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Abstract: Floods are a major threat to human life and economic assets. Monitoring these
events is therefore essential to quantify and minimize such losses. Remote sensing has
been used to extract flooded areas, with SAR imagery being particularly useful as it is
independent of weather conditions. This approach is more difficult when detecting flooded
areas in semi-arid environments, without a reference permanent water body, than when
monitoring the water level rise of permanent rivers or lakes. In this study, Random Forest
is used to estimate flooded cells after 19 events in Campo de Cartagena, an agricultural area
in SE Spain. Sentinel-1 SAR metrics are used as predictors and irrigation ponds as training
areas. To minimize false positives, the pre- and post-event results are compared and only
those pixels with a probability of water increase are considered as flooded areas. The ability
of the RF model to detect water surfaces is demonstrated (mean accuracy = 0.941, standard
deviation = 0.048) along the 19 events. Validating using optical imagery (Sentinel-2 MSI)
reduces accuracy to 0.642. This form of validation can only be applied to a single event
using a S2 image taken 3 days before the S1 image. A large number of false negatives
is then expected. A procedure developed to correct for this error gives an accuracy of
0.886 for this single event. Another form of indirect validation consists in relating the area
flooded in each event to the amount of rainfall recorded. An RF regression model using
both rainfall metrics and season of the year gives a correlation coefficient of 0.451 and
RMSE = 979 ha using LOO-CV. This result shows a clear relationship between flooded areas
and rainfall metrics.
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1. Introduction
Floods are a major threat to human life and economic property [1–4]. In the

last decades, the frequency of floods has increased due to climate change [5,6]. Semi-
arid Mediterranean regions have historically experienced recurrent alternations between
droughts and floods of low or moderate intensity to which they have adapted over time.
However, climate change has led to an increase in the frequency and severity of these
events, and climate projections show an upward trend [7]. The Emergency Events Database
(EM-DAT) recorded more than 30 million people affected by torrential floods in 2023, with
an estimated average annual economic loss of more than USD 41 billion [8]. In semi-arid
areas, their severity can be locally amplified by factors related to geography, geology, or
hydrology, as well as others such as land management [9]. According to the literature
review conducted in [9], these particular characteristics not only distinguish semi-arid
floodplains from those of humid regions, but also complicate flood risk management. In
addition, there are still technical issues to be resolved, such as the availability of appropriate
data during or shortly after events, which leads to modelling problems, among others.
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Flood monitoring is essential to quantify and minimize losses of various kinds [10]. The
use of remote sensing to extract flooded areas is an essential step in effective flood disaster
monitoring, as it can provide the spatio-temporal distribution of flood water with different
spatial resolutions in near real time [11]. In this way, frequently flooded areas can be
efficiently monitored [12,13]. Several approaches have been proposed to perform this task.

Water indices based on the difference between water and non-water in multispectral
optical images include the Normalized Difference Water Index (NDWI) [14], the Modified
NDWI (MNDWI) [15–18], the Enhanced Water Index (EWI) [19], or the Automated Water
Extraction Index [20]. Other approaches based on optical images are single-band thresh-
olding [21] and thematic classification methods [22,23]. Even combinations of different
methods have been proposed [24–27]. The obvious drawback of these approaches is the
limitation imposed by clouds on the use of optical bands [28], a particularly important
issue when trying to detect flooded surfaces.

SAR imagery, on the other hand, is an important data source for monitoring water
surface dynamics due to its ability to penetrate clouds in all weather conditions [29–34].
In particular, Sentinel-1A SAR (S1A) imagery has a high spatio-temporal resolution [35]
and therefore a great potential for its use in surface water research. SAR images also have
better contrast than optical images and richer texture information [36]; they can be used
to detect ground surface properties such as surface roughness and dielectric constant [37].
These geophysical responses and the lateral geometric structure of the SAR system lead to
different backscattering mechanisms in different land cover types, making it possible to
classify different flooding situations [38,39]. Due to its ability to penetrate vegetation, SAR
is better able to identify water and wetlands under vegetation canopies than optical remote
sensing [40,41].

Mahdavi et al. (2018) and Gstaiger et al. (2012) concluded that HH polarization
and the ascending mode have the greatest potential for water detection [21,42]; however,
the primary acquisition mode of the Sentinel-1 mission only supports VV and VH dual-
polarization operations [35]. Under VH polarization, the classification of water and non-
water in the backscatter coefficient maps is easily confused, and the segmentation of ground
objects is stronger than under VV polarization [11]. Although the SAR images with VV
polarization are more sensitive to moisture information, VV polarization images are able to
show the moisture information of land cover types such as swamps and rice fields more
clearly [43], which makes the difference between water and non-water pixels on the images
smaller and the contrast less obvious. The contribution rate of the backscatter coefficient
features under VH polarization is stronger than under VV polarization. Therefore, in areas
with more vegetation and complex ground object types, VH polarization should be more
helpful in extracting flooded areas [11]. In this last work, the authors used several new
features calculated from VV and VH: VV+VH, VV-VH and VV/VH. Tian et al. (2017) used
VV2, VH2, and VVVH together with VV and VH in a stepwise regression method to obtain
a Sentinel1-A Water Index (SWI) [44].

Initially, SAR-based flood extent mapping methods were simple visual interpreta-
tion [45]. Other approaches include interferometric SAR coherence [46], histogram
thresholding [47–53], or supervised classification [54–56]. Threshold methods are the most
common water extraction algorithms based on the backscatter coefficient of water, which
is quite low compared to other objects in SAR data [28]. However, thresholding can be
subjective and can vary with time and space [57]. Current automatic thresholding methods
include the method in [58] and the entropy thresholding method [59,60]. Threshold meth-
ods assume a bimodal histogram of the SAR image; however, if the proportion of water
in the image is minimal, the bimodality may not be evident in the histogram, leading to
unsatisfactory water extraction results [28]. In addition, the edge of water bodies may be
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blurred because this method fails to distinguish mixed pixels [28]. However, it is difficult
to obtain appropriate thresholds in different periods and regions [44]. Several machine
learning models have been used in supervised classification: Random Forest [11,61], sup-
port vector machines (SVMs) [62], and artificial neural networks [63]. Some researchers
have proposed a manual post-processing step supported by auxiliary data to improve
the resulting accuracy [11,63,64]. However, these procdures limit the applicability and
automation of the proposed methods [34].

Several algorithms are available for mapping flash floods during a crisis [21,65–70]. For
example, Pulvirenti et al. (2011) presented a method combining segmentation techniques
and a SAR backscatter model [70]. Matgen et al. (2011) presented a SAR-based flood
mapping technique that combines thresholding and region growing [71]. In order to
monitor floods more accurately, more advanced studies should focus on the efficient use
of multi-temporal (before and during/after the flood) and multi-source data [72]. Other
studies focus on monitoring changes in the extent of water bodies, e.g., Cazals et al. (2016)
detected the hydrological dynamics of a coastal marsh located in the Regional Natural Park
on the French Atlantic coast using the threshold method with S1A data, with an overall
accuracy of 82% [73].

Surface water mapping errors are usually due to the high similarity of surface water
and non-water features. Two strategies are commonly used to improve surface water map-
ping, namely (1) enhancing the easily confused/most important water information and (2)
suppressing the complex/most important non-water information from an image. In the
former case, significant improvement has been achieved in previous research by enhancing
the main surface water bodies in a study region, such as lakes [74,75], rivers [76,77], and
coastal water areas [78,79]. In the latter case, many studies have achieved significant im-
provements by suppressing complex/large non-water surfaces, such as built-up areas [15],
terrain shadows and other non-water dark surfaces [20,80], and clouds and cloud shadow
information [81].

Most of these methods are pixel-based, i.e., only the information in the individual pixel
is considered, ignoring features such as texture, shape, relationship between adjacent pixels,
and spatial location of ground objects, which are also prone to speckle interference [11].
The object-based image analysis method overcomes this limitation by combining adjacent
pixels with homogeneous spectra and textures into a connected region through specific
computational rules, and then integrating the averaged spectral and textural features with
the spatial relationships of the objects with their neighborhood [11,82]. Therefore, object-
based image analysis has become a very effective method for image classification and is
increasingly used for flood information extraction [83,84]. However, object-based image
analysis works better when the pixel size of the image is smaller than the size of the objects
to be identified and when the goal is to monitor changes in the size of water objects.

Recently, deep convolutional neural networks have been introduced. Isikdogan et al.
(2017, 2019) proposed a fully convolutional neural network called DeepWaterMap [85,86].
This new structured model can separate surface water from land, snow, ice, clouds, and
shadows. Li et al. (2019) introduced a fully convolutional network (FCN) model for water
body extraction using very-high-spatial-resolution (VHR) optical imagery [39]. Fang et
al. (2019) introduced a ConvNet-based framework to identify reservoirs on a global scale
[87]. Compared to traditional methods, deep learning methods have shown superiority
and great potential for surface water mapping.

However, deep learning methods require large amounts of labelled data and computa-
tional resources, which has prevented their widespread application [88]. The transfer use of
state-of-the-art deep models [39,87] and the structural fine-tuning of classical models [85,89]
still lack sufficient adaptation to satellite image-based surface water mapping tasks, result-
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ing in models with limited accuracy [88]. In addition, the convolutional approach of CNN
has the disadvantage of working well in the core of the objects but having problems at
the boundaries. If validation regions are only extracted from the core of the objects, the
accuracy will be overestimated.

Validation is difficult when analyzing areas inundated by flash floods. It is possible
to use an RGB composition from a post-event image to manually digitize flooded and
non-flooded areas. However, it is rare to find a cloud-free optical image close in time to
the classified SAR image. Even a delay of one day can result in a large reduction in water
coverage due to infiltration or evaporation.

The objective of this study is to develop a methodology to detect water surfaces after
19 flood events in a semi-arid agricultural area, combining a Random Forest model trained
on SAR data with an analysis of the differences between pre- and post-event images. The
model is validated using cross-validation, in addition to a spatial validation using Sentinel2
images for one of the events, and a temporal validation based on the correlation between
rainfall volume and flooded area along the events.

2. Methodology
2.1. Study Area

The Mar Menor is a coastal lagoon in south-eastern Spain (Figure 1), bounded by a
22 km long sand barrier. It is the largest coastal lagoon in the western Mediterranean. It is
characterized by the fact that it has been recognized as an Important Ecological Area of
Outstanding Value (IEOV) by European legislation, which places it under strict protection
measures. The study area is the catchment area of the Mar Menor. This basin, called Campo
de Cartagena, has a surface area of 1275 km2 and a slight slope of less than 10%.

The climatic conditions of the basin are typically Mediterranean semi-arid, with irreg-
ular and scarce rainfall, usually below 300–350 mm/year, with a pronounced alternation of
extreme droughts and floods due to the considerable spatial and temporal variability of
rainfall. Rainfall is characterized by scarcity, with an annual mean of less than 300 mm in
the plains. However, this low rainfall is episodic, often occurring in a few hours over a few
days, and is insignificant over a nine-month period. As a result, the region enjoys more
than 3000 h of sunshine per year, which means that temperatures are consistently warm
throughout the year, with an average of 16 to 18 ◦C, depending on the proximity to the
coast, and reaching maximum values of over 42 ◦C [90].

These climatic and orographic characteristics result in a scarcity of surface water-
courses. The drainage network within the basin consists of a series of ephemeral basins that
form during periods of heavy rainfall [90]. However, some of these basins drain mainly
to the plain due to the lack of slope and eventually lead to flooding in the plain during
periods of heavy rainfall.

However, the existence of favorable soil characteristics has led to the predominance
of agriculture as the main economic driver since ancient times, gradually changing in the
last half century from traditional rainfed crops to more profitable irrigated crops thanks
to the arrival of water transferred from the Tagus River. According to the most recent
regional statistics [91], there are almost 38,000 ha of irrigated grassland in addition to
irrigated areas of dense tree crops on the lower slopes, and greenhouses cover more than
1500 ha. The second main use is urban. The urbanization of the municipalities bordering
the lagoon and the construction of seasonal resorts, both tourist and second homes, are
associated with an influx of tourist activity. However, the seasonal increase in the resident
population is difficult to quantify. In terms of natural vegetation, there is a high level of
biodiversity and heterogeneity of vegetation, mainly Mediterranean scrub, with some areas
of Mediterranean forest.



Remote Sens. 2025, 17, 1368 5 of 27

Basin

Airports

691,000651,000 661,000 671,000 681,000 701,000

4
1
7
1
,0
0
0

4
1
8
1
,0
0
0

4
2
0
1
,0
0
0

4
1
9
1
,0
0
0

Figure 1. Study area including the location of airports and rain gauges used to calculate precip-
itation metrics. The coordinates refer to the ETRS89 datum and the UTM, Zone 30N, projection
(EPSG: 25830).

All these factors have contributed to the significant economic importance of this area
within the wider context of the Region of Murcia. Agricultural and residential development
in the basin has been affecting the marine ecosystem for several decades [92,93]. In the
Campo de Cartagena, intense urbanization is both a cause and an increase in the risk of
flooding due to the imperviousness of the soil [94] and an increase in risk as more people
and houses are exposed [95]. The impact of floods on human activities, the environment,
and the economy is therefore considerable, as historical record shows. One of the most
damaging events in recent decades, registered from 10 to 12 September 2019, was a torrential
rainfall episode that led to an estimated economic loss of nearly 600 million euros, the loss
of several human lives, and difficult to repair damage to the biodeversity of an invaluable
ecosystem [96,97].

2.2. Data

All data were acquired from the Copernicus Data Space Ecosystem [98]. The images
were obtained using the Terrain Observation by Progressive Scans SAR (TOPSAR) con-
figuration at Level-1 Single Look Complex (SLC) in Interferometric mode (IW), the main
acquisition mode of this sensor over the Earth’s surface, with a full swath of 250 km and
5 × 20 m spatial resolution in a single look. TOPSAR steers the beam from backwards to
forwards in the azimuth direction with an overlap to ensure continouos coverage. Level
1 SLC products contain backscater intensity and phase information that facilitates the
discrimanation of pixel features from water and non-water. Data collection includes images
from the same relative orbit, ensuring data from the same area at similar time periods in
both ascending and descending directions, with azimuth angles ranging from 29.1 to 46◦.
Although backscatter is expected to vary with angle of incidence, especially when data
collected in different orbital directions [99], the low slope that characterizes the area, the
radiometric calibration and terrain correction processes applied in pre-processing, and the
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use of water training areas instead of thresholding are sufficient to make these variations
not problematic.

The data used in this study (Table 1) were the intensity bands in co- (VV) and cross-
polarization (VH) of the Sentinel 1 SAR imagery Ground Range Detected (GRD) product.
The GRD product is focused, multi-looked, projected to ground range, composed of all
burst and sub-swaths merged, and resampled to the common pixel spacing.

Table 1. Nomenclature of images used to analyze each event. Note that S1B data were not available
from the end of 2021 due to a system malfunction, so only S1A data were used from then on.

Event Images S1A Images S1B

1 S1A_IW_GRDH_1SDV_20161124T061008_20161124T061033_014080_016B63_DABC S1B_IW_GRDH_1SDV_20161224T060925_20161224T060950_003534_0060AE_C881
S1A_IW_GRDH_1SDV_20161124T061008_20161124T061033_014080_016B63_DABC
S1A_IW_GRDH_1SDV_20161206T061007_20161206T061032_014255_0170E4_37C1
S1A_IW_GRDH_1SDV_20161206T061032_20161206T061057_014255_0170E4_B0B3
S1A_IW_GRDH_1SDV_20161218T061007_20161218T061032_014430_017666_2AF7
S1A_IW_GRDH_1SDV_20161218T061032_20161218T061057_014430_017666_CA83

2 S1A_IW_GRDH_1SDV_20170111T061005_20170111T061030_014780_01811D_9DA1 S1B_IW_GRDH_1SDV_20170117T060923_20170117T060948_003884_006B01_CCA8
S1A_IW_GRDH_1SDV_20170111T061030_20170111T061055_014780_01811D_E66E
S1A_IW_GRDH_1SDV_20170123T061005_20170123T061030_014955_018698_AE68
S1A_IW_GRDH_1SDV_20170123T061030_20170123T061055_014955_018698_1FBC

3 S1A_IW_GRDH_1SDV_20170827T061008_20170827T061033_018105_01E680_CC5A S1B_IW_GRDH_1SDV_20170821T060945_20170821T061010_007034_00C646_C9A9
S1A_IW_GRDH_1SDV_20170827T061033_20170827T061058_018105_01E680_8DAE S1B_IW_GRDH_1SDV_20170902T060945_20170902T061010_007209_00CB57_12A7

4 S1A_IW_GRDH_1SDV_20180118T061007_20180118T061032_020205_022790_28AD S1B_IW_GRDH_1SDV_20180124T060944_20180124T061009_009309_010B3B_A34D
S1A_IW_GRDH_1SDV_20180118T061032_20180118T061057_020205_022790_0687
S1A_IW_GRDH_1SDV_20180130T061006_20180130T061031_020380_022D20_124A
S1A_IW_GRDH_1SDV_20180130T061031_20180130T061056_020380_022D20_C24E

5 S1A_IW_GRDH_1SDV_20180506T061008_20180506T061033_021780_025963_F8C4 S1B_IW_GRDH_1SDV_20180430T060945_20180430T061010_010709_0138F2_C906
S1A_IW_GRDH_1SDV_20180506T061033_20180506T061058_021780_025963_AB5D S1B_IW_GRDH_1SDV_20180512T060946_20180512T061011_010884_013E97_6108

6 S1A_IW_GRDH_1SDV_20180518T061009_20180518T061034_021955_025EF3_CB2A S1B_IW_GRDH_1SDV_20180524T060946_20180524T061011_011059_014449_A2C7
S1A_IW_GRDH_1SDV_20180518T061034_20180518T061059_021955_025EF3_85A8 S1B_IW_GRDH_1SDV_20180605T060947_20180605T061012_011234_0149EC_FF2D
S1A_IW_GRDH_1SDV_20180530T061009_20180530T061034_022130_026493_4F1B
S1A_IW_GRDH_1SDV_20180530T061034_20180530T061059_022130_026493_C1EE

7 S1A_IW_GRDH_1SDV_20180903T061015_20180903T061040_023530_028FEB_799C S1B_IW_GRDH_1SDV_20180828T060952_20180828T061017_012459_016F9A_6935
S1A_IW_GRDH_1SDV_20180903T061040_20180903T061105_023530_028FEB_ECF4 S1B_IW_GRDH_1SDV_20180909T060953_20180909T061018_012634_017500_5662
S1A_IW_GRDH_1SDV_20180915T061015_20180915T061040_023705_029586_A4EA S1B_IW_GRDH_1SDV_20180921T060953_20180921T061018_012809_017A59_B633
S1A_IW_GRDH_1SDV_20180915T061040_20180915T061105_023705_029586_0057

7 S1A_IW_GRDH_1SDV_20181114T061016_20181114T061041_024580_02B2D5_5589 S1B_IW_GRDH_1SDV_20181003T060953_20181003T061018_012984_017FB6_0281
S1A_IW_GRDH_1SDV_20181114T061041_20181114T061106_024580_02B2D5_EE00 S1B_IW_GRDH_1SDV_20181108T060953_20181108T061018_013509_018FF3_AD05

S1B_IW_GRDH_1SDV_20181120T060953_20181120T061018_013684_019579_7E62

9 S1A_IW_GRDH_1SDV_20190407T061013_20190407T061038_026680_02FE88_359D S1B_IW_GRDH_1SDV_20190413T060951_20190413T061016_015784_01DA0A_1C2E
S1A_IW_GRDH_1SDV_20190407T061038_20190407T061103_026680_02FE88_34E6 S1B_IW_GRDH_1SDV_20190425T060951_20190425T061016_015959_01DFD4_B029
S1A_IW_GRDH_1SDV_20190419T061013_20190419T061038_026855_0304E2_5040
S1A_IW_GRDH_1SDV_20190419T061038_20190419T061103_026855_0304E2_9FB5

10 S1A_IW_GRDH_1SDV_20190910T061021_20190910T061046_028955_034891_EDAB S1B_IW_GRDH_1SDV_20190904T060959_20190904T061024_017884_021A81_9492
S1A_IW_GRDH_1SDV_20190910T061046_20190910T061111_028955_034891_D799
S1A_IW_GRDH_1SDV_20190916T180159_20190916T180224_029050_034BE2_3693
S1A_IW_GRDH_1SDV_20190916T180224_20190916T180249_029050_034BE2_F390

11 S1A_IW_GRDH_1SDV_20191121T061022_20191121T061047_030005_036CD8_C962 S1B_IW_GRDH_1SDV_20191127T060959_20191127T061024_019109_024106_5C20
S1A_IW_GRDH_1SDV_20191121T061047_20191121T061112_030005_036CD8_D8B5 S1B_IW_GRDH_1SDV_20191209T060959_20191209T061024_019284_02468F_3DE6
S1A_IW_GRDH_1SDV_20191203T061021_20191203T061046_030180_0372EA_EB2D
S1A_IW_GRDH_1SDV_20191203T061046_20191203T061111_030180_0372EA_EA7B

12 S1A_IW_GRDH_1SDV_20200114T180209_20200114T180234_030800_03886B_6543 S1B_IW_GRDH_1SDV_20191221T060958_20191221T061023_019459_024C21_7934
S1A_IW_GRDH_1SDV_20200126T180208_20200126T180233_030975_038E95_75DB S1B_IW_GRDH_1SDV_20200120T180118_20200120T180143_019904_025A67_3AEA

S1B_IW_GRDH_1SDV_20200120T180143_20200120T180208_019904_025A67_0A0D

13 S1A_IW_GRDH_1SDV_20200314T180208_20200314T180233_031675_03A6D3_461A S1B_IW_GRDH_1SDV_20200320T180118_20200320T180143_020779_02766F_D3C8
S1A_IW_GRDH_1SDV_20200326T180208_20200326T180233_031850_03ACFC_08DF S1B_IW_GRDH_1SDV_20200320T180143_20200320T180208_020779_02766F_7126
S1A_IW_GRDH_1SDV_20200407T180208_20200407T180233_032025_03B327_FE7E S1B_IW_GRDH_1SDV_20200401T180118_20200401T180143_020954_027BF7_C274

S1B_IW_GRDH_1SDV_20200401T180143_20200401T180208_020954_027BF7_AF41

14 S1A_IW_GRDH_1SDV_20201227T180216_20201227T180241_035875_043370_8BB4 S1B_IW_GRDH_1SDV_20210102T180125_20210102T180150_024979_02F915_487F
S1A_IW_GRDH_1SDV_20210108T180215_20210108T180240_036050_043984_D6D1 S1B_IW_GRDH_1SDV_20210102T180150_20210102T180215_024979_02F915_E8E3

S1B_IW_GRDH_1SDV_20210114T180125_20210114T180150_025154_02FEB3_C368
S1B_IW_GRDH_1SDV_20210114T180150_20210114T180215_025154_02FEB3_1C3D

15 S1A_IW_GRDH_1SDV_20210225T180214_20210225T180239_036750_0451E1_B229 S1B_IW_GRDH_1SDV_20210303T180123_20210303T180148_025854_031561_9DD0
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The pre-processing workflow [100] was carried out in the Sentinel Application Plat-
form (SNAP) software (version 8), which included a slice assembly where necessary prior
to a subset in the study area and as recommended by [100] to pre-process the S1 imagery
to address potential geometric issues, including a radiometric calibration step, a speckle
filtering procedure using a 5 × 5 window Lee sigma filter with a sigma of 0.9 and a target
size of 3 × 3, and a terrain correction with resampling to 10 m using the nearest neighbor
model to the SRTM 1Sec HGT digital elevation model. Finally, the data were converted
to dB.

Table 2 shows the rainfall events to be analyzed. For each event, two images before
the event and all images until the first after the event were used. The two previous images
were used to characterize the water and non-water areas in terms of the metrics used, but
also to analyze the distribution of changes between two close images before the event.

In addition to VV and VH, four metrics (VVVH, VV/VH, VV+VH and VV-VH) were
calculated. We did not use VV2 or VH2 as in [44] because the square, as a monotonically
increasing function, does not add any new information to thresholding or decision trees.

Table 2. Analyzed events. Average precipitation (mm) in the study area, value registered in the
weather station with maximum rainfall (mm) and duration (hours).

Event Initial Date Final Date Mean
Rainfall

Max
Rainfall Duration

1 04/12/2016:09 20/12/2016:00 210.6 316.0 15.62
2 19/01/2017:08 19/01/2017:21 58.4 84.2 0.54
3 29/08/2017:10 30/08/2017:14 30.4 44.2 1.17
4 27/01/2018:22 28/01/2018:16 30.3 46.27 0.75
5 09/05/2018:11 10/05/2018:21 7.7 35.75 1.42
6 29/05/2018:09 03/06/2018:03 12.1 32.8 4.75
7 08/09/2018:05 15/09/2018:16 35.6 61.2 6.46
8 14/11/2018:19 19/11/2018:12 92.7 135.6 4.71
9 19/04/2019:00 22/04/2019:21 101.7 132.4 3.87

10 10/09/2019:15 12/09/2019:20 195.2 283.7 2.21
11 01/12/2019:22 04/12/2019:08 65.6 157.5 2.41
12 19/01/2020:00 22/01/2020:11 81.4 110.3 3.46
13 21/03/2020:00 04/04/2020:23 144.9 186.8 14.96
14 04/01/2021:00 12/01/2021:23 43.7 72.3 8.96
15 05/03/2021:00 12/03/2021:23 54.7 80.6 7.96
16 06/04/2021:00 28/04/2021:23 51.9 85.6 22.96
17 22/05/2021:00 25/05/2021:23 57.6 79.2 3.96
18 23/02/2022:00 28/03/2022:23 165 231.9 5.96
19 04/10/2022:00 11/10/2022:23 32.4 118.8 7.96

2.3. Algorithms
2.3.1. Thresholding

Global thresholding is difficult in this case because there are no natural water bodies
in the study area other than the sea. Both the Mediterranean Sea and the Mar Menor could
be used to obtain water training data, but waves in response to stormy weather can be large
enough to introduce excessive noise. Campo de Cartagena has many irrigation ponds that
are calm enough to be used as water bodies. However, the area occupied by these ponds
is very small, so the histograms obtained are not bimodal, making it difficult to obtain a
suitable threshold. Instead, we used these irrigation ponds as water training areas; the
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non-water training points were obtained from agricultural or natural vegetation pixels
with a slope of less than 5 degrees. Analyzing the superposition of the distribution of the
6 analyzed SAR metrics in water and non-water training areas provides an error metric
that can also be used to determine which metric provides better accuracy.

2.3.2. Random Forest Classification

One of the problems with thresholding is that each SAR metric has a different threshold
and can give different results for the likelihood of flooding. To integrate the information
contained in the 6 SAR metrics, a Random Forest model is calibrated using the training
data and these metrics as predictors. Random Forest (RF) is a non-parametric classification-
regression method proposed in [101] that outperforms other traditional methods. Its main
advantages include the following: high capacity to handle large predictor data sets, high
prediction accuracy, ability to produce a feature importance metric and an internal accuracy
estimate without, in principle, needing external validation. Finally, it is very easy to
calibrate and optimize because, unlike support vector machines or neural networks, it is
very insensitive to the values of its hyperparameters.

It is based on an ensemble of unpruned decision trees, 500 being the default number,
calibrated with subsets of the training data generated by bootstrapping. In addition, for
each node split of each tree, instead of selecting the feature that increases homogeneity
from the full set of predictors, a random subset is used. In classification problems, the size
of this subset is, by default, the square root of the number of predictors. These somewhat
counterintuitive decisions reduce the correlation between the trees, increasing their variance
and reducing the bias of their average. The feature importance metric is calculated by
calculating how the accuracy changes when an individual variable is included or excluded
from the subsets.

After calibration, any new case can be predicted by all the trees and the most frequent
result is taken as the final estimate of the model. However, it is also possible to obtain
the proportion of trees that produced each outcome. In binomial classification (water
or non-water), this means obtaining the probability of water being present according to
the model.

2.3.3. Detection of Permanent Water Bodies and Infrastructures

Irrigation ponds are obviously detected as flooded areas when they are not; the case is
similar with the two airports (Figure 1) in the study area and several golf courses. These
are very flat and smooth surfaces that respond to radar in a similar way to water. In order
to filter out these land covers, a layer with the average water probability according to RF
along the 19 events and another with the standard deviation along all processed images
are calculated. The results contain three types of cells: 1. Cells with low average probability
and low standard deviation, corresponding to areas that are never flooded; 2. Cells with
high average probability and low standard deviation, corresponding to flat infrastructures
and irrigation pods; 3. Finally, cells with intermediate average and high standard deviation,
corresponding to areas that only appear flooded in some images.

2.3.4. Change Detection

Another approach to locating flooded areas is to calculate the difference between the
SAR metrics before and after the rain event. The larger the difference in absolute value, the
more likely it is that the cell is flooded; however, it is necessary to account for variability in
the differences measured in non-flooded cells. In order to take this variability into account,
the difference between two layers before the rainfall event was obtained and the empirical
probability distribution was calculated. Such a distribution could then be used to calculate
the probability of a difference greater than or equal to the measured difference between
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the metrics before and after the event, assuming no flooding occurred. We converted this
p-value into a probability of flooding as

P1( f looded) = max(0,−2 ∗ (p − val − 0.5)) (1)

If the p-value is 0, the resulting probability is 1, and if the p-value is 0.5 or greater, the
probability is 0. This equation is used for VV, VH, and VV+VH. For VVVH, the minus sign
in −2 is omitted because in this case the largest values are those representing water.

The probability maps produced by RF make it possible to apply change detection
using two different approaches:

1. Calculate the increase in probability from an image previous to the event as
(P − P0)/(1 − P0) where P is the probability of water presence after the event and P0

is the probability of water presence before the event.
2. Compute the difference in probability of water presence in two consecutive images

before the event, compute the empirical distribution function of the differences (EDFp),
and compute the p-value of the probability difference before and after the event for
each pixel in the study area.

In the rest of the paper, the probability of water presence according the RF model is
called just RF, the approach based on the increase in probability is called RFinc, and the
approach based on the EDF of differences is called RFdif.

2.3.5. Slope Correction

Due to shadow effects in higher areas, it is necessary to filter out cells with large slopes.
In this case, we obtained another possibility of flood presence because of the slope as

P2( f looded) = max
(5 − s

5
, 0
)

(2)

For the final maps, the probability of flooding is calculated as the minimum of both
the model probability and the slope possibility. This is equivalent to an AND operator in
fuzzy logic.

2.4. Validation

Validation in flooded area detection poses several issues. The usual approach would
be to manually digitize flooded and non-flooded polygons as test areas from optic images
of a close date. However, usually, it is not possible to find a cloud-free adequate image at
the end of the rainfall event. Even a few days worth of delay between the two images (S1
and S2) might mean the loss of most of the water due to soil infiltration or evaporation. As
it is a small slope area, evaporation can be considered to be the same in all the study area.
Infiltration, on the contrary, has important variations due to different soil properties and
previous water content.

In this study, only one image was found close enough in time to the rainfall event
and with a cloud percentage low enough to allow the digitalization of the training areas.
This is the image of 13 September 2019, three days before the SAR1 image classified
(16 September 2019). Another MSI image (18 September 2019) shows that almost all water
had disappeared by that day; Figure 2 shows a comparison between the two images. This
means that a large proportion of water present in the 13 September 2019 MSI image could
have been lost by 16 September 2019, when the SAR image was taken. A pixel-based
validation, using the former image, of a model calibrated with the later could overestimate
false negatives, as pixels dry in the later date could still be flooded in the former. Instead,
we decided to perform polygon-based validation.
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(a) (b)

Figure 2. 13 September 2019 (a) and 18 September 2019 (b) MSI RGB compositions. Flooded areas are
clearly visible in the first image, but they disappeared in a second.

Assuming that most flooded polygons lost water and had decreased in size from 13
September 2019 to 16 September 2019, we took into account only those pixels whose water
probability is larger than the 0.9 percentile of the polygon and compute the median of
those pixels. Plotting those values provides information of how well each of the methods
separate flooded and non-flooded areas.

Due to the problems that using S2 images poses, another form of validation was
attempted. It consisted in calculating the correlation among metrics extracted from the
flooded probability maps (mean flood probability and flooded area) with two simple
metrics extracted from the weather station data (average total rainfall and total rainfall in
the station that registered the larger rainfall magnitude).

Figure 3 summarizes the employed methodology.

S1 VV S1 VH

VV VH VVVH VV+VH

threshold threshold threshold threshold Random Forest

Validation
High resolution image
irrigation ponds

Spatial 
validation

2019/9/13 S2 image 

S1 preprocessing

RFInc RFDif

Temporal 
validation

RFProb

Rainfall
data

S1 SAR data

Classification algorithms

Multispectral data

Validation

Aditional climatic data

Figure 3. Methodological graphical summary.

3. Results
3.1. Thresholding

Figure 4 shows the distribution of the values of the analyzed metrics for both water
and no water cells in the study area on 6 December 2016. Obviously, the more separated
the distributions, the more accurate the classification based on a threshold. The error
classification error can be calculated as (AUWd + AUNd)/(AUW + AUN), where AUW is
the area under the distribution of water cells, AUN is the area under the distribution of no
water cells. AUWd is the area under the distribution of water cells for values above the
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threshold and AUNd is the area under the distribution of no water cells for values below
the threshold. It seems that at least in this case, the accuracy of VV is higher than that of
VH. VV+H and VVVH have even better accuracies, while VV-VH and VV/VH have rather
lower accuracies.
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Figure 4. Value distribution of the used predictors: VV (a), VH (b), VVVH (c), VV/VH (d), VV+VH
(e) and VV-VH (f) for water and non-water cells on 6 December 2016.

3.2. Classification

Figure 5 shows the distribution of the classification error along the different data
points based on the thresholds of each feature. The error for VV is much lower than for
VH. Two of the features created (VVVH and VV+VH) show even smaller errors, while
VV-VH and VV/VH show larger errors. Table 3 shows the summary statistics of both the
errors and the thresholds. It is clear that VV, VVVH, and VV+VH are the best metrics for
distinguishing water cells from non-water cells.

After using Random Forest to classify water and non-water cells in all the images
analyzed, we computed an accuracy whose distribution is shown in Figure 6. This figure
also shows the distribution of the variable importance for each SAR metric. The results
are consistent with those shown in Figure 5; the most relevant features to discriminate
water cells from non-water cells according to the Random Forest algorithm are VV, VV+VH,
and VVVH.
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Figure 5. Distribution of classification error as proportion of overlapping among water and non-water
distributions for all SAR metrics analysed: VV (a), VH (b), VVVH (c), VV/VH (d), VV+VH (e) and
VV-VH (f).

Table 3. Summary statistics of thresholds and errors for the different metrics.

Predictor Mean Error Std Error Mean
Threshold

Std
Threshold

Mean
Accuracy

VV 0.169 0.083 −14.098 1.085 0.831
VH 0.263 0.109 −20.451 0.963 0.737

VVHV 0.140 0.081 444.224 42.669 0.86
VV/VH 0.443 0.109 0.788 0.061 0.557
VV+VH 0.142 0.080 −34.838 2.226 0.858
VV-VH 0.667 0.124 6.664 0.882 0.333

The accuracy of the Random Forest model for the different image events is quite higher
than for the thresholding models. The mean accuracy is 0.941 (standard deviation = 0.048),
so the mean error is 0.059. The mean f1 is 0.931 with a standard deviation of 0.066. It
is important to remember that these metrics and those in Table 3 measure the ability of
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the model, Random Forest or thresholds, to identify irrigation ponds. We are aware that
flooded areas may not have exactly the same signature as irrigation ponds. Additional
validation tests are therefore needed. To determine whether they can identify flooded areas,
we use validation data from MSI images.
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Figure 6. Results of RF classification of all the images. Accuracy distribution (a) and importance of
the variables (b).

Figure 7 shows a heatmap showing the frequency of cells for different pairs of RF
probability, mean, and standard deviation along all the images corresponding to the
19 analyzed events. One hundred bins were taken for each statistic, giving 10,000 possible
bins. As expected, there are two extremes with low standard deviations, one with a high
mean (infrastructure and irrigation ponds) and the other with a much higher frequency
of cells that are always not flooded. The intermediate cells with high standard deviations
correspond to cells that are temporarily flooded. As a result, an average probability
threshold of 0.6 is set. Cells with a higher average are considered as infrastructure or
irrigation ponds and are not counted as flooded.
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Figure 7. Heatmap with the cell frequency of different combinations of average probability and
standard deviation of probability.

3.3. Differences

Figure 8 shows the distribution of the anomaly in the differences for the 5 June 2018
and 16 September 2019 S1 images for the four features identified as the most important
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features both in the Random Forest model and in the thresholding. Values close to zero
reflect pixels where the difference between values in images after and before the event
are not differerent from random variation, whereas values close to one reflect significant
differences. Two facts might be highlighted. In the large precipitation event, the frequency
of large values is higher than in the lower precipitation event. RFs produce quite lower
significant variations than the other approaches. We think threshold-based methods are
overestimating the flooded area, whereas RF gives a more accurate estimation. The pattern
of low peaks for small values in RF is due to the approach of RF that delimits subspaces in
the feature space and then average probabilities.
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Figure 8. Difference anomalies of VH (a,f) , VV (b,g), VVVH (c,h), VV+VH (d,i), and RF (e,j) on the
5 June 2018 (a–e) and 16 September 2019 (f–j) S1 images.

Accuracy results are quite low considering that in a binomial classification, 0.5 is
the accuracy to be expected from a random decision rule. The differences between the
different methods are quite small, except for VV, whose accuracy is slightly lower than
the other methods, and Random Forest, whose accuracy is slightly higher than the other
methods. On the other hand, the thresholds chosen for the SAR metrics are surprisingly
high, whereas the thresholds chosen for RF and RF increases are surprisingly low.
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The problem with this validation attempt is that it is not clear whether the problem
is related to the model being validated or to the difficulties of trying to validate flooded
areas with a multispectral image taken 3 days before the SAR image used to calibrate
the model. To check this issue, we assumed that most of the flooded areas present on
13 September 2019 (S1 date) would have decreased in size by 16 September 2019 (S2 date),
so for each validation area, we took the cells with probability greater than the 0.9 quantile
and calculated the median. Figure 9 shows the distribution of these medians. While the
use of individual SAR metrics (VV, VVVH, and VV+VH) produces both false negatives
and false positives, the methods based on RF classification produce only false negatives.
Some of these false negatives could correspond to flooded areas that were present on
13 September 2019 and therefore registered as such in the validation data (S2), dried up
by 16 September 2019 and therefore classified as not flooded using the S1 predictors. The
result is an overestimation of the false negative rate.

method

0.0
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0.8
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m
ed
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n(
q9
0)

No water
Water

VV    VVVH   VV+VH      RF      RFinc      RFdif

Figure 9. Distribution by class and method of the median probability of the polygon pixels with
prob> p90. Horizontal lines show the optimal threshold to separate the two classes for each method.

Table 4 shows the confusion matrices for the six methods and the corresponding
accuracy statistics assuming the thresholds in Figure 9. Both Figure 9 and Table 5 show that
the techniques derived from RF produce only false negatives, RF only one false positive
and the rest of the methods produce more than one false positive. We believe that the
aforementioned drying problem is the cause of the false negatives, whereas the false
positives produced by VV, VVVH, and VV+VH are due to a lower predictive capacity.

Together with this validation, which we can call spatial and valid only for one episode,
a temporal validation was carried out for all precipitation events. The first step was to
calculate the correlation coefficients of five flood metrics focusing on the methods that
did better in previous steps: Random Forest probability of flooding (RFprob), increase in
RF probability (RFinc), RF flooded area (RFFA), increase in RF probability flooded area
(RFIncFA), and RF difference in probability (RFDif) with two precipitation metrics: Total
precipitation along the event averaged from different weather stations (Precipitaton) and
Maximum precipitation measured in a single weather station. Table 6 shows the results.
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Table 4. Polygon confusion matrices and accuracy statistics for the 6 methods analyzed.

VV VVVH VV+VH RFprob RFinc RFdif
N W N W N W N W N W N W

N 15 5 15 5 15 5 14 6 15 5 15 5
W 3 21 3 21 2 22 1 23 0 24 0 24

accuracy 0.818 0.818 0.841 0.841 0.886 0.886
kappa 0.63 0.63 0.675 0.672 0.766 0.766

Table 5. Accuracy for a 0.5 probability threshold, Area Under the ROC Curve, optimized threshold
according to the ROC curve, and accuracy using that threshold for the 6 methods tested: the three
most accurate SAR metrics, Random Forest water probability, percentage increase in probability and
probability difference.

Metric Accuracy 0.5 AUC Threshold Accuracy Th

VV 0.569 0.56 0.86 0.6207
VVVH 0.599 0.59 0.834 0.632

VV+VH 0.596 0.594 0.815 0.633
RFprob 0.599 0.665 0.04 0.651
RFinc 0.597 0.598 0.091 0.642
RFdif 0.617 0.513 0.436 0.645

Table 6. Correlation between flood metrics and precipitation metrics. RFprob is the probability of
water presence according to the Random Forest model, RFFA is the flooded area according to the
model, RFinc is the increase in probability relative to the pre-event image, RFIncFA is the flooded
area according to RFinc, and RFDif is the difference in probability relative to the pre-event image.
The flooded area related to this last metric was not calculated due to its low performance.

RFprob RFFA RFinc RFIncFA RFDif

Precipitation −0.005 0.322 0.141 0.516 −0.053
Max.
precipit. 0.067 0.371 0.234 0.572 −0.091

The two flooding metrics more highly correlated with the precipitation metrics are
RFFA and RFIncFA, both related with the RF increase in probability method. Among
them, the metric related with flooded area has the highest correlation. Figure 10 shows
the relation of flooded area to precipitation and maximum precipitation. This figure also
shows how the season of the year affects the resulting metric. Spring events seem to have
less flooded areas whereas summer events have larger flooded areas. We think the reason
is that summer events are mainly convective with large rainfall intensity in a few hours,
whereas spring events are more related with frontal events with less intensity for the same
amount of rainfall. In addition, in spring, vegetation has larger capacity to transpirate
water and improve soil properties that favor water infiltration.

Finally, a RF model was fitted to evaluate the importance and the effects of these
three predictors: precipitation, maximum precipitation, and season on flooded ar-
eas. The values of predictions were as follows: Total precipitation = 0.404, maximum
precipitation = 0.334, winter = 0.027, spring = 0.132, summer = 0.057, fall = 0.0462. The most
important predictor is total precipitation, followed by maximum precipitation, whereas
season is less important. These results are clearly in accordance with Figure 10.
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Figure 10. Flooded area in relation to precipitation (a) and maximum precipitation in a weather
station (b). Numbering refers to Table 1 and colors reflect season.

The LOO-CV of the RF model to explain the area flooded from precipitation, maximum
precipitation, and season shows a correlation coefficient of 0.451 and RMSE = 979 ha. It
is clear that the fit is far from perfect and there are other factors that should be taken into
account. Figure 11 shows the effects of the predictors on the model according to shapley
procedure [102] implemented in the python shap package.
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Figure 11. Effects of the RF model relating RFinc flooded area with precipitation and season metrics
according to shap. (a) Effect of precipitation, (b) Effect of maximum precipitation, (c) Effect of winter,
(d) Effect of spring, (e) Effect of summer, (f) Effect of fall.

The results show that the average precipitation on the study area and the precipitation
in the weather station receiving more precipitation are good predictors of the surface
flooded predicted by RF increased probability using S1 bands as predictors. Flooded area
tends to increase in summer an decrease in spring, whereas in fall they retain average
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values. Winter shows a slight increase, but quite lower than in summer. This results
corroborate those obtained in Figure 10.

Figures 12–15 show maps for RF flooding probability and increase in RF flooding
probability in two events: 2018/05-06 is a low precipitation event, whereas 2019/09 is one
of the largest precipitation events in the study area. The four figures show on the left the
probability values and on the right the prediction of flooded and non-flooded areas. RF
probability seems to overestimate flooded areas, whereas the increase in RF probability
obtain a more reduced flooded area that better reflects the cycle of flooding and drying.

(a) (b)

(c) (d)

(e) (f)

Figure 12. RF flooding probability (a,c,e) and final flooded area (b,d,f) in images from three consecu-
tive dates in Event 6. The coordinates refer to the ETRS89 datum and the UTM, Zone 30N, projection
(EPSG: 25830).
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(a) (b)

(c) (d)

(e) (f)

Figure 13. RF flooding probability (a,c,e) and final flooded area (b,d,f) in images from three consecu-
tive dates in Event 10. The coordinates refer to the ETRS89 datum and the UTM, Zone 30N, projection
(EPSG: 25830).



Remote Sens. 2025, 17, 1368 20 of 27

650000 660000 670000 680000 690000 700000

4165000

4170000

4175000

4180000

4185000

4190000

4195000

2018/05/24

0.00

0.20

0.40

0.60

0.80

1.00

650000 660000 670000 680000 690000 700000

4165000

4170000

4175000

4180000

4185000

4190000

4195000

2018/05/24
Non flooded
Flooded
Water & Infrast

(a) (b)

650000 660000 670000 680000 690000 700000

4165000

4170000

4175000

4180000

4185000

4190000

4195000

2018/05/30

0.00

0.20

0.40

0.60

0.80

1.00

650000 660000 670000 680000 690000 700000

4165000

4170000

4175000

4180000

4185000

4190000

4195000

2018/05/30
Non flooded
Flooded
Water & Infrast

(c) (d)

650000 660000 670000 680000 690000 700000

4165000

4170000

4175000

4180000

4185000

4190000

4195000

2018/06/05

0.00

0.20

0.40

0.60

0.80

1.00

650000 660000 670000 680000 690000 700000

4165000

4170000

4175000

4180000

4185000

4190000

4195000

2018/06/05
Non flooded
Flooded
Water & Infrast

(e) (f)

Figure 14. Increase in RF flooding probability (a,c,e) and final flooded area (b,d,f) in Event 6. The
coordinates refer to the ETRS89 datum and the UTM, Zone 30N, projection (EPSG: 25830).
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Figure 15. Increase in RF flooding probability (a,c,e) and final flooded area (b,d,f) in Event 10. The
coordinates refer to the ETRS89 datum and the UTM, Zone 30N, projection (EPSG: 25830).

4. Discussion
Most of the work investigating the potential use of SAR data for water detec-

tion focuses on detecting changes in the extent of permanent water bodies. Such
changes are not necessarily related to weather events but are monitored over the long
term [28,34,61,64,72,103]. In these cases, it is easy to combine optical and radar data as in
[72]; it is also easy to find calibration and validation cells from high-resolution optical
images [103] or form the same SAR dataset that has been classified using the same water
bodies whose extent is being monitored [28,61,64], and it is also easy to remove noise by
excluding positive cells that are not in contact with the water bodies being analyzed using
a region growing process [71]. In the case of this work, we were trying to detect flooded
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surface in a large study area with a low slope and with no natural water bodies. Cells
taken from irrigation ponds were used as water calibration cells, and the expected output
consists of water patches distributed all over the study area. The issue is that we assume
that irrigation ponds respond to SAR in the same way as flooded areas. This is not an
unreasonable assumption, as S1 image was taken 4 days after the event, so turbulence
should be discarded, and both types of water surface are exposed to the same weather
conditions, although the water depth in irrigation ponds is greater than in flooded areas.
In any case, irrigation ponds would be a more extreme case of flooding, so the probabilities
obtained from the classification could be biased towards lower values and produce false
negatives. But it is difficult to check this without a map of flooded areas produced on the
same day as the satellite image. This is an interesting line of research for the future.

Calibrating the model with irrigation ponds and validating with flooded areas has
three advantages. First, the model can be calibrated using SAR data only, without the need
for a multispectral image that could be affected by clouds. Second, we do not need to apply
automatic thresholding, which could be difficult if most of the areas are not flooded. Third,
the validation data are truly independent of the calibration data and could be extracted
even from images half-covered by clouds.

The disadvantage is that the process of evaporation and infiltration of water over land
is very rapid, especially in semi-arid areas. A clear day in late summer/early autumn after
rainfall can evaporate a large amount of water. This is a very difficult challenge to validate
if the two images are separated by even a few days. If the calibration image is taken after
the validation image, as is the case in this study, we can expect an overestimation of false
negatives, but not of false positives. If the order of the images were reversed, the opposite
would be true.

Chen et al. (2020) obtain accuracies of 0.89 and 0.9 using thresholds with Envisat-WS
and TerraSAR-X in China, respectively [103]. Gstaiger et al. (2012) obtain similar results
with the same data and procedures in Vietnam [21]. Dong et al. (2021) and Luo et al. (2023)
achieve accuracies better than 0.95 with different convolutional methods calibrated with
Sentinel 1 data in China and Tibet, respectively [28,34]. The problem with convolutional
methods is that they can have problems in correctly predicting the spatial boundaries
of the classes, so if small flooded areas are expected, most of the flooded cells will be in
the boundaries and convolutional networks will not perform well. To monitor flooded
areas after extreme events, Li et al. (2019) use CNN with Terrasat-X and obtain overall
accuracies between 0.9 and 0.93 in a study area near Houston [39]. Shen et al. (2019) achieve
an accuracy of 0.93 in the Yangtze River and around Houston [13], and Liang and Liu
(2020) with a threshold S1 of 0.99 in Louisiana around the Mississippi River [57]. In some
cases, there is no explicit validation [29,64,69,103] and the authors give only a qualitative
validation or produce a time series of estimated flooded areas.

In our study, the ability of the RF model to detect the water surface was demonstrated
with a mean accuracy along all analyzed events of 0.941 (standard deviation=0.048) and
a mean F1 of 0.931 with standard deviation=0.066. These values are in line with those
obtained in other studies. However, an attempt to validate using optical imagery (Sentinel-2
MSI) produced much lower accuracy results, 0.642 in the best case. This form of validation
could only be applied to a single image taken 3 days before the S1 image. A large number
of false negatives would then be expected. A procedure developed to correct for this
error gave an accuracy of 0.886 for this single event where this type of spatial validation
was possible.

Another form of indirect validation was carried out. This consisted in attempting to
relate the area flooded in each event to the amount of rainfall recorded. An RF regression
model using both rainfall metrics and season of the year offered a correlation coefficient of
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0.451 and RMSE = 979 ha in LOO-CV. This result shows a clear relationship between flooded
areas and rainfall metrics. This result should not be interpreted as a predictive model for
estimating the area flooded from precipitation; flooding is a phenomenon that depends on
several different, complex and multifaceted factors. The aim is to verify whether, despite
the above, the relationship with precipitation is clear enough to support the proposed
system for detecting flooded areas.. To the best of our knowledge, this is the first time
that such a validation was carried out. Further efforts should be made to improve both
classification and validation methods for this type of data and objective.

5. Conclusions
A supervised classification approach is more useful than thresholding methods when

the objective is to find flooded areas after an event, as bimodality may be difficult to find.
Random Forest and Random Forest increase in probability are good tools to obtain flooded
areas. The accuracy values obtained with cross-validation show a high ability of such
models to at least detect water bodies. In particular, Random Forest increase in probability,
before and after the event, allows to reduce false positives due to very flat surfaces. In
this particular study area, irrigation ponds provide a good opportunity to obtain water
training polygons for SAR, as they are fixed objects on the land. It is even possible to check
whether they were filled or not in MSI images taken on the same day. Either way, after a
large rainfall event, they certainly contain enough water to provide a water response to
SAR. However, it is difficult to calibrate and validate models of processes that appear and
disappear in a matter of days, as happens with floods. Sentinel imagery has a temporal
resolution of 5 days, MSI and SAR do not coincide in time, so it is not possible to be
sure that the SAR image coincides with the moment of maximum flooding, and it is very
difficult to assess evaporation and infiltration between a SAR and the nearest MSI images.
These problems are likely to lead to an underestimation of accuracy when validating with
S2 imagery, and it proves difficult to find S2 imagery close enough in time, cloud-free
enough, and with a clear presence of flooded areas to use for validation. However, the
results obtained are considered encouraging. Further work is needed to try to obtain better
validation approaches to be sure of the results. In any case, temporal validation shows a
correspondence between the flooded area and the rainfall data for the analyzed events.
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