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A B S T R A C T   

Background and objectives: Kronauer’s oscillator model of the human central pacemaker is one of the most 
commonly used approaches to study the human circadian response to light. Two sources of error when applying 
it to a personal light exposure have been identified: (1) as a populational model, it does not consider inter- 
individual variability, and (2) the initial conditions needed to integrate the model are usually unknown, and 
thus subjectively estimated. In this work, we evaluate the ability of particle swarm optimization (PSO) algo
rithms to simultaneously uncover the optimal initial conditions and individual parameters of a pre-defined 
Kronauer’s oscillator model. 
Methods: A Canonical PSO, a Dynamic Multi-Swarm PSO and a novel modification of the latter, namely Hier
archical Dynamic Multi-Swarm PSO, are evaluated. Two different target models (under a regular and an irregular 
schedule) are defined, and the same realistic light profile is fed to them. Based on their output, a fitness function 
is proposed, which is minimized by the algorithms to find the optimum set of parameters and initial conditions of 
the model. 
Results: We demonstrate that Dynamic Multi-Swarm and Hierarchical Dynamic Multi-Swarm algorithms can 
accurately uncover personal circadian parameters under both regular and irregular schedules, but as expected, 
optimization is easier under a regular schedule. Circadian parameters play the most important role in the 
optimization process and should be prioritized over initial conditions, although assessment of the impact of 
misestimating the latter is recommended. The log-log linear relationship between mean absolute error and 
computational cost shows that the number of particles to use is at the discretion of the user. 
Conclusions: The robustness and low errors achieved by the algorithms support their further testing, validation 
and systematic application to empirical data under a regular or irregular schedule. Uncovering personal circadian 
parameters can improve the assessment of the circadian status of a person and the applicability of personalized 
light therapies, as well as help to discover other factors that may lie behind the interindividual variability in the 
circadian response to light.   

1. Introduction 

Many human physiological processes oscillate spontaneously with a 
period close to 24 h, in a clear adaptation to the Earth’s rotational period 
and the day/night cycle. The synchronization of these processes is 
regulated and fine-tuned by the central pacemaker located in the 

suprachiasmatic nucleus, the main Zeitgeber of which is the light/dark 
cycle [1]. In order to study the dynamic effects of light on the central 
pacemaker, one of the most commonly used models is a modified Van 
der Pol oscillator, first proposed by Kronauer [2] and refined several 
times [3–5] based on data provided by new laboratory-based experi
ments. Although numerous studies [6–16] have demonstrated the 
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relevance of Kronauer’s model, two main concerns inherent to the 
modeling process itself affect its direct applicability: inter-individual 
variability and initial conditions estimation. 

As with any populational model with fixed parameters, Kronauer’s 
model does not consider the inter-individual variability of the popu
lation, which may result in a deviation of some of the default pa
rameters from their real value, with a subsequent error in the results 
yielded. It would therefore be desirable to fit one or more of its pa
rameters to each person, so that the model represents more accurately 
the particular physiology of each subject. Regarding which parameters 
are the best candidates for this fitting, certain factors must be 
considered, including: the biological relevance of the parameter in 
relation to the interpretability of the results obtained and their 
experimental validation, the variability of the results explained by the 
parameter within its biologically-coherent limits or the total number 
of parameters to be fitted, as this directly affects the computational 
cost and the number of experiments to be conducted to determine their 
real value. 

The integration of Kronauer’s model requires establishing and solv
ing an initial value problem (IVP). The usual approach when working 
with an IVP consists of simulating the evolution of the system to make 
predictions about its behavior, and comparing the results to the 
empirical data. The opposite problem ‒finding the optimal model pa
rameters from available empirical data‒ is relatively uncommon and has 
not been studied in much depth [17]. This approach is particularly 
problematic when a limited number of empirical measurements are 
available [18], as is the case in Kronauer’s model, the standard output of 
which is the time of day when the minimum core body temperature 
(CBT) occurs. Moreover, the problem becomes even more challenging, 
given the strongly non-linear nature of the Van der Pol oscillator. As a 
result, personalization of the circadian response to light by means of the 
parameters of Kronauer’s model has only been attempted on a few oc
casions, and for a limited number of parameters. In the work by Bonarius 
et al. [6], the model –combined with the Phillips-Robinson sleep model 
[19]– was transformed into a Bayesian stochastic framework to optimize 
the internal period (τ). Stone et al. [15] selected and simultaneously 
optimized three of its parameters (τ - internal period, p - light sensitivity 
and k - balance of the response curve to light) by means of least-squares 
fitting. Based on their results, the same three parameters have been 
chosen to be optimized in the present work. 

On the other hand, considering that Kronauer’s is a biological model, 
it is impossible to factually know the initial conditions of the state vari
ables without recurring to their experimental measurement. Thus, when 
available, they may be estimated from an experimental phase marker by 
rough estimation [15] or by fitting the system output to an experimental 
waveform [9]. However, experimental measurements are not usually 
available, and thus the most common procedure is to estimate them by 
making other certain reasonable assumptions. In simulations under a 
regular illuminance pattern, one option is to assume that the system 
outputs are also stable day by day, as the authors of the model did in their 
original published papers [3–5,20]. Similarly, stable values can be ach
ieved by allowing them to converge after several days of integration [12], 
once again assuming that daily illuminance is stable over time. The same 
procedure can be also applied to simulations or recordings over several 
days, repeating the integration over the entire period as many times as 
necessary, until convergence is reached [16]. However, this approach is 
not feasible when stability cannot be guaranteed; indeed, the importance 
of the correct choice of initial conditions becomes critical if we consider 
situations with strong phase misalignments, such as jet-lag or shift work 
[7]. Therefore, it may be appropriate to find their optimum value rather 
than subjectively estimating them, even at the cost of a higher compu
tational effort. In turn, in high dimensional and computationally 

demanding problems like the one we are posing, heuristic algorithms are 
prospectively a good optimization methodology, since they favor speed 
over other evaluation metrics, sacrificing better accuracy or precision for 
lower computational cost. 

Among the many meta-heuristic optimization schemes developed 
[21], Particle Swarm Optimizers (PSO) were chosen because of their 
simplicity and robustness. They are inspired by the collective behavior 
of organisms, where each individual (particle) in the swarm adjusts its 
position based on its own experience and the information shared with 
neighboring particles. PSO algorithms are relatively simple to under
stand and implement, as compared to other evolutionary algorithms like 
genetic algorithms or differential evolution, making them more acces
sible for researchers and practitioners to implement and modify ac
cording to their own needs. Moreover, applications for PSO algorithms 
have recently been found in various biomedical fields, including feature 
and gene selection [22,23], chemotherapy [24] and even the parameter 
optimization of biomedical models [25], which is the type of application 
described in this paper. The original PSO algorithm was published in 
1995 by Eberhart and Kennedy [26], but many variants have been 
developed thereafter. Some are focusing on dividing the swarm into 
smaller sub-swarms for better search efficiency and to avoid premature 
convergence on local minima, one of the main drawbacks of these al
gorithms. For a general overview of PSO and its variants and applica
tions, see [27,28]. 

In our study, a realistic one-week light profile is used as the input to 
Kronauer’s oscillator model to evaluate the ability of different particle 
swarm optimization algorithms to uncover three pre-set circadian pa
rameters: τ (internal period), p (light sensitivity) and k (balance of the 
response curve to light). Initial conditions are treated as free indepen
dent variables, grouping them together with the circadian parameters 
into a 6-dimensional optimization scheme and thus avoiding subjective 
estimations when applying the model. Due to the high non-linearities of 
the model and the dimensionality of the optimization problem, we hy
pothesize that particle-based heuristic algorithms like PSO may be an 
efficient answer to such difficult tasks. Among the PSO variants already 
developed, we evaluate the Canonical PSO [29] and a Dynamic 
Multi-Swarm PSO (DMS-PSO) [30]. Furthermore, we propose and 
evaluate a novel generalization of the latter, namely, Hierarchical Dy
namic Multi-Swarm PSO. 

2. Methodology 

2.1. Oscillator circadian model 

Kronauer’s dynamic model is a system of three ordinary differential 
equations (ODE) based on two coupled processes that transform a light 
input into a signal that entrains a modified Van der Pol limit cycle 
oscillator [31], which represents the human central pacemaker. In this 
study, the St. Hilaire’s version of the model is used [5], in which the light 
processing was modified to improve its behavior in low-light conditions. 
The output of the model, which is used to evaluate the fitness of the 
proposed solution by the algorithm, consists of the time at which the 
minimum of the core body temperature (CBTmin) occurs each day. The 
full equations, details and values of the parameters are given in the 
Appendix A. Parameter values specified in Table A.1 define the ‘default’ 
model. 

2.2. Target parameters 

The three circadian parameters to be optimized were set to reason
able extreme values far from the default populational model, testing the 
search capabilities of the algorithms with physiologically-rare cases. The 
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internal circadian period was set to τ = 23.8 h, representing a rather 
extreme, but still frequent period at the population level [32]; the light 
sensitivity was set to p = 0.25, representing those individuals with 
lower, but still functional circadian response to light (considering the 
great variability in human sensitivity to light [33] and that setting it to 
values close to zero would represent a circadian-blind individual, and 
thus light would not have any entrainment effect); and the balance of the 
response curve was set to k = 0, representing an undefined mammal in 
terms of diurnality/nocturnality, based on the analysis in [15] and 
Aschoff’s rule [34]. 

2.3. Light input and entrainment of the models 

The input of the models consists of a realistic illuminance profile 
proposed in [35], with added Gaussian noise and a standard deviation of 
300 lx (Eq.(1) and Fig. 1, left y-axis). Following the same procedure as in 
[6], complete darkness (0 lx) was set from 0:00 to 8:00. Negative illu
minance values due to the Gaussian noise were also set to 0. The same 
light profile was applied for a period of seven consecutive days to all 
simulations, starting at 15:00. 

I(t) = 40 + 330⋅{tanh[0.6⋅(t − 7.5)] − tanh[0.6⋅(t − 16.5)]} + N(0, 300) lx
(1)  

where t is the time of the day, in hours. To establish the initial con
ditions, two different cases were considered, depending on whether 
the models were previously entrained or unentrained to the light input 
(target model 1 and target model 2, respectively). The entrainment of 
default and target model 1 was performed by iteratively adjusting the 
initial conditions until a stable rhythm of CBTmin was achieved, 
which would happen when there was less than 60 s of difference in the 
CBTmin prediction for all days over the course of two consecutive 
weeks. From this stable state, initial conditions were obtained (default 
model: x0 = 1.069, y0 = 0.119, n0 = 0.731; target model 1: x0 = 1.062, 
y0 = 0.232, n0 = 0.844). Initial conditions for target model 2 were set 
to (x0 = 0.3, y0 = 0.9, n0 = 0.5) to achieve a delay of several hours in 
its initial phase (e.g., shift work schedule or jet-lag). Once the pa
rameters and initial conditions were defined for the three models 
(Table 1), the illuminance profile (blue line, left y-axis in Fig. 1) was 
fed to them. As a result, three different IVPs were set and integrated, 

and three arrays of Times of CBTmin were obtained as an output (gray, 
light-green and light-red dots in Fig. 1, right y-axis). These arrays 
represent the weekly trend of the internal phase of each model, which 
is stable throughout the week for the default and target model 1. The 
only difference between them arises from their different circadian 
parameters (τ, p, k), which cause the target model 1 to be phase- 
delayed by around 45 min with respect to the default. On the other 
hand, target model 2 starts the simulation with a marked phase delay. 
However, due to the entrainment effect of light, its internal phase 
becomes closer day by day to that of target model 1, to the extent that, 
by the end of the week, they are both almost in synchrony. 

2.4. Fitness function and minimization problem 

The fitness function F(x0, y0, n0, τ, p, k) to be minimized by the PSO 
algorithms is defined as the average of the absolute difference between 
the array of daily times of CBTmin predicted by the optimizer and that of 
the target model, and it depends on the three circadian parameters (τ, p, 
k), as well as the three initial conditions (x0, y0, n0) of the model, 
resulting in a 6-dimensional function to minimize. Parameters are con
strained according to their biologically-coherent range (as proposed in 
[16]), and initial conditions are constrained according to the values of 

Fig. 1. Left y-axis: Illuminance (blue) used as the input for the models, consisting of 7 consecutive days of a modified realistic light profile proposed in [35]. Right 
y-axis: Time of CBTmin of default model (gray dots), target model 1 (light-green dots) and target model 2 (light-red dots). The default model and target model 1 were 
previously entrained to the illuminance profile so their time of CBTmin were stable starting from the beginning of the simulation. Target model 2 was not previously 
entrained, and therefore great phase advances were observed throughout the simulation. Simulation starts and ends at 15:00 h. 

Table 1 
Default and target parameters of the models. The default model corresponds to 
the version published in [5]. The target models’ parameters were modified to 
represent an individual with different physiology than the default model, either 
under a regular schedule (target model 1) or an irregular schedule (target model 
2). Notice the very similar initial conditions of the two previously entrained 
models, despite the differences in their circadian parameters (τ, p, k).  

Parameters Default model 
(previously 
entrained) 

Target model 1 
(previously 
entrained) 

Target model 2 
(previously not 
entrained) 

τ 24.2 h 23.8 h 23.8 h 
p 0.5 0.25 0.25 
k 0.55 0 0 
x0 1.069 1.062 0.3 
y0 0.119 0.232 0.9 
n0 0.731 0.844 0.5  
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Fig. 2. Structure (top) and hyperparameters and algorithm (bottom) of the Hierarchical Dynamic Multi-Swarm PSO (H-DMSPSO), a generalization of the DMS-PSO 
[30]. Steps 18–24 are optional, since the final solution may be controlled through different convergence criteria and maximum number of iterations. 
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the state variables when an stable solution is achieved (see [4], for 
instance). The minimization problem is proposed as:  

where D is the total number of days with a CBTmin output. 

2.5. Particle swarm optimizers 

Particle swarm optimizers are stochastic optimization techniques 
that consist of a group of particles that simultaneously search for the 
solution space of a function, aiming to find its global minimum. Drawing 
inspiration from the social behavior of certain animals when searching 
for food sources, each member of the swarm (particle) is defined by its 
position X and velocity V, and moves stochastically towards its own best 
position discovered so far (Pbest) as well as the best position discovered 
so far by the rest of the members of the swarm (Gbest), thus combining 
independent and collaborative searches. The stochastic nature of the 
algorithm is represented by the terms r1 and r2, two random numbers in 
the range [0, 1] selected every iteration. The balance between inde
pendent and collaborative search is given by c1 and c2, and an inertia 
term w is added to maintain some momentum of the particle in its search 
direction. The velocity and position of each particle are then updated 
every iteration t, as follows: 

V(t + 1) = w(t)⋅V(t) + c1⋅r1(t)⋅[Pbest − X(t)] + c2⋅r2(t)⋅[Gbest − X(t)] (3)  

X(t + 1) = X(t) + V(t + 1) (4)  

In our study, the ability of different PSOs to find the parameters of the 
two target models specified in Table 1 is evaluated by optimizing the 
minimization problem Eq. (2)). That is, given only the output of the 
models (array of times of CBTmin) as a target, the algorithms should 
uncover the underlying parameters (τ, p, k) and initial conditions (x0, y0, 
n0) that generate that output. The algorithms evaluated were the Ca
nonical PSO [29], a Dynamic Multi-Swarm PSO (DMS-PSO) [30] in 
which the swarm is divided into N1 sub-swarms of P particles each, and a 
modification of the latter, namely Hierarchical Dynamic Multi-Swarm 
PSO (H-DMSPSO). This proposed modification generalizes the concept 
of sub-swarms to a hierarchical structure, grouping the N1 neighbor
hoods into higher-ranked N2 neighborhoods (Fig. 2). Particle velocities 

and positions are then updated according to Eqs. (3) and ((4), but in 
which for each N2 neighborhood, Gbest = N2 = N1,best; the collaborative 

term then depends on the best-known position within its N2 neighbor
hood and not on the best-known position of the swarm as a whole. Thus, 
N2 neighborhoods search the solution space completely independently 
from one another until they are allowed to exchange information, which 
happens every R2 generations when all the N1 neighborhoods are 
randomly shuffled and regrouped. As in DMS-PSO, once a convergence 
criterion is satisfied or a maximum number of iterations is reached, a 
global PSO search (N1 = N2 = 1) can be performed so that all particles 
reunite and try to further improve upon the best solution found so far. 

2.5.1. Particles initialization and encoding strategy 
Initial sampling functions used for all parameters and initial condi

tions are specified in Table 2. Circadian parameters were sampled from a 
uniform distribution in their respective biologically-coherent range (as 
proposed in [15]) for all target models. However, to sample initial 
conditions, two different approaches were followed, depending on the 
pre-entrainment of the model. If we assume a regular schedule, the 
initial phase of a model will be very close to the initial phase of the 
entrained default model, and thus sampling from a normal distribution 
centered on the latter would help the algorithm to find the real initial 
phase of the former. Under irregular schedules, however, an 
insufficiently-covered initial search space could lead to rapid conver
gence on local minima, yielding suboptimal results. Therefore, in case of 
target model 1, initial conditions were sampled from a normal distri
bution, with the mean equal to the initial conditions of the default model 
and with a standard deviation equal to 0.1, whereas in case of target 
model 2, they were sampled from a uniform distribution in the range [-1, 
1] for x0 and y0, and [0, 1] for n0. Initial velocities were set to 0 for all 
particles. 

Considering that particles are defined by a tuple of 6 real numbers 
and that the search space is continuous, the encoding strategy chosen 
was to keep the values of the particles, directly representing their po
sitions on the search space with the same real numbers that define them 
(real value encoding). Real value encoding is more computationally 
expensive, since it requires floating-point arithmetic operations. Thus, 

Table 2 
Probability distributions used to sample the initial position of the particles. U(a, 
b) denotes a uniform distribution in the range [a, b]; N(μ, σ) denotes a normal 
distribution with mean µ and standard deviation σ.  

Parameters Target model 1 (previously 
entrained) 

Target model 2 (not previously 
entrained) 

τ ∼ U(23.4, 25)
p ∼ U(0, 1)
k ∼ U( − 1, 1)
x0 ∼ N(1.069, 0.1) ∼ U( − 1, 1)
y0 ∼ N(0.119, 0.1) ∼ U( − 1, 1)
n0 ∼ N(0.731, 0.1) ∼ U(0, 1)

Table 3 
Swarm structures evaluated. Each algorithm underwent a 10-fold test from 30 to 
480 particles, varying the structure of the swarm accordingly. Notice the 
absence of any grouping in the Canonical PSO (N2 = N1 = 1) and the absence of 
N2 neighborhood groupings in the DMS-PSO (N2 = 1).   

Swarm structure (N2 x N1 x P) for N particles  

N = 30 N = 60 N = 120 N = 240 N = 480 

Canonical 
PSO 

1 × 1 ×
30 

1 × 1 ×
60 

1 × 1 ×
120 

1 × 1 ×
240 

1 × 1 ×
480 

DMS-PSO 1 × 10 ×
3 

1 × 20 ×
3 

1 × 40 × 3 1 × 80 × 3 1 × 160 ×
3 

H-DMSPSO 5x 5 × 2 × 3 5 × 4 × 3 5 × 8 × 3 5 × 16 × 3 5 × 32 × 3 
H-DMSPSO 

10x 
10 × 1 ×
3 

10 × 2 ×
3 

10 × 4 × 3 10 × 8 × 3 10 × 16 ×
3  

Minimize F(x0, y0, n0, τ, p, k) =

∑D

i=1

⃒
⃒TimeofCBTminpred,i − TimeofCBTmintarg,i

⃒
⃒

D

Subject to : − 1.5 ≤ x0 ≤ 1.5; − 1.5 ≤ y0 ≤ 1.5; 0 ≤ n0 ≤ 1

23.4 ≤ τ ≤ 25; 0 ≤ p ≤ 1; − 1 ≤ k ≤ 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)   
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the computational bottleneck in this particular problem lies in inte
grating the system of the ODE, which takes up around 99.94% of the 
total computation time (Table B.1). Moreover, real-value encoding is 
simpler to implement in this particular case, and any intermediate 
encoding/decoding step is also avoided. 

2.5.2. Algorithm parameters and inertia 
For the purposes of this study, two different N2 groupings were tested 

(N2 = 5 and N2 = 10). As recommended in [30], particles were grouped 
into threes (P = 3) and N1 neighborhoods were regrouped every 5 it
erations (R1 = 5), leaving the regrouping period of the N2 neighbor
hoods as R2 = 40, as we empirically found to be a good compromise 

Fig. 3. Uncovering of the three circadian parameters (τ, p, k) and the three initial conditions (x0, y0, n0) for all algorithms over ten runs, represented as single points 
and parameter mean ± 2⋅SD intervals. Target values are plotted as horizontal gray lines. Algorithms are colored by type (blue: Canonical PSO, orange: DMS-PSO, 
green: H-DMSPSO 5x, red: H-DMSPSO 10x) and grouped by number of particles. Left: target model 1; right: target model 2. DMS-PSO: Dynamic Multi-Swarm PSO; H- 
DMSPSO: Hierarchical Dynamic Multi-Swarm PSO. 
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between mixing and the independent exploration behaviors of the N2 
neighborhoods. Five different swarm structures per algorithm were 
evaluated, using 30, 60, 120, 240 and 480 particles (Table 3). A linearly 
declining inertia was set, limited by a minimum value wmin: 

w(t) = max(w0 − t⋅Δw,wmin) (5) 

Algorithm parameters were set to c1 = c2 = 1.49445, w0 = 0.9, wmin 
= 0.1 and Δw = 0.002. Moreover, particle positions were restricted to 
their biologically-coherent ranges (see Eq. (2) and Section 2.5.1) and 
velocities were restricted to a maximum of 5% of that same range. Each 
structure was run 10 times upon convergence, which was considered to 
have been achieved when the best solution found so far was not updated 
for 100 iterations. 

3. Code, calculation and statistical tests 

PSO algorithms, circadian models, numerical solvers, light profile 
data, entrainment of models, simulations, analysis of results and plotting 
were coded entirely in Python v3.10.4. In addition to the standard li
braries, third-party libraries were used, including: numpy v1.22.3, 
pandas v1.5.1, matplotlib v3.5.2, numba v0.45.4, numbalsoda v0.3.5, 
scipy v1.8.0 and all their dependencies. All simulations were run in a 64- 
bit Windows®10 PC, equipped with an Intel® Core™ i5–11400 pro
cessor and 32 GB RAM. Pairwise Dunn tests were performed for fitness 
error and mean absolute errors (MAE) of the parameters and initial 
conditions, between algorithms grouped by number of particles used. 
Additionally, algorithms were sorted into significance groups (p-value <
0.01) by means of compact letter display analysis, calculated following 
the algorithm in [36]. 

3. Results and discussion 

3.1. Revealing personal circadian parameters 

The revealing of circadian parameters through the use of algorithms 
is shown in Fig. 3. Canonical PSO is unable to confidently reveal all three 
internal circadian parameters (τ, p, k), even with a 1 × 1 × 480 structure 
of 480 particles, in either of the two target models. The concept of 
dividing the swarm into smaller neighborhoods, first introduced in 1999 
[37], is a common strategy to improve the search behavior of the swarm. 
In concordance, Dunn pairwise tests show significant differences 
(p-value < 0.01) in fitness error levels and MAE between Canonical PSO 
and Multi-Swarm PSO algorithms (Figs. 4 and 5) for almost all 

groupings, and the circadian parameters can be successfully optimized 
using any of the latter. For example, using 120 or more particles, 
H-DMSPSO 10x algorithms achieve MAE below 0.001 for target model 1 
and DMS-PSO or H-DMSPSO 5x achieve MAE below 0.01 for target 
model 2 for all three parameters simultaneously (Supplementary 
Table 1). Indeed, convergence plots (Fig. 6) show that Canonical PSO 
tends to converge earlier, having greater chances of falling into local 
minima than their grouped counterparts. To the extent of our knowl
edge, the particle swarm methodology has never been applied to opti
mize the parameters of a human central pacemaker, but the original PSO 
[26] algorithm has been successfully applied to optimize the parameters 
of a model of the transcriptional regulation of the rice circadian clock, 
composed also by a system of ODE [38] and to accurately compute 
parameters in an arterial blood flow model [25]. In view of the results 
presented here, Dynamic Multi-Swarm algorithms may prove to be a 
better approach to the problem of optimizing parameters in the 
biomedical field, considering that the complexity of the algorithm is not 
much greater. In this regard, Dunn pairwise tests show that in general 
there are no significant differences (p-value < 0.01) among DMS-PSO, 
H-DMSPSO 5x and H-DMSPSO 10x, except in some particular parame
ters, in which the algorithm overlaps the Canonical PSO. 

3.2. Optimum number of particles and computational cost 

Log-Log plots of MAE as a function of computational cost (CC, rep
resented as number of function evaluations) for each parameter are 
shown in Fig. 7. An exponential relationship can be derived from them 
(dashed gray lines), in the form of: 

MAE = a⋅CCb ↔ log10MAE = log10a+ b⋅log10CC (6)  

where a and b are constants. This log-log linear relationship and the 
negative slopes achieved in all regressions show the robustness of the 
algorithms (more computational power leads to lower errors). In prin
ciple, the results show that there is no clear optimum number of particles 
to use, and it is up to the user to decide, considering the desired error and 
the computational cost. 

In this particular problem, the computational bottleneck lies in 
integrating the system of ODE and not in the algorithms themselves. For 
a 1-week simulation, the integration of the ODE can take up to 99.94% 
of the total computational time (Table B.1). Thus, the computational 
effort depends essentially on the number of times the ODE system is 
integrated. Different algorithms can then be compared according to the 
number of integrations they need to reach accurate solutions. In the 

Fig. 4. Average fitness error (mean + 2⋅SD hours) achieved by all algorithms over 10 runs. Algorithms are colored by type (blue: Canonical PSO, orange: DMS-PSO, 
green: H-DMSPSO 5x, red: H-DMSPSO 10x) and grouped by number of particles. Pairwise Dunn tests were performed between algorithms grouped according to 
number of particles. Different letters above bars indicate significant differences between algorithms (p-value < 0.01) grouped by number of particles, and were 
calculated following the Compact Letter Display classification algorithm in [36]. Left: target model 1; right: target model 2. DMS-PSO: Dynamic Multi-Swarm PSO; 
H-DMSPSO: Hierarchical Dynamic Multi-Swarm PSO. 

J. Vicente-Martínez et al.                                                                                                                                                                                                                      



Computer Methods and Programs in Biomedicine 243 (2024) 107933

8

work by Stone et al. [15], only 3 variables were optimized and therefore, 
a brute-force search could be applied by splitting the range of each 
parameter into segments with a width of 0.1 and solving the problem at 
each point of the resulting grid. The number of integrations performed 
(13 possible values for τ, 11 for p and 21 for k) added up to roughly 3 ⋅ 

103 solutions. Applying this brute-force approach to 3 parameters + 3 
initial conditions (our problem), with 20 possible values per parameter 
(precision of approximately 0.05–0.1 per parameter), would lead to 206 

≈ 6.4 ⋅ 107 integrations of the ODE system, which is two to three orders 
of magnitude higher than the results achieved by the PSO algorithms 

Fig. 5. Mean absolute error (MAE)+2⋅SD of the three circadian parameters (τ, p, k) and the three initial conditions (x0, y0, n0) for all algorithms over ten runs. MAE is 
calculated as the mean difference between the final value achieved by the algorithm and the target value over the ten runs. Algorithms are colored by type (blue: 
Canonical PSO, orange: DMS-PSO, green: H-DMSPSO 5x, red: H-DMSPSO 10x) and grouped by number of particles. Pairwise Dunn tests were performed for each 
parameter between algorithms grouped by number of particles. Different letters above bars indicate significant differences (p-value < 0.01) for each parameter 
between algorithms grouped by number of particles, and were calculated following the Compact Letter Display classification algorithm in [36]. Left: target model 1; 
right: target model 2. DMS-PSO: Dynamic Multi-Swarm PSO; H-DMSPSO: Hierarchical Dynamic Multi-Swarm PSO. 
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and with a much lower precision. This analysis denotes the curse of 
dimensionality that the brute-force approach usually suffers from, which 
makes it impractical for solving the problem posed here. Another pro
cedure was followed in the work of Bonarius et al. [6], in which a 
Bayesian particle filter was applied to the Kronauer + Phillips-Robinson 
combined model. Although both particle filters and PSO algorithms rely 
on a group of particles to simultaneously evaluate the state of the system 
throughout the solution space, they solve the problem from very 
different approaches, and it is therefore difficult to compare them. 
Indeed, the proposed Bayesian approach first transforms the 

deterministic ODE system into a stochastic one, and then the particle 
filter is applied to the noisy evolution of the system, sampling dynami
cally every time a partial empirical observation is available. Only one 
parameter (τ) is optimized along the integration. Conversely, the PSO 
approach maintains the original deterministic nature of the ODE, and 
thus the integration of the ODE system is performed in one go, but it 
needs to be done iteratively until convergence. Moreover, with the 
former algorithm, initial conditions need to be defined as prior proba
bility distributions and therefore cannot be optimized. In terms of 
computational efficiency, the particle filter included a total of 7 free 

Fig. 6. Average convergence plots for all algorithms over ten runs. Triangles indicate the maximum iterations needed to converge by any of the ten runs; vertical bars 
indicate the average iterations needed over ten runs. Plots are divided by number of particles of the algorithms, from N = 30 (top) to N = 480 (bottom). Algorithms 
are colored by type (blue: Canonical PSO, orange: DMS-PSO, green: H-DMSPSO 5x, red: H-DMSPSO 10x). Left: target model 1; right: target model 2. DMS-PSO: 
Dynamic Multi-Swarm PSO; H-DMSPSO: Hierarchical Dynamic Multi-Swarm PSO. 
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Fig. 7. Mean absolute error (MAE) versus mean computational cost of the three circadian parameters (τ, p, k) and the three initial conditions (x0, y0, n0) for all 
structures over ten runs. The computational cost (function evaluations) is defined as the product of the number of particles of the structure and the number of it
erations needed to converge (Function evaluations = N ⋅ Iterations). Log-Log linear regressions are plotted as dashed gray lines, and correspondent regression 
equations are shown inside each subplot. Structures are colored by algorithm type (blue: Canonical PSO, orange: DMS-PSO, green: H-DMSPSO 5x, red: H-DMSPSO 
10x). DMS-PSO: Dynamic Multi-Swarm PSO; H-DMS-PSO: Hierarchical Dynamic Multi-Swarm PSO. See graphic legend for symbol details. 
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variables to optimize (6 state variables + parameter τ) and required 800 
particles to achieve confident results. The algorithm was based on a 
previous work by Mott et al. [10], who suggested that 240 particles were 
sufficient to estimate 3 variables. According to the authors, 2407/3 ≈ 3.6 
⋅ 105 particles would have been needed to optimize 7 variables, but in 
reality, little effort was required to estimate the state variables and thus 
most of it seemed to be dedicated to optimizing τ. Without optimizing 
initial conditions, for 3 personal circadian variables plus 3 state vari
ables, 2406/3 ≈ 5.7 ⋅ 104 particles would be needed at most, which would 
in principle be equivalent to using any of the Dynamic Multi-Swarm PSO 
algorithms and 120 to 240 particles. Therefore, Dynamic Multi-Swarm 
PSO algorithms may almost certainly suit even higher-dimensional op
timizations of ODE-based circadian and/or sleep regulation model. Be
sides, the brute-force method results unfeasible in order to solve the 
6-dimensional problem posed here, whereas PSO algorithms can suc
cessfully address it. 

3.3. Initial conditions optimization 

In all the structures tested, the initial conditions show greater MAE 
than their respective circadian parameters. The initial phase of the 
model, determined by x0 and y0, is more easily optimized than the initial 
depletion level of the photoreceptors (n0), but still, none of the algo
rithms is able to achieve MAE below 0.01 for both of them simulta
neously. The less acute slopes of initial conditions with respect to 
circadian parameters on the regression lines in Fig. 7 also confirm that 
the former ones are harder to optimize, in both models. Since the 
simulation starts at 15:00 and the model is being entrained along it, 
small deviations in its initial estimated phase have little influence on the 
results, because the model has enough time to align to the light profile 
before the time of the first CBTmin. Thus, the closer the start of the 
simulation is to the time of the first CBTmin, the greater impact is found 
on the final error achieved. In consequence, if the simulation is long 
enough (i.e., >10 days), it may be reasonable to make a rough estimate 
of the initial phase and ignore the first point of CBTmin yielded, which 
would reduce the computational load. Indeed, in the work of Stone et al. 
[15] on 12 participants, rough estimations of the initial conditions 
allowed them to optimize the same three parameters (τ, p, k) by 
brute-force search. Results showed that after the continuous recording of 
a 3-week period, the MAE of the default model was greatly improved 
from 1.02 h to 0.28 h In this particular case, although the impact of 
estimating the initial conditions was not assessed, the results shown here 
indicate that are the errors due to that estimation would be negligible, 
because the circadian phase was assessed after each week. However, 
misestimating the initial phase could also be an important source of 
error. In the study by Rea et al. [13], Kronauer’s model was initialized 
assuming an initial time of CBTmin = 04:00 across all four datasets 
tested, but simply optimizing it in the range of 03:00–09:00 in in
crements of 1 h led to an overall decrease in MAE from 0.79 to 0.61 h 
Moreover, more extreme chronotypes would probably lead to greater 
errors. For example, for a particular dataset of night-owl young adults 
[39] analyzed in that same study, the optimum initial time of CBTmin 
found was 09:00 and MAE decreased from 1.21 to 0.59 h Thus, results 
suggest that optimization of initial conditions and/or assessment of the 
impact of misestimating them for each particular case is recommended, 
but they may not need to be so precisely optimized as circadian pa
rameters. Further research is needed in this direction. 

3.4. Optimization under a regular/irregular schedule 

As expected, optimization is easier and algorithms achieve lower 
fitness errors and lower MAE of the circadian parameters (τ, p, k) under 
regular as opposed to irregular schedules. Since the only difference be
tween the two target models is that the algorithm’s starting point in 
target model 1 is closer to the actual circadian phase of the model, being 
able to estimate it has a significant impact on estimating the circadian 

parameters. However, the MAE achieved by Dynamic Multi-Swarm PSO 
algorithms are in the range of 10− 2–10− 3 for target model 2 when using 
120 particles or more, and negative slopes in regression lines in Fig. 7 
suggest that given enough computational power, the algorithm is indeed 
robust enough to locate the global minimum for individuals under 
irregular schedules. A review on individual circadian phase prediction 
[40] found that only the oscillator model used in this work has been 
successfully validated under more challenging conditions like rotating 
night-shift workers [14], yielding better results than neural networks or 
statistical approaches, which supports the direct application of Dynamic 
Multi-Swarm PSO algorithms to uncover personal circadian parameters 
involved in the human response to light under either regular or irregular 
schedules. 

3.5. Limitations and applicability 

Integrating the system of ODE requires a significant computational 
effort (Appendix B), and thus fine optimization of all the hyper
parameters of the algorithm has not been considered in this work. 
Moreover, exhaustive review, testing and optimization of other strate
gies to split the swarm into sub-populations (see [28], Section 4.1), as 
well as other heuristic and evolutionary algorithms [21] or other opti
mization techniques could also improve the results presented. Consid
ering the robustness of the Multi-Swarm strategy and the order of 
magnitude of the error yielded (< 10− 3 h), we believe that its application 
to empirical recordings would not add any significant error to the entire 
process of optimizing personal circadian parameters, which mostly de
pends on the empirical measurement of individual circadian phases. 
Currently, even when using dim light melatonin onset time as the phase 
marker, the best prediction errors yielded by the models are in the order 
of a magnitude of 0.1–1 h [40], much higher than the errors due to 
optimizers. 

4. Conclusions 

In this study, we have demonstrated that Dynamic Multi-Swarm PSO 
algorithms can accurately and simultaneously uncover three personal 
circadian parameters and three initial conditions of Kronauer’s oscil
lator model, and may prove to be a more efficient approach than Global 
PSO algorithms in the biomedical field. Circadian parameters play the 
most important role in the applicability of the model and should be 
prioritized, but optimization of the initial conditions or assessment of 
the impact of misestimating them is recommended. Considering the low 
errors achieved by the algorithms and their robustness, we believe that 
their testing, validation and systematic application to empirical data 
(under regular or irregular schedules) is promising, and that uncovering 
personal circadian parameters could shed some light into what other 
factors (genetic, environmental, or others) may lie behind the interin
dividual variability in the circadian response to light. 
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Appendix A. Oscillator circadian model 

The model used in this paper consists of a system of Ordinary Differential Equations (ODE), which describes the transformation of a light input 
received through the retina into a drive that reaches the human central pacemaker and modifies its state (phase and amplitude). Eq. (A.1) and (A.2) 
represent the physiological response of the retinal photoreceptors to the light stimulus I. The activation α of the photopigments is transformed into the 
drive B̂ by the scaling factor G. The proportion n of ready-to-use photopigments in the retina is dynamically controlled by Eq. (A.3). This process is also 
controlled by parameters p, I0, α0 and β. The drive B̂ is subsequently modulated (Eq. (A.4)), depending on the state of the oscillator. This modulated 
drive B reaches the central pacemaker (Eq. (A.5) and (A.6)), the phase and amplitude of which are defined by the state variables x and y. The dynamic 
properties of the oscillator also depend on the parameters τ, µ, k and q. The default values of the parameters are taken from the revised version of the 
model [5] and are specified in Table A.1. A more detailed explanation can be found in [41] or in the original papers [2–5]. 

α = α0⋅
(
I
I0

)p

⋅
(

I
I + 100

)

(A.1)  

B̂ = G⋅α(1 − n) (A.2)  

ṅ = 60⋅[α(1 − n) − βn] (A.3)  

B = B̂⋅(1 − 0.4x)(1 − 0.4y) (A.4)  

ẋ =
π
12

⋅
[

y+ μ
(

1
3
x+

4
3
x3 −

256
105

x7
)

+ B
]

(A.5)  

ẏ =
π
12

⋅

{

qBy −

[(
24

0.99729τ

)2

+ kB

]

⋅x

}

(A.6) 

Once a light profile I and initial conditions of the state variables (x0, y0, n0) have been defined, the initial value problem can be solved. The output 
consists of the time at which the minimum core body temperature (CBTmin) occurs each day: 

Time of CBTmin = Time of
(
φyx

)
+ φc (A.7)  

where Timeofφyxis the phase angle between the state variables x and y such that: 

Time of φyx = Time at which
[
arctan

(y
x

)
= − 170.7o

]

(A.8)  

and φc is a constant. Thus, for a given light profile, the integration and solving of Eqs. (A.1)–(A.8) will output an array of times whose length 
equals the number of days that are comprised. This array is used in Eq. (2) to evaluate the fitness of the solution predicted by the PSO 
algorithms, by comparing it to the target solution.  

Table A.1 
Default values of the model parameters used in 
this paper, as specified in [5].  

Parameter Parameter value 

α0 (min− 1) 0.1 
I0 9500 
p 0.5 
G 37 
β (min− 1) 0.007 
τ (h) 24.2 
μ 0.13 
Q 1/3 
k 0.55 
φc (h) 0.97   
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Appendix B. Computational cost of integrating the system of ODE 

Table B.1 shows that the computational bottleneck of the algorithms lies in the time dedicated by the machine to solve the system of ODE. Even 
though only this integration takes advantage of the optimized numba/numbalsoda libraries (the rest of the code is run in a not-compiled python 
interpreter), the time spent by the ODE solver accounts for 99.94% of the total computational time. Total duration refers to the time spent by the 
machine solving all the steps of the algorithm in each iteration (lines 7 to 17 in the Pseudocode in Fig. 2), and ODE solver duration refers to the time 
dedicated to integrate the system of ODE (line 9 in the Pseudocode in Fig. 2). All simulations were run on a 64-bit Windows®10 PC equipped with an 
Intel® Core™ i5–11400 processor and 32 GB RAM.  

Table B.1 
Total and ODE solver durations per iteration of all algorithms, over 100 iterations. Total duration refers to the time spent by the machine solving all the steps of the 
algorithm in each iteration (lines 7 to 17 in the Pseudocode in Fig. 2); ODE solver duration refers to the time dedicated to integrating the system of ODE (line 9 in the 
Pseudocode in Fig. 2). N: number of particles of the algorithm; SD: standard deviation. DMSPSO: Dynamic Multi-Swarm PSO; H-DMSPSO: Hierarchical Dynamic Multi- 
Swarm PSO.  

N Algorithm Total duration per iteration (s) ODE solver duration per iteration (s) ODE solver percentage of total duration 

Mean SD Mean SD 

30 Canonical PSO 18.3931 0.2889 18.3820 0.2888 99.9394 
DMSPSO 18.0167 0.1007 18.0057 0.1008 99.9389 
H-DMSPSO 5x 18.0040 0.0872 17.9929 0.0873 99.9383 
H-DMSPSO 10x 18.0133 0.0985 18.0022 0.0985 99.9387 

60 Canonical PSO 30.1261 0.8574 30.1086 0.8572 99.9419 
DMSPSO 29.3352 0.3017 29.3179 0.3017 99.9411 
H-DMSPSO 5x 29.2518 0.1743 29.2345 0.1743 99.9409 
H-DMSPSO 10x 29.2188 0.1072 29.2015 0.1072 99.9407 

120 Canonical PSO 52.6465 0.8061 52.6165 0.8061 99.9429 
DMSPSO 51.8565 0.1581 51.8266 0.1580 99.9423 
H-DMSPSO 5x 51.8577 0.1794 51.8278 0.1796 99.9424 
H-DMSPSO 10x 51.8808 0.1654 51.8511 0.1654 99.9426 

240 Canonical PSO 97.0401 0.5674 96.9852 0.5674 99.9434 
DMSPSO 97.0550 0.6578 96.9999 0.6579 99.9432 
H-DMSPSO 5x 97.1122 0.5410 97.0573 0.5412 99.9434 
H-DMSPSO 10x 96.9299 0.2092 96.8753 0.2092 99.9436 

480 Canonical PSO 187.4386 0.9182 187.3343 0.9182 99.9443 
DMSPSO 187.5196 1.5754 187.4145 1.5751 99.9439 
H-DMSPSO 5x 186.8407 0.4194 186.7357 0.4189 99.9438 
H-DMSPSO 10x 186.8992 0.5551 186.7942 0.5551 99.9438  

References 

[1] C.A. Czeisler, The effect of light on the human circadian pacemaker, Ciba Found. 
Symp. 183 (1995) 254–290, https://doi.org/10.1002/9780470514597.ch14, 
discussion 290-302. 

[2] R.E. Kronauer, A quantitative model for the effects of light on the amplitude and 
phase of the deep circadian pacemaker, based on human data, in: Proceedings of 
the 10th European Congress on Sleep Research, Düsseldorf, Pontenagel Press, 
1990, p. 306. 

[3] M.E. Jewett, R.E. Kronauer, Refinement of limit cycle oscillator model of the effects 
of light on the human circadian pacemaker, J. Theor. Biol. 192 (1998) 455–465, 
https://doi.org/10.1006/jtbi.1998.0667. 

[4] M.E. Jewett, D.B. Forger, R.E. Kronauer, Revised limit cycle oscillator model of 
human circadian pacemaker, J. Biol. Rhythms 14 (1999) 493–500, https://doi.org/ 
10.1177/074873049901400608. 

[5] M.A. St. Hilaire, E.B. Klerman, S.B.S. Khalsa, K.P. Wright, C.A. Czeisler, R. 
E Kronauer, Addition of a non-photic component to a light-based mathematical 
model of the human circadian pacemaker, J. Theor. Biol. 247 (2007) 583–599, 
https://doi.org/10.1016/j.jtbi.2007.04.001. 

[6] J. Bonarius, C. Papatsimpa, J.P. Linnartz, Parameter estimation in a model of the 
human circadian pacemaker using a particle filter, IEEE Trans. Biomed. Eng. 68 
(2021) 1305–1316, https://doi.org/10.1109/TBME.2020.3026538. 

[7] J.L. Creaser, C.O. Diekman, K.C.A. Wedgwood, Entrainment dynamics organised by 
global manifolds in a circadian pacemaker model, Front. Appl. Math. Stat. 7 
(2021), 703359, https://doi.org/10.3389/fams.2021.703359. 

[8] C.O. Diekman, A. Bose, Reentrainment of the circadian pacemaker during jet lag: 
east-west asymmetry and the effects of north-south travel, J. Theor. Biol. 437 
(2018) 261–285, https://doi.org/10.1016/j.jtbi.2017.10.002. 

[9] P. Indic, D.B. Forger, M.A. St. Hilaire, D.A. Dean, E.N. Brown, R.E. Kronauer, E. 
B. Klerman, M.E Jewett, Comparison of amplitude recovery dynamics of two limit 
cycle oscillator models of the human circadian pacemaker, Chronobiol. Int. 22 
(2005) 613–629, https://doi.org/10.1080/07420520500180371. 

[10] C. Mott, G. Dumont, D.B. Boivin, D. Mollicone, Model-based human circadian 
phase estimation using a particle filter, IEEE Trans. Biomed. Eng. 58 (2011) 
1325–1336, https://doi.org/10.1109/TBME.2011.2107321. 

[11] C. Papatsimpa, J.P. Linnartz, Personalized circadian light: a digital siblings 
approach. Ambient Intelligence and Smart Environments, IOS Press, 2021. Bashir, 
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