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Abstract: In recent years, the role played by melatonin on the gut microbiota has gained increasingly
greater attention. Additionally, the gut microbiota has been proposed as an alternative source of
melatonin, suggesting that this antioxidant indoleamine could act as a sort of messenger between the
gut microbiota and the host. This review analyses the available scientific literature about possible
mechanisms involved in this mediating role, highlighting its antioxidant effects and influence on this
interaction. In addition, we also review the available knowledge on the effects of melatonin on gut
microbiota composition, as well as its ability to alleviate dysbiosis related to sleep deprivation or
chronodisruptive conditions. The melatonin–gut microbiota relationship has also been discussed in
terms of its role in the development of different disorders, from inflammatory or metabolic disorders
to psychiatric and neurological conditions, also considering oxidative stress and the reactive oxygen
species-scavenging properties of melatonin as the main factors mediating this relationship.

Keywords: melatonin; gut microbiota; obesity; sleep; neurodegenerative disorders; metabolism;
inflammatory bowel disease

1. Introduction

Melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic molecule chemically clas-
sified as an indoleamine. It exerts multiple actions, both directly and through different
receptors (MT1 and MT2, G-protein-coupled membrane receptors; MT3, cytosolic enzyme
quinone reductase 2, which has potent antioxidant effects when bound to melatonin). In
mammals, this hormone is produced by the pineal gland, located in the brain, as well
as by a great variety of extrapineal sources, including the retina and the immune and
gastrointestinal systems (reviewed in [1]).

Among the functional properties of melatonin, we can find potent antioxidant (to
be reviewed in the next section), immunomodulatory and anti-inflammatory actions, as
well as specific antiproliferative, antiangiogenic and proapoptotic effects in tumour cells
(reviewed in [1]). Apart from these local effects, melatonin is also considered to be the
most important chronobiotic hormone when released by the pineal gland into the blood
circulation, sending time-of-day information and acting as a chemical signal of darkness
(reviewed in [2]). This hormone presents an endogenous circadian variation, with a peak
during the night and undetectable levels during the day. In addition, pineal melatonin
can be acutely suppressed by light at night. Both processes are essential for this molecule
to inform about the arrival of darkness at night. Although melatonin locally produced in
other tissues has also shown different circadian patterns, the interplay between the pineal
and extrapineal melatonin rhythms is not yet clear (reviewed in [1]) (Figure 1).

The most important extrapineal source of melatonin is precisely the gastrointestinal
tract, where the concentrations can reach levels as much as 400 times greater than plasma
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melatonin levels [3]. Also, a healthy gut contains an enormous population of microorgan-
isms working in close relationship with our body and physiology. Traditionally, the gut
microbiota has been known to be involved in metabolic activities that result in energy and
nutrient management and protection of the host against invasion by pathogenic microor-
ganisms. However, in recent years, the gut microbiota has been shown to be involved in
a myriad of functions. Indeed, dysbiosis (abnormal gut bacterial composition) has been
linked to the pathogenesis of several inflammatory disorders, as well as to the emergence of
certain neurological conditions and even cancer. It is now well known that changes in our
physiology can affect the gut microbiota and, conversely, that changes in the gut microbiota
will affect our physiology. So, knowing the particular processes involved in this interplay
will be essential in order to treat and prevent a number of health issues.
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Figure 1. Pineal and gastrointestinal melatonin regulation. This figure was built with SMART
resources (Servier Medical Art), licensed under a Creative Common Attribution 3.0 Generic License.
See http://smart.servier.com/ (accessed on 1 September 2023).

In this sense, maintaining a healthy microbiome composition becomes crucial to pre-
serving health and wellbeing. Although nutrition is thought to be the primary factor
affecting the gut microbiota, other aspects may also compromise the balance between com-
mensal and pathogenic gut bacteria. It has been shown that a lack of sleep alters melatonin
levels in the gut [4] and plasma [5], as well as the gut microbiota composition [4–10]. It
is precisely in the relationship between the gut microbiota, sleep and circadian rhythms
where melatonin may play an important role in diurnal species, such as humans. Indeed,
sleep deprivation and artificial light at night [11] have been demonstrated to suppress
melatonin and to alter the microbiota composition, an effect that can be counteracted via
the administration of exogenous melatonin [12].

Considering that melatonin has been identified in different and distant taxa of unicel-
lular organisms, including bacteria [13], it is not surprising to find that the gut microbiota is
also a source of melatonin [14] and contains melatonin receptors. This means that melatonin
might also act as a signal to transfer both external and internal information between the
gut microbiota and the host.

Therefore, melatonin may play a significant role in the relationship between sleep
deprivation or artificial light at night, dysbiosis and those health problems that may result
from alterations of the microbiota composition. It would follow that among other multiple
functions of melatonin, maintenance of the microbiota composition could be another crucial
role of this pleiotropic molecule.

All of this suggests that the gut microbiota might be acting through melatonin as a
link between two essential aspects of health: nutrition and sleep, both framed within the

http://smart.servier.com/
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circadian system. Here, we will review the current scientific evidence on the relationship
between melatonin and the gut microbiota, as well as the effects of that interplay on
the development of different health issues, excluding cancer, which has already been
extensively reviewed in [1].

2. Antioxidant Properties of Melatonin

Maintaining a balance between the production and removal of free radicals is cru-
cial for overall health, as an imbalance leads to oxidative stress. This condition results
in macromolecular damage, potentially affecting the integrity of the gut barrier. Mela-
tonin, the original function of which in unicellular organisms is speculated to be as an
antioxidant, plays a protective role against oxidative stress at molecular, cellular, tissue,
organ and organ system levels [15] through direct free radical scavenging and indirect
modulation of antioxidant enzyme expression. Additionally, melatonin has the ability to
repair oxidised biomolecules [16].

Antioxidants can be categorised based on their chemical mechanisms of action against
oxidative stress. Melatonin has been proposed to be a Type IV or multifunctional antioxi-
dant. Also, as a Type I antioxidant, melatonin can detoxify various reactive oxygen species
(ROS) and reactive nitrogen species (RNS) by directly reacting with them or through the
generation of less reactive species. The indole moiety of melatonin plays a crucial role
in its antioxidant capacity, as it interacts with free radicals due to its resonance stability.
Melatonin can scavenge multiple reactive species through a “free radical scavenging cas-
cade”, making it a highly effective antioxidant [17]. This cascade starts once melatonin
interacts with reactive species, generating intermediaries that are, in turn, free radical
scavengers with different efficiencies and specificities (reviewed in [18]). As a result of this
mechanism, melatonin becomes a very effective antioxidant [19,20]. These metabolites in-
clude [18] N-acetylserotonin, 5-methoxytryptamine, cyclic 3-hydroxymelatonin, N1-acetyl-
N2-formyl-5-methoxykynuramine, N1-acetyl-5-methoxykynuramine, 6-hydroxymelatonin,
4-hydroxymelatonin and 2-hydroxy melatonin.

Melatonin also acts as a Type II antioxidant by quenching singlet oxygen (1O2) [21,22],
chelating metal ions [23] and inhibiting lipid peroxidation and the protein damage induced
by metal interactions [24–26]. Additionally, as a Type III antioxidant, melatonin regenerates
other antioxidants, such as glutathione, ascorbic acid and Trolox, through electron transfer
processes [27,28]. Melatonin can repair oxidised DNA via electron transfer [29,30] and also
by enhancing DNA repair mechanisms [31–34], activating antioxidant enzymes [35–41]
and inhibiting pro-oxidative enzymes in non-tumour cells [42,43].

These unique antioxidant properties of melatonin, including the free radical-scavenging
cascade, place it as a central molecule in terms of antioxidant activity. Considering the
concentrations required for these purposes, it is important to note that it is extrapineal mela-
tonin, synthesised outside the pineal gland, which plays a significant role in antioxidant
and anti-inflammatory processes. However, we cannot ignore the potential relevance of the
interplay between pineal and extrapineal melatonin, which remains an important area of
research to better understand the regulation of the antioxidant functions of melatonin.

3. ROS in the Gut

Reactive oxygen species (ROS) can be beneficial in low and moderate concentrations.
However, when ROS levels increase, they can have detrimental effects, and their impact
varies depending on the concentration and the specific tissues involved. ROS play a role
in the health of the intestine and the diversity of the gut microbiota (reviewed in [44]).
Maintaining the health of this organ relies to an important extent on the intestine’s ability to
effectively regulate the excessive production of ROS. Indeed, the balance of gut microbiota
composition is closely and bidirectionally associated with the redox equilibrium. In this
sense, oxidative stress has been demonstrated to alter the gut microbiota composition in
mice, increasing Bacteroidetes and decreasing Firmicutes, Clostridiales, Ruminococcaceae and
Oscillospira [45]. On the other hand, the presence of gut injury and dysbiosis can lead
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to the suppression of antioxidant activity in the gastrointestinal tract [46]. Under such
circumstances, melatonin can exert its antioxidant activity, restoring the redox balance
and thereby enhancing the composition of the gut microbiota, as will be detailed in the
following sections.

The regulation of the gut microbiome and systemic oxidative stress is interconnected
and complex. Oxidative stress occurring in the gut can result in damage to the structural
integrity of the intestinal barrier. Specifically, damage to mitochondrial DNA in intestinal
epithelial cells can lead to excessive local production of ROS, contributing to mitochondrial
dysfunction. This further exacerbates the increase in ROS levels and oxidative damage
and, in addition, leads to a decrease in the expression of tight junction proteins (Occludin,
Claudin-1 and ZO-1) and the death of intestinal epithelial cells [47].

Indeed, an important factor in the pathogenesis of gut microbes is bacterial transloca-
tion due to the compromised integrity of the intestinal barrier. The lipopolysaccharide (LPS)
response serves as a significant marker signal in this process, which can activate abnormal
immune signals by binding to the TLR-4 complex, subsequently increasing the produc-
tion of ROS/RNS and proinflammatory cytokines [48,49]. Also, LPS can stimulate the
expression of oxidative stress-related enzymes, such as inducible nitric oxide synthase [50]
or NADPH oxidase, resulting in excessive RNS/ROS production and activation of the
downstream NF-κB pathway [51,52]. Furthermore, specific gut microbes can induce the
production of ROS in intestinal epithelial cells, and it has been shown that Lactobacillus
can induce the production of ROS by intestinal phagocytes depending on the presence of
NADPH oxidase 1 [53].

ROS levels in the gut are counteracted by the antioxidant activity of gut microbes,
facilitated by short-chain fatty acids (SCFAs), among other metabolites. SCFAs inhibit
peroxisomes and activate the Nrf2 pathway, contributing to the maintenance of redox
balance in the gut [54]. Thus, gut microbiota play a crucial role in regulating this balance,
which is essential for gut health and overall wellbeing.

Gut Melatonin and ROS

Melatonin acts in the gut not only by scavenging highly toxic ROS but also by up-
regulating different antioxidant enzymes, including glutathione peroxidase, catalase and
superoxide dismutase. Additionally, melatonin downregulates pro-oxidative enzymes,
further contributing to the maintenance of a favourable redox environment in the gut. Mela-
tonin can exert its effects through direct interactions with ROS, as well as via membrane
and nuclear receptors that act as mediators for its indirect antioxidant actions. Through
this mechanism, melatonin activates various stress-responsive genes, such as Sirt, HIFa
and AMPK, triggering an increase in the expression of multiple antioxidant enzymes [55].
Consequently, the significant impact of melatonin on the enteric microenvironment stems
largely from the reduction in oxidative stress exerted on the gut microbiota through the
various pathways mediated by melatonin.

As examples that confirm this evidence, exposure to imidacloprid (a neonicotinoid
insecticide) has been shown to induce gut toxicity in zebrafish via oxidative stress, con-
comitantly with a decrease in melatonin and serotonin levels. In this study, the prolonged
darkness that increased melatonin levels also attenuated said toxicity [56]. Melatonin
administration can also ameliorate skin oxidative stress indirectly through the regulation of
propionic acid as observed in a model of sleep-restricted mice [57]. Also in sleep-restricted
mice, melatonin has been shown to prevent intestinal dysbiosis by palliating oxidative
stress [5,6,8,9]. In mice with DSS-induced colitis, melatonin has also been demonstrated
to improve oxidative stress resistance while regulating the gut microbiota and improving
overall intestinal health [58].

4. Melatonin Effects on Gut Microbiota Composition

The gastrointestinal tract has an intimate relation with gut microbiota, and it is well
known that keeping this dynamic population of microorganisms in good shape contributes
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to maintaining immune status and metabolic homeostasis. The gut microbiota also helps
to defend the host against pathogens, reducing the probability of infections through the
intestinal barrier. In this sense, and as reviewed below, both host and exogenous melatonin
have been shown to have an impact on the gut microbiota, producing compositional,
metabolic and circadian changes.

Two characteristics of the microbial gut microbiota are (i) its abundance (more than
100 trillion microorganisms, 1011–1012 per millilitre) and (ii) its diversity. To date, the
Human Microbiome Project and MetaHit data have presented the most complete picture
of the human-associated microbial repertoire [59,60]. These studies made it possible to
identify 2172 human-isolated species that belong to 12 phyla, with 93.5% corresponding
to Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. One of these publications [59]
also included a comprehensive inventory of the functional potential of the human gut
microbiome, finding 9,879,896 genes that present a high level of redundancy.

Despite the high degree of redundancy found in gut microbial gene expression, an
imbalance in this community can lead to health impairment. This alteration in microbiota
composition is known as “dysbiosis” and has been linked to a variety of diseases, such
as inflammatory bowel disease (IBD), metabolic disorders (e.g., obesity or diabetes), al-
lergies, cancer and neurologic conditions, such as autism spectrum disorders (reviewed
in [61]). Given the importance of maintaining the gut microbiota composition and pre-
venting/reverting dysbiosis, the factors involved in these processes have recently been
gaining attention.

➢ Effects of exogenous melatonin

Although the exact mechanism has not yet been unravelled, exogenous melatonin
administration causes different changes in gut microbiota composition (see Table 1). Indeed,
melatonin has been shown to reduce the Firmicutes/Bacteroidetes ratio (which is considered
an indicator of intestinal homeostasis; decreased Firmicutes/Bacteroidetes ratios are associ-
ated with dysbiosis) and also to increase the abundance of Akkermansia, a mucin-degrading
bacteria related to a healthy mucosa. Exogenous melatonin has been demonstrated to revert
14 of the 69 operational taxonomic units (OTUs) altered in mice fed a high-fat diet, including
Desulfovibrionaceae, Bacteroides, Ruminococcaceae, Helicobacteraceae, Porphyromonadaceae and
Christensenellaceae [62]. Other authors found that melatonin had the effect of increasing
Clostridiales, Bacteroidales and Enterobacteriales [63], Alistipes [64] and Bacteroidetes [65] and
decreasing Firmicutes in rats [63] and mice [64,65] fed a high-fat diet.

Ren and colleagues (2018) [12] explored the effects of melatonin supplementation in
mice suffering from weanling stress, finding that 0.2 mg/mL for 2 weeks was enough
to influence the gut microbiota composition and to increase its richness indices, with
an increase in the abundance of Lactobacillus, while reducing the load of enterotoxigenic
Escherichia coli [12,66]. Similar effects were reported by Jing and colleagues in 2019, who
demonstrated an increase in the relative abundance of Lactobacillales and Lactobacillus after
injecting melatonin in a mouse model of spinal cord injury suffering from the consequent
dysbiosis. In this case, the relative abundance of Clostridiales was reduced by the melatonin
treatment [67]. Other studies that found a protective effect of melatonin in colitis symptoms
discovered that although its administration reduced the variety and richness of the gut
microbiota, it also increased the amount of the probiotic Bifidobacterium and at the same
time decreased the relative abundance of pathogenic bacterial taxa, such as Desulfovibrio,
Peptococcaceae and Lachnospiraceae [68]. In suckling piglets, melatonin has been shown to
increase the relative abundance of Actinobacteria while reducing Selenomonadales [69].
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Table 1. Effects of melatonin on gut microbiota composition.

Study Animal Model
Treatment to Alter Gut

Microbiota
Composition

Melatonin
Treatment/Intervention

(Route, Dosage,
Time Period)/
Measurement

Effects of Melatonin
Treatment

Xu et al., 2017 [62] Mouse High-fat diet

By gavage
50 mg/kg body
weight
Once daily, 10 weeks

Revert 14/69 OTUs altered
↓ Firmicutes/Bacteroidetes
↑ Akkermansia

Yildirim et al., 2019 [63] Rat High-fat diet
In drinking water
4 mg/kg per day
2 weeks

↑ Clostridiales
↑ Bacteroidales
↑ Enterobacteriales

Yin et al., 2018 [64] Mouse High-fat diet
In drinking water
0.4 mL/mL
2 weeks

↑ Bacteroides
↑ Alistipes

Ren et al., 2018 [12] Mouse Weanling mouse model
In drinking water
0.2 mg/mL
2 weeks

↑ Richness
↑ Lactobacillus
↓ Escherichia coli

Jing et al., 2019 [67] Mouse Mouse model of spinal
cord injury

Intraperitoneal injection
10 mg/kg
Twice a day

↑ Lactobacillales
↑ Lactobacillus
↓ Clostridiales

Li et al., 2021 [70] Sheep Brucella infection Overexpression of ASMT
in transgenic sheep

↓ Abundance of microbes
related to infectious
diseases

Zhang et al., 2022 [71] Mouse -

Endogenous melatonin
reduction
(Aanat-knockout
(Aanat−/−))

Microbiota dysbiosis
↑ Gut permeability
↑ Systemic inflammation

Zhao et al., 2022 [68] Mouse Induced colitis
(oxazolone)

50 mg/kg body weight
By gavage
1 week before induction
of colitis

↑ Bifidobacterium
↓ Desulfovibrio
↓ Peptococcaceae
↓ Lachnospiraceae

Xia et al., 2022 [69] Sucking piglets Healthy
10 mL oral melatonin
solution (1 mg/mL)
21 days

↑ Actinobacteria
↓ Selenomonadales

Ouyang et al., 2021 [72] Lactating cows Healthy Ruminal melatonin
In vitro

(+) Muribaculaceae,
Succinivibrionaceae,
Rikenellaceae,
unidentified Cyanobacteria,
Defluviitaleaceae,
Veillonellaceae,
Spirochaetaceae and
Prevotellaceae
↑ Prevotellaceae
↑ Muribaculaceae
↓ Succinivibrionaceae
↓ Veillonellaceae

Yin et al., 2020 [65] Mouse High-fat diet ↑ Bacteroidetes
↓ Firmicutes

➢ Manipulated endogenous melatonin production

Another approach to studying the possible effects of melatonin on gut microbiota
composition is through the use of transgenic animals over- or underexpressing limiting
enzymes for the synthesis of melatonin (e.g., aASMT, Figure 2). The overexpression of
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these enzymes has been shown to reduce the abundance of microbes related to infectious
diseases in transgenic sheep [70]. In contrast, the models with endogenous melatonin
reduction (EMR) suffer from microbiota dysbiosis, together with systemic inflammation
and increased gut permeability [71].
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5. Effects of Melatonin on Rhythmic Variations of Microbiota

The gut microbiota imbalance, known as dysbiosis, should not be confused with the
normal variation of gut microbiota composition, considering that this microbial population
is not an isolated and static bacterial community. Instead, its composition and metabolism
depend on different factors. Some of these factors are exogenous, such as diet; some are
endogenous, such as host genetics; and some have an exogenous component mediated by
endogenous physiological processes. An example of the latter is the light–dark cycle or
photoperiod, the effects of which are mediated by melatonin secreted in a circadian manner
by the pineal gland. Thus, the gut microbiota shows a daily metabolic rhythmicity, partly
influenced by the host circadian system, which is also affected by the rhythmic variations of
microbiota in a bidirectional way. The physiology of a healthy gut microbiota includes this
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rhythmicity, with daily variations in community populations as well as circadian variations
in their functional and metabolite expression [73].

Although the evidence so far is limited, some results support the potential beneficial
effect of melatonin supplementation in restoring the lost rhythmicity of Firmicutes under a
high-fat diet [65], for example. This study includes a detailed analysis of the rhythmicity
exhibited by different phyla and genera under an HFD and melatonin supplementation,
with varying results.

Another interesting area of study is endogenous melatonin of extrapineal origin.
Although the information is limited, the role of melatonin produced by the gastrointestinal
tract (which can have a concentration of up to 400 times that of melatonin from pineal origin)
has been investigated in ruminants by Ouyang et al. (2021). They found that melatonin
in the rumen fluid oscillates in a diurnal manner and so does the relative abundance of
9% of total rumen bacterial OTUs. Furthermore, ruminal melatonin seems to be positively
correlated with Prevotellaceae, Muribaculaceae, Veillonellaceae and Succinivibrionaceae. Apart
from this in vivo experiment, these authors also confirmed the effect of melatonin on
bacterial composition with an in vitro assay, finding that melatonin can increase the relative
abundance of Muribaculaceae and Prevotellaceae while reducing that of Veillonellaceae and
Succinivibrionaceae. According to these results, ruminant microbiota seems to maintain a
circadian rhythm associated with melatonin profiles [72].

6. Effects of Melatonin on Other Aspects of Gut Microbiota

Composition or rhythmicity are not the only aspects of the gut microbiota to be
affected by melatonin. In fact, in vitro swarming and motility of Enterobacter aerogenes can
be influenced by melatonin (1 nM), which also produces a synchronising effect of this
rhythmic behaviour. This effect might be mediated by the presence of melatonin receptors
found in this prokaryote [74]. Although Klebsiella pneumoniae and Escherichia coli do not
seem to be sensitive to the effect of this indoleamine [74], the latter has also shown a
dose-dependent repellent response to melatonin (<0.1 mM) [66].

Short-chain fatty acids (SCFAs), the main metabolites produced by the gut microbiota,
exert many different and relevant functions in our body. They are produced by anaerobic
fermentation of indigestible polysaccharides (e.g., dietary fibre or resistant starch) [75], and
their presence in plasma also exhibits a diurnal rhythm that is disrupted under chronodis-
ruptive conditions, such as night shift work [76].

7. Gut Microbiota as an Extrapineal Source of Melatonin

Some of the demonstrated effects of melatonin on the gut microbiota have been
described in previous sections. However, the relationship between melatonin and the gut
microbiota has been shown to be bidirectional, so this population of microbes can also affect
melatonin levels in the host. Indeed, since microorganisms can produce large amounts of
melatonin [13,77], intuitively, we may infer that the intestinal microbiota could be another
source of melatonin [14].

One approach to demonstrating the ability of the gut microbiota to produce melatonin
has consisted of injecting a precursor of the indoleamine (5-Hydroxytryptophan, 5-HTP)
into the gastrointestinal tract and evaluating whether melatonin increases at different
levels (see Figure 2 for melatonin synthesis pathway). Pan et al. (2021) identified the
highest concentrations of the hormone in the colon, which suggested that the microbiota
present at that level of the gastrointestinal tract may participate in melatonin production.
These authors also demonstrated that melatonin produced in the gut can also reach the
bloodstream via the portal vein, since sheep injected with 5-HTP also exhibited higher
plasma melatonin concentrations [78]. However, considering that the possible interplay
between melatonin from pineal and extrapineal sources has not yet been elucidated, this
statement might be considered questionable.

Another indirect method for detecting possible actions of the gut microbiota on the
host’s melatonin levels is through the effects of microbial metabolites. In this sense, butyrate
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(an SCFA produced by gut microbiota) has been shown to induce N-acetylserotonin and
melatonin synthesis in the gut through the induction of aralkylamine N-acetyltransferase
(AANAT) and acetylserotonin O-methyltransferase (HIOMT) (two limiting enzymes for
melatonin production; see Figure 2), suggesting that a possible effect of this SCFA might be
mediated via its induction of the melatonergic pathway, not only in the microbiota itself but
also in (e.g.,) immune cells [79]. Also, the induction of this indoleamine through butyrate
may exert feedback on the gut microbiota through the mechanisms described in Section 3.

Another way in which microbiota might influence the effects of melatonin on the
host is by inducing the expression of melatonin receptors. In this sense, Wang et al.
demonstrated in 2019 that gut microbiota is able to promote melatonin receptor expression
in the host’s colonic cells, and they suggested that SCFAs may be relevant actors in the
mechanism involved [80].

8. Sleep, Melatonin and Microbiota

There is increasing evidence that suggests that sleep deprivation produces gut mi-
crobiota disorders and that melatonin might be a possible mediator between the two
processes [4–10] (Table 2).

In 2019, Gao et al. [6] demonstrated that 72 h sleep deprivation can produce colitis
in mice, with a reduction in the diversity and richness of the gut microbiota, especially
decreasing probiotics such as Akkermansia, Bacteroides and Faecalibacterium while increasing
the pathogen Aeromonas. Concomitant with these changes, an increase in nor-epinephrine
and a reduction in plasma melatonin were detected, with the consequent reduction in
antioxidant ability and down- and upregulation of anti-inflammatory and proinflammatory
cytokines, respectively, which led to colonic mucosal injury. Supplementation with 20
and 40 mg/kg of melatonin was able to reverse these changes, palliating mucosal injury
and dysbiosis.

These authors [5] also reported that melatonin supplementation increased plasma mela-
tonin concentration and OTUs, improving the diversity and richness of jejunal microbiota by
increasing the presence of Bacteroidaceae, Prevotellaceae, Moraxellaceae and Aeromonadaceae and
increasing the Firmicutes/Bacteroidetes ratio. Melatonin also increased anti-inflammatory cy-
tokines (IL-22), decreasing proinflammatory cytokines (IL-17) and ROS, which resulted in a
reduction in inflammation and oxidative stress. Similarly, a protocol of 20 h of sleep depriva-
tion during 48 days in mice produced a reduction in plasma melatonin (48.91%), antioxidant
enzymes (and total antioxidant capacity in intestinal tissues) and anti-inflammatory cy-
tokines (IL10 and IFNγ). This protocol also produced an increase in glucose, norepinephrine,
corticosterone and proinflammatory cytokines (IL6 and TNFα). However, it also increased
α-diversity by increasing Helicobacter and Clostridium and reducing Bacteroidetes and Lac-
tobacillus. Again, melatonin supplementation was able to restore these phenotypes [9].
These authors also described the possible role of corticosterone, which is increased in sleep-
deprived mice, in mediating the colitogenic effect of sleep deprivation through microbiota.
Indeed, the beneficial effects of melatonin might be related to its weakening action on
glucocorticoid receptor feedback through the MT2 receptor [8].

These authors went a step further and found that sleep-deprived mice showed gut mi-
crobiota disorders and mucosa injuries, together with a decrease in plasma melatonin
concentration, Card9 expression and Faecalibacterium, with the consequent reduction
in butyrate levels. Melatonin supplementation, however, reversed all of these effects
produced by sleep deprivation. The fact that the colitis induced in healthy (non-sleep-
deprived) mice via faecal transplantation from sleep-deprived animals was reverted
through the supplementation of butyrate, with no change in melatonin concentration,
demonstrates that melatonin should be acting in mucosal integrity through the restoration
of the microbiota [7].

The role of the interactions between Aeromonas and goblet cells has been also explored
in mice, finding that Aeromonas veronii and LPS supplementation (naturally increased in
sleep-deprived animals) can mimic the reduced number of goblet cells and mucin protein
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produced during sleep deprivation, while melatonin is capable of reversing these effects,
probably through MT2 receptors [10].

Table 2. Sleep deprivation (SD), gut microbiota and melatonin as a possible link.

Study

Animal Model/
Duration of

Sleep
Deprivation

(SD)

Effect of SD on
the Gastroin-
testinal Tract

Effect of SD on
Gut Microbiota Other Effects

Melatonin
Treatment (Route,

Dosage, Time
Period)/

Measurement

Effects of Melatonin
Treatment

Gao et al.,
2019 [6] and
Gao et al.,
2020 [5]

Mouse
72 h Colitis

↓ Akkermansia
↓ Bacteroides
↓ Faecalibacterium
(probiotics)
↑ Aeromonas

↑ Norepinephrine
↓ Plasma melatonin
↓ Antioxidant ability
↓ Anti-inflammatory
cytokines
↑ Proinflammatory
cytokines

20 and 40 mg/kg
Intraperitoneal
injections once
60 min before SD,
and a single dose
per day at 7:00
am for a total of
3 days

Reverse changes
Improve mucosal
injury and dysbiosis
↑ Plasma melatonin
↑ OTUs
↑ Diversity and
richness
↑ Bacteroidaceae
↑ Prevotellaceae
↑ Firmi-
cutes/Bacteroidetes
↑ Moraxellaceae
↑ Aeromonadaceae
↑ Anti-inflammatory
cytokines
↓ Proinflammatory
cytokines
↓ ROS

Wang et al.,
2022
[9]

Mouse
20 h/day for

28 days
-

↑ α-diversity
↑ OTUs
↑ Helicobacter
↑ Clostridium
↓ Bacteroidetes
↓ Lactobacillus

↓ Plasma melatonin
(48.91%)
↓ Antioxidant
enzymes
↓ Total antioxidant
capacity in intestinal
tissues
↓ Anti-inflammatory
cytokines (IL10,
IFNγ),
↑ Glucose
↑ Norepinephrine
↑ Corticosterone
↑ Proinflammatory
cytokines (IL6 and
TNFα)

10−5 mol/L,
drinking water

Reverse changes
↓ Oxidative stress
↓ Inflammatory
response
↓ Dysbiosis

Gao et al.,
2021 [7] Mouse, 72 h Mucosa injury ↓ Faecalibacterium

↓ Plasma melatonin
↓ Card9 expression
↓ Butyrate

20 mg/kg.
Intraperitoneal
injections once
60 min before SD,
and a single dose
per day at
7:00 am for a total
of 3 days.

Reverse effects

Gao et al.,
2022 [10]

Mouse
72-h

No SD—effects
mimicked by:

Aeromonas
veronii

LPS
supplementation

Mucosa injury -

↓ Goblet cells
↓ Mucin protein
↓ Villin
↓ Tff3 mRNA
↑ TLR4
↑ MyD
88↓ p-GSK-3β
↓ β-catenin

20 and 40 mg/kg
Intraperitoneal
injections once
60 min before SD,
and a single dose
per day at
7:00 am for a total
of 3 days

Reverse effects
(through MT2) of SD

Park and colleagues [4] also demonstrated the interplay between sleep deprivation,
melatonin and microbiota in mice, revealing a decrease in melatonin levels—this time
measured in faeces and the colon—concomitant with a shift to a colitogenic microbiota
(increasing Erysipelotrichales and Enterobacteriales and decreasing Lactobacillales). This micro-
biota shift was reverted through melatonin supplementation, with an increased presence of
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Akkermansia muciniphila and Lactobacillus, while Bacteroides massiliensis and Erysipelotrichaceae
were reduced.

However, the exact mechanism involved in the relationship between microbiota and
sleep homeostasis and the role of melatonin has yet to be determined (Figure 3). Consid-
ering that most of the sleep deprivation protocols produce an impairment of antioxidant
ability, an effect that can be reverted via melatonin administration, the antioxidant proper-
ties of this molecule cannot be excluded from this possible mechanism. Indeed, various
studies have examined the beneficial impact of administering melatonin on oxidative status
following the implementation of diverse sleep deprivation protocols [5,6,9].
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In this sense, most of the physiological conditions and pathologies leading to poor
sleep quality have been related to enhanced oxidative stress. Sleep deprivation has
been demonstrated to increase oxidative stress either by increasing ROS generation or by

http://smart.servier.com/
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decreasing antioxidant capacity [81–85]. Not only deprivation but also sleep fragmentation
can be responsible for an increase in oxidative stress [86]. Pathologies like insomnia [87,88]
or conditions like circadian disruption [89], a widely accepted cause for poor sleep quality,
have been related to higher levels of oxidative stress. Therefore, and considering diurnal
animals such as humans (where melatonin serves not only as a chronobiotic but also as a
sleep inducer [90–92]), it becomes plausible that the potential positive impact of melatonin
on sleep quality [93] could extend to improvements in microbiota status. This amelioration
may be mediated by the enhancement of oxidative status, suggesting a multifaceted role
for melatonin in promoting overall health.

On the other hand, healthy microbiota will maintain the production of neurotrans-
mitters, both directly and indirectly, through SCFA production, which will activate en-
terochromaffin cells, which in turn secrete different neurotransmitters [94]. However,
most neurotransmitters cannot pass the intestinal and the blood–brain barriers [95], so
those molecules produced in the intestine will act through the vagus nerve, which con-
tains receptors and can send the signal to the brain [96]. The melatonin signal will also
be enhanced not only by direct melatonin production but also through the upregula-
tion of its receptors mediated by SCFAs [80]. SCFAs are also immunomodulators that
reduce proinflammatory cytokines and increase anti-inflammatory cytokines [75,97–99],
which, together with the better union between epithelial cells [98,100,101], will prevent
different wakefulness factors from being included in systemic circulation. When the gut
microbiota composition/homeostasis is disrupted (dysbiosis), the reduction in SCFAs,
together with the increase in lipopolysaccharides, will produce an increase in proinflam-
matory cytokines and will make both the blood–brain barrier and the intestinal barrier
more permeable, favouring the passage of these molecules to systemic circulation [101],
activating the hypothalamic–pituitary–adrenal axis and producing wakefulness neurotrans-
mitters/hormones (e.g., norepinephrine, cortisol) [96,101,102].

At this point, it should be mentioned that most of the publications linking sleep
deprivation, melatonin suppression and gut microbiota disorders have focused on mice, a
nocturnal animal model, so it could be of interest to extrapolate these results to humans as
diurnal animals.

To the best of our knowledge, there is not much research on humans that directly
evaluates sleep, melatonin and microbiota composition in a polyhedral manner; how-
ever, there are some studies that attribute sleep benefits to the consumption of pro- (live
microorganisms), pre- (foods that promote the growth of beneficial bacteria in the gut)
and postbiotics (bioactive compounds resulting from the digestion of prebiotics by gut
microbiota). Although there is some controversy, most of these studies show that the
consumption of pre-, pro- and postbiotics improves sleep quality in humans (extensively
reviewed in [103]).

9. Circadian System, Melatonin and Gut Microbiota

Sleep is regulated through two different types of processes, homeostatic and circadian,
and it is not in vain that the sleep–wake cycle is considered to be one of the major outputs
of the circadian system, also acting as a zeitgeber (zeitnemer, since it can act as a circadian
input and output). Therefore, the circadian system must be highly involved in the interplay
between sleep, melatonin and gut microbiota. Firstly, SCFAs show day/night fluctuations
in mice, with increased levels during the active periods [104]. Furthermore, although the
literature is limited, SCFAs have been demonstrated to synchronise Per2/Bmal1 (two core
pieces of the molecular clock) in hepatocytes [105] and to produce phase advance in all clock
genes in the kidney and in Per2 and Bmal1 in submandibular gland cells when administered
in the middle of the day [104], also inhibiting histone deacetylation [75]. Therefore, SCFAs,
the main metabolites of gut microbiota, could act as a signal on the circadian clock.

Unconjugated and secondary bile acids have been shown to promote circadian rhyth-
micity by increasing Per and Cry expression in the ileum and colon [106,107]. Interestingly,
the bacteria present in healthy gut microbiota (e.g., Lactobacillus, Bifidobacterium, Clostridium
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and Enterococcus) produce bile salt hydrolase (BSH), which in turn will deconjugate bile
acids, allowing them to exert their beneficial effects on the circadian system [106]. Sleep
disruption, on the other hand, will reduce the presence of Lactobacillus and Bifidobacterium
and, therefore, the production of BSH [108].

➢ Influence of circadian cues on microbiota composition and effects on (and of) melatonin

Although it would require a more complex experimental design and the conclusions
are rather speculative, some authors have tried to assess the possible effects of endogenous
melatonin through the manipulation of environmental conditions (Table 3).

The light/dark cycle, produced by the alternation of day and night driven by the
Earth’s rotational movement, is considered to be the main input of the circadian system.
Melatonin produced by the pineal gland—mainly at night and in darkness—is closely
tied to this cycle, presenting an endogenous rhythm driven by the suprachiasmatic nuclei
(central pacemaker), which is also synchronised, thanks to this cycle. Apart from this
endogenous rhythmicity, melatonin secretion is also acutely suppressed by light at night
(Figure 1). The sleep-promoting effects of melatonin are restricted to diurnal animals,
so its suppression in nocturnal animals related to sleep deprivation may cause different
downstream effects.

With this in mind, different studies on nocturnal animal models have pointed out the
obesogenic effect of light at night, precisely mediated by melatonin suppression and its dele-
terious effects on microbiota composition (Table 3). Namely, this disruptive environmental
condition has been demonstrated to increase weight, insulin resistance and lipid influx and
to produce gut microbiota dysbiosis in mice, specifically by inducing a reduction in the
richness of Blautia, Ruminiclostridium, Lachnospiraceae, Lactobacillus, Eubacterium, Roseburia
and Bacteroides (all negatively correlated with obesity). Melatonin supplementation was ef-
fective in improving circadian rhythm homeostasis and reverting these relative abundances
while decreasing the abundance of Anaerotruncus, Alloprevotella and Faecalibaculum [11],
which are related to obesity in mice [1,11]. Other authors have investigated the effect of
different photoperiods on gut microbiota, finding a protective effect of 16L:8D (16 h of light,
8 h of darkness), probably mediated by the appropriate melatonin secretion and enhanced
expression of melatonin receptors in laying ducks [109].

Similar results were found in jet-lag-induced mice, with an increase in lipid uptake and
fat accumulation in the white adipose tissue as well as in the presence of Escherichia coli and
LPS, concomitant with a reduction in angiopoietin-like 4. Oral melatonin supplementation
reversed these phenotypes, probably through gut microbiota, since the treatment was not
successful in microbiota-depleted animals [110].

Seasonal changes in photoperiod seem to be also related to seasonal changes in micro-
biota composition. In order to explore the factors involved in this apparent relationship,
Shor and colleagues [111] divided pinealectomised and intact hamsters into long- or short-
photoperiod groups. They found that pinealectomised animals placed on a short-day pho-
toperiod had significantly more Prevotella (associated with improved glucose tolerance [112],
decreased adiposity [113] and inflammatory responses [114,115]) and Clostridium and a
lower abundance of Desulfovibrio as compared to animals with an intact pineal gland. The
genus Hungatella (related to carbohydrate metabolism and energy harvest) [116], however,
was enriched in pinealectomised animals under long-day photoperiods. Although these
authors attribute these effects to melatonin from the pineal gland, considering the possible
interplay between both local gut melatonin and pineal melatonin, indirect regulation of the
former cannot be ruled out.

Feeding can also be a powerful circadian cue, especially for peripheral oscillators.
In this sense, Wang et al. (2021) recently explored the effects on microbiota of restricting
feeding in piglets (diurnal animals) to day or night. Although a causal relationship be-
tween melatonin and microbiota effects cannot be established, the authors found reduced
concentrations of melatonin in the night-time-restricted feeding group, as well as an al-
teration in the diurnal rhythm and composition of the gut microbiota, with increased log
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ratios of Catenibacterium:Butyrivibrio and Streptococcus:Butyrivibrio [117], demonstrating that
nocturnal fasting has a potentially protective effect on diurnal animals.

Table 3. Circadian cues and their effects on microbiota.

Study Circadian Cue Animal Model Effects on Gut Microbiota Other Effects Effects of Melatonin
Treatment

Hong et al., 2020
[11] Constant light Mouse

↓ Blautia
↓ Ruminiclostridium
↓ Lachnospiraceae
↓ Lactobacillus
↓ Eubacterium
↓ Roseburia
↓ Bacteroides

↑ Weight
↑ Insulin resistance
↑ Lipid influx

Reversion of
dysbiosis and
↓ Anaerotruncus
↓ Alloprevotella
↓ Faecalibaculum

Cui et al., 2022
[109]

Long/short
photoperiods

Laying ducks
(diurnal)

20 Light:4 Darkness
↓ Microbiota α-diversity
16 Light:8 Darkness
Relative abundance of:
= Actinobacteria
= Fusobacteria
= Proteobacteria
= Fusobacterium
= Clostridium_sensu_stricto_1
= Pectobacterium

16 Light:8 Darkness
↑ Acetate
↑ Propionate,
↑ Butyrate and
↑ Total SCFA
(Ileal chyme)
↓ Melatonin with
increasing
photoperiods.

-

Short et al., 2020
[111]

Long/short
photoperiods Hamster

Pinealectomised, short-day
photoperiod (compared to
sham-pinealectomised)
↑ Prevotella
↑ Clostridium
↓ Desulfovibrio
Pinealectomised, long-day
photoperiod (compared to
sham-pinealectomised)
↑ Hungatella
(Treatments did not uniformly
affect OTU abundances—see
paper for details).

In the presence of the
pineal gland, animals
with short-day
photoperiods lost
more weight than
those with long-day
photoperiods

-

Rong et al., 2021
[110] Induced jet lag Mouse ↑ Escherichia coli (↑ LPS)

↑ Lipid uptake
↑ Fat accumulation in
white adipose tissue
↓ Angiopoietin-like 4

Reversed those
phenotypes through
gut microbiota (only
in non-microbiota-
depleted animals).

Wang et al., 2021
[117]

Feeding time
night-restricted

Piglets
(diurnal)

Night-restricted
↑ Log Catenibacterium/Butyrivibrio
↑ Log Streptococcus/Butyrivibrio

Night-restricted
↓ Melatonin (day and
night)
↓ Ghrelin
↓ Dopamine
↓ Serotonin

-

“=” symbol means appropriate balance; “↑” means increase; “↓” means reduction.

10. Melatonin, Gut Microbiota and Disease
10.1. Inflammatory Bowel Disease

Chronic and recurring intestinal inflammation is a hallmark of inflammatory bowel
disease (IBD), which is a catch-all name for ulcerative colitis (UC) and Crohn’s disease (CD).
In 2015, IBD was estimated to affect around 3 million individuals in the United States, and
its incidence and prevalence have grown globally over the past few years [118]. Since it is a
complex illness with an unknown pathogenesis, it is difficult to completely treat IBD. The
intricate interaction of genetic, immunologic, microbiological and environmental variables
that lead to IBD makes it challenging to treat this pathology.

It is well known, however, that the gut microbiota is very much implicated in this
disease, since alterations in composition and metabolism can lead to histological and
anatomical effects on the gastrointestinal epithelium. Indeed, recent studies have reported
that disturbances in the microbiota–host relationship are linked to IBD [119,120]. In healthy
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conditions, the immune system eliminates pathogenic bacteria while tolerating habitual
gut microbiota [121]. If this balance is disrupted, the host’s immune response will be
triggered, initiating a diseased status [122,123]. The increase in harmful bacteria [124] and
the secretion of enterotoxins in the gastrointestinal tract can damage the intestinal mucosal
barrier and lead to the production of inflammatory factors, which eventually will cause
intestinal inflammation and immune dysfunction [123]. Faecal microbiota therapy and its
beneficial effect have confirmed the essential role of the gut microbiota in IBD [125,126].
In addition, the reduced diversity of beneficial bacteria and alterations in the microbiota
composition typical of these patients have been linked to an increase in ROS production and
a compromised defence system in the intestinal mucosa [46]. In this sense, several studies
have demonstrated that in IBD, chronic intestinal inflammation is associated with the
overproduction of ROS [127–129]. Thus, it is not surprising that melatonin administration
could be beneficial with regard to its antioxidant properties, as indicated below.

Although colitis/IBD can be triggered by sleep deprivation (as discussed in Section 8),
melatonin has been proven to alleviate abdominal pain in irritable bowel syndrome patients
independently of its actions on sleep [130,131]. Whether these effects of melatonin are
mediated by its actions on the gut microbiota composition or other aspects of metabolism
is a quite recently opened field of research. Here, we include some recent studies in which
melatonin administration has been proven to alleviate colitis symptoms while affecting
microbiota composition (Table 4).

Table 4. Effects of melatonin on microbiota composition and colitis symptoms.

Study Animal Model Chemical to
Induce Colitis/IBD Melatonin Treatment

Effects of Melatonin
Treatment on Microbiota

Composition

Effects of Melatonin
Treatment on Colitis

Symptoms

Zhu et al., 2018
[58] Mouse Dextran Sulphate

Sodium (DSS)
Drinking water
0.2 mg/L

= Diversity
= Abundance
= Coverage
↑ Firmicutes
↑ Bacteroidetes (with no
melatonin)

Increased antioxidant
capability

Jing et al., 2022
[132] Mouse Dextran Sulphate

Sodium (DSS)

Melatonin +
hyaluronic acid
(aggregates)

Alleviate dysbiosis
Restore
Firmicutes/Bacteroidetes
↑ Richness
↑ Diversity
↑ Lactobacillus
↓ Bacteroides, Blautia,
Streptococcus

Restoration of the
intestinal barrier
Inhibition of colon
inflammation

Zhao et al., 2022
[68] Mouse Oxazolone Via gavage

50 mg/kg

↓ Richness at the OTU level
↓ Diversity at the OTU level
↑ Bifidobacterium
↓ Desulfovibrio
↓ Peptococcaceae
↓ Lachnospiraceae

Counteracting body
weight loss
Counteracting colon
shortening
Neutrophil infiltration
Suppression of type 2
immune response

Kim et al., 2020
[133]

Mouse (wild
type and TLR4

knockout)
DSS Oral and rectal

10 mg/kg/day

Revert dysbiosis
↑ Richness
↑ Diversity
↓ Proteobacteria
↑ Ruminococcaceae
↓= Bacteroidetes
↑= Firmicutes

↓ Disease activity index
Alleviation of the
shortening of colon and
histopathologic
features

The effects of melatonin on colitis have also been explored in chemically induced
models of this disease. Zhu et al. (2018) showed that melatonin was effective in improving
antioxidant capability in mice with colitis induced by dextran sulphate sodium (DSS), while
the gut microbiota diversity, abundance and coverage did not change with the treatment.
Firmicutes (e.g., Coprococcus and Ruminococcaceae) presented higher levels in mice treated
with melatonin, while the untreated DSS group had more Bacteroidetes [58]. Zhao et al. (2022)
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explored the effects of the indoleamine in the oxazolone-induced colitis model, finding that
melatonin can counteract body weight loss, colon shortening and neutrophil infiltration by
suppressing the type 2 immune response. Interestingly, they suggested that these effects
are mediated by the gut microbiota, whose richness and diversity at the OTU level were
reduced under melatonin treatment, increasing the abundance of Bifidobacterium, a well-
known probiotic, and reducing the abundance of different harmful bacterial genera, such
as Lachnospiraceae, Peptococcaceae and Desulfovibrio [68].

Melatonin has also been administered using a nanotechnology-based treatment com-
posed of hyaluronic acid (HA) aggregated with this indoleamine (MT) that has been
demonstrated to accumulate in the inflamed colon epithelium of colitis mice, alleviating
symptoms, repairing the damaged intestinal barrier and inhibiting colon inflammation.
Regarding its effects on the microbiota, this conjugate (HA-MT) can restore the Firmi-
cutes/Bacteroidetes ratio by improving the richness and diversity of the gut microbiota in
mice with colitis. When analysing gut microbiota at the species level, the abundance of
Lactobacillus increased, while that of Bacteroides, Blautia and Streptococcus was reduced [132].

But what is the exact mechanism by which melatonin exerts its effects on microbiota
and colitis? This question has been recently addressed by Kim et al. (2020), who found
that the anticolitic effects of this indoleamine require Toll-like receptor 4 (TLR4) signalling,
since it alleviated induced colitis and reverted microbial dysbiosis only in wild-type but
not in TLR4 knockout mice. In this experiment, melatonin significantly suppressed Pro-
teobacteria (Gram-negative phylum, including Escherichia coli and Salmonella) and increased
Ruminococcaceae family strains, which include butyrate-producing Gram-positive bacteria
that are reduced in IBD faecal microbiota. These authors also demonstrated that melatonin
induces Reg3b expression, an antimicrobial peptide, as well as goblet cell differentiation,
through melatonin receptors and TLR4 signalling [133]. In any case, research has also
demonstrated an improvement of the antioxidant capability after treatment with melatonin,
so the antioxidant properties of this molecule cannot be discarded as a potential mechanism
to alleviate colitis symptoms and dysbiosis.

In line with these results in animal models, descriptive studies in humans have found
that melatonin concentrations are higher in faecal samples of IBD patients than in healthy
control samples [134,135], and higher levels of melatonin have been negatively correlated
with visceral hypersensitivity in patients with diarrhoea. Butyrate produced by Clostridium
in IBD has been suggested to be the link for this melatonin upregulation in BON-1 cells
(human neuroendocrine tumour cell lines) [135].

10.2. Melatonin, Gut Microbiota and Metabolic Disorders

Appetite and food intake are also influenced by the host circadian system, including
its inputs and outputs [136]. In this sense, different studies have demonstrated that changes
in the light–dark cycle can affect microbiota composition, which in turn can significantly im-
pact appetite, among other aspects of the host physiology [137,138]. In parallel, melatonin
production and the expression of melatonin receptors, also modulated by photoperiod, are
linked to appetite/food intake regulation mediated by leptin [139–143].

It is well recognised that dietary composition and feeding timing also play a significant
role in regulating microbiota composition and metabolism [144,145]. These changes in the
gut microbiota seem to affect host physiological processes in different ways, including the
modulation of food intake and appetite [146]. Therefore, a specific dietary adjustment,
such as the use of probiotics, has the potential to modify the microbiota composition
and functionality, which may ultimately have different effects on the host’s metabolism
and control over food consumption. In zebrafish, probiotic administration of Lactobacillus
rhamnosus seems to confirm its ability to modulate not only appetite markers but also
the expression of melatonin receptors, confirming the relationship between microbial
metabolism, melatonin and appetite.

On the other hand, melatonin has been detected and quantified in many different
foodstuffs. Good dietary sources of melatonin include cereals, seeds and nuts [147], among
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which we can highlight pistachio, with 226–233 µg/g [148]. A wide range of melatonin
concentrations has been also detected in fermented foods, and Saccharomyces cerevisiae
seems to have a relevant role in melatonin formation (reviewed in [149]).

Melatonin taken orally is absorbed from the gut and metabolised in the liver [150]. Dif-
ferent studies have shown that plasma melatonin concentrations and its metabolite in urine,
6-sulphatoxymelatonin, increase after the intake of foods containing indoleamine [151–153].
There is also evidence concerning the typical melatonin effects after the ingestion of these
foods, such as the increased total antioxidative capability of serum [152]. A field to explore
is thus whether melatonin contained in food can reshape the gut microbiota or whether
the concentrations detected in most food are enough to produce those effects and, also,
whether the effect of different food components on the microbiota could affect melatonin
production in the gut.

10.2.1. Breastfeeding, Melatonin and Microbiota

Breastfeeding is a particularly interesting situation in terms of the effects of orally
administered melatonin on gut microbiota composition also because the melatonin con-
centration in breast milk is not static but rather varies following a circadian pattern. The
typical night-time increase in melatonin secreted by the pineal gland is transferred through
the breast milk to the nursing infant [154], transforming breast milk into a potent chrononu-
trient [155]. Breast milk acts as the first circadian stimulation when the baby’s circadian
machinery is not yet entirely functional, entraining their developing circadian rhythms.
Furthermore, apart from other actions regulating antioxidant activity, inflammation and
immunity [155], the melatonin contained in breast milk could play a role in shaping the gut
microbiota composition, richness and variation over time, contributing to the modulation
of the absorption of different molecules in the host. In addition, melatonin from breast milk
influences weight gain in infants, and it has been suggested that it limits the occurrence
of sudden infant death syndrome [156] and the development of metabolic dysregulation
and comorbidities, [154] such as cardiovascular diseases, over the long term [155]. It is
also interesting to note that different factors in breast milk can act to regulate melatonin
production, suggesting that the varying breast milk elements may differentially modulate
the levels of gut melatonin, with its potential local actions on microbiota [157].

Additional evidence of the benefits of melatonin during this stage of life might be the
fact that melatonin supplementation (provided in drinking water at a dosage of 0.2 mg/mL
for 2 weeks) has been demonstrated to be useful in alleviating weanling stress in mice,
improving body weight gain and intestinal morphology through increased richness of
intestinal microbiota and by shaping its composition [12].

10.2.2. Obesity

The role of melatonin in regulating energy metabolism (especially through glucose
and lipid metabolism regulation) has been clearly demonstrated. In terms of oxidative
stress, obesity is also characterised by an imbalance between the production of ROS and
the antioxidant defence systems, resulting in a condition of oxidative stress. This has
been related to the promotion of insulin resistance and metabolic syndrome by disrupt-
ing the regulation of adipokines and proinflammatory cytokines. Therefore, combining
therapeutic antioxidant strategies with weight loss strategies could be beneficial [158]. In
this sense, melatonin, among other antioxidants, occupies a unique position due to its
antioxidant (see Section 2 of this article) and anti-inflammatory properties, as well as its
role as a metabolic regulator. By modulating multiple processes involved in obesity and
its associated metabolic abnormalities, melatonin shows potential therapeutic value in the
treatment of obesity. Considering the topic of this review, we will focus on the possible role
of microbiota in mediating the effects of melatonin in obesity.

In the previous sections, we have reviewed the actions of melatonin on gut micro-
biota composition. Some of these modifications can contribute to alleviating different
signs of metabolic disorders, such as insulin resistance, liver steatosis, weight gain and
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low-grade inflammation [62]. The fact that the gut microbiota shows rhythmicity under a
light/dark cycle may explain why this population of microbes may act as a possible link
between the circadian clock and lipid metabolism [65]. Indeed, as previously mentioned,
melatonin can influence the diurnal rhythms of gut microbiota, contribute to shaping its
composition and promote lipid efflux from the intestine [64,159]. Melatonin also affects
energy metabolism through its interaction with microbial metabolites, particularly with
SCFAs, such as butyrate. In addition, enhancing the melatonergic pathway as a result of
butyrate action also demonstrates the reciprocal influence of gut bacteria and melatonin.
Some effects of melatonin seem to be mediated through the alpha-7 nicotinic receptor, while
both melatonin and butyrate may control obesity through the opioidergic system [159].
Melatonin has also been shown to improve lipid metabolism in high-fat diet-fed mice,
probably via microbiota along a pathway that includes acetic acid production, which shows
a marked correlation with the relative abundances of Alistipes and Bacteroides [64].

Regarding the possible underlying molecular mechanisms, the circadian nuclear tran-
scription factor, interleukin-3-regulated (NFIL3), which regulates lipid absorption and export
in intestinal epithelial cells and can be activated by gut microbiota, may play a role. Accord-
ing to previous research, orally administered melatonin reduces the amount of LPS produced
by E. coli, which can decrease the transcriptional inhibition of angiopoietin-like 4 (ANGPTL4)
in the ileum, induced by NFIL3 through toll-like receptor 4 (TLR4)/interleukin-22
(IL-22)/STAT3 signalling. All of this, in turn, reduces ileal lipid intake and decreases
fat accumulation in epididymal white adipose tissue in mice exposed to jet lag and treated
with melatonin [110].

Apart from these direct effects of melatonin on lipid metabolism through microbiota,
its microbiota-mediated actions may also include an indirect effect on muscle composition
and metabolism in mice, limiting skeletal muscle frailty and allowing prolonged physical
performance. Indeed, the concept of the gut–muscle axis has been recently proposed based
on the reciprocal relationship between muscles and microbiota composition (extensively
reviewed in [160]). In this sense, the reduction in physical activity in sarcopenic individuals
could be related to different microbiota compositions and metabolisms [161,162], while
overly intense physical exercise may dysregulate microbiota composition, leading to inflam-
mation and increased risk of peptic ulcers [163]. Regarding the bones, melatonin has been
shown to have a beneficial effect mediated by gut microbiota (and consequent butyrate
production) on induced osteolysis [164].

To summarise, gut microbiota-mediated actions of melatonin in terms of obesity
involve, so far, the circadian system, microbiota metabolites and skeletal muscle.

10.2.3. Other Metabolic Alterations

Different epidemiological studies have revealed that circadian disruption might in-
crease the risk of metabolic disorders. In parallel, circadian disruption has been demon-
strated to affect gut permeability and microbial ecology [137,165–168]. In this sense, oral
melatonin supplementation seems to be able to reverse the changes in gut microbial ecology
induced by circadian disruption.

In nocturnal rodents, melatonin has been shown to have a general beneficial role
in glucose homeostasis [169], although the mechanism behind this potential relationship
remains unknown. In this sense, considering that obesity and lipid dysmetabolism are
known risk factors for type 2 diabetes, the previously discussed microbiota-mediated
effects of melatonin might be related to a possible beneficial effect of this molecule in
glucose metabolism. Apart from this indirect effect, in their matched case–control study
in humans, Huang and colleagues (2022) found an altered gut microbial composition in
type 2 diabetes cases, together with lower serum melatonin levels. According to their
results, the underlying mechanism for this relationship may involve Bifidobacterium- and
Coprococcus-mediated Trp metabolites [169]. However, the situation is controversial, since
both loss-of-function and gain-of-function melatonin receptor gene MTNR1B variants seem
to impair insulin secretion and increase the risk of type 2 diabetes (reviewed in [170]).
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10.3. Oxidative Stress, Gut Microbiota and Neurological Disorders: Possible Role of Melatonin

Oxidative stress exerts harmful effects primarily by causing lipid peroxidation, dam-
aging nucleic acids and oxidising proteins, which can have consequences on various signal
transduction pathways in the central nervous system. The brain is particularly vulnera-
ble to oxidative stress due to its high oxygen demand, especially during ATP generation
through the electron transport chain. Also, different regions of the brain contain high levels
of iron, which further contributes to the generation of hydroxyl radicals. Additionally, the
brain has a higher concentration of polyunsaturated fatty acids, which are very affected by
oxidative stress, thus making it more susceptible.

Interestingly, together with oxidative stress, the gut microbiota also seems to be an
important factor in the pathogenesis of neurological disorders in a bidirectional manner
(reviewed in [171]). The intestinal barrier’s homeostasis is influenced by the oxidative
reduction potential of the gut microbiota, which refers to its ability to acquire electrons.
Additionally, the brain/central nervous system (CNS) regulates the levels of oxidative
stress in the gut through the vagal cholinergic anti-inflammatory pathway [172–174].

The complex interactions between gut microbiota and the host can influence the
oxidative state of the CNS through the production of metabolites or the modulation of
other neurotransmitters or molecules, such as melatonin. These substances can reach the
CNS through systemic circulation or the vagus nerve, triggering microglia activation and
neuroinflammation, increasing the production of ROS and also impacting the antioxidant
systems, both directly and indirectly [173,175].

Notably, oxidative stress plays a role in the pathology of various chronic brain dis-
orders, such as Alzheimer’s or Parkinson’s diseases, multiple sclerosis and depression,
among others. Although speculative, these mechanisms support the hypothesis that the
gut microbiota plays a role in regulating the brain’s oxidative state. In this context, based
on melatonin’s antioxidant actions, this might be a molecule of interest in the study of these
pathologies, considering both prevention and treatment.

On the other hand, Gerwyn et al. recently suggested a relationship between the
permeability of the brain–blood barrier (BBB) and the gut [176]. First, a reduction in SCFA
producers increases intestinal permeability and inflammation by changing the distribution
of junction proteins and increasing the transfer of LPS, which, in turn, affects the BBB
and gut integrity. It should also be noted that SCFAs show anti-inflammatory action by
decreasing the activity of macrophages, dendritic cells and T-lymphocytes. SCFAs are also
known to be essential for the formation and maintenance of the BBB, since they modulate
different pathways involved in the gut–brain axis (Figure 4).
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In this section, we will review different neurological disorders in terms of their rela-
tionship with melatonin and the gut microbiota.

10.3.1. Migraines

Migraines, microbiota and melatonin (the “3M” tripod) are intimately intricated [177].
Anderson [178] recently suggested that the butyrate reduction observed in dysbiosis could
be related to a reduction in the availability of melatonin, with the consequent relative
increase in the N-acetylserotonin/melatonin ratio. This could have consequences for the
heightened glutamatergic excitatory transmission in migraines. The suboptimal functioning
of the mitochondria and metabolism could produce alterations in satellite glial cells and
astrocytes, which would reinforce the changes in vasoregulation and nociception observed
in migraines.

10.3.2. Multiple Sclerosis

Gut dysbiosis has been also proposed as a possible cause of multiple sclerosis (MS),
with melatonin also being involved. As previously reviewed, gut dysbiosis has been
demonstrated to lower the production of butyrate, which is a significant positive regulator
of mitochondrial function and also acts by suppressing the levels and effects of ceramide,
considered an important driver of multiple sclerosis pathophysiology via its effects on glial
mitochondrial function and melatonin and orexin production processes. Indeed, altered
regulation of the local melatonergic pathway has been suggested as an important factor for
the pathophysiology of MS. According to some data, the pathophysiology of MS might be
supported by changes in ceramide and mitochondrial function, particularly in glial and
immune cells [179].

Melatonin also increases antimicrobial peptides, especially Reg3β, which could be
useful in controlling the microbiota composition. Indeed, melatonin could exert a beneficial
effect on people suffering from MS, thus presenting as a promising candidate for the
treatment of this disease [180]. Also, when demyelination occurs, it has been suggested
that neurons are susceptible to ROS/RNS effects [181], so, in this case, the connection
microbiota–oxidative stress–melatonin might also play a role.

10.3.3. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

The interplay between microbiota composition and melatonin may also play a role in
the pathophysiology of myalgic encephalomyelitis/chronic fatigue syndrome, in which
dysbiosis has been described [182]. As suggested and extensively reviewed by Anderson
& Males [183], decreased butyrate produced by dysbiosis would attenuate the rapid epi-
genetic upregulation of the µ-opioid receptor, which would impact the mitochondria and
immune/glial cells. This would also produce circadian effects via the β-endorphin induced
by pineal melatonin, with all of this potentially being relevant to mood and cognitive
deficits. Reduced levels of µ-opioid receptors and ligands may also contribute to changes in
amygdala and prefrontal cortex activity that are evident in this pathology [184], as well as
to emergent depression and suppressed cognition. It is precisely these effects of dysbiosis
in relation to melatonin that have also been proposed to play a role in the aetiology of bor-
derline personality disorder. In this case, the reduction in melatonin synthesis also involves
the loss of the inhibition of the oestrogen receptor alpha (ERα), potentially contributing to
the dysregulating effects of cyclical oestrogen in this pathology [185].

10.3.4. Autism Spectrum Disorder

The human gut microbiota is currently considered to be an important factor in the
development of autism spectrum disorder (ASD) in children. Although the authors clarify
that it would not necessarily involve differences in the number of enzymes, the bacterial
neurometabolic signature recently studied in ASD children has shown that the gut mi-
crobiota composition in these children presents decreased contents of bacterial genes for
enzymes involved in the metabolism of compounds with neuroactive properties, such as
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melatonin [186]. Differences in mitochondrial function have been detected in autistic chil-
dren compared to controls, which could be a cause of the observed elevated oxidative stress
in these children (reviewed in [187]). In this regard, the antioxidant properties of melatonin
potentially position it as a molecule involved in this pathology. Also, children with ASD
and sleep disorder show decreased levels of melatonin and lower excretion rates of mela-
tonin metabolites in urine [188–191], as well as reduced proportions of Faecalibacterium and
Agathobacter, both butyrate producers. Melatonin levels have been found to be positively
correlated with both genera [192]. Children with ASD have also shown a reduced abun-
dance of both Bifidobacteria and Prevotella, which could reduce folate production [193–195].
Alterations in the gut microbiota also contribute to altered tryptophan metabolism, yielding
increased levels of indolyl 3-acetic acid and indolyl lactate and the increased transformation
of tryptophan into xanthurenic acid and quinolinic acid (catabolites of the kynurenine
pathway) at the expense of kynurenic acid and, especially, melatonin [196].

Aside from the possible alterations in microbiota composition, some acetylserotonin
O-methyltransferase (ASMT) variations have been associated with ASD [197–199]. These
mutations significantly decrease the activity of the enzyme ASMT [199] (for details on the
melatonin synthesis pathway; see Figure 2). This indicates that a weakened melatonin
metabolism could be involved in impaired sleep in ASD [189]. It is not surprising then that
individuals with ASD present significantly more impaired circadian rhythms [200,201] and
sleep parameters, including sleep onset latency and sleep duration and efficiency [202,203].
Consistent with this, randomised double-blind controlled trials have shown a statisti-
cally significant benefit of melatonin for sleep in subjects with ASD as compared to
a placebo [204–206].

Good sleep hygiene and a healthy bedtime routine instilled by behavioural train-
ing from the parents have yielded good results in improving sleep in children with
ASD [207,208]. Among pharmacological treatments, melatonin shows good evidence of
being effective [200,201,208,209], particularly when combined with cognitive-behavioural
therapy [209]. All of these findings led to the development of a recently published hypoth-
esis [210], which states that melatonin, circadian system functioning and microbiota are
relevant factors contributing to the aetiology of ASD.

10.3.5. Bipolar Disorder

Melatonin and its effect on the microbiota have also been associated with bipolar
disorder due to the seasonal pattern this disorder presents [211]. Studies on this association
are currently ongoing [212].

10.3.6. Alzheimer’s and Parkinson’s Diseases

The role of oxidative stress in the pathogenesis of neurodegenerative diseases such
as Alzheimer’s has been gaining attention in recent years [213–217]. In particular, the
relationship between oxidative stress and the gut microbiota has attracted the attention of
scientists as a possible factor in the pathoaetiology of these neurodegenerative disorders.
In this regard, individuals suffering from Alzheimer’s disease present decreased popu-
lations of commensal bacteria, such as Bifidobacterium and Firmicutes, while an increased
abundance of Escherichia, Shigella and Bacteriodetes has been detected, followed by increased
inflammation and protein amyloid-beta accumulation [218]. The interaction between the
gut microbiota, oxidative stress and the development of these diseases has been extensively
reviewed in [171].

Although in the case of Alzheimer’s disease, there is no direct evidence, Zhang et al. [71]
found that a mouse model with endogenous melatonin reduction, which shows microbiota
dysbiosis and increased gut permeability (among other metabolic alterations), also presented
Alzheimer’s disease-like phenotypes. These authors suggest that melatonin reduction may
be a pathogenic factor for Alzheimer’s disease (as well as for obesity) via gut microbiota
dysbiosis. Despite different studies having suggested the potential utility of therapeutic
strategies aimed at reducing oxidative stress in neurodegenerative disorders [219–221], it
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is still to be conclusively demonstrated whether melatonin’s role in the pathogenesis of
Alzheimer’s disease is specifically linked to its antioxidant properties.

The scientific evidence accumulated on the effects of dysbiosis and gut permeability
and melatonin on mitochondrial functioning also suggests a potential role of both aspects
of physiology in the aetiology of Parkinson’s disease and may open new avenues in terms
of treatment [222,223].

10.3.7. Stress

Melatonin could alleviate colonic microbiota dysbiosis in mice induced by “restraint
stress”, as well as the consequent intestinal inflammation, specifically by inhibiting the
activation of the NF-κB pathway [224]. Also, patients with anxiety and depression have
been shown to experience milder symptoms after restoring their gut microbiota [225].

10.3.8. Chronic Pain

Recently, the possible interplay between sleep deprivation, melatonin suppression
and gut dysbiosis has been reviewed in relation to chronic orofacial pain, finding several
connections that might be explored [226]. Probiotics (aimed at restoring the gut micro-
biota composition) and melatonin supplementation have been also explored as possible
therapeutic options in the management of chronic pain in fibromyalgia [227].

10.4. Reproductive System and Development

The beneficial effects of melatonin on the reproductive system have also been sug-
gested to be mediated by the gut microbiota. Indeed, dietary fibre has been shown to
protect against follicular atresia, at least in part by increasing melatonin and serotonin
synthesis in serum and follicular fluid in a pig model [228]. Furthermore, melatonin can
reduce prediabetes symptoms as well as defects in spermatogenesis while restoring normal
microbiota composition and sphingosine levels altered by a rich diet in sheep, with the
involvement of the gut microbiota (demonstrated via faecal transplantation) [229].

The interplay between melatonin and the gut microbiota has also been found in foetal
development and placental functions in mice, with the beneficial effects of this hormone
relieving barrier injury, endoplasmic reticulum stress and mitophagy through modulation
of gut microbiota composition [230].

In addition, dietary melatonin supplementation is currently considered to be the
first hormone associated with altering the composition (β diversity) of the bovine vaginal
microbiota, leading to an increase in aerobic genera [231].

11. Conclusions and Future Perspectives

The multifunctional nature of melatonin makes this molecule a versatile factor in me-
diating different aspects of physiology and metabolism. Among these mediating functions,
its multipurpose antioxidant ability should be highlighted in relation to its influence on
the reciprocal interaction between the gut microbiota and other aspects of health. This
influence of melatonin seems to be clear in nocturnal animal models. However, in order to
confidently extrapolate results to humans, it is mandatory to also perform causal studies
on diurnal animal models, especially when considering markedly circadian aspects, such
as melatonin actions and sleep.

Also, human data are scarce regarding the melatonin–microbiota–health interaction,
so epidemiological projects involving massive faecal and saliva/urine samplings would
be desirable to correlate melatonin levels and gut microbiota composition in different
populations. Human studies on probiotic effects would also be necessary to establish
truly causal relationships between microbiota composition, melatonin and different aspects
of health.
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