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Abstract

The aim of this review is to study the main spectrophotometric methods used to evaluate total antioxidant capacity
(TAC) in serum samples of dogs. Total antioxidant capacity (TAC) is an analyte frequently used to assess the antioxidant
status of biological samples and can evaluate the antioxidant response against the free radicals produced in a given
disease. Trolox equivalent antioxidant capacity (TEAC), ferric reducing ability of plasma (FRAP), and cupric reducing
antioxidant capacity (CUPRAC) are different assays described to determine TAC of a sample. This review explains the
basis of each assay and their application in the determination of TAC in dogs, and also provides selected information
about reports in humans for comparative purposes. It is concluded that, ideally, various different assays integrated in a
panel should be used for TAC evaluation, since depending on the assay performed TAC results can be markedly
different.
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Background
An antioxidant is defined as “any substance that, when
presented at low concentration compared to those of an
oxidizable substrate (proteins, lipids, carbohydrates, and
DNA), significantly delays, or prevents oxidation of that
substrate” [1, 2]. The main function of antioxidants is to
protect the body against the destructive effects of free
radicals damage [3].
Free radicals may be generated in cells and tissues from

internal (such as inflammation, diseases or metabolism) or
external sources (irradiation, pollution, food, drugs), or as
a consequence of decreased protective capacity [1]. In any
case, an increase in free radicals production can originate
oxidative damage [4, 5].

General concepts
Total antioxidant capacity (TAC) is the measure of the
amount of free radicals scavenged by a test solution [4],

being used to evaluate the antioxidant capacity of bio-
logical samples [3, 6, 7].

Classification of different TAC assays
Assays to measure TAC can be direct, which are based on
the ability to inhibit the oxidation of a substance. One of
the most commonly used direct assays is the Trolox
(6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid)
equivalent antioxidant capacity (TEAC) with modifica-
tions mainly based on period of time used for measure-
ment, and radical formed [8–10]. The oxygen radical
absorbance capacity (ORAC) assay is another direct assay
described [11]. On the other hand, there are indirect as-
says, such as the ferric reducing ability of plasma (FRAP)
[12], and the cupric reducing antioxidant capacity
(CUPRAC) [13], which are based on determination of the
ability of a sample to reduce a metal complex [6]. Trolox
equivalent antioxidant capacity (TEAC), FRAP and
CUPRAC are spectrophotometric, whereas ORAC is a
fluorometric assay.
On the basis of the chemical reactions involved, TAC

assays can be also divided into two categories: hydrogen
atom transfer (HAT) based methods or on single
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electron transfer (SET) based methods. The HAT-based
methods measure the ability of an antioxidant to quench
free radicals by hydrogen donation. These methods are
pH independent and are usually quite rapid, typically
completed in seconds to minutes. One example is the
ORAC assay. The SET-based methods detect the ability
of a potential antioxidant to transfer one electron to re-
duce any compound, including metals, carbonyls, and
radicals. They are pH dependent and based on percent
decrease in product rather than kinetics, being usually
slower than the HAT-based methods [6]. Ferric reducing
ability of plasma (FRAP), CUPRAC and TEAC assays
are based on SET reaction mechanisms [14, 15].

Main advantages and limitations of TAC assays
One major advantage of TAC assays is that, by defin-
ition, estimate the antioxidant components of a sample
in a global way. Measuring each antioxidant component
individually is labor-intensive and time-consuming, re-
quiring complex and costly techniques [9]. Other advan-
tages of using TAC assays include simplicity of the
techniques, low cost per sample, speed of reactions and
possibility to be performed using automated, semi-
automated, or manual methods [3, 6].
However, measurement of only TAC can provide lim-

ited information about the antioxidant status, because
TAC assays do not measure all antioxidant components.
For example, they do not evaluate the role of important
enzymes such as superoxide dismutase, glutathione per-
oxidase, and catalases [6, 16, 17]. Therefore, plasma anti-
oxidant capacity provides a reductionist modelling of an
in vivo situation, and, therefore caution is needed in the
interpretation of results [18].

What is the best assay for TAC measurements?
Despite spectrophotometric measurements of TAC are
easy and fast, the answer about what would the ideal
assay for TAC measurement is controversial due to in-
herent limitations of each method and because each
method measures different TAC components [19]. This
situation could explain the variability in results found
with different TAC assays. Cao and Prior [20] found no
correlation between ORAC and TEAC or between FRAP
and TEAC in serum of healthy humans. This agrees with
other reports indicating that different results can be ob-
tained when different assays to measure TAC are applied
to human serum or plasma [21, 22]. When dogs with
cardiac disorders (mitral endocardiosis and dilated car-
diomyopathy) where compared with healthy dogs, no
significant differences were found in serum TEAC, but
lower values were found in diseased dogs when FRAP
was used [23]. In accordance with Huang et al. [24], the
major problem is the lack of a method that can measure

in an accurate way the global antioxidant capacity of
biological samples.

Current situation and objective of the review
There are a number of reviews regarding the measure-
ment of TAC in foods and biological fluids from humans
presenting detailed description of the assay proce-
dures, reaction kinetics, and also advantages and limi-
tations of the different methods [6, 24–29]. This
paper studies the spectrophotometric assays which
currently are most frequently used to measure TAC
in serum samples (TEAC, FRAP and CUPRAC) with
a special interest in dogs, and also provides selected
information about reports in human medicine for
comparative purposes.
It is expected that the information provided here can

contribute to increase the use of TAC measurements, es-
pecially in companion animal’s research and therefore
more information could be provided in the future about
the behavior of different assays in selected diseases and
their clinical use.

TEAC assay
Trolox equivalent antioxidant capacity (TEAC) assay is
generally based on the ability of antioxidants presenting
in a sample in reduce or inhibit oxidized products
generated in the assay. It is based on the principle that
when ABTS (2,2’-azino-bis(3-ethylbenz-thiazoline-6-sul-
fonic acid) is incubated with a proper chemical, an
ABTS radical (ABTS•+) is formed. The ABTS•+ has a
blue-green color, with maximum absorptions at 650, 734
and 820 nm. Antioxidants in the sample reduce ABTS•+

suppressing this color production to a degree that is pro-
portional to their concentrations [8]. In human plasma,
TEAC measures mainly albumin (that represents 43-
53 % of the total value) and uric acid (representing
33 %). In addition, it measures ascorbic acid, α-
tocopherol, and bilirubin [8, 9].
Reaction rate is commonly calibrated with Trolox, a

water soluble analogue of vitamin E, and assay results
are expressed in mmol Trolox equivalent/L [8]. This
method is suitable for automation permitting rapid
throughput of samples and various kits based on this
method are commercially available.

TEAC versions
There are different versions of TEAC assay, with var-
iations in how the oxidized radical is generated and
times of reaction used [30]. The method of Miller et
al. [8] uses metmyoglobin, Arnao et al. [30–32] de-
veloped a method for foods and plant material using
the horseradish peroxidase enzyme (HRP), Re et al.
[10] used potassium persulfate, and Erel [9] used
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H2O2 in acid medium for producing the oxidized
radical.
The Fig. 1 summarizes the principal variations of the

TEAC method that have been described.

Advantages and limitations
The TEAC presents some advantages [8, 9, 14]:

– operational simplicity
– the radical ABTS is soluble in both aqueous and

organic solvent media enabling the simultaneous
determination of hydrophilic and lipophilic
antioxidants

– can be automated

On the other hand, it also presents limitations such as
[15, 16]:

– the radical ABTS used in the method does not
represent a physiological radical source

– may take a long time to reach an endpoint.

Validation data
According to the reported validation data, presented
in Table 1, TEAC assays described to determine the
TAC in sample of human and dogs have good
reproducibility.

Studies in human
In studies made with commercial kits based on the
method of Miller et al., Glantzounis et al. [34] and
Zulfikaroglu et al. [35] observed significant decreased
TAC values in human patients submitted to laparoscopic
cholecystectomy. Patients with metabolic syndrome [36]
and with prediabetes [37] showed TAC values signifi-
cantly lower than healthy subjects. In addition, non-
surviving septic patients had higher serum TAC levels
than surviving ones [38].

Using the method developed by Erel, Koksal and
Kurban [39] reported no significant changes in the
serum TAC from human patients before and after
abdominal wall hernias resolution. However, signifi-
cant differences in the values between the surgical
techniques used for the hernias resolution were ob-
served. Helicobacter pylori infection produced a de-
crease in TAC values [40]. In other studies there was
no difference in TAC values in patients suffering
from brucellosis [41], but TAC was increased in pa-
tients with acute appendicitis [42].

Studies in dogs
Results of studies that determined the TAC by the TEAC
methods in serum samples of dogs are shown in Table 2.
In this table, it can be observed that TAC determined
with the method developed by Erel decreased after sur-
gery, anesthesia, in visceral leishmaniosis, and after vac-
cination against canine monocytic ehrlichiosis; and
increased in demodicosis and parvoviral enteritis. When
the method described by Miller et al. was used, dogs
with Babesia vogeli, atopic dermatitis and heart diseases
showed no significant differences when compared with
healthy ones.

FRAP assay
Ferric reducing ability of plasma (FRAP) assay is
based on the principle of reduction of ferric-
tripyridyltriazine (Fe3+-TPTZ) complex to ferrous tri-
pyridyltriazine (Fe2+-TPTZ) by the antioxidants of a
sample at low pH [12]. The end product (Fe2+-TPTZ)
has blue color with absorption maximum at 593 nm
and the change in absorbance is related to the anti-
oxidant capacity of the plasma (Fig. 2).
Uric acid is the main component (can reach up to

60 %) of FRAP in human plasma. In addition, this
assay measures ascorbic acid, bilirubin, and α-
tocopherol [12].

ABTS

ABTS•+ + H2O (blue-green color)ABTS + H2O2 

SAMPLE Loss of 
color

- Enzymes 

- Potassium persulfate [10]

- Acidic pH [9]

Metmyoglobin [8]

HRP [30]

Fig. 1 Mainly differences in ABTS• + generation between the different TEAC assays

Rubio et al. BMC Veterinary Research  (2016) 12:166 Page 3 of 7



For calibration, aqueous solutions of known Fe
(FeSO4.7H2O) concentration in the range of 100 to
1000 μmol/L are used, and the values are expressed
as μmol/L Fe2+ [12]. This assay can be performed using
automated, semi-automated, or manual methods [12, 52].

Advantages and limitations
The FRAP assay has some advantages [12, 52]:

– no need of highly specialized equipment or
skills, or strict control of timing and reaction
conditions

– quick and simple to perform and can be easily
automated

– reagents are inexpensive and sample pre-treatment is
not required

– highly reproducible over a wide concentration range

However, FRAP reaction conditions are far from
physiological to measure the TAC (i.e. to maintain
iron solubility requires an acidic pH (3.6)) [26]. In
addition, it does not measure the antioxidants con-
taining thiol groups and only measures the reducing
capability based upon the ferric ion, which is de-
scribed by some authors not being relevant to anti-
oxidant activity [7, 29].

Validation data
Few data are published on the FRAP assay validation,
being based on studies with human samples. Benzie
and Strain [12] reported an intra- and inter-assay CV
of <1.0 % and < 3.0 %, respectively; and a recovery of
91-112 %. Jansen and Ruskovska [21] indicated an
inter-assay CV of 11.4 %.

Studies in human
Jansen and Ruskovska [21] observed a significant cor-
relation between the TAC values measured by FRAP
assay and the TEAC assay developed by Miller et al.
in healthy males. Jansen et al. [53] and Haldar et al.
[54] observed no differences in the FRAP values when
compared smokers with no-smokers, and omnivores
with vegetarians, respectively. There was no difference
in serum concentrations of FRAP in patients with
oral carcinoma before and after the treatment [55].
Hyperglycemia leads to lower FRAP values when
compared to healthy subjects [56] and elderly physic-
ally disabled patients had lower FRAP values when
compared to healthy ones [57].

Studies in dogs
There is no influence of age on FRAP as older dogs have
similar FRAP values than the young ones [58].
Serum FRAP was significantly higher in dogs with

heart disease than in control animals [23]. In addition,
obese dogs submitted to a weight loss program had
higher FRAP values when compared to the baseline
[59]; however, the values were not different between
healthy dogs and dogs submitted to a weight gain
program [60].

Table 1 Coefficient of variation (CV) of the TEAC assay and
variants

Method Specie Intra-assay
CV (%)

Inter-assay
CV (%)

Reference

ABTS, metmyoglobin
and H2O2

Human 0.54–1.59 3.6–6.1 [8]

Kit - Miller et al. [8] Human 2.5 5.0 [20]

ABTS and H2O2 Human 1.3–2.5 1.5–2.9 [9]

Kit - Erel [9] Human No reported 8.9 [21]

Kit - Miller et al. [8] Dogs 2.8 No reported [33]

TEAC, Trolox equivalent antioxidant capacity; ABTS, 2,2’- azino - bis(3 - ethylbenz -
thiazoline - 6 - sulfonic acid); H2O2, hydrogen peroxide

Table 2 Studies determining the TAC using the various TEAC
methods in serum samples of dogs

Disease/effect
studied

Method Comparison with
healthy animals

Reference

Established range in
healthy beagle

Kit - Miller et al. [8] - [33]

Babesia vogeli Kit - Miller et al. [8] No difference [43]

Atopic dermatitis Kit - Miller et al. [8] No difference [44]

Heart diseases Miller et al. [8] No difference [23]

Parvoviral enteritis Erel [9] Increased [45]

Demodicosis Erel [9] Increased [46]

Visceral leishmaniosis Erel [9] Decreased [47]

After surgery Erel [9] Decreased [48]

After anaesthetized
with isoflurane

Erel [9] Decreased [49]

Sarcoptic mange Erel [9] No difference [50]

After vaccination
against canine
monocytic erlichiosis

Erel [9] Decreased [51]

TAC total antioxidant capacity; TEAC, Trolox equivalent antioxidant capacity

SAMPLE

Color proportional to the 
antioxidant capacity 

Fe3+-TPTZ complex

Fe2+-TPTZ complex

Fig. 2 An overview of FRAP reaction
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Dogs with mammary carcinoma of low-grade malig-
nancy had higher FRAP levels when compared with
dogs with high-grade mammary carcinoma and healthy
dogs [61]. However, no difference in the FRAP levels
were observed between dogs with lymphomas and
healthy dogs [62].
FRAP increased in plasma of dogs exposed to one

therapeutic dose of asoxime chloride, an oxime reactiva-
tor used for counteracting intoxication by nerve agents
[63] and after supplementation with antioxidant blend
[64]. Dogs that received lidocaine or placebo during
ovariohysterectomy had no different FRAP values be-
tween the treatments and the different times of sampling
(before premedication, during suturing, after extubation
and after surgery) [65].

CUPRAC assay
This assay evaluates the capacity of the antioxidants of a
sample to reduce the Cu2+ to Cu1+ in the presence of a
chelating agent as summarized in Fig. 3. These chelators
form colored stable complexes with Cu1+ that have a
maximum absorption at 450–490 nm [13].
The CUPRAC assay measures the thiol-group antioxi-

dants and other plasma antioxidants such as ascorbic
acid, α-tocopherol, β-carotene, uric acid, albumin, and
bilirubin [13].

CUPRAC versions
The CUPRAC assays differ mainly in the chelating agent
used, that can be bathocuproine (BC), bathocuproinedi-
sulfonic acid disodium salt (BCS), or neocuproine (Nc).
An assay based on the Cu2+ reduction using BC is com-
mercially available [66].

Advantages and limitations
The method presents some advantages [13, 67]:

– color development is relatively fast
– reagents are relatively stable, cheap, and accessible
– suitable for automation, does not require great

expertise or the use of expensive equipment

– the redox reaction producing colored species is
carried out at pH 7 buffer (close to that of
physiological pH)

– thiols are detected
– can simultaneously measure lipophilic and

hydrophilic antioxidants.

On the other hand, the assay does not measure anti-
oxidant enzymes and depending on the CUPRAC ver-
sion, it can require longer times of measurement and
previous sample preparation [13].

Validation data
The intra- and inter-assay CVs of the CUPRAC method
using Nc for human serum were 0.7 and 1.5 %, respect-
ively [13], and using BCS were between 0.9 and 5.6 %,
respectively [67, 68]. In serum of dogs, the intra- and
inter-assay of the CUPRAC method using BCS were be-
tween 2 and 9 %, respectively [69].

Studies in human
Cupric ion reducing antioxidant capacity (CUPRAC)
was significantly correlated with the FRAP and TEAC
in healthy subjects [67]. Gosmaro et al. [68] observed
lower CUPRAC values in patients after hemo-dialysis
treatment.

Studies in dogs
Significant lower CUPRAC values were found in serum
of dogs with inflammatory bowel disease when com-
pared to healthy dogs [69].

Conclusion
In this review, we have analyzed the main assays for
TAC measurements with special emphasis on their
advantages and disadvantages, and the studies where
they have been applied in dogs and humans. Based
on this analysis, it could be recommended that, if
possible, until an ideal reference method is found,
various different assays integrated in a panel should
be used for TAC evaluation. This recommendation is
supported by the fact that depending on the assay
performed, the result of TAC could be markedly dif-
ferent. In addition, the combination of TAC assays
with more specific analysis of individual antioxidants
would provide a wider picture of the antioxidant
status.

Abbreviations
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Cu2+-Nc complex

Cu1+-Nc complex
Color proportional to the 
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Fig. 3 An overview of CUPRAC reaction
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