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Abstract: Phenolic compounds with a position ortho to the free phenolic hydroxyl group occupied can
be tyrosinase substrates. However, ortho-substituted compounds are usually described as inhibitors.
The mechanism of action of tyrosinase on monophenols is complex, and if they are ortho-substituted,
it is more complicated. It can be shown that many of these molecules can become substrates of the
enzyme in the presence of catalytic o-diphenol, MBTH, or in the presence of hydrogen peroxide.
Docking studies can help discern whether a molecule can behave as a substrate or inhibitor of
the enzyme. Specifically, phenols such as thymol, carvacrol, guaiacol, eugenol, isoeugenol, and
ferulic acid are substrates of tyrosinase, and docking simulations to the active center of the enzyme
predict this since the distance of the peroxide oxygen from the oxy-tyrosinase form to the ortho
position of the phenolic hydroxyl is adequate for the electrophilic attack reaction that gives rise to
hydroxylation occurring.

Keywords: tyrosinase; substrates; inhibitors; ortho-substituted phenols

1. Introduction

Tyrosinase (EC 1.14.18.1) is a copper monooxygenase widely distributed throughout
the phylogenetic scale: bacteria, fungi, plants, and animals. Basically, it catalyzes two types
of reaction: the hydroxylation of monophenols to o-diphenols and the oxidation of o-
diphenols to o-quinones, both using molecular oxygen as a co-substrate [1,2].

The products of the tyrosinase enzymatic reaction are o-quinones, which are unstable.
In the case of tyrosinase from mammals, the physiological substrates are L-tyrosine and
L-dopa. Through the action of tyrosinase on L-tyrosine, o-quinones are produced that
chemically evolve following a fixed stoichiometry, which leads to the accumulation of o-
diphenol (L-dopa) in the reaction medium; this causes the enzyme in its action on L-tyrosine
to reach the steady state and the dopachrome product to accumulate after a period of delay
according to a straight line. The delay period corresponds to the time that the action of
tyrosinase takes to accumulate a certain concentration of o-diphenol in the medium [3].

In the case of ortho-substituted phenols (Figure 1), although the oxy form of tyrosinase
is able to hydroxylate it in the ortho position of the phenolic hydroxyl and subsequently
oxidize it to o-quinone, the evolution of this does not lead to the accumulation of o-diphenol
in the medium. Apparently, the enzyme does not show activity on this compound; this case
is similar to that of hydroquinone [4], oxyresveratrol [5], hexylresorcinol [6], p-coumaric [7],
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4-n-butylresorcinol [8], and resorcinols [9]. The presence of hydrogen peroxide, which
achieves the transformation of meta-tyrosinase into oxy-tyrosinase, shows that these com-
pounds may be alternative substrates for tyrosinase (Scheme 1).
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Figure 1. Structures of the compounds used in the present study. (1) thymol (2-isopropyl-5-
methylphenol); (2) carvacrol (2-isopropyl-5-methylphenol); (3) guaiacol (2-metoxyphenol); (4) eugenol
(4-allyl-2-metoxyphenol); (5) isoeugenol (2-metoxy-4-propenylphenol); and (6) ferulic acid (3-metoxy-
4-hydroxycinnamic acid).
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This transformation can also occur in the presence of an o-diphenol in catalytic quan-
tities such as L-dopa; in this case, met-tyrosinase becomes desoxy-tyrosinase, and this can
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react with oxygen to give oxy-tyrosinase [1,2,10]. The formation of hydrogen peroxide in
the melanin biosynthesis pathway has been demonstrated [11]. The presence of hydrogen
peroxide could help to identify a molecule as an alternative substrate for tyrosinase [12].
On the other hand, the presence of a nucleophile such as MBTH can help with the accu-
mulation of o-diphenol in the medium, which favors the transition from met-tyrosinase to
oxy-tyrosinase (Scheme 2).
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Scheme 2. Enzymatic activity on ortho-substituted phenols in the presence of MBTH.

In the case of ortho-substituted phenols such as thymol, carvacrol, guaiacol, eugenol,
isoeugenol, and ferulic acid (Figure 1), it has been shown that in the presence of hydrogen
peroxide or catalytic o-diphenol, these compounds behave as alternative substrates of the
enzyme [12,13]. Gowda and Paul showed with tyrosinase extracted from Dolichos lablab that
in the presence of catechol, the enzyme was active on ferulic acid (FA) (Figure 1). Figure 2
of reference [13] shows the accumulation of the FA oxidation product with time. It is noted
that the accumulation of o-quinone occurs with a delayed period that increases with an
increasing substrate concentration and decreases with an increasing enzyme concentration;
this corresponds to the test of the tyrosinase monophenolase activity [3].
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Figure 2. Action of tyrosinase on these monophenols. (A) Spectrophotometric recordings of the
action of tyrosinase (0.1 mg/mL) on guaiacol following a 540 nm. Curve (a). Guaiacol 1.5 mM in
the presence of MBTH 1 mM and N,N′ dimethylformamide 2% in 50 mM phosphate buffer (pH 7.0).
Curve (b). Increase in absorbance followed at 437 nm due to the action of tyrosinase (0.1 mg/mL) on
carvacrol 1.5 mM and 0.083 mM of (3I6MC) in 30 mM phosphate buffer (pH 7.0). Curve (c). Increase
in absorbance followed at 437 nm due to the action of tyrosinase (0.1 mg/mL) on thymol 1.5 mM and
0.083 mM (3I6MC) in 30 mM phosphate buffer (pH 7.0). Curve (d). Increase in absorbance at 437 nm
due to the action of tyrosinase (0.1 mg/mL) on these monophenols: guaiacol 1.5 mM, carvacrol
1.5 mM, and thymol 1.5 mM in the absence of MBTH (guaiacol) or 3I6MC (carvacrol and thymol).
(B) Spectrophotometric recording on the action of tyrosinase on eugenol or isoeugenol in the presence
of MBTH. Curve (a). Eugenol 1 mM in the presence of MBTH 1 mM N,N′ dimethylformamide 2%
in 50 mM phosphate buffer (pH 7.0) at 540 nm. Curve (b). Isoeugenol 1 mM in the presence of
MBTH 1 mM N,N′ dimethylformamide 2% in 50 mM phosphate buffer (pH 7.0) at 540 nm. Curve (c).
Increase in absorbance followed at 540 nm in the action of tyrosinase (0.1 mg/mL) on eugenol 1 mM
or isoeugenol 1 mM in the absence of MBTH. Inset. Curve (d). Increase in absorbance at 480 nm
in the action of tyrosinase on ferulic acid 1.5 mM in the presence of 2-methoxycatechol 0.09 mM in
30 mM phosphate buffer (pH 7.0). Curve (e). Increase in absorption followed at 480 nm due to the
action of tyrosinase (0.1 mg/mL) on ferulic acid 1.5 mM in the absence of 3-methoxycatechol.

By applying molecular docking, it seems evident that in the case of mushroom tyrosi-
nase, these molecules are located in the active center of the enzyme in a position such that
the distance of the oxygen of the peroxide group in oxy-tyrosinase to the ortho position of
the phenolic hydroxyl is suitable for the electrophilic attack to occur and therefore carry
out the hydroxylation reaction. Thus, ortho-substituted monophenols can bind to met-
tyrosinase in an inhibiting way and to oxy-tyrosinase catalytically as alternative substrates.

2. Results and Discussion

In this section, we will consider the studies carried out with ortho-substituted phenols
under the approach of tyrosinase inhibitors or substrates, and simulation studies by the
docking of these ligands to the enzyme will be used as an aid.

2.1. The Apparent Inhibition in the Action of Tyrosinase on L-Dopa in the Presence of
Ortho-Substituted Phenols

Ortho-substituted phenols such as ferulic acid (FA) have high potential as antioxi-
dants [14,15]. Regarding FA, its protection against hydroxyl and peroxyl radicals has been
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studied in neural cell culture [16]. It has been described that FA is a tyrosinase inhibitor by
studying the inhibition of L-dopa oxidation; the inhibition has been described as competi-
tive [17]. Isoferulic acid (IFA) was also described as an inhibitor of mushroom tyrosinase
with IC50 values of 0.13 mM and 0.35 mM for the monophenolase and diphenolase activ-
ities of the enzyme [18]. Other ortho-substituted phenols (thymol, carvacrol) have been
described in the literature as inhibitors of the melanin biosynthesis pathway, but in this
case, it was proposed that they do not act directly on the enzyme but do so at the level of
the chemical reactions that occur from o-dopaquinone to dopachrome [19].

In a recent work, FA has been described as an inhibitor of tyrosinase; according to this
publication, FA apparently behaves as a competitive inhibitor of the enzyme [20]. The authors,
based on their data shown in Figure 1a,b of [20], propose that it is a competitive inhibition.

The action of a Michaelian enzyme on its substrate is expressed as follows (Scheme 3):
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The equation of the rate of accumulation of the product P is as follows:

VP
0 =

VP
max[S]0

KS
S + [S]0

(1)

If the enzyme acts on two substrates S and A, the scheme would be as follows:
In Scheme 4, if S is L-dopa and P is dopachrome, in the presence of substrate A that is

studied as an inhibitor, such as FA, if [S]0 > [A]0ykP > k′
P, the concentration of P is greater

than that of P′. Regarding kinetics, although distorted, apparently the Lineveaver–Burck
graphs may correspond to competitive inhibition, according to Equation (2). However, if
IC50 and KI are determined, according to Equation (3), IC50 should be greater than KI, but
the data obtained indicate the opposite. Thus, the proposed values for the IC50 of the FA
and the KI value turn out to be 0.23 µM and 6.8 µM, respectively [20].

VP
0 =

VP
max[S]0

KS
S

(
1 + [A]0

KA

)
+ [S]0

(2)
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Equation (2) corresponds to a competitive inhibition apparently, which in turn corre-
sponds to Figure 1 [20].
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The kinetic data described in [20] do not meet Equation (3) since IC50 < KI

IC50 = (1 + n)Kapp
I (3)

where IC50 is the inhibitor concentration required to achieve 50% inhibition at a substrate
concentration [S]0, and “n” is the ratio between the substrate concentration and the KS

S.

n =
[S]0
KS

S
(4)

However, although the Lineweaver–Burk graphs apparently correspond to competi-
tive inhibition, the IC50 data with respect to the inhibition constant KI do not comply with
the kinetic tests since IC50 values of 0.23 µM are described for the FA, with a KI value of
6.8 µM [20]. The kinetic analysis predicts that the values of IC50 should be greater than
those of KI according to Equation (3). This is not true in the data described above, and
therefore these compounds do not behave as pure competitive inhibitors; this inhibition is
only apparent [21]. More recently, a review has been published on the action of FA and its
derivatives as potent tyrosinase inhibitors, indicating that the inhibition capacity is due to
the presence of double bond conjugation as a side chain in is molecule [22]. We, based on
published data and those described in Figure 2, propose that FA is an alternative substrate
of the enzyme [23].

2.2. Characterization of Ortho-Substituted Phenols as Tyrosinase Substrates

In the literature, ortho-substituted phenols have often been described as tyrosinase
inhibitors. The monophenolase activity of tyrosinase from the kinetic point of view is
complex. In the case of the activity on L-tyrosine, the enzymatic activity followed experi-
mentally by the accumulation of dopachrome is preceded by a delay period, which is the
time that the enzyme takes in its action on l-tyrosine to accumulate in the medium a certain
amount of o-diphenol (L-dopa) [3,24,25]; this, from a chemical point of view, is possible
since o-dopaquinone evolves chemically, accumulating o-diphenol in the medium. In the
case of o-substituted phenols, the o-quinone originated by the oxy-tyrosinase form does not
evolve, accumulating o-diphenol in the medium, and therefore the enzyme does not show
activity. The only possibility that tyrosinase has of showing catalytic activity on is by the
following:

1. Achieve the transition from Em to Eoxy by adding hydrogen peroxide according to
Em + H2O2 ⇄ Eoxy (Scheme 1). Hydrogen peroxide causes the transformation of the
met-tyrosinase form (inactive on monophenols) to the oxy-tyrosinase form (active
on monophenols).

2. Study the action of tyrosinase on monophenols such as thymol and carvacrol in
the presence of their corresponding o-diphenol: 3-isopropyl-6-methylcatechol or 3-
methoxycatechol in the case of guaiacol. In these cases, it is the added o-diphenol that
causes the transition from met-tyrosinase to oxy-tyrosinase, according to Em + D ⇄
EmD → Q + Ed + O2 ⇄ Eox. The kinetic parameters described in Table 1 are ob-
tained [26].

3. Study the action of tyrosinase on o-substituted monophenol in the presence of an
o-diphenol such as L-dopa.

Scheme 5 shows the action of tyrosinase on o-substituted monophenols in the
presence of L-dopa. In this case, it is L-dopa that carries out the step from meta-tyrosinase
to oxy-tyrosinase.
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Table 1. Kinetic parameters and constants characterizing the oxidation of thymol, carvacrol, guaiacol,
and ferulic acid by tyrosinase.

Substrate Enzyme kcat (S−1) KM (mM) kcat/KM (M−1

S−1) References

Thymol Mushroom
(Agaricus Bisporus) 161 ± 4 [26]

Carvacrol Mushroom
(Agaricus Bisporus) 95 ± 7 [26]

Guaiacol Mushroom
(Agaricus Bisporus) 5.40 ± 0.14 4.65 ± 0.39 1160 ± 101 [26]

Ferulic acid Field Bean
(Dolichos lablab) 0.09 [13]

Ferulic acid
Grean Bean

(Phaseolus vulgaris)
extract

0.23 [27]

4. To study the action of tyrosinase on o-subtitled monophenols in the presence of
catechol, the mechanism is similar to cases 1, 2, and 4. The FA was studied under this
experimental approach by measuring the increase in absorbance at λ = 480 nm; thus,
the kinetic parameters shown in Table 1 were determined [13].

5. Study the action of the enzyme on ortho-substituted phenol in the presence of hy-
drogen peroxide (Scheme 1), or a nucleophile like MBTH and the nucleophile MBTH
in order to increase the spectrophotometric signal, since the adducts that originate
from the attack of MBTH on o-quinone have a very high molar absorptivity coefficient
(Scheme 2) [27]. Under this approach, FA was studied [27], thus characterizing the
value KFA

M (see Table 1).
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Scheme 5. Mechanism of action of tyrosinase on L-dopa in the presence of an alternative substrate
(monophenol). Where SA is the alternative substrate, SAOH is the hydroxylated alternative substrate,
SAQ is the o-quinone of the hydroxylated alternative substrate, EmSA is the complex of Em with SA,
and EmSAOH is the complex of Em and hydroxylated SA.

Figure 2 shows the action of tyrosinase on these compounds in the presence of o-
diphenol in catalytic concentrations or in the presence of MBTH. It is revealed that all of
them behave as tyrosinase substrates.

Table 1 shows the data obtained from the experiments carried out with some ortho-
substituted phenols. In the case of FA, catechol is used as o-diphenol. Due to the strong
steric hindrance of these molecules, the KM values are high, so it has not been possible
to separate the kinetic parameters KM and kcat. This could only be carried out in the
case of guaiacol (KM = 4.65 ± 0.39 mM and kcat = 5.4 ± 0.14 s−1) [26] and in the case of
thymol and carvacrol; the ratio kcat/KM, that is, the second order constant, resulted in being
161 ± 4 M−1 s−1 and 95 ± 7 M−1 s−1, respectively. In the case of eugenol and isoeugenol,
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MBTH was added to the reaction medium; this allowed o-diphenol to accumulate in the
medium through the nucleophilic attack on the o-quinone generated by the enzyme (see
Supplementary Material in [26]).

2.3. Docking Studies of the Compounds Described in this Work to Tyrosinase

Ortho-substituted phenols can have a large steric hindrance in their binding to the
active site of tyrosinase; furthermore, the hydroxylation reaction requires an adequate
distance between the oxygen of the peroxide bridge of oxy-tyrosinase and the free ortho
position to the hydroxyl group on the ring benzene. The values obtained for the studied
compounds are shown in Table 2.

Table 2. Molecular docking dissociation constants (mM) and distances (Å) for oxy and met forms of
tyrosinase. Distances greater than 4 Å have not been considered.

Ligand Oxy Form Met Form
Kd d(O2-HO) d(O2-oC) d(Cu-OH) d(π-π) Kd d(OH-OH) d(Cu-OH) d(π-π)

Ferulic acid 7.8 1.8 3.3 3.3 - 4.8 2.1 2.6 -

Thymol 0.61 1.7 3.9 3.4 - 0.92 2.1 3.4 -

Carvacrol 0.9 1.7 3.5 - - 0.84 1.9 2.8 3.5

Guaiacol 7.3 1.7 3.9 3.4 - 2.2 1.6 3.1 3.3

Eugenol 3.9 1,7 3.8 3.4 - 0.63 1.6 2.5 3.6

Isoeugenol 3 1.8 3,6 3.4 - 2.4 1.9 2.8 -

d(O2-HO): minimum distance from O atom of peroxide group of tyrosinase to H atom of phenolic group of ligand.
d(O2-oC): minimum distance from O atom of peroxide group of tyrosinase to carbon atom of ligand in ortho
position with respect to the phenolic group. d(Cu-OH): minimum distance from a Cu atom of tyrosinase to O
atom of phenolic group of ligand. d(π-π): distance from the center of the imidazole ring of H263 to the center of
the aromatic ring of the ligand. d(OH-OH): minimum distance from H atom of hydroxyl group of tyrosinase to O
atom of phenolic group of ligand.

The docking of the ortho-substituted phenols at the binuclear copper active site of
tyrosinase is shown in Figures 3–8. The docking of FA at the binuclear copper active site
of tyrosinase is shown in Figure 3. In the oxy form (Figure 3A), the hydrogen atom of the
hydroxyl group of FA acid is at 1.8 Å from the oxygen atom of the peroxide ion, and the
oxygen atom of the ligand is at 3.3 Å from a copper ion. The peroxide ion is at 3.3 Å from
the ortho carbon to the phenolic group of the ligand, and the hydroxylation of FA could be
plausible with a Kd of 7.8 mM (Table 2). In the met form (Figure 3B), the hydrogen atom
of the hydroxyl group of FA is at 2.1 Å, and the oxygen atom of the phenolic group is at
2.6 and 3.8 Å from the copper ions. This docking conformation could also be an inhibitory
interaction of the ligand with a Kd of 4.8 mM (Table 2).

The docking of other ortho-substituted phenols molecules, such as thymol, carvacrol,
guaiacol, eugenol, and isoeugenol, has been carried out, and their corresponding docking
poses are shown in Figures 4–8. All the docking results are summarized in Table 2. It can be
seen that all the monophenols studied behave in a similar way; they can reach the ligand
binding pocket in both the oxy and met forms. However, only in the oxy form could they
be catalyzed (hydroxylated), while in the met form they would act as inhibitors.

Ortho-substituted phenols may exhibit a high steric hindrance to binding to the active
site of tyrosinase. On the other hand, the hydroxylation reaction in the ortho position to the
hydroxyl group of the benzene ring requires an appropriate distance from the peroxide
group of oxy-tyrosinase to the carbon atom in the ortho position to the hydroxyl group.
The docking results of the different compounds studied in this work are shown in Table 2.
It is important to note that these compounds are located in the active site of tyrosinase in
positions that allow for the electrophilic attack of oxygen peroxide on the carbon atom and
the hydroxyl phenolic ortho.
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Ferulic acid is shown in thick sticks, and distances are shown in yellow dashed lines.
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Figure 7. Docking of eugenol to oxy-tyrosinase (A) and to met-tyrosinase (B). The atom colors are
as follows: carbon = green, oxygen = red, nitrogen = blue, copper = brown, and hydrogen = white.
Eugenol is shown in thick sticks, and distances are shown in yellow dashed lines.
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Isoeugenol is shown in thick sticks, and distances are shown in yellow dashed lines.
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Despite the steric hindrance that these molecules may present, Figures 3–8 and Table 2
show how monophenols can bind to the met and oxy forms of the enzyme. The met form is
inactive; on the contrary, the oxy form is active since the distance from the peroxide group
to the ortho position of the phenolic group is adequate for the electrophilic attack to be
carried out on the substrate molecule.

3. Material and Methods
3.1. Enzyme Source

Mushroom tyrosine or polyphenol oxidase (o-diphenol, oxygen-oxidoreductase, EC
1.14.18.1, 4276 U/mg) was supplied by Sigma (Madrid, Spain). The enzyme was purified
as previously described [28]. The protein concentration was determined by Bradford′s
method using bovine serum albumin as standard [29].

3.2. Reagents

4-Hydroxyphenylalanine (L-tyrosine), 3,4-dihydroxy-phenylalanine (L-dopa), 2-isopropyl-
5-methylphenol (thymol), 5-isoropyl-2-methilphenol (carvacrol), 2-methoxyphenol (guaiacol), 4-
allyl-2-methoxyphenol (eugenol), 2-methoxy-4-propenylphenol (isoeugenol), 3-methoxycatechol
(3MC), 3-isopropyl-6-methylcatecol (316MC), 3-methyl-2-benzothiazolinone hydrazone hy-
drochloride hydrate (MBTH), N,N-dimethylformamide (DMF), ammonium acetate, and 4-
tert-butylcatechol were all from Sigma (Madrid, Spain). The corresponding structures of the
monophenols studied are shown in (Figure 1). The chemicals were of analytical grade.

3.3. Spectrophotometric Assays

Spectrophotometric assays of the enzymatic activity of tyrosinase in its action on differ-
ent monophenols were followed at maximum absorbance in the visible spectrophotometric
region of the o-quinone corresponding to the monophenol under study [30]. Figure 2 shows
the measurement conditions for each substrate.

3.4. Computational Simulation of Interaction between Ortho-Substituted Phenols to
Met-Tyrosinase and Oxy-Tyrosinase

The chemical structures of all ligands used were obtained from the PubChem Sub-
stance and Compound database [31] through the following chemical structure identifiers:
6989 (thymol), 10364 (carvacrol), 460 (guaiacol), 3314 (eugenol), 853433 (isoeugenol), 445858
(ferulic acid), and 1794427 (chlorogenic acid).

The molecular structure, the deoxy-form of tyrosinase from Agaricus bisporus, was
taken from the Protein Databank (PDB ID:2Y9W, Chain A) [32]. The input protein structure
for docking was prepared by adding all hydrogen atoms and removing water molecules.
The met and oxy forms of tyrosinase were built, as previously described [33], by slightly
modifying the binuclear copper-binding site to comply with the met and oxy forms crys-
tallized from Streptomyces castaneoglobispours corresponding to Protein Data Bank entries
2AHK and 1WX2, respectively.

Gasteiger’s partial charges and rotatable bonds were assigned by AutoDockTools4
software [34,35]. AutoDock 4.2.6 software [35] was used for protein-ligand docking cal-
culations. The scoring function in AutoDock is based on the United Atom version of the
AMBER force field. Semi-flexible docking of the ligands allows for the sampling of various
docking conformations while the receptor protein remains rigid.

The receptor docking site was in the active site of tyrosinase, where the molecular
docking of all ligands was studied. Grid parameter files were built using AutoGrid 4.2.6 [36].
The Lamarkian Genetic Algorithm was chosen to explore the space of active binding to
search for the best conformers. Genetic algorithm was run for 2000 sets, and the maximum
number of energy evaluations was set to 25,000,000 in each run. The maximum number
of generations simulated during each GA run was set to 270,000. The rates of the gene
mutation and crossover were set to 0.02 and 0.8, respectively. Other docking parameters
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were used as in [37]. PyMOL 2.3.0 [38] was used for 3D visualization of molecular structures,
to analyze the docking results, and to prepare the figures of the docked conformations.

4. Conclusions

In conclusion, tyrosinase is an enzyme with broad substrate specificity, both for
monophenols and o-diphenols [39]. The docking data shown for these ortho-substituted
phenols indicate that these compounds can be substrates for tyrosinase, as described exper-
imentally. In the case of ortho-substituted monophenols (ferulic acid, thymol, carbacrol,
guaiacol, eugenol, and isoeugenol), their binding to the met-tyrosinase form is inactive;
however, there is activity in the oxy-tyrosinase form. And whenever we consider molecules
with a free phenolic hydroxyl group, it must be shown that they are not alternative sub-
strates for tyrosine and thus avoid possible interferences in the composition of cosmetics
and depigmenting agents.
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