
2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

No Rush in Executing Atomic Instructions
Ashkan Asgharzadeh†, Josué Feliu‡, Manuel E. Acacio†, Stefanos Kaxiras§, and Alberto Ros†

†University of Murcia, ‡Universitat Politècnica de València, §Uppsala University
ashkan.asgharzadehdonighi@bsc.es, jofepre@gap.upv.es, meacacio@um.es, stefanos.kaxiras@it.uu.se, aros@ditec.um.es

Abstract—Hardware atomic instructions are the building
blocks of the synchronization algorithms. Historically, to guar-
antee atomicity and consistency, they were implemented using
memory fences, committing older memory instructions, and
draining the store buffer before initiating the execution of
atomics. Unfortunately, the use of such memory fences entails
huge performance penalties as it implies execution serialization,
thus impeding instruction- and memory-level parallelism.

The situation, however, seems to have changed recently.
Through experiments on x86 machines, we discovered that
current x86 processors manage to comply with the x86-TSO re-
quirements while avoiding the performance overhead introduced
by fences (fence-free or unfenced implementation). This paves
the way to new potential optimizations to atomic instruction
execution. In particular, our simulation experiments modeling
unfenced atomics reveal that executing atomic instructions as
soon as their operands are ready does not always lead to optimal
performance. In fact, this increases the time that other threads
should wait to obtain the cacheline. In contended scenarios,
delaying the execution of the atomic instruction to minimize the
time the cacheline is locked provides superior performance.

Based on this observation, we present Rush or Wait (RoW),
a hardware mechanism to decide when to execute an atomic
instruction. The mechanism is based on a contention predictor
that estimates if an atomic will access a contended cacheline.
Non-contended atomics execute once their operands are ready.
Contended atomics, on the contrary, wait to become the oldest
memory instruction and to drain the store buffer to execute,
minimizing the contention on the accessed cacheline. Our exper-
imental evaluation shows that RoW reduces execution time on
average by 9.2% (and up to 43%) compared to a baseline that
executes atomics as soon as the operands are ready, and yet it
requires a small area overhead (64 bytes).

I. INTRODUCTION

Hardware atomic Read-Modify-Write (RMW) instructions
are essential building blocks for writing parallel applications.
They enable different cores (or any processing unit) in a
shared-memory architecture to communicate correctly, as the
application programmer expects. These atomic RMW instruc-
tions appear in the application code explicitly used by the pro-
grammer (e.g., fetch-and-increment), or employed by
operating system libraries to build higher abstraction synchro-
nization mechanisms such as software locks or barriers [14].

According to public Intel documentation, for performing
an x86 atomic RMW [18], first, the core requires to acquire
exclusive permission for the corresponding cacheline. Then,
the core locks the cacheline in its local data cache, which is
called cache locking in Intel terminology. Cache locking guar-
antees the atomicity of the cacheline in a multicore processor
by preventing coherence requests coming from other cores
from succeeding, and thus enabling correct synchronization.

In cache-locking mode, the core performs its arbitrary modify
operation (any arithmetic, exchange, or logical operation).
Finally, the core updates the memory location and unlocks
the cacheline, allowing the pending coherence requests from
other cores to progress. In addition to this functionality, the
execution of any atomic RMW requires to comply with the
memory consistency model enforced by the corresponding
instruction set architecture (ISA).

In x86-TSO memory model specifically, it is expected that
atomic RMWs have a total order [33]. This means that there
is a consensus among all processing cores on the singular
execution sequence of any atomic RMW. Furthermore, re-
ordering of either younger or older memory instructions (load
or store) with respect to the atomic RMWs is prohibited.
To meet these consistency requirements, atomic RMWs had
been implemented so cautiously that they were considered a
performance hindrance [10], [30], [32]. More precisely, the
main contributors to their entailed performance overhead were
the memory fences at the surroundings of the micro-operations
of atomic RMWs [30]. These memory fence micro-operations
not only imposed serialization by disabling instruction- and
memory-level parallelism (ILP and MLP, respectively) with
respect to atomics, but also delayed the start of the execution
of atomics until they reached the head of the load queue (LQ)
and the store buffer (SB) was drained [26].

Recent x86 microarchitectures manage to improve the per-
formance of atomic RMWs, practically achieving the same
latency as the non-atomic RMWs (see Section II for further
details). Despite no further documented information explaining
thoroughly how this performance improvement is achieved
by Intel (except mentioning that “Locked instructions do not
wait for all previous instructions to complete execution” [18]),
our experiments on Intel machines suggest that the key per-
formance improvement comes from the removal of memory
fences surrounding the micro-operations of x86 atomic RMWs.
Recently, in academia, Free Atomics [4] has disclosed a fence-
free implementation of x86 atomic RMWs, which constitutes,
as far as we know, the most detailed implementation of
unfenced atomic RMWs.

Even though unfencing atomic RMWs enables ILP and
MLP, starting the execution of the atomics as soon as their
dependencies are resolved can increase cache-locking time
considerably and prevent other threads (running on other cores
in a multicore processor) from progressing for a longer period,
thus resulting in significant performance loss for some appli-
cations. This is illustrated in Fig. 1, which shows for parallel
applications (see Section V for further details) the normalized

0.0

0.5

1.0

1.5

2.0

ca
n

n
ea

l
cq

fr
eq

m
in

e
b

ar
n

es
w

at
er

_
n
sq

u
ar

ed
fl

u
id

an
im

at
e

ta
tp

fm
m ff

t
v

o
lr

en
d

o
ce

an
_

cp
ch

o
le

sk
y

o
ce

an
_

n
cp

lu
_

n
cb

ra
d
ix

sw
ap

ti
o
n

s
v

ip
s

b
la

ck
sc

h
o
le

s
ra

d
io

si
ty

w
at

er
_

sp
at

ia
l

d
ed

u
p

b
o
d

y
tr

ac
k

x
2
6

4
lu

_
cb

fe
rr

et rb
st

re
am

cl
u

st
er

ra
y
tr

ac
e

tp
cc sp
s

p
c

N
o

rm
.

E
x
ec

.
T

im
e

1. Eager execution is beneficial.

2. Eager or Lazy is the same.

3. Lazy execution is beneficial.

Fig. 1. Normalized execution time of a system that executes unfenced atomic
RMWs lazy with respect to executing them eager. Applications are sorted
from best to worst speedup of eager versus lazy execution of atomics.

execution time of a configuration that performs lazy execution
of atomic RMWs with respect to eager execution. We refer
to lazy execution when the core waits for the atomic RMW
to reach the head of the LQ and for the SB to be drained
before executing it. In contrast, eager execution executes
the atomic RMWs as soon as their operands are available.
Applications with green bars benefit from executing atomics
eager, applications with red bars achieve better performance
when executing them lazy, and finally, the ones in blue obtain
the same performance either with lazy or eager execution
modes.

In this work, for the first time to the best of our knowledge,
we analyze the trade-off of executing early but having a
large cache-locking time versus executing later and reduce
cache-locking time for modern (unfenced) x86 atomic RMW
instructions. We find that, in general, atomic RMWs accessing
non-contended cachelines benefit from eager execution, with
workloads such as canneal and freqmine reducing execution
time by 42% and 26% compared to lazy execution. On
the contrary, atomic RMWs accessing contended cachelines
favor lazy execution. In applications such as pc and sps,
which feature contended atomics, lazy execution of atomic
RMWs reduces eager’s execution time by 44% and 43%,
respectively. Taking any of the two approaches statically yields
poor performance when applications with contended atomics
execute them eager or when applications with non-contended
atomics execute them lazy.

To leverage this finding, we propose Rush or Wait (RoW),
a hardware mechanism to dynamically decide whether a given
atomic RMW should be executed eager or lazy. RoW imple-
ments a small predictor that estimates whether the execution
of an atomic RMW will access a contended cacheline. If it
predicts that the atomic will not face contention, RoW executes
the atomic as soon as possible. Conversely, if it estimates that
the atomic will face contention, RoW delays its execution
until it reaches the head of the LQ and the SB is drained.
When enabling forwarding from older stores to atomics, RoW
executes contended atomics eager if a matching forwarding
store is found to improve atomic locality.

Our simulation results, modeling unfenced x86 atomic
RMWs in a cycle-accurate multicore simulator and using dif-
ferent parallel benchmark suites, show a 9.2% (and up to 43%)

reduction in execution time, on average, when atomic RMWs
execute as predicted by our contention predictor compared to a
baseline that always executes atomics as soon as their operands
are ready. This performance benefit is achieved with just 64
bytes of storage, a 14-bit subtractor, a 14-bit comparator, and
minor hardware changes.

The main contributions of this work are:
• Report experimental results suggesting that current x86

microarchitectures may implement unfenced atomic in-
structions.

• Analyze the trade-off between executing atomics eager
but having a larger cache-locking time versus executing
them lazy, reducing cache-locking time.

• Observe that, in general, atomics accessing contended
cachelines benefit from lazy execution, while those ac-
cessing non-contended cachelines benefit from eager ex-
ecution.

• Propose and examine different predictors to estimate
contention and determine when an atomic should be
issued to get the best of eager and lazy execution.

II. BACKGROUND

A. Experimental analysis on modern x86 atomic RMWs

To analyze if current x86 processors use unfenced atomic
RMWs, we design a microbenchmark that allocates a large
array of elements and performs RMW instructions on ran-
domly selected elements. We study three different RMW in-
structions: Fetch-and-Add (FAA), Compare-and-Swap
(CAS), and Swap. The atomic version of these RMW in-
structions can be used to implement multiple synchroniza-
tion mechanisms [15], [32]. We devise four variants of the
microbenchmark depending on how the RMW instruction is
performed: non-atomically (without the lock prefix), atomi-
cally (with the lock prefix), and each of them without and
with explicit memory fences (mfences) inserted before and
after the RMW instruction. Because the size of the array
allocated by the microbenchmark exceeds the cache capacity
and the elements are accessed randomly, the memory access
latency is high. Hence, the performance impact of memory
fences is highly noticeable. When a memory fence is executed,
the memory accesses retrieving the elements on which the
operations are performed get serialized. When the memory
fence is removed, the MLP grows and execution overlaps
the memory latency of different accesses, achieving higher
performance. The microbenchmark runs a single thread that
performs 100M iterations. Each iteration consists of picking a
random element and performing the corresponding operation
on it.

Fig 2 shows the number of cycles per iteration for each
microbenchmark on two x86 processors with different mi-
croarchitectures. The Intel i5-9400F is a recent x86 processor.
It belongs to the Coffee Lake microarchitecture and was
launched in 2019. On the contrary, the Intel Xeon X3210 is a
relatively old x86 processor, which belongs to the Kentsfield
microarchitecture and was launched in 2007. The experimental

0

100

200

300

400

500

FAA CAS Swap FAA Swap

Intel Xeon X3210 (2007)

C
y
cl

es
 p

er
 i

te
ra

ti
o

n
Non-atomic operation
Atomic operation
Non-atomic operation with mfences
Atomic operation with mfences

Intel i5-9400F (2019)
CAS

Fig. 2. Cycles per iteration of microbenchmarks using different atomic RMW
instructions with/without the lock prefix/explicit mfences.

results show that, in old x86 processors, atomic RMW instruc-
tions incur the cost of fences. This observation is backed by the
fact that the cycles per iteration when adding the lock prefix
to perform the RMW instruction atomically approximately
double.1 In addition to that, manually adding an mfence
instruction before and after the atomic RMW instruction does
not have any impact on performance. We believe that these
results can only be explained by the fact that, in former x86
processors, atomic RMW instructions internally enforce the
behavior of a memory fence. In contrast, the experimental
results reveal that in the recent x86 processor atomics RMW
instructions do not incur the cost of fences. In this case,
adding the lock prefix to the operation does not significantly
increase the number of cycles per operation. However, when
manually inserting the memory fences before and after the
RMW instruction (either non-atomic or atomic), performance
drops to roughly a fourth. We think that such performance
degradation can only be explained by the fact that recent x86
processors do not internally enforce the behavior of a memory
fence to implement atomic RMW instructions.

Summing up, our experimental results show that recent x86
processors manage to comply with the x86-TSO requirements
without suffering the performance overhead introduced by
fences, which suggests that they may implement unfenced
atomic RMW instructions. Although we only report results for
a recent processor from Intel, the same behavior was observed
with different recent x86 processors both from Intel and AMD.
In the next sub-section we elaborate on Free Atomics [4], a
proposal from the academia to implement unfenced atomic
RMWs, which is perhaps the closest description of the cur-
rent (undisclosed) implementation of atomic RMWs in x86
processors.

B. Free Atomics

Free Atomics [4] is a lightweight hardware mechanism that
removes the implicit memory fences surrounding the atomic
instructions, thus improving performance while preserving
atomicity and x86-TSO consistency. Removing fences allows
the concurrent execution of multiple atomics. In-flight atomics

1The Swap operation is implemented with the xchgl instruction. In this
case, when a memory operand is referenced, the processor’s locking protocol
is automatically implemented for the duration of the exchange operation,
regardless of the presence or absence of the lock prefix [18]. This explains
the fact that roughly the same performance is observed for the non-atomic
and atomic cases with this operation.

Time

T2

T3

T4

T1 add LdLxStUxLDY ...
ROB

Commit
SB
...

L1D

Write

read x with write permission
AQ

Unlock

add LdLxStUxLDY ...
ROB

Commit
SB
...

L1D

Write

AQ
,LQindex,set/way(x)

Unlock Y
x

current value Y

current value x lock

add LdLxStUxLDY

ROB
Commit

SB
...

L1D

Write

AQ
Unlock Y

x

...

commits after SB becomes empty!

ROB
Commit

SB

L1D

Write

AQ
Unlock Y

x

...

write new value

unlock

StUx

,LQindex,set/way(x)

--,LQindex,--read Y

Fig. 3. Implementation and execution of unfenced atomic RMW fetch-and-
increment in an x86 processor according to Free Atomics.

are tracked by a microarchitectural unit called Atomic Queue
(AQ). The AQ is a FIFO queue that resides near the SB.

Through a simple example in Fig. 3, we illustrate how
Free Atomics provides cache locking, compliance with the
x86-TSO memory model, and enables ILP and MLP in an
unfenced implementation of atomic RMWs. Note that in this
figure, the time labels (T1, T2, T3, and T4) only represent the
functionality of the atomic RMWs, but not the latency that
each action needs to perform.

The figure illustrates the execution of an atomic fetch-and-
increment instruction on a cacheline (x), consisting of three
different micro-operations: 1) load micro-operation (called
load lock in Free Atomics terminology and depicted as
LDLx); 2) addition (ADD); and 3) store micro-operation
(called store unlock in Free Atomics terminology and depicted
as STUx), that reside in the reorder buffer (ROB) of a x86 core,
followed by a regular load instruction (LDY) on a different
cacheline (Y). Once the micro-operations are dispatched to
the pipeline, in addition to taking entries in the ROB, and an
entry in LQ and SQ for its load and store micro-operations,
respectively, an entry in the AQ is reserved for the atomic
instruction (e.g., represented by the store micro-operation).
In the designated AQ entry, among other information, each
atomic keeps the index of the corresponding LQ entry that is
allocated at dispatch time, enabling the load micro-operation
to recognize its matching entry in the AQ. In this figure, an
arrow at the head of ROB, SQ, and AQ points to from which
side of these units an atomic instruction commits, writes to
L1 data cache (L1D), and unlocks the cacheline, respectively.

Free Atomics allows the atomic increment to execute as
soon as its operands are ready, even if there are older un-

committed memory instructions or the SB is not empty (Time
T1). Therefore, the LDLx asks for exclusive permission for
the cacheline (x), and once granted and when the cacheline is
located in the L1D, it marks the cacheline locked by setting
the locked bit in the corresponding AQ entry. Moreover, LDLx
annotates the set and way of the cacheline’s physical address
in the AQ entry (time T2). This enables the core to stall any
invalidation or downgrade message that arrives at the core
involving cacheline (x) or a potential eviction of this cacheline
from the L1D. By snooping the AQ, all those messages will
find the cacheline locked, thus preserving atomicity. Around
time T1 (either a few cycles before or after it), the younger
regular load instruction (LDY) can also initiate its execution
speculatively, improving ILP and MLP.

After reading and locking the cacheline (Time T2), the
addition is performed on the corresponding value of x. Once
the atomic increment reaches the head of the ROB, it has
to wait to drain the SB before leaving the ROB (Time T3).
This guarantees total memory ordering with x86 atomic RMW
instructions (see [4] for a thorough explanation). After com-
mitting the atomic increment, all its micro-operations leave the
ROB. However, note that the STUx still resides in the SB and
remains there until it performs the write operation and releases
the lock. Once the atomic instruction commits, all younger
instructions (such as the LDY) are allowed to commit once
they reach the head of the ROB without waiting for the STUx
to leave the SB. In this way, unfencing can bring significant
performance improvements.

Finally, at time T4, the STUx writes the new value and
unlocks the cacheline by clearing the corresponding AQ entry
(and leaving the SB). Note that the stores in TSO memory
model happen in order and the SB and AQ entries were both
allocated simultaneously at the dispatch time. Therefore, at
unlock time, the head of the SB corresponds with the head
of AQ. Also, note that the write by the STUx can happen
almost immediately, as the SB was ensured to be empty before
committing the atomic, and the cacheline was already locked
and located in the L1D.

Although unfenced atomic RMWs have the potential to
significantly improve ILP and MLP by overlapping the ex-
ecution of the atomic instructions with older and younger
instructions, we next demonstrate that the time to initiate
the execution of the atomic instructions is critical to achieve
optimal performance in some relevant scenarios.

III. MOTIVATION

As demonstrated in Section II-A, current x86 processors
implement unfenced atomics.2 This allows atomic instructions
to start executing as soon as their operands are ready, without
waiting until they become the oldest memory instruction in
the pipeline and the SB is drained. We refer to this way of
executing atomics as eager execution. Executing atomics as
soon as possible should theoretically improve performance

2From now on, for concise writing, we simply use “atomic RMWs” (or
“atomics”) rather than “unfenced atomic RMWs”.

as it eases hiding their execution latency under the shadow
of older instructions. However, each atomic operation locks
a cacheline when it executes, even with older unresolved
memory accesses and long dependency chains, and the lock is
only released after the store micro-operation writes and leaves
the SB. Before, it needs the SB drains in order to commit
without jeopardizing any consistency guarantee provided by
TSO. This means that atomic operations that are executed
eager can hold cachelines locked for long periods, which can
hurt performance when operating on contended cachelines that
are also requested by other threads.

An alternative option to reduce the time cachelines are
locked is to delay issuing atomics until certain conditions are
met while still allowing younger instructions to execute ahead
of the atomic. Suppose that we want to minimize the time
the cachelines are locked. In that case, we can restrict issuing
atomics until they become the oldest memory instruction in the
pipeline and the SB is empty. We use the term lazy execution to
refer to the execution of atomics with these constraints. Notice
that it allows instructions younger than the atomic to execute
speculatively before the atomic does, and so it differs from
a fenced implementation of atomics. While lazy execution of
atomics minimizes the time cachelines are locked, when the
atomic misses in the cache, the entire access latency is exposed
in the critical path.

In this work, we make the observation that unfenced atomics
bring in the need to decide which is the optimal time to
issue an atomic. Fig. 4 shows that the backward and forward
dependency chains of atomics do not prevent the eager and
lazy execution of them from being relevant3. The first bar
of the figure presents the number of instructions older than
an atomic that are not executed yet when the atomic issues
eager. This metric shows that the execution of an atomic can
effectively start soon in most cases because when its register
dependencies are resolved, there are still, on average, 48 older
instructions than the atomic to be executed. The second bar
depicts the number of instructions younger than an atomic that
have already started their execution when the atomic issues
lazy. This metric shows that, in many workloads, the lazy
execution of atomics does not prevent younger instructions
from starting execution. This is the case with workloads that
strongly benefit from lazy execution, such as tpcc, sps, and pc,
which start speculatively executing more than 50 instructions
younger than the atomic before it executes. Few instructions
can start executing before the atomic in other workloads
such as streamcluster and raytrace. This does not prevent
the lazy execution to improve performance as it still reduces
the cacheline locking time but reduces its potential benefits.
Summing up, as Fig. 1 illustrates, choosing between eager and
lazy execution of atomics has an overwhelming impact on the
performance of several applications. Although eager execution
of atomics roughly reduces the execution time of canneal and
freqmine to half compared to lazy execution, it nearly doubles

3In this figure and the followings, only the atomic-intensive applications
are depicted (see Section V).

0

100

200

300

400

500

ca
n

n
ea

l

cq

fr
eq

m
in

e

b
ar

n
es

fl
u

id
an

im
at

e

fm
m

ta
tp

v
o

lr
en

d

sw
ap

ti
o

n
s

ra
d
io

si
ty rb

st
re

am
cl

u
st

er

ra
y

tr
ac

e

tp
cc sp

s

p
c#
 I

n
d

ep
en

d
en

t
In

st
s.

Older when eager atomics Younger when lazy atomics

Fig. 4. Number of independent instructions with respect to eager and lazy
atomics.

0%

20%

40%

60%

80%

100%

0

50

100

150

200

250

ca
n
n
ea

l

cq

fr
eq

m
in

e

b
ar

n
es

fl
u

id
an

im
at

e

fm
m

ta
tp

v
o

lr
en

d

sw
ap

ti
o
n
s

ra
d

io
si

ty rb

st
re

am
cl

u
st

er

ra
y
tr

ac
e

tp
cc sp
s

p
c

C
o

n
te

n
d
ed

 a
to

m
ic

s

A
to

m
ic

s
p

er
 1

0
k

 i
n

st
s

Atomic intensity Atomic contention

Fig. 5. Atomics per 10 kilo-instructions and percentage of atomics that face
contention.

the execution time of pc and sps.
To shed some light about the reasons for this divergent

performance, we show two statistics. First, Fig. 5 depicts the
atomic intensity and contentiousness of the applications, which
helps understand the performance trend of the eager and lazy
execution of atomics presented in Fig. 1. Second, in Fig. 6,
we demonstrate how the eager and lazy execution of atomics
impacts the latency of atomic instruction’s themselves.

Fig. 5 shows the atomics per 10 kilo-instructions executed
by the applications (blue bars and left y-axis) and the percent-
age of the atomics that face contention with eager execution
(red line and right y-axis). An atomic is considered contended
when it accesses a cacheline concurrently used or requested by
another thread. The higher atomic intensity of the applications
in the left and right parts of the figure explains their higher
performance sensitivity to the way atomics are executed. The
higher contentiousness of the atomics in tpcc, sps, and pc,
along with their high atomic intensity, explains their superior
performance with lazy execution, as we discuss next.

Fig. 6 presents the atomic instruction’s latency, which is
broken down into three parts: 1) dispatch to issue, 2) issue
to lock, and 3) lock to unlock. The first and second latency
bars for each application represent eager and lazy execution,
respectively. Essentially, lazy execution increases the waiting
time a ready-to-execute atomic spends to become the oldest
memory instruction in the pipeline and for the SB to become
empty to get issued (larger blue segments). Nevertheless,
this minimizes the time a cacheline remains locked by the
atomic (yellow segments) and reduces the time to acquire
the cacheline (orange segments) as fewer threads (cores),

0
1000
2000
3000
4000
5000
6000

ca
n

n
ea

l

cq

fr
eq

m
in

e

b
ar

n
es

fl
u

id
an

im
at

e

fm
m

ta
tp

v
o

lr
en

d

sw
ap

ti
o
n
s

ra
d
io

si
ty rb

st
re

am
cl

u
st

er

ra
y
tr

ac
e

tp
cc sp
s

p
c

A
to

m
ic

's
 l

at
en

cy
 (

cy
cl

es
)

Dispatch to issue Issue to lock Lock to unlock

Fig. 6. Comparison of time needed from dispatch until write between eager
(1st bar) and lazy (2nd bar) execution of atomic RMWs.

compared to eager execution, request the cacheline (only the
threads having the atomic RMW at the head of the LQ and SB
empty) and the cacheline is released quicker after executing
the atomic instruction. This behavior benefits applications with
contended atomics (e.g., tpcc, sps, and pc), on which the issue-
to-lock latency explodes with eager execution due to the longer
time that cachelines remain locked.

In contrast, if the cachelines used by the atomics are not
contended, lazy execution decreases performance because the
application favors executing atomics (and acquiring the cache-
line) as soon as the atomics are ready to execute (e.g., canneal,
freqmine). In this way, atomic instructions hide part of their
memory latency while executing older memory instructions.

Following the previous discussion, the behavior of cq is
slightly contradictory. It shows low atomic intensity, but
atomics strongly impact its performance. Furthermore, it is
relatively contended, but favors the eager execution of atom-
ics. The reason for this behavior is atomic locality. In cq,
the eager execution of atomics allows keeping a cacheline
accessed by previous instructions in L1D to execute the atomic
concurrently through store-to-load forwarding while, with lazy
execution, the cacheline is invalidated and should be fetched
again by the atomic, exposing its access latency in the critical
path. RoW takes these observations into account and also
performs well under this scenario (see Section VI).

Summing up, the previous observations make it clear that
there is a tradeoff between eager and lazy atomics. Locking
the cacheline earlier is productive as long as other cores do
not need such a cacheline while it is locked. Otherwise, when
a core holds a cacheline locked for a long period and makes
other cores wait, eager atomics can quickly turn detrimental
to performance.

IV. RUSH OR WAIT: PREDICTING CONTENTION

For atomic-intensive workloads, issuing atomics in an ea-
ger or lazy way has an unyielding impact on performance.
Therefore, detecting contention is the key to leveraging this
enormous potential impact. As discussed in the previous
section, non-contended atomics should be issued eager to hide
the access latency of the atomic as much as possible. On the
contrary, contended atomics should be issued in a lazy way to
minimize the time a cacheline is locked and hence reduce the
average time that threads wait to acquire such a cacheline.

However, detecting contention is not straightforward. The
next subsections discuss how the contention estimation mech-
anism of Rush or Wait (RoW) evolves from a basic approach
that fails to capture contentiousness efficiently to an advanced
version that more precisely captures it.

A. Contention detection based on execution window

When the load micro-operation of the atomic executes, it
computes its address and requests the accessed cacheline with
exclusive permissions. Once the cacheline arrives at the private
cache, it is locked until the atomic operation is performed, and
the updated data is written back to the cache.

The simplest approach to identify contention is to moni-
tor the invalidation and downgrade messages (we will refer
to them as external requests) from the coherence protocol
that reach a core for locked cachelines. When one of these
messages arrives, the core marks the atomics that access the
corresponding cacheline as contended. (Needless to say, the
core delays the coherence response until the atomic writes
and unlocks the cacheline.)

Implementation. Our baseline core already models un-
fenced atomics as in Free Atomics (see Section II-B). Thus, it
includes an AQ that keeps track of the atomic instructions in
flight. When the core receives an external request, it searches
the AQ to determine if the cacheline involved in the operation
is locked, in which case it needs to stall the response to that
message. Using this search in the AQ, RoW simply marks
a matching atomic as contended, setting an additional bit
(contended bit) added to each AQ entry. This bit will be used
to train a contention predictor (see Section IV-D) when the
atomic completes. The overhead of this contention detection
mechanism is just 16 bits, since we model a 16-entry AQ.

B. Extending the execution window: Ready window

The previous mechanism only detects contention when the
cacheline is locked. This approach works well with eager
execution and when the memory request hits in the L1D,
as it locks the cacheline immediately. Fig. 7a (red window)
illustrates this case. Notice, however, that the longer it takes to
resolve the memory request of the load (moving the cacheline
locking closer to the atomic write), the shorter the execution
window for detecting contention.

This effect exacerbates when atomics execute lazy, as il-
lustrated in Fig. 7b (red window), making the mechanism less
effective in detecting contention. With lazy execution, atomics
are only issued once they become the oldest instruction in the
LQ and the SB is empty. This minimizes the window during
which a cacheline is locked, reducing it to fewer than 10
cycles on average. Even for highly contended cachelines, such
a short window reduces the probability that a core receives
an external request from the coherence protocol while the
cacheline is locked. Note that if a core holds a cacheline and
an external request reaches the core before an atomic starts
its execution and locks the cacheline, the core will simply
invalidate/downgrade the cacheline, but it will not identify it
as contended.

(a) Eager execution

(b) Lazy execution

Fig. 7. Contention-detection windows with eager and lazy execution.

To enable a core to track contention in a larger window
and both in eager and lazy modes, we propose that an atomic
starts monitoring external requests as soon as its operands are
ready. Fig. 7a and Fig. 7b (green windows) show the extended
contention-tracking window (called ready window) approach.
In particular, with lazy execution, the ready window allows
identifying requests from other cores that would be delayed
in case the atomic had been executed eager.

Implementation. To track external requests for cachelines
accessed by atomics in the ready window, RoW needs to calcu-
late the address of atomics as soon as their operands are ready.
Thus, we propose that regardless of the atomics execution
policy (eager or lazy), atomics get issued once their operands
become available. However, if the atomic should execute lazy
because it is predicted that it will access a contended cacheline,
we record that situation using a only-calculate-address bit. The
atomic then goes through the address calculation stage and
accesses the TLB to obtain its physical address. This address is
stored in the AQ entry assigned to the atomic. At this point, if
the only-calculate-address bit is set, the instruction is brought
back to the issue stage, waiting to issue a second time once the
conditions to execute lazy are met. The only-calculate-address
flag is also used to avoid releasing the issue queue and LQ
entries and to avoid issuing any dependent instruction in the
following cycles, simplifying the actions needed to take the
atomic back to the issue stage. Note that contemporary cores
already delay the execution of instructions depending on a load
that is expected to miss (or bank-conflict) in the cache [18];
thus, no additional hardware is needed to perform this task.
Also, calculating the effective address for an atomic when the
operands are ready, but not issuing the memory request to the
L1D until the execution policy dictates it, is similar to what
happens to regular store instructions at the execution stage
(calculate the effective address but wait to write to the L1D
after committing and reaching the head of SB [18]). When
the atomic meets the conditions to execute lazy, it is issued
again. Now, it can simply copy its address from the AQ entry
to the LQ entry, skipping the address calculation and TLB
access, since the address it computed previously is still valid
(assuming that the address is invalidated on TLB shutdowns).

In addition, as we discussed in Section IV-A, RoW should

[T1]

L1D

AQ

Core0

---,aLDB,---

Core1

Directory
1 GetX(B) 2 GetX(B)

addr, state, owner
B, Invalid, Dir

L1D

AQ
---,aLDB,---

[T2]

L1D

AQ

Core0

,aLDB,B

Core1

Directory
3 Send (B) 4 Stall GetX(B)

addr, state, owner

L1D

AQ
---,aLDB,---

B

B, Blocked,C0 [T3]

L1D

AQ

Core0 Core1

Directory
5 Unblock(B)

addr, state, owner

L1D

AQ
---,aLDB,---

B

B, Modified, C0
[T4]

L1D

AQ

Core0 Core1

Directory
6 Invalidation(B)

addr, state, owner

L1D

AQ
---,aLDB,---

B

B, Blocked, C1

Fig. 8. External requests for contended cachelines might reach the core after it has lifted the cacheline lock, which makes only tracking these requests an
insufficient approach to detect contention in all cases. [T1] Two atomics request the cacheline, [T2] Core0 acquires the cacheline, and locks it in AQ, [T3]
Atomic in Core0 commits and unlocks the cacheline fast, before Unblock message reaches the directory, [T4] Invalidation reaches Core0 while the atomic
has already completed execution; the atomic in Core0 could not see the contention at the directory.

search the AQ on an external request to find if the accessed
cacheline is locked and consequently stall the coherence
message. We propose that during this search, if the cacheline
is not locked but any atomic in the AQ matches the address,
RoW marks the contended bit for those atomics, effectively
extending the contention-tracking window. This can be done
in parallel with snooping the LQ and squashing the loads
that match the address of the external request. Extending the
contention detection window from the execution window to
the ready window only requires 16 additional bits.

C. Tracking contention in the coherence directory

The previous approach only detects contention when an
external request reaches the L1D during the ready window.
In some cases, the external requests for contended cachelines
will come after the cache lock is lifted. The reason lies in how
cache coherence protocols function.

Fig. 8 illustrates how coherence transactions affect the cores
tracking contention, yielding the previous approach insufficient
to identify contention in all cases. Initially, a cacheline (ad-
dress B) is stored in the directory (i.e., Invalid state in
the directory, [T1] in Fig. 8 - directory state). Atomics from
different cores request the cacheline (transactions 1 and 2).
The directory sends the cacheline to the first request arriving
to it (core0, transaction 3) and stalls the request of core1 until
core0 acknowledges receipt of the cacheline (step 4). Until
the directory receives an acknowledgment from core0, the
cacheline remains in a transient state, called Blocked, in the
directory ([T2] - directory state) and no invalidation requests
are sent to core0. Once core0 receives the cacheline in its L1D,
it locks the cacheline in the AQ, initiates execution, and replies
back to the directory with an Unblock message to confirm
the reception of the cacheline (message 5). Now, the directory
marks core0 as the owner of the cacheline with new value
(Modified directory state at [T3]). Then the request from
core1 is processed by the directory sending an invalidation
request to core0 (transaction 6). Meanwhile, the directory
state is changed to Blocked state again, but for core1 ([T4]
- directory state). Finally, the unblock/invalidation round trip
typically takes long time, meaning that the atomic may have
finished execution, unlocked the cacheline, and drained the
AQ when the invalidation is seen (empty AQ at core0 - [T4]).

The described problem can be solved in different ways.
One solution would be to detect contention at the directory

and use the directory response messages to inform cores that
the cacheline is being accessed by other cores. To keep the
coherence protocol intact, we opt for an alternative approach
in RoW. In particular, contention can be detected when the
sender of the cacheline is a remote private cache and the
latency of the transaction acquiring the cacheline is larger
than the typical transaction round trip without contention.
Such a simple approach works well because the latency for
contended cachelines is higher than that for non-contended
ones and because capturing the sender being a remote cache
filters long latency accesses to the last level cache or memory.
Furthermore, the more atomics from different cores request
the cacheline, the higher the latency becomes.

Implementation. We consider that a cacheline is contended
when it arrives at the core from another core’s private cache
and its latency exceeds a threshold. Coherence messages
commonly include the sender identifier (or at least, a bit
to indicate if the response comes from private or shared
caches) [9]. To obtain the latency that the request took to be
resolved, RoW augments each AQ entry with a field (request
issued cycle) that stores the cycle on which the getX request
to acquire the cacheline was sent. When the core receives
the cacheline in the L1D and locks it in the AQ, the request
issued cycle is subtracted from the current cycle to obtain the
request latency. If the cacheline arrives from a private cache
and its latency exceeds the threshold, the corresponding atomic
is considered contended and marked accordingly, setting the
contended bit in the AQ entry. As previously discussed, this
bit will be used to train the contention predictor.

Our experimental results show that a threshold of 400 cycles
is optimal to differentiate between accesses to contended and
non-contended cachelines, even though contended accesses
typically greatly exceed that value. To record the issue time
of the getX request, we add a 14-bit field to each AQ entry.
When the load micro-operation of an atomic is issued, this
field is initialized with the 14-least significant bits of the
current cycle. No additional hardware is needed to keep track
of the processor cycles as they are already accounted for
in current processors and used, for example, in performance
counters [18]. When the response arrives, the 14 less signif-
icant bits of the current cycle minus the bits stored in the
request issued cycle field using unsigned arithmetic gives the

latency of the request. 4 Therefore, a 14-bit field per AQ entry,
a 14-bit unsigned subtractor, and a 14-bit comparator for the
AQ are enough to detect if the latency of an atomic acquiring
the cacheline exceeds 400 cycles.

D. A simple predictor structure

The previous subsections discuss different approaches to
identify when an atomic faces contention (i.e., when it has
accessed a cacheline concurrently used or requested by at
least one additional core) during its execution. Now, we briefly
discuss the implementation of the predictor to anticipate if an
atomic will face contention during its execution. The predictor
is checked in the allocation stage using the program counter
(PC) of the atomic. If the prediction states that the atomic will
not face contention, RoW will execute it eager, seeking to hide
its execution latency in the shadow of older instructions. On
the contrary, if the prediction states that the atomic will face
contention, RoW will execute it lazy, with the goal of locking
the cacheline for a period as short as possible to allow other
cores to access the contended cacheline earlier. Later, when
the atomic releases the cacheline lock, it updates the predictor
using the contended bit of its AQ entry.

More precisely, the goal of the contention predictor is to
estimate the probability of facing contention that a core has
during the execution of an atomic when it is ready to execute.
However, the contention matching a particular instance of an
atomic is hard to predict as it depends highly on timeliness
and thread synchronization. Hence, we just aim to predict the
probability that any instance of that atomic, considering its
PC, has of facing contention based on past events.

We explore two simple N-bit saturating-counter predictors
(N = 4 in our experimental evaluation) with 64 entries in
RoW. The predictor uses XOR-mapping [13] and is indexed
with the 6-least significant bits of the PC XORed with the
following 6 bits. PC-locality is not relevant for the workloads
whose atomics do not face contention (e.g., canneal or fre-
qmine). However, when the workloads combine contended and
non-contended atomics, the fewer the number of entries in
the predictor, the higher the aliasing. If contended and non-
contended atomics share the same predictor entry, some of
them will not be executed with the optimal policy, which
will degrade performance. This is the case, particularly, of
the applications that benefit from lazy execution such as tpcc,
sps, and pc, which fail to execute contended atomics lazy
due to aliasing when the number of entries of the predictor
is reduced. Using a single predictor entry for all atomics,
for instance, causes a performance degradation by 0.3% on
average compared to eager execution.

We explore two options to update the saturating counters:
1) UpDown: Upon seeing contention on the cacheline being

used by an atomic, the counter assigned to that atomic
is incremented. On the contrary, seeing no contention
will decrement the counter. If the value of its counter is

4With this approach, a latency between 16,384 (214) and 16,784 cycles
would be misinterpreted as lower than the threshold. However, reaching such
a large latency is highly unlikely.

below or equal a threshold (= 1 in our experiments), it
will execute eager; otherwise, it will execute lazy.

2) Saturate on Contention: Upon seeing contention, the
counter with any current value will be maximized (i.e.,
2N -1). Similar to the previous method, if no contention
is seen, the value of the counter will be decremented.
The decision and manner to execute eager or lazy is the
same as with the previous predictor (for this predictor,
threshold’s value equals 0).

The predictors, with their update policies and thresholds
to estimate contention, move the execution of an atomic
aggressively towards lazy when it faces contention, as con-
tended atomics usually benefit from it. They also favor recent
contention behavior rather than historical behavior to predict
contention. Finally, we also evaluated other predictors, such
as a predictor that performs +2/-1 when detecting/not detect-
ing contention, but observed that the up/down and saturate
predictors reach higher performance benefits.

E. Favoring atomic locality

Enabling atomic instructions to receive their data through
store-to-load forwarding, either from older regular stores or
from older atomics, potentially accelerates the execution of
the forwarded atomic as it guarantees that the core does
not invalidate or evict the cacheline between the forwarding
instruction writes and the forwarded atomic executes. Free
Atomics [4] allows chains of forwarding between atomics, on
which an older atomic forwards its data to a younger atomic
without releasing the cacheline lock. The authors, however,
acknowledge that these chains of atomics can lead to livelocks,
and thus, they limit the forwarding chains to a length of 32.
The hardware necessary to implement this constraint is not
discussed, though.

We also analyze the effect of forwarding in this work. In our
implementation, we allow an atomic to be forwarded from an
older matching regular store. This simple mechanism offers
average performance benefits by improving atomic locality,
it is simple to implement, and prevents unlimited forwarding
chains of atomics that may restrict thread-level parallelism
when involving contended cachelines.

To improve atomic locality, when an atomic predicted to
issue lazy finds potential of forwarding from an older regular
store (done when computing its address eager), the atomic con-
tinues its execution eager. The fact that the older store needs
to execute anyway and will contend for the cacheline, already
invalidating other cores’ cacheline, mitigates the negative
impact of executing the atomic eager. When the forwarding
chance exists and we execute the atomic eager, we avoid
losing the cacheline between the store and atomic instructions,
improving the atomic locality and the performance.

Implementation. Favoring atomic locality when executing
atomics requires turning the lazy execution of an atomic into
eager. This implies that atomics that are predicted contended,
and thus, should execute lazy, not only compute their address
(to extend the contention-tracking window as explained in
Section IV-B) on their only-calculate-address issue but also

need to search the SB for a matching store. Fortunately, the
number of atomics is small compared to the number of loads,
and the additional searches to the SB do not significantly
increase the pressure in its search ports. If the atomic finds
a matching (non-atomic) store, RoW turns its execution into
eager. To this end, it needs to clear the only-calculate-address
bit in its corresponding AQ entry and to free its issue queue
entry. Otherwise, if there are no chances of forwarding and the
atomic remains lazy, it is moved back to the issue stage to start
its execution when it becomes the oldest memory instruction
and the SB drains.

F. Memory requirements

The memory overhead of RoW is divided into two com-
ponents: 1) the memory overhead of the contention predictor,
and 2) the memory overhead of augmenting the AQ entries to
keep track of contended atomics and timestamps.

The contention predictor is implemented as a 64-entry table
of 4-bit saturating counters, used to track contention and is
incremented/decremented as discussed in Section IV-D. The
table requires 256 bits (i.e., 64 entries × 4 bits).

To detect contended cachelines, we rely on both the ready
window mechanism and the coherence directory detection,
so we augment each AQ entry with the following fields:
contended bit, only-calculate-address bit, and a 14-bit issued-
cycle timestamp. Given that the AQ only implements 16
entries, it is augmented with 256 bits (i.e., 16 entries × (1
+ 1 + 14) bits). Overall, the memory requirements of RoW
amount to only 64 bytes.

V. METHODOLOGY

To assess the proposed mechanism, we use a detailed in-
house, out-of-order processor model that incorporates Free
Atomics [4] as a state-of-the-art implementation of unfenced
atomic RMWs. As discussed in Section II, and despite the
implementation details have not been disclosed, recent x86
processors also implement atomic RMWs without fences. Our
processor model is driven by a Sniper [7] front-end, which
feeds the processor with the instructions and their micro-
operations. The memory hierarchy and cache coherence proto-
col are modeled with the cycle-accurate GEMS simulator [24],
and the interconnect is modeled with GARNET [1].

We simulate a multicore processor consisting of 32 cores.
The processor parameters are based on the characteristics of
the performance cores of the Intel Alder Lake microarchi-
tecture [31]. The memory hierarchy parameters resemble the
same microarchitecture as well. Table I presents the most
relevant configuration parameters. To support unfenced atomic
RMWs, each processor core incorporates a 16-entry AQ.

We run parallel workloads from Splash-4 [12] and PARSEC
3.0 [6] benchmark suites, which are relatively synchronization
poor even though some of them are still atomic intensive,
and a suite of six fine-grain synchronization-intensive work-
loads [11], [20]. This set of workloads provides a wide range
of behaviors with different degrees of atomics per instruction
and different sensitivities to the performance of the atomic

TABLE I
SYSTEM PARAMETERS

Processor

Cores 32
Fetch / Issue / Commit Width 6 / 12 / 12 instructions
ROB / LQ / SB 512 / 192 / 128 entries
Atomic queue 16 entries
Branch predictor TAGE-SC-L [34]
Mem. dep. predictor StoreSet [8]

Memory

Private L1I cache 32KB, 8 ways, 4 hit cycles
Private L1D cache 48KB, 12 ways, 5 hit cycles, IP-stride

prefetcher
Private L2 cache 1MB, 8 ways, 12 hit cycles
Shared L3 cache 4MB per bank, 16 ways, 35 hit cycles
Memory access time 160 cycles

instructions. From these three suites, we select and evaluate
the results for the workloads that have at least one atomic
per 10 kilo-instructions (considered as atomic-intensive) as
the execution of atomics impact noticeably their performance.
Nevertheless, we also report the overall execution time of
RoW when considering all applications. All workloads run
32-threads. We report statistics for the parallel phase of the
applications. In all the evaluations, reported execution times
are normalized with respect to eager execution of atomics
without forwarding.

VI. EXPERIMENTAL EVALUATION

Fig. 9 shows the normalized execution time of applications
when executing atomics eager, lazy, or with different variants
of RoW, using the three contention-detection mechanisms
proposed paired with the two predictors analyzed: UpDown
(U/D) and Saturate on Contention (Sat). For these experiments,
forwarding to atomics is disabled. With RoW, atomics are only
issued eager if no contention is predicted. The lower the nor-
malized execution time the better. As discussed in Section III,
the applications on both extremes have higher atomic intensity
(see Fig. 5), yielding higher performance variation depending
on when atomics are executed. Furthermore, atomic-intensive
yet not-contended applications such as canneal and freqmine
favor the eager execution of atomics while the contended ones
(e.g, pc and sps) favor the lazy execution. Cq presents a
slightly different behavior that will be discussed later.

We start analyzing the performance of the execution window
(EW) contention-detection mechanism against the lazy and ea-
ger execution of atomics. With the non-contended applications,
the EW performs as well as the eager execution of atomics,
which means that it does not predict contention when there is
not. With the contended applications, it improves performance
in sps, getting close to the lazy execution, but performs
significantly worse than either lazy or eager executions in
tpcc and pc. Overall, these results demonstrate that the EW
mechanism is an insufficient approach to detect contention.

The ready window (RW) extends the window on which
external requests are tracked to better capture contention for
the cachelines accessed by atomics. For the non-contended
workloads, the RW performs similarly to both the eager execu-

1.72

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
N

o
rm

.
E

x
ec

.
T

im
e

Eager Lazy EW_U/D RW_U/D RW+Dir_U/D EW_Sat RW_Sat RW+Dir_Sat

Fig. 9. Normalized execution time for different variants of RoW (EW, RW, and RW+Dir contention detection mechanisms paired with the up/down (U/D)
and saturating (Sat) predictors) compared to eager and lazy execution. No store-to-load forwarding for atomics.

0.90

0.92

0.94

0.96

0.98

1.00

0

5
0

1
0
0

2
0
0

4
0
0

5
0
0

1
0

0
0

2
0

0
0

5
0

0
0

in
f.

N
o

rm
.
E

x
ec

.
T

im
e

Threshold (Cycles)

RW+Dir_U/D RW+Dir_Sat

Fig. 10. Sensitivity of RoW to the latency threshold when using RW+Dir
contention detection mechanism.

tion and the EW predictors, outperforming the lazy execution
of atomics. For the contended workloads, the RW predictors
are able to estimate contention accurately and perform close
to the lazy execution of atomics in pc, sps, tpcc, and raytrace.

Finally, the ready window enhanced with the direc-
tory contention mechanism (RW+Dir) impacts performance
more noticeably when paired with the up/down predictor
(RW+Dir U/D – dark blue bar). In this case, it improves the
performance of tpcc, streamcluster, and sps non-negligibly and
provides minor benefits across several other applications. Its
impact with the saturating predictor (RW+Dir Sat – dark green
bar) is lighter because, for a contended atomic, the saturating
predictor needs not to face contention fifteen consecutive times
before the prediction for the atomic moves to not contended.

Fig. 10 show the sensitivity of the RW+Dir contention
detection mechanism to the latency threshold. The perfor-
mance sensitivity to this parameter is very limited as this
mechanism works on top of the RW. A very large threshold
(i.e., inf.) prevents detecting atomics that face large latency due
to accessing contended cachelines acquired from other cores
as contended and behaves like RW. A very small threshold,
like 0 cycles, marks any atomic receiving the cacheline from
another core as contended. This imposes overhead to atomic-
intensive applications that infrequently face contention (e.g.,
canneal) by issuing its atomics lazy. The optimal threshold
is achieved at 400 cycles. However, note that the latency to
access contended cachelines is much larger than to access non-
contended cachelines, and therefore simplifies the tuning of
this parameter. In fact, the performance variation of increasing
the threshold from 400 cycles to 2000 cycles is minimal.

Overall, the RW+Dir Sat predictor achieves the best perfor-

mance, reducing the execution time of both the eager and lazy
execution of atomics by 7.3% and 5.5%, respectively. It also
reduces the execution time of the RW+Dir U/D predictor by
0.9%, and that of the EW and RW contention detection mech-
anisms paired with the saturating counter predictor by 8.8%
and 0.4%. Despite the RW+Dir predictors provide the highest
performance on average, they impose a small slowdown in
applications such as tatp, barnes, and raytrace compared to the
other contention-detection mechanisms. To a lower extent, but
similarly to cq, these benchmarks feature contended atomics
that benefit from eager execution. Thus, with more accurate
contention detection mechanisms, more contended atomics are
detected and executed lazy, which degrades performance in
this case. We will later analyze how RoW deals with these
applications to provide the best performance.

To support our claim that executing contended atomics eager
results in longer cacheline locks and leads to greater access
latency for other threads accessing the contended cachelines,
we look at the miss latency of the memory instructions.
Fig. 11 shows the average miss latency for the eager and lazy
execution of atomics, and for RoW with the RW+Dir U/D and
RW+Dir Sat predictors. For applications with more contended
atomics (e.g., pc, sps, and tpcc; see Fig. 5), the miss latency
with eager execution nearly doubles the latency with lazy
execution, which confirms our claim. By executing contended
atomics lazy, the miss latency achieved by RoW with both
predictors closely resembles that of the lazy execution. For
applications with non-contended atomics, the miss latency
difference is minimal, as whether the atomic is executed earlier
or later does not impact the miss latency directly. However,
the timing of atomic execution does impact performance, as
executing the atomics earlier helps hide their latency under the
shadow of older memory accesses.

Prediction accuracy. Fig. 12 shows the accuracy of the
up/down (U/D) and saturating (Sat) predictors to detect con-
tention. That is, how often they predict that an atomic will or
will not face contention and it is detected accordingly with the
corresponding RW+Dir contention detection mechanism. The
U/D predictor shows better accuracy across all benchmarks,
reaching an average accuracy of 86% in the contention pre-
dictions. With the saturating counter, the prediction accuracy
drops to 73% because it moves too aggressively towards
predicting contention in atomics whose contentiousness is
not completely byassed to contention. The lower accuracy of

0

500

1000

1500

2000

2500

ca
n
n
ea

l

cq

fr
eq

m
in

e

b
ar

n
es

fl
u

id
an

im
at

e

fm
m

ta
tp

v
o
lr

en
d

sw
ap

ti
o
n
s

ra
d

io
si

ty rb

st
re

am
cl

u
st

er

ra
y
tr

ac
e

tp
cc sp
s

p
c

M
em

.
In

st
.
M

is
s

L
at
en
cy

 (
cy

cl
es

) Eager Lazy RW+Dir_U/D RW+Dir_Sat

Fig. 11. Comparison of L1D miss latency for all memory instructions with
eager and lazy execution of atomics and RoW using the RW+Dir contention
detection mechanism.

this predictor, however, does not directly translate into lower
performance because the accuracy difference mainly comes
from benchmarks such as fmm, voldrend, and radiosity, which
have no performance sensitivity to the eager/lazy execution
of atomics (see Fig. 1) caused, in part, by their low atomic
intensity (see Fig. 5). For barnes, the lower accuracy of the
satuaring predictor compared to the U/D predictor results
in lower performance. On the contrary, for raytrace, the
saturating predictor performs better than the U/D despite its
lower accuracy because it predicts contention more frequently
and raytrace benefits from executing atomics lazy (see Fig. 1).

Enabling forwarding to atomics. In Fig. 9, cq clearly
stands out as an application that noticeably differs from the
others since it has contended atomics but benefits from eager
execution. Albeit less evident, barnes and tatp, as previously
discussed, also feature contended atomics that benefit from
eager execution. The reason that explains this behavior is
atomic locality. These applications feature atomics that execute
after a store to the same cacheline. Despite these atomics are
contended, they benefit from eager execution because, even
when forwarding to atomics is disabled, executing the atomics
earlier allows locking the cacheline before it is invalidated
after the store writes. However, when RoW predicts that the
atomic is contended and executes it lazy, the cacheline may
be taken by another core, the atomic misses in the cache,
and a longer access latency is exposed. This issue is also
illustrated in Fig. 11, which shows the average miss latency. In
cq or barnes, the lazy execution of atomics and the execution
with RoW results in higher miss latency due to the worse
atomic locality. In tatp, the average miss latency is similar
in all configurations because even with the lazy execution of
atomics, the atomic locality is frequently preserved.

To improve atomic locality, we enable forwarding from
stores to atomics and extend RoW to execute a contended
lazy atomic eager when it detects a matching store in the
SB. Fig. 13 depicts the execution time, normalized to eager
execution, for lazy execution, eager execution with forwarding
(Eager+Fwd), and different variants of RoW, without and with
forwarding enabled. Note that the lazy execution of atomics
cannot benefit from forwarding to atomics as it requires drain-
ing the SB before executing an atomic, hence it is not shown
in the figure. The eager execution of atomics slightly benefits
from forwarding to atomics when there is an opportunity. This

0%

20%

40%

60%

80%

100%

ca
n
n
ea

l

cq

fr
eq

m
in

e

b
ar

n
es

fl
u
id

an
im

at
e

fm
m

ta
tp

v
o
lr

en
d

sw
ap

ti
o
n
s

ra
d
io

si
ty rb

st
re

am
cl

u
st

er

ra
y
tr

ac
e

tp
cc sp
s

p
c

A
v
er

ag
e

A
cc

u
ra

cy

RW+Dir_U/D RW+Dir_Sat

Fig. 12. Accuracy of contention detection by RoW.

is mainly visible in cq and tatp, which have the highest number
of forwarded atomics. The benefit is small, though, because
in both cases, the eager execution of atomics already achieves
good atomic locality as it manages to keep the cacheline in the
private cache between the store write and the atomic execution.

Unlike the eager execution of atomics, RoW executed
all contended atomics lazy, which was negatively impacting
the atomic locality. Consequently, with the optimization to
promote atomic locality, RoW reaches the highest benefit
when forwarding is enabled. In particular, cq’s execution time
reduces by 35% with the RW+Dir U/D predictor and the
forwarding optimimzation compared to the execution with the
same predictor but without forwarding. As mentioned earlier,
other applications such as barnes and tatp also benefit from the
higher atomic locality and reduce their execution time by 5.2%
and 1.5%, respectively. Summing up, with forwarding from
stores to atomics enabled, RoW reaches the best performance
with the RW+Dir U/D combination, reducing the execution
time compared to the eager and lazy execution of atomics by
9.2% and 8.5%, respectively. Considering all the applications
(atomic-intensive and non-atomic intensive), RoW achieves a
4.0% performance improvement compared to a baseline that
executes all atomics eager.

VII. RELATED WORK

Comparison with branch prediction. Our contention
predictor is similar to the well-known bimodal branch pre-
dictor [35] regarding the policy for updating the counters
(although we examined both up/down and saturate on con-
tention predictors). However, to improve the accuracy of
contention prediction, increasing the counter width, recording
a history [37], or using complex algorithms (e.g., [19]) is not
required. Instead, we proposed simple yet effective approaches
to detect contended atomics. Detecting contention for atomics
should be local (having individual entries per atomic) as they
are uncorrelated as opposed to branches that might correlate
in some scenarios [27].

Efficient implementation of atomic RMWs. The perfor-
mance overhead imposed by fenced atomic implementations
has been widely analyzed in the related work [10], [30],
[32]. Our experimental analysis suggests that x86 proces-
sors may already implement unfenced atomics to avoid it
(see Section II-A). Recently, Free Atomics [4] presented
a hardware mechanism to implement unfenced atomics in

1.72

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

.
E

x
ec

.
T

im
e

Eager Lazy U/D Sat Eager+Fwd U/D+Fwd Sat+Fwd

Fig. 13. Normalized execution time of eager and lazy execution of atomics and different variants of RoW when enabling forwarding from stores to atomics
compared to the eager execution of atomics without forwarding. RoW variants use the RW+Dir contention detection mechanism and include the optimization
to improve atomic locality.

x86 processors while preserving the atomicity and x86-TSO
consistency. Regarding fenced atomics, Kurth et al. [21] pro-
posed hardware support for RISC-V processors to execute
atomic RMWs (called AMO in RISC-V ISA) based on the
LoadLinked/StoreConditional (LL/SC) approach, which are
interruptible peers to atomics. Mestan et al. [25] seeks to favor
locality for regular loads with a predictor that estimates when
LL/SCs will be successful and hence can forward its data to
a following load instruction [25]. Finally, CLAU [5] suggests
adopting hardware cache locking to improve the performance
of non-atomic RMWs against contention stemmed from false-
sharing. In this work, we study the trade-off between executing
unfenced atomics eager or lazy and devise a mechanism to
execute them at the best time by predicting whether they will
face contention or not.

Near or far execution of atomics. Although this work
focuses on when is the suitable time to execute unfenced
atomics, there is an orthogonal decision on where is the right
location to perform atomic memory updates. This decision
varies between local caches (namely near atomics) and the
last level shared cache (namely far atomics). In x86 machines,
only near atomic RMWs are offered, while IBM offers only far
atomic RMWs [16]. ARM processors provide both near and
far atomics, with an emphasis on near atomics for better per-
formance [2]. In recent work, the locality among atomics [28]
and the contention over the accessed cacheline [17] were key
factors to decide between near and far atomics.

Conflict management in Hardware Transactional Mem-
ory. In Hardware Transactional Memory (HTM), many works
have been proposed to handle the conflict between transac-
tions running on different cores [3], [23], [29]. Lupon et
al. [23] propose using different version and conflict man-
agement policies for transactions depending on whether they
face contention or not. Even though we share the idea of
taking a different execution approach depending on contention,
HTM systems are greatly different. They identify contention
from transaction conflicts, which completely differs from our
contention detection mechanism, and their version and conflict
management policies are unrelated to the eager and lazy
execution of atomics we propose. DeTras is the latest work
that achieves this goal efficiently with low hardware cost via
delaying conflicted stores within a transaction [36]. DeTras
uses a predictor (SCH) similar to our Sat version, but tracks
conflicted stores, which are detected by adding one bit to the

coherence protocol messages.
Self invalidation to reduce shared cachelines access

latency. Lai and Falsafi proposed Last-Touch-Predictor (LTP)
to enable each core to invalidate its shared cachelines at a
suitable time before being asked by other cores [22]. Their
proposal relies on collecting different traces for each shared
cacheline, starting from an L1D miss, until another core
sends an invalidation. Similar to our work, LTP predicts over
instructions (yet in our case only atomic instructions) rather
than cachelines.

VIII. CONCLUSION

Our experimental analysis on x86 processors suggests that
they may have recently adopted unfenced atomics, avoiding
the performance overhead of the traditional fenced atomic
implementation while still complying with the consistency
model guarantees. In our work, we raise the concern that
when to execute unfenced atomics is critical for performance.
Executing atomics as soon as possible helps hide their access
latency but also leads to longer cacheline locks, which can
negatively impact performance when the accessed cacheline
is contended.

To decide when to execute atomics, we propose Rush
or Wait (RoW). RoW implements a contention predictor to
anticipate if an atomic will not face contention, in which case
it is executed eager, or will face contention, in which case
it is executed lazy. In addition, to improve atomic locality,
RoW moves to eager execution of contended atomics when
a matching forwarding store is available. The experimental
results show that RoW reduces the execution time on average
by 9.2% (and up to 43%) compared to a baseline that executes
atomics eager with a hardware overhead of only 64 bytes.

ACKNOWLEDGMENT

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 819134), from the MCIN/AEI/10.13039/501100011033/
and the “ERDF A way of making Europe”, EU (grants
PID2021-123627OB-C51 and PID2022-136315OB-I00), from
the MCIN/AEI/10.13039/501100011033/ and the European
Union NextGenerationEU/PRTR (grants RYC2021-030862-I
and TED2021-130233B-C33), from the Swedish Research
Council (VR grant 2022-04959), and from the Swedish Foun-
dation for Strategic Research (SSF grant FUS21-0067).

REFERENCES

[1] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in Int’l Symp.
on Performance Analysis of Systems and Software (ISPASS), Apr. 2009,
pp. 33–42.

[2] ARM, ARM Architecture Reference Manual, for A-profile architecture,
ARM Holdings, 2024. [Online]. Available: https://developer.arm.com/
documentation/ddi0487/latest/

[3] A. Armejach, J. R. T. Gil, A. Negi, O. S. Unsal, and A. Cristal, “Tech-
niques to improve performance in requester-wins hardware transactional
memory,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 10, no. 4, pp. 42:1–42:25, Feb. 2013.

[4] A. Asgharzadeh, J. M. Cebrian, A. Perais, S. Kaxiras, and A. Ros, “Free
atomics: hardware atomic operations without fences,” in 49th Int’l Symp.
on Computer Architecture (ISCA), Jun. 2022, pp. 14–26.

[5] A. Asgharzadeh, E. J. Gómez-Hernández, J. M. Cebrian, S. Kaxiras, and
A. Ros, “Hardware cache locking for all memory updates,” in 42th IEEE
International Conference on Computer Design (ICCD), Nov. 2024, pp.
566–574.

[6] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, Jan. 2011.

[7] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulations,”
in Conf. on Supercomputing (SC), Nov. 2011, pp. 52:1–52:12.

[8] G. Z. Chrysos and J. S. Emer, “Memory dependence prediction using
store sets,” in 25th Int’l Symp. on Computer Architecture (ISCA), Jun.
1998, pp. 142–153.

[9] D. E. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture:
A Hardware/Software Approach. Morgan Kaufmann Publishers, Inc.,
1999.

[10] M. K. Elteir, H. Lin, and W. Feng, “Performance characterization and
optimization of atomic operations on AMD gpus,” in IEEE International
Conference on Cluster Computing (CLUSTER), Sep. 2011, pp. 234–243.

[11] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen, and
T. F. Wenisch, “Persistency for synchronization-free regions,” in 39th
Conf. on Programming Language Design and Implementation (PLDI),
Jun. 2018, pp. 46–61.

[12] E. J. Gómez-Hernández, J. M. Cebrian, S. Kaxiras, and A. Ros, “Splash-
4: A modern benchmark suite with lock-free constructs,” in Int’l Symp.
on Workload Characterization (IISWC), Nov. 2022, pp. 51–64.

[13] A. González, M. Valero, N. Topham, and J. M. Parcerisa, “Eliminating
cache conflict misses through XOR-based placement functions,” in 11th
Int’l Conf. on Supercomputing (ICS), Jun. 1997, pp. 76–83.

[14] M. Herlihy, “Wait-free synchronization,” ACM Transactions on Pro-
gramming Languages and Systems (TPLS), vol. 13, no. 1, pp. 124–149,
Jan. 1991.

[15] M. Herlihy, N. Shavit, V. Luchangco, and M. Spear, The art of
multiprocessor programming. Elsevier, 2020.

[16] IBM Corporation, “OpenPOWER Foundation Power Instruction Set
Architecture,” May 2024. [Online]. Available: https://www.ibm.com/
docs/ar/aix/7.2?topic=reference-instruction-set

[17] J. Ingalls, W. W. Terpstra, H. Cook, and L. Kou, “Method for executing
atomic memory operations when contested,” U.S. Patent US11467962,
Oct. 2022.

[18] Intel, “Intel® 64 and ia-32 architectures software developer’s manual,”
www.intel.com, Mar. 2024.

[19] D. A. Jiménez, “Fast path-based neural branch prediction,” in 36th Int’l
Symp. on Microarchitecture (MICRO), Dec. 2003, pp. 243–252.

[20] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level persistency,” in
44th Int’l Symp. on Computer Architecture (ISCA), Jun. 2017, pp. 481–
493.

[21] A. Kurth, S. Riedel, F. Zaruba, T. Hoefler, and L. Benini, “Atuns:
Modular and scalable support for atomic operations in a shared memory
multiprocessor,” in 57th Design Automation Conference (DAC), Jul.
2020, pp. 1–6.

[22] A. C. Lai and B. Falsafi, “Selective, accurate, and timely self-invalidation
using last-touch prediction,” in 27th Int’l Symp. on Computer Architec-
ture (ISCA), Jun. 2000, pp. 139–148.

[23] M. Lupon, G. Magklis, and A. González, “A dynamically adaptable
hardware transactional memory,” in 43rd Int’l Symp. on Microarchitec-
ture (MICRO), Dec. 2010, pp. 27–38.

[24] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,”
ACM SIGARCH Computer Architecture News, vol. 33, no. 4, pp. 92–99,
Sep. 2005.

[25] B. R. Mestan, G. N. Levinsky, and M. L. Karm, “Atomic operation
predictor,” U.S. Patent US11119767, Mar. 2022.

[26] V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer
on Memory Consistency and Cache Coherence, Second Edition, ser.
Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, 2020.

[27] S. Pan, K. So, and J. T. Rahmeh, “Improving the accuracy of dynamic
branch prediction using branch correlation,” in 5th Int’l Conf. on Ar-
chitectural Support for Programming Language and Operating Systems
(ASPLOS), Oct. 1992, pp. 76–84.

[28] V. S. Pardos, A. Armejach, T. Mück, D. S. Gracia, J. A. Joao,
A. Rico, and M. Moretó, “Dynamo: Improving parallelism through
dynamic placement of atomic memory operations,” in 50th Int’l Symp.
on Computer Architecture (ISCA), Jun. 2023, pp. 30:1–30:13.

[29] S. Park, C. J. Hughes, and M. Prvulovic, “Forgive-tm: Supporting lazy
conflict detection in eager hardware transactional memory,” in 28th Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT),
Sep. 2019, pp. 192–204.

[30] B. Rajaram, V. Nagarajan, S. Sarkar, and M. Elver, “Fast rmws for
tso: Semantics and implementation,” in 34th Conf. on Programming
Language Design and Implementation (PLDI), Jun. 2013, pp. 61–72.

[31] E. Rotem, A. Yoaz, L. Rappoport, S. J. Robinson, J. Y. Mandelblat,
A. Gihon, E. Weissmann, R. Chabukswar, V. Basin, R. Fenger, M. Gupta,
and A. Yasin, “Intel Alder Lake CPU architectures,” IEEE Micro,
vol. 42, no. 3, pp. 13–19, Mar. 2022.

[32] H. Schweizer, M. Besta, and T. Hoefler, “Evaluating the cost of atomic
operations on modern architectures,” in 24th Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), Oct. 2015, pp. 445–
456.

[33] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “x86-
TSO: A rigorous and usable programmer’s model for x86 multiproces-
sors,” Communications of the ACM, vol. 53, no. 7, pp. 89–97, Jul. 2010.

[34] A. Seznec, “TAGE-SC-L branch predictors,” in JILP – Championship
Branch Prediction, Jun. 2014, pp. 1–8.

[35] J. E. Smith, “A study of branch prediction strategies,” in 8th Int’l Symp.
on Computer Architecture (ISCA), May 1981, pp. 135–148.

[36] R. Titos-Gil, R. Fernández-Pascual, M. E. Acacio, and A. Ros, “Detras:
Delaying stores for friendly-fire mitigation in hardware transactional
memory,” IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 33, no. 1, pp. 1–13, Jan. 2022.

[37] T. Yeh and Y. N. Patt, “Alternative implementations of two-level adaptive
branch prediction,” in 19th Int’l Symp. on Computer Architecture (ISCA),
May 1992, pp. 124–134.

https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
https://www.ibm.com/docs/ar/aix/7.2?topic=reference-instruction-set
https://www.ibm.com/docs/ar/aix/7.2?topic=reference-instruction-set
www.intel.com

	Introduction
	Background
	Experimental analysis on modern x86 atomic RMWs
	Free Atomics

	Motivation
	Rush or Wait: Predicting Contention
	Contention detection based on execution window
	Extending the execution window: Ready window
	Tracking contention in the coherence directory
	A simple predictor structure
	Favoring atomic locality
	Memory requirements

	Methodology
	Experimental evaluation
	Related work
	Conclusion
	References

