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Abstract 

Objective  

To improve semantic interoperability of Electronic Health Records by ontology-based mediation 

across syntactically heterogeneous representations of the same or similar clinical information. 

Materials and Methods 

The approach is based on a semantic layer that consists of:  (1) a set of ontologies supported by (2) a 

set of semantic patterns. (1) helps standardize the clinical information modeling task, (2) shield 

modelers from the complexity of ontology modelling. This approach is applied to heterogeneous 

representations of an excerpt of a heart failure summary. 

Results 

We demonstrate that semantic patterns or compositions thereof, using a set of finite top-level 

patterns to derive the former ones, can be used to represent information from clinical models. 

Homogeneous querying of the same or similar information when represented according to 

heterogeneous clinical models is feasible. 

Discussion  

This approach focuses on the meaning embedded in health records, regardless of their structure. 

This complex task requires a clear ontological commitment (i.e. agreement to use the shared 

vocabulary consistently within some context), together with formalization rules. This is supported by 

semantic patterns. Other potential uses such as clinical models validation require further 

investigation.  

Conclusion 



We have shown how an ontology-based representation of a clinical summary, guided by semantic 

patterns, allows homogeneous querying of heterogeneous information structures. Whether there 

are a finite number of top-level patterns is an open question.   

 

OBJECTIVE 

Semantic interoperability [1] of clinical information has been put on the agenda by many organizations and 

initiatives. Variegated requirements for data capture and storage have motivated the development of standards 

and specifications for terminologies, ontologies and clinical models. Nevertheless the semantic interoperability 

problem persists. 

The European SemanticHealthNet network [2], follows the recommendations of its predecessor project 

SemanticHealth [1], in seeking for a closer integration between information models, as used in electronic health 

records, and terminologies and ontologies, to improve semantic interoperability. The project pursues this goal by 

dissecting heterogeneous representations of clinical information based on formal-ontological principles. Thus, a 

shared model of meaning enables precise annotations of which each information item in a clinical model 

signifies, using the Semantic Web language OWL DL [3]. Complicated language constructs are addressed by 

using semantic patterns as intermediate representations.  

The project has set the focus in chronic heart failure and cardiovascular prevention, as use cases. Here we  

exemplify the approach proposed by focusing on the Heart Failure Summary [4], a structured clinical model 

driven by clinicians requirements within SemanticHealthNet, that summarizes basic aspects of heart failure 

diagnosis and care in order to optimize the disease management.   

BACKGROUND AND SIGNIFICANCE 

Semantic interoperability of Electronic Health Record (EHR) systems requires a clear sharing of roles 

between several layers of representational artifacts [5]: (1) generic EHR information models; (2) clinical data 

structure definitions, viz. clinical models; (3) top-level ontologies, (4) domain ontologies, and (5) terminologies. 

Whereas the latter three have been referred to as models of meaning, the former two have been referred to as 

models of use [5]. 



Generic EHR information models provide standardized information structures, relationships, and constraints 

to represent EHR data. Examples are EN ISO 13606-1 [6], openEHR Reference Model [7] or HL7 Reference 

Information Model (RIM) [8]. The meaning they convey relies on the intuitive and common-sense understanding 

of natural language labels and descriptions, not a priori referring to any ontological foundation. E.g., openEHR 

distinguishes between information structures for representing observation and evaluation results and instructions, 

while EN ISO 13606 provides a general “entry” information structure for the three cases. The meaning of terms 

such as "evaluation", "observation", "entry" are only informally elucidated in the documentation. The openEHR 

information model is partially ontology-based  [9], but it is not rooted in any upper level ontology and thus lacks 

a clear ontological commitment [10]. 

Clinical models like EN ISO 13606/openEHR archetypes [10], HL7 CDA documents [12] or Clinical Element 

Models (CEMs) [13], constrain the information model structures for serving particular data capture and 

communication use cases. As an example, a blood pressure model constrains information structures to record the 

systolic, diastolic, and mean blood pressure measurement results, the patient's position, the measuring device, 

etc. Additionally, templates like those proposed by HL7 [14] or openEHR [15], allow using a set of clinical 

models together, constrained for addressing one or more particular documentation scenarios.  

Ontologies formally describe properties and relations of types of entities. Domain-independent categories, 

relations and axioms are typically provided by top-level ontologies [10], whereas the types of things that make 

up a domain are represented by domain ontologies. In the former one we find categories like Process, Material 

entity, Quality, etc., whereas in a clinical domain ontology we would find classes for Diabetes mellitus type 1, 

Left index finger, or Diclofenac, ideally covering all the terms used in clinical documentation and reporting. The 

terms as such are organized by clinical terminologies. Ontologies have at least a minimal terminology 

component, consisting in a label or preferred term to make them understandable by humans. SNOMED CT [16], 

in addition, provides term variants and (quasi-)synonyms as possible values for data entry.  

So far, there has been only partial and rather tacit consensus about the role each of the above artifacts should 

play and how they interface. Whereas terminology and ontology aspects are mostly covered by the same artifact, 

(by linking terms to ontology classes), the division between ontologies and information models ideally follows 

the classical distinction between ontology [17] (what exists) and epistemology (what is known) [18]. In practice, 

this line is often crossed both by ontologies (where they represent information entities, such as in the SNOMED 

CT context model) and by clinical models (where they carry their own ontology without reference to external 

standards).  



As an example of overlapping, the SNOMED CT concept History of vertigo is described by following the 

SNOMED CT compositional syntax [19] as:  

275543009 | H/O: vertigo | : {  

 246090004 | associated finding | = 399153001 | vertigo |, 

 408729009 | finding context | = 410515003 | known present |,  

 408731000 | temporal context | = 410513005 | past |, 

 408732007 | subject relationship context | = 410604004 | subject of record |} 

 

This does not represent just the clinical type Vertigo, but also epistemic (“Known present”) and temporal 

aspects (“Past”) respectively. Vertigo, itself, is referred to by the code 399153001. This representation could also 

have been represented by a clinical model. Fig. 1 depicts an openEHR archetype excerpt for recording the 

medical history of some health issue. There, Past and Known present are embedded in the archetype information 

model structures, as free text labels. The health issue Vertigo, can be represented as free or coded text 

(DV_TEXT).   

One could argue that ontologies just should not cross this boundary, such as by following the rules elaborated 

by TermInfo [20]. But even in this case the same piece of clinical information could be heterogeneously shaped 

by using different EHR information model structures. Within a diagnosis model, the disease and its location 

could be represented by a binding to a pre-coordinated SNOMED CT concept (e.g. neoplasm of lung); or  

alternatively, by structures that target disease (neoplasm) and location (lung) separately. Semantic 

interoperability requires means to detect that both representations are equivalent, also called iso-semantic (i.e. 

carrying the same meaning although heterogeneously represented).  

The Clinical Information Modeling Initiative (CIMI) [21] seeks to address this problem by proposing a set of 

modeling patterns, defined as clinical models intended as guides for the creation of new ones. Each is associated 

with a set of iso-semantic models, from which one is selected as the preferred one and mappings are established 

across information model structures. CIMI or HL7 based models that implement the TermInfo specification 

might work well in isolation, but semantic interoperability issues arise when interacting with other modes, which 

are not necessarily compatible, whilst the anticipation of all possible iso-semantic representations would lead to 

an explosion of models.   

MATERIALS AND METHODS 

Overview 



Convinced that multiple EHR standards, terminologies, ontologies as well as a large number of legacy 

information models will co-exist, our approach builds a semantic layer on top of them, acting as a proxy for 

applications that aim at accessing homogeneously content from heterogeneous repositories. This semantic layer 

consists of two sub-layers that include a set of semantic patterns and an ontological framework.  

The ontological framework’s objective is two-fold: Firstly, it provides a formal foundation that helps 

standardize information modeling tasks. Agreement at this level is essential to give interoperable meaning to 

heterogeneous EHR modeling styles. Secondly, the formal representation of clinical information conforming to 

an ontological framework adds value through description logic (DL) style reasoning [22] and advanced querying.   

Semantic patterns, as close-to-user representations that hide the complexity of the ontology language, prevent 

modelers from the error-prone creation and maintenance of OWL expressions.  

In order to access homogeneously clinical information of heterogeneous clinical models the following steps 

must be carried out: (i) identify semantic patterns to encode the information captured by clinical models and 

define their correspondences; (ii) instantiate the patterns with data; and (iii) create sample queries on the data.  

Ontological framework 

The ontological framework consists of three OWL DL ontologies: (i) SNOMED CT as domain ontology (ii) 

BioTopLite2 (BTL2) as top-level ontology, and (iii) an information entity ontology, which represents recurring 

elements of information as addressed by EHR information models.  

BTL2 (prefix “btl”) [23], is a reduced version of BioTop [24], a top-level domain ontology tailored for the 

biomedical domain. It provides upper-level types both for domain and information entities, as well as constraints 

on either, using a set of canonical relations, partly derived from the OBO Relation Ontology (RO). Axioms state 

disjointness between classes, constrain the domains and ranges of relations, define relation chains, as well as 

existential and value restrictions at the level of class definitions. Thus, ontology creation under BTL2 heavily 

constrains the freedom of the ontology engineer, which is intended, as it warrants a higher predictability of the 

ontologies produced [24]. 

SNOMED CT (prefix “sct”) [16] acts as common reference point for representing the clinical content by 

modules based on its OWL version. Its content is largely harmonized with basic top-level classes and relations of 

BTL2. SNOMED CT’ ontological commitment has been subject to intense debate in recent years and its 

consolidation is ongoing. Based on [26], we interpret SNOMED CT “Finding / Disorder”) concepts as clinical 

situations. In addition, we have reinterpreted the SNOMED CT context model [27], in order to better distinguish 

clinical from information entities.   



Finally, the EHR information entity ontology (prefix “shn”) represents pieces of clinical information as 

documented in the EHR. They are outcomes of actions like observations, investigations, or assessments. All of 

them refer to clinical entities and are further described by attributes that represent the epistemic and contextual 

aspects like clinical history, confirmed or suspected diagnosis. All classes of this ontology are represented as 

subclasses of the BTL2 top-level class btl:InformationObject. Information entities refer to clinical entities by 

means of the relations shn:isAboutSituation and shn:isAboutQuality, both defined as a specialization of the 

relation btl:represents. As subclass of btl:InformationObject we have placed the class shn:InformationItem for 

information entities that refer to some clinical situation; and the class shn:ObservationResult to refer to qualities 

that are directly or indirectly observed such as skin color or heart rate, and to which a value is assigned. 

Additionally, the class shn:InformationAttribute has been created to represent parts of information entities that 

express their epistemic status, like Suspected or Probable.  

Semantic patterns 

Ontology content patterns are reusable solutions to recurring modeling problems [28]. They have fixed and 

variable parts [29], and are explicitly ontology-based, unlike databases schemas or UML models. In our context, 

named Semantic Patterns, they guide and standardize the meaning of the content of clinical models, and they 

bridge between approaches developed by distinct communities:  EHR modeling [30], Semantic Web [31], formal 

ontology [32].  

Fig. 2 depicts the semantic representation of an openEHR archetype for symptom information. The archetype 

consists of a set of nodes or data elements, which are constrained by value sets. White rectangles represent 

ontology classes, which are connected by directed arcs that represent quantified object properties. Such a 

representation is already a semantic pattern, with ontology classes as variable parts, since they can be 

specialized; and as fixed parts the classes to use and their interrelationships. 

In order to obtain this representation, each node (e.g. CLUSTER, ELEMENT) of an archetype needs to be 

attached to the ontology according to two perspectives: (a) the information model class it corresponds to, and (b) 

the clinical entity it represents; the latter may require further sub-classing.  It represents some quality (e.g. skin 

color), clinical situation (e.g. cancer), etc.   

In Fig. 2, the archetype nodes (grey boxes) are placed next to their corresponding ontology top-level classes. 

At the core of the diagram, shn:SymptomRecord is the class of all information entities that represent some 

symptom, i.e. a clinical entity in the shn:ClinicalSituation class. For the rest of the archetype nodes, the same 

rationale is used. Some of the ontology classes are connected to shn:SymptomRecord and others to the 



shn:ClinicalSituation class, depending on whether they provide some epistemic information about the symptom 

or whether they further describe it. For instance, the archetype node labelled “Progression” is described as “The 

progress of the symptom relative to the past” and may take a value out of “Improving, Decreasing, Stable, 

Increasing, Worsening or Resolved”. Since it reflects some perception about a symptom, it is epistemic 

information (shn:Status) and therefore connected with shn:SymptomRecord. How both classes are related within 

the ontology, is controlled by their internal axioms (here <shn:hasInformationAttribute some>). This assures 

the consistency of the pattern, which can be ascertained by DL reasoning.  

Our hypothesis is that a limited set of generic patterns simplifies the modeling task. Patterns such as the one 

for the symptom archetype could be created by the specialization and composition of a set of top-level patterns, 

by following principles that are similar to the object-oriented paradigm [33]. Fig. 3 depicts the two top-level 

patterns from which the symptom pattern can be derived. Now, multiple archetype nodes correspond to one top-

level ontology class. Thus, ontology classes and their corresponding relationships will be specialized in order to 

obtain the representation shown in Fig 2. 

 

Use case description 

Here we use an excerpt of the Heart Failure Summary, developed within SemanticHealthNet and represented 

as an openEHR template [34]. We demonstrate that information represented by clinical models can be expressed 

by semantic patterns or compositions thereof, using a set of finite top-level patterns from which the former ones 

are derived. Furthermore, we show how heterogeneous representations of the same or similar clinical 

information can be homogeneously queried. 

Two test desktop applications for heart failure data recording (Application A and B) were implemented, based 

on different clinical models, which embed similar information into heterogeneous structures and a different level 

of detail. Each application consists of a set of constrained data elements bound to SNOMED CT terms. A tool 

developed within IHTSDO, which implements the SNOMED CT query language [35], defines reference sets 

from the terminology. Fig. 4 shows the entry forms that record symptom information. 

Application A records the presence or absence of pre-defined symptoms by using a checklist, together with 

the heart failure stage by using a SNOMED CT subclass of New York Heart Classification finding (NYHA 

class). Application B provides a different set of symptoms for which their presence or absence can be indicated 

by selecting the SNOMED CT terms Known present and Known absent respectively. Additionally, it allows 

recording the severity of the symptom by selecting a severity value. The recording of the NYHA class is done in 

the same way as in Application A.  



Comparing both applications, structural heterogeneities exist regarding the representation of the presence / 

absence of symptoms (check list vs. known present / known absent terms). Fig. 5 depicts an excerpt of their 

representation as ADL openEHR archetypes, where the symptoms’ presence or absence is represented as an 

OpenEHR CLUSTER, which contains two ELEMENTs, one for the symptom itself (ELEMENT[at0001]) and 

one for representing its presence (ELEMENT[at0002]). There are also differences regarding the level of 

information detail required, in the additional recording of the severity by Application A (ELEMENT[at0005]).  

RESULTSIdentification of semantic patterns and definition of correspondences 

The nodes from the archetypes shown in Fig. 5 are mapped to semantic patterns. Since they record symptom 

information, we apply the pattern from Fig. 2, in order to represent the symptom only, its presence or absence, 

and its severity if indicated. Fig 6 shows the correspondences between the nodes of one of the archetypes and an 

excerpt of the symptom pattern.  

Ontology classes (rectangles) represent the pattern’s variable parts. The archetype node values are introduced 

as subclasses (dashed rectangles), corresponding to SNOMED CT classes. Table 1 shows the OWL DL 

rendering of the pattern. Negation is expressed by an additional OWL DL representation, which describes the 

absence of a symptom as a kind of symptom record about a patient’s situation that does not include any symptom 

of that type. As described in Methods, this semantic pattern could have been obtained as specialization of the 

top-level pattern shown in Fig. 3. Both, the symptom severity and its presence or absence, are subclasses of the 

information attribute class (shn:InformationAttribute), used to represent epistemic and contextual information.  

Symptom present record pattern 
shn:SymptomPresentRecord subClassOf 

shn:SymptomRecord  

and shn:isAboutSituation only ?ClinicalSituation  

                        and shn:hasInformationAttribute some ?Severity  

Symptom absent record pattern 
shn:SymptomAbsentRecord subClassOf 

shn:SymptomRecord  

and shn:isAboutSituation only (shn:ClinicalSituation  

and not (btl:includes some ?ClinicalSituation)) 

                            and shn:hasInformationAttribute some ?Severity 



Table 1. OWL DL representation of the semantic patterns for describing symptom’s presence, absence, and severity. They 

are represented in Manchester syntax [36] and follow the naming convention as stated in the Methods section. Symbols 

starting with a question mark are variables, i.e. they can be substituted by any subclass of the referred ontology class. 

Instantiation of semantic patterns with patient data 

When archetypes (already related to semantic patterns) are instantiated with patient data, a set of OWL DL 

conforming pattern instances are obtained. Table 2 shows the instances generated for the data recorded for two 

fictitious patients, PatientA and PatientB, by Application A and B respectively. Only instances of subclasses of 

shn:InformationItem, btl:Process and shn:Patient are created; their type is a logical expression conforming to the 

OWL DL symptom pattern representation (c.f. Table 1). The pattern variables have been replaced by the 

SNOMED CT terms, provided as patient data, and placed under the corresponding ontology classes (e.g. 

sct:ChestPain as subclass of shn:ClinicalSituation; sct:Mild as subclass of shn:Severity).   

PATIENT A - Application A: Breathlessness and chest pain symptoms 

Individual: SymptomEvaluationProcess_PatientA Type: 
sct:EvaluationSignsAndSymptoms  

and btl:hasParticipant value PatientA 
 
Individual: SymptomA_Breathlessness_Present Type: 

shn:InformationItem 
and btl:isOutcomeOf value SymptomEvaluationProcess_PatientA 
and shn:isAboutSituation only sct:Breathlessness 

 
Individual: SymptomA_ChestPain_Present Type: 

shn:InformationItem 
and btl:isOutcomeOf value SymptomEvaluationProcess_PatientA 
and shn:isAboutSituation only sct:ChestPain 

 

PATIENT B - Application B: Mild breathlessness on exertion but not at rest symptoms 

Individual: SymptomEvaluationProcess_PatientB Type: 
sct:EvaluationSignsAndSymptoms  

and btl:hasParticipant value PatientB 
 
Individual: SymptomB_BreathlessnessOnExertion_Present Type: 

shn:InformationItem 
and btl:isOutcomeOf value SymptomEvaluationProcess_PatientB 
and shn:isAboutSituation only sct:BreathlessnessOnExertion 
and shn:hasInformationAttribute some sct:Mild 

 
Individual: SymptomB_BreathlessnessAtRestAbsent Type: 

shn:InformationItem 
and btl:isOutcomeOf value SymptomEvaluationProcess_PatientA 
and shn:isAboutSituation only (shn:ClinicalSituation 

and not (btl:includes some sct:BreathlessnessAtRest)) 



Table 2. OWL DL pattern instantiation with symptom related data captured by Applications A and B, for Patients A and B 

respectively. Other instance exemplars can be accessed here [37] 

Homogeneous querying of pattern-based data instances 

To query the patient data we have used SPARQL extended for the OWL Direct Semantics entailment regime 

(SPARQL-OWL) [38], which provides more expressive semantics than SPARQL’s standard simple entailment 

[39]. We use this extension, implemented by the OWL-BGP API [40], which is independent of the DL reasoner 

used. Here we have used FaCT++ [41] and TrOWL [42] reasoners. A systematic evaluation of the reasoners that 

perform better was out of scope here. Table 3 depicts two SPARQL queries to retrieve the symptom-related 

information provided for Patients A and B. The queries follow the symptom pattern and the use of the reasoner 

allows their formulation at different granularity level compared to the provided at the data entry.  

Query1: Information about patients with breathlessness 
SELECT ?SymptomRecord  
   WHERE {    
     ?SymptomRecord a [ 
         a  owl:Class ;  
       owl:intersectionOf (shn:InformationItem  
         [a owl:Restriction ; 
          owl:onProperty shn:isAboutSituation ;  
          owl:allValuesFrom sct:SCT_267036007] 
       [a owl:Restriction ; 
           owl:onProperty btl2:isOutcomeOf ;  
           owl:someValuesFrom sct:SCT_409060008] 
   )]} 
Answer: {SymptomA_Breathlessness_Present, SymptomB_BreathlessnessAtRest_Present} 

Query2: Information about patients with breathlessness but not at rest 
SELECT ?SymptomRecordDyspnea ?SymptomRecordNotRest 
   WHERE {    
      ?SymptomRecordDyspnea a [ 
         a  owl:Class ;  
       owl:intersectionOf (shn:InformationItem  
         [a owl:Restriction ; 
          owl:onProperty shn:isAboutSituation ;  
          owl:allValuesFrom sct:SCT_267036007] 
       [a owl:Restriction ; 
           owl:onProperty btl2:isOutcomeOf ;  
           owl:hasValue ?EvaluationProcess])]. 
      ?SymptomRecordNotRest a [ 
         a  owl:Class ;  
       owl:intersectionOf ( 
            [a owl:Class ; 
            owl:intersectionOf (shn:InformationItem 
                 [a owl:Restriction ; 
        owl:onProperty shn:hasInformationObjectAttribute ; 
       owl:someValuesFrom sct:SCT_410516002])] 
            [a owl:Class ;  
               owl:intersectionOf (shn:InformationItem  
                   [a owl:Restriction ; 
                    owl:onProperty shn:isAboutSituation ;  
                    owl:allValuesFrom [ a owl:Class ;  
                      owl:intersectionOf (shn:ClinicalSituation 
                           [a owl:Class ; 
                              owl:complementOf [a owl:Restriction ; 
                             owl:onProperty btl2:hasPart ;  
                             owl:someValuesFrom sct:SCT_161941007])]] 



                   [a owl:Restriction ; 
                      owl:onProperty btl2:isOutcomeOf ; 
                      owl:hasValue ?EvaluationProcess])])]} 
Answer:{SymptomB_BreathlessnessOnExertion_Present,SymptomB_BreathlessnessAtRestAbsent} 

Table 3. SPARQL queries rendered using Turtle syntax [43] 

Query1 retrieves instances of information about patients A and B although the patient data entered is not the 

same, since the SNOMED CT term breathlessness on exertion is a subclass of breathlessness. 

Query 2 retrieves only data from patient B. Although the query asks for patients with breathlessness, it also 

explicitly asks for those which do not have breathlessness at rest, and this information has not been stated for 

patient A (the absence of information does not mean that the symptom is excluded).   

Both queries use DL reasoning and the execution times using an Intel Core i5-3470 3.20 GHz, 8GB are: 

TrOWL Q1:1.183s, Q2:1.706s; FACT++ Q1:1.316s and Q2:3.053s.   

DISCUSSION  

We have used a Heart Failure Summary to demonstrate how semantic patterns can be applied to enable 

querying of heterogeneous representations of patient information. 

OWL DL representations for the EHR have been proposed by several authors [44-47]. However, they are 

dependent of particular modeling approaches and therefore not interoperable. In contrast to our approach, most 

of them are limited to representing structural aspects of the clinical models and do not address their embedded 

meaning (e.g. “ELEMENT structure with allowed value CODED_TEXT” instead of “Diagnostic information 

about a disease”). We hypothesize that without any ontological commitment and formalization, the creation of 

ontologies adds just another complexity level to the EHR and is rather useless for interoperability.   

In [5], A. Rector et al. distinguished “models of meaning” (describing our understanding of the world) from 

“models of use” (describing how data are displayed or captured). The latter ones are designed for specific use 

cases, while the former ones are largely stable and context-independent. 

Semantic patterns provide certain structure but are not designed to allow several data capture possibilities at 

the point of care (e.g. drop-down menus vs. check lists). However, we have to admit plurality, because universal 

agreement on how to capturing information is not realistic. However, semantic interoperability requires that 

EHR systems share their “models of meaning”. To this end, we have proposed semantic patterns as a bridge 

between heterogeneous EHR representations and a shared model of meaning.  They also have the potential to 

ensure that more specific models such as proposed by CIMI are semantically valid derivations from higher level 

patterns. Further investigation is required as to which extent semantic interoperability can be achieved at the 



level of patterns, by using other representation language such as RDF and with limited or no DL reasoning at all. 

It is well known that description logics reasoning is not at zero cost and therefore may increase the query 

execution time beyond acceptable limits. This is the case of the OWL-BGP implementation. Optimization 

strategies are subject of current research [39] and some of them are implemented by this API, however the 

execution time might still be unacceptable for real-world implementations.  

 Some of the SNOMED CT concepts used in this work have been re-interpreted giving them a clearer rather 

than changed meaning. Issues could arise if the re-interpreted meaning differs from the one intended when the 

code was originally used. Variability in coding is an unavoidable problem, but clarification in naming (in)formal 

definitions will decrease inter-coder variability. Results from the SemanticHealthNet project have also been fed 

back to the SNOMED CT curators. 

CONCLUSION 

The semantic infrastructure proposed here addresses the complexity of the medical domain and their 

heterogeneous data capture and re-use needs by proposing a semantic layer on top of existing EHR 

representations, able to provide homogeneous access to heterogeneous datasets. They are heterogeneous not only 

because they use different representational languages, modeling approaches, etc., but also because they differ in 

context and granularity. 

A set of description logics ontologies constitute the core of the proposed semantic layer. All of them adhere to 

formal ontology principles and exhibit reasoning capabilities. A top-level ontology enforces crisp boundaries 

between different entity types, which is important to keep the modelling process as standardized as possible. A 

balance is kept between what is ontologically correct and what is useful in practice.   

The requirement of deep ontology engineering skills by those who have to model clinical information 

according to the proposed ontologies may be a severe obstacle. This has been addressed by simplifying semantic 

patterns, which help standardize the ontology-based modelling of clinical information, through their 

specialization and composition mechanisms. By looking at the existing content patterns available at the ontology 

pattern community site [48], we did not find specific patterns for the modelling of clinical information. Instead, 

patterns such as the agent-role or action ones could be reused. Whether there are a finite number of top-level 

patterns from which the others will specialize is still an open question. At this stage we can confirm that the 

representation of the Heart Failure Summary [4] provided a high degree of information heterogeneity and that a 

reduced number of top-level patterns were derived from that. 



So far, we have based the patterns on an underlying OWL DL formalism. Their representation in RDF is 

subject of current work. The former one allows logical reasoning and therefore more advanced exploitation of 

information, although performance issues might limit their implementation in real systems. Here, RDF 

representations might be more appropriate, although less expressive and therefore more limited in terms of 

information exploitation,. 

The use of patterns not only for interoperability purposes but also to guide the creation of clinical models and 

to detect semantic inconsistencies in the models is also subject of current and future research [49]. 

Besides, as in the case of existing EHR modeling approaches, an important success factor is to provide users 

with proper tools that isolate them from any technical detail. How to motivate industry partners to invest in such 

solutions is one of the biggest challenges. 
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