GENERAL CONCLUSIONS 
This Thesis provides a deep and multifaceted understanding of microbial ecology in agricultural and natural 

soils, focusing on the biogeochemical cycles of phosphorus (P), nitrogen (N), and carbon (C). Through the 

integration of multi-omics approaches (metagenomics, metaproteomics, metatranscriptomics, and 

metagenome-assembled genomes (MAGs)), we have inferred the complexity of the soil microbiome and 

their role in ecosystem processes. These investigations have confirmed our initial hypotheses and 

revealed new insights into the functional and taxonomic dynamics of microorganisms in response to 

environmental factors, different fertilizers, plant phenology, and the decomposition of  biopolymers from 

diverse origin in soil. 

 

Functional niches in the phosphorus, nitrogen, and carbon cycles 

One of the most significant findings of this thesis is the identification of clearly defined functional niches 

within microbial communities associated with the phosphorus, nitrogen, and carbon cycles. Our results 

demonstrate that microbial guilds within these biogeochemical cycles exhibit a high degree of functional 

specialization, which is strongly influenced by the phenological stage of the crop. In the phosphorus cycle, 

we observed a distinct taxonomic separation between microorganisms involved in the solubilization of 

inorganic phosphorus and those responsible for the mineralization of organic phosphorus. This distinction 

was particularly evident in Actinobacteria, whose members harbor genes related to inorganic phosphorus 

solubilization but not organic phosphorus mineralization. This pattern suggests an evolutionary adaptation 

to specific phosphorus pools and highlights the need to consider functional diversity when designing 

fertilization strategies. Our results also emphasize the underappreciated role of archaea in phosphorus 

cycling, revealing that archaeal taxa harbor genes involved in phosphorus metabolism and may play critical 

roles alongside bacteria in regulating phosphorus availability in agroecosystems. Moreover, the integration 

of metaproteomics allowed us to identify key phosphorus-cycling enzymes such as alkaline phosphatase, 

encoded by phoX, which is abundant in maize agroecosystems and may serve as a crucial biomarker for 

phosphorus availability. 

 

Similarly, our findings regarding the nitrogen cycle underscore the importance of functional specialization 

within microbial communities. We observed that microorganisms involved in nitrification, such as 

Nitrososphaeraceae, typically lack genes related to N₂ fixation or nitrogen transport, reinforcing the idea 

of distinct ecological roles within nitrogen-cycling guilds. Metagenomic and metaproteomic analyses 

further revealed that denitrification and nitrification processes are taxonomically clustered, with microbial 

guilds displaying strong associations with specific functional pathways. Importantly, we found that the 

phenological stage of the crop is a stronger driver of nitrogen-cycling gene abundance than fertilization 

treatments. This suggests that nitrogen transformations in agroecosystems are primarily modulated by 

plant development rather than external nutrient inputs, a finding that could inform more efficient fertilization 

strategies. Additionally, we identified significant taxonomic and functional insights through the 
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reconstruction of microbial genomes (MAGs), confirming the roles of Nitrososphaeraceae in nitrification 

and Propionibacteriaceae in denitrification. The application of metaproteomics further refined these 

insights by identifying key nitrogen-associated enzymes such as glutamine synthetase (GlnA), which plays 

a central role in nitrogen assimilation and has been overlooked in previous studies. Our results also 

demonstrate that different fertilization strategies influence nitrogen-cycling genes, particularly those 

involved in DNRA and nitrification. We observed distinct responses among fertilizers, with mineral 

fertilizers such as NPK and struvite enhancing DNRA and nitrification, while organic amendments 

promoted microbial diversity but required careful management to optimize nitrogen release. 

 

In the carbon cycle, our results provide compelling evidence for the existence of specialized bacterial 

decomposer guilds, challenging the long-held assumption that bacteria play a minor role in the 

decomposition process. While fungi, particularly Basidiomycota, have traditionally been considered the 

primary decomposers of complex organic matter, our findings reveal that bacterial taxa also exhibit 

functional specialization in the decomposition process. Specifically, we identified distinct bacterial guilds 

associated with the degradation of key biopolymers, such as Chitinophaga and Pedobacter specializing in 

chitin degradation, Terriglobus in β-1,3-glucans and Asticcacaulis in cellulose. These results suggest that 

bacteria contribute significantly to the breakdown of complex carbon substrates, complementing fungal 

activity and expanding our understanding of microbial interactions in decomposition dynamics. Moreover, 

our metagenomic and metatranscriptomic analyses reveal that while Proteobacteria dominate in terms of 

gene abundance, the transcriptional activity of bacterial decomposers suggests a more active role than 

previously recognized. This highlights the need for a functional perspective when assessing microbial 

contributions to carbon cycling, as taxonomic dominance does not necessarily translate into ecological 

relevance.  

 

Impact of plant phenology and fertilization practices 

A key aspect of our studies is the demonstration that crop phenology has a greater impact than fertilization 

practices on the relative abundance of genes associated with the phosphorus and nitrogen cycles. This 

finding is particularly relevant, as it suggests that nutrient management strategies must consider not only 

the type of fertilizer used but also the growth stage of the crop. For example, in the phosphorus cycle, 

phenology influences the expression of genes related to solubilization and mineralization, which could 

affect phosphorus availability for plants at different growth stages. Similarly, we observed that the 

abundance of genes related to denitrification and nitrification varies significantly depending on the 

phenological stage, which could influence nitrogen use efficiency and losses through gas emissions or 

leaching. Nevertheless, we also concluded that fertilization practices have a notable impact on microbial 

functionality. For instance, mineral fertilizers, such as NPK and struvite, promote processes like nitrification 

and DNRA (dissimilatory nitrate reduction to ammonium), while organic fertilizers favor greater microbial 

diversity but require careful management to optimize nutrient release. These results highlight the need to 

develop fertilization strategies that balance crop nutrient demands with soil microbial dynamics. 
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Meta-Omics methodologies and their contribution to the study of microbial 
ecology 

The application of multi-omics approaches has been fundamental to advancing our knowledge and 

understanding of microbial ecology in agricultural and environmental soils. Metagenomics allowed us to 

identify the taxonomic and functional diversity of microbial communities, while metaproteomics and 

metatranscriptomics provided valuable insights into enzymatic activity and gene expression. For example, 

the integration of metagenomics and metaproteomics revealed that enzymes such as alkaline 

phosphatase (encoded by phoX) and glutamine synthetase (encoded by glnA) play crucial roles in the 

phosphorus and nitrogen cycles, respectively, despite being overlooked in previous studies. 

 

Additionally, the reconstruction of microbial genomes (MAGs) enabled us to explore in greater detail the 

phylogenetic and functional diversity of microbial communities. We identified MAGs specialized in the 

degradation of specific biopolymers from plant and microbial origin, such as Asticcacaulis and Pararobbsia 

for cellulose, and Pedobacter for chitin, highlighting the importance of functional specialization in the 

efficiency of organic matter decomposition. We also uncovered new MAGs involved in the nitrogen cycle, 

as well as previously undescribed taxa, expanding our understanding of key players in these processes. 

These integrated approaches have not only enhanced our ability to identify key taxa and genes but have 

also provided insight into how their activity is influenced by environmental factors, such as nutrient 

availability and management practices. 

 

Future perspectives 

This doctoral thesis has demonstrated that microbial ecology is a key component for understanding and 

managing biogeochemical cycles in agricultural and natural soils. The methodological advances and 

knowledge generated in this work contribute to basic science and have practical implications for the 

development of more sustainable and resilient agricultural practices. Thus, the results of this thesis open 

new avenues for research in the field of microbial ecology and sustainable soil management. First, it is 

necessary to deepen the study of archaea in agricultural soils and their contribution to biogeochemical 

cycles, as their role has been underestimated compared to bacteria. Additionally, long-term studies are 

required to evaluate how management practices, such those utilized in this Thesis, influence the stability 

and resilience of microbial communities as well as their interaction with climate change factors. 

 

Another promising area is the targeted manipulation of microbial communities to optimize nutrient cycling 

in agroecosystems. For example, the identification of taxa specialized in biopolymer degradation or 

phosphorus solubilization could be used to select specific microorganisms and develop biofertilizers that 

improve nutrient use efficiency and reduce environmental losses, being this a timely topic for 

biotechnological companies nowadays. Moreover, the relevance of crop phenology in controlling soil 

microbial communities reflect the need of considering this factor when designing and applying biofertilizers. 



 

  133 
 
 

It is likely that isolation of microbes with a particular capacity in nitrogen or phosphorus cycles (i.e., release 

of phosphorus for plants) would better work using samples from the most prone phenological stage. 

Similarly, the application of microbes (i.e., biofertilizers) can be done in the most appropriate phenological 

stage where they are needed by the plant and conditions would maximize their survival. 

 

The integration of multi-omics approaches with machine learning techniques and predictive models could 

revolutionize our ability to predict and manage microbial functionality in response to environmental and 

management changes. These tools could help design more precise and sustainable management 

strategies, contributing to food security and climate change mitigation. 
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ANNEXES 
 
Annex 1: Complete pipeline of the metagenomic analysis carried out in Chapters 1 
and 2. 
 
########################## 
## METAGENOMIC ANALYSIS ## 
########################## 
 
# Download function gdrive_download: 
function gdrive_download () { 
 CONFIRM=$(wget --quiet --save-cookies /tmp/cookies.txt  
--keep-session-cookies --no-check-certificate  
"https://docs.google.com/uc?export=download&id=$1" -O- | sed -rn  
's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p') 
 wget --load-cookies /tmp/cookies.txt  
"https://docs.google.com/uc?export=download&confirm=$CONFIRM&id=$1" -O $2 
 rm -rf /tmp/cookies.txt 
} 
 
# Installation of khmer: 
sudo yum install -y python3-devel gcc-c++ make 
conda create --name khmerEnv python=3.6 
 
# Open the terminal and activate the conda environment: 
conda activate base 
 
# Create a new conda environment for Khmer: 
conda create --name khmerEnv 
 
# Activate the conda environment 
conda install -c bioconda khmer 
 
####### 
## 1 ## 
####### 
 
###################### 
## QUALITY ANALYSIS ## 
###################### 
 
# A FastQC analysis is used to assess the quality of genomic sequencing data, 
such as those generated by platforms like Illumina. It evaluates base 
quality,  
# base composition, the presence of adapters, sequence duplication levels, 
read length distribution, and the overrepresentation of sequences. 
 
# Installation of FASTQC  
conda install -c bioconda fastqc 
 
# Quality analysis 
conda activate khmerEnv 
fastqc *.gz -o ~/metagenomic_analysis/1_FASTQC_RESULTS 
conda deactivate 
 
####### 
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## 2 ## 
####### 
 
################ 
## INTERLEAVE ## 
################ 
 
# Interleaving in metagenomics is the process of combining two paired-end 
read files into a single file. In this interleaved file,  
# the forward and reverse reads of each pair are arranged alternately (i.e., 
the forward read of the pair is followed by its corresponding reverse read).  
# Interleaving is primarily used to facilitate data processing by 
bioinformatics tools that require paired-end reads to be stored in a single 
file. 
 
# Unzip the fastq.gz in fastq 
for i in {1..32} 
do 
    gunzip -c ${i}_R1_001.fastq.gz > ${i}_R1_001.fastq 
    gunzip -c ${i}_R2_001.fastq.gz > ${i}_R2_001.fastq 
done 
 
# Interleaved 
for file in *_R1_001.fastq 
do 
   sample=${file%%_R1_001.fastq} 
   echo “interleave-reads.py ${sample}_R1_001.fastq ${sample}_R2_001.fastq -
or ${sample}.pe.fq” 
done > interleave.sh 
 
cat interleave.sh | parallel 
 
# Remove unnecessary files and organize them 
rm -rf *.fastq 
cd ... 
mkdir 2_INTERLEAVED 
cd 0_SAMPLES 
mv *.pe.fq ../2_INTERLEAVED 
cd ../2_INTERLEAVED 
 
####### 
## 3 ## 
####### 
 
####################### 
## QUALITY FILTERING ## 
####################### 
 
# The purpose of this step is to remove low-quality reads from sequencing 
data,  
# thereby improving the reliability of downstream analyses such as assemblies 
or annotations.  
# This ensures that the reads used meet a minimum quality standard, reducing 
errors and artifacts in the final results. 
 
# The filtering process employs the following parameters: 
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# -Q33: Specifies that the quality scores are encoded in the Phred+33 format, 
commonly used in Illumina sequencing platforms. 
# -q 30: Filters out reads where the average base quality is below 30, 
corresponding to high-quality bases. 
# -p 50: Retains only reads in which at least 50% of the bases meet or exceed 
the specified quality threshold. 
 
for file in *.pe.fq  
do 
  newfile=${file%%.pe.fq}    
  echo "fastq_quality_filter -i ${file} -Q33 -q 30 -p 50 -o 
${newfile}.pe.qc.fq" 
done > qual_filter.sh 
 
cat qual_filter.sh | parallel 
 
####### 
## 4 ## 
####### 
 
############################ 
## REMOVE SHORT SEQUENCES ##  
############################ 
 
# Download function gdrive_download: 
function gdrive_download () { 
 CONFIRM=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-
cookies --no-check-certificate  
"https://docs.google.com/uc?export=download&id=$1" -O- | sed -rn 
's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p') 
 wget --load-cookies /tmp/cookies.txt 
"https://docs.google.com/uc?export=download&confirm=$CONFIRM&id=$1" -O $2 
 rm -rf /tmp/cookies.txt 
} 
 
# Downlowad filter_fastq_by_length.py script 
gdrive_download 1w-OyfdEuMi38utz4cN9g_ng-S9kNeOj9 filter_fastq_by_length.py 
 
# Remove short sequences 
for file in *pe.qc.fq 
do 
  echo "python2.7 filter_fastq_by_length.py ${file} ${file}.cut 50" 
done > remove_short.sh 
 
cat remove_short.sh | parallel 
 
####### 
## 5 ## 
####### 
 
####################################################### 
## EXTRACT PAIRED ENDS, RENAME FILES AND MERGE FILES ##  
####################################################### 
 
# In this step, paired-end sequence files are processed after quality 
cleaning. It includes three main steps: extracting paired reads,  



 

  164 
 
 

# removing unnecessary files, and renaming and organizing the output files to 
facilitate subsequent analysis. 
 
# Extracting paired-ends 
for file in *.pe.qc.fq.cut 
do 
   echo "extract-paired-reads.py ${file}" 
done > extract_command.sh 
 
cat extract_command.sh | parallel 
 
# Remove unnecessary files 
rm -rf *.tr.qc.fq.cut 
 
# Rename files and merging pe and se files 
for file in *.pe 
do 
   sample=${file%%.pe.qc.fq.cut.pe} 
   mv ${file} ${sample}.pe.qc.fq 
done 
 
for file in *.se 
do 
   sample=${file%%.pe.qc.fq.cut.se} 
   mv ${file} ${sample}.se.qc.fq 
done 
 
####### 
## 6 ## 
####### 
 
############################## 
## PREPARATION FOR ASSEMBLY ## 
############################## 
 
# In this step, paired-end sequencing data are prepared for assembly. The 
script split-paired-reads.py is used to split each paired-end file 
(*.pe.qc.fq)  
# into two separate files: one containing the forward reads (R1) and the 
other containing the reverse reads (R2). This step is necessary for assembly 
tools  
# such as MEGAHIT, which require paired-end reads to be provided in 
individual files. 
 
for file in *.pe.qc.fq 
do 
   echo "split-paired-reads.py ${file}" 
done > split_command.sh 
 
cat split_command.sh | parallel 
 
####### 
## 7 ## 
####### 
 
############## 
## ASSEMBLY ## 
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############## 
 
# The assembly step aims to combine sequencing reads (forward, reverse, and 
unpaired) to reconstruct complete or contiguous genomic sequences  
# from smaller fragments (reads). 
 
mkdir 3_FOR_ASSEMBLY 
 
# Create a file with all forward sequences 
cat *.1 > 3_FOR_ASSEMBLY/all.pe.qc.fq.1 
 
# Create a file with all reverse sequences 
cat *.2 > 3_FOR_ASSEMBLY/all.pe.qc.fq.2 
 
# Create a file with all unpaired sequences 
cat *.se.qc.fq > 3_FOR_ASSEMBLY/all.se.qc.fq 
 
# Assembly using MEGAHIT 
megahit -m 0.75 -t 120 -1 all.pe.qc.fq.1 -2 all.pe.qc.fq.2 -r all.se.qc.fq  
-o all.Megahit.assembly 
 
####### 
## 8 ## 
####### 
 
############################ 
## ASSEMBLY QUALITY CHECK ## 
############################ 
 
# In this step, MetaQUAST is used, a tool designed to assess the quality of 
genomic assemblies.  
# The command takes the final contigs generated by the MEGAHIT assembly 
(final.contigs.fa) as input. Several evaluation options are specified:  
# --rna-finding identifies potential RNA regions.  
# --conserved-genes-finding searches for conserved genes  
# --max-ref-number 20 limits the maximum number of references for comparison.  
 
# This analysis allows for the verification of the assembly's quality and 
integrity. 
 
conda activate quast 
 
# Assembly quality check 
metaquast 
/mnt/DATA/belen/3_FOR_ASSEMBLY/all.Megahit.assembly/final.contigs.fa -t 120 -
-rna-finding --conserved-genes-finding --max-ref-number 20 
 
# This is the quality report of the samples: 
 
# contigs  5259264 
# contigs (>= 0 bp) 12175284 
# contigs (>= 1000 bp) 1377527 
# contigs (>= 5000 bp) 46151 
# contigs (>= 10000 bp) 10406 
# contigs (>= 25000 bp) 1303 
# contigs (>= 50000 bp) 229 
# Largest contig 213010 
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# Total length 5241019665 
# Total length (>= 0 bp) 7719201062 
# Total length (>= 1000 bp) 2613105109 
# Total length (>= 5000 bp) 417454729 
# Total length (>= 10000 bp) 180508676 
# Total length (>= 25000 bp) 52451342 
# Total length (>= 50000 bp) 16828383 
# N50 997 
# N90 566 
# auN 2360.7 
# L50 1384946 
# L90 4272456 
# GC (%) ... 
 
####### 
## 9 ## 
####### 
 
####################### 
## GENECALLING - FGS ## 
####################### 
 
# FragGeneScan is a program used to predict genes in DNA sequences.  
# The main objective of FragGeneScan is to identify coding sequences (CDS) in 
DNA sequences that may be fragmented or incomplete.  
 
mkdir 4_FGS 
cd 4_FGS 
 
# Link creation 
ln -s 
/home/kdanielmorais/bioinformatics/tools/fraggenescan/FragGeneScan1.31/train/ 
./ 
 
# FragGeneScan 
FragGeneScan -s 
~/metagenomic_analysis/3_FOR_ASSEMBLY/all.Megahit.assembly/final.contigs.fa -
w 1 -o belen_MG_Megahit_genecalling_fgs -t complete -p 120 
 
######## 
## 10 ## 
######## 
 
############# 
## MAPPING ## 
############# 
 
# Mapping is a key step in metagenomic analysis. It consists of mapping the 
DNA or RNA sequences obtained from the sample to a reference database,  
# usually a database of known sequences. 
 
# In this analysis, sequencing reads were mapped against a reference 
assembly. The process involved several steps,  
# starting with the preparation of the reference and culminating in the 
generation of alignment statistics.  
# First, an index was created for the reference contigs file 
(final.contigs.fa) using Bowtie2, optimizing the alignment process.  
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# Next, paired-end (.pe.qc.fq) and unpaired (.se.qc.fq) reads were combined 
into a single file for each sample to facilitate joint mapping.  
# The combined reads were then aligned against the reference using Bowtie2, 
producing alignment files in SAM format,  
# which were subsequently converted to compressed BAM format using Samtools.  
# Mapped and unmapped reads were counted to assess the quality and efficiency 
of the alignment. BAM files were sorted by reference position,  
# indexed, and finally, statistics on read distribution across contigs were 
generated. 
 
REF=final.contigs.fa 
reference=${REF%%.fa} 
echo "reference is" ${reference} 
mkdir ${reference}_build 
bowtie2-build 
~/metagenomic_analysis/3_FOR_ASSEMBLY/all.Megahit.assembly/${REF} 
${reference}_build/${reference}.build 
 
conda activate khmerEnv 
 
for file in *.pe.qc.fq 
do 
 sample=${file%%.pe.qc.fq} 
 cat ${sample}.pe.qc.fq ${sample}.se.qc.fq > 
~/metagenomic_analysis/5_SAMPLE_MAPPING/${sample}.all.qc.fq 
 echo "processing ${sample}...}" 
 
 bowtie2 -p 70 -x 
~/metagenomic_analysis/5_SAMPLE_MAPPING/final.contigs_build/final.contigs.bui
ld -q ~/metagenomic_analysis/5_SAMPLE_MAPPING/${sample}.all.qc.fq -S 
~/metagenomic_analysis/5_SAMPLE_MAPPING/${sample}.sam  
 echo "sam file is done..." 
  
 rm -rf ~/metagenomic_analysis/5_SAMPLE_MAPPING/${sample}.all.qc.fq 
 
 samtools view -Sb ~/metagenomic_analysis/5_SAMPLE_MAPPING/${sample}.sam > 
~/metagenomic_analysis/5_SAMPLE_MAPPING/${sample}.bam 
 echo "bam file is done..." 
 
 rm -rf ~/metagenomic_analysis/5_SAMPLE_MAPPING/${sample}.sam 
 
 samtools view -c -f 4 ~/metagenomic_analysis/5_SAMPLE_MAPPING/${sample}.bam 
> ~/metagenomic_analysis/5_SAMPLE_MAPPING/${sample}.reads-unmapped.count.txt 
 echo "unmapped reads info done..." 
 
 samtools view -c -F 4 ~/metagenomic_analysis/5_SAMPLE_MAPPING/${sample}.bam 
> ~/metagenomic_analysis/5_SAMPLE_MAPPING/${sample}.reads-mapped.count.txt 
 echo "mapped reads info done..." 
 
 samtools sort -o 
~/metagenomic_analysis/5_SAMPLE_MAPPING/${sample}.sorted.bam 
~/metagenomic_analysis/5_SAMPLE_MAPPING/${sample}.bam 
 echo "bam file was sorted..." 
 
 rm -rf ~/metagenomic_analysis/5_SAMPLE_MAPPING/${sample}.bam 
 
 samtools index ~/metagenomic_analysis/5_SAMPLE_MAPPING/${sample}.sorted.bam 
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 echo "soerted bam file was indexed..." 
 
 samtools idxstats 
~/metagenomic_analysis/5_SAMPLE_MAPPING/${sample}.sorted.bam > 
~/metagenomic_analysis/5_SAMPLE_MAPPING/${sample}.reads.by.contigs.txt 
 
 echo "${sample} is done..." 
done 
 
# Download count-up-mapped-from-results-txt-with-ctg-length.py script 
gdrive_download 1HDB2EF-pq-EJxQxsI1uv1-iVjTl6tAlo count-up-mapped-from-
results-txt-with-ctg-length.py 
 
python2.7 count-up-mapped-from-results-txt-with-ctg-length.py 
*.reads.by.contigs.txt 
 
# Validate the consistency between the assembled contigs and the data 
generated from the mapping 
wc -l summary-count-mapped.tsv 
12175286 summary-count-mapped.tsv 
 
grep '>' /mnt/DATA/belen/4_FOR_ASSEMBLY/all.Megahit.assembly/final.contigs.fa 
| wc -l 
12175284 
 
# Coverage is a key metric in genomics, as it indicates how many times a 
genomic region has been sequenced,  
# providing insights into the reliability of the assembly and the relative 
abundance of the contigs.  
# The purpose of this step is to generate a coverage file that associates 
each assembled contig with its average coverage. 
 
# Download function gdrive_download: 
function gdrive_download () { 
 CONFIRM=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-
cookies --no-check-certificate 
"https://docs.google.com/uc?export=download&id=$1" -O- | sed -rn 
's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p') 
 wget --load-cookies /tmp/cookies.txt 
"https://docs.google.com/uc?export=download&confirm=$CONFIRM&id=$1" -O $2 
 rm -rf /tmp/cookies.txt 
} 
 
# Download get_assembly_coverage.py script 
gdrive_download 1S2AQHd2YIjnxZz2kIa2avo1RSAuj-pWT get_assembly_coverage.py 
 
# Obtain coverage of our data 
python get_assembly_coverage.py summary-count-mapped.tsv 151 
belen_MG_Megahit_assembly_DN_coverage.txt 
 
######## 
## 11 ## 
########  
 
###################################### 
## NORMALISE MAPPING TABLE PER BASE ## 
###################################### 
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# In this step, the aim is to normalize the mapping table to adjust coverage 
based on the length of sequencing reads and contigs.  
# The script normalize-mapping-table-by-read-length-and-ctg-length.py takes 
as input the mapping count file (summary-count-mapped.tsv) and the average 
read length  
# (in this case, 151 bases). It generates an output file 
(TABLE_normalised.txt) where the mapping values are adjusted to provide a 
more accurate comparative  
# measure of relative coverage, regardless of differences in contig or read 
lengths.  
# This procedure is essential to correct potential biases arising from 
variations in lengths and allows for fair comparisons between different 
contigs or  
# genomic regions. 
 
# Download normalize-mapping-table-by-read-length-and-ctg-length.py script 
gdrive_download 1w0bfttjXFZ64NHD8bP7UDaQcS1yd20qR normalize-mapping-table-by-
read-length-and-ctg-length.py 
 
python2.7 normalize-mapping-table-by-read-length-and-ctg-length.py summary-
count-mapped.tsv 151 TABLE_normalised.txt 
 
# In this step, an additional normalization is performed on the previously 
normalized table to adjust coverage values based on a predefined scale by 
columns.  
# The script normalize_table_by_columns.py takes the previously generated 
file (TABLE_normalised.txt) as input, selects a specific column (in this 
case, column 2),  
# and applies a normalization factor (1,000,000) to scale the values per 
sample. The output is saved in a file named TABLE_normalised_per_sample.txt. 
 
# Download normalize_table_by_columns.py script 
gdrive_download 1c_fD520xtrCNlUIq9VqqqSvY2OryMXTU 
normalize_table_by_columns.py 
 
python2.7 normalize_table_by_columns.py TABLE_normalised.txt 2 1000000 
TABLE_normalised_per_sample.txt 
 
######## 
## 12 ## 
######## 
 
################ 
## ANNOTATION ##  
################ 
 
# Functional and taxonomic annotation are processes used to characterize 
genetic sequences by assigning biological information and classification.  
# - Functional annotation involves identifying the roles or functions of 
genes and proteins, such as their involvement in specific pathways, cellular 
processes,  
# or molecular interactions.  
# - Taxonomic annotation, on the other hand, assigns sequences to their 
corresponding organisms or taxonomic groups,  
# providing insights into the evolutionary and ecological context of the 
data.  
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# Together, these annotations allow researchers to understand both the 
biological role and the origin of the sequences,  
# which is critical in fields such as genomics, metagenomics, and molecular 
biology. 
 
# In this step, gene annotation tasks are performed by integrating alignment 
results with fungal protein and NCBI databases.  
# First, sample information and genomic sequence data are prepared and 
organized.  
# Then, these sequences are aligned with fungal proteins and NCBI proteins to 
obtain the best matches.  
# Subsequently, taxonomic information is added to the alignment results 
through the download and processing of taxonomy files.  
# The results are formatted, taxonomy tables are combined, and the best 
matches are selected based on bit score among the annotations.  
# Finally, a table is generated containing taxonomic data and KOG functions 
of the annotated proteins, completing the annotation and classification 
process. 
 
cd .. 
mkdir 7_ANNOTATION 
cp ./6_NORMALISE_MAPPING/TABLE_normalised_per_sample.txt ./7_ANNOTATION/ 
cd ./7_ANNOTATION 
 
# Download contig_mapping_to_genecall_mapping.py script 
gdrive_download 1DakO7roc9C2GJ-SkZuy8AZKTV3QHan14 
contig_mapping_to_genecall_mapping.py 
 
python2.7 contig_mapping_to_genecall_mapping.py 
~/metagenomic_analysis/4_FGS/belen_MG_Megahit_genecalling_fgs.faa 
TABLE_normalised_per_sample.txt 
 
# Add “#” to the name of the samples: 
head -1 TABLE_normalised_per_sample.txt_genecall.txt| awk -F'\t' '{printf 
$1"\t"$2 ;for(i=3; i<=NF; ++i) printf "\t%s", "#"$i }' |  awk -F '\t' '{print 
$0}' > header.txt 
 
tail -n +2  TABLE_normalised_per_sample.txt_genecall.txt > table.txt 
 
cat header.txt table.txt > TABLE_NORM_SAMPLES_GENECALL.txt 
 
##################################### 
## JGI FUNGAL PROTEINS - BIOCEV PC ##   
##################################### 
 
cd /mnt/DATA/DATABASES/FUNGAL_PROTEINS_JGI/ 
cp JGI_FUNGAL_PROTEINS_ANNOTATED_20210312.faa.zip 
/mnt/DATA/belen/7_ANNOTATION/ 
cd /mnt/DATA/belen/7_ANNOTATION/ 
unzip JGI_FUNGAL_PROTEINS_ANNOTATED_20210312.faa.zip 
 
diamond blastp -d 
~/metagenomic_analysis/7_ANNOTATION/JGI_FUNGAL_PROTEINS_ANNOTATED_20210312.fa
a -q ~/metagenomic_analysis/4_FGS/belen_MG_Megahit_genecalling_fgs.faa -e 1E-
5 -o genecalling_JGI_FUN_20210312.txt -f 6 -p 120 -b12 -c1 
 
########################################################### 



 

  171 
 
 

## Total time = 1406.2s                                  ## 
## Reported 72585274 pairwise alignments, 72585274 HSPs  ## 
## 4541138 queries aligned.                              ## 
########################################################### 
 
export LANG=en_US.UTF-8 
export LC_ALL=en_US.UTF-8 
 
sort -t$'\t' -k1,1 -k12,12gr -k11,11g -k3,3gr 
genecalling_JGI_FUN_20210312.txt | sort -u -k1,1 --merge > 
genecalling_JGI_FUN_20210312_best.txt 
 
# GENERA DEFINED 
diamond blastp -d 
/mnt/DATA/DATABASES/NCBI_nr_DIAMOND/NCBI_nr_20210225_diamond_GENERA -q 
/mnt/DATA/belen/metagenomic_analysis/4_FGS/belen_MG_Megahit_genecalling_fgs.f
aa -e 1E-5 -o belen_MG_genecalling_NCBI_nr_PROTEINS_GENERA.txt -f 6 -p 120 -
b12 -c1 
 
############################################################# 
## Total time = 57412.9s                                   ## 
## Reported 280564387 pairwise alignments, 280564387 HSPs. ## 
## 12605946 queries aligned.                               ## 
############################################################# 
 
export LANG=en_US.UTF-8 
export LC_ALL=en_US.UTF-8 
sort -t$'\t' -k1,1 -k12,12gr -k11,11g -k3,3gr 
belen_MG_genecalling_NCBI_nr_PROTEINS_GENERA.txt | sort -u -k1,1 --merge > 
genecalling_NCBI_nr_PROTEINS_best.txt 
 
#  ADD TAXONOMY TO BLAST RESULTS 
 
function gdrive_download () { 
 CONFIRM=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-
cookies --no-check-certificate 
"https://docs.google.com/uc?export=download&id=$1" -O- | sed -rn 
's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p') 
 wget --load-cookies /tmp/cookies.txt 
"https://docs.google.com/uc?export=download&confirm=$CONFIRM&id=$1" -O $2 
 rm -rf /tmp/cookies.txt 
} 
 
# Download jgi_abr_org_list.txt 
gdrive_download 12c28kgIw4mPBIhQutNGladdAXwNLtvlR jgi_abr_org_list.txt 
 
# Download replace_fungal_annot_by_taxname.py script 
gdrive_download 1XBTtiC1JYl2rzeV7idN2WrveEZknmnQi 
replace_fungal_annot_by_taxname.py 
 
python2.7 replace_fungal_annot_by_taxname.py 
genecalling_JGI_FUN_20210312_best.txt jgi_abr_org_list.txt 
genecalling_JGI_FUNGAL_PROTEINS_best_reformate.txt 
 
# FUNGAL 
awk -F'\t' '{print $2}' genecalling_JGI_FUNGAL_PROTEINS_best_reformate.txt | 
sort | uniq > FUNGAL_NAMES.txt 
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# NCBI 
awk -F'\t' '{print $2}' genecalling_NCBI_nr_PROTEINS_best.txt | sort | uniq > 
ALL_ACCESSIONS.txt 
 
# Download get_taxonomy_offline.py script 
gdrive_download 1o8KmSbwzOsjjeouK3dR0RNmWkMjdfFow get_taxonomy_offline.py 
 
python2.7 get_taxonomy_offline.py ALL_ACCESSIONS.txt 
/mnt/DATA/DATABASES/NCBI_nr_DIAMOND/ACC2TAXID_nr_current.txt 
/mnt/DATA/DATABASES/NCBI_nr_DIAMOND/TAXONOMY_TAXID_ALL_fixed.txt 
taxa_all_accessions.txt  
 
######################################################################## 
## accession list loaded...(4106547)                                  ## 
## taxonomy loaded...(907158)                                         ## 
## taxonomy retrieved... 4106547 vs acc (4106547) - should be equal!  ## 
## Done :]                                                            ## 
######################################################################## 
 
# REFORMAT 
 
# Download replace_acc_by_sp_from_taxonomy.py script 
gdrive_download 1jQ3F3ZuA0sBJVy3eJiRhwAaxh31LKqSF 
replace_acc_by_sp_from_taxonomy.py 
 
python2.7 replace_acc_by_sp_from_taxonomy.py 
genecalling_NCBI_nr_PROTEINS_best.txt taxa_all_accessions.txt 
genecalling_NCBI_nr_PROTEINS_best_reformat.txt 
 
###################################################### 
## number of taxa: 4106547 (4106547)                ## 
## DONE :) Processed blast: 12605946 - NOT FOUND 0  ## 
###################################################### 
 
# COMBINE TAXONOMY TABLES 
 
# Download JGI_TAXA_TAB_2021.txt 
gdrive_download 1VtSyy7OutKZ6fAZMTYY2HkZUDNcpfY6V JGI_TAXA_TAB_2021.txt 
 
# Download combine_taxonomy_tables.py script 
gdrive_download 1F5p28LpaHrSYWwNI_82V9eHoKIb63y8G combine_taxonomy_tables.py 
 
python2.7 combine_taxonomy_tables.py FUNGAL_NAMES.txt JGI_TAXA_TAB_2021.txt 
taxa_all_accessions.txt TAX_TAB.tab  
 
######################################################################## 
## names loaded...                                                    ##               
## FUNGAL TAXONOMY PROCESSED - NOT FOUND 0 vs. FOUND 1498             ## 
## OTHER TAXONOMY PROCESSED - REDUCING TO 34416 vs. ORIGINAL 4106548  ## 
## DONE :)                                                            ## 
######################################################################## 
 
# Download get_best_hit_by_bitscore_multi.py script 
gdrive_download 1-3XE5Le8I1_HzQdWbaAHev4ZlrSs6lUi 
get_best_hit_by_bitscore_multi.py 
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python2.7 get_best_hit_by_bitscore_multi.py 
genecalling_NCBI_nr_PROTEINS_best_reformat.txt 
genecalling_JGI_FUNGAL_PROTEINS_best_reformate.txt 
 
#############################################################################
## 
## FILE: genecalling_NCBI_nr_PROTEINS_best_reformat.txt - HITS: 12605946     
## 
## NEW ANNOTATIONS: 12605946 - REPLACED: 0 - CURRENT BEST HITS: 12605946     
## 
##                                                                           
## 
## FILE: genecalling_JGI_FUNGAL_PROTEINS_best_reformate.txt - HITS: 4541138  
## 
## NEW ANNOTATIONS: 1400 - REPLACED: 7597 - CURRENT BEST HITS: 12607346      
## 
##                                                                           
## 
## done :)                                                                   
## 
#############################################################################
## 
 
awk -F'\t' '{print $2}' best_of_the_blast.txt | sort | uniq > 
ALL_TAXA_NAMES.txt 
 
# Download get_taxonomy_basedonnames.py script 
gdrive_download 1XruvN2qGN2-dUHZNSn0jXOYmUxoJ3Uz0 
get_taxonomy_basedonnames.py 
 
python2.7 get_taxonomy_basedonnames.py ALL_TAXA_NAMES.txt TAX_TAB.tab 
TAX_TAB_FINAL.tab  
 
####################################################### 
## names loaded...                                   ## 
## TAXONOMY PROCESSED - NOT FOUND 0 vs. FOUND 35600  ## 
## DONE :)                                           ## 
####################################################### 
 
awk -F'\t' '{print $1"\t"$12"\t"$2""}' best_of_the_blast.txt > 
TAXONOMY_BEST_OF_SIMPLE.txt 
 
# KOGG FROM JGI-MYCO-GENOMES 
 
awk -F'[|\t]' '{print $1"\t"$15"\t["$5"]"}' 
genecalling_JGI_FUN_20210312_best.txt > FUNCTION_JGI_KOG_SIMPLE.txt 
 
######## 
## 13 ## 
######## 
 
############## 
## SPLIT IT ## 
############## 
 
# The annotated genomic sequences in the FASTA file are divided into smaller 
groups.  
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# This is performed using a script that fragments the file 
belen_MG_Megahit_genecalling_fgs.faa into defined-sized parts (in this case, 
83,000 sequences per group).  
# This segmentation facilitates the management and processing of large 
volumes of genomic data. 
 
# Download split_fasta_by_group_size.py script  
gdrive_download 1mGbdx3OBumymosW24WaYfZT9nq_a1z1z 
split_fasta_by_group_size.py 
 
python2.7 split_fasta_by_group_size.py 
/mnt/DATA/belen/metagenomic_analysis_chapter_4/4_FGS/belen_MG_Megahit_genecal
ling_fgs.faa 83000 
 
cd .. 
mkdir 8_SPLIT  
cd ./7_ANNOTATION 
mv *.fas ../8_SPLIT 
cd ../8_SPLIT/ 
 
######## 
## 14 ##  
######## 
 
###################### 
## dbCAN ANNOTATION ## 
###################### 
 
# In this step, the annotation of CAZy (Carbohydrate-Active Enzymes) is 
performed using the local dbCAN database.  
# First, the FASTA files are processed with the script run_dbcan.py, which 
searches for Hidden Markov Model (HMM) profiles within the local dbCAN 
database.  
# The analysis is executed in parallel to optimize processing. The results 
are consolidated into a single file (all_dbCAN.txt),  
# from which the best matches are selected based on e-value to generate a 
filtered file (all_dbCAN_best.txt).  
# Finally, unique gene names are extracted, and a simplified table 
(CAZy_BEST_SIMPLE.txt) is created,  
# containing the best annotations and identifying carbohydrate-active enzymes 
present in the samples. 
 
# dbCAN local database 
conda activate run_dbcan 
 
for file in *.fas 
do 
 sample=${file%%.fas} 
 mkdir ${sample} 
done 
 
for file in *.fas 
do 
  sample=${file%%.fas} 
  echo "run_dbcan.py ${file} protein --db_dir 
/mnt/DATA/DATABASES/run_dbcan_master/db/ -t hmmer --out_dir ${sample} --
hmm_cpu 1 --dia_cpu 1" 
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done > dbcan.sh 
 
cat dbcan.sh | parallel 
 
echo "" > all_dbCAN.txt 
for file in *.fas 
do 
 sample=${file%%.fas} 
 wc -l ${sample}/hmmer.out 
 cat ${sample}/hmmer.out >> all_dbCAN.txt 
done 
 
# dbCAN annotation 
export LC_ALL=en_US.UTF-8 
export LANG=en_US.UTF-8 
 
sort -t$'\t' -k3,3 -k5,5g all_dbCAN.txt | sort -u -k3,3 --merge > 
all_dbCAN_best.txt 
 
awk -F'[.\t]' '{print $1}' all_dbCAN_best.txt | sort | uniq > 
hmm_names_uniq.txt 
 
awk -F'[.\t]' '{print $1}' all_dbCAN_best.txt > hmm_names.txt 
 
awk -F'\t' '{print $3"\t"$5}' all_dbCAN_best.txt > 
all_dbCAN_best_gene_eval.txt 
 
paste -d"\t" all_dbCAN_best_gene_eval.txt hmm_names.txt > 
CAZy_BEST_SIMPLE.txt 
 
######## 
## 15 ## 
######## 
 
################# 
## KOFAM - KOs ## 
################# 
 
# In this step, functional annotation is performed using the KOfam database, 
which assigns KEGG Orthology (KO) functions to genes based on HMM profiles.  
# The workflow begins by organizing directories for results (ko_tbl) and 
temporary files (tmp).  
# The hmmsearch tool is then used to compare KOfam HMM profiles against 
genomic FASTA sequences, with tasks executed in parallel for efficiency.  
# All results are merged into a single file (KOFAM_all.out.txt). 
# A Python script is then used to filter the results based on predefined 
thresholds and e-values,  
# producing a final table (hmmsearch_KOFAM_multi_best.txt) containing the 
most reliable functional annotations, linking genes to their corresponding 
biological roles. 
 
mkdir ko_tbl 
mkdir tmp 
 
for i in /mnt/DATA1/priscila/kofamKOALA/db/profiles/*.hmm 
do 
  file=${i##*/} 
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  ko=${file%%.hmm} 
  echo "hmmsearch --tblout ko_tbl/${ko}.out.txt --noali --cpu 1 -E 1e-5 ${i} 
~/metagenomic_analysis/4_FGS/belen_MG_Megahit_genecalling_fgs.faa >/dev/null 
2>&1" 
done > hmmsearch_kofam.sh 
 
cat hmmsearch_kofam.sh | parallel -j 70 --tmpdir tmp 
 
cat ko_tbl/*.out.txt > KOFAM_all.out.txt 
 
python2.7 kegg_multi_from_kofamkoala_raw_filterby_thresholds_evalues.py 
KOFAM_all.out.txt /mnt/DATA1/priscila/kofamKOALA/db/ko_list 
hmmsearch_KOFAM_multi_best.txt 
 
######## 
## 16 ##  
######## 
 
######################### 
## KEGG AND dbCAN tree ## 
######################### 
 
# In this step, the KEGG ontology tree is generated and filtered for unique 
KOs (KEGG Orthologies) based on the functional annotations from the previous 
step.  
# First, a script is used to extract unique KOs from the KEGG annotations 
(KO_UNIQUE_from_KO_simple.py).  
# Then, the KEGG ontology table (kegg_tab.txt) is processed to retain only 
the KOs present in the data, creating a subtable with relevant KOs 
(KOFAM_KOs_tree.tab). 
 
# Similarly, a tree for CAZy (Carbohydrate-Active Enzymes) is generated.  
# Unique CAZy identifiers are extracted from the annotations and a script 
(get_CAZy_tree.py) is used to create a CAZy-specific ontology tree 
(CAZy_tree.tab), 
# which provides a structured representation of the identified carbohydrate-
active enzymes in the data. 
 
# Download kegg_tab.txt 
gdrive_download 11CVgwqy6O2mJ5rc4vxevYQVp04oJrQsl kegg_tab.txt 
 
# Download GET_KEGG_ontology_subtable.py script 
gdrive_download 1AmOiMqLHE8nberbvYEDPT12JShAfSW_w 
GET_KEGG_ontology_subtable.py 
 
# Download KO_UNIQUE_from_KO_simple.py 
gdrive_download 1aqENUDPh3dCoxnO8YfBZaUjwwxkmlMM1 KO_UNIQUE_from_KO_simple.py 
 
python2.7 KO_UNIQUE_from_KO_simple.py hmmsearch_KOFAM_multi_best.txt 
 
python2.7 GET_KEGG_ontology_subtable.py kegg_tab.txt 
hmmsearch_KOFAM_multi_best.txt.unique.txt KOFAM_KOs_tree.tab 
 
awk -F'\t' '{print $3}' ~/metagenomic_analysis/8_SPLIT/CAZy_BEST_SIMPLE.txt | 
sort | uniq > CAZy_BEST_unique.txt 
 
# Download get_CAZy_tree.py script 
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gdrive_download 1SGVK2cqWCLozEPGNLvPRs0YG-ckrF_CZ get_CAZy_tree.py 
 
python2.7 get_CAZy_tree.py CAZy_BEST_unique.txt CAZy_tree.tab 
 
######## 
## 17 ## 
######## 
 
############################## 
## LINK ANNOTATION TO TABLE ## 
############################## 
 
# In this step, the annotation results are linked to the sample table, 
integrating multiple sources of functional and taxonomic data.  
# We obtain the final tables of the metagenomic analysis, where we can 
appreciate the abundance of each sample, the taxonomy and associated 
functionality.  
 
# Download link_simple_table_to_mapping_table.py script 
gdrive_download 198TDGsV1cBfLEZorb5znFHysG47XEj5t 
link_simple_table_to_mapping_table.py 
 
cd ../7_ANNOTATION/ 
mv TABLE_NORM_SAMPLES_GENECALL.txt ~/metagenomic_analysis/8_SPLIT/ 
cp TAXONOMY_BEST_OF_SIMPLE.txt ~/metagenomic_analysis/belen/8_SPLIT/ 
cd ../8_SPLIT 
 
TABLE="~/metagenomic_analysis/8_SPLIT/TABLE_NORM_SAMPLES_GENECALL.txt" 
 
echo "${TABLE}" 
 
TABLE_BASE=${TABLE%%.${TABLE##*.}} 
 
echo "${TABLE_BASE}" 
 
python2.7 link_simple_table_to_mapping_table.py ${TABLE} 
TAXONOMY_BEST_OF_SIMPLE.txt TAX_BEST bitscore ${TABLE_BASE}_TAX.txt 
 
python2.7 link_simple_table_to_mapping_table.py ${TABLE_BASE}_TAX.txt 
CAZy_BEST_SIMPLE.txt CAZy e-val ${TABLE_BASE}_TAX_CAZy.txt 
 
python2.7 link_simple_table_to_mapping_table.py ${TABLE_BASE}_TAX_CAZy.txt 
../7_ANNOTATION/FUNCTION_JGI_KOG_SIMPLE.txt KOG e-val 
${TABLE_BASE}_TAX_CAZy_KOG.tab 
 
python2.7 link_simple_table_to_mapping_table.py 
${TABLE_BASE}_TAX_CAZy_KOG.tab hmmsearch_KOFAM_multi_best.txt KEGG e-val 
${TABLE_BASE}_TAX_CAZy_KOG_KEGG.tab 
 
cd ../7_ANNOTATION/ 
cp TAX_TAB_FINAL.tab ../8_SPLIT/ 
cd ../8_SPLIT 
 
# Download add_higher_taxonomy.py script 
gdrive_download 1AWuqqPaP2rUMpF_uMHOGEs8aE3Iy7JS2 add_higher_taxonomy.py 
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python2.7 add_higher_taxonomy.py ${TABLE_BASE}_TAX_CAZy_KOG_KEGG.tab 
TAX_TAB_FINAL.tab TAX_BEST ${TABLE_BASE}_TAX2_CAZy_KOG_KEGG.tab 
TAX_tree_genus.tab 
 
cd .. 
mkdir 9_FINAL_TABLES 
cp ./8_SPLIT/CAZy_tree.tab ./9_FINAL_TABLES 
cp ./8_SPLIT/TABLE_NORM_SAMPLES_GENECALL_TAX_CAZy_KOG_KEGG.tab 
./9_FINAL_TABLES 
cp ./8_SPLIT/TAX_TAB_FINAL.tab ./9_FINAL_TABLES 
cp ./8_SPLIT/TABLE_NORM_SAMPLES_GENECALL_TAX2_CAZy_KOG_KEGG.tab 
./9_FINAL_TABLES 
 
######################## 
## ANALYSIS COMPLETED ## 
######################## 
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Annex 2: Scripts used in the metagenomic analysis of Chapters 1 and 2 
 
->filter_fastq_by_length.py 
 
import sys 
 
FASTQ_file = sys.argv[1] 
OUT_file = sys.argv[2] 
length = int(sys.argv[3]) 
 
r1_0 = '' 
r1_1 = '' 
r1_2 = '' 
r1_3 = '' 
filled = False 
open(OUT_file, "w") 
 
def save_by_tag(r1_0,r1_1,r1_2,r1_3,length): 
    max_len = len(r1_1) 
    if length <= max_len: 
        with open(OUT_file, "a") as OUTfile: 
            OUTfile.write('%s\n' % r1_0) 
            OUTfile.write('%s\n' % r1_1) 
            OUTfile.write('%s\n' % r1_2) 
            OUTfile.write('%s\n' % r1_3) 
            OUTfile.close() 
    return; 
 
for n, line in enumerate(open(FASTQ_file)): 
    if n % 40000 == 0: 
        print n / 4 
    if n % 4 == 0: 
        r1_0 = line.rstrip() 
        #print "line1 %s" % line1 
        #print "line2 %s" % line2 
    else: 
        if n % 4 == 1: 
            r1_1 = line.rstrip() 
        if n % 4 == 2: 
            r1_2 = line.rstrip() 
        if n % 4 == 3: 
            r1_3 = line.rstrip() 
            filled = True 
 
    if filled: 
        save_by_tag(r1_0,r1_1,r1_2,r1_3,length) 
        filled = False 
 
print "Done." 
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->count-up-mapped-from-results-txt-with-ctg-length.py 
 
import sys 
 
d_gene = {} 
 
for f in sys.argv[1:]: 
    for line in open(f): 
        ch = line[0] 
        if ch != '@': 
            mg_id = f.split('.txt')[0] 
            gene_name = line.rstrip().split('\t')[0] 
            gene_length = line.rstrip().split('\t')[1] 
            gene = gene_name+"\t"+gene_length 
            count = int(line.rstrip().split('\t')[2]) #mapped 
            #count = int(dat[3]) #unmapped 
 
            if d_gene.has_key(gene): 
                d_gene[gene][mg_id] = count 
            else: 
                d_gene[gene] = {} 
                d_gene[gene][mg_id] = count 
 
fp = open('summary-count-mapped.tsv', 'w') 
 
sorted_samples = sys.argv[1:] 
 
fp.write('ctg_name\tctg_length') 
 
for x in sorted_samples: 
    fp.write('\t%s' % x.split('.')[0]) 
 
fp.write('\n') 
 
for gene in d_gene: 
    fp.write('%s\t' % gene) 
    for x in sorted_samples: 
        x1 = x.split('.txt')[0] 
        if d_gene[gene].has_key(x1): 
            fp.write('%s\t' % d_gene[gene][x1]) 
        else: 
            fp.write('0\t') 
    fp.write('\n') 
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->get_assembly_coverage.py 
 
import sys 
import os 
 
summary = sys.argv[1] 
seqlen = int(sys.argv[2]) 
ass_cov_file = sys.argv[3] 
 
min_cov = 10000.0 
 
fp = open(ass_cov_file, 'w') 
fp.write('ID\tAvg_fold\n') 
for n, line in enumerate(open(summary)): 
    if n > 0: 
        dat = line.rstrip().split('\t') 
        i = 0 
        sum = 0 
        len = 0 
        for x in dat: 
            #print('x '+str(i)+' '+x) 
            if i==1: 
                len = int(x) 
                if len == 0: 
                    break 
            if i>1: 
                sum += int(x) 
            i += 1 
        #print('cover '+str(cov)) 
        if len > 0: 
            cov = (sum * seqlen) / float(len) 
            if cov < min_cov: 
                min_cov = cov 
            fp.write(dat[0]+'\t'+str(cov)+'\n') 
        else: 
            print('len == 0 for '+dat[0]) 
fp.close() 
 
print('done :] min cov '+str(min_cov)) 
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->normalize-mapping-table-by-read-length-and-ctg-length.py 
 
import sys 
 
in_file = sys.argv[1] 
read_size = int(sys.argv[2]) 
out_file = sys.argv[3] 
 
fp = open(out_file, 'w') 
for n, line in enumerate(open(in_file)): 
    if n>0: 
        gene_name = line.rstrip().split('\t')[0] 
        gene_length = int(line.rstrip().split('\t')[1]) 
        if gene_length>0: 
            new_line = gene_name+'\t'+line.rstrip().split('\t')[1] 
            for x in range(2, len(line.rstrip().split('\t'))): 
                reads_count = float(line.rstrip().split('\t')[x]) 
                norm_val = (read_size * reads_count)/gene_length 
                #print gene_name+" "+str(x)+"   
"+line.rstrip().split('\t')[x]+"   %.5f" %(norm_val) 
                new_line = new_line +'\t'+ str(norm_val) 
            fp.write('%s\n' % new_line) 
        else: 
            print "WARNING: gene length is 0 bp - "+gene_name 
    else: 
        fp.write('%s\n' % line.rstrip()) 
print "done..." 
fp.close() 
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->normalize_table_by_columns.py 
 
import sys 
 
table_file = sys.argv[1] 
fixed_columns = int(sys.argv[2])    #2    1)ctg_name 2)ctg_length 
multi_const = int(sys.argv[3])      #100  for % 
out_file = sys.argv[4] 
 

#get col sums.... 
sums = [] 
for n, line in enumerate(open(table_file)): 
    if n ==0: 
        i=0 
        vals = line.strip().split("\t") 
        for val in vals: 
            if i>=fixed_columns: 
                #print str(i-fixed_columns) 
                sums.append(0)#[i-fixed_columns]=0 
            i=i+1 
    else: 
        i=0 
        vals = line.strip().split("\t") 
        for val in vals: 
            if i>=fixed_columns: 
                sums[i-fixed_columns]=sums[i-fixed_columns]+float(val) 
            i=i+1 
 
#show sums... 
for sum in sums: 
    print str(sum) 
#normalise table and save... 
fp = open(out_file, 'w') 
header = "" 
for n, line in enumerate(open(table_file)): 
    if n ==0: 
        fp.write(line.strip()+"\n") 
    else: 
        vals = line.strip().split("\t") 
        new_line = '' 
        i=0 
        for val in vals: 
            if (i>=fixed_columns)and(sums[i-fixed_columns]>0): 
                new_line = new_line+str(float(val)/sums[i-
fixed_columns]*multi_const)+"\t" 
            else: 
                new_line = new_line+val+"\t" 
            i=i+1 
        fp.write(new_line.strip()+"\n") 
fp.close() 
 
print "Done :)" 
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->contig_mapping_to_genecall_mapping.py 
 
import sys 
import os 
 
gene_call_fasta = sys.argv[1] 
##title: 
#>k141_20_1_453_+ 
ctg_mapping_tab = sys.argv[2] 
##contig 
#k141_43039 
header = '' 
abundances = {} 
for n, line in enumerate(open(ctg_mapping_tab)): 
    if n == 0: 
        header = line.rstrip() 
    else: 
        vals = line.rstrip().split('\t') 
        line_vals = '' 
        for x in range(1,len(vals)): 
            line_vals = line_vals + '\t'+vals[x] 
        abundances[vals[0]] = line_vals 
 
print("mapping table read...") 
 
title = '' 
sequence = '' 
filled = False 
genes_names = {} 
for n, line in enumerate(open(gene_call_fasta)): 
    if n % 20000 == 0: 
        print(n / 2) 
    if n % 2 == 0: 
        title = line.rstrip() 
        #print title 
        if title[0] != '>': 
            print("fasta format error...") 
            break 
    else: 
        if n % 2 == 1: 
            sequence = line.rstrip() 
            filled = True 
    if filled: 
        tp = title[1:].rsplit('_',3) 
        genes_names[title[1:]] = tp[0] 
        filled = False 
 
print("genecall fasta read...") 
 
fp = open(ctg_mapping_tab + "_genecall.txt", 'w') 
fp.write(header + "\n") 
for name in genes_names: 
    new_line = name + abundances[genes_names[name]] 
    fp.write(new_line + "\n") 
fp.close() 
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print("Done :)") 
 
->replace_fungal_annot_by_taxname.py 
 
import sys 
import os 
 
annotation = sys.argv[1] 
short_to_tax = sys.argv[2] 
output_file = sys.argv[3] 
 
#fwd_k141_10000352_1_282_-       jgi|Dacma1|778102|KOG1368|4.1.2.5       52.5    
80      38      0       13      92      20      99      5.1e-15 87.0 
 
names = {} 
with open(short_to_tax) as file: 
    for line in file: 
        vals = line.rstrip().split('\t') 
        names[vals[0]] = vals[1] 
 
print('Taxon pairs were loaded - ' + str(len(names))) 
 
with open(output_file, "w") as fp: 
    with open(annotation) as file: 
        for line in file: 
            vals = line.rstrip().split('\t') 
            new_line = vals[0] 
            for i in range(1, len(vals)): 
                if i == 1: 
                    tax = vals[i].split('|')[1] 
                    if '['+tax+']' in names: 
                        new_line = new_line + '\t' + names['['+tax+']'] 
                    else: 
                        print('Taxa abbreviation was not found - ' + tax) 
                        new_line = new_line + '\t' + vals[i] 
                else: 
                    new_line = new_line + '\t' + vals[i] 
            #print(new_line) 
            fp.write(new_line + '\n') 
 
print('Done :]') 
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->get_taxonomy_offline.py 
 
import sys 
 
acc_list = sys.argv[1] 
acc2taxid = sys.argv[2] 
tax_taxid = sys.argv[3] 
tax_out = sys.argv[4] 
 

accs = {} 
for line in open(acc_list): 
    accs[line.rstrip()] = 0 
 
print("accession list loaded...("+str(len(accs))+")") 
 
i = 0 
taxonomy = {} 
for line in open(tax_taxid): 
    parts = line.rstrip().split('\t') 
    taxonomy[parts[7]] = parts[0] + '\t' + parts[1] + '\t' + parts[2] + '\t' 
+ parts[3] + '\t' + parts[4] + '\t' + parts[5] + '\t' + parts[6] 
    i += 1 
 
print("taxonomy loaded...("+str(i)+")") 
 
i = 0 
fp = open(tax_out, 'w') 
fp.write('domain\tphylum\tclass\torder\tfamily\tgenus\torganism\ttax_key\n') 
for line in open(acc2taxid): 
    parts = line.rstrip().split('\t') 
    if accs.has_key(parts[0]): 
        fp.write(taxonomy['['+parts[1]+']'] + '\t[' + parts[0] + ']\n') 
        accs[parts[0]] = 1 
        i += 1 
fp.close() 
 
print("taxonomy retrieved... "+str(i)+" vs acc ("+str(len(accs))+") - should 
be equal!") 
 
fp = open('missing_acc.txt', 'w') 
for acc in accs: 
    if accs[acc] == 0: 
        fp.write(acc + '\n') 
fp.close() 
 

print("Done :]") 
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->replace_acc_by_sp_from_taxonomy.py 
 
import sys 
import os 
 
blast_out6 = sys.argv[1] 
taxonomy = sys.argv[2] 
blast_reformat = sys.argv[3] 
 

# load taxons 
i = 0 
acc_to_sp = {} 
for n, line in enumerate(open(taxonomy)): 
    if n > 0: 
        val = line.rstrip().split("\t") 
        acc_to_sp[val[7]] = '[' + val[6] + ']' 
        i = i + 1 
print("number of taxa: "+str(i)+" ("+str(len(acc_to_sp))+")") 
 
# load blast 
i = 0 
n = 0 
fp = open(blast_reformat, "w") 
for line in open(blast_out6): 
        val = line.rstrip().split("\t") 
        acc = '[' + val[1] + ']' 
        if acc_to_sp.has_key(acc): 
            val[1] = acc_to_sp[acc] 
        else: 
            print("ERROR ACCESSION "+acc+" NOT FOUND!") 
            n += 1 
        fp.write("\t".join(val) + '\n') 
        i += 1 
fp.close() 
 
print("DONE :) Processed blast: "+str(i)+" - NOT FOUND "+str(n)) 
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->combine_taxonomy_tables.py 

import sys 
 
fungi_names = sys.argv[1] 
fungi_taxa = sys.argv[2] 
other_taxa = sys.argv[3] 
final_taxa_out = sys.argv[4] 
 
fungal_names = {} 
for line in open(fungi_names): 
    vals = line.rstrip().split('\t') 
    fungal_names[vals[0]] = 0 
 
print("names loaded...") 
 

fungal_taxonomy = {} 
for line in open(fungi_taxa): 
    vals = line.rstrip().split('\t') 
    if fungal_names.has_key(vals[6]): 
        fungal_taxonomy[vals[6]] = line.rstrip() 
        fungal_names[vals[6]] = 1 
 
n = 0 
k = 0 
for name in fungal_names: 
    if fungal_names[name] == 1: 
        k += 1 
    else: 
        n += 1 
        print("ERROR name ("+name+") was not found...") 
 
print("FUNGAL TAXONOMY PROCESSED - NOT FOUND "+str(n)+" vs. FOUND "+str(k)) 
 
if n>0: 
    print("THERE ARE ERRORS - TERMINATING SCRIPT...") 
    exit() 
 

n = 0 
other_taxonomy = {} 
for line in open(other_taxa ): 
    vals = line.rstrip().split('\t') 
    n += 1 
    if len(vals)>6: 
        vals[6] = "["+vals[6]+"]" 
        if not other_taxonomy.has_key(vals[6]): 
            if not fungal_taxonomy.has_key(vals[6]): 
                other_taxonomy[vals[6]] = 
vals[0]+"\t"+vals[1]+"\t"+vals[2]+"\t"+vals[3]+"\t"+vals[4]+"\t"+vals[5]+"\t"
+vals[6] 
    else: 
        print("PROBLEMATIC: "+line) 
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print("OTHER TAXONOMY PROCESSED - REDUCING TO "+str(len(other_taxonomy))+" 
vs. ORIGINAL "+str(n)) 
 
fp = open(final_taxa_out, 'w') 
fp.write("domain\tphylum\tclass\torder\tfamily\tgenus\tkey\n") 
for name in other_taxonomy: 
    fp.write(other_taxonomy[name]+"\n") 
for name in fungal_taxonomy: 
    fp.write(fungal_taxonomy[name]+"\n") 
fp.close() 
 
print("DONE :)") 
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->get_best_hit_by_bitscore_multi.py 
 
import sys 
 
def choose_the_best(ctgs, in_file): 
    size = len(ctgs) 
    i = 0 
    r = 0 
    for line in open(in_file): 
        line = line.strip() 
        vals = line.split("\t") 
        # check formate 
        #if i<3: 
        #    print(line.strip()) 
        # check formate 
        if len(vals)>11: #if len(vals)>11 and i>0: 
                bitscore = float(vals[11]) 
                eval = float(vals[10]) 
                sim = float(vals[2]) 
                ctg = vals[0] 
                #print("bitscore "+str(bitscore)+" eval "+str(eval)+" sim 
"+str(sim)) 
                if ctgs.has_key(ctg): 
                    vals_old = ctgs[ctg].split("\t") 
                    if bitscore > float(vals_old[11]): 
                        ctgs[ctg] = line 
                        r += 1 
                    else: 
                        if bitscore == float(vals_old[11]): 
                            if eval < float(vals_old[10]): 
                                ctgs[ctg] = line 
                                r += 1 
                            else: 
                                if eval == float(vals_old[10]) and sim > 
float(vals_old[2]): 
                                    ctgs[ctg] = line 
                                    r += 1 
                else: 
                    ctgs[ctg] = line 
        i += 1 
    print("FILE: " + in_file + " - HITS: " + str(i)) 
    print("NEW ANNOTATIONS: " + str(len(ctgs) - size)+" - REPLACED: " + 
str(r) + " - CURRENT BEST HITS: " + str(len(ctgs))) 
    print("") 
 
ctgs_best = {} 
 
for f in sys.argv[1:]: 
    choose_the_best(ctgs_best, f) 
 
fp = open('best_of_the_blast.txt', 'w') 
for ctg in ctgs_best: 
    fp.write(ctgs_best[ctg]+'\n') 
fp.close() 
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print("done :)") 
 
->get_taxonomy_basedonnames.py 
 
import sys 
 
taxa_names = sys.argv[1] 
taxonomy = sys.argv[2] 
taxonomy_filtered = sys.argv[3] 
 
names = {} 
for line in open(taxa_names): 
    vals = line.rstrip().split('\t') 
    names[vals[0]] = 0 
 
print("names loaded...") 
 
selected_taxonomy = {} 
for line in open(taxonomy): 
    vals = line.rstrip().split('\t') 
    if len(vals) < 7: 
        print(line.rstrip()) 
    else: 
        if names.has_key(vals[6]): 
            selected_taxonomy[vals[6]] = line.rstrip() 
            names[vals[6]] = 1 
 
n = 0 
k = 0 
for name in names: 
    if names[name] == 1: 
        k += 1 
    else: 
        n += 1 
        print("ERROR name ("+name+") was not found...") 
 
print("TAXONOMY PROCESSED - NOT FOUND "+str(n)+" vs. FOUND "+str(k)) 
 
fp = open(taxonomy_filtered, 'w') 
fp.write("domain\tphylum\tclass\torder\tfamily\tgenus\tkey\n") 
for name in selected_taxonomy: 
    fp.write(selected_taxonomy[name]+"\n") 
fp.close() 
 
print("DONE :)") 
 
  



 

  192 
 
 

->split_fasta_by_group_size.py 
 
import sys 
import ntpath 
 
in_file = sys.argv[1] 
group_size = int(sys.argv[2]) 
 
part = 1 
k = 1 
 
file_name = ntpath.basename(in_file).rstrip().split('.')[0] 
fp = open(file_name+str(part)+'.fas', 'w') 
 
for n, line in enumerate(open(in_file)): 
    ch = line[0] 
    if ch == '>': 
        if ((k % group_size)==0): 
            part = part+1 
            fp.close() 
            print "Part: "+str(part) 
            fp = open(file_name+str(part)+'.fas', 'w') 
        k=k+1 
    fp.write(line) 
fp.close() 
print "Done." 
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->KO_UNIQUE_from_KO_simple.py 
 
import sys 
 
simple_tab_file = sys.argv[1] 
 
ko_vars = {} 
for n, line in enumerate(open(simple_tab_file)): 
    #print line 
    vals = line.strip().split("\t") 
    if len(vals)>2: 
        kk = vals[2].split(";") 
        for k in kk: 
            if ko_vars.has_key(k): 
                ko_vars[k] = ko_vars[k] + 1 
            else: 
                ko_vars[k] = 1 
    else: 
        print line 
 
#write unique KO 
fp = open(simple_tab_file+'.unique.txt', 'w') 
for result in ko_vars: 
    fp.write(result+"\t"+str(ko_vars[result])+"\n") 
fp.close() 
 
print "Done :)" 
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->GET_KEGG_ontology_subtable.py 
 
import sys 
 
kegg_tab_file = sys.argv[1] 
unique_KO_file = sys.argv[2] 
out_file = sys.argv[3] 
 
kos = {} 
for n, line in enumerate(open(unique_KO_file)): 
    vals = line.strip().split("\t") 
    kos[vals[0]] = '' 
 
fp = open(out_file, 'w') 
for n, line in enumerate(open(kegg_tab_file)): 
    if n==0: 
        fp.write(line.strip()+"\n") 
    else: 
        vals = line.strip().split("\t") 
        if vals[len(vals)-1] in kos: 
            fp.write(line.strip()+"\n") 
fp.close() 
 
print "Done :)" 
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->get_CAZy_tree.py 
 
import sys 
import re 
 
input_unique = sys.argv[1] 
tree_output = sys.argv[2] 
 
values = [] 
for line in open(input_unique): 
    val = line.rstrip() 
    if len(val)>0: 
        if not val == "HMM Profile": 
            values.append(val) 
 
values.sort(reverse=True) 
 
fp = open(tree_output, 'w') 
fp.write("class\tfamily\tmodel\n") 
for val in values: 
    print(val) 
    v = val.split('_') 
    ################ 
    match = re.match(r"([a-z]+)([0-9]+)", v[0], re.I) 
    if match: 
        cl = match.groups()[0] 
    else: 
        cl = v[0] 
    ################# 
    fp.write(cl+"\t"+v[0]+"\t"+val+"\n") 
fp.close() 
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->link_simple_table_to_mapping_table.py 
 
import sys 
import os 
 
table = sys.argv[1] 
best_function = sys.argv[2] 
function_name = sys.argv[3] 
identity_var = sys.argv[4] 
#k141_1000000_1_442_-   3.30E-22    [K00074] 
linked_tab = sys.argv[5] 
 
#read functions... 
fun = {} 
for n, line in enumerate(open(best_function)): 
    vals = line.rstrip().split('\t') 
    if len(vals) == 3: 
        fun[vals[0]] = vals[1] +'\t' + vals[2] 
 
print 'Functions processed... '+str(len(fun)) 
 
#link it... 
nfun = 0 
fp = open(linked_tab, 'w') 
for n, line in enumerate(open(table)): 
    line = line.rstrip() 
    line_new = '' 
    if n == 0: 
        #header 
        line_new = line +'\t' + identity_var + '\t' +function_name 
    else: 
        vals = line.rstrip().split('\t') 
        fun_line = 'NaN'+ '\t' +'-' 
        if fun.has_key(vals[0]): 
            nfun = nfun + 1 
            fun_line = fun[vals[0]] 
        line_new = line + '\t'+fun_line 
    fp.write(line_new + "\n") 
fp.close() 
 
print 'Done... used functions: '+str(nfun)+'/'+str(len(fun)) 
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->add_higher_taxonomy.py 
 
import sys 
import re 
 
big_table = sys.argv[1] 
tax_tree = sys.argv[2] 
tax_column = sys.argv[3] 
big_table_new = sys.argv[4] 
tax_tree_new = sys.argv[5] 
 
taxons = [] 
tax_pair = {} 
fp = open(tax_tree_new, 'w') 
fp.write("domain\tphylum\tclass\torder\tfamily\tgenus_key\n") 
for n,line in enumerate(open(tax_tree)): 
    val = line.rstrip().split('\t') 
    if n > 0: 
        new_key = "["+val[5]+"]" 
        
taxons.append(val[0]+"\t"+val[1]+"\t"+val[2]+"\t"+val[3]+"\t"+val[4]+"\t"+new
_key) 
        tax_pair[val[6]] = new_key 
 
myset = set(taxons) 
mylist = list(myset) 
mylist.sort(reverse=True) 
 
key_check = {} 
for l in mylist: 
    key = l.split('\t')[5] 
    if key_check.has_key(key): 
        print(">>>duplicate<<<") 
        print("new: "+l) 
        print("old: "+key_check[key]) 
    else: 
        key_check[key] = l 
        fp.write(l + "\n") 
 
fp.close() 
 
# add nes taxonomy column 
tax_column_index = -1 
fp = open(big_table_new, 'w') 
for n,line in enumerate(open(big_table)): 
    val = line.rstrip().split('\t') 
    if n == 0: 
        l = val[0] 
        i=0 
        for v in val: 
            if i>0: 
                l += "\t"+val[i] 
                if tax_column == v: 
                    tax_column_index = i 
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                    l += "\t" + tax_column+"_genus" 
            i+=1 
        fp.write(l + "\n") 
    else: 
        i=0 
        l = val[0] 
        for v in val: 
            if i>0: 
                l += "\t"+val[i] 
                if i == tax_column_index: 
                    if val[i] == '-': 
                        l += "\t-" 
                    else: 
                        l += "\t" + tax_pair[val[i]] 
            i += 1 
        fp.write(l + "\n") 
fp.close() 
 
print("done :]") 
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Annex 3: Complete pipeline of the MAGs (Metagenome-Assembled Genomes) 
analysis carried out in Chapter 2. 
 
################### 
## MAGs ANALYSIS ## 
################### 
 
# The analysis of MAGs (Metagenome-Assembled Genomes) is an approach used in 
metagenomics to reconstruct complete genomes of microorganisms present in an 
environmental  
# sample, without the need for prior isolation in culture. Using raw 
metagenomic sequences, MAGs are obtained by an assembly and binning process,  
# in which contigs (DNA fragments) are grouped into bins representing 
individual genomes.  
# These genomes can come from bacteria, archaea or other microbes present in 
the sample.  
 
####### 
## 1 ## 
####### 
 
############# 
## BINNING ## 
############# 
 
# Binning is a key step in metagenomic analysis. The main objective of 
binning is to group contigs (assembled DNA fragments) into bins,  
# where each bin represents a possible individual genome.  
 
conda activate metawrap 
 
metawrap binning -a /mnt/DATA/belen/MAGS_assembly/final.contigs.fa -o 
binning_metawrap -t 120 -m 1000 --metabat2 --maxbin2 --concoct --universal --
run-checkm --interleaved /mnt/DATA/belen/MAGS_assembly/*.pe.qc.fq.gz 
 
####### 
## 2 ## 
####### 
 
#################### 
## BIN REFINEMENT ## 
#################### 
 
# In this step you pick the best version of each bin. You can be more or less 
stringent in this step by lowering the completeness a bit. 
 
metawrap bin_refinement -o 
/mnt/DATA/belen/MAGS_assembly/metawrap_refined_bins/ -A 
/mnt/DATA/belen/MAGS_assembly/binning_metawrap/metabat2_bins/ -B 
/mnt/DATA/belen/MAGS_assembly/binning_metawrap_concot/concoct_bins/ -C 
/mnt/DATA/belen/MAGS_assembly/binning_metawrap/maxbin2_bins/ -m 1000 -t 120 -
c 50 -x 10 
 
####### 
## 3 ## 
####### 
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################## 
## CheckM2 STEP ## 
################## 
 
# CheckM2 is used to evaluate the quality of the refined bins (MAGs) 
obtained. CheckM2 is a tool that estimates the completeness and contamination 
of MAGs. 
 
conda activate checkm2 
 
checkm2 predict -i 
/mnt/DATA/belen/MAGS_assembly/metawrap_refined_bins/metawrap_50_10_bins/ -x 
fa --output-directory refinded_checkm2 --database_path 
/mnt/DATA1/priscila/checkm2/database/CheckM2_database/uniref100.KO.1.dmnd --
tmpdir ./ --threads 240 
 
awk '$2 >= 50 && $3 <=10' refinded_checkm2/quality_report.tsv > 
good_bins_checkm2.tsv 
 
awk '$2 >= 50 && $3 <=10' refinded_checkm2/quality_report.tsv | cut -f1 > 
bins_list 
 
for i in $(cat bins_list); do cp metawrap_50_10_bins/$i.fa selected_bins/ 
;done  
 
####### 
## 4 ## 
####### 
 
########################## 
## TAXONOMIC ANNOTATION ## 
########################## 
 
# GTDB-Tk (Genome Taxonomy Database Toolkit) is used to assign taxonomy to 
refined MAGs using the GTDB database version 2.4.0 (v220).  
# This tool classifies microbial genomes from complete genomic data and 
provides a standardized taxonomy based on the phylogenetic tree proposed by 
GTDB. 
 
conda activate /mnt/DATA1/priscila/condaenvs/gtdbtk220 
 
gtdbtk classify_wf --genome_dir  
/mnt/DATA/belen/MAGS_assembly/metawrap_refined_bins/metawrap_50_10_bins/ --
out_dir refined_checkm2_gtdb220 --cpus 240 --pplacer_cpus 60 -x .fa --tmpdir 
./ --skip_ani_screen 
 
####### 
## 5 ## 
####### 
 
########## 
## GUNC ## 
########## 
 
# GUNC (Genomic UNcertainty Calculator), a tool designed to assess the 
taxonomic contamination and consistency of MAGs, is used.  
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# This analysis is crucial to verify the quality of the refined MAGs and 
ensure that they represent unique and consistent genomes rather than  
# mixtures of genetic material from different organisms. 
 
conda activate gunc 
 
export TMPDIR="/mnt/DATA/projects/priscila/tmp/" 
echo $TMPDIR 
 
mkdir selected_bins_gunc 
 
gunc run --input_dir 
/mnt/DATA/belen/MAGS_assembly/metawrap_refined_bins/metawrap_50_10_bins/ --
detailed_output --contig_taxonomy_output --use_species_level --out_dir 
selected_bins_gunc --threads 120 --db_file 
/mnt/DATA1/priscila/database/gunc_db_progenomes2.1.dmnd --file_suffix .fa 
 
####### 
## 6 ## 
####### 
 
##################################### 
## RELATIVE QUANTIFICATION OF MAGs ## 
##################################### 
 
# The relative quantification of MAGs is performed using the Minimap2 and 
CoverM tools.  
# In this step, the relative abundance of each MAG in the microbial community 
is determined based on the mapping of MAGs. 
 
mkdir mags_bams 
 
conda activate coverm 
 
export TMPDIR="/mnt/DATA/projects/priscila/tmp/" 
export TMPDIR="/mnt/DATA/belen/MAGS_assembly" 
 
echo $TMPDIR 
 
coverm genome --mapper minimap2-sr --methods relative_abundance -o 
coverm_relative_abundance_selected.txt --bam-file-cache-directory mags_bams -
-interleaved /mnt/DATA/belen/MAGS_assembly/*.pe.qc.fq.gz --genome-fasta-
directory 
/mnt/DATA/belen/MAGS_assembly/metawrap_refined_bins/metawrap_50_10_bins/ -x 
fa --threads 240 
 
####### 
## 7 ## 
####### 
 
########################### 
## FUNCTIONAL ANNOTATION ## 
########################### 
 
conda activate DRAM 
 
# We have 
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lrwxrwxrwx. 1 belen belen   32 Dec 11 17:39 gtdbtk.ar53.summary.tsv -> 
classify/gtdbtk.ar53.summary.tsv 
lrwxrwxrwx. 1 belen belen   34 Dec 11 18:29 gtdbtk.bac120.summary.tsv -> 
classify/gtdbtk.bac120.summary.tsv 
 
# Combine both files 
head -n 1 
/mnt/DATA/belen/MAGS_assembly/metawrap_refined_bins/refined_checkm2_gtdb220/g
tdbtk.bac120.summary.tsv > gtdbtk_summary_bac_arch.tsv 
tail -n +2 
/mnt/DATA/belen/MAGS_assembly/metawrap_refined_bins/refined_checkm2_gtdb220/g
tdbtk.bac120.summary.tsv >> gtdbtk_summary_bac_arch.tsv 
tail -n +2 
/mnt/DATA/belen/MAGS_assembly/metawrap_refined_bins/refined_checkm2_gtdb220/g
tdbtk.ar53.summary.tsv >> gtdbtk_summary_bac_arch.tsv 
 
# Functional annotation 
DRAM.py annotate -i 
'/mnt/DATA/belen/MAGS_assembly/metawrap_refined_bins/metawrap_50_10_bins/*.fa
' \ 
-o dram_annotation/ \ 
--min_contig_size 2000 \ 
--gtdb_taxonomy 
/mnt/DATA/belen/MAGS_assembly/metawrap_refined_bins/refined_checkm2_gtdb220/g
tdbtk_summary_bac_arch.tsv \ 
--checkm_quality 
/mnt/DATA/belen/MAGS_assembly/refinded_checkm2/quality_report.tsv \ 
--threads 512 \ 
--verbose \ 
--kofam_use_dbcan2_thresholds \ 
--keep_tmp_dir 
 
cd /mnt/DATA/belen/MAGS_assembly/dram_annotation 
 
DRAM.py distill -i 
/mnt/DATA/belen/MAGS_assembly/dram_annotation/annotations.tsv -o 
genome_summaries --trna_path 
/mnt/DATA/belen/MAGS_assembly/dram_annotation/trnas.tsv --rrna_path 
/mnt/DATA/belen/MAGS_assembly/dram_annotation/rrnas.tsv 
 
####### 
## 8 ##  
####### 
 
################################ 
## RELATIVE ABUBDANCE OF MAGs ## 
################################ 
 
# In this step, quantification of the relative abundance of MAGs in each 
sample is performed using the Salmon tool.  
# The aim is to determine how many reads from each sample map to the 
different MAGs, which provides information on the relative abundance of the 
assembled genomes  
# in the different samples. 
 
conda activate metawrap 
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metawrap quant_bins2 -a /mnt/DATA/belen/MAGS_assembly/final.contigs.fa -o 
quantified_bins -t 240 -b 
/mnt/DATA/belen/MAGS_assembly/metawrap_refined_bins/metawrap_50_10_bins/ 
/mnt/DATA/belen/MAGS_assembly/binning_metawrap/work_files/*.bam 
 
############################# 
## MAGs ANALYSIS COMPLETED ## 
############################# 
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Annex 4: Complete pipeline of the metagenomic analysis carried out in Chapter 3. 
 
########################## 
## METAGENOMIC ANALYSIS ## 
########################## 
 
# Download function gdrive_download: 
function gdrive_download () { 
 CONFIRM=$(wget --quiet --save-cookies /tmp/cookies.txt  
--keep-session-cookies --no-check-certificate  
"https://docs.google.com/uc?export=download&id=$1" -O- | sed -rn  
's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p') 
 wget --load-cookies /tmp/cookies.txt  
"https://docs.google.com/uc?export=download&confirm=$CONFIRM&id=$1" -O $2 
 rm -rf /tmp/cookies.txt 
} 
 
# Installation of khmer: 
sudo yum install -y python3-devel gcc-c++ make 
conda create --name khmerEnv python=3.6 
 
# Open the terminal and activate the conda environment: 
conda activate base 
 
# Create a new conda environment for Khmer: 
conda create --name khmerEnv 
 
# Activate the conda environment 
conda install -c bioconda khmer 
 
####### 
## 1 ## 
####### 
 
###################### 
## QUALITY ANALYSIS ## 
###################### 
 
# A FastQC analysis is used to assess the quality of genomic sequencing data, 
such as those generated by platforms like Illumina. It evaluates base 
quality,  
# base composition, the presence of adapters, sequence duplication levels, 
read length distribution, and the overrepresentation of sequences. 
 
# Installation of FASTQC  
conda install -c bioconda fastqc 
 
# Quality analysis 
conda activate khmerEnv 
fastqc *.gz -o ~/metagenomic_analysis/1_FASTQC_RESULTS 
conda deactivate 
 
####### 
## 2 ## 
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####### 
 
################ 
## INTERLEAVE ## 
################ 
 
# Interleaving in metagenomics is the process of combining two paired-end 
read files into a single file. In this interleaved file,  
# the forward and reverse reads of each pair are arranged alternately (i.e., 
the forward read of the pair is followed by its corresponding reverse read).  
# Interleaving is primarily used to facilitate data processing by 
bioinformatics tools that require paired-end reads to be stored in a single 
file. 
 
# Unzip the fastq.gz in fastq 
for i in {1..32} 
do 
    gunzip -c ${i}_R1_001.fastq.gz > ${i}_R1_001.fastq 
    gunzip -c ${i}_R2_001.fastq.gz > ${i}_R2_001.fastq 
done 
 
# Interleaved 
for file in *_R1_001.fastq 
do 
   sample=${file%%_R1_001.fastq} 
   echo “interleave-reads.py ${sample}_R1_001.fastq ${sample}_R2_001.fastq -
or ${sample}.pe.fq” 
done > interleave.sh 
 
cat interleave.sh | parallel 
 
# Remove unnecessary files and organize them 
rm -rf *.fastq 
cd ... 
mkdir 2_INTERLEAVED 
cd 0_SAMPLES 
mv *.pe.fq ../2_INTERLEAVED 
cd ../2_INTERLEAVED 
 
####### 
## 3 ## 
####### 
 
############## 
## TRIMMING ## 
############## 
 
# Trimming refers to the process of cleaning up and preparing DNA, RNA or 
protein sequences by removing unwanted parts of the raw sequences  
# obtained by techniques such as next generation sequencing (NGS). 
 
gdrive_download 1G9G8XbGdOuajMzJGxdBq0dovF0oior_6 remove_adapters.py 
gdrive_download 1TasxvzYEym3iBxMe4k8nnKd2bCVnO_Us adapters.txt 
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for file in *.fq 
do 
   echo "python2.7 remove_adapters.py adapters.txt ${file} 1" 
done > trimm.sh 
 
cat trimm.sh | parallel 
 
mkdir 3_TRIMMED 
mv *.trim ./3_TRIMMED 
cd ./3_TRIMMED 
 
####### 
## 4 ## 
####### 
 
####################### 
## QUALITY FILTERING ## 
####################### 
 
# The purpose of this step is to remove low-quality reads from sequencing 
data,  
# thereby improving the reliability of downstream analyses such as assemblies 
or annotations.  
# This ensures that the reads used meet a minimum quality standard, reducing 
errors and artifacts in the final results. 
 
# The filtering process employs the following parameters: 
# -Q33: Specifies that the quality scores are encoded in the Phred+33 format, 
commonly used in Illumina sequencing platforms. 
# -q 30: Filters out reads where the average base quality is below 30, 
corresponding to high-quality bases. 
# -p 50: Retains only reads in which at least 50% of the bases meet or exceed 
the specified quality threshold. 
 
for file in *.pe.fq  
do 
  newfile=${file%%.pe.fq}    
  echo "fastq_quality_filter -i ${file} -Q33 -q 30 -p 50 -o 
${newfile}.pe.qc.fq" 
done > qual_filter.sh 
 
cat qual_filter.sh | parallel 
 
####### 
## 4 ## 
####### 
 
############################ 
## REMOVE SHORT SEQUENCES ##  
############################ 
 
# Download function gdrive_download: 
function gdrive_download () { 
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 CONFIRM=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-
cookies --no-check-certificate  
"https://docs.google.com/uc?export=download&id=$1" -O- | sed -rn 
's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p') 
 wget --load-cookies /tmp/cookies.txt 
"https://docs.google.com/uc?export=download&confirm=$CONFIRM&id=$1" -O $2 
 rm -rf /tmp/cookies.txt 
} 
 
# Downlowad filter_fastq_by_length.py script 
gdrive_download 1w-OyfdEuMi38utz4cN9g_ng-S9kNeOj9 filter_fastq_by_length.py 
 
# Remove short sequences 
for file in *pe.qc.fq 
do 
  echo "python2.7 filter_fastq_by_length.py ${file} ${file}.cut 50" 
done > remove_short.sh 
 
cat remove_short.sh | parallel 
 
####### 
## 5 ## 
####### 
 
####################################################### 
## EXTRACT PAIRED ENDS, RENAME FILES AND MERGE FILES ##  
####################################################### 
 
# In this step, paired-end sequence files are processed after quality 
cleaning. It includes three main steps: extracting paired reads,  
# removing unnecessary files, and renaming and organizing the output files to 
facilitate subsequent analysis. 
 
# Extracting paired-ends 
for file in *.pe.qc.fq.cut 
do 
   echo "extract-paired-reads.py ${file}" 
done > extract_command.sh 
 
cat extract_command.sh | parallel 
 
# Remove unnecessary files 
rm -rf *.tr.qc.fq.cut 
 
# Rename files and merging pe and se files 
for file in *.pe 
do 
   sample=${file%%.pe.qc.fq.cut.pe} 
   mv ${file} ${sample}.pe.qc.fq 
done 
 
for file in *.se 
do 
   sample=${file%%.pe.qc.fq.cut.se} 
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   mv ${file} ${sample}.se.qc.fq 
done 
 
####### 
## 6 ## 
####### 
 
############################## 
## PREPARATION FOR ASSEMBLY ## 
############################## 
 
# In this step, paired-end sequencing data are prepared for assembly. The 
script split-paired-reads.py is used to split each paired-end file 
(*.pe.qc.fq)  
# into two separate files: one containing the forward reads (R1) and the 
other containing the reverse reads (R2). This step is necessary for assembly 
tools  
# such as MEGAHIT, which require paired-end reads to be provided in 
individual files. 
 
for file in *.pe.qc.fq 
do 
   echo "split-paired-reads.py ${file}" 
done > split_command.sh 
 
cat split_command.sh | parallel 
 
####### 
## 7 ## 
####### 
 
############## 
## ASSEMBLY ## 
############## 
 
# The assembly step aims to combine sequencing reads (forward, reverse, and 
unpaired) to reconstruct complete or contiguous genomic sequences  
# from smaller fragments (reads). 
 
mkdir 4_FOR_ASSEMBLY 
 
# Create a file with all forward sequences 
cat *.1 > 4_FOR_ASSEMBLY/all.pe.qc.fq.1 
 
# Create a file with all reverse sequences 
cat *.2 > 4_FOR_ASSEMBLY/all.pe.qc.fq.2 
 
# Create a file with all unpaired sequences 
cat *.se.qc.fq > 4_FOR_ASSEMBLY/all.se.qc.fq 
 
# Assembly using MEGAHIT 
megahit -m 0.75 -t 120 -1 all.pe.qc.fq.1 -2 all.pe.qc.fq.2 -r all.se.qc.fq -o 
all.Megahit.assembly 
 



 

  209 
 
 

####### 
## 8 ## 
####### 
 
############################ 
## ASSEMBLY QUALITY CHECK ## 
############################ 
 
# In this step, MetaQUAST is used, a tool designed to assess the quality of 
genomic assemblies.  
# The command takes the final contigs generated by the MEGAHIT assembly 
(final.contigs.fa) as input. Several evaluation options are specified:  
# --rna-finding identifies potential RNA regions.  
# --conserved-genes-finding searches for conserved genes  
# --max-ref-number 20 limits the maximum number of references for comparison.  
 
# This analysis allows for the verification of the assembly's quality and 
integrity. 
 
conda activate quast 
 
# Assembly quality check 
metaquast 
/mnt/DATA/belen/4_FOR_ASSEMBLY/all.Megahit.assembly/final.contigs.fa -t 120 -
-rna-finding --conserved-genes-finding --max-ref-number 20 
 
# This is the quality report of the samples: 
 
# contigs  5259264 
# contigs (>= 0 bp) 12175284 
# contigs (>= 1000 bp) 1377527 
# contigs (>= 5000 bp) 46151 
# contigs (>= 10000 bp) 10406 
# contigs (>= 25000 bp) 1303 
# contigs (>= 50000 bp) 229 
# Largest contig 213010 
# Total length 5241019665 
# Total length (>= 0 bp) 7719201062 
# Total length (>= 1000 bp) 2613105109 
# Total length (>= 5000 bp) 417454729 
# Total length (>= 10000 bp) 180508676 
# Total length (>= 25000 bp) 52451342 
# Total length (>= 50000 bp) 16828383 
# N50 997 
# N90 566 
# auN 2360.7 
# L50 1384946 
# L90 4272456 
# GC (%) ... 
 
####### 
## 9 ## 
####### 
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####################### 
## GENECALLING - FGS ## 
####################### 
 
# FragGeneScan is a program used to predict genes in DNA sequences.  
# The main objective of FragGeneScan is to identify coding sequences (CDS) in 
DNA sequences that may be fragmented or incomplete.  
 
mkdir 5_FGS 
cd 5_FGS 
 
# Link creation 
ln -s 
/home/kdanielmorais/bioinformatics/tools/fraggenescan/FragGeneScan1.31/train/ 
./ 
 
# FragGeneScan 
FragGeneScan -s 
~/metagenomic_analysis_chapter_4/4_FOR_ASSEMBLY/all.Megahit.assembly/final.co
ntigs.fa -w 1 -o belen_MG_Megahit_genecalling_fgs -t complete -p 120 
 
######## 
## 10 ## 
######## 
 
############# 
## MAPPING ## 
############# 
 
# Mapping is a key step in metagenomic analysis. It consists of mapping the 
DNA or RNA sequences obtained from the sample to a reference database,  
# usually a database of known sequences. 
 
# In this analysis, sequencing reads were mapped against a reference 
assembly. The process involved several steps,  
# starting with the preparation of the reference and culminating in the 
generation of alignment statistics.  
# First, an index was created for the reference contigs file 
(final.contigs.fa) using Bowtie2, optimizing the alignment process.  
# Next, paired-end (.pe.qc.fq) and unpaired (.se.qc.fq) reads were combined 
into a single file for each sample to facilitate joint mapping.  
# The combined reads were then aligned against the reference using Bowtie2, 
producing alignment files in SAM format,  
# which were subsequently converted to compressed BAM format using Samtools.  
# Mapped and unmapped reads were counted to assess the quality and efficiency 
of the alignment. BAM files were sorted by reference position,  
# indexed, and finally, statistics on read distribution across contigs were 
generated. 
 
REF=final.contigs.fa 
reference=${REF%%.fa} 
echo "reference is" ${reference} 
mkdir ${reference}_build 
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bowtie2-build 
~/metagenomic_analysis/4_FOR_ASSEMBLY/all.Megahit.assembly/${REF} 
${reference}_build/${reference}.build 
 
conda activate khmerEnv 
 
for file in *.pe.qc.fq 
do 
 sample=${file%%.pe.qc.fq} 
 cat ${sample}.pe.qc.fq ${sample}.se.qc.fq > 
~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/${sample}.all.qc.fq 
 echo "processing ${sample}...}" 
 
 bowtie2 -p 70 -x 
~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/final.contigs_build/final.c
ontigs.build -q 
~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/${sample}.all.qc.fq -S 
~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/${sample}.sam  
 echo "sam file is done..." 
  
 rm -rf ~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/${sample}.all.qc.fq 
 
 samtools view -Sb 
~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/${sample}.sam > 
~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/${sample}.bam 
 echo "bam file is done..." 
 
 rm -rf ~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/${sample}.sam 
 
 samtools view -c -f 4 
~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/${sample}.bam > 
~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/${sample}.reads-
unmapped.count.txt 
 echo "unmapped reads info done..." 
 
 samtools view -c -F 4 
~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/${sample}.bam > 
~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/${sample}.reads-
mapped.count.txt 
 echo "mapped reads info done..." 
 
 samtools sort -o 
~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/${sample}.sorted.bam 
~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/${sample}.bam 
 echo "bam file was sorted..." 
 
 rm -rf ~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/${sample}.bam 
 
 samtools index 
~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/${sample}.sorted.bam 
 echo "soerted bam file was indexed..." 
 
 samtools idxstats 
~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/${sample}.sorted.bam > 
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~/metagenomic_analysis_chapter_4/6_SAMPLE_MAPPING/${sample}.reads.by.contigs.
txt 
 
 echo "${sample} is done..." 
done 
 
# Download count-up-mapped-from-results-txt-with-ctg-length.py script 
gdrive_download 1HDB2EF-pq-EJxQxsI1uv1-iVjTl6tAlo count-up-mapped-from-
results-txt-with-ctg-length.py 
 
python2.7 count-up-mapped-from-results-txt-with-ctg-length.py 
*.reads.by.contigs.txt 
 
# Validate the consistency between the assembled contigs and the data 
generated from the mapping 
wc -l summary-count-mapped.tsv 
12175286 summary-count-mapped.tsv 
 
grep '>' /mnt/DATA/belen/4_FOR_ASSEMBLY/all.Megahit.assembly/final.contigs.fa 
| wc -l 
12175284 
 
# Coverage is a key metric in genomics, as it indicates how many times a 
genomic region has been sequenced,  
# providing insights into the reliability of the assembly and the relative 
abundance of the contigs.  
# The purpose of this step is to generate a coverage file that associates 
each assembled contig with its average coverage. 
 
# Download function gdrive_download: 
function gdrive_download () { 
 CONFIRM=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-
cookies --no-check-certificate 
"https://docs.google.com/uc?export=download&id=$1" -O- | sed -rn 
's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p') 
 wget --load-cookies /tmp/cookies.txt 
"https://docs.google.com/uc?export=download&confirm=$CONFIRM&id=$1" -O $2 
 rm -rf /tmp/cookies.txt 
} 
 
# Download get_assembly_coverage.py script 
gdrive_download 1S2AQHd2YIjnxZz2kIa2avo1RSAuj-pWT get_assembly_coverage.py 
 
# Obtain coverage of our data 
python get_assembly_coverage.py summary-count-mapped.tsv 151 
belen_MG_Megahit_assembly_DN_coverage.txt 
 
######## 
## 11 ## 
########  
 
###################################### 
## NORMALISE MAPPING TABLE PER BASE ## 
###################################### 
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# In this step, the aim is to normalize the mapping table to adjust coverage 
based on the length of sequencing reads and contigs.  
# The script normalize-mapping-table-by-read-length-and-ctg-length.py takes 
as input the mapping count file (summary-count-mapped.tsv) and the average 
read length  
# (in this case, 151 bases). It generates an output file 
(TABLE_normalised.txt) where the mapping values are adjusted to provide a 
more accurate comparative  
# measure of relative coverage, regardless of differences in contig or read 
lengths.  
# This procedure is essential to correct potential biases arising from 
variations in lengths and allows for fair comparisons between different 
contigs or  
# genomic regions. 
 
# Download normalize-mapping-table-by-read-length-and-ctg-length.py script 
gdrive_download 1w0bfttjXFZ64NHD8bP7UDaQcS1yd20qR normalize-mapping-table-by-
read-length-and-ctg-length.py 
 
python2.7 normalize-mapping-table-by-read-length-and-ctg-length.py summary-
count-mapped.tsv 151 TABLE_normalised.txt 
 
# In this step, an additional normalization is performed on the previously 
normalized table to adjust coverage values based on a predefined scale by 
columns.  
# The script normalize_table_by_columns.py takes the previously generated 
file (TABLE_normalised.txt) as input, selects a specific column (in this 
case, column 2),  
# and applies a normalization factor (1,000,000) to scale the values per 
sample. The output is saved in a file named TABLE_normalised_per_sample.txt. 
 
# Download normalize_table_by_columns.py script 
gdrive_download 1c_fD520xtrCNlUIq9VqqqSvY2OryMXTU 
normalize_table_by_columns.py 
 
python2.7 normalize_table_by_columns.py TABLE_normalised.txt 2 1000000 
TABLE_normalised_per_sample.txt 
 
######## 
## 12 ## 
######## 
 
################ 
## ANNOTATION ##  
################ 
 
# Functional and taxonomic annotation are processes used to characterize 
genetic sequences by assigning biological information and classification.  
# - Functional annotation involves identifying the roles or functions of 
genes and proteins, such as their involvement in specific pathways, cellular 
processes,  
# or molecular interactions.  
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# - Taxonomic annotation, on the other hand, assigns sequences to their 
corresponding organisms or taxonomic groups,  
# providing insights into the evolutionary and ecological context of the 
data.  
# Together, these annotations allow researchers to understand both the 
biological role and the origin of the sequences,  
# which is critical in fields such as genomics, metagenomics, and molecular 
biology. 
 
# In this step, gene annotation tasks are performed by integrating alignment 
results with fungal protein and NCBI databases.  
# First, sample information and genomic sequence data are prepared and 
organized.  
# Then, these sequences are aligned with fungal proteins and NCBI proteins to 
obtain the best matches.  
# Subsequently, taxonomic information is added to the alignment results 
through the download and processing of taxonomy files.  
# The results are formatted, taxonomy tables are combined, and the best 
matches are selected based on bit score among the annotations.  
# Finally, a table is generated containing taxonomic data and KOG functions 
of the annotated proteins, completing the annotation and classification 
process. 
 
cd .. 
mkdir 8_ANNOTATION 
cp ./7_NORMALISE_MAPPING/TABLE_normalised_per_sample.txt ./8_ANNOTATION/ 
cd ./8_ANNOTATION 
 
# Download contig_mapping_to_genecall_mapping.py script 
gdrive_download 1DakO7roc9C2GJ-SkZuy8AZKTV3QHan14 
contig_mapping_to_genecall_mapping.py 
 
python2.7 contig_mapping_to_genecall_mapping.py 
~/metagenomic_analysis_chapter_4/5_FGS/belen_MG_Megahit_genecalling_fgs.faa 
TABLE_normalised_per_sample.txt 
 
# Add “#” to the name of the samples: 
head -1 TABLE_normalised_per_sample.txt_genecall.txt| awk -F'\t' '{printf 
$1"\t"$2 ;for(i=3; i<=NF; ++i) printf "\t%s", "#"$i }' |  awk -F '\t' '{print 
$0}' > header.txt 
 
tail -n +2  TABLE_normalised_per_sample.txt_genecall.txt > table.txt 
 
cat header.txt table.txt > TABLE_NORM_SAMPLES_GENECALL.txt 
 
##################################### 
## JGI FUNGAL PROTEINS - BIOCEV PC ##   
##################################### 
 
cd /mnt/DATA/DATABASES/FUNGAL_PROTEINS_JGI/ 
cp JGI_FUNGAL_PROTEINS_ANNOTATED_20210312.faa.zip 
/mnt/DATA/belen/8_ANNOTATION/ 
cd /mnt/DATA/belen/8_ANNOTATION/ 
unzip JGI_FUNGAL_PROTEINS_ANNOTATED_20210312.faa.zip 
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diamond blastp -d 
~/metagenomic_analysis_chapter_4/8_ANNOTATION/JGI_FUNGAL_PROTEINS_ANNOTATED_2
0210312.faa -q 
~/metagenomic_analysis_chapter_4/5_FGS/belen_MG_Megahit_genecalling_fgs.faa -
e 1E-5 -o genecalling_JGI_FUN_20210312.txt -f 6 -p 120 -b12 -c1 
 
########################################################### 
## Total time = 1406.2s                                  ## 
## Reported 72585274 pairwise alignments, 72585274 HSPs  ## 
## 4541138 queries aligned.                              ## 
########################################################### 
 
export LANG=en_US.UTF-8 
export LC_ALL=en_US.UTF-8 
 
sort -t$'\t' -k1,1 -k12,12gr -k11,11g -k3,3gr 
genecalling_JGI_FUN_20210312.txt | sort -u -k1,1 --merge > 
genecalling_JGI_FUN_20210312_best.txt 
 
# GENERA DEFINED 
diamond blastp -d 
/mnt/DATA/DATABASES/NCBI_nr_DIAMOND/NCBI_nr_20210225_diamond_GENERA -q 
/mnt/DATA/belen/metagenomic_analysis_chapter_4/5_FGS/belen_MG_Megahit_genecal
ling_fgs.faa -e 1E-5 -o belen_MG_genecalling_NCBI_nr_PROTEINS_GENERA.txt -f 6 
-p 120 -b12 -c1 
 
############################################################# 
## Total time = 57412.9s                                   ## 
## Reported 280564387 pairwise alignments, 280564387 HSPs. ## 
## 12605946 queries aligned.                               ## 
############################################################# 
 
export LANG=en_US.UTF-8 
export LC_ALL=en_US.UTF-8 
sort -t$'\t' -k1,1 -k12,12gr -k11,11g -k3,3gr 
belen_MG_genecalling_NCBI_nr_PROTEINS_GENERA.txt | sort -u -k1,1 --merge > 
genecalling_NCBI_nr_PROTEINS_best.txt 
 
#  ADD TAXONOMY TO BLAST RESULTS 
 
function gdrive_download () { 
 CONFIRM=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-
cookies --no-check-certificate 
"https://docs.google.com/uc?export=download&id=$1" -O- | sed -rn 
's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p') 
 wget --load-cookies /tmp/cookies.txt 
"https://docs.google.com/uc?export=download&confirm=$CONFIRM&id=$1" -O $2 
 rm -rf /tmp/cookies.txt 
} 
 
# Download jgi_abr_org_list.txt 
gdrive_download 12c28kgIw4mPBIhQutNGladdAXwNLtvlR jgi_abr_org_list.txt 
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# Download replace_fungal_annot_by_taxname.py script 
gdrive_download 1XBTtiC1JYl2rzeV7idN2WrveEZknmnQi 
replace_fungal_annot_by_taxname.py 
 
python2.7 replace_fungal_annot_by_taxname.py 
genecalling_JGI_FUN_20210312_best.txt jgi_abr_org_list.txt 
genecalling_JGI_FUNGAL_PROTEINS_best_reformate.txt 
 
# FUNGAL 
awk -F'\t' '{print $2}' genecalling_JGI_FUNGAL_PROTEINS_best_reformate.txt | 
sort | uniq > FUNGAL_NAMES.txt 
 
# NCBI 
awk -F'\t' '{print $2}' genecalling_NCBI_nr_PROTEINS_best.txt | sort | uniq > 
ALL_ACCESSIONS.txt 
 
# Download get_taxonomy_offline.py script 
gdrive_download 1o8KmSbwzOsjjeouK3dR0RNmWkMjdfFow get_taxonomy_offline.py 
 
python2.7 get_taxonomy_offline.py ALL_ACCESSIONS.txt 
/mnt/DATA/DATABASES/NCBI_nr_DIAMOND/ACC2TAXID_nr_current.txt 
/mnt/DATA/DATABASES/NCBI_nr_DIAMOND/TAXONOMY_TAXID_ALL_fixed.txt 
taxa_all_accessions.txt  
 
######################################################################## 
## accession list loaded...(4106547)                                  ## 
## taxonomy loaded...(907158)                                         ## 
## taxonomy retrieved... 4106547 vs acc (4106547) - should be equal!  ## 
## Done :]                                                            ## 
######################################################################## 
 
# REFORMAT 
 
# Download replace_acc_by_sp_from_taxonomy.py script 
gdrive_download 1jQ3F3ZuA0sBJVy3eJiRhwAaxh31LKqSF 
replace_acc_by_sp_from_taxonomy.py 
 
python2.7 replace_acc_by_sp_from_taxonomy.py 
genecalling_NCBI_nr_PROTEINS_best.txt taxa_all_accessions.txt 
genecalling_NCBI_nr_PROTEINS_best_reformat.txt 
 
###################################################### 
## number of taxa: 4106547 (4106547)                ## 
## DONE :) Processed blast: 12605946 - NOT FOUND 0  ## 
###################################################### 
 
# COMBINE TAXONOMY TABLES 
 
# Download JGI_TAXA_TAB_2021.txt 
gdrive_download 1VtSyy7OutKZ6fAZMTYY2HkZUDNcpfY6V JGI_TAXA_TAB_2021.txt 
 
# Download combine_taxonomy_tables.py script 
gdrive_download 1F5p28LpaHrSYWwNI_82V9eHoKIb63y8G combine_taxonomy_tables.py 
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python2.7 combine_taxonomy_tables.py FUNGAL_NAMES.txt JGI_TAXA_TAB_2021.txt 
taxa_all_accessions.txt TAX_TAB.tab  
 
######################################################################## 
## names loaded...                                                    ##               
## FUNGAL TAXONOMY PROCESSED - NOT FOUND 0 vs. FOUND 1498             ## 
## OTHER TAXONOMY PROCESSED - REDUCING TO 34416 vs. ORIGINAL 4106548  ## 
## DONE :)                                                            ## 
######################################################################## 
 
# Download get_best_hit_by_bitscore_multi.py script 
gdrive_download 1-3XE5Le8I1_HzQdWbaAHev4ZlrSs6lUi 
get_best_hit_by_bitscore_multi.py 
 
python2.7 get_best_hit_by_bitscore_multi.py 
genecalling_NCBI_nr_PROTEINS_best_reformat.txt 
genecalling_JGI_FUNGAL_PROTEINS_best_reformate.txt 
 
#############################################################################
## 
## FILE: genecalling_NCBI_nr_PROTEINS_best_reformat.txt - HITS: 12605946     
## 
## NEW ANNOTATIONS: 12605946 - REPLACED: 0 - CURRENT BEST HITS: 12605946     
## 
##                                                                           
## 
## FILE: genecalling_JGI_FUNGAL_PROTEINS_best_reformate.txt - HITS: 4541138  
## 
## NEW ANNOTATIONS: 1400 - REPLACED: 7597 - CURRENT BEST HITS: 12607346      
## 
##                                                                           
## 
## done :)                                                                   
## 
#############################################################################
## 
 
awk -F'\t' '{print $2}' best_of_the_blast.txt | sort | uniq > 
ALL_TAXA_NAMES.txt 
 
# Download get_taxonomy_basedonnames.py script 
gdrive_download 1XruvN2qGN2-dUHZNSn0jXOYmUxoJ3Uz0 
get_taxonomy_basedonnames.py 
 
python2.7 get_taxonomy_basedonnames.py ALL_TAXA_NAMES.txt TAX_TAB.tab 
TAX_TAB_FINAL.tab  
 
####################################################### 
## names loaded...                                   ## 
## TAXONOMY PROCESSED - NOT FOUND 0 vs. FOUND 35600  ## 
## DONE :)                                           ## 
####################################################### 
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awk -F'\t' '{print $1"\t"$12"\t"$2""}' best_of_the_blast.txt > 
TAXONOMY_BEST_OF_SIMPLE.txt 
 
# KOGG FROM JGI-MYCO-GENOMES 
 
awk -F'[|\t]' '{print $1"\t"$15"\t["$5"]"}' 
genecalling_JGI_FUN_20210312_best.txt > FUNCTION_JGI_KOG_SIMPLE.txt 
 
######## 
## 13 ## 
######## 
 
############## 
## SPLIT IT ## 
############## 
 
# The annotated genomic sequences in the FASTA file are divided into smaller 
groups.  
# This is performed using a script that fragments the file 
belen_MG_Megahit_genecalling_fgs.faa into defined-sized parts (in this case, 
83,000 sequences per group).  
# This segmentation facilitates the management and processing of large 
volumes of genomic data. 
 
# Download split_fasta_by_group_size.py script  
gdrive_download 1mGbdx3OBumymosW24WaYfZT9nq_a1z1z 
split_fasta_by_group_size.py 
 
python2.7 split_fasta_by_group_size.py 
/mnt/DATA/belen/metagenomic_analysis_chapter_4/5_FGS/belen_MG_Megahit_genecal
ling_fgs.faa 83000 
 
cd .. 
mkdir 9_SPLIT  
cd ./8_ANNOTATION 
mv *.fas ../9_SPLIT 
cd ../9_SPLIT/ 
 
######## 
## 14 ##  
######## 
 
###################### 
## dbCAN ANNOTATION ## 
###################### 
 
# In this step, the annotation of CAZy (Carbohydrate-Active Enzymes) is 
performed using the local dbCAN database.  
# First, the FASTA files are processed with the script run_dbcan.py, which 
searches for Hidden Markov Model (HMM) profiles within the local dbCAN 
database.  
# The analysis is executed in parallel to optimize processing. The results 
are consolidated into a single file (all_dbCAN.txt),  
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# from which the best matches are selected based on e-value to generate a 
filtered file (all_dbCAN_best.txt).  
# Finally, unique gene names are extracted, and a simplified table 
(CAZy_BEST_SIMPLE.txt) is created,  
# containing the best annotations and identifying carbohydrate-active enzymes 
present in the samples. 
 
# dbCAN local database 
conda activate run_dbcan 
 
for file in *.fas 
do 
 sample=${file%%.fas} 
 mkdir ${sample} 
done 
 
for file in *.fas 
do 
  sample=${file%%.fas} 
  echo "run_dbcan.py ${file} protein --db_dir 
/mnt/DATA/DATABASES/run_dbcan_master/db/ -t hmmer --out_dir ${sample} --
hmm_cpu 1 --dia_cpu 1" 
done > dbcan.sh 
 
cat dbcan.sh | parallel 
 
echo "" > all_dbCAN.txt 
for file in *.fas 
do 
 sample=${file%%.fas} 
 wc -l ${sample}/hmmer.out 
 cat ${sample}/hmmer.out >> all_dbCAN.txt 
done 
 
# dbCAN annotation 
export LC_ALL=en_US.UTF-8 
export LANG=en_US.UTF-8 
 
sort -t$'\t' -k3,3 -k5,5g all_dbCAN.txt | sort -u -k3,3 --merge > 
all_dbCAN_best.txt 
 
awk -F'[.\t]' '{print $1}' all_dbCAN_best.txt | sort | uniq > 
hmm_names_uniq.txt 
 
awk -F'[.\t]' '{print $1}' all_dbCAN_best.txt > hmm_names.txt 
 
awk -F'\t' '{print $3"\t"$5}' all_dbCAN_best.txt > 
all_dbCAN_best_gene_eval.txt 
 
paste -d"\t" all_dbCAN_best_gene_eval.txt hmm_names.txt > 
CAZy_BEST_SIMPLE.txt 
 
######## 
## 15 ## 
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######## 
 
################# 
## KOFAM - KOs ## 
################# 
 
# In this step, functional annotation is performed using the KOfam database, 
which assigns KEGG Orthology (KO) functions to genes based on HMM profiles.  
# The workflow begins by organizing directories for results (ko_tbl) and 
temporary files (tmp).  
# The hmmsearch tool is then used to compare KOfam HMM profiles against 
genomic FASTA sequences, with tasks executed in parallel for efficiency.  
# All results are merged into a single file (KOFAM_all.out.txt). 
# A Python script is then used to filter the results based on predefined 
thresholds and e-values,  
# producing a final table (hmmsearch_KOFAM_multi_best.txt) containing the 
most reliable functional annotations, linking genes to their corresponding 
biological roles. 
 
mkdir ko_tbl 
mkdir tmp 
 
for i in /mnt/DATA1/priscila/kofamKOALA/db/profiles/*.hmm 
do 
  file=${i##*/} 
  ko=${file%%.hmm} 
  echo "hmmsearch --tblout ko_tbl/${ko}.out.txt --noali --cpu 1 -E 1e-5 ${i} 
~/metagenomic_analysis_chapter_4/5_FGS/belen_MG_Megahit_genecalling_fgs.faa 
>/dev/null 2>&1" 
done > hmmsearch_kofam.sh 
 
cat hmmsearch_kofam.sh | parallel -j 70 --tmpdir tmp 
 
cat ko_tbl/*.out.txt > KOFAM_all.out.txt 
 
python2.7 kegg_multi_from_kofamkoala_raw_filterby_thresholds_evalues.py 
KOFAM_all.out.txt /mnt/DATA1/priscila/kofamKOALA/db/ko_list 
hmmsearch_KOFAM_multi_best.txt 
 
######## 
## 16 ##  
######## 
 
######################### 
## KEGG AND dbCAN tree ## 
######################### 
 
# In this step, the KEGG ontology tree is generated and filtered for unique 
KOs (KEGG Orthologies) based on the functional annotations from the previous 
step.  
# First, a script is used to extract unique KOs from the KEGG annotations 
(KO_UNIQUE_from_KO_simple.py).  
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# Then, the KEGG ontology table (kegg_tab.txt) is processed to retain only 
the KOs present in the data, creating a subtable with relevant KOs 
(KOFAM_KOs_tree.tab). 
 
# Similarly, a tree for CAZy (Carbohydrate-Active Enzymes) is generated.  
# Unique CAZy identifiers are extracted from the annotations and a script 
(get_CAZy_tree.py) is used to create a CAZy-specific ontology tree 
(CAZy_tree.tab), 
# which provides a structured representation of the identified carbohydrate-
active enzymes in the data. 
 
# Download kegg_tab.txt 
gdrive_download 11CVgwqy6O2mJ5rc4vxevYQVp04oJrQsl kegg_tab.txt 
 
# Download GET_KEGG_ontology_subtable.py script 
gdrive_download 1AmOiMqLHE8nberbvYEDPT12JShAfSW_w 
GET_KEGG_ontology_subtable.py 
 
# Download KO_UNIQUE_from_KO_simple.py 
gdrive_download 1aqENUDPh3dCoxnO8YfBZaUjwwxkmlMM1 KO_UNIQUE_from_KO_simple.py 
 
python2.7 KO_UNIQUE_from_KO_simple.py hmmsearch_KOFAM_multi_best.txt 
 
python2.7 GET_KEGG_ontology_subtable.py kegg_tab.txt 
hmmsearch_KOFAM_multi_best.txt.unique.txt KOFAM_KOs_tree.tab 
 
awk -F'\t' '{print $3}' 
~/metagenomic_analysis_chapter_4/9_SPLIT/CAZy_BEST_SIMPLE.txt | sort | uniq > 
CAZy_BEST_unique.txt 
 
# Download get_CAZy_tree.py script 
gdrive_download 1SGVK2cqWCLozEPGNLvPRs0YG-ckrF_CZ get_CAZy_tree.py 
 
python2.7 get_CAZy_tree.py CAZy_BEST_unique.txt CAZy_tree.tab 
 
######## 
## 17 ## 
######## 
 
############################## 
## LINK ANNOTATION TO TABLE ## 
############################## 
 
# In this step, the annotation results are linked to the sample table, 
integrating multiple sources of functional and taxonomic data.  
# We obtain the final tables of the metagenomic analysis, where we can 
appreciate the abundance of each sample, the taxonomy and associated 
functionality.  
 
# Download link_simple_table_to_mapping_table.py script 
gdrive_download 198TDGsV1cBfLEZorb5znFHysG47XEj5t 
link_simple_table_to_mapping_table.py 
 
cd ../8_ANNOTATION/ 
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mv TABLE_NORM_SAMPLES_GENECALL.txt ~/metagenomic_analysis/9_SPLIT/ 
cp TAXONOMY_BEST_OF_SIMPLE.txt ~/metagenomic_analysis/belen/9_SPLIT/ 
cd ../9_SPLIT 
 
TABLE="~/metagenomic_analysis_chapter_4/9_SPLIT/TABLE_NORM_SAMPLES_GENECALL.t
xt" 
 
echo "${TABLE}" 
 
TABLE_BASE=${TABLE%%.${TABLE##*.}} 
 
echo "${TABLE_BASE}" 
 
python2.7 link_simple_table_to_mapping_table.py ${TABLE} 
TAXONOMY_BEST_OF_SIMPLE.txt TAX_BEST bitscore ${TABLE_BASE}_TAX.txt 
 
python2.7 link_simple_table_to_mapping_table.py ${TABLE_BASE}_TAX.txt 
CAZy_BEST_SIMPLE.txt CAZy e-val ${TABLE_BASE}_TAX_CAZy.txt 
 
python2.7 link_simple_table_to_mapping_table.py ${TABLE_BASE}_TAX_CAZy.txt 
../8_ANNOTATION/FUNCTION_JGI_KOG_SIMPLE.txt KOG e-val 
${TABLE_BASE}_TAX_CAZy_KOG.tab 
 
python2.7 link_simple_table_to_mapping_table.py 
${TABLE_BASE}_TAX_CAZy_KOG.tab hmmsearch_KOFAM_multi_best.txt KEGG e-val 
${TABLE_BASE}_TAX_CAZy_KOG_KEGG.tab 
 
cd ../8_ANNOTATION/ 
cp TAX_TAB_FINAL.tab ../9_SPLIT/ 
cd ../9_SPLIT 
 
# Download add_higher_taxonomy.py script 
gdrive_download 1AWuqqPaP2rUMpF_uMHOGEs8aE3Iy7JS2 add_higher_taxonomy.py 
 
python2.7 add_higher_taxonomy.py ${TABLE_BASE}_TAX_CAZy_KOG_KEGG.tab 
TAX_TAB_FINAL.tab TAX_BEST ${TABLE_BASE}_TAX2_CAZy_KOG_KEGG.tab 
TAX_tree_genus.tab 
 
cd .. 
mkdir 10_FINAL_TABLES 
cp ./9_SPLIT/CAZy_tree.tab ./10_FINAL_TABLES 
cp ./9_SPLIT/TABLE_NORM_SAMPLES_GENECALL_TAX_CAZy_KOG_KEGG.tab 
./10_FINAL_TABLES 
cp ./9_SPLIT/TAX_TAB_FINAL.tab ./10_FINAL_TABLES 
cp ./9_SPLIT/TABLE_NORM_SAMPLES_GENECALL_TAX2_CAZy_KOG_KEGG.tab 
./10_FINAL_TABLES 
 
######################## 
## ANALYSIS COMPLETED ## 
######################## 
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Annex 5: Scripts used in the metagenomic analysis of Chapter 3. 
 
->filter_fastq_by_length.py 
 
import sys 
 
FASTQ_file = sys.argv[1] 
OUT_file = sys.argv[2] 
length = int(sys.argv[3]) 
 
r1_0 = '' 
r1_1 = '' 
r1_2 = '' 
r1_3 = '' 
filled = False 
open(OUT_file, "w") 
 
def save_by_tag(r1_0,r1_1,r1_2,r1_3,length): 
    max_len = len(r1_1) 
    if length <= max_len: 
        with open(OUT_file, "a") as OUTfile: 
            OUTfile.write('%s\n' % r1_0) 
            OUTfile.write('%s\n' % r1_1) 
            OUTfile.write('%s\n' % r1_2) 
            OUTfile.write('%s\n' % r1_3) 
            OUTfile.close() 
    return; 
 
for n, line in enumerate(open(FASTQ_file)): 
    if n % 40000 == 0: 
        print n / 4 
    if n % 4 == 0: 
        r1_0 = line.rstrip() 
        #print "line1 %s" % line1 
        #print "line2 %s" % line2 
    else: 
        if n % 4 == 1: 
            r1_1 = line.rstrip() 
        if n % 4 == 2: 
            r1_2 = line.rstrip() 
        if n % 4 == 3: 
            r1_3 = line.rstrip() 
            filled = True 
 
    if filled: 
        save_by_tag(r1_0,r1_1,r1_2,r1_3,length) 
        filled = False 
 
print "Done." 
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->count-up-mapped-from-results-txt-with-ctg-length.py 
 
import sys 
 
d_gene = {} 
 
for f in sys.argv[1:]: 
    for line in open(f): 
        ch = line[0] 
        if ch != '@': 
            mg_id = f.split('.txt')[0] 
            gene_name = line.rstrip().split('\t')[0] 
            gene_length = line.rstrip().split('\t')[1] 
            gene = gene_name+"\t"+gene_length 
            count = int(line.rstrip().split('\t')[2]) #mapped 
            #count = int(dat[3]) #unmapped 
 
            if d_gene.has_key(gene): 
                d_gene[gene][mg_id] = count 
            else: 
                d_gene[gene] = {} 
                d_gene[gene][mg_id] = count 
 
fp = open('summary-count-mapped.tsv', 'w') 
 
sorted_samples = sys.argv[1:] 
 
fp.write('ctg_name\tctg_length') 
 
for x in sorted_samples: 
    fp.write('\t%s' % x.split('.')[0]) 
 
fp.write('\n') 
 
for gene in d_gene: 
    fp.write('%s\t' % gene) 
    for x in sorted_samples: 
        x1 = x.split('.txt')[0] 
        if d_gene[gene].has_key(x1): 
            fp.write('%s\t' % d_gene[gene][x1]) 
        else: 
            fp.write('0\t') 
    fp.write('\n') 
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->get_assembly_coverage.py 
 
import sys 
import os 
 
summary = sys.argv[1] 
seqlen = int(sys.argv[2]) 
ass_cov_file = sys.argv[3] 
 
min_cov = 10000.0 
 
fp = open(ass_cov_file, 'w') 
fp.write('ID\tAvg_fold\n') 
for n, line in enumerate(open(summary)): 
    if n > 0: 
        dat = line.rstrip().split('\t') 
        i = 0 
        sum = 0 
        len = 0 
        for x in dat: 
            #print('x '+str(i)+' '+x) 
            if i==1: 
                len = int(x) 
                if len == 0: 
                    break 
            if i>1: 
                sum += int(x) 
            i += 1 
        #print('cover '+str(cov)) 
        if len > 0: 
            cov = (sum * seqlen) / float(len) 
            if cov < min_cov: 
                min_cov = cov 
            fp.write(dat[0]+'\t'+str(cov)+'\n') 
        else: 
            print('len == 0 for '+dat[0]) 
fp.close() 
 
print('done :] min cov '+str(min_cov)) 
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->normalize-mapping-table-by-read-length-and-ctg-length.py 
 
import sys 
 
in_file = sys.argv[1] 
read_size = int(sys.argv[2]) 
out_file = sys.argv[3] 
 
fp = open(out_file, 'w') 
for n, line in enumerate(open(in_file)): 
    if n>0: 
        gene_name = line.rstrip().split('\t')[0] 
        gene_length = int(line.rstrip().split('\t')[1]) 
        if gene_length>0: 
            new_line = gene_name+'\t'+line.rstrip().split('\t')[1] 
            for x in range(2, len(line.rstrip().split('\t'))): 
                reads_count = float(line.rstrip().split('\t')[x]) 
                norm_val = (read_size * reads_count)/gene_length 
                #print gene_name+" "+str(x)+"   
"+line.rstrip().split('\t')[x]+"   %.5f" %(norm_val) 
                new_line = new_line +'\t'+ str(norm_val) 
            fp.write('%s\n' % new_line) 
        else: 
            print "WARNING: gene length is 0 bp - "+gene_name 
    else: 
        fp.write('%s\n' % line.rstrip()) 
print "done..." 
fp.close() 
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->normalize_table_by_columns.py 
 
import sys 
 
table_file = sys.argv[1] 
fixed_columns = int(sys.argv[2])    #2    1)ctg_name 2)ctg_length 
multi_const = int(sys.argv[3])      #100  for % 
out_file = sys.argv[4] 
 

#get col sums.... 
sums = [] 
for n, line in enumerate(open(table_file)): 
    if n ==0: 
        i=0 
        vals = line.strip().split("\t") 
        for val in vals: 
            if i>=fixed_columns: 
                #print str(i-fixed_columns) 
                sums.append(0)#[i-fixed_columns]=0 
            i=i+1 
    else: 
        i=0 
        vals = line.strip().split("\t") 
        for val in vals: 
            if i>=fixed_columns: 
                sums[i-fixed_columns]=sums[i-fixed_columns]+float(val) 
            i=i+1 
 
#show sums... 
for sum in sums: 
    print str(sum) 
#normalise table and save... 
fp = open(out_file, 'w') 
header = "" 
for n, line in enumerate(open(table_file)): 
    if n ==0: 
        fp.write(line.strip()+"\n") 
    else: 
        vals = line.strip().split("\t") 
        new_line = '' 
        i=0 
        for val in vals: 
            if (i>=fixed_columns)and(sums[i-fixed_columns]>0): 
                new_line = new_line+str(float(val)/sums[i-
fixed_columns]*multi_const)+"\t" 
            else: 
                new_line = new_line+val+"\t" 
            i=i+1 
        fp.write(new_line.strip()+"\n") 
fp.close() 
 
print "Done :)" 
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->contig_mapping_to_genecall_mapping.py 
 
import sys 
import os 
 
gene_call_fasta = sys.argv[1] 
##title: 
#>k141_20_1_453_+ 
ctg_mapping_tab = sys.argv[2] 
##contig 
#k141_43039 
header = '' 
abundances = {} 
for n, line in enumerate(open(ctg_mapping_tab)): 
    if n == 0: 
        header = line.rstrip() 
    else: 
        vals = line.rstrip().split('\t') 
        line_vals = '' 
        for x in range(1,len(vals)): 
            line_vals = line_vals + '\t'+vals[x] 
        abundances[vals[0]] = line_vals 
 
print("mapping table read...") 
 
title = '' 
sequence = '' 
filled = False 
genes_names = {} 
for n, line in enumerate(open(gene_call_fasta)): 
    if n % 20000 == 0: 
        print(n / 2) 
    if n % 2 == 0: 
        title = line.rstrip() 
        #print title 
        if title[0] != '>': 
            print("fasta format error...") 
            break 
    else: 
        if n % 2 == 1: 
            sequence = line.rstrip() 
            filled = True 
    if filled: 
        tp = title[1:].rsplit('_',3) 
        genes_names[title[1:]] = tp[0] 
        filled = False 
 
print("genecall fasta read...") 
 
fp = open(ctg_mapping_tab + "_genecall.txt", 'w') 
fp.write(header + "\n") 
for name in genes_names: 
    new_line = name + abundances[genes_names[name]] 
    fp.write(new_line + "\n") 
fp.close() 
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print("Done :)") 
->replace_fungal_annot_by_taxname.py 
 
import sys 
import os 
 
annotation = sys.argv[1] 
short_to_tax = sys.argv[2] 
output_file = sys.argv[3] 
 
#fwd_k141_10000352_1_282_-       jgi|Dacma1|778102|KOG1368|4.1.2.5       52.5    
80      38      0       13      92      20      99      5.1e-15 87.0 
 
names = {} 
with open(short_to_tax) as file: 
    for line in file: 
        vals = line.rstrip().split('\t') 
        names[vals[0]] = vals[1] 
 
print('Taxon pairs were loaded - ' + str(len(names))) 
 
with open(output_file, "w") as fp: 
    with open(annotation) as file: 
        for line in file: 
            vals = line.rstrip().split('\t') 
            new_line = vals[0] 
            for i in range(1, len(vals)): 
                if i == 1: 
                    tax = vals[i].split('|')[1] 
                    if '['+tax+']' in names: 
                        new_line = new_line + '\t' + names['['+tax+']'] 
                    else: 
                        print('Taxa abbreviation was not found - ' + tax) 
                        new_line = new_line + '\t' + vals[i] 
                else: 
                    new_line = new_line + '\t' + vals[i] 
            #print(new_line) 
            fp.write(new_line + '\n') 
 
print('Done :]') 
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->get_taxonomy_offline.py 
 
import sys 
 
acc_list = sys.argv[1] 
acc2taxid = sys.argv[2] 
tax_taxid = sys.argv[3] 
tax_out = sys.argv[4] 
 

accs = {} 
for line in open(acc_list): 
    accs[line.rstrip()] = 0 
 
print("accession list loaded...("+str(len(accs))+")") 
 
i = 0 
taxonomy = {} 
for line in open(tax_taxid): 
    parts = line.rstrip().split('\t') 
    taxonomy[parts[7]] = parts[0] + '\t' + parts[1] + '\t' + parts[2] + '\t' 
+ parts[3] + '\t' + parts[4] + '\t' + parts[5] + '\t' + parts[6] 
    i += 1 
 
print("taxonomy loaded...("+str(i)+")") 
 
i = 0 
fp = open(tax_out, 'w') 
fp.write('domain\tphylum\tclass\torder\tfamily\tgenus\torganism\ttax_key\n') 
for line in open(acc2taxid): 
    parts = line.rstrip().split('\t') 
    if accs.has_key(parts[0]): 
        fp.write(taxonomy['['+parts[1]+']'] + '\t[' + parts[0] + ']\n') 
        accs[parts[0]] = 1 
        i += 1 
fp.close() 
 
print("taxonomy retrieved... "+str(i)+" vs acc ("+str(len(accs))+") - should 
be equal!") 
 
fp = open('missing_acc.txt', 'w') 
for acc in accs: 
    if accs[acc] == 0: 
        fp.write(acc + '\n') 
fp.close() 
 

print("Done :]") 
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->replace_acc_by_sp_from_taxonomy.py 
 
import sys 
import os 
 
blast_out6 = sys.argv[1] 
taxonomy = sys.argv[2] 
blast_reformat = sys.argv[3] 
 

# load taxons 
i = 0 
acc_to_sp = {} 
for n, line in enumerate(open(taxonomy)): 
    if n > 0: 
        val = line.rstrip().split("\t") 
        acc_to_sp[val[7]] = '[' + val[6] + ']' 
        i = i + 1 
print("number of taxa: "+str(i)+" ("+str(len(acc_to_sp))+")") 
 
# load blast 
i = 0 
n = 0 
fp = open(blast_reformat, "w") 
for line in open(blast_out6): 
        val = line.rstrip().split("\t") 
        acc = '[' + val[1] + ']' 
        if acc_to_sp.has_key(acc): 
            val[1] = acc_to_sp[acc] 
        else: 
            print("ERROR ACCESSION "+acc+" NOT FOUND!") 
            n += 1 
        fp.write("\t".join(val) + '\n') 
        i += 1 
fp.close() 
 
print("DONE :) Processed blast: "+str(i)+" - NOT FOUND "+str(n)) 
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->combine_taxonomy_tables.py 

import sys 
 
fungi_names = sys.argv[1] 
fungi_taxa = sys.argv[2] 
other_taxa = sys.argv[3] 
final_taxa_out = sys.argv[4] 
 
fungal_names = {} 
for line in open(fungi_names): 
    vals = line.rstrip().split('\t') 
    fungal_names[vals[0]] = 0 
 
print("names loaded...") 
 

fungal_taxonomy = {} 
for line in open(fungi_taxa): 
    vals = line.rstrip().split('\t') 
    if fungal_names.has_key(vals[6]): 
        fungal_taxonomy[vals[6]] = line.rstrip() 
        fungal_names[vals[6]] = 1 
 
n = 0 
k = 0 
for name in fungal_names: 
    if fungal_names[name] == 1: 
        k += 1 
    else: 
        n += 1 
        print("ERROR name ("+name+") was not found...") 
 
print("FUNGAL TAXONOMY PROCESSED - NOT FOUND "+str(n)+" vs. FOUND "+str(k)) 
 
if n>0: 
    print("THERE ARE ERRORS - TERMINATING SCRIPT...") 
    exit() 
 

n = 0 
other_taxonomy = {} 
for line in open(other_taxa ): 
    vals = line.rstrip().split('\t') 
    n += 1 
    if len(vals)>6: 
        vals[6] = "["+vals[6]+"]" 
        if not other_taxonomy.has_key(vals[6]): 
            if not fungal_taxonomy.has_key(vals[6]): 
                other_taxonomy[vals[6]] = 
vals[0]+"\t"+vals[1]+"\t"+vals[2]+"\t"+vals[3]+"\t"+vals[4]+"\t"+vals[5]+"\t"
+vals[6] 
    else: 
        print("PROBLEMATIC: "+line) 
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print("OTHER TAXONOMY PROCESSED - REDUCING TO "+str(len(other_taxonomy))+" 
vs. ORIGINAL "+str(n)) 
 
fp = open(final_taxa_out, 'w') 
fp.write("domain\tphylum\tclass\torder\tfamily\tgenus\tkey\n") 
for name in other_taxonomy: 
    fp.write(other_taxonomy[name]+"\n") 
for name in fungal_taxonomy: 
    fp.write(fungal_taxonomy[name]+"\n") 
fp.close() 
 
print("DONE :)") 
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->get_best_hit_by_bitscore_multi.py 
 
import sys 
 
def choose_the_best(ctgs, in_file): 
    size = len(ctgs) 
    i = 0 
    r = 0 
    for line in open(in_file): 
        line = line.strip() 
        vals = line.split("\t") 
        # check formate 
        #if i<3: 
        #    print(line.strip()) 
        # check formate 
        if len(vals)>11: #if len(vals)>11 and i>0: 
                bitscore = float(vals[11]) 
                eval = float(vals[10]) 
                sim = float(vals[2]) 
                ctg = vals[0] 
                #print("bitscore "+str(bitscore)+" eval "+str(eval)+" sim 
"+str(sim)) 
                if ctgs.has_key(ctg): 
                    vals_old = ctgs[ctg].split("\t") 
                    if bitscore > float(vals_old[11]): 
                        ctgs[ctg] = line 
                        r += 1 
                    else: 
                        if bitscore == float(vals_old[11]): 
                            if eval < float(vals_old[10]): 
                                ctgs[ctg] = line 
                                r += 1 
                            else: 
                                if eval == float(vals_old[10]) and sim > 
float(vals_old[2]): 
                                    ctgs[ctg] = line 
                                    r += 1 
                else: 
                    ctgs[ctg] = line 
        i += 1 
    print("FILE: " + in_file + " - HITS: " + str(i)) 
    print("NEW ANNOTATIONS: " + str(len(ctgs) - size)+" - REPLACED: " + 
str(r) + " - CURRENT BEST HITS: " + str(len(ctgs))) 
    print("") 
 
ctgs_best = {} 
 
for f in sys.argv[1:]: 
    choose_the_best(ctgs_best, f) 
 
fp = open('best_of_the_blast.txt', 'w') 
for ctg in ctgs_best: 
    fp.write(ctgs_best[ctg]+'\n') 
fp.close() 
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print("done :)") 
 
->get_taxonomy_basedonnames.py 
 
import sys 
 
taxa_names = sys.argv[1] 
taxonomy = sys.argv[2] 
taxonomy_filtered = sys.argv[3] 
 
names = {} 
for line in open(taxa_names): 
    vals = line.rstrip().split('\t') 
    names[vals[0]] = 0 
 
print("names loaded...") 
 
selected_taxonomy = {} 
for line in open(taxonomy): 
    vals = line.rstrip().split('\t') 
    if len(vals) < 7: 
        print(line.rstrip()) 
    else: 
        if names.has_key(vals[6]): 
            selected_taxonomy[vals[6]] = line.rstrip() 
            names[vals[6]] = 1 
 
n = 0 
k = 0 
for name in names: 
    if names[name] == 1: 
        k += 1 
    else: 
        n += 1 
        print("ERROR name ("+name+") was not found...") 
 
print("TAXONOMY PROCESSED - NOT FOUND "+str(n)+" vs. FOUND "+str(k)) 
 
fp = open(taxonomy_filtered, 'w') 
fp.write("domain\tphylum\tclass\torder\tfamily\tgenus\tkey\n") 
for name in selected_taxonomy: 
    fp.write(selected_taxonomy[name]+"\n") 
fp.close() 
 
print("DONE :)") 
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->split_fasta_by_group_size.py 
 
import sys 
import ntpath 
 
in_file = sys.argv[1] 
group_size = int(sys.argv[2]) 
 
part = 1 
k = 1 
 
file_name = ntpath.basename(in_file).rstrip().split('.')[0] 
fp = open(file_name+str(part)+'.fas', 'w') 
 
for n, line in enumerate(open(in_file)): 
    ch = line[0] 
    if ch == '>': 
        if ((k % group_size)==0): 
            part = part+1 
            fp.close() 
            print "Part: "+str(part) 
            fp = open(file_name+str(part)+'.fas', 'w') 
        k=k+1 
    fp.write(line) 
fp.close() 
print "Done." 
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->KO_UNIQUE_from_KO_simple.py 
 
import sys 
 
simple_tab_file = sys.argv[1] 
 
ko_vars = {} 
for n, line in enumerate(open(simple_tab_file)): 
    #print line 
    vals = line.strip().split("\t") 
    if len(vals)>2: 
        kk = vals[2].split(";") 
        for k in kk: 
            if ko_vars.has_key(k): 
                ko_vars[k] = ko_vars[k] + 1 
            else: 
                ko_vars[k] = 1 
    else: 
        print line 
 
#write unique KO 
fp = open(simple_tab_file+'.unique.txt', 'w') 
for result in ko_vars: 
    fp.write(result+"\t"+str(ko_vars[result])+"\n") 
fp.close() 
 
print "Done :)" 
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->GET_KEGG_ontology_subtable.py 
 
import sys 
 
kegg_tab_file = sys.argv[1] 
unique_KO_file = sys.argv[2] 
out_file = sys.argv[3] 
 
kos = {} 
for n, line in enumerate(open(unique_KO_file)): 
    vals = line.strip().split("\t") 
    kos[vals[0]] = '' 
 
fp = open(out_file, 'w') 
for n, line in enumerate(open(kegg_tab_file)): 
    if n==0: 
        fp.write(line.strip()+"\n") 
    else: 
        vals = line.strip().split("\t") 
        if vals[len(vals)-1] in kos: 
            fp.write(line.strip()+"\n") 
fp.close() 
 
print "Done :)" 
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->get_CAZy_tree.py 
 
import sys 
import re 
 
input_unique = sys.argv[1] 
tree_output = sys.argv[2] 
 
values = [] 
for line in open(input_unique): 
    val = line.rstrip() 
    if len(val)>0: 
        if not val == "HMM Profile": 
            values.append(val) 
 
values.sort(reverse=True) 
 
fp = open(tree_output, 'w') 
fp.write("class\tfamily\tmodel\n") 
for val in values: 
    print(val) 
    v = val.split('_') 
    ################ 
    match = re.match(r"([a-z]+)([0-9]+)", v[0], re.I) 
    if match: 
        cl = match.groups()[0] 
    else: 
        cl = v[0] 
    ################# 
    fp.write(cl+"\t"+v[0]+"\t"+val+"\n") 
fp.close() 
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->link_simple_table_to_mapping_table.py 
 
import sys 
import os 
 
table = sys.argv[1] 
best_function = sys.argv[2] 
function_name = sys.argv[3] 
identity_var = sys.argv[4] 
#k141_1000000_1_442_-   3.30E-22    [K00074] 
linked_tab = sys.argv[5] 
 
#read functions... 
fun = {} 
for n, line in enumerate(open(best_function)): 
    vals = line.rstrip().split('\t') 
    if len(vals) == 3: 
        fun[vals[0]] = vals[1] +'\t' + vals[2] 
 
print 'Functions processed... '+str(len(fun)) 
 
#link it... 
nfun = 0 
fp = open(linked_tab, 'w') 
for n, line in enumerate(open(table)): 
    line = line.rstrip() 
    line_new = '' 
    if n == 0: 
        #header 
        line_new = line +'\t' + identity_var + '\t' +function_name 
    else: 
        vals = line.rstrip().split('\t') 
        fun_line = 'NaN'+ '\t' +'-' 
        if fun.has_key(vals[0]): 
            nfun = nfun + 1 
            fun_line = fun[vals[0]] 
        line_new = line + '\t'+fun_line 
    fp.write(line_new + "\n") 
fp.close() 
 
print 'Done... used functions: '+str(nfun)+'/'+str(len(fun)) 
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->add_higher_taxonomy.py 
 
import sys 
import re 
 
big_table = sys.argv[1] 
tax_tree = sys.argv[2] 
tax_column = sys.argv[3] 
big_table_new = sys.argv[4] 
tax_tree_new = sys.argv[5] 
 
taxons = [] 
tax_pair = {} 
fp = open(tax_tree_new, 'w') 
fp.write("domain\tphylum\tclass\torder\tfamily\tgenus_key\n") 
for n,line in enumerate(open(tax_tree)): 
    val = line.rstrip().split('\t') 
    if n > 0: 
        new_key = "["+val[5]+"]" 
        
taxons.append(val[0]+"\t"+val[1]+"\t"+val[2]+"\t"+val[3]+"\t"+val[4]+"\t"+new
_key) 
        tax_pair[val[6]] = new_key 
 
myset = set(taxons) 
mylist = list(myset) 
mylist.sort(reverse=True) 
 
key_check = {} 
for l in mylist: 
    key = l.split('\t')[5] 
    if key_check.has_key(key): 
        print(">>>duplicate<<<") 
        print("new: "+l) 
        print("old: "+key_check[key]) 
    else: 
        key_check[key] = l 
        fp.write(l + "\n") 
 
fp.close() 
 
# add nes taxonomy column 
tax_column_index = -1 
fp = open(big_table_new, 'w') 
for n,line in enumerate(open(big_table)): 
    val = line.rstrip().split('\t') 
    if n == 0: 
        l = val[0] 
        i=0 
        for v in val: 
            if i>0: 
                l += "\t"+val[i] 
                if tax_column == v: 
                    tax_column_index = i 
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                    l += "\t" + tax_column+"_genus" 
            i+=1 
        fp.write(l + "\n") 
    else: 
        i=0 
        l = val[0] 
        for v in val: 
            if i>0: 
                l += "\t"+val[i] 
                if i == tax_column_index: 
                    if val[i] == '-': 
                        l += "\t-" 
                    else: 
                        l += "\t" + tax_pair[val[i]] 
            i += 1 
        fp.write(l + "\n") 
fp.close() 
 
print("done :]") 
 
ANNEX 6: Complete pipeline of the metatranscriptomic analysis carried out in 
Chapter 3. 
 
conda activate fastp 
 
 
for file in *_R1.fq.gz 
do 
   sample=${file%%_R1.fq.gz} 
   fastp --detect_adapter_for_pe --adapter_sequence=AGATCGGAAGAG 
--adapter_sequence_r2=AGATCGGAAGAG -W 1 -M 3 -5 -3 -g -q 30 -u 50 
-l 50 -h ${sample}.html --thread=16 --dont_eval_duplication  -i 
${sample}_R1.fq.gz -I ${sample}_R2.fq.gz --
unpaired1=filtered/${sample}.se.fq --
unpaired2=filtered/${sample}.se.fq  --stdout > 
filtered/${sample}.pe.trim.qc.fq 
done 
 
# cat se reads into same file as pe 
 
for file in *.pe.trim.qc.fq 
do 
   sample=${file%%.pe.trim.qc.fq} 
cat ${sample}.se.fq >> ${file} 
done 
 
 
##REMOVE rRNAs WITH - bbduk.sh 
 
bbdir='/home/kdanielmorais/bioinformatics/tools/BBtools/' 
echo ${bbdir}                                             
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for file in *.pe.trim.qc.fq 
do 
    sample=${file%%.pe.trim.qc.fq}  
    echo "${bbdir}bbmap/bbduk.sh ordered k=31 
ref=${bbdir}ribokmers.fa.gz ow=true in=${file} 
out=rRNA_remove/${sample}_NO_rRNA.pe.fq 
outm=rRNA_remove/${sample}_rRNA.pe.fq" 
done > remove_rrna.sh 
 
cat remove_rrna.sh | parallel 
 
# fix paired R1 and R2 files  
 
for file in *_NO_rRNA.pe.fq 
do 
   sample=${file%%_NO_rRNA.pe.fq} 
   echo 
"/home/kdanielmorais/bioinformatics/tools/BBtools/bbmap/repair.sh 
in=${file} out1=for_assembly/${sample}.pe.fq.1 
out2=for_assembly/${sample}.pe.fq.2 
outsingle=for_assembly/${sample}.se.fq repair" 
done > extract_command.sh 
 
cat extract_command.sh | parallel 
 
#rm -rf *.tr.qc.fq.cut 
 
# trinity assembly  
## obs about rnaSeq libs: the kit used normaly here are stranded 
rna preps, this generates strand-specific transcripts and should 
be assembled a bit different. Trinity has an option for this --
SS_lib_type (can be RF or FR) the kit "TruSeq" uses dUTP method 
(FR according to Trinity documents). Should try to compare this 
data assebled normally and considering strand-specifi option as 
well???? 
 
## put all reads together 
 
cat *.1 > all.qc.fq.1 
cat *.2 > all.qc.fq.2 
cat *.se.fq > all.se.qc.fq 
#put unpaired reads into file .1 
cat all.se.qc.fq >> all.qc.fq.1 
 
### TRINITY ASSEMBLY   
mkdir trinity_assembly 
#trinity can't use more than 200G of ram 
conda activate TrinityEnv 
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Trinity --NO_SEQTK  --seqType fq  --left all.qc.fq.1 --right 
all.qc.fq.2 --CPU 120 --max_memory 200G --output 
trinity_assembly/ 
 
 
## SAMPLE MAPPING  
#find a way for this loop to work across different folders!!!!! 
 
REF=../trinity_assembly.Trinity.fasta 
reference=${REF%%.fasta} 
echo "reference is" ${reference} 
mkdir ${reference}_build 
bowtie2-build ${REF} ${reference}_build/${reference}.build 
 
 
ref=trinity_assembly.Trinity_build 
reference=${ref%%_build} 
 
for file in *_NO_rRNA.pe.fq 
 do 
 sample=${file%%_NO_rRNA.pe.fq} 
 echo "processing ${sample}... reference ${reference}" 
 
 bowtie2 -p 70 -x 
for_assembly/trinity_assembly.Trinity_build/trinity_assembly.Trin
ity.build -q ${file} -S ${sample}.sam 
 echo "sam file is done..." 
  
 #rm -rf ${sample}.pe.fq  
 
 samtools view -Sb ${sample}.sam > ${sample}.bam 
 echo "bam file is done..." 
 
 rm -rf ${sample}.sam 
 
 samtools view -c -f 4 ${sample}.bam > ${sample}.reads-
unmapped.count.txt 
 echo "unmapped reads info done..." 
 
 samtools view -c -F 4 ${sample}.bam > ${sample}.reads-
mapped.count.txt 
 echo "mapped reads info done..." 
 
 samtools sort -o ${sample}.sorted.bam ${sample}.bam 
 echo "bam file was sorted..." 
 
 rm -rf ${sample}.bam 
 
 samtools index ${sample}.sorted.bam 
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 echo "soerted bam file was indexed..." 
 samtools idxstats ${sample}.sorted.bam > 
${sample}.reads.by.contigs.txt 
 
 echo "sample ${sample} is done..." 
done 
 
######GETTING COUNT MAPPING TABLE CONTIG/SAMPLE 
gdrive_download 1HDB2EF-pq-EJxQxsI1uv1-iVjTl6tAlo count-up-
mapped-from-results-txt-with-ctg-length.py 
 
python2.7 count-up-mapped-from-results-txt-with-ctg-length.py 
*.reads.by.contigs.txt 
 
##################### 
# get coverage file # 
##################### 
 
https://drive.google.com/file/d/1S2AQHd2YIjnxZz2kIa2avo1RSAuj-
pWT/view?usp=sharing 
 
gdrive_download 1S2AQHd2YIjnxZz2kIa2avo1RSAuj-pWT 
get_assembly_coverage.py 
 
# adjusted to 145bp because used the trimmed and filtered reads 
_NO_rRNA files 
 
python2.7 get_assembly_coverage.py summary-count-mapped.tsv 145 
Ruben_substrateMT_assembly_coverage.txt 
 
 
###GENE CALLING - FragGeneScan 
 
##################### 
# GENECALLING - FGS # 
##################### 
 
# Link creation 
ln -s 
/home/kdanielmorais/bioinformatics/tools/fraggenescan/FragGeneSca
n1.31/train/ ./ 
 
# Command 
FragGeneScan -s  ../for_assembly/trinity_assembly.Trinity.fasta -
w 1 -o Ruben_substrateMT_trinity_genecalling -t complete -p 120 
 
 
###FALTA FAZER A PARTE FINAL DO MAPPING E NORMALIZACAO 
###################################### 
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# 2a NORMALISE MAPPING TABLE PER BASE 
###################################### 
gdrive_download 1w0bfttjXFZ64NHD8bP7UDaQcS1yd20qR normalize-
mapping-table-by-read-length-and-ctg-length.py 
  
python2.7 normalize-mapping-table-by-read-length-and-ctg-
length.py summary-count-mapped.tsv 145 TABLE_normalised_145.txt 
 
WARNING: gene length is 0 bp - * 
done... 
 
 
######################################## 
# 2b NORMALISE MAPPING TABLE PER SAMPLE 
######################################## 
gdrive_download 1c_fD520xtrCNlUIq9VqqqSvY2OryMXTU 
normalize_table_by_columns.py 
 
python2.7 normalize_table_by_columns.py TABLE_normalised_145.txt 
2 1000000 TABLE_normalised_per_sample.txt 
 
 
 
########################## 
# 3 MULTIPLY BY GENECALL # -->          
########################## 
 
#k141_43039 
gdrive_download 1DakO7roc9C2GJ-SkZuy8AZKTV3QHan14 
contig_mapping_to_genecall_mapping.py 
 
python2.7 contig_mapping_to_genecall_mapping.py 
genecalling/Ruben_substrateMT_trinity_genecalling.faa 
TABLE_normalised_per_sample.txt 
 
ls 
############################ 
# ADD "#" TO SAMPLE NAMES  # 
############################   
 
head -1 TABLE_normalised_per_sample.txt_genecall.txt | awk -F'\t' 
'{printf $1"\t"$2 ;for(i=3; i<=NF; ++i) printf "\t%s", "#"$i }' |  
awk -F '\t' '{print $0}' > header.txt 
 
tail -n +2  TABLE_normalised_per_sample.txt_genecall.txt > 
table.txt 
 
cat header.txt table.txt > TABLE_NORM_SAMPLES_GENECALL.txt 
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##################### 
## DRAM ANNOTATION ## 
##################### 
 
#error in description can be fixed with  
DRAM-setup.py update_description_db 
# runs for a few hours and takes a few hundred Gb disk space 
conda activate DRAM 
DRAM.py annotate_genes -i 
genecalling/Ruben_substrateMT_trinity_genecalling.faa -o 
annotation_DRAM --threads 240 --verbose --use_uniref  
 
###obs for this step 
https://github.com/WrightonLabCSU/DRAM/issues/62 
dbcan-CAZy uses filtering indicated by them - dbCAN2 suggestions 
for thresholds" suggested by dbcan2: 
(see http://bcb.unl.edu/dbCAN2/blast.php) 
E-Value < 1e-15, coverage > 0.35 
 
 
 
#summarize results 
DRAM.py distill -i annotation_DRAM2/annotations.tsv -o 
annotation_DRAM2/distilled 
 
 
# next time run with FOAM-hmm_rel1a.hmm database  
 
 
 
#######################----TAXONOMY NCBI-JGI----
################################ 
 
 
################################### 
# JGI FUNGAL PROTEINS - BIOCEV PC # 
################################### 
 
 
/home/kdanielmorais/bioinformatics/tools/diamond blastp -d 
/mnt/DATA/DATABASES/FUNGAL_PROTEINS_JGI/JGI_FUNGAL_PROTEINS_ANNOT
ATED_20210312 -q 
genecalling/Ruben_substrateMT_trinity_genecalling.faa -e 1E-5 -o 
taxonomy/genecalling_JGI_FUN_20210312.txt -f 6 -p 256 -b12 -c1 
 
export LANG=en_US.UTF-8 
export LC_ALL=en_US.UTF-8 
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sort -t$'\t' -k1,1 -k12,12gr -k11,11g -k3,3gr 
genecalling_JGI_FUN_20210312.txt | sort -u -k1,1 --merge > 
genecalling_JGI_FUN_20210312_best.txt 
 
 
# GENERA DEFINED   ##########RUNNING THIS -- started on 
20.07.2022 at 
/home/kdanielmorais/bioinformatics/tools/diamond blastp -d 
/mnt/DATA/DATABASES/NCBI_nr_DIAMOND/NCBI_nr_20210225_diamond_GENE
RA -q CLEMENTINE_MT_Trinity_genecalling_fgs.faa -e 1E-5 -o 
genecalling_NCBI_nr_PROTEINS_GENERA.txt -f 6 -p 512 -b12 -c1 
## 
Total time = 7076.34s 
Reported 27886590 pairwise alignments, 27886590 HSPs. 
1229412 queries aligned. 
## 
 
export LANG=en_US.UTF-8 
export LC_ALL=en_US.UTF-8 
sort -t$'\t' -k1,1 -k12,12gr -k11,11g -k3,3gr 
genecalling_NCBI_nr_PROTEINS_GENERA.txt | sort -u -k1,1 --merge > 
genecalling_NCBI_nr_GENERA_PROTEINS_best.txt 
 
 
 
################################# 
# ADD TAXONOMY TO BLAST RESULTS # 
################################# 
 
# JGI 
# latest 20210406 
gdrive_download 12c28kgIw4mPBIhQutNGladdAXwNLtvlR 
jgi_abr_org_list.txt 
 
gdrive_download 1XBTtiC1JYl2rzeV7idN2WrveEZknmnQi 
replace_fungal_annot_by_taxname.py 
 
python2.7 replace_fungal_annot_by_taxname.py 
genecalling_JGI_FUN_20210312_best.txt jgi_abr_org_list.txt 
genecalling_JGI_FUNGAL_PROTEINS_best_reformate.txt 
 
awk -F'\t' '{print $2}' 
genecalling_JGI_FUNGAL_PROTEINS_best_reformate.txt | sort | uniq 
> FUNGAL_NAMES.txt 
 
 
# NCBI 
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awk -F'\t' '{print $2}' 
genecalling_NCBI_nr_GENERA_PROTEINS_best.txt | sort | uniq > 
ALL_ACCESSIONS.txt 
 
#gdrive_download 1FQdQ2Oh3sgyc2IKymYz_B6mKQwlklia_ 
retrieve_taxonomy_by_accession_with_taxid_library.py 
#python2.7 retrieve_taxonomy_by_accession_with_taxid_library.py 
ALL_ACCESSIONS.txt 
/mnt/DATA/DATABASES/ACC2TAXID/ACC2TAXID_nr_current.txt 
taxa_all_accessions.txt 
 
https://drive.google.com/file/d/1o8KmSbwzOsjjeouK3dR0RNmWkMjdfFow
/view?usp=sharing 
 
gdrive_download 1o8KmSbwzOsjjeouK3dR0RNmWkMjdfFow 
get_taxonomy_offline.py 
 
python2.7 get_taxonomy_offline.py ALL_ACCESSIONS.txt 
/mnt/DATA/DATABASES/NCBI_nr_DIAMOND/ACC2TAXID_nr_current.txt 
/mnt/DATA/DATABASES/NCBI_nr_DIAMOND/TAXONOMY_TAXID_ALL_fixed.txt 
taxa_all_accessions.txt  
 
accession list loaded...(779978) 
taxonomy loaded...(907158) 
taxonomy retrieved... 779978 vs acc (779978) - should be equal! 
Done :] 
 
 
# REFORMAT 
https://drive.google.com/file/d/1jQ3F3ZuA0sBJVy3eJiRhwAaxh31LKqSF
/view?usp=sharing 
 
gdrive_download 1jQ3F3ZuA0sBJVy3eJiRhwAaxh31LKqSF 
replace_acc_by_sp_from_taxonomy.py 
 
python2.7 replace_acc_by_sp_from_taxonomy.py 
genecalling_NCBI_nr_GENERA_PROTEINS_best.txt TAXONOMY_ALL.txt 
genecalling_NCBI_GENERA_PROTEINS_best_reformat.txt 
# 
number of taxa: 779978 (779978) 
DONE :) Processed blast: 1229412 - NOT FOUND 0 
# 
 
# COMBINE TAXONOMY TABLES 
# GET TAXONOMY FOR ALL 
gdrive_download 1VtSyy7OutKZ6fAZMTYY2HkZUDNcpfY6V 
JGI_TAXA_TAB_2021.txt 
#https://drive.google.com/file/d/1F5p28LpaHrSYWwNI_82V9eHoKIb63y8
G/view?usp=sharing 
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gdrive_download 1F5p28LpaHrSYWwNI_82V9eHoKIb63y8G 
combine_taxonomy_tables.py 
 
python2.7 combine_taxonomy_tables.py FUNGAL_NAMES.txt 
JGI_TAXA_TAB_2021.txt TAXONOMY_ALL.txt TAX_TAB.tab  
## 
names loaded... 
FUNGAL TAXONOMY PROCESSED - NOT FOUND 0 vs. FOUND 1498 
OTHER TAXONOMY PROCESSED - REDUCING TO 23625 vs. ORIGINAL 779979 
DONE :) 
### 
 
#### 
gdrive_download 1-3XE5Le8I1_HzQdWbaAHev4ZlrSs6lUi 
get_best_hit_by_bitscore_multi.py 
 
python2.7 get_best_hit_by_bitscore_multi.py 
genecalling_NCBI_GENERA_PROTEINS_best_reformat.txt 
genecalling_JGI_FUNGAL_PROTEINS_best_reformate.txt 
# 
FILE: genecalling_NCBI_GENERA_PROTEINS_best_reformat.txt - HITS: 
1229412 
NEW ANNOTATIONS: 1229412 - REPLACED: 0 - CURRENT BEST HITS: 
1229412 
 
FILE: genecalling_JGI_FUNGAL_PROTEINS_best_reformate.txt - HITS: 
714548 
NEW ANNOTATIONS: 12375 - REPLACED: 308679 - CURRENT BEST HITS: 
1241787 
# 
 
awk -F'\t' '{print $2}' best_of_the_blast.txt | sort | uniq > 
ALL_TAXA_NAMES.txt 
 
gdrive_download 1XruvN2qGN2-dUHZNSn0jXOYmUxoJ3Uz0 
get_taxonomy_basedonnames.py 
 
python2.7 get_taxonomy_basedonnames.py ALL_TAXA_NAMES.txt 
TAX_TAB.tab TAX_TAB_FINAL.tab  
#names loaded... 
TAXONOMY PROCESSED - NOT FOUND 0 vs. FOUND 24671 
DONE :) 
# 
awk -F'\t' '{print $1"\t"$12"\t"$2""}' best_of_the_blast.txt > 
TAXONOMY_BEST_OF_SIMPLE.txt 
 
############################## 
# KOGG FROM JGI-MYCO-GENOMES # 
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############################## 
 
# name e-val KOG 
awk -F'[|\t]' '{print $1"\t"$15"\t["$5"]"}' 
genecalling_JGI_FUN_20210312_best.txt > 
FUNCTION_JGI_KOG_SIMPLE.txt 
 
##########---- SPLITING FOR FOAM -----#########  
 
 
############ 
# split it # 
############ 
 
gdrive_download 1mGbdx3OBumymosW24WaYfZT9nq_a1z1z 
split_fasta_by_group_size.py 
 
python2.7 split_fasta_by_group_size.py 
/mnt/DATA1/priscila/rubenMT/filtered/rRNA_remove/genecalling/Rube
n_substrateMT_trinity_genecalling.faa 83000 
 
mkdir SPLIT  
mv *.fas SPLIT 
 
######## 
# FOAM # 
######## 
cd SPLIT 
for file in *.fas 
do 
   output=${file%%.fas} 
   echo "/home/kdanielmorais/bioinformatics/tools/hmmer-
3.0/src/hmmsearch --tblout ${output}.txt --noali --cpu 1 -E 1e-5 
/mnt/DATA/DATABASES/FOAM_db/FOAM-hmm_rel1.hmm ${file} >/dev/null 
2>&1" 
done > foam.sh 
 
mkdir tmp 
cat foam.sh | parallel --tmpdir tmp 
 
##### PROCESS OUTPUT ###### 
 
for file in *.txt 
do 
 sample=${file%%.txt} 
 grep -v '#' ${file} | awk -F' ' '{print $1"\t"$3"\t"$5"\t"$6}' > 
${sample}.for_sort.txt 
done 
 



 

  252 
 
 

 
export LC_ALL=en_US.UTF-8 
export LANG=en_US.UTF-8 
 
for file in *.for_sort.txt 
do 
 sample=${file%%.for_sort.txt} 
 echo "sort -t$'\t' -k1,1 -k4,4gr -k3,3g ${file} | sort -u -k1,1 
--merge > ${sample}.sorted_best.txt" 
done > sort.sh 
 
cat sort.sh | parallel 
 
cat *.sorted_best.txt > FOAM_BEST.txt 
 
########################################################## 
# FOAM ANNOTATION 
########################################################## 
 
gdrive_download 1ckuIqWVVarFgtcEUQOne2z-TdkDO3aXU 
FOAM_simple_multi_from_raw.py 
 
python2.7 FOAM_simple_multi_from_raw.py FOAM_BEST.txt 
FUNCTION_FOAM_KO_SIMPLE_MULTI.txt 
 
 
##################################### 
#  USE dbCAN LOCAL DATABASE - CONDA #  
##################################### 
 
#First activate the dbcan environment with 
conda activate run_dbcan 
 
for file in *.fas 
do 
 sample=${file%%.fas} 
 mkdir ${sample} 
done 
 
for file in *.fas 
do 
  sample=${file%%.fas} 
  echo "run_dbcan.py ${file} protein --db_dir 
/mnt/DATA/DATABASES/run_dbcan_master/db/ -t hmmer --out_dir 
${sample} --hmm_cpu 1 --dia_cpu 1" 
done > dbcan.sh 
cat dbcan.sh | parallel 
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echo "" > all_dbCAN.txt 
for file in *.fas 
do 
 sample=${file%%.fas} 
 wc -l ${sample}/hmmer.out 
 cat ${sample}/hmmer.out >> all_dbCAN.txt 
done 
 
##################################################### 
# dbCAN ANNOTATION 
##################################################### 
 
export LC_ALL=en_US.UTF-8 
export LANG=en_US.UTF-8 
 
sort -t$'\t' -k3,3 -k5,5g all_dbCAN.txt | sort -u -k3,3 --merge > 
all_dbCAN_best.txt 
 
awk -F'[.\t]' '{print $1}' all_dbCAN_best.txt | sort | uniq > 
hmm_names_uniq.txt 
 
awk -F'[.\t]' '{print $1}' all_dbCAN_best.txt > hmm_names.txt 
 
awk -F'\t' '{print $3"\t"$5}' all_dbCAN_best.txt > 
all_dbCAN_best_gene_eval.txt 
 
paste -d"\t" all_dbCAN_best_gene_eval.txt hmm_names.txt > 
CAZy_BEST_SIMPLE.txt 
 
 
################################### 
# LINK ANNOTATION TO TABLE 
################################### 
 
gdrive_download 198TDGsV1cBfLEZorb5znFHysG47XEj5t 
link_simple_table_to_mapping_table.py 
 
#python2.7 link_simple_table_to_mapping_table.py 
mapping_table_normalised_per_sample_genecall.txt 
best_of_the_blast_simple.txt BESTTAX bitscore 
MAPTAB_NORMPERSAMPLE_GENES_BESTTAX.ta 
#mv MG_CLEMENTINE_normalised_per_sample.txt_genecall.txt 
TABLE_NORM_SAMPLES_GENECALL.txt 
 
TABLE="TABLE_NORM_SAMPLES_GENECALL.txt" 
 
echo "${TABLE}" 
 
TABLE_BASE=${TABLE%%.${TABLE##*.}} 
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echo "${TABLE_BASE}" 
 
python2.7 link_simple_table_to_mapping_table.py ../${TABLE} 
TAXONOMY_BEST_OF_SIMPLE.txt TAX_BEST bitscore 
${TABLE_BASE}_TAX.txt 
Functions processed... 1241787 
Done... used functions: 1241787/1241787 
 
python2.7 link_simple_table_to_mapping_table.py 
${TABLE_BASE}_TAX.txt CAZy_BEST_SIMPLE.txt CAZy e-val 
${TABLE_BASE}_TAX_CAZy.txt 
Functions processed... 10697 
Done... used functions: 10696/10697 
 
python2.7 link_simple_table_to_mapping_table.py 
${TABLE_BASE}_TAX_CAZy.txt FUNCTION_FOAM_KO_SIMPLE_MULTI.txt FOAM 
e-val ${TABLE_BASE}_TAX_CAZy_FOAM.tab 
Functions processed... 295860 
Done... used functions: 295860/295860 
 
python2.7 link_simple_table_to_mapping_table.py 
${TABLE_BASE}_TAX_CAZy_FOAM.tab FUNCTION_JGI_KOG_SIMPLE.txt KOG 
e-val ${TABLE_BASE}_TAX_CAZy_FOAM_KOG.tab 
Functions processed... 714548 
Done... used functions: 714548/714548 
# genus taxonomy 
 
https://drive.google.com/file/d/1AWuqqPaP2rUMpF_uMHOGEs8aE3Iy7JS2
/view?usp=sharing 
 
gdrive_download 1AWuqqPaP2rUMpF_uMHOGEs8aE3Iy7JS2 
add_higher_taxonomy.py 
 
#python2.7 add_higher_taxonomy.py 
TABLE_NORM_SAMPLES_GENECALL_TAX_CAZy_FOAM_KOG.tab TAX_tree.tab 
TAX_BEST TABLE_NORM_SAMPLES_GENECALL_TAX2_CAZy_FOAM_KOG.tab 
TAX_tree_genus.tab 
 
python2.7 add_higher_taxonomy.py 
TABLE_NORM_SAMPLES_GENECALL_TAX_CAZy_FOAM_KOG.tab 
TAX_TAB_FINAL.tab TAX_BEST 
TABLE_NORM_SAMPLES_GENECALL_TAX2_CAZy_FOAM_KOG.tab 
TAX_tree_genus.tab 
 
>>>duplicate<<< 
new: Eukaryota  Nematoda        Chromadorea     Rhabditida      
Setariidae      [Setaria] 
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old: Eukaryota  Streptophyta    Magnoliopsida   Poales  Poaceae 
[Setaria] 
>>>duplicate<<< 
new: Eukaryota  Mucoromycota    Mucoromycetes   Mucorales       
Lichtheimiaceae [Fennellomyces] 
old: Eukaryota  Mucoromycota    Mucoromycetes   Mucorales       
Syncephalastraceae      [Fennellomyces] 
>>>duplicate<<< 
new: Eukaryota  Basidiomycota   Agaricomycetes  Polyporales     
Meruliaceae     [Phlebia] 
old: Eukaryota  Basidiomycota   Agaricomycetes  Polyporales     
Steccherinaceae [Phlebia] 
>>>duplicate<<< 
new: Eukaryota  Basidiomycota   Agaricomycetes  Agaricales      
Tricholomataceae        [Infundibulicybe] 
old: Eukaryota  Basidiomycota   Agaricomycetes  Agaricales      
undefined Agaricales    [Infundibulicybe] 
>>>duplicate<<< 
new: Eukaryota  Ascomycota      Saccharomycetes Saccharomycetales       
Trichomonascaceae       [Blastobotrys] 
old: Eukaryota  Ascomycota      Saccharomycetes Saccharomycetales       
Trigonopsidaceae        [Blastobotrys] 
>>>duplicate<<< 
new: Eukaryota  Ascomycota      Saccharomycetes Saccharomycetales       
Debaryomycetaceae       [Candida] 
old: Eukaryota  Ascomycota      Saccharomycetes Saccharomycetales       
undefined Saccharomycetales     [Candida] 
>>>duplicate<<< 
new: Eukaryota  Ascomycota      Eurotiomycetes  Eurotiales      
Thermoascaceae  [Paecilomyces] 
old: Eukaryota  Ascomycota      Sordariomycetes Hypocreales     
Clavicipitaceae [Paecilomyces] 
>>>duplicate<<< 
new: Eukaryota  Ascomycota      Dothideomycetes Pleosporales    
Cucurbitariaceae        [Pyrenochaeta] 
old: Eukaryota  Ascomycota      Dothideomycetes Pleosporales    
Neopyrenochaetaceae     [Pyrenochaeta] 
>>>duplicate<<< 
new: Bacteria   Calditrichaeota Calditrichae    Calditrichales  
Calditrichaceae [Caldithrix] 
old: Bacteria   Calditrichaeota Calditrichia    Calditrichales  
Calditrichaceae [Caldithrix] 
done :] 
 
 
###################### 
#unique dbCAN models # 
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awk -F'\t' '{print $3}' CAZy_BEST_SIMPLE.txt | sort | uniq > 
CAZy_BEST_unique.txt 
 
https://drive.google.com/file/d/1SGVK2cqWCLozEPGNLvPRs0YG-
ckrF_CZ/view?usp=sharing 
 
gdrive_download 1SGVK2cqWCLozEPGNLvPRs0YG-ckrF_CZ 
get_CAZy_tree.py 
 
python2.7 get_CAZy_tree.py CAZy_BEST_unique.txt CAZy_tree.tab 
 
############# 
# KOG TREE # 
############# 
gdrive_download 1uoUDoD5El-Gdlv9VNQ6BGATtacGsq2MF 
KOG_TAB_2021_03_03.txt 
 
 
################## 
### KofamKOALA ###  use 0.00001 for e-val 
################## 
in 
"/mnt/DATA1/priscila/rubenMT/filtered/rRNA_remove/kofam_KOs/kofam
_koala_KOs_rubenMT.txt"  
/mnt/DATA1/priscila/kofamKOALA/bin/kofam_scan-
1.3.0/exec_annotation 
../genecalling/Ruben_substrateMT_trinity_genecalling.faa -o 
kofam_koala_KOs_rubenMT.txt -p 
/mnt/DATA1/priscila/kofamKOALA/db/profiles/ -k 
/mnt/DATA1/priscila/kofamKOALA/db/ko_list --cpu=120 --tmp-dir=tmp 
-E 1e-5 -f detail-tsv 
 
###extract KOs and evals  
python2.7 KO_simple_tab_from_koala.py kofam_koala_KOs_rubenMT.txt 
KO_simple_table.txt 
 
#add this to the bigTable 
 
python2.7 link_simple_table_to_mapping_table.py 
TABLE_NORM_SAMPLES_GENECALL_TAX2_CAZy_FOAM_KOG.tab 
kofam_KOs/KO_simple_table.txt  KEGG e-val 
TABLE_NORM_SAMPLES_GENECALL_TAX2_CAZy_FOAM_KOG_KEGG.tab 
 
############# 
# KEGG TREE # 
############# 
gdrive_download 11CVgwqy6O2mJ5rc4vxevYQVp04oJrQsl kegg_tab.txt 
gdrive_download 1AmOiMqLHE8nberbvYEDPT12JShAfSW_w 
GET_KEGG_ontology_subtable.py 
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gdrive_download 1aqENUDPh3dCoxnO8YfBZaUjwwxkmlMM1 
KO_UNIQUE_from_KO_simple.py 
cat kofam_KOs/KO_simple_table.txt 
FUNCTION_FOAM_KO_SIMPLE_MULTI.txt > KEGG_ALL_MULTI.txt 
 
python2.7 KO_UNIQUE_from_KO_simple.py KEGG_ALL_MULTI.txt 
python2.7 GET_KEGG_ontology_subtable.py kegg_tab.txt 
KEGG_ALL_MULTI.txt.unique.txt FOAM_KEGG_tree.tab 
 
ANNEX 7: Annex 3: Complete pipeline of the MAGs (Metagenome-Assembled 
Genomes) analysis carried out in Chapter 3. 
 
################### 
## MAGs ANALYSIS ## 
################### 
 
# The analysis of MAGs (Metagenome-Assembled Genomes) is an approach used in 
metagenomics to reconstruct complete genomes of microorganisms present in an 
environmental  
# sample, without the need for prior isolation in culture. Using raw 
metagenomic sequences, MAGs are obtained by an assembly and binning process,  
# in which contigs (DNA fragments) are grouped into bins representing 
individual genomes.  
# These genomes can come from bacteria, archaea or other microbes present in 
the sample.  
 
####### 
## 1 ## 
####### 
 
############# 
## BINNING ## 
############# 
 
# Binning is a key step in metagenomic analysis. The main objective of 
binning is to group contigs (assembled DNA fragments) into bins,  
# where each bin represents a possible individual genome.  
 
conda activate metawrap 
 
metawrap binning -a /mnt/DATA/belen/MAGS_assembly_chapter3/final.contigs.fa -
o binning_metawrap -t 120 -m 1000 --metabat2 --maxbin2 --concoct --universal 
--run-checkm --interleaved /mnt/DATA/belen/MAGS_assembly/*.pe.qc.fq.gz 
 
####### 
## 2 ## 
####### 
 
#################### 
## BIN REFINEMENT ## 
#################### 
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# In this step you pick the best version of each bin. You can be more or less 
stringent in this step by lowering the completeness a bit. 
 
metawrap bin_refinement -o 
/mnt/DATA/belen/MAGS_assembly_chapter3/metawrap_refined_bins/ -A 
/mnt/DATA/belen/MAGS_assembly_chapter3/binning_metawrap/metabat2_bins/ -B 
/mnt/DATA/belen/MAGS_assembly_chapter3/binning_metawrap_concot/concoct_bins/ 
-C /mnt/DATA/belen/MAGS_assembly_chapter3/binning_metawrap/maxbin2_bins/ -m 
1000 -t 120 -c 50 -x 10 
 
####### 
## 3 ## 
####### 
 
################## 
## CheckM2 STEP ## 
################## 
 
# CheckM2 is used to evaluate the quality of the refined bins (MAGs) 
obtained. CheckM2 is a tool that estimates the completeness and contamination 
of MAGs. 
 
conda activate checkm2 
 
checkm2 predict -i 
/mnt/DATA/belen/MAGS_assembly_chapter3/metawrap_refined_bins/metawrap_50_10_b
ins/ -x fa --output-directory refinded_checkm2 --database_path 
/mnt/DATA1/priscila/checkm2/database/CheckM2_database/uniref100.KO.1.dmnd --
tmpdir ./ --threads 240 
 
awk '$2 >= 50 && $3 <=10' refinded_checkm2/quality_report.tsv > 
good_bins_checkm2.tsv 
 
awk '$2 >= 50 && $3 <=10' refinded_checkm2/quality_report.tsv | cut -f1 > 
bins_list 
 
for i in $(cat bins_list); do cp metawrap_50_10_bins/$i.fa selected_bins/ 
;done  
 
####### 
## 4 ## 
####### 
 
########################## 
## TAXONOMIC ANNOTATION ## 
########################## 
 
# GTDB-Tk (Genome Taxonomy Database Toolkit) is used to assign taxonomy to 
refined MAGs using the GTDB database version 2.4.0 (v220).  
# This tool classifies microbial genomes from complete genomic data and 
provides a standardized taxonomy based on the phylogenetic tree proposed by 
GTDB. 
 
conda activate /mnt/DATA1/priscila/condaenvs/gtdbtk220 
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gtdbtk classify_wf --genome_dir  
/mnt/DATA/belen/MAGS_assembly_chapter3/metawrap_refined_bins/metawrap_50_10_b
ins/ --out_dir refined_checkm2_gtdb220 --cpus 240 --pplacer_cpus 60 -x .fa --
tmpdir ./ --skip_ani_screen 
 
####### 
## 5 ## 
####### 
 
########## 
## GUNC ## 
########## 
 
# GUNC (Genomic UNcertainty Calculator), a tool designed to assess the 
taxonomic contamination and consistency of MAGs, is used.  
# This analysis is crucial to verify the quality of the refined MAGs and 
ensure that they represent unique and consistent genomes rather than  
# mixtures of genetic material from different organisms. 
 
conda activate gunc 
 
export TMPDIR="/mnt/DATA/projects/priscila/tmp/" 
echo $TMPDIR 
 
mkdir selected_bins_gunc 
 
gunc run --input_dir 
/mnt/DATA/belen/MAGS_assembly_chapter3/metawrap_refined_bins/metawrap_50_10_b
ins/ --detailed_output --contig_taxonomy_output --use_species_level --out_dir 
selected_bins_gunc --threads 120 --db_file 
/mnt/DATA1/priscila/database/gunc_db_progenomes2.1.dmnd --file_suffix .fa 
 
####### 
## 6 ## 
####### 
 
##################################### 
## RELATIVE QUANTIFICATION OF MAGs ## 
##################################### 
 
# The relative quantification of MAGs is performed using the Minimap2 and 
CoverM tools.  
# In this step, the relative abundance of each MAG in the microbial community 
is determined based on the mapping of MAGs. 
 
mkdir mags_bams 
 
conda activate coverm 
 
export TMPDIR="/mnt/DATA/projects/priscila/tmp/" 
export TMPDIR="/mnt/DATA/belen/MAGS_assembly_chapter4" 
 
echo $TMPDIR 
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coverm genome --mapper minimap2-sr --methods relative_abundance -o 
coverm_relative_abundance_selected.txt --bam-file-cache-directory mags_bams -
-interleaved /mnt/DATA/belen/MAGS_assembly_chapter4/*.pe.qc.fq.gz --genome-
fasta-directory 
/mnt/DATA/belen/MAGS_assembly_chapter4/metawrap_refined_bins/metawrap_50_10_b
ins/ -x fa --threads 240 
 
####### 
## 7 ## 
####### 
 
########################### 
## FUNCTIONAL ANNOTATION ## 
########################### 
 
conda activate DRAM 
 
# We have 
lrwxrwxrwx. 1 belen belen   32 Dec 11 17:39 gtdbtk.ar53.summary.tsv -> 
classify/gtdbtk.ar53.summary.tsv 
lrwxrwxrwx. 1 belen belen   34 Dec 11 18:29 gtdbtk.bac120.summary.tsv -> 
classify/gtdbtk.bac120.summary.tsv 
 
# Combine both files 
head -n 1 
/mnt/DATA/belen/MAGS_assembly_chapter4/metawrap_refined_bins/refined_checkm2_
gtdb220/gtdbtk.bac120.summary.tsv > gtdbtk_summary_bac_arch.tsv 
tail -n +2 
/mnt/DATA/belen/MAGS_assembly_chapter4/metawrap_refined_bins/refined_checkm2_
gtdb220/gtdbtk.bac120.summary.tsv >> gtdbtk_summary_bac_arch.tsv 
tail -n +2 
/mnt/DATA/belen/MAGS_assembly_chapter4/metawrap_refined_bins/refined_checkm2_
gtdb220/gtdbtk.ar53.summary.tsv >> gtdbtk_summary_bac_arch.tsv 
 
# Functional annotation 
DRAM.py annotate -i 
'/mnt/DATA/belen/MAGS_assembly_chapter4/metawrap_refined_bins/metawrap_50_10_
bins/*.fa' \ 
-o dram_annotation/ \ 
--min_contig_size 2000 \ 
--gtdb_taxonomy 
/mnt/DATA/belen/MAGS_assembly_chapter4/metawrap_refined_bins/refined_checkm2_
gtdb220/gtdbtk_summary_bac_arch.tsv \ 
--checkm_quality 
/mnt/DATA/belen/MAGS_assembly_chapter4/refinded_checkm2/quality_report.tsv \ 
--threads 512 \ 
--verbose \ 
--kofam_use_dbcan2_thresholds \ 
--keep_tmp_dir 
 
cd /mnt/DATA/belen/MAGS_assembly_chapter4/dram_annotation 
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DRAM.py distill -i 
/mnt/DATA/belen/MAGS_assembly_chapter4/dram_annotation/annotations.tsv -o 
genome_summaries --trna_path 
/mnt/DATA/belen/MAGS_assembly_chapter4/dram_annotation/trnas.tsv --rrna_path 
/mnt/DATA/belen/MAGS_assembly_chapter4/dram_annotation/rrnas.tsv 
 
####### 
## 8 ##  
####### 
 
################################ 
## RELATIVE ABUBDANCE OF MAGs ## 
################################ 
 
# In this step, quantification of the relative abundance of MAGs in each 
sample is performed using the Salmon tool.  
# The aim is to determine how many reads from each sample map to the 
different MAGs, which provides information on the relative abundance of the 
assembled genomes  
# in the different samples. 
 
conda activate metawrap 
 
metawrap quant_bins2 -a 
/mnt/DATA/belen/MAGS_assembly_chapter4/final.contigs.fa -o quantified_bins -t 
240 -b 
/mnt/DATA/belen/MAGS_assembly_chapter4/metawrap_refined_bins/metawrap_50_10_b
ins/ /mnt/DATA/belen/MAGS_assembly_chapter4/binning_metawrap/work_files/*.bam 
 
############################# 
## MAGs ANALYSIS COMPLETED ## 
############################# 
 


