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Abstract

Soils are a key element in the hydrological cycle through a number of soil properties that are complex to estimate and exhibit
considerable spatial variability. Therefore, several techniques have been proposed for their estimation and mapping from
point data along a given study area. In this work, four machine learning methods: Random Forest, Support Vector Machines,
XGBoost and Multilayer Perceptrons, are used to predict and map the proportions of organic carbon, clay, silt and sand in the
soils of the Campo de Cartagena (SE Spain). These models depend on a number of hyperparameters that need to be optimised
to maximise accuracy, although this process can lead to overtraining, which affects the generalisability of the models. In this
work it was found that neural networks gave the best results in validation, but on the test data the methods based on decision
trees, random forest and xgboost were more accurate, although the differences were generally not significant. Accuracy
values, as usual for soil variables, were not high. The RMSE values were 8.040 for SOC, 7.049 for clay, 10.227 for silt and
13.561 for loam. The layers obtained were then used to obtain annual curve number layers whose ability to reproduce runoff
hydrographs was compared with the official CN layer. For high flow events, the CN layers obtained in this study gave better
results (NSE=0.807, PBIAS=-4.7 and RMSE=0.4) than the official CN layers (NSE=-2.28, PBIAS=135.82 and RMSE=1.8).
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Introduction

Communicated by: Hassan Babaie . . .
Soil is an open system whose properties are determined by a

wide variety of physical, chemical and biological processes.
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This system has important functions in ecosystems, includ-
ing the storage of water resources, the regulation of water
flows that determine the rate of evaporation, the recharge of
aquifers and the generation of runoff. Accurate and spatially
distributed estimations of their properties are therefore neces-
sary for adequate monitoring of natural resources, water and
land management and erosion forecasting (Lagacherie and
McBratney 2006; Hartemink 2008; Miller 2012; Schirrmann
et al. 2013; Minasny and McBratney 2016; Bobryk et al.
2016; Forkuor et al. 2017; Martinez-Hernandez et al. 2017;
Rodrigo-Comino et al. 2018; Ramirez-Lopez et al. 2019; Li
et al. 2022).

The water behaviour of soils is determined by their
physico-chemical properties. The spatial variability of such
variables depends on the characteristics of the parent mate-
rial, topography, climate, vegetation, weather and anthro-
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pogenic activities (Mulder et al. 2011; Umali et al. 2012;
Lin et al. 2016) through different soil-landscape processes.
These relationships were established by Jenny (1941).

In recent years, digital soil mapping techniques have
been used to map soil properties using environmental vari-
ables as predictors (Dobos et al. 2006; Grimm and Behrens
2010; Taghizadeh-Mehrjardi et al. 2016; Forkuor et al. 2017,
Minasny and Hartemink 2011; McBratney et al. 2003; Grun-
wald et al. 2011; Zhu et al. 2015; Arrouays et al. 2017,
Zeraatpisheh etal. 2017; Meier et al. 2018; Heung et al. 2016;
Sharififar et al. 2019; Taghizadeh-Mehrjardi et al. 2019; Zare
et al. 2016; Rial et al. 2017).

The amount of organic matter in the soil is one of the most
frequently modelled variables, in the form of soil organic
carbon (SOC) (Martin et al. 2014; Masri et al. 2015; Were
et al. 2015; Khan et al. 2015; Pinheiro et al. 2017; Rahman
et al. 2018; Gomes et al. 2019; Emadi et al. 2020) or soil
organic matter (SOM) (Byrne and Yang 2016; Khanal et al.
2018; Qi et al. 2018).

Among the physical properties modelled, texture
(Sarmadian et al. 2013; Pahlavan-Rad and Akbarimoghad-
dam 2018), bulk density (Beguin et al. 2017; Bondi et al.
2018) or degree of flocculation (Pinheiro et al. 2017) might
be highlighted.

The concentration of different elements has also been stud-
ied, e.g. Calcium (Pinheiro et al. 2017; Masri et al. 2015),
Phosphorus (Masri et al. 2015; Wilson et al. 2016; Pinheiro
et al. 2017; Hengl et al. 2017; Li et al. 2017), Magnesium
(Pinheiro et al. 2017; Khanal et al. 2018), and Potassium
(Khanal et al. 2018). Soil salinity (Wu et al. 2018), electri-
cal conductivity (Ranjbar and Jalali 2016), cation exchange
capacity (Pinheiro et al. 2017; Khanal et al. 2018; Sarma-
dian et al. 2013) and pH (Pinheiro et al. 2017; Khanal et al.
2018; Zhang et al. 2018; Pahlavan-Rad and Akbarimoghad-
dam 2018) are the main chemical properties analysed in the
literature.

These soil property maps can be made for different objec-
tives such as crop protection, weed detection, plant disease
identification and integrated pest management (Behmann
etal. 2015), yield and crop suitability forecasting (Gonzalez-
Sanchez et al. 2014; Khanal et al. 2018; Elavarasan et al.
2018), irrigation planning (Goldstein et al. 2018), soil tem-
perature modelling (Bilgili et al. 2010; Kim and Singh 2014),
development and evaluation of precision farming techniques
(Hengl et al. 2017) or soil dryness assessment (Coopersmith
et al. 2014).

The models used in digital soil mapping are trained with
data on the soil properties to be estimated, measured at
sites where other environmental attributes are available as
predictors: topographic variables, climate, parent material,
vegetation type and land use (Gessler et al. 1995). The result
is a model that predicts the spatial distribution of soil prop-
erties (Minasny and Hartemink 2011; Zhu et al. 2006).
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Despite concerns that the application of machine learn-
ing (ML) techniques may ignore soil science knowledge
and produce misleading or erroneous results (Rossiter 2018),
ML techniques have provided useful tools for soil mapping
(Khaledian and Miller 2020).

Among the most classical models used in soil mapping are
spline interpolation (Bilgili et al. 2010), geostatistical meth-
ods (Wilder et al. 2008), multiple linear regression (Sumfleth
and Duttmann 2008; Bonfatti et al. 2016; da Silva Chagas
et al. 2016; Angelini et al. 2017), generalised linear mod-
els (Karunaratne et al. 2014; Guisan and Harrell 2000) or
generalised additive models (Poggio et al. 2010).

The first ML models used include K-nearest neighbours
(KNN) (Mansuy et al. 2014; Taghizadeh-Mehrjardi et al.
2016), regression trees (Taghizadeh-Mehrjardi et al. 2014;
Scull et al. 2005; Wiesmeier et al. 2011). Such models are
quite simple and are considered nowadays slightly naive.
However, ensembles of decision trees have been a com-
mon and powerful tool in the last years, e.g. Random Forest
(RF) (Grimm et al. 2008; Akpa et al. 2014; Hengl et al.
2015; Forkuor et al. 2017; Pahlavan-Rad and Akbarimoghad-
dam 2018) and Boosting (Lemercier et al. 2012). Similar to
decision trees are the rules based models, such as Cubist
(Miller et al. 2015; Akpa et al. 2016; Rudiyanto et al. 2018;
Taghizadeh-Mehrjardi et al. 2016). Other usual models are
Support Vector Machines (SVM) (Yao et al. 2008; Kovacevi¢
et al. 2010; Pradhan 2013; Kavzoglu et al. 2014; Forkuor
etal. 2017; Cai et al. 2010; Brungard et al. 2015), and Neural
Networks (NN) (Behrens et al. 2005; Elshorbagy and Para-
suraman 2008; Kalambukattu et al. 2018).

ML techniques are nowadays commonly used in several
environmental applications, such us Climatology (Yang et al.
2024; Ruiz-Alvarez et al. 2019), Biogeography and Ecology
(Cutler et al. 2007; Giménez-Casalduero et al. 2020), Hydro-
geology (Baudron et al. 2013), Remote Sensing (Lary et al.
2016; Alonso-Sarria et al. 2024), etc.

Padarian et al. (2020) provide a comprehensive review of
the application of ML techniques in soil science. They note an
increase over time in the number of publications using ML to
model various aspects of soils. They attribute this increase to
a combination of increased computational power and access
to high performance computers, increased data availability
(e.g. remote sensing) and growing interest in data science.
They also conclude that of the more than 100 different model
variants that have been used in soil science, most have been
used experimentally in one or two papers, and only a few
have been used systematically. There is a general increase in
the use of all models, but it is possible to see a proportional
decrease in the use of some models such as SVM, splines
and decision trees, giving way to more advanced alterna-
tives such as RF. According to Padarian et al. (2020), these
more advanced modelling techniques tend to produce better
results than simpler, more traditional approaches. In another
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extensive comparisons, Sirsat et al. (2018) compared 76 dif-
ferent algorithms, with regression tree ensembles coming out
on top in predicting soil fertility indices. Other comparative
studies also showed a consistent superior performance of ML
methods (NN, SVM, RF) over simpler approaches (principal
component regression or partial least squares regression).

Motia and Reddy (2021) conducted a similar meta-
analysis, reviewing 57 research papers to analyse the contri-
bution of different ML techniques in soil analysis. SVM, RF
and NN and their variants were found to be the most widely
used methods in soil analysis and prediction applications.

The selection of the most appropriate algorithm for a given
set of resource constraints and desired level of uncertainty
depends on the complexity of the algorithm’s hyperpa-
rameters, the number of soil samples available, and the
time and resources available for calibration. Unfortunately,
many studies do not provide their rationale for the selec-
tion of a particular algorithm (Khaledian and Miller 2020).
Another potential problem with many studies that use differ-
ent machine learning techniques to show which one performs
better is that they often do not analyse the statistical sig-
nificance of the differences in accuracy between different
techniques. This is a common problem in the application of
ML techniques according to Spiegelhalter (2019).

In general, the number of data points plays a key role
in the robustness of ML results. However, the response of
model performance to the amount of training data differs
between ML algorithms. Cubist and RF are less sensitive to
sample size (Morgan et al. 2003), while neural networks are
more vulnerable to small sample sizes (Herndndez-Lobato
and Adams 2015; Tu 1996). On the other hand, the running
time for KNN and SVM increases exponentially with sample
size (Khaledian and Miller 2020). Small sample sizes can
lead to unstable results (Khaledian and Miller 2020).

Some studies suggest that environmental variables may
be even more important than the models used for digital soil
mapping (McKenzie and Ryan 1999; McBratney et al. 2000).
McBratney et al. (2003) proposed the SCORPAN model
as the basis for digital soil mapping, where soil (S) or its
properties are a function of environmental factors such as
climate (C), organisms (O), relief (R), parent material (P),
time expressed as soil age (A) and position in space (N). The
spatial variability of the soil would be seen as the result of
the complex combinations of these factors through the pro-
cesses of edaphogenesis. The SCORPAN model is the basis
of the digital soil mapping (Lagacherie and McBratney 2006;
Hartemink 2006).

Environmental variables can have different effects on dif-
ferent soil properties due to the different mechanisms of soil
property formation (Shi et al. 2018). Terrain characteristics
are among the most important covariates affecting the spa-

tial distribution of soil properties, as they control the process
of energy and mass fluxes (Moore et al. 1993). The most
commonly used terrain properties are elevation, slope, orien-
tation, curvatures, topographic wetness index (TWI) (Beven
and Kirkby 1979; Quinn et al. 1991), multiresolution valley
flatness (MrVBF) and ridge flatness (MrRTF) indices (Gal-
lant and Dowling 2003). Many studies have shown that the
use of multi-scale terrain attributes increases prediction accu-
racy (Smith et al. 2006; Behrens et al. 2014; Maynard and
Johnson 2014; Miller et al. 2015). The usual way to generate
variables with different scales of analysis is to derive them
from digital elevation models with different resolutions, or to
use variable window sizes to calculate topographic attributes
from a single DEM (Shi et al. 2018). Selecting the most
informative or relevant predictors before training the model
can increase interpretability (Xiong et al. 2014; Prasad et al.
2018; Wang et al. 2018; Keskin et al. 2019).

Soil Organic carbon (SOC) plays an important role in fer-
tility and nutrient cycling by providing a reservoir for other
organisms and by allowing the formation of aggregates that
increase soil porosity, aeration, infiltration capacity and ero-
sion resistance. The amount and type of SOC depends on
biomass inputs and the rate of biomass decomposition, and
thus on microbial activity, which is dependent on changes in
soil moisture, temperature and acidity (Alexander 1977).

Climatic variables, depending mainly on latitude, are
important at large scales (Liu et al. 2012). However, at
regional or local scales, geomorphometric variables derived
from elevation and land use or vegetation type are the
dominant factors (Rezaei and Gilkes 2005). These factors
determine the activity of organisms, erosion and sedimenta-
tion processes, drainage conditions and the exposure of the
soil to climatic conditions. Relationships have been found
between topographic factors such as slope or catchment area
and SOC content (Buol et al. 1989; Thompson and Kolka
2005; Nadeu Puig-Pey 2013). Land use and land cover, as
well as land use changes and land management practices,
also linked to topographic factors, also influence the SOC
content (Bergstrom et al. 2001; Lal 2002).

Soil texture is an important factor in other soil proper-
ties: temperature, structure, aggregate formation, cohesion,
moisture holding capacity and hydraulic conductivity. It is
therefore an important property in hydrological modelling
and a common input to pedotransference functions.

Clay in particular has an important influence on cation
exchange capacity, protects organic matter from degradation
and facilitates aggregate formation. The proportions of the
different particle size fractions depend on the mineralogi-
cal composition of the parent material and its resistance to
weathering agents, which in turn is linked to climate (espe-
cially temperature and moisture). However, in deep soils this
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relationship may be less direct due to the presence of several
superimposed pedogenetic processes. The relief also influ-
ences the processes of erosion, transport and sedimentation.

Several authors (Gessler et al. 2000; Pachepsky et al. 2001;
Wilcke et al. 2008) have studied the relationship between
morphometric factors and texture, taking them as input vari-
ables, and found, for example, a positive correlation between
altitude and sand content, while clay content was negatively
correlated with altitude and slope. The relationship between
terrain curvature and texture varies with scale (Brown et al.
2004). Organisms can influence the distribution of particles
and can assist weathering through the physical action of roots
or the chemical action of exudates and metabolites, or by
retaining sediments in the face of water or wind erosion.
However, in low areas, environmental factors such as relief
or vegetation are poorer indicators of the spatial variability
of particle distribution (McKenzie and Ryan 1999; Zhu et al.
2010).

The aim of this work is to use four machine learning meth-
ods, RE, SVM, XGBoost and MLP, to estimate SOC, clay,
silt and sand soil content in the Campo de Cartagena. For
the four models, their hyperparameters will be optimised to
maximise their accuracy, measured as root mean square error
(RMSE). Part of the dataset will be reserved as test data to
evaluate the models with the optimised parameters and to
observe the degree of overfitting that the optimisation has
produced. The best model for each variable is used to generate
a map of these variables. However, a permutation analysis is
performed to determine whether the results are significantly
different between each other.

The obtained layers are used to estimate the layers of curve
number (Chow et al. 1987; Ferrer-Julia 2003; Al-Ghobari
et al. 2020). In addition to the conventional validation in ML,
the results obtained in predicting the runoff hydrographs of
the Rambla del Albujén in the case of some rainfall events
will be compared using this CN layer and the CN layer pro-
posed in Ministerio de Medio Ambiente y Medio Rural y
Marino (2011). This way the ability of both datasets to pre-
dict flash floods is compared. The curve number is a method
developed by the US Soil Conservation Service to calculate
the amount of storm rainfall that is not infiltrated into the
soil and then converted to storm runoff. Its main parameter
is the curve number, which is calculated from soil texture,
land use and slope. A full description can be found in Chow
et al. (1987) or Al-Ghobari et al. (2020). Despite its age, it
is a widely used method in rainfall hydrology, especially in
land regional planning of large territories. This is because it
does not require several different input variables. However,
it does require soil texture data, which is easy to measure in
the laboratory for soil samples, but not easy to estimate in a
spatially distributed way.
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Methodology
Study area

The study area (Fig. 1) is the catchment area of the Mar
Menor (1265 km?). It is located in the south-eastern part
of the Segura river basin district. It is a vast area, with few
slopes and some small ridges, whose maximum altitude is
barely 150 metres above sea level. In turn, it is characterised
by tabular reliefs that extend from the foothills of the nearby
mountain ranges, such as the Sierra de Carrascoy, to the
Mar Menor (Romero Diaz and Belmonte Serrato 2011). It
is made up of 14 basins, which in turn contain their respec-
tive ephemeral watercourses or wadis. The largest basin is
that of the Rambla del Albujon, with a surface area of 543
km? and a 40 km long main channel, which is the largest
contributor of water to the Mar Menor.

This basin was characterised by a natural network of ram-
blas and gullies with a radial layout, i.e. a system of ramblas
that function individually. This is due to the characteristics of
the terrain and the semi-arid climate. However the extensive
agricultural land use has obliterated most of the network.
Temperatures in the area are above 3°C all year round, so
there is no risk of frost. The average annual temperature is
around 18°C, with average minimum temperatures in winter
between 10°C and 11°C and average maximum temperatures
in summer around 26°C, with maximum temperatures reach-
ing 38-42°C (Albaladejo-Garciaetal. 2021). One of the most
characteristic features of the climate of Campo de Cartagena
is its aridity. The annual rainfall average is between 300-350
mm, depending on the specific area of the basin, which causes
a rather long dry season of almost 9 months (Conesa Garcia
1990). The irregularity of rainfall is remarkable, and years
with less than 200 mm are common. At the same time, rain-
fall episodes of more than 150 mm in a few hours are not
uncommon. Water scarcity issues have led to a high degree
of mechanisation in agriculture, with drip irrigation used for
about 90% of crops (Alcon et al. 2011).

The aridity that characterises this basin, together with
the low gradient, means that the drainage network consists
solely of dry channels for most of the year (Romero Diaz
and Belmonte Serrato 2011). Due to the transformation that
the Campo de Cartagena has undergone in favour of agri-
cultural activities, farmers have been able to compensate for
the climatic conditions, and develop irrigation, thanks to the
arrival of the Tagus-Segura water transfer thus occupying a
large part of this territory with cultivation and irrigation plots
(Romero Diaz and Belmonte Serrato 2011).

In the Campo de Cartagena, soil degradation has been
due to several factors related to the intensive exploitation of
the cultivated area, including the use of agricultural inputs,
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Fig.1 Study area. Campo de Cartagena and Rambla del Albuj6n basin

reduction of biodiversity precipitated by the expansion of
monocultures, cultivation in greenhouses, and toxic waste
filtering caused by poor farm management (Rodriguez-Calles
2022).

In summary, the study area is characterised by intensive
agricultural use combined with water scarcity, flash floods
and erosion problems. In addition, the coastal area has both
an intensive use as a tourist attraction pole and an envi-
ronmental relevance as one of the most interesting coastal
lagoons in the Mediterranean. In order to reconcile the dif-
ferent human activities with the protection of the environment
and the mitigation of environmental risks, it is necessary to
have the best possible knowledge of all the environmental
and socio-economic systems integrated in the area. To this
end, it is important to have better maps of different and rel-
evant environmental variables. In particular, distributed soil
texture and soil carbon information could improve agricul-
tural productivity, flash flood forecasting and estimation of
sediment flows into the lagoon.

Information sources and predictors

In order to obtain predictors to calibrate the models, different
sources of information have been used:

e The soil data come from the LUCDEME soil database
(Alias and Ortiz 2004), extended with data from Blanco
Bernardeau (2015). The LUCDEME project was part of
the activities linked to the United Nations Plan of Action

680000

690000 700000

to Combat Desertification (DESCON), due to the serious-
ness of the desertification processes in the southeastern
peninsula. It generated a large amount of information,
including 132 sheets of 1:100.000 soil maps covering the
entire south-east of the peninsula. Although originally
produced on paper, some of these were later digitised. The
maps are accompanied by the corresponding data files,
which contain the description of the soils according to the
FAO-UNESCO (1974) classification system and include
a data file with the data of 547 profile samples and 1922
samples of the arable layer in the first 30 centimetres of
the soil according to a 3x3 kilometre grid. From these
data, the Campo de Cartagena database used in this work
was extracted, including 274 points. Table 1 shows the
variables analysed and the determination methods used.
Table 2 shows basic statistics of both the dependent and
the independent variables, and Table 3 shows the corre-
lation coefficients between variables. These coefficients

Table 1 Analytical data included in the LUCDEME database and anal-
ysed in this work

Variable Units Description
Organic carbon (SOC) gkg! Anne (1945)
Clay (0-2 ) % Robinson pipette
Silt (2-20 y 20-50 ) % Robinson pipette
Sand (50 i - 2 mm ) % Sieving

Further details on these methods in Pansu and Gautheyrou (2006)
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Table 2 Basic statistics of dependent and independet variables

Variable mean stddev
Soil Organic carbon 11.62 6.27
Clay 21.99 9.61

Silt 42.81 10.94
Sand 35.19 15.02
Height 206.92 181.62
Slope 5.29 6.62
aspect 208.88 115.75
Curvature 0.0 0.0

TPI 0.68 1.65
TWI 7.96 2.8

LS 500.91 1901.42
MRVBF 1.97 1.92

X 670158.5 14650.14
Y 4180639.06 11381.76

are quite low; however they detect mainly linear rela-
tions whereas the models we are going to test are able to
detectnon linear relations. Figure 2 shows the distribution
of organic carbon values and texture classes of the anal-
ysed data, and Fig. 3 shows the spatial distribution of the
original samples. This is a database collected before the
availability of GNSS systems, so the uncertainty in the
positions is greater than that of current sampling cam-
paigns. This is indeed a challenge for any attempt to
interpolate the data; however, we believe that it is an
interesting database and that it is worth trying to use it to
obtain layers of soil variables at a higher resolution (25

m) than those currently available (500 m).

e Digital Elevation Model (DEM) with 25 m resolution
from LiDAR data. It was obtained from the CNIG web-
site (National Geographic Institute of Spain, 2013). The

following predictors are obtained from this DEM:

Height in meters above mean sea level
Slope in degrees
Aspect in degrees counterclockwise from North

of a cell to accumulate water or not.

@ Springer

Profile curvature is defined as the rate of change of
the slope in the direction of the maximum gradient,
and therefore depends on the second order derivatives
of the height. It reflects the acceleration or decelera-
tion of material flow along a slope, so that a negative
profile curvature is concave and the flow undergoes
a relative deceleration, while a positive profile cur-
vature reflects a convex slope and implies a relative
acceleration. Profile curvature has a significant rela-
tionship with soil moisture, indicating the tendency

— Topographic Position Index (TPI), developed by
Jennes (2005), is a focal operator that compares the
height of a cell with the average height of the win-
dow. Positive values of the TPI represent cells with
an elevation higher than the average of the window
under consideration, representing ridges, while neg-
ative values represent cells with a lower elevation
(valleys).m.o.s.l. Values close to zero can represent
cells with a slope of zero or with a constant slope.

— Terrain roughness index (TRI) is an index of the het-
erogeneity of the terrain, defined by Riley et al. (1999)
as:

i=1,j=1

TRI= | ) (Xij—Xo0)? M
i=—1,j=—1

— Topographic Wetness Index (TWI) is based on the
idea that topography controls water movement on a
slope, indicating the spatial distribution of soil mois-
ture and soil surface saturation. This index is part
of the distributed hydrological model TOPMODEL
(Beven and Kirkby 1979; Quinn et al. 1991), which is
used to model topography-related hydrological pro-
cesses at the slope and catchment scale. This index is
calculated as

a

tanp

TWI =In

@)

where a is the specific flow accumulation area,
reflecting the tendency of that cell to accumulate
water, and S is the slope. The calculation of a requires
knowledge of the flows occurring on the slope to
determine the total accumulation area A flowing
through the cell under consideration, along with the
effective contour length L orthogonal to the flow, such
that a = A/L, where L is weighted by multiplying
by the local slope angle, thus 8, which represents the
hydraulic gradient, i.e. the tendency of gravitational
forces to move water down the slope.

— The USLE (Universal Soil Loss Equation) is an
empirical equation used for agricultural purposes,
where the LS factor represents the effect of slope on
soil loss, which increases with slope steepness and
slope length (Moore and Burch 1986). It is defined
as:

A 0.4340.35 + 0.04352
LS = (—)" 3
S (22) ( 6.574 ) )

where A is the hillslope length (m), S i the slope (%),
and m receives different values depending on slope:
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Fig.2 Histogram of soil
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ifS<1,m=02if 1 < § < 3.5 m=03;if
35<S<45 m=04andif S > 4.5, m=0.5.

— The Multiresolution Index of Valley Bottom Flat-
ness (MRVBF) , purposed by Gallant and Dowling
(2003), is an index that allows the description of val-
ley bottom morphology over a wide range of scales
by combining the results into a single multiresolution
index. MRVBEF values less than 0.5 are not consid-
ered to be valley bottoms. Values between 0.5 and 1.5
would correspond to smaller, steeper valleys, while
wider, flatter valleys would be represented by values
higher than 1.5.

@ Springer

Sand (%)

e The CORINE Land Cover land use maps for 1990, 2000,

2006, 2012 and 2018 (European Environment Agency
1995; Bossard et al. 2000). As these maps are available
for several years, estimates can be made for the same
years.

Soil maps from the LUCDEME project maps digitised
by the Autonomous Community of the Region of Murcia
(Ramirez-Santiagosa et al. 1999).

Lithostratigraphic, permeability and hydrogeological map
of Spain at 1:200,000 scale from the Spanish Geo-
logical and mineralogical Institute (IGME). It shows
the geological units according to lithostratigraphic and
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Fig.3 Spatial distribution of Sand percentage (top left), Silt percentage (top right), Clay percentage (bottom left) and Soil Organic Carbon (bottom

right)

hydrogeological criteria. A map of lithological units and a
semi-quantitative permeability map with five levels were
obtained from these sources.

e Xand Y UTM coordinates are added to these predictions.

Algorithms

The large distance between observation points makes difficult
the use of local interpolation methods such as geostatis-
tical techniques (Burgess and Webster 1980a,b; Webster
and Burgess 1980; Goovaerts 1997) or others. Therefore,
only global interpolation methods, based on four algorithms
belonging to three of the most common types of machine
learning algorithms, were used.

RF (Breiman 2001) consists of an ensemble of decision
trees (on the order of hundreds or thousands). Each of them is
trained with a resampled subsample obtained by bootstrap-
ping the original data set; the excluded data are then used
to obtain an error estimate (Stum 2010). On the other hand,
only a subset of the predictor variables is considered at each
decision node of each tree. The size of this subset (mtry) and

the number of trees (ntree) are the parameters to be opti-
mised in this model. The default values for regression are
ntree = 500 and mtry = int(p/3) where p is the number
of predictors (Liaw and Wiener 2002). Once the trees have
been trained, the prediction for new cases will be the average
of the predictions of all the trees. RF has been used in digi-
tal soil mapping (Grimm et al. 2008; Wiesmeier et al. 2011;
Lief3 et al. 2012).

Boosting (Wade 2020) is another type of decision tree
ensemble with the aim of improving the predictive behaviour
of the trees. In this case, instead of training all the trees in
parallel, they are trained one at a time, so that as each tree
is trained, the cases predicted with more error by the pre-
vious tree are given more weight. At the same time, the
maximum depth that the trees can reach is limited, so that
each individual tree has less predictive power than an iso-
lated decision tree. Its main hyperparameter is the learning
rate; a high learning rate reduces the weight of the first trees
in the total.

The goal of SVM s to obtain alinear model that maximises
the number of cases that are less than € away from the straight
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line defined by that model. If the relationships between the
predictors and the response variable are non-linear, it is pos-
sible to try to make them linear by transforming the space of
variables using a kernel function. The most common kernel
functions are the gaussian kernel and the polynomial kernel.
The former is controlled by the parameter y and the latter by
y and the degree of the polynomial (g). SVM has been used
in the field of soil science, both for predicting properties and
for classifying soil types or detecting cases of soil salinisa-
tion or contamination (Bhattacharya and Solomatine 2006;
Ballabio 2009; Kovacevi¢ et al. 2010; Cai et al. 2010; Brun-
gard et al. 2015). In this paper we test the polynomial kernel
optimising €, y and g and the Gaussian kernel optimising €
and y.

Artificial Neural Networks (ANN) are non-parametric
machine learning methods that allow the detection of non-
linear relationships and have been used both in modelling
soil properties when large databases with a large number of
variables are availables (Elshorbagy and Parasuraman 2008),
and in the elaboration of edaphotransfer functions. These net-
works have a system of many interconnected nodes organised
in layers: an input layer, an output layer and one or more
hidden layers that extract useful information from the input
layer and use it to predict the results. Neural networks have
generally been applied to the prediction of edaphototransfer
functions, but also to the determination of other soil prop-
erties (Behrens et al. 2005; Anagu et al. 2009; Hattab et al.
2013).

A multilayer perceptron is a simple type of neural network
that is widely used in regression. It consists of multiple lay-
ers of interconnected neurons. The regularisation strategy is
to drop a proportion of the neurons (drop rate). Other hyper-
parameters of the model are the batch size (number of cases
analysed before updating the values of the neuron weights)
and the learning rate (magnitude of the changes in the values
of the neuron weights at each update).

Software

The terrain features extracted from the DEM were com-
puted using GRASS (GRASS Development Team 2023)
and SAGA (Conrad et al. 2015). The prediction models
were developed in Python using the libraries scikit-learn
(Pedregosa et al. 2011) for RF and SVM, xgboost (Chen
and Guestrin 2016) for the XGBOOST model and tensor-
flow (Abadi et al. 2016) for MLP. A detailed explanation of
the algorithms used and their implementation in Python can
be found in Géron (2019) and James et al. (2023).In addi-
tion, a Python library was created with functions to draw
the texture triangle and calculate texture classes, hydrolog-
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ical groups and curve number from Ferrer-Julia (2003) and
USLE K-factor from Corral-Pazos-de-Provens et al. (2023).

Procedure

The variables analysed are SOC, clay, silt and sand. Five
models are tested: RF, Polynomial Kernel Support Vec-
tor Machines, Gaussian Kernel Support Vector Machines,
XGBoost and Multilayer Perceptron.

In order to avoid overfitting of the models to the train-
ing data, we used 20 % of the samples to test and 80 %
to train. In order to avoid overfitting in the hyperparameter
optimization process, we used 4-fold cross validation with
the training data. The data set is randomly divided into five
parts. The first part will be used as test data and the other
four parts will be used for a four-folds cross-validation. This
cross-validation is used to optimise the hyperparameters of
the different algorithms by minimising the mean square error.
Leave-one-out cross validation (LOO-CV), that is k-fold CV
with k=n, would give a less biased error estimation than
k-fold cross validation; however, test errors resulting from
LOO-CV tend to have higher variance than test error derived
from k-fold CV (James et al. 2017). This authors suggest
using k=5 or k=10. We decided to use k=4 to reduce compu-
tational burden (models have to be calibrated only 4 times)
inside every hyperparameter optimization loop.

The optimisation of the hyperparameters is done by a
systematic search in the hyperparameter space. After obtain-
ing the results, it is determined which is the minimum and
whether it is necessary to do a second search around this
minimum. This is determined by checking whether the results
show a clear trend towards a decrease in the RMSE at the min-
imum or whether, on the contrary, a random result appears.

After obtaining the set of hyperparameters that minimises
RMSE, the corresponding models are calibrated with the 4
training sets and used to predict the corresponding variable
in the test data. To evaluate these results, the RMSE and the
coefficient of determination R? are calculated. Finally, the
statistical significance of the differences in the RMSE values
is determined by taking 100000 resamples of the test points
to obtain the statistical distribution of these differences. From
these differences, the p-value of the observed difference can
be obtained. For a difference in the RMSE to be consid-
ered significantly different from zero, the p-value should be
sufficiently low, in principle less than 0.05, but considering
that multiple comparisons are made, this threshold should be
lower.

Finally, the best model for each variable is used to obtain a
final map from models calibrated on the entire dataset. With
these maps, the layers of texture classes, hydrological groups
and curve number are finally obtained. As the original data
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correspond to 1990, the validation of the models is based on
the estimates for this year.

Hydrological model

In order to evaluate the effect of the estimated CN values
in an applied case, a simple hydrological HEC-HMS based
model was used. HEC-HMS uses three sub-models: 1) The
Curve Number Method (Soil Conservation Service 1972)
to separate precipitation into infiltrated water and effective
precipitation, 2) the instantaneous unit hydrograph method
for converting effective precipitation into channel outflow
(Chow et al. 1987), and 3) Muskingum’s method (McCarthy
1938) to convey, in a given catchment, the flow from tribu-
tary catchments to the outflow. As the aim of this study is
to determine the differences between the two CN estimation
strategies, it was not considered appropriate to carry out a
prior calibration of the model.

In this study, the schematisation of the model (Fig. 4) was
carried out by discretizing the Albujén basin into 15 sub-
basins, 11 sections of riverbed, one outlet (near the mouth)
and 16 connection nodes between the elements. With regard
to the meteorological model, precipitation hyetograms from
25 meteorological stations (Fig. 4) belonging to the Murcia
Region Agrarian Information System (SIAM) and the Span-
ish Automatic Hydrological Information System (SAIH)
networks have been used, with a time step of 1 hour. Spatial-
isation of rainfall data performed by interpolation using an
inverse of the squared distance weighted average.

X

Fig.4 Study area. Campo de 40000 650000

660000

This model was used to simulate the hydrological response
of the Rambla del Albujon to real rainfall events, using the
curve number layers obtained in this work and those used
by the Spanish Ministry of the Environment and Rural and
Marine Affairs for the development of the national flood zone
mapping system (Ministerio de Medio Ambiente y Medio
Rural y Marino 2011). This last study uses a layer of the PO
parameter, complementary to CN, calculated for the whole of
peninsular Spain by CEDEX in collaboration with the Uni-
versity of Leén (ULE 2009). This layer has a resolution of
only 500x500 m. The variables from which PO has been cal-
culated in this work are the hydrological soil group obtained
from the method proposed by Ferrer-Julia (2003), the land
use from the data of the CORINE LAND COVER project of
2000, the slope of the terrain obtained from the DTM with
a spatial resolution of 500x500 m, distinguishing between
slopes greater and less than 3 %.

As different goodness-of-fit statistics measure different
aspects of model performance (Bennett et al. 2013), three
different statistics were used to assess the error of the run-off
model: Root Mean Square Error (RMSE), Modified Nash-
Sutcliffe Efficiency (NSE), which measures the relative size
of the residual variance compared to the measured data vari-
ance and is less sensitive to extreme values than R? (Legates
and McCabe 1999), and Percent Bias (PBIAS), which mea-
sures the average tendency of the estimated values to be
greater or less than the observations and is not as sensitive
to extreme values or to the magnitude of the variables as
RMSE. These three statistics were calculated for each esti-
mated hydrograph compared to the observed data.
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In this study, 4 gauging stations belonging to the SAIH
network (Fig. 4) have been used, although after a previous
analysis of the behaviour of the observed hydrographs, the
results of station 06A03Q01 are presented.

Results and discussion

Table 4 shows the optimal parameters and RMSE values
obtained by cross-validation for each variable and model. In
general, the best values are obtained with MLP. Only in the
case of sand percentage, the result of the SVM with Gaussian
kernel is preferable to that of the MLP. It is obvious that the
higher the number of parameters of a model, the better the fit
can be and the more combinations are made when optimising
the hyperparameters, so it is reasonable to think that a model

Table 4 Optimal hyperparameters

RF
ntree mtry RMSE
SOC 100 2 6.389
Clay 400 13 7.646
Silt 100 2 9.579
Sand 300 2 13.56
SVM (Polinomial kernel)
degree  gamma epsilon RMSE
sSoC 1 0.025 7 6.607
Clay 1 0.075 0.01 7.635
Silt 1 0.03 6.3 9.765
Sand 1 0.5 7.5 14.513
SVM (gaussian kernel)
gamma  epsilon RMSE
SOC  0.02 0.25 6.613
Clay 0.02 0.05 7.75
Silt 0.0235 44 9.597
Sand  0.03 0.02 13.598
XGB
ntrees maxDepth  learning rate RMSE
SOC 80 1 0.08 6.407
Clay 44 3 0.075 7.678
Silt 400 1 0.02 9.595
Sand 500 5 0.008 14.149
Multilayer Perceptron
nlayer dropRate learning rate  batch Size RMSE
SoC 4 0.15 0.15 16 5.840
Clay 5 0.3 0.02 7.008
Silt 6 0.2 0.025 0.046
Sand 5 0.35 0.01 14.115

@ Springer

with more parameters can obtain a higher accuracy, at least
with the training data.

For this reason, it is necessary to have test data with which
to evaluate the accuracy of the best model obtained. Table 5
shows the results obtained with the different models. Both
RMSE and R? are shown and the values indicating the high-
est accuracy for each variable are highlighted in bold, in this
case the best results for SOC, silt percentage and sand per-
centage are obtained with RF, while the best results for clay
percentage are obtained with XGBoost. It can be seen that, in
general, it is the results of the models with fewer hyperparam-
eters and therefore fewer optimisation trials that ultimately
give the best results on the test data, as they are not over-
trained. In the case of clay and silt, although RF and XGBoost
have the lowest RMSE values, MLP has the highest R? val-
ues. This fact and the small differences in the RMSE values
already seem to indicate that the observed differences are
insignificant.

Table 6 shows the results of the permutation tests to
determine whether the difference in accuracy of two models
are statistically significant. P-values lower than 0.05 appear
only when comparing RF with both SVM models for SOC,
and it must be taken into account that we are making 40
comparisons, which clearly poses the problem of multi-
ple comparisons. Furthermore, the 2 p-values obtained that
could be considered significant are not much lower than
0.05, so we could conclude that there are no significant dif-
ferences between the different methods. We think, as does
(Spiegelhalter 2019), that this might be the case for a great
deal of ML comparison results when comparing different
state-of-the-art machine learning algorithms. However, it is
not common to check the significance of accuracy differences
in similar papers.

Comparing SOC results with other studies in terms of
RMSE is complex because different studies express these
measurements in different units, the conversion of which
depends on bulk density and is not always taken into account
in the work. On the other hand, the organic matter content will
be very different in different areas. It is therefore preferable
to make comparisons using R>.

Martin et al. (2014) use Boosted Regression Trees (BRT)
to estimate organic carbon in France using different sets of
predictors. The values of R? obtained range from 0.17 to
0.35, so the values obtained in this paper would be within
this range. In contrast, Were et al. (2015) compare SVM, RF
and ANN to estimate organic carbon in a small area of Kenya
and the reported values of R? are 0.64 for SVR, 0.61 for ANN
and 0.53 for RF. These values are significantly higher than
those obtained in this study.

As for the clay, silt and sand contents, they are easier
to compare with RMSE, Reza Pahlavan-Rad and Akbari-
moghaddam (2018) using RF and obtain RMSE values of
21.4 for sand, 17.45 for silt and 6.02 for clay. The values for
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'gable 5 Error statistics with test RF SVM polinomic SVM gaussian XGB MLP1
ata RMSE 12 RMSE 12 RMSE 12 RMSE 12 RMSE 12
SOC  8.040 0.283 8.688 0.173 8.935 0.18 8.45 0.18 8.775 0.166
Clay 7.183 0.278  7.345 0.234 7.701 0.151 7.049 0.288  7.327 0.288
Silt 10.227 0.041 10.263 0.063 10.705 0.012 10.705 0.012 14.32 0.167
Sand 13.561 0.214 14.608 0.117 14.328  0.126 14.328 0.126 14.768 0.077

clay are similar to ours, but those for silt and sand are sig-
nificantly worse than ours. Bashir et al. (2024) use different
model distributions to improve the results of the SVM and
RF machine learning models. They report RMSEs between
1.1 and 9.7 for sand, between 3 and 18.1 for silt and between
1.8 and 18.1 for clay. Our results are therefore slightly worse,
but within the range of values. Martinelli and Gasser (2022)
obtain the best results with RF after comparing this method
with KNN, NN, XGBOOST and linear regression, the latter
being the worst performer. The RMSE values obtained by
these authors with RF are 12.5 for sand, 10.2 for clay and
7.16 for silt. Our results are better for clay, slightly worse for
sand and significantly worse for silt.

Taking into account the uncertainty in the positioning of
the points, the results can be considered quite adequate com-

pared to those reported in the literature. Another relevant
issue in validating the clay, sand and silt estimates is to check
that the pattern obtained in the texture triangle correctly
reproduces the patterns observed with the real data. Figure 5
(left) shows the heat maps of the estimates in the study area
on the texture triangle. The distribution does not correctly
reproduce the expected distribution, that of the LUCDEME
project data (Fig. 2). The deviation is clear, and due to a bias
of the model. Ensemble models tend to reduce variability
in the modelled variable, at the end of the day, it works by
calculating means. We decided then to expand the distribu-
tion of the predicted results to fit the real distribution of the
variables. In order to obtain a more correct estimation of the
texture classes, hydrological groups and number of curves,
a correction coefficient was applied to the values estimated

Table 6 P-values of

permutation tests of prediction So¢ RF SVM (Poly) SVM (RBF) XGB MLPI

models for organic carbon RF 0.0344 0.0423 02317 0.6205

content, clay content, sand

content and silt content SVM (Poly) 0.0344 0.1667 0.0572 0.7103
SVM (RBF) 0.0423 0.1667 0.1341 0.8166
XGB 0.2316 0.0571 0.1341 0.8382
MLPI 0.6205 0.7103 0.8166 0.8382
Clay RF SVM (Poly) SVM (RBF) XGB MLP1
RF 0.3136 0.2604 0.6569 0.6532
SVM (Poly) 0.3136 0.632 0.1834 0.7904
SVM (RBF) 0.2605 0.632 0.2236 0.3495
XGB 0.6569 0.1834 0.2236 0.5497
MLP1 0.6532 0.7904 0.3495 0.5497
Silt RF SVM (Poly) SVM (RBF) XGB MLP1
RF 0.8403 0.5627 0.2171 0.1050
SVM (Poly) 0.8403 0.3299 0.4054 0.086
SVM (RBF) 0.5627 0.3299 0.2411 0.0697
XGB 0.217 0.4053 0.2411 0.1446
MLP1 0.105 0.086 0.0697 0.1446
Sand RF SVM (Poly) SVM (RBF) XGB MLP1
RF 0.2414 0.8119 0.2235 0.2092
SVM (Poly) 0.2414 0.2535 0.8318 0.5483
SVM (RBF) 0.8119 0.2535 0.3386 0.3108
XGB 0.2235 0.8318 0.3386 0.615
MLP1 0.2092 0.5483 0.3108 0.615

P-values lower than 0.05 are highlighted

@ Springer



323  Page 14 of 24 Earth Science Informatics (2025) 18:323

Fig.5 Texture triangle showing 0-100

the distribution of predicted 100-1000

values in 1990 uncorrected (left) 1000-10000
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and corrected (right)
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with the RF models with the objective of reproducing the = where clayg, sandg and siltg stands for the values produced
observed distribution. This is a simple linear transformation by the RF model. A posterior normalization ensures that the

consisting of: three fractions add up to 100 %
This changes the texture distribution from that on the left
e clay =clayg -10 of Fig. 5 to that of the right. This transformation, which
e sand = sandy - clayo + 25 applies to all years, is necessary if the resulting layers are to
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Fig.6 Estimated SOC (top left), clay (top right), silt (bottom left) and sand (bottom right) in 1990
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be used as input data for any type of hydrological, agronomic
or erosion model. This type of transformation is clearly not
ideal, and further work is needed to avoid such biases in soil
texture models. The use of other algorithms may give better
results. Figure 6 shows the final maps.

We obtained uncertainty maps, which are shown in Fig. 7.
As the best models in all cases were ensembles of trees
(XGBoost in one case and Random Forest in the others),
it is possible to take the individual prediction from each of
the trees and calculate the standard deviation of the predic-
tion. However, it is important to note that this is a measure
of how confident the model is about the prediction, not how
accurate the prediction is.

Runoff model

Due to the high RMSE values and the need to transform the
values obtained to correctly reproduce the pattern observed
in the texture triangle, we decided, as a second form of vali-
dation, to use the produced layers to obtain layers of the CN
parameters of the SCS abstractions model and compare the
results of simulating the response to a series of precipitation
events with those obtained with the official layers from Min-
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isterio de Medio Ambiente y Medio Rural y Marino (2011).
If better results are obtained, we can assume that the layers
obtained are useful from an applied point of view, despite the
issues in their estimation.

Figure 8 shows the CN values of Ministerio de Medio
Ambiente y Medio Rural y Marino (2011) and those obtained
in this work aggregated by basin and Fig. 9 shows the scstter-
plot of such values. The map of CN values from Ministerio
de Medio Ambiente y Medio Rural y Marino (2011) has a
spatial resolution of 500 m, whereas the maps produced in
this work have a spatial resolution of 25 m, therefore, we call
the first map CN500 and the second CN25.

The CN500 values range from 60 to 82, while the CN25
values range from 71 to 82. The correlation coefficient
between the two is 0.25. It is evident that the values obtained
in this work are systematically higher, although there is some
correlation between the values of the two sets. It is therefore
expected that the ability to reproduce the observed hydro-
graph will be different in both cases.

Table 7 shows the main results of the simulation of three
events (09/12-14/2019, 11/18-20/2018 and 03/06-08/2021)
using both the 500 m CN layer and the 25 m CN layer. For
the small runoff events (2018 and 2021 events) there are no
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Fig.7 Uncertainty (standard deviation of estimations) in SOC (top left), clay (top right), silt (bottom left) and sand (bottom right) in 1990
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Table 7 Goodness-of-fit statistics of the estimated hydrographs using both the 500 m CN estimation (CN500) and the 25 m CN estimation (CN25)

Start End CN layer ObVol EsVol ObPeak EsPeak NSE PBIAS RMSE
09/12/2019 12 09/14/2019 04 CN500 7.01 13.61 100.50 146.90 —2.28 135.82 1.80
09/12/2019 12 09/14/2019 04 CN25 7.01 5.52 100.50 61.30 0.81 —4.70 0.40
18/11/2018 00 20/11/2018 23 CN500 3.00 3.14 53.60 33.50 —0.06 0.22 1.00
18/11/2018 00 20/11/2018 23 CN25 3.00 3.14 53.60 33.50 —0.06 0.22 1.00
03/06/2021 00 03/08/2021 23 CN500 0.47 1.74 14.70 18.60 —1.31 51.65 1.50
03/06/2021 00 03/08/2021 23 CN25 0.47 1.74 14.70 18.60 —1.31 51.65 1.50

Other hydrograph variables shown are observed volume in H m?> (ObVol), estimated volume in Hm?> (EsVol), observed peak (obPeak) in m3 /s and

estimated Peak (EsPeak) m?> /s

differences using different CN layers. However, for the large
runoff event, the differences are very significant. CN25 gives
more accurate results, with a very good shape and position of
the hydrograph, while the hydrograph generated with CN500
is delayed by about 5 hours. The runoff volume simulated by
CNS500 is almost double that of the observed data, while the
runoff volume simulated by CN25 is 78 % of the observed.
Interestingly, the peak in CN500 is overestimated, as is the
runoff volume in general, but the peak in CN2S5 is underesti-
mated. Figure 10 shows the observed hydrographs and those
simulated with the values of CN500 and CN25.

The model gives the same results for both low rainfall
events. This is probably because the rainfall intensity in such
events was too low to overcome infiltration with both CN25
and CN500 values. Figure 11 shows a sensitivity analysis
to evaluate the model response of the Albujén catchment
in gauge 06A03Q01 (see Fig. 4). This sensitivity analysis
was performed by sistematically changing the area-weighted
mean CN of the seven sub-basins, but maintaining the differ-
ences between them to preserve the spatial variability, and
using the real yetographs of the three events as input. Runoff
volume (hm?) and peak runoff (m3/s) are calculated for each
CN value and hyetograph. The lines in the figure represent
the results of the sensitivity analysis and the points repre-
sent the results obtained with the CN25 values estimated in
this work (mean=63.4, sd=2.3) and the official CN500 values
(mean=74.06, sd=1.21) in the basins.

Figure 11 shows that both runoff volume and peak are the
same for both CN values in the 2018 and 2021 events. Both
hydrograph parameters are insensitive to CN values up to a
threshold, and this threshold depends on the characteristics
of the event, mainly the rainfall amount and intensity. For
the high rainfall event of 2019, the threshold is around 60,
thus the two CN values give different results; however, for
the low rainfall events, the threshold is slightly higher than
80 and the two CN values give the same results.

Conclusions

Four models were tested for predicting soil organic carbon
content and percentages of clay, silt and sand. The accuracy
of the models is rather low, but within the ranges observed in
previous work using similar models. It is well known that soil
variables are particularly difficult to model due to their high
spatial variability over small distances. Furthermore, this is
a 1990 database with a much higher positional uncertainty
than those obtained in later studies using GNSS. We also
assume that the changes in the geomorphometric properties
we use as dependent variables are negligible, but agricultural
practices and run-off processes may have altered them. For
these reasons reasons, we consider the results to be quite
adequate under the circumstances and at the same time as
an encouragement to obtain better data. The resulting NC
layer still has higher accuracy in HMS than the official NC
layer. We believe that these results encourage new systematic
sampling campaigns to improve soil information in order to
have a better modelling capability.

The differences between the different models used are
very small and not statistically significant. It is common in
papers using ML techniques not to carry out this check and
end up finding that one model performs better than others
with minimal differences in accuracy that may not be signif-
icant. The statistical significance of differences in accuracy
statistics between different models should therefore be anal-
ysed, especially when these differences are small. Another
interesting conclusion that can be drawn from these results
is the need for better data, in addition to trying to find better
algorithms.

Using the curve number layers derived from the estimates
obtained in this work, the accuracy of a simple hydrological
model, whose objective is to reproduce the runoff hydro-
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Fig.10 Hydrographs of the 11/18-20/2018 (top), 09/12-14/2019 (middle) and 03/06-08/2021 (bottom) precipitation events. Both CN25 and CN500

produce the same hydrograph for the 2018 and 2021 events

graph of the Rambla del Albujén for the rainfall events
of 09/12-14/2019, 11/18-20/2018 and 03/06-08/2021. The
results show that the CN layer obtained in this work provides
better hydrograph estimates than the official CN layer when
the runoff volume is high, specially the time to peak, which
is relevant for nowcasting, and the total runoff. Although
these results show that the official data overestimate runoff,
this does not mean that it would be the same in other study

@ Springer

areas. The missrepresentation of soil properties in the model
may have different effects in different places and for different
events. Regardless of the accuracy of the models, we believe
that this result reflects the interest of improving the param-
eters of environmental models in general and hydrological
models in particular using ML techniques.

The importance of flooding as an environmental hazard
makes it advisable to develop more work to improve the
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CN medio ponderado por superficie de cada una de las siete subcuencas
aguas arriba del punto de aforo 06A03Q01. Los cuadros representan el

knowledge of soil properties in areas prone to such events. In
a broader context, several hydrological, erosion or agricul-
tural models have been proposed and used in spatial planning
toreconcile agricultural activity, tourism, environmental pro-
tection and environmental risk management in semi-arid
areas. To achieve these objectives, it is clear that further
work on soil sampling is needed to provide the scientific
community with more densely sampled databases to obtain
more accurate estimates of the different soil variables. Faster
sampling and analysis techniques are needed to overcome
the trade-off between higher sampling density and larger
areas covered. Remote sensing data could also help. Recently,
NASA installed a hyperspectral sensor (EMIT) on the Inter-
national Space Station. The aim of this sensor is to identify
minerals in the soil surface in arid and semi-arid areas. The
data is only available since 2023, but it could be used as
an additional predictor for models that estimate soil prop-
erties. Another interesting line of future work is the use of
ensembles of different models to try to increase the resulting
accuracy.
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