Precise Characterization of Coherence Activity in
Multicores using gemd

Joaquin Ferrer, Juan M. Cebrian, Ricardo Fernandez-Pascual
and Manuel E. Acacio

Computer Architecture and Parallel Systems Group, University of
Murcia, Spain.

*Corresponding author(s). E-mail(s): joaquin.ferrerc@um.es;
jeebrian@um.es; rfernandez@um.es; meacacio@Qume.es;

Abstract

Simulation enables cost-effective and rapid prototyping in computer architecture
research. It helps assess the impact of architectural changes on performance, area,
and energy consumption, playing a crucial role in early-stage development.
Gemb has become a widely used simulation tool in academia and industry for
researching multicore architectures. However, its accuracy depends on proper
configuration. Key parameters, such as core microarchitecture, memory hierar-
chy, and interconnection network, must be carefully calibrated to ensure realistic
results.

This work highlights the importance of a well-adjusted simulation environment
for modeling modern multicore setups, with a focus on coherence directory. We
refine core, memory, and interconnection parameters, identifying and addressing
deficiencies in the simulation infrastructure. We introduce new functionalities and
statistics to enhance system characterization. We implement Intel’s Top-Down
methodology in gemb), extending it with two new levels to analyze coherence
activity’s impact on performance. Lastly, we enable gem5 to support various
sparse directory architectures.

Keywords: Multicores, gemb5, cache coherence, Top-Down

1 Introduction

In the field of computer architecture research, simulation tools serve as indispensable
instruments for evaluating new designs, predicting system performance, and exploring
architectural trade-offs. As real-world experimentation with cutting-edge hardware is
often impractical due to cost, complexity, or limited availability, the use of simula-
tors provides researchers with a flexible and powerful alternative. Widely adopted by
academia and industry alike (over 6000 citations), gem5 [1] offers the ability to model
various hardware components, including CPUs, memory hierarchies, interconnects,
and system configurations, across a range of architecture types (e.g. Arm or x86). Its
modularity and configurable capabilities make it an ideal choice for simulating both
simple and complex systems, and it is currently the de facto standard for conducting
research in multicore architectures, which is the focus of this work.

However, the effectiveness of any simulation tool is contingent upon the accuracy of
its configuration and tuning. A poorly calibrated simulation environment can generate
skewed results that misrepresent the performance characteristics of the system being
modeled. This can lead to incorrect conclusions, misguided optimizations, and even
failed hardware designs, especially in research settings where performance predictions
drive key decision-making processes. In particular, in a multicore setup, the microar-
chitectural parameters, the memory hierarchy, and the interconnection network must
be carefully adjusted to reflect realistic conditions and target architectures.

Moreover, the complexity of modern systems has grown dramatically, combining
diverse processing units, accelerators, and memory subsystems. This growing complex-
ity further amplifies the need for precision in simulation. Small misconfigurations in a
tool like gemb can result in substantial deviations from real-world performance, poten-
tially misleading researchers about the true efficiency or bottlenecks in their designs.
Hence, the need for careful tuning of simulators becomes critical, not only to avoid
erroneous conclusions, but also to ensure that the results are valid, reproducible, and
meaningful in the context of actual hardware implementations.

This work emphasizes the importance of meticulous simulator tuning, with a
specific focus on gemb5, and examines common challenges that researchers face in
configuring simulations for modeling a multicore setup. By analyzing real-world case
studies and exploring best practices, the goal is to illustrate how properly calibrated
simulation environments contribute to more accurate research outcomes, while also
offering guidelines for improving simulation reliability. Ultimately, a well-tuned simu-
lator is not just a research tool, but a safeguard against imprecise results that could
have lasting repercussions in both academic and industrial contexts.

In the case of gemb, we will study and tune the configuration applied to several
simulated components such as cores, branch predictors, Translation Lookaside Buffers
(TLBs), caches, and interconnection network. In the process of tuning these struc-
tures, we identify and correct some bugs found in the simulator and also add new
functionalities implemented in modern processors and statistics to better characterize
the performance of the modeled system. To have an additional perspective when ana-
lyzing system performance, we will also implement Intel’s Top-Down methodology [2]
and extend it with two new levels of analysis to better understand the impact that
coherence activity has on performance. Finally, we also extend gemb with a variety

of sparse directory architectures and prove how important tuning the simulator is to
obtain realistic and valid conclusions about the modeled systems. We plan to release!
the patches needed to fix the deficiencies found in gem5 during our analysis, and also,
the additional functionality developed as part of this work. As the result of this work,
we provide a modified version of gemb5 where we have used an extended version of the
Top-Down method in order to detect and improve any misconfiguration in the system
to be able to model a contemporary architecture. This simulator is ready to be used
to conduct evaluations over different coherence directory designs.

The principal contributions of this work are as follows:

e We perform a deep fine-tuning of gem5, applying several bug fixes and adding new
features to model contemporary multicore architectures.

e We implement Intel’s Top-Down methodology in gemb5 and extend it to characterize
coherence activity in a multicore setup using parallel applications.

e We add support for configurable sparse directory organizations and sharer codifi-
cations.

2 Background

2.1 Simulation of multicore architectures

Based on the level of detail, simulation infrastructures can be classified as: cycle-level,
timing/functional, and analytical modeling, from more to less accurate. Additionally,
based on the workload used to simulate, we can distinguish between execution-driven,
trace-based, or full-system simulators.

Cycle-level simulators are complex pieces of software that model every part of the
system with a high level of detail. However, this implies long simulation times. On
the other hand, timing simulators and functional modeling are not as detailed. Still,
they offer a good trade-off between accuracy and simulation speed, since most of the
application instructions are processed in a simplified way. They serve to explore the
design space and to enable software development on unavailable hardware. In addition,
hybrid methodologies, such as interval simulation, provide a balance between cycle-
accurate and functional simulation. Finally, analytical modeling uses mathematical
formulas to model the performance and/or energy consumption of the architecture. We
focus our attention on cycle-level simulation of multicore architectures, with particular
emphasis on modeling coherence activity.

Among the initial efforts to provide detailed execution-driven cycle-level simulation
of parallel infrastructures, we highlight RSIM [3]. In particular, this simulation plat-
form was aimed at modeling shared memory multiprocessors made up of aggressive
superscalar, out-of-order processors. It allowed detailed simulation of the processor
microarchitecture, the cache hierarchy, the memory system (including a directory-
based cache coherence protocol), and the interconnection network. Although this
simulator was popular in the early 2000s for research on cache coherence (e.g. [4, 5]), it

LA version of the enhanced gem5 simulator can be found at https://github.com/joaquin-ferrerc-um-es/
gemb

https://github.com/joaquin-ferrerc-um-es/gem5
https://github.com/joaquin-ferrerc-um-es/gem5

was focused on multiprocessor setups with single-core processors and was discontinued
long ago.

Instead of an execution-driven approach, other cycle-level simulators adopt trace-
driven simulation, which uses traces obtained in a real system as inputs. An example of
this kind is ZSim [6], an x86-64 simulator aimed at making thousand-core simulation
practical by speeding up and parallelizing the simulation process. This tool has been
used in several research works targeting cache coherence, such as [7]. Nevertheless,
ZSim does not model contention on the interconnection network, which can be a critical
aspect when evaluating new organizations of the coherence directory information.

Full-system simulation also considers the activity of the operating system.
GEMS [8], which was the cycle-level simulator precursor to gem5, combined the SIM-
ICS functional simulator [9] with detailed models for the processor, memory hierarchy
(including cache coherence), and interconnection network. Since its release, it has been
extensively used by the research community to study cache coherence in multicores
(e.g. [10-13]). Subsequently, gemb replaced the proprietary SIMICS functional simula-
tor with the open-source mb simulator[14] and extended the capabilities of GEMS by
enabling several architectures (e.g. x86 and Arm) and network models, among other
things. This has enlarged the community behind its development and use, becom-
ing the de facto standard in academic research (and part of industry research) on
computer architecture in general, and multicore architectures in particular (over 6000
citations and counting).

In gemb, we use the Ruby memory system simulator. With Ruby we can model
the cache hierarchy, the cache replacement policies, the coherence protocols, the inter-
connection network, and the memory controllers. All this modeling is completely
modular and configurable, so we can set the memory subsystem configuration to suit
our needs. Within Ruby we use the SLICC (Specification Language for Implementing
Cache Coherence) language, which is a domain-specific language designed to specify
the behaviour of the cache controllers that implement the coherence protocol. After
all, the behaviour of a coherence protocol can be represented by a state machine per
memory address, so with SLICC we specify the behaviour of these state machines
inside every cache controller, indicating how to act on each possible event (a network
message, a petition from the core), making the necessary transitions, and generating
the necessary requests and responses to other agents.

In addition, SLICC ties together several components of the memory model, as
the state machine takes its inputs from the input ports of the interconnection net-
work, processes these events in the corresponding memory and cache controllers, and
enqueues the generated requests and messages in the output ports of the interconnec-
tion network. In this way, SLICC and Ruby attempt to simulate the behaviour of the
real hardware memory subsystem as realistically and closely as possible.

Finally, the Sniper multicore simulator [15] is an x86 simulation tool based on
the interval core model and the Graphite simulation infrastructure [16], allowing fast
and accurate simulation and trading off simulation speed for accuracy to allow a
range of flexible simulation options when exploring different homogeneous and het-
erogeneous multicore architectures. Its lack of cycle-accuracy for the processor model

makes it unsuitable for studying the impact of modifications to the cache coherence
infrastructure on performance.

In this work, we focus on gem5. Although its simulation time increases compared
to other alternatives, it models most of the system components with a high level of
detail, including the core architecture, cache and memory subsystems, interconnection
network, etc. Therefore, one can achieve high accuracy in this simulator, if the different
structures are set up properly.

As we will see in more detail later on, the configuration of these structures plays
a crucial role when it comes to configuring the simulator to be representative of real
contemporary multicore architectures. For example, a misconfiguration of the TLB
size may prevent us for setting realistic cache access latencies. Cache latencies also
need to be corrected, as a bug in the simulator was found that added an extra cycle
of latency to each cache access. In addition, the coherence directory structure should
be modified to match how it is implemented in most real systems. Finally, we will also
point out the importance of a correct modelling of the interconnection network that
does not overestimate its performance. If the network is able to absorb any increase
in traffic without due consideration of the resulting contention, incorrect results and
erroneous conclusions about a given implementation may be obtained.

We first review the current state of gem5b with bibliographical references that dis-
cuss features and fixes to improve accuracy, including Gutierrez et al. [17], Butko et
al. [18], Akram et al. [19], Walker et al. [20] and Cebrian et al. [21], especially those
related to the memory subsystem.

2.2 Characterization

A key aspect to evaluate the modeled system are the statistics provided by the sim-
ulation tool. Gem5 provides several statistics to evaluate execution times, the use of
different structures such as caches, a breakdown of the interconnection network traffic,
and many other aspects of the system. However, to have a first approach to evaluate
the performance of the system and identify the roots of potential inefficiencies, we
implemented and extended the Top-Down model in gem5.

This methodology, proposed by Yasim et al. [2], is described by the authors as “a
practical method to quickly identify true bottlenecks in out-of-order processors”. The
key aspect of this method is its hierarchical division of the performance metrics, which
helps to accurately identify, step by step, which area of the system is responsible for
performance loss. For these performance metrics, they use the Performance Monitoring
Unit (PMU) commonly included in most modern CPUs.

Among all the levels of detail available in the Top-Down methodology, we will focus
on three of them:

e Top Level. This is the first level and divides the status of the issued pops into
four categories: retiring category represents pops finishing normally and leaving the
pipeline; bad-speculation represents pops squashed due to a mispredicted branch;
the frontend-bound category represents the ratio of pops stalled in fetch/decode
stages, while the backend-bound covers ready-to-issue pops that cannot continue
along the pipeline due to a lack of resources.

e Backend Level. This level divides the backend-bound into two categories: CPU
and memory-bound, depending on the resources causing these stalls.

e Memory Level. This level breaks down the memory bound from the Backend
Level into L1-bound, L2-bound, L3-bound, External Memory bound, and Store
bound, again depending on the memory structure causing the stall.

Figure 1 shows the hierarchical organization of these three levels, with their cat-
egories. The original Top-Down methodology was focused on a single-core setup. As
explained later on, one of the contributions of this work is the extension of this
methodology to analyze coherence activity in a multicore architecture.

Top Level Frontend Backend Bad Retiring
Bound Bound Speculation
Backend Core Memory
Level Bound Bound
HHEHHEHE
Memory 331312 g
Level Lol BT B PR B
-~ N @ x
| | i} w

Fig. 1 Hierarchical division of the Top-Down levels and categories.

2.3 Coherence directory designs

When maintaining cache coherence in large systems, directory-based protocols [22]
scale significantly better than snooping-based protocols [23], as they use less traffic
over the interconnection network and, more importantly, they do not require a fully
ordered network. These protocols use a directory structure, with one entry per data
block. These entries store the state of the block in the directory (which depends on
the states of that block in each of the private caches), and the set of nodes that own
a copy of the block. This list of sharers of the block is updated as coherence events
unfold between nodes, adding and removing nodes from the list as they request and
invalidate the block in their caches. This directory information is used to only forward
coherence messages to the nodes that actually have a copy of the block, reducing traffic
in the network. It also serves as a serialization point.

Different approaches have been considered for storing directory information. Tra-
ditionally, directory information was stored in memory, extending it to store the
directory state of all the blocks. This, however, is not practical in modern systems.
We consider two main designs:

® Directory information embedded in an inclusive Last Level Cache (LLC): this is the
simplest design. By simply adding extra bits to each LLC block, we can store the
directory information we need, embedding it in the LLC. However, these extra bits
on every LLC entry (which will be mostly unused) and LLC inclusion may make
this design not the best choice.

e Standalone inclusive directory cache (also known as sparse directory [24]): this
design does not rely on LLC inclusion. Now, the directory cache is a separate struc-
ture, as a normal cache. In this case, the LLC does not need to be inclusive, but the
directory cache has to. It must contain the directory information for all the blocks
being cached in the private upper-level caches to keep coherence. This requires dupli-
cating all the tags of the blocks stored in the private caches. A cache block tag is a
unique identifier of that block. It consists of the most significant bits of the mem-
ory address. From that address, we take the least significant bits to get the block
address, and the set of the cache in which the block is stored, the remaining bits
constitute the block tag. This design is more flexible since we don’t need the LLC
to be inclusive, but we have the extra storage for the duplicated tags.

With a standalone inclusive directory cache, we have a new concept called coverage.
The coverage of a directory cache is the percentage of private cache entries that can
fit their directory information in the directory cache. When a cache entry cannot store
its directory information due to insufficient space in the directory cache, this causes
a directory cache replacement, and as a consequence of a directory entry replaced,
the copies of the corresponding block need to be invalidated on every private cache
(although there might be enough space on the LLC to store it), increasing the miss
rate of the caches. Ideally, we would like to have a coverage of 100% (even a little
more to avoid any conflict), so every private cache entry could have their directory
information, but we can have a lower coverage of 80%, or 50%, saving space in the
directory cache as we will need fewer entries, and still get good results, as not all
private cache entries will need their directory information at the same time.

In many instances, most data blocks have (in practice) very few sharers, most often
a single sharer. This is why one approach to reduce the size of the sharing information
is to have only a limited number of pointers (instead of using full bit vectors). In this
way, we can have P pointers, each with a length of 1 + log, N bits, where N is the
number of nodes in the system and each pointer has a valid bit. Thus, the complete
sharing information occupies P x (1 + log, N) bits for each cache block. In Figure 2
we can see a simplified example of what a directory entry with limited pointers would
look like. In this approach, we must consider how to act when for a block we have P
sharers and we want to add a new sharer so that they would become P + 1 sharers.
We will consider using imprecise information resorting to a broadcast representation.

Log,S-bit 1-bit P*(1+log,N-bit)

State F Pointers for P nodes

Fig. 2 Basic structure of a directory entry based on limited pointers in a system with S possible
states of a block and N nodes.

The directory-based coherence protocols implemented in gem5 assume that the
directory information is embedded in the LLC, in a bit-vector format. This results in
over-provisioning of directory information (which is largely unused) and the need for
the LLC to be inclusive. This also may differ from the way coherence directories are

implemented on a processor with a large number of cores, where a sparse directory
would normally be preferred and also some imprecise representation for the sharers
could also be used.

Another contribution of this work is the implementation of a sparse directory
organization and different imprecise sharing information representations and the eval-
uation of their impact on system performance. At that point, we will demonstrate the
importance of a proper system configuration to obtain valid and realistic results when
evaluating these implementations. Without our particular configuration of the simula-
tor, the results obtained could have led us to incorrect conclusions about the modeled
designs.

3 Gemb fine tuning and extensions

The main aim of our research was to design, implement, and study new directory
organizations. While implementing and evaluating various state-of-the-art solutions in
gemb, we found unexpected results with aggressive imprecise representations barely
hurting system performance. From that point on, our main objective was to obtain a
proper base system as a starting point for our research on directory organizations.

Before starting to configure any structure, we had to fix some bugs previously
identified in the simulator. For example, Cebrian et al. [21] found that on every message
to the memory subsystem, the gem5 O3CPU message queuing system added one extra
cycle to the returning messages. Whereas this is correct with the simple memory model,
in the case of Ruby, it already sends the response message with the correct timing,
and no additional cycles are required. With this patch, we ensure that, if we are using
Ruby for simulating the memory subsystem, we do not incur that extra cycle.

The first step we took was to configure gem5 using real hardware specifications
as a reference, to help us understand the sources of inefficiencies when running paral-
lel workloads on a multicore architecture. To develop this improved configuration, we
considered the principal contributors to the final performance in a multicore setup:
microarchitecture of the cores, cache configuration regarding latencies and sizes, cache
coherence paying attention to the organization of the directory, and the interconnec-
tion network. In Fig. 3 we can see an example of the structure of a multicore processor
with 8 cores, and its memory hierarchy: private L1 (divided into instruction and data)
and L2 cache levels for each core, and shared LLC. These cores communicate with
each other, and with the LLC, via the network-on-chip (NoC).

Even though we are considering complex and aggressive out-of-order cores that
can easily hide specific component latencies, the particular configuration of the core
model ultimately plays an important role in determining coherence activity, for exam-
ple when it comes to increasing the data cache access latency without harming too
much the performance. To this end, some new configurations and mechanisms may
need to be implemented in the simulator. This is why we set up to configure the x86
core model included in gem5 according to the specifications of contemporary prod-
ucts. Similar problems happened with the network-on-chip. An idealized network may
hide bottlenecks caused by the coherence protocol if it is capable of processing a
excessive number of messages in the same cycle, especially when aggressive imprecise

CPUq | CPU;, CPU, | CPUs

CPU .

CPU, | CPU CPUg | CPU
L1 [L1D 2| OPUs o| CPUr

NoC

LLC |

L2 |

| Memory controller |

Processor

Fig. 3 Basic structure of a multicore processor with 8 cores.

sharer representations are assumed. We must solve these problems first to ensure a
representative simulation setup.

We used the Top-Down model to summarize the micro-architecture performance
counters components and to detect wrongly configured structures in the processor.
We also run some microbenchmarks to stress both the cache and network to detect
possible inappropriate configurations in these key components. Finally, to model a
contemporary processor in gemb, we configured the core microarchitecture parameters
taking into account the Golden Cove cores available in Intel Alderlake architecture.

3.1 Extended Top-Down

Top-Down metrics implemented so far focus on the backend and memory performance
areas. However, we wanted to expand the analysis in two main ways. First of all,
providing a broader view of the system and to be able to measure the percentage of
the execution time in which the CPU is running or idle. The Top Level (and inner
levels of the method) makes a division and classification of the executing cycles and
the CPU running time and indicates which area causes more detentions, focusing on a
single thread. However, in a multicore architecture, it is interesting to know how much
time each core is idle waiting for other cores because of synchronization or maybe
because it finished its work earlier.

For this first level, we propose to create Level 0 or Pre-Top Level and take the
overall process execution time and the number of cycles each core has executed. With
these two statistics, we can obtain, for each core, how much of the overall execution
time it has been idle and how much it has been executing and running code.

The second addition we made to the original Top-Down methodology is to generate
a more detailed division of the L3 Bound on the Memory Level. In this case, we want
to know if these L2 load misses are due to cache coherence or other causes. If the cause
is cache coherence, when the L2 miss reaches the shared LLC, it will be required to
forward the request to the exclusive node that holds this data. This way, we can know
if the request is affected by coherence or not.

We also want to record the time needed to invalidate all possible copies of a data
element when some node wants to write it (GetX or Upgrade request). If the sharing
information is represented with an imprecise codification, we will be considering more

Table 1 Summary of the Top-Down metrics implemented and their correspondence with gem5

statistics.
Level 0 - Pre-Top Level
Idle ((simTicks / 500) - cpu.numCycles) / (simTicks / 500)
Executing cpu.numCycles / (simTicks / 500)
Top Level
Slots commitWidth * numCycles
Retiring commitedOps / Slots

Bad Speculation

((instsIssued - commitedOps) + commitWidth * squashCycles) / Slots

Frontend Bound

(uopsNotDeliveredBlock 4 uopsNotDeliveredRun + uopsNotDelivered-
Squash) / Slots

Backend Bound

1 - (Retiring + Bad Speculation + Frontend Bound)

Backend Level

Bound At Exe

(iewExecuteStallCycles + (iewExecuteGE1 - iewExecuteGE2)) / num-
Cycles

Core Bound

Bound At Exe - Memory Bound

Memory Bound

(iewExecuteStallAnyPendingCycles + renameBoundOnStores) / numCy-

cles

Memory Level

L1 Bound (iewExecuteStallAnyPendingCycles - iewExecuteStallL1PendingCycles)
/ numCycles

L2 Bound (iewExecuteStallL1PendingCycles - iewExecuteStallL2PendingCycles) /
numCycles

L3 Bound (iewExecuteStallL2PendingCycles - iewExecuteStallL3PendingCycles) /
numCycles

Ext. Memory Bound | iewExecuteStallL3PendingCycles / numCycles
Stores Bound renameBoundOnStores / numCycles

L3 Level
iewExecuteStallL2FwdGetSPendingCycles / numCycles
iewExecuteStallL2FwdGetXPendingCycles / numCycles
iewExecuteStallL2FwdInvPendingCycles / numCycles
iewExecuteStallL20therPendingCycles / numCycles

FwdGetS Bound
FwdGetX Bound
FwdInv Bound
Others Bound

sharers than the actual ones, so invalidations will take more time to be sent and
processed. For this new level of analysis, which we call the L3 Level, new stats are
implemented to track the corresponding events. When a new GetX or Upgrade request
is received, a FwdInv flag is set until all invalidations have been sent and replied to
the requester.

To tag an L2 miss as a cache coherence-related miss it has to be solved by another
L2. That is, L2 a asks L3 for a data block. L2 b holds this data with exclusive
access, so L3 forwards this petition to L2 b. This miss is classified as a coherence miss
because another L2 has exclusive access to the data block, and to maintain coherence,
L2 b is asked for these data in case it has modified it. When the L3 forwards the
request to the corresponding L2, it tags it as FwdGetS or FwdGetX, depending on the
original request. If no forwarding or in-flight invalidations occur, the miss is classified
as “Other”. As with the base Top-Down metrics, the counters needed for these new
two levels of analysis could be implemented adding the corresponding counters to the
CPU PMU to account for these new events. These PMU counters can be implemented
in different CPUs and architectures, so the Top-Down method and its metrics are

10

Table 2 Statistics of gemb used in the Top-Down model implementation.

simTicks

Number of simulator ticks the entire simulation
took

cpu.numCycles

Number of cycles this cpu has executed

commitWidht Number of instructions that are commited per
cycle

commitedOps Number of Ops simulated

instsIssued Number of instructions issued

squashCycles Number of cycles Issue/Execute/Writeback (IEW)

is squashing

uopsNotDeliveredBlock

Instructions not delivered to rename from decode
when status is blocked

uopsNotDeliveredRun

Instructions not delivered to rename from decode
when status is running or unblocking

uopsNotDeliveredSquash

Instructions not delivered to rename from decode
when status is squashing

iewExecuteStallCycles

Number of cycles execute is stalled

iewExecuteGE1l

Number of cycles execute executed at least 1 uops

iewExecute GE2

Number of cycles execute executed at least 2 uops

iewExecuteStallAnyPendingCycles

Number of cycles execute is stalled and there is at
least one Cache miss pending

renameBoundOnStores

Number of cycles where the Store Buffer was full
and no outstanding load

iewExecuteStallL1PendingCycles

Number of cycles execute is stalled and there is at
least one L1 miss pending

iewExecuteStallL2PendingCycles

Number of cycles execute is stalled and there is at
least one L2 miss pending

iewExecuteStallL3PendingCycles

Number of cycles execute is stalled and there is at
least one L3 miss pending

iewExecuteStallL2FwdGetSPendingCycles

Number of cycles execute is stalled and there is at
least one L2 forwarded GetS miss pending

iewExecuteStallL2FwdGet XPendingCycles

Number of cycles execute is stalled and there is at
least one L2 forwarded GetX miss pending

iewExecuteStallL2FwdInvPendingCycles

Number of cycles execute is stalled, there is at least
one L2 miss pending and it is collecting the for-
warded invalidations

iewExecuteStallL2FwdOtherPendingCycles

Number of cycles execute is stalled and there is
at least one L2 miss pending different from a for-
warded GetS or forwarded GetX, and it is not
collecting forwarded invalidations

hardware and architecture independent and could be implemented in different CPU
models. The Top-Down method just depends on the PMU implemented in the CPU,
that must be capable of counting the right events.

In addition to these two new levels of analysis, we also adapted Top-Down base
performance counters to properly study the L3 Bound. The Top-Down model follows
a core perspective. Each core has its Core and Memory Bounds, L1, L2 Bounds, etc.
On the Memory Level, it is easy to track the L1 and L2 Bounds since each core/node
has its own private L1 and L2 caches. However, when it comes to the L3 Bound, it is
more complex since each core needs to track its requests for the whole L3 cache, not
only the L3 tile attached to its node. In our case, all nodes share the L3, so each core

11

Table 3 Cache configurations applied in the
simulator.

L1D | 48 KiB, private, 12-ways, 5 cycles
L1I 48 KiB, private, 12-ways, 2 cycles
L2 1 MiB, private, 16-ways, 20 cycles
L3 4 MiB, shared, 16-ways, 30-75 cycles

needs to track how many misses caused by itself are pending on any L3 tile. Finally,
Table 1 shows all the stats added to gem5 for our Extended Top-Down Model, while
Table 2 explains each of the gemb statistics used for its implementation.

3.2 Memory hierarchy configuration

After configuring the microarchitectural parameters of the core model, we continued to
configure the cache hierarchy. The size, associativity, and access latency configuration
(round trip) for the different cache levels are shown in Table 3. As stated in the table,
the L3 (LLC) is physically distributed with 4 MiB for each core but is logically shared,
so each core sees a global, shared L3 of N x 4 MiB, where N is the number of cores
of the system.

In the baseline configuration of gemb, cache latencies are pretty optimistic com-
pared to a real system. The L1D cache latency was 2 cycles, while the L2 cache
latency was 4 cycles. We wanted to apply the latencies shown in Table 3. These are
not the exact latencies we see in the Golden Cove, but they are very similar, and,
more importantly, they are more representative latencies than the ones provided in
the base configuration of the simulator.

However, simply increasing latencies has a very detrimental effect on performance
for some applications (up to 2x), which we would not see in a real system. We will
now explain why this issue occurs and propose several fixes to configure cache latencies
without incurring unrealistic performance losses.

3.2.1 Instruction cache latency

To increase cache latencies without harming too much performance, we will serve
different latencies depending on the type of access we are solving. We focus first on the
instruction cache. Since gemb does not model pop cache, we need a fast instruction
cache. Instruction fetches will have 1 cycle enqueue latency + 1 cycle response latency.
This is an oversimplification of current real-hardware front-ends. Significant efforts
from the gem5 community are being made to provide a decoupled front-end for gem5 2.

3.2.2 Data cache latency

x86 processors implement the Total Store Order (TSO) consistency model. In TSO,
stores must be made visible to other cores in order, limiting the level of memory-level
paralelism for stores. When a store commits, it enters a Store Buffer (SB), where it
remains while waiting to be stored in the L1D cache in program order. If a store misses

2e.g., https://github.com/dhschall /gem5-fdp

12

https://github.com/dhschall/gem5-fdp

e atency -+ L1D Access Hit Rate -+L2 Access Hit Rate L3 Access Hit Rate

256

|
|
|

- 0.8
% 64 LA 0.7
s I
© 32 T 06 v
2 a
Q'E -
O 16 0.5 E
> I
2 8 0.4
% . 0.3
— . 0.2
2 e 0.1
1 0.0

P ® ©® @ ® ® @ ® ® G ® ® ® g® G ® ® g® g ® o ®
W W W W W N O ' X \ \ X \ \ \ \ \ \
DT AT T P b P NS S S A S @b‘\“ f,b‘““ %\}“‘\

Problem size

(a)

@ atency -+ L1D Access Hit Rate L2 Access Hit Rate L3 Access Hit Rate

256 1.0
0.9
128
= 0.8
o 64
3 0.7
° 32 06 ¢
$
S 16 05 £
g 04 T
e 8
2 03
50 02
2 0.1
1 0.0
® ® ® ® @ ® ® @ ©® ® & ® ® @ ® ® ©® ®
AW W W AN W W AN W \ \ \ X \ \ \ \ \ \
BT AT T T N g e AT T T g oW AW \}%“‘\ f’e‘“‘\ 6\}““

Problem size
(b)
Fig. 4 MemoryLatency benchmark results for increasing problem sizes, (a) 64 entries TLB and (b)
2048 entries TLB.

in the L1D cache, the SB can commonly hide this miss latency. However, if the SB fills,
the pipeline stalls. To reduce SB-induced stalls, we need to reduce the waiting time of
the store at the head of the SB. To this end, we propose two patches that extend the
core model with contemporary mechanisms implemented in modern processors.

The first one is to pipeline the stores. By pipelining the stores, if a store hits in the
L1D, the next store will overlap its execution and show essentially one cycle latency. If
the store misses, the next one will expose its full latency (4 4+ 1 cycles). Load accesses
will still have 4 4+ 1 cycle access latency, however note that they do not need to be
pipelined, since TSO does not prevent multiple loads to be performed in parallel. This
patch reduces store latency in case of a previous hit, emptying the SB faster, and thus
reducing the possibility of it filling up.

13

The second one is Prefetch on Commit. While the order of the stores cannot
be altered in TSO to exploit memory-level parallelism, write permissions for their
respective cache lines (blocks) can be requested in parallel. Consequently, we extend
the core model in gemb by implementing this feature. To do so, we modify the Load
Store Queue (LSQ), and every time a store commits, we generate a prefetch request
(for write permissions) on the data L1 cache. We check if the store has a request and
if it has, we launch the prefetch of that request. Thanks to this feature, we can save
time in store latency by prefetching the needed data when another store commits,
trying to avoid store misses in the L1D, and therefore having lower store latencies, as
we pipelined the stores with the previous modifications, and reducing the SB overload.

With these two patches, we can increase cache latencies while still maintaining real-
istic performance for stores. However, the increased latency of 4 + 1 cycles for the loads
produced a 2x slowdown on some applications, while others did not experience any
slowdown. To check if these new latencies are working properly, we use a microbench-
mark to measure access latencies to the different levels of the memory hierarchy. More
specifically, we use the Chips and Cheese MemoryLatency microbenchmark [25].

This microbenchmark measures the latency of random accesses to arrays of increas-
ing size, trying to avoid any spatial locality. Finally, it reports the mean latency of all
the performed accesses. If the problem size fits on the L1, the measured value will be
equal to the L1 latency. If it is bigger than L1, but fits L2, the measured value will be
equal to the L2 latency, etc.

We execute the MemoryLatency benchmark to measure cache latencies, with
increasing problem sizes from 8 KiB up to 512 MiB, with a 16-core system configu-
ration. With this system configuration, we get the results shown in Fig. 4a. In these
graphs, access latency is reported as the main result. We also plot hit rates for the
different cache levels. For problem sizes ranging between 8 KiB to 48 KiB, we experi-
ence the L1D access latency. From 64 KiB to 1 MiB, L1 + L2 access latency (access to
L1, misses, and then access to L2). From 2 MiB to 64 MiB, the L1 + L2 + L3 access
latency. Above 128 MiB, only the memory access latency.

In this graph, we see that, when the problem size fits in each of the levels, its hit
rate is close to 100%. This is the expected behavior since, as long as the problem fits
in that cache, all the requests made will result in cache hits. When the problem size
increases and no longer fits in that cache, its hit rate drops, since most of the requests
(almost all of them) will miss that cache because of the random nature of the accesses
made.

Although access latencies reported are as expected, we observe a sudden increase
in the hit rate for the L1, and later on, for the L2 and L3 once we reach a problem
size of 256 KiB. After exhaustive testing, we found out that this increase in the hit
rates was caused by an inadequate TLB configuration. Nowadays, many architectures
implement a 2-level TLB. However, gem5 assumes by default a small single-level TLB.
In these tests, its size was 64 entries. With this limited, single-level TLB, when we
reach this problem size, we start to have several TLB misses. To solve these TLB
misses, the page-table walker starts to access the caches, searching for the translation
that missed the TLB. That caused a lot of extra cache accesses, most of which were
cache hits, which artificially increased the hit rates of all the cache levels. So, those

14

extra hits were not related to the MemoryLatency benchmark accesses but to the TLB
misses.

This reduced TLB size also explains the slowdown in some applications. When the
page-table walker accesses the caches in TLB misses, it pays the 5 cycles access latency
(compared to the 2 cycles in the baseline), slowing down execution. If we had fewer
TLB misses, we would reduce the number of accesses to the caches to search for the
translations, which would reduce the unexpected high hit rates and the performance
penalty observed in several applications.

To corroborate our hypothesis, we increased the size of the TLB to compensate
for the lack of a second TLB level. After some testing with different TLB sizes, we
found that a TLB size of 2048 entries provides similar results for this microbenchmark
compared with a real system, and is similar to the size of a second TLB level of a
current processor, which should be sufficient to achieve similar performance.

Now, in Fig. 4b we see the results with this increased TLB. We observe that the
sudden hit rate increase is delayed to a problem size between 1 MiB and 16 MiB,
especially when we go from 8 MiB to 16 MiB. These results prove that the TLB size
was indeed the problem. Additionally, we tested this microbenchmark on real hardware
and found similar results with this increase in L1 hit rate at high problem sizes. Thus,
we can identify this behavior as “normal”. From now on, we will use a TLB of 2048
entries, but ideally, we should implement a two-level TLB.

subsubsectionTop-Down analysis of the improved configuration

Now, with this improved configuration, we are going to compare the baseline CPU
configuration against our enhanced configuration for the simulator using the Top-Down
model. In Fig. 5 we observe the results for the five levels of the analysis, normalized to
the baseline configuration. In the first graph, we observe, for each benchmark, how the
execution time is distributed between useful execution time, when the core is actually
executing instructions, and the time when the core is idle, waiting for some resource
or dependency. We can see that, on average, we spend more time executing with
the enhanced configuration of the simulator, with a considerable increase in raytrace.
Other benchmarks like fmm, radix and water_nsquared experience a speedup with our
configuration and, therefore, have lower Executing categories. This is expected, since
all these changes and configurations aim to model a more realistic system, but this
does not imply that its performance must be better than the currently modeled system
(our configuration has realistic timings for caches, memory and network).

On the next graph, the Top Level focuses on the Executing Bound from Level 0,
and classifies each executed slot between Retiring, Bad Speculation, Frontend Bound
and Backend Bound. Here we observe that the main increase in execution time is due
to the Backend Bound, so we expand this category on the Backend Level in the third
graph. In this graph, the executed cycles of this category are distributed between Core
and Memory Bound. We can observe that the higher Backend Bound on the enhanced
configuration is, on average, mostly due to the Memory Bound. Some benchmarks
like barnes and radiosity do not increase the Memory Bound, but the Core Bound. In
the forth graph, we put the focus on this Memory Bound at the Memory Level. On
average, we observe an increase in the L3 Bound. With raytrace this is also the case,
meaning that this increase in the execution time is due to the higher L3 access latency

15

applied in our configuration. Others like cholesky and fft also experience an increase
in the External Memory Bound.

Finally, on our newly added L3 Level in the last graph, we classify the L3 misses
cycles depending on whether they are coherence or non-coherence related. Since for
now we are not modifying the way coherence is represented in the system, in this level
most of the extra cycles are attributed to the Other Bound category due to the higher
access latencies. Later we will appreciate the potential of this new level when we study
how our modifications to the directory structure can have an impact on performance.

3.3 New directory designs

Although gem5 SLICC base coherence protocols use a directory to maintain coherence,
it is implemented as an embedded directory by extending the LLC entries to hold the
directory information of each cache line. Fig. 6 shows an example of the structure of
an embedded directory. One of the main drawbacks of this design is that this directory
information is unused on every cache entry with 0 sharers (cache blocks present in
the shared LLC but not present in any private cache) but still consumes resources.
Moreover, with this design, the LLC has to be inclusive with the upper-level caches
because every cache block that is in a private cache from the upper level needs to have
an entry on the directory and, therefore, it also needs an entry on the LLC since the
directory is embedded on the LLC entries. Thus, we cannot modify the inclusiveness
of the LLC and are forced to use an inclusive LLC.

3.3.1 Sparse directory support

To solve these problems, we implement a sparse directory cache to detach the directory
from the LLC. With a separate cache for the directory, we can store the directory
entries for those cache blocks stored in, at least, one private cache and eliminate the
directory information for those cache blocks that do not need it. This new design
requires the directory cache to be inclusive with the upper private caches, but now the
LLC can be exclusive or non-inclusive. Every cache block present in a private cache
needs to have its corresponding entry in the directory cache. This inclusiveness between
the directory cache and the private caches allows us to soften the inclusiveness of the
LLC. Now, when a cache block is present in a private cache, it does not necessarily
have to be present on the LLC, but only in the directory cache. Sometimes, there will
be a copy of such block in the LLC, but it will not be strictly necessary.

For our new system design and the cache coherence protocol, we removed the
directory information from the LLC entries and stored it in a separate structure,
creating a standalone directory cache. This directory cache will be attached to the
same controller as the LLC. In the directory cache entries, we will store the directory
information previously stored in the cache entries. In Fig. 7 we can see the structure
of this proposed implementation for the sparse directory.

The main limitation of this standalone directory cache is the duplication of tags for
every directory cache entry. Usually, the additional memory required for duplicated
tags is higher than the memory required to store the actual directory information.
However, we found that, for our configuration (which is based on coverages of 50%,

16

400%

350%

300%

N
@
Q
X

200%

i
@
Q
X

Level O - Time Percentage
S
o
X

a
Q
x

0%
500%

450%
© 400%
s

£ 350%
3

300%
250%
200%
150%
100%

Top Level - Slots Pert

50%

ol

N W W S
a 9o a o
o 9 9 g9
X X X ¥

200%
150%

100%

Backend Level - Cycles Percentage

[
o
X

Jadnaddn

0%
450%

400%
350%
300%
250%
200%
150%

100%

Memory Level - Cycles Percentage

50%

aiﬁﬂﬁ-i-i

0%
450%

[
2 400%
£ 350%

%

0% — — = L —

o

s
i d\o\es\“‘ A o e W ,‘\f‘b @&

Benchmark

|
|
.
|

1e0
< s
xS

2c®
o
Wi

|

aseline
Enhanced

%
3"

g
e

A
W e

Oidle
B Executing

M Retiring.

W Bad Speculatior
@ Frontend Bounc
O Backend Bound

B Core Bound

W Memory Bounc

[Store Bound

O ExtMEM Bounc
L3 Bound

W L2 Bound

W L1 Bound

B Other Bound

O Fwdinv Bound
W FwdGetX Bounc
B FwdGetS Bounc

Fig. 5 Top-Down results for the baseline and the enhanced simulator configuration.

17

Interconnection network to €———] LLC

private caches, other LLC Cache Entry

nodes, memory directory, etc. <€————»
v v Data Cache \% ‘ D ‘State ‘Sharers‘ Tag ‘ Data

Entry 0 | Entry 1 Entry 2 Entry k TE B logShit Nt Tt 512:51 (64 bytes)

Entry n

Fig. 6 Design and distribution of each LLC node in the original system, with N cores and S possible
states for a cache block in the LLC. The data cache is k-way associative and we have T bits for the
entry tags.

Interconection network to ~ €——| LLC
private cahes, other LLC
nodes, memory directory, etc. <€——»| Cache Entry

Data Cache \ ‘ D ‘Statec‘ Tag ‘ Data

Entry 0 | Entry 1| Entry 2 Entry k bt B log;Sbit it 512:5t (64 byles)

Entry n

Directory Cache Entry
Sharers ‘ Tag

Directory Cache \ ‘StateD

Entry 0 | Entry 1| Entry 2 Entry q [E— Nt it

Entry n

Fig. 7 Design and distribution of each LL.C node in the proposed system with a standalone directory
cache, N cores, S possible states for a cache block in the LLC cache, and D possible states for an entry
in the directory cache. The data cache is k-way associative, the directory cache is g-way associative,
and we need T bits for the tag of every entry.

100%, and 200%), the size of the directory cache will be 39.84%, 79.68%, and 159.37%
of the size of the original embedded directory design, respectively, including the dupli-
cated tags. We also have to modify the coherence protocol to adapt its behavior to
this new sparse directory structure and modify the inclusiveness of the LLC.

3.3.2 Limited pointers codification

One way to save space on every directory entry is by encoding sharer information
using limited pointers. With this codification, we can reduce the number of bits needed
for this sharing information in exchange for not being able to encode this information
in a complete and exact manner when the number of sharers exceeds the number of
pointers. If the number of pointers is lower than the number of nodes in the system,
there will be some cases in which the number of sharers will be higher than the number
of pointers used. In that case, we will consider broadcasting coherence messages as the
overflow policy. When there are more sharers than pointers, an overflow bit is activated
and all nodes in the system are considered as sharers. This broadcast representation

18

is maintained until the directory can ensure that there are no sharers for that cache
block (invalidated or replaced) or just a single sharer (upgrade or write request).

We made the appropriate modifications to the coherence protocol to work with this
new sharing representation. An interesting case was the PutX requests made by an
L1 when considering that the directory entries have no pointer (the so-called DirygB
representation [26]). Some PutX requests need to be discarded because the requester
has been invalidated before its PutX request is solved, maybe because of a write request
from another node, so modified data have been forwarded and, therefore, there is no
need to write it on the LLC. In this case, the LLC controller was originally able to
detect this situation by searching the current sharers and verifying that the requester
is no longer a sharer of the block.

However, with 0 pointers, this sharing information is inexistent, and the LLC con-
troller cannot detect this situation. To solve this, we modify the way PutX requests are
handled. Instead of sending the PutX request to the LLC, the L1 sends a PutX_Probe
to ask for permission to make a PutX request. LLC answers this PutX_Probe when it
is ready to solve it, and at this point, it is the requester L1 who decides if the PutX
request is still valid or not. If it was invalidated while waiting for the LLC response
to that PutX_Probe, the PutX request is no longer valid and the LLC will be sent a
Nack message.

3.4 Interconnection network model

One of the key areas in our simulated system is the interconnection network. In gem5,
there are two network models, Simple and Garnet, which trade off detailed mod-
eling versus simulation speed, respectively. The Simple network models hop-by-hop
network traversal but abstracts out detailed modeling within the switches regarding
contention, something that reveals critical as increases the traffic on interconnec-
tion network (something that occurs when aggressive sharer representations, such as
DirgB, are used). On the other hand, gemb also offers HeteroGarnet [27], which builds
upon the original Garnet [28] model and improves it by enabling accurate simulation
of emerging interconnect systems.

Garnet provides a cycle-accurate micro-architectural implementation of an on-chip
network router. It models all network elements with a higher level of detail, which
allows for more accurate results and better modeling of the contention between all of
the elements that make up the interconnection network. This is significantly relevant
to research studies on cache coherence, as we will see.

With our imprecise representation designs for directory-sharing information, we
are introducing a significant overhead in the interconnection network, as we need
considerably more messages to maintain coherence. These extra messages can affect
the overall system performance, saturating the interconnection network and slowing
execution. To observe the effect of the network on performance, we need to model
contention properly. For this reason, we decided to use the Garnet network model in
our studies. If we had used the Simple network, since it does not model contention
correctly, we could have obtained erroneous results and reached incorrect conclusions.

The Simple network model, however, adds statistics to classify bytes sent through
the interconnection network among different types of messages. This includes:

19

Request_Control: GetS, GetX, Upgrade, Forwards and Invalidation messages.

Wirteback_Control: PutX messages without data.

Response_Data: Data and DataExclusive messages.
e Response_No_Data: Ack and Unblock messages.
Writeback_Data: PutX messages with data.

The Garnet network model lacks this information, which we also had to implement.
With the Garnet network model, we ensure that realistic interconnection network,
that takes into account the contention present when the number of messages travelling
across the network is high, is modelled.

4 Methodology

To evaluate all the modifications proposed in this work, Table 4 summarizes the most
relevant parameters used to configure gem5. We use gem5 version 21.1. We model a
tiled manycore architecture with Golden Cove-like CPU cores. Structure sizes, pipeline
widths, and ALU latencies are based on several sources, including Chips And Chips
Golden Cove article [29], and Agner Fog’s work [30]. For the cache hierarchy, we model
three levels: L1 and L2 are private to each core, and L3 is shared and distributed
among the cores (one L3 tile per core). It uses a MESI cache coherence protocol,
adapted in each case to the different directory designs considered in this work. The
latency of L2 is for round-trip.

4.1 Evaluated directory configurations

We evaluate three different directory designs. The first design is the base directory
implementation, with an embedded directory in L3 and a bit-vector to encode shar-
ing information. The second design is the limited pointer implementation, using an
embedded directory in L3 and 0 or 1 pointers to encode sharing information. The
third design is the sparse directory implementation, which models a standalone sparse
directory cache distributed in one bank per node and a bit-vector to encode sharing
information. Depending on the coverage we want to obtain, the size of each tile of
this directory cache will vary. For coverages of 50%, 100%, and 200%, the size of each
tile of the directory cache is 8192 entries, 16-ways, 16384 entries, 16-ways, and 32768
entries, 16-ways, respectively.

4.2 Applications

The benchmark suite used in this work is Splash-3 [31]. The Splash-3 benchmark
suite is an improved version of the Splash-2 [32] suite, which consists of a mixture of
full applications and computational kernels representing a variety of computations in
scientific, engineering, and graphical computing. To keep simulation times tractable,
we use the simsmall problem size for all benchmarks except for FFT and Ocean-CP,
where we had to increase the problem size to simmedium to improve their scalability.
Table 5 shows a summary of the input parameters that each benchmark receives.

20

Table 4 System configuration parameters used in gemb.

Core Settings

Architecture

Processor frequency
Number of cores

TLB size

Branch predictor
LQEntries

SQEntries
LFST/SSITSize
numPhysInst/Float Regs
numlIQEntries
numROBEntries

Fetch Width

Decode / Rename Width
Dispatch / Issue Width
Commit Width

x86_64

2 GHz

64

2048 entries
64 KiB L-TAGE + ITTAGE
192

114

1024

332

208

512

8

6

12

8

Memory Settings

L1 data cache

L1 instructions cache
L2 cache

L3 cache

Memory

Private, 48 KiB, 12-ways, 5 cycles latency
Private, 48 KiB, 12-ways, 2 cycles latency
Private, 1 MiB, 16 ways, 20 cycles latency
Shared, 4 MiB, 16-ways per tile.

Total size of 256 MiB, 30-75 cycles latency
3 GiB, SimpleMemory, 160 cycles latency

Network Settings

Network model
Network topology
Mesh dimensions

Garnet
Mesh XY
8x 8

Table 5 Input parameters of benchmarks used.

Barnes 16K particles

Cholesky Size of matrix: 13992 x 13992,
Non-zero value elements: 316740

FFT 220 complex points in total

FMM 16K particles

LU-CB Size of matrix: 512 x 512, block size: 16

LU-NCB Size of matrix: 512 x 512, block size: 16

Ocean-CP Grid size: 514 x 514

Radiosity Refinement BF=1.5¢~1

Radix 1M keys, Radix=1K

Raytrace Car scene

‘Water-Nsquared | 512 molecules

Water-Spatial 512 molecules

Since these benchmarks are parallel applications, we bind each application thread to

a different core to improve workload distribution and results.

21

B Request_Control @ Writeback_Control [Response_Data [Response_No_Data M Writeback_Data

10.00
9]
2 875
Q
< 7.50
g 2
£ 625 &
5 5.00
S
= 3.75
£
g 2.50
1.25
0.00
o] 0 ok o) ya\ 0
\oa‘“e “o\e‘n“ @y © W 1¢ o a\"/ ad‘os\'ol e \l“ac sl “a‘e‘ 593“36»{\(,““33
\Na‘e(/ Wa e e
Benchmark
(a)
mBaseline mDir-1 @Dir-0
Q16
51.4
()
£ 1.2
210
K]
50.8
(8]
£0.6
[0}
S04
N
©0.2
IS
5 0.0
Z
catne® “o\esw O P “c“ can S o? A0S ‘ad* \,“ac S“ua‘ed Spa\\a\\o\\]\ea“
\Na \Naﬁep‘ ﬂ\e

Benchmark
(b)

Fig. 8 Results for the imprecise sharer representations (Dir-1 and Dir-0).

5 Results

This section evaluates the impact of the proposed directory organizations on perfor-
mance. First, we characterize the impact that imprecise sharing codifications have
on network traffic and analyze how the Simple network model overlooks the signifi-
cant impact this has on performance. Then, we evaluate the sparse directory model
with different coverage levels. For the evaluations, the baseline system includes all the
improvements and modifications proposed in this work and an embedded directory
with a bit-vector sharing codification.

5.1 Imprecise sharing codification

For this set of experiments, we replace the bit-vector sharing code used in the base-
line system with two implementations of the limited pointers codification presented

22

E Baseline mDir-1 =Dir-0

e “o\esw W 0 bge'&“ P sV ‘ad* \J“ac “a‘e‘ Spa\\a wee®
o \Na\e‘ \Na\e an ‘(\ﬂ\e

© o o o r
M M o ©w ©

Normalized execution time (cycles)
o
)

Benchmark

Fig. 9 Execution time results for Dir-1 and Dir-0 when the Simple network model is employed.

in Section 3.3 with 0 (Dir-0) and 1 (Dir-1) pointers, respectively. Fig. 8a shows the
total number of bytes sent through the interconnection network, classified according
to the different message types. All results have been normalized to the baseline. We
observe that, as expected, these imprecise sharer codifications have a noticeable impact
on network traffic. In particular, the amount of traffic due to Request_Control and
Response_No_Data messages drastically increases as a consequence of having to broad-
cast coherence messages (e.g. invalidation messages) and receive their corresponding
acknowledgments when the overflow bit is set.

We observe an average increase in network traffic of 3x and 6x for Dir-1 and Dir-0
respectively, with lu_ncb reaching growth of 5.1x and 10.2x. Fig. 8b shows the normal-
ized execution time for these configurations. We can see how the increase in network
traffic finally translates into significant degradations of the execution times. Higher
levels of network traffic lead to higher contention in the interconnection network and,
consequently, longer cache miss latencies, ultimately resulting in lower performance
(average performance degradations of 14% and 29% for Dir-1 and Dir-0, respectively).

Fig. 9 shows execution time results with an identical configuration except for the
interconnection network model. In this case, we use the Simple network model. Here,
we demonstrate how important a correct system configuration can be. With the Simple
network, we observe an almost negligible performance degradation (less than 1% for
Dir-1 and 5% for Dir-0) despite the huge increase in traffic levels, confirming that
the Simple network does not model contention as accurately as the Garnet model,
and therefore, does not result appropriate for estimating the effect on performance of
optimizations that can result into increased traffic levels.

Going back to the Garnet model, we can also study our newly added L3 Level
of the extended Top-Down methodology presented in Section 3.1. Fig. 10 shows the
results of the Top-Down method with these imprecise codifications, from Level 0 to
L3 Level. In the first four graphs we observe that, with Dir-1 and specially with Dir-
0, i) we spend more time executing (shown in the Level 0 graph); ii) this comes from

23

160%

140%

Oldle

80% @ Executing

@ Retiring

W Bad Speculation
@ Frontend Bound
O Backend Bound

40%
20%

0%
200%
180%

nta;

N
@
Q
B3

140%
120%

Top Level - Slots Percentage
N B (<)} =] 8
o O o o o
XRXRRXRXR

Level O - Time Percentage
@ § o]
8 g 8

T
dRGLIE

Q
X

140%

B Core Bound
B Memory Bound

= =
-3 © =) N
=} Q Q Q
X X X X

Backend Level - Cycles Percentage
S
o
X

1l
Il
|.i

N
Q Q
X X

.. .S B

|
|
|
i

140%
[
Ei 120%
<
Q
g 100%
% @ Store Bound
< 80% O ExtMEM Bound
9 m13 Bound
?') 60% W L2 Bound
3 BL1Bound
> 40%
S
£
g 20%
=
o il o
Q.
& 100%
i
c
]
£ 80%
1]
a
3 60%
S B Other Bound
k'.) 40% Fwdlinv Bound
% W FwdGetX Bound
; 20% W FwdGetS Bound
= === Ed i
0%
‘O’A‘“e 0\25‘@l o \“/ WA 5 ea“/ d\"s\“ @ ‘(“ace Q“’A‘ed Qa‘\a\ N\e’é“
ot (\ wa‘e(Z p~ ﬂ\e“
Benchmark

Fig. 10 Top-Down results for the imprecise sharing codifications. It shows how the L3 Level of the
extended Top-Down methodology proposed in this work captures the effects of Dir-0 and Dir-1

24

a significant increase in the Backend Bound (shown in the Top Level graph); iii) in
turn, this is a consequence of increasing the Memory Bound (shown in the Backend
Level graph), and iv) the sources of these increments come from the L3 Bound (shown
in Memory Level graph). At this precise point, our new L3 Level comes into play to
help us understand what is exactly happening at the L3 level (shown in the L3 Level
graph).

Here, we classify the percentage of cycles when there is a pending L2 miss, depend-
ing on the miss type: a forwarded GetS petition, a forwarded GetX petition, forwarded
invalidations due to a write petition, or other misses. We observe how the percentage
of cycles spent on each category increases as we lose precision in the representation of
the sharers. Among all the categories, the FwdInv Bound category is the most affected.
As explained, Dir-1, and especially, Dir-0 typically consider many more nodes as shar-
ers, so they require more invalidation messages on write requests when the block is
shared and there is more than 1 sharer (even a single sharer with the Dir-0 codifi-
cation). This causes more stalls waiting for these extra invalidation messages to be
processed, which increases cache miss latency and ultimately hurts performance.

5.2 Sparse directory model

We now compare the baseline system with an embedded directory design against a
sparse directory design with coverages of 50%, 100%, and 200%. First, Fig. 11a shows
the effect on network traffic. Here, we can see how, as we decrease the directory
cache size (and coverage), the amount of traffic on the interconnection network gets
increased. As the size of the directory cache decreases, we have more replacements, and
consequently, more invalidation messages, which makes the Request_Control category
grow. These invalidation messages, in turn, cause more data writebacks of invali-
dated and modified data, so the Writeback_Data category also grows. Furthermore,
the Response_Data category also increases since we have modified the inclusiveness
between L2 and L3, making more data move between these two levels when necessary.
Despite these reduced directory sizes, only a few benchmarks experience a notice-
able increment in the amount of network traffic. On average, increases for coverages
of 100% and 200% are negligible, while 50% coverage only increases network traffic
by 1.12x. Some benchmarks, like fft or Ocean-CP, have more noticeable increases for
50% coverage, with Ocean-CP reaching 1.97x. Looking at execution times in Fig. 11b,
we observe how these extra bytes also translate into higher execution times. However,
they are not as considerable as with the imprecise representation. On average, a sparse
directory with 50% coverage only increases execution times by 2% while saving more
than 60% of the space used for sharing information with an embedded directory.
Again, in Fig. 12 we observe the results for the sparse directory when we use the
Simple network model. As we have seen previously in Fig. 9, using the Simple network
model can lead to misleading conclusions, since it does not reflect the performance
degradations we observe in Fig. 11b caused by the increments in the network traffic
shown in Fig. 11a. In these results, we observe negligible impact on performance (in
some benchmarks like fft the performance of the sparse directory even improves the
baseline embedded directory), and they do not reflect the increased network traffic

25

B Request_Control @ Writeback_Control £ Response_Data Response_No_Data B Writeback_Data

—H—H—m—m

0 0 A0 ok e) @\)
g Wy ¢ (,ea“ @ d‘os\ Vo \‘“a\? s “a(ee(593‘\ QX we?
wa ’P‘ ey

y
e 50%
ge 100%
200%

Coverage

mbedded Directol
Covera§

E
Il Coveraj

]
|1

(et
Benchmark

(a)

® Embedded Directory @ Coverage 50% @ Coverage 100% Coverage 200%

0 W\ a0
\:?‘a\e 2 08 e Ne

e o o o B
N A o ®» ©

Normalized execution time (cycles)
o
o

‘Oa‘“e \es\ﬁ\I LR c® WS acP e a0 C‘) t)\of_:,\‘\l ad% \J“ac
e
Benchmark
(b)
Fig. 11 Results for sparse directory.

in fft and specially Ocean-CP, confirming that this network model does not model
contention accurately enough.

6 Conclusion

Gemb and similar simulators are complex, extensive tools that cannot be used out
of the box. Even small misconfigurations in key aspects of a multicore setup—core
microarchitecture, memory hierarchy, or the interconnection network—can produce
unrealistic results and flawed conclusions. In this work, we focus on simulating
coherence activity in multicores.

In the case of gemb, we perform a deep fine-tuning of the simulator, applying several
bug fixes and adding new features to model contemporary multicore architectures. We
also implement and extend Intel’s Top-Down methodology to characterize coherence

26

mEmbedded Directory mCoverage 50% @ Coverage 100% @ Coverage 200%

Ly
o

o
o

o
o

o
'S

I
N}

Normalized execution time (cycles)

o
o

s W f \ o oo 0 osl vt ce ed e a0
par® G\(\o\es O W T oced"- ‘,&3\0‘5 ol LoV (/593 o @
\Na\e(o \Na\e P\‘,\\\.\“\e

Benchmark

Fig. 12 Execution time results for sparse directory when the Simple network model is employed.

activity in a multicore setup. Finally, we also provide gemb with the possibility of
configuring a variety of sparse directory architectures and sharer codifications. The
result of this work is a version of gemb ready for conducting research in the field of
cache-coherent multicores.

Acknowledgments

Work carried out in the context of the project PID2022-1363150B-100 funded by
MCIN/AEI/10.13039/501100011033/ and “ERDF A way of making Europe”, EU.
Also, in the context of the project TED2021-130233B- C33, funded by MCIN/AEI/
10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”.
Joaquin Ferrer has been funded by grant 22723/FPI/24 from Fundacién Séneca,
Agencia de Ciencia y Tecnologia de la Regién de Murcia.

References

[1] Lowe-Power, J., Ahmad, A.M., Akram, A., Alian, M., Amslinger, R., Andreozzi,
M., Armejach, A., Asmussen, N., Beckmann, B., Bharadwaj, S., Black, G., Bloom,
G., Bruce, B.R., Carvalho, D.R., Castrillon, J., Chen, L., Derumigny, N., Diestel-
horst, S., Elsasser, W., Escuin, C., Fariborz, M., Farmahini-Farahani, A., Fotouhi,
P., Gambord, R., Gandhi, J., Gope, D., Grass, T., Gutierrez, A., Hanindhito, B.,
Hansson, A., Haria, S., Harris, A., Hayes, T., Herrera, A., Horsnell, M., Jafri,
S.A.R., Jagtap, R., Jang, H., Jeyapaul, R., Jones, T.M., Jung, M., Kannoth, S.,
Khaleghzadeh, H., Kodama, Y., Krishna, T., Marinelli, T., Menard, C., Mon-
delli, A., Moreto, M., Miick, T., Naji, O., Nathella, K., Nguyen, H., Nikoleris,
N., Olson, L.E.; Orr, M., Pham, B., Prieto, P., Reddy, T., Roelke, A., Samani,
M., Sandberg, A., Setoain, J., Shingarov, B., Sinclair, M.D., Ta, T., Thakur, R.,
Travaglini, G., Upton, M., Vaish, N., Vougioukas, I., Wang, W., Wang, Z., Wehn,

27

N., Weis, C., Wood, D.A., Yoon, H., F. Zulian: The gem5 Simulator: Version
20.0+ (2020). https://arxiv.org/abs/2007.03152

Yasin, A.: A top-down method for performance analysis and counters architecture.
In: 2014 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pp. 35-44 (2014). https://doi.org/10.1109/ISPASS.2014.
6844459

Hughes, C.J., Pai, V.S., Ranganathan, P., Adve, S.V.: Rsim: simulating shared-
memory multiprocessors with ilp processors. Computer 35(2), 40—49 (2002) https:
//doi.org/10.1109/2.982915

Kaxiras, S., Young, C.: Coherence communication prediction in shared-memory
multiprocessors. In: Proceedings Sixth International Symposium on High-
Performance Computer Architecture. HPCA-6 (Cat. No.PR00550), pp. 156-167
(2000). https://doi.org/10.1109/HPCA.2000.824347

Acacio, M.E., Gonzélez, J., Garcia, J.M., Duato, J.: A new scalable direc-
tory architecture for large-scale multiprocessors. In: 7th Int’l Symp. on High-
Performance Computer Architecture (HPCA), pp. 97-106 (2001). https://doi.
org/10.1109/HPCA.2001.903255

Sanchez, D., Kozyrakis, C.: Zsim: fast and accurate microarchitectural simula-
tion of thousand-core systems. SIGARCH Comput. Archit. News 41(3), 475-486
(2013) https://doi.org/10.1145/2508148.2485963

Sanchez, D., Kozyrakis, C.: SCD: A scalable coherence directory with flexi-
ble sharer set encoding. In: 18th Int’l Symp. on High-Performance Computer
Architecture (HPCA), pp. 129-140 (2012). https://doi.org/10.1109/HPCA.2012.
6168950

Martin, M.M.K., Sorin, D.J., Beckmann, B.M., Marty, M.R.., Xu, M., Alameldeen,
A.R., Moore, K.E., Hill, M.D., Wood, D.A.: Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset. ACM SIGARCH Computer Architec-
ture News 33(4), 92-99 (2005) https://doi.org/10.1145/1105734.1105747

Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hog-
berg, J., Larsson, F., Moestedt, A., Werner, B.: Simics: A full system simulation
platform. IEEE Computer 35(2), 50-58 (2002) https://doi.org/10.1109/2.982916

Martin, M.M.K., Hill, M.D., Wood, D.A.: Token coherence: Decoupling perfor-
mance and correctness. In: 30th Int’l Symp. on Computer Architecture (ISCA),
pp- 182-193 (2003). https://doi.org/10.1145/871656.859640

Marty, M.R., Bingham, J.D., Hill, M.D., Hu, A.J., Martin, M.M.K., Wood, D.A.:
Improving multiple-CMP systems using token coherence. In: 11th Int’l Symp. on
High-Performance Computer Architecture (HPCA), pp. 328-339 (2005). https:

28

https://arxiv.org/abs/2007.03152
https://doi.org/10.1109/ISPASS.2014.6844459
https://doi.org/10.1109/ISPASS.2014.6844459
https://doi.org/10.1109/2.982915
https://doi.org/10.1109/2.982915
https://doi.org/10.1109/HPCA.2000.824347
https://doi.org/10.1109/HPCA.2001.903255
https://doi.org/10.1109/HPCA.2001.903255
https://doi.org/10.1145/2508148.2485963
https://doi.org/10.1109/HPCA.2012.6168950
https://doi.org/10.1109/HPCA.2012.6168950
https://doi.org/10.1145/1105734.1105747
https://doi.org/10.1109/2.982916
https://doi.org/10.1145/871656.859640
https://doi.org/10.1109/HPCA.2005.17
https://doi.org/10.1109/HPCA.2005.17

[12]

[16]

[17]

[19]

[20]

//doi.org/10.1109/HPCA.2005.17

Ferndndez-Pascual, R., Garcia, J.M., Acacio, M.E., Duato, J.: A low overhead
fault tolerant coherence protocol for CMP architectures. In: 13th Int’l Symp. on
High-Performance Computer Architecture (HPCA), pp. 157-168 (2007). https:
//doi.org/10.1109/HPCA.2007.346194

Cuesta, B., Ros, A., Gémez, M.E., Robles, A., Duato, J.: Increasing the effective-
ness of directory caches by deactivating coherence for private memory blocks. In:
38th Int’l Symp. on Computer Architecture (ISCA), pp. 93-103 (2011)

Binkert, N.L., Dreslinski, R.G., Hsu, L.R., Lim, K.T., Saidi, A.G., Reinhardt,
S.K.: The m5 simulator: Modeling networked systems. IEEE Micro 26(4), 52-60
(2006) https://doi.org/10.1109/MM.2006.82

Carlson, T.E., Heirman, W., Eeckhout, L.: Sniper: Exploring the level of abstrac-
tion for scalable and accurate parallel multi-core simulations. In: Conf. on
Supercomputing (SC), pp. 52-15212 (2011). https://doi.org/10.1145/2063384.
2063454

Miller, J.E., Kasture, H., Kurian, G., Gruenwald, C., Beckmann, N., Celio,
C., Eastep, J., Agarwal, A.: Graphite: A distributed parallel simulator for
multicores. In: HPCA - 16 2010 The Sixteenth International Symposium on High-
Performance Computer Architecture, pp. 1-12 (2010). https://doi.org/10.1109/
HPCA.2010.5416635

Gutierrez, A., Pusdesris, J., Dreslinski, R.G., Mudge, T., Sudanthi, C., Emmons,
C.D., Hayenga, M., Paver, N.: Sources of error in full-system simulation. ISPASS
2014 - TEEE International Symposium on Performance Analysis of Systems and
Software, 13-22 (2014) https://doi.org/10.1109/ISPASS.2014.6844457

Butko, A., Garibotti, R., Ost, L., Sassatelli, G.: Accuracy evaluation of GEM5
simulator system. ReCoSoC 2012 - 7th International Workshop on Reconfigurable
and Communication-Centric Systems-on-Chip, Proceedings (2012) https://doi.
org/10.1109/ReCoSoC.2012.6322869

Akram, A., Sawalha, L.: A comparison of x86 computer architecture simulators.
(2016). https://api.semanticscholar.org/CorpusID:12104824

Walker, M., Bischoff, S., Diestelhorst, S., Merrett, G., Al-Hashimi, B.: Hardware-
validated cpu performance and energy modelling. In: 2018 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pp.
44-53 (2018). https://doi.org/10.1109/ISPASS.2018.00013

Cebrian, J.M., Barredo, A., Caminal, H., Moret6, M., Casas, M., Valero, M.:
Semi-automatic validation of cycle-accurate simulation infrastructures: The case
for gem5-x86. Future Generation Computer Systems 112, 832-847 (2020) https:

29

https://doi.org/10.1109/HPCA.2005.17
https://doi.org/10.1109/HPCA.2005.17
https://doi.org/10.1109/HPCA.2007.346194
https://doi.org/10.1109/HPCA.2007.346194
https://doi.org/10.1109/MM.2006.82
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1109/HPCA.2010.5416635
https://doi.org/10.1109/HPCA.2010.5416635
https://doi.org/10.1109/ISPASS.2014.6844457
https://doi.org/10.1109/ReCoSoC.2012.6322869
https://doi.org/10.1109/ReCoSoC.2012.6322869
https://api.semanticscholar.org/CorpusID:12104824
https://doi.org/10.1109/ISPASS.2018.00013
https://doi.org/10.1016/j.future.2020.06.035
https://doi.org/10.1016/j.future.2020.06.035

[22]

[23]

[29]

[30]

[32]

//doi.org/10.1016/j.future.2020.06.035

Censier, L.M., Feautrier, P.: A new solution to coherence problems in multicache
systems. IEEE Transactions on Computers (TC) 27(12), 1112-1118 (1978) https:
//doi.org/10.1109/TC.1978.1675013

Goodman, J.R.: Using cache memory to reduce processor-memory traffic. In:
10th Int’l Symp. on Computer Architecture (ISCA), pp. 124-131 (1983). https:
//doi.org/10.1145/800046.801647

Gupta, A., Weber, W.-D., Mowry, T.C.: Reducing memory traffic require-
ments for scalable directory-based cache coherence schemes. In: 19th Int’l Conf.
on Parallel Processing (ICPP), pp. 312-321 (1990). https://doi.org/10.1007/
978-1-4615-3604-8_9

Chips, Cheese: Microbenchmars GitHub repository. Available at https://github.
com/ChipsandCheese/Microbenchmarks

Agarwal, A., Simoni, R., Hennessy, J.L., Horowitz, M.A.: An evaluation of direc-
tory schemes for cache coherence. In: 15th Int’l Symp. on Computer Architecture
(ISCA), pp. 280289 (1988). https://doi.org/10.1145/633625.52432

Bharadwaj, S., Yin, J., Beckmann, B., Krishna, T.: Kite: A family of hetero-
geneous interposer topologies enabled via accurate interconnect modeling. In:
2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1-6 (2020).
https://doi.org/10.1109/DAC18072.2020.9218539

Agarwal, N., Krishna, T., Peh, L.-S., Jha, N.K.: Garnet: A detailed on-chip
network model inside a full-system simulator. In: 2009 IEEE International Sym-
posium on Performance Analysis of Systems and Software, pp. 33-42 (2009).
https://doi.org/10.1109/ISPASS.2009.4919636

Chips, Cheese: Popping the Hood on Golden Cove. Available at https://
chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove/

Fog, A.: Instruction Tables. Instruction latencies, throughputs and micro-
operation breakdowns. Available at http://www.agner.org/optimize/instruction_
tables.pdf (2018)

Sakalis, C., Leonardsson, C., Kaxiras, S., Ros, A.: Splash-3: A properly synchro-
nized benchmark suite for contemporary research. In: 2016 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pp.
101-111 (2016). https://doi.org/10.1109/ISPASS.2016.7482078

Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 pro-

grams: Characterization and methodological considerations. In: 22nd Int’l Symp.
on Computer Architecture (ISCA), pp. 24-36 (1995). https://doi.org/10.1109/

30

https://doi.org/10.1016/j.future.2020.06.035
https://doi.org/10.1016/j.future.2020.06.035
https://doi.org/10.1109/TC.1978.1675013
https://doi.org/10.1109/TC.1978.1675013
https://doi.org/10.1145/800046.801647
https://doi.org/10.1145/800046.801647
https://doi.org/10.1007/978-1-4615-3604-8_9
https://doi.org/10.1007/978-1-4615-3604-8_9
https://github.com/ChipsandCheese/Microbenchmarks
https://github.com/ChipsandCheese/Microbenchmarks
https://doi.org/10.1145/633625.52432
https://doi.org/10.1109/DAC18072.2020.9218539
https://doi.org/10.1109/ISPASS.2009.4919636
https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove/
https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove/
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://doi.org/10.1109/ISPASS.2016.7482078
https://doi.org/10.1109/ISCA.1995.524546
https://doi.org/10.1109/ISCA.1995.524546

ISCA.1995.524546

31

https://doi.org/10.1109/ISCA.1995.524546
https://doi.org/10.1109/ISCA.1995.524546

	Introduction
	Background
	Simulation of multicore architectures
	Characterization
	Coherence directory designs

	Gem5 fine tuning and extensions
	Extended Top-Down
	Memory hierarchy configuration
	Instruction cache latency
	Data cache latency

	New directory designs
	Sparse directory support
	Limited pointers codification

	Interconnection network model

	Methodology
	Evaluated directory configurations
	Applications

	Results
	Imprecise sharing codification
	Sparse directory model

	Conclusion

