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HIGHLIGHTS

 Tilapia larvae reared under thermocycles presented a higher growth than larvae 

reared at constant temperature.

 In the thermocycles, larvae showed a higher number of digestive factors that 

displayed daily rhythms of expression.

 Most digestive factors that were rhythmic correlated with mealtime, among them 

proteases (trypsinogen and chymotrypsinogen), lipase and hormones (npy and 

cck). 

 The use of rearing conditions similar to the natural environment, i.e. 

thermocycles, in tilapia larviculture is recommended.
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24 ABSTRACT 

25

26 Environmental factors present cyclic variations during the day. Of them, high 

27 temperatures occur in the light phase, whereas low temperatures take place at night, which is 

28 known as thermocycle. Although applying thermocycles to fish larvae improves growth in some 

29 species, nothing is known about the impact during the early development of the digestive 

30 system. The aim of the present research was to investigate the effect of different temperature 

31 regimes, cycling versus constant, on the daily rhythms of digestive factors and growth of Nile 

32 tilapia (Oreochromis niloticus) larvae. For this purpose, fertilized eggs were divided into two 

33 groups: one under a thermocycle (TC) of 31ºC:25ºC day:night and other group at constant 

34 temperature of 28ºC (CTE). Photoperiod was set at 12:12h light/dark cycle. Larvae length was 

35 measured on 4, 8 and 13 days post-fertilization (dpf). Larvae samples were collected every 4 h 

36 during a 24-hour cycle on 4, 8 and 13 dpf. The expression levels of pepsinogen, 

37 chymotrypsinogen, trypsinogen, lipase, maltase, isomaltase, npy and cck were analyzed by 

38 qPCR. The results showed that larval growth was greater when larvae were reared at TC than 

39 at CTE. Moreover on 13 dpf, most analyzed genes (chymotrypsinogen, lipase, maltase, 

40 isomaltase, npy and cck) displayed daily rhythms in the TC group, but not in CTE, with most 

41 acrophases located around mealtime. These rhythms could explain the higher growth rate 

42 observed in the TC larvae due to improved feed digestion and utilization. The results can be 

43 useful for improving the rearing protocols used in larviculture and to enhance production 

44 performance.

45

46 Keywords: biological clock, larviculture, fish development, digestive function, endocrine 

47 system.
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48 INTRODUCTION

49

50 The natural environment presents cyclic and predictable variations in geophysical 

51 variables, such as light and temperature. These cyclic variations have influenced evolution and 

52 selected the occurrence of biological clocks in most living organisms. Biological rhythms 

53 confer adaptive advantages as organisms can time their physiological processes to occur at 

54 specific moments when effectiveness is greater (DeCoursey, 2004). Among the environmental 

55 variables that synchronize biological rhythms, light has been commonly regarded as the most 

56 important, but other factors, such as temperature and feeding, play an important role, especially 

57 in ectothermic animals like fish (López-Olmeda, 2017).

58 Temperature has a strong influence on fish behavior and physiology (Brett, 1971) as it 

59 affects processes like development, locomotion, sex differentiation, reproduction and survival 

60 (Bennett and Beitinger, 1997; Ospina-Álvarez and Piferrer, 2008; Pankhurst and King, 2010; 

61 López-Olmeda and Sánchez-Vázquez, 2011). In the natural environment, daily temperature 

62 oscillations (thermocycles) are generated in water due to the presence or absence of solar 

63 radiation (Villamizar et al., 2011). Hence temperature displays cycles alongside the light/dark 

64 cycle, with the higher temperature phase (thermophase) coinciding with day and the lower 

65 temperature phase (cryophase) coinciding with night (López-Olmeda and Sánchez-Vázquez, 

66 2011). However, while most fish undergo thermocycles in the wild, their effects on fish biology, 

67 especially in developmental stages, have received little attention to date (Schaefer and Ryan, 

68 2006; Villamizar et al., 2012). Fluctuating temperatures can change gene expression patterns 

69 compared to constant temperature conditions (Podrabsky and Somero, 2004). During fish 

70 development, thermocycles have been reported to increase survival and growth, lower the 

71 incidence of malformations and modify the sex ratio (Blanco-Vives et al., 2010, 2011; 

72 Villamizar et al., 2012; Sánchez-Vázquez and López-Olmeda, 2018). In tilapia (Oreochromis 
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73 niloticus) juveniles, the effects of thermocycles on growth were tested (Azaza et al., 2010). 

74 Small juveniles presented higher growth rates under thermocycles than constant temperatures, 

75 although this effect seemed to be lost in bigger juveniles (Azaza et al., 2010). Nevertheless, 

76 further research in tilapia and other fish species is required to confirm the positive effects of 

77 thermocycles, especially during early development.

78 One of the most important factors to affect the efficiency of food conversion into 

79 nutrients is the availability of the enzymes involved in this process (Jobling, 1995; Perez-

80 Casanova et al, 2006). The maximum fish growth rate, especially during early development, 

81 strongly depends on digestive capacity (Blier et al., 1997). Thus studies on the ontogeny of 

82 digestive enzymes in fish can elucidate certain aspects of their nutritional physiology and help 

83 to solve nutritional problems challenged in larviculture (Furné et al., 2005). In fish, studies on 

84 the ontogeny of the digestive function at the molecular level and on the existence of daily 

85 rhythms of digestive factors during development and how the environment modulates these 

86 rhythms, are lacking (Rønnestad et al., 2013; Yúfera et al., 2018). To date, the existence and 

87 ontogeny of these rhythms in fish larvae have only been reported in two marine species:  

88 gilthead seabream (Sparus aurata) and Senegalese sole (Navarro-Guillén et al., 2015; Mata-

89 Sotres et al., 2016).

90 The larviculture of Nile tilapia offers some advantages, such as using formulated diets 

91 from the start of exogenous feeding (Luz et al., 2012). However, for this species, more in-depth 

92 knowledge about the digestive physiology in the larval stage is necessary (de Moura Pereira et 

93 al., 2019). To date, research into the ontogeny of digestive factors during larval development is 

94 scarce, and only a few reports have addressed this topic (Tengjaroenkul et al., 2002; Qiang et 

95 al., 2017; de Moura Pereira et al., 2019; Silva et al., 2019). Daily rhythms in clock gene 

96 expression and factors from the endocrine axis have been reported in adult Nile tilapia (Costa 
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97 et al., 2016a, 2016b; de Alba et al., 2019), but still nothing is known about the existence of the 

98 daily rhythms in digestive factors for tilapia larvae.

99 Therefore, the aim of the present study was to evaluate the effects of two different 

100 temperature regimes, a daily thermocycle versus constant temperature, applied on the first days 

101 of Nile tilapia development, on the growth and daily rhythms of different digestive physiology 

102 parameters. These parameters involved the expression of genes that encode enzymes for protein 

103 (pepsinogen, chymotrypsinogen and trypsinogen), lipid (lipase) and carbohydrate digestion 

104 (maltase and isomaltase), and the endocrine control of food intake and digestion (neuropeptide 

105 Y, npy, and cholecystokinin, cck).

106

107 MATERIALS AND METHODS

108

109 The present research was conducted at the facilities of the Department of Physiology of 

110 the University of Murcia (Spain). Fish were reared following the Spanish legislation on Animal 

111 Welfare and Laboratory Practices. Experimental protocols were performed following the 

112 Guidelines of the European Union (2010/63/UE) and Spanish legislation (RD 1201/2005 and 

113 Law 32/2007) for the use of laboratory animals. In addition, the protocols were approved by 

114 the National Committee and the Committee of the University of Murcia on Ethics and Animal 

115 Welfare.

116

117 Animals and experimental design

118 Male and female Nile tilapia (Oreochromis niloticus) adults were obtained from a local 

119 fish farm (Tilamur S.A., Murcia, Spain). Animals were kept in 300-liter tanks connected to a 

120 recirculation system, equipped with biological and mechanical filters. The photoperiod was set 

121 at 12:12 light/dark (LD) cycle with lights on at 09:00h. The water temperature was maintained 
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122 and controlled at 28±0.5ºC. Adult tilapias were fed a commercial diet (D-4 AlternaBasic 2P, 

123 Skretting, Spain) with 36% crude protein (CP) 3 times a day until apparent satiety.

124 After acclimation, tilapia breeders were induced with human Chorionic Gonadotropin 

125 hormone (hCG, Sigma Aldrich, St. Louis, USA) as described elsewhere (Fernandes et al., 

126 2013). Briefly, females were injected with 1500 IU/kg of body weight and males with 500 

127 IU/kg. The administration for females was divided into two injections: the first consisted of 500 

128 IU/kg injected at the end of the light phase and the second one (1,000 IU/kg) was applied 12 h 

129 after the first dose (at the beginning of the light phase on the next day). Males received a single 

130 injection at the same time as the second dose for females. After hCG administration, animals 

131 were placed together. After 24 h, sperm and eggs were collected by stripping and in vitro 

132 fertilization was performed (Fernandes et al., 2013). This procedure allowed us to immediately 

133 obtain fertilized eggs, which were used in the experiments.

134 Fertilized eggs were obtained from five different groups of tilapia breeders. Each group 

135 consisted in 3 females and 5-6 males. Then fertilized eggs were pooled together and distributed 

136 in incubators for Cichlid eggs (Alimar SA, Murcia, Spain) (200 eggs per incubator) in two 

137 distinct systems with different temperature regimes: one system with a daily thermocycle (TC) 

138 of 31ºC:25ºC, and another with a constant temperature (CTE) of 28ºC. Both systems were 

139 recirculating water systems that were connected to mechanical and biological filters. The 

140 photoperiod was set at 12:12 LD, with lights on at 09:00h (set as Zeitgeber time 0 h, ZT0 h). In 

141 the TC system, the thermophase (high temperature phase) of 31ºC coincided with the light 

142 phase, whereas the cryophase (low temperature) of 25ºC coincided with the dark phase (Suppl. 

143 Fig. 1). The average water temperature in the TC system throughout the day was 28.02ºC. Thus 

144 the larvae reared in this system were subjected to the same degree days as the animals reared in 

145 the CTE group, at an average water temperature of 28.03±0.33ºC (mean±S.D.). In the TC 

146 system, water temperature was modified by water heaters (Askoll, Povolaro, Italy) and coolers 
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147 (AquaMedic 1500, Titan GmbH, Bissendorf, Germany), controlled by electronic timers 

148 (Bachmann GmbH & Co, Stuttgart, Germany). Water temperature was recorded continuously 

149 throughout the experiment by an underwater data recorder (HOBO pendant, Onset Computer 

150 Corporation, Massachusetts, USA). Larvae were reared in incubators until 7 days post 

151 fertilization (dpf), when they were transferred to 9-liter tanks connected to the same temperature 

152 system. Exogenous feeding began on 7 dpf. Larvae were fed a semi-purified diet containing 

153 42% CP and 4100 Kcal/kg, formulated as described elsewhere (Silva et al., 2019). Larvae were 

154 fed in excess 4 times a day in the first half of the light phase (ZT1, ZT3, ZT5 and ZT7 h). 

155 Tilapia embryo/larvae were maintained under the experimental conditions from 0 to 13 dpf.

156 A total of 924 tilapia larvae were used in the experiments (462 larvae per group). On 4, 

157 8 and 13 dpf, whole larvae samples were collected every 4 h during a 24-hour cycle at the 

158 following time points: ZT 2, ZT 6, ZT 10, ZT 14, ZT 18 and ZT 22 h. Larvae were pooled for 

159 each replicate and six replicates (n=6) were collected for each group, time point and day. Larvae 

160 were stored in 1.5 ml tubes and immediately frozen and stored at -80ºC until analyzed. The 

161 number of larvae used in the pool differed depending on the sampling day: 5 larvae/pool on 4 

162 dpf; 4 larvae/pool on 8 dpf; 3 larvae/pool on 13 dpf. The larvae collected on 8 and 13 dpf were 

163 fed on the sampling day.

164

165 Larval growth

166 The growth of the tilapia larvae in both temperature groups (TC and CTE) was evaluated 

167 on 4, 8 and 13 dpf. For this purpose, 30 larvae were used for each treatment, and 10 larvae were 

168 used for each measurement day. Larvae were removed from the aquarium and transferred to a 

169 Petri dish. Then each larvae was photographed using a binocular (Leica EZ4 HD, Leica 

170 Microsystems GmbH, Wetzlar, Germany) with an incorporated digital camera. Photos were 

171 stored in a computer and analyzed later with the ImageJ image processing software (Abramoff 
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172 et al., 2004). Larvae were measured longitudinally by considering standard length (Suppl. Fig. 

173 2).

174

175 Real-time RT-PCR analysis

176 Larvae pools were transferred to sterile tubes and homogenized in Trizol reagent 

177 (Ambion, Thermo Fisher Scientific, Waltham, USA) following the manufacturer’s instructions, 

178 using a tissue homogenizer for mechanical homogenization (TissueLyser LT, Qiagen, Hilden, 

179 Germany). RNA was dissolved in DEPC water (Invitrogen, CA, USA) and RNA concentration 

180 was determined by spectrometry (Nanodrop ND-1000, Thermo Fisher Scientific, Waltham, 

181 MA, USA). Total RNA (1 μg) was first treated with 1U of DNase (Dnase I, Thermo Fisher), 

182 followed by retrotranscription using a commercial kit (qScript cDNA Synthesis Kit, Quantabio, 

183 Beverly, USA). The quantitative PCR (qPCR) reactions were performed by the SYBR Green 

184 PCR Master Mix (Applied Biosystems, Foster City, CA, USA). All the samples were run in 

185 duplicate and the qPCR reactions were performed in a final volume of 20 µl. The quantitative 

186 PCR analyses were performed in a light thermocycler (7500 RT-PCR system, Applied 

187 Biosystems) following this protocol: 15 min at 95ºC, followed by 40 cycles of 15 s at 95ºC and 

188 1 min at 60ºC. Melting curves were run after amplification to ensure that only one DNA species 

189 was amplified. All the primer sequences (Table 1) were designed with the Primer 3 plus 

190 software (Untergasser et al., 2012). The relative amplification efficiencies of all the genes were 

191 analyzed by cDNA dilution curves and were found to be similar for all the genes. Primer 

192 concentrations were determined by means of a primer dilution curve. The primers for 

193 chymotrypsinogen, pepsinogen, lipase, npy, maltase and βactin were added at a reaction 

194 concentration of 200 nM. The primers for trypsinogen, isomaltase and cck were added at a final 

195 concentration of 400 nM. The relative expression of all the genes was calculated by the 2–

196 ΔΔCtmethod (Livak and Schmittgen, 2001). The reference gene, βactin, was selected after 

197 verifying that its coefficient of variation (CV) was lower than 5%.
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198

199 Data analysis

200 All the results are expressed as mean±SEM. The SPSS software (v. 19.0, IBM, Armonk, 

201 USA) was used to detect any statistically significant differences between groups and time 

202 points. Normality of the data was previously assessed by the Kolmogorov-Smirnov test and 

203 homogeneity of variance was also verified using Levene’s test. The data from each gene and 

204 day were subjected to a two-way ANOVA, followed by Duncan's post hoc test, to check for 

205 statistically significant differences in gene expressions between groups (TC versus CTE) and 

206 sampling points (ZTs). The existence of significant rhythmicity was tested for all the genes by 

207 the Cosinor analysis, performed with the “EL TEMPS” software (v.1.179, Prof. Dıez-Noguera, 

208 University of Barcelona, Spain). The Cosinor analysis is based on the least squares approach of 

209 time series data with a cosine function of a known period of type Y = Mesor + Amplitude * cos 

210 (2π(t-Acrophase)/Period). The Cosinor analysis also provides the statistical significance of the 

211 rhythm by an F-test of the variance, accounted for by the waveform versus a straight line of 

212 zero-amplitude (null hypothesis). Larval growth among groups was compared on each sampling 

213 day by a Student’s t-test. The significance threshold was set at p<0.05 for all the tests.

214

215 RESULTS

216

217 Larval growth 

218 The temperature regime in which tilapia embryo and larvae were raised had significant 

219 effects on growth, with TC inducing a greater growth than CTE (Figure 1). On 4 dpf, the larvae 

220 subjected to the TC treatment had a significantly longer length (5.61±0.03 mm) than those under 

221 CTE of the same age (5.47±0.03 mm) (t-test, p<0.05). On 8 dpf, the CTE larvae had caught up 

222 with the TC larvae (7.01±0.02 and 7.05±0.07 mm for CTE and TC, respectively) and no 
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223 significant differences between treatments were detected (t-test, p>0.05). By 13 dpf, the TC 

224 treatment larvae once again obtained significantly higher length values (mean 8.09±0.07 mm) 

225 compared to those in the CTE treatment (average 7.77±0.09 mm) (t-test, p<0.05).

226

227 Pepsinogen expression

228 No daily rhythms (Cosinor, p>0.05) were found for pepsinogen relative expression in 

229 the 4, 8 or 13 dpf tilapia larvae in either of the tested temperature regimes (TC or CTE) (Fig. 

230 2). Significant differences were observed depending on the group and time of day on both 4 

231 and 13 dpf (two-way ANOVA, p<0.05) (Fig. 2A and 2C). On 4 dpf, a significant peak of 

232 pepsinogen expression was observed in the TC group at ZT 2 h, whereas the significant peak 

233 was observed in the CTE group at ZT 2 h on 13 dpf. In addition, statistical differences were 

234 observed on 13 dpf between the overall expression of both groups, which were higher for CTE 

235 than for TC (two-way ANOVA, p<0.05). No significant differences were observed in 

236 pepsinogen expression on 8 dpf (two-way ANOVA, p>0.05).

237

238 Chymotrypsinogen expression

239 The relative expression of chymotrypsinogen displayed significant daily rhythms 

240 (Cosinor, p <0.05) for the 4 dpf larvae maintained in the CTE group, on 8dpf in both treatments 

241 (TC and CTE) and for the 13 dpf larvae maintained in TC (Fig. 3). In addition, the acrophases 

242 varied between the significant detected rhythms (Table 2). In the CTE group, acrophases were 

243 located in the dark phase at ZT 18:06h and ZT 21:35h for 4 and 8 dpf, respectively. In the TC 

244 group, the acrophase was located at the beginning of the dark phase on 8 dpf (ZT 14:02h) and 

245 shifted to the beginning of the light phase on 13 dpf (ZT 02:36h). 

246 Moreover, chymotrypsinogen expression in the 8 dpf larvae showed significant 

247 differences depending on the groups and time of day, with a higher expression in the TC group 
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248 at both ZT 10 and 14h (two-way ANOVA, p>0.05) (Fig. 3B). Differences on 8 dpf were also 

249 observed between the overall expression of both groups, which were higher for TC than for 

250 CTE (two-way ANOVA, p<0.05). No statistically significant differences were observed in 

251 chymotrypsinogen on 4 and 13 dpf (two-way ANOVA, p>0.05).

252

253 Trypsinogen expression

254 The relative expression of trypsinogen in tilapia larvae showed significant daily rhythms 

255 (Cosinor, p<0.05) in the larvae raised in TC (on both 4 and 8 dpf), but not for the larvae raised 

256 at CTE (Cosinor, p>0.05) (Fig. 4). The acrophase of trypsinogen for the 4 dpf TC was located 

257 at the beginning of the light phase (ZT 03:10 h) and shifted to the end of the light phase in the 

258 8 dpf larvae (ZT 10:11 h) (Table 2). In addition, trypsinogen in the 4 dpf larvae displayed 

259 significant differences (two-way ANOVA p <0.05), with a significantly higher expression at 

260 ZT 2 h in the TC group (Figure 4A). Differences were also observed on 4 dpf between the 

261 overall expression of both groups, which was higher for TC than for CTE (two-way ANOVA, 

262 p<0.05). No statistically significant differences were observed in trypsinogen expression on 8 

263 and 13 dpf (two-way ANOVA, p>0.05).

264

265 Lipase expression

266 Lipase expression only displayed significant daily rhythms in the tilapia maintained 

267 under the TC conditions on both 4 and 13 dpf (Cosinor, p<0.05) (Fig. 5). The acrophases in 

268 these two stages occurred at similar times, in the first half of the light phase (ZT 03:54h and 

269 02:47h on 4 and 13 dpf, respectively) (Table 2). No significant daily rhythms were detected on 

270 any of the days analyzed for the CTE group, nor for the 8 dpf larvae from the TC group 

271 (Cosinor, p>0.05).
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272 Both the 4 and 8 dpf larvae showed significant differences between groups and time 

273 points in lipase expression (two-way ANOVA, p<0.05) (Fig. 5A and 5B). On 4 dpf, expression 

274 peaked at ZT 02:00h for both groups. On 8 dpf, lipase expression in the CTE animals also 

275 peaked at ZT 02:00h. However in this larval stage, this peak was lost in the TC larvae compared 

276 to the 4 dpf larvae. Furthermore, differences in overall expression were observed on both 4 and 

277 8 dpf (two-way ANOVA, p<0.05), with a higher lipase expression throughout the day in the 

278 CTE group versus the TC group. No statistically significant differences were observed in lipase 

279 expression on 13 dpf (two-way ANOVA, p>0.05).

280

281 Maltase expression

282 The only significant daily rhythm in maltase expression was detected in the 13 dpf 

283 larvae from the TC group (Cosinor, p<0.05) (Figure 6). In these animals, maltase expression 

284 peaked around the middle of the dark phase, at ZT 17:27 h (Table 2). No significant daily 

285 rhythms were detected in the other days and groups (Cosinor, p>0.05). Moreover, no 

286 statistically significant differences between groups and time of day were found in maltase 

287 expression on any of the analyzed days (two-way ANOVA, p>0.05).

288

289 Isomaltase expression

290 On 13 dpf, significant daily rhythms of isomaltase were found in both groups (Cosinor, 

291 p<0.05) (Fig. 7). These rhythms presented opposite acrophases, with isomaltase expression 

292 peaking around the middle of the dark phase in the TC group (ZT 19:33h) and about the middle 

293 of the light phase in the CTE group (ZT 05:28h) (Table 2). In the 13 dpf larvae, differences in 

294 isomaltase were observed depending on the group and time of day, with a higher significant 

295 expression at ZT 18:00h and ZT 22:00h h in the TC larvae (two-way ANOVA, p<0.05) (Fig. 

296 7C). Differences in the overall expression were observed on 13 dpf, with a higher isomaltase 
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297 expression in the TC than in the CTE group (two-way ANOVA, p<0.05). Neither significant 

298 daily rhythms nor differences between groups and time points were found for isomaltase 

299 expression in 4 and 8 dpf larvae (Cosinor, p>0.05) (two-way ANOVA, p>0.05). 

300

301 Npy expression

302 Significant daily rhythms (Cosinor, p<0.05) were found for npy expression in 4 dpf 

303 larvae maintained in CTE and the 13 dpf larvae from the TC group (Fig. 8). Acrophases were 

304 located in the middle of the dark phase (ZT 18:38h) in the 4 dpf CTE larvae and in the first half 

305 of the light phase (ZT 03:00h) in the 13 dpf TC larvae (Fig. 8A and 8C) (Table 2). No significant 

306 daily rhythms were detected for the other days and groups (Cosinor, p>0.05). The 13 dpf larvae 

307 presented significant differences in npy expression between groups and time points (two-way 

308 ANOVA, p<0.05) (Fig. 8C). The tilapia larvae from the CTE group showed the highest 

309 expression at ZT 22:00h, which was higher than for the TC animals at ZT 02:00h and 06:00h, 

310 and was also a higher overall expression compared to the larvae from the TC group (two-way 

311 ANOVA, p<0.05). No statistically significant differences were observed in npy expression on 

312 4 and 8 dpf (two-way ANOVA, p>0.05).

313

314 Cck expression

315 The only significant daily rhythm in cck expression was detected in the 13 dpf larvae 

316 from the TC group (Cosinor, p<0.05) (Fig. 9). The acrophase of this rhythm was located in the 

317 first half of the light phase, close to the middle of the day (ZT 04:19h) (Fig. 9C) (Table 2). No 

318 significant daily rhythms were detected for the other days and groups (Cosinor, p>0.05), and 

319 no statistically significant differences between groups and time of day appeared in cck 

320 expression on any analyzed day (two-way ANOVA, p>0.05).

321
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322 DISCUSSION

323

324 In the present research, the existence of daily rhythms in the expression of several genes 

325 encoding different digestive enzymes and hormones were analyzed in tilapia larvae, as were 

326 the effects of temperature regime on the ontogeny of these rhythms. In general, rearing tilapia 

327 larvae under a thermocycle improved the occurrence of daily rhythms in these factors as most 

328 displayed significant rhythms on 13 dpf, which was not observed in the larvae maintained at 

329 constant temperature (Fig. 10). The acrophases (time of maximum value) of the factors involved 

330 in protein and lipids digestion, as well as hormones were located in the morning, at around 

331 mealtime, on 13 dpf in the TC group (Figure 10). The acrophases of the factors involved in 

332 carbohydrate digestion were located at night (Fig. 10). This greater number of significant 

333 rhythms correlated also with growth as the TC larvae length was longer than that of the CTE 

334 group larvae.

335 The existence of daily rhythms in digestive enzymes in fish was first described in adults 

336 (Vera et al., 2007; Montoya et al., 2010; López-Olmeda et al., 2012). In adult tilapia, daily 

337 rhythms have been reported in total protease activity, both acid and alkaline (Guerra-Santos et 

338 al., 2017). Here we showed daily rhythms in the expression of genes that encode digestive 

339 enzymes in tilapia. Currently, it is necessary to examine this topic in-depth because studying 

340 gene expression will allow us to know how enzymatic digestion is programmed, activated and 

341 modulated (Rønnestad et al., 2013; Yúfera et al., 2018). Studying the existence of daily rhythms 

342 in larval physiology is also crucial because they are present in many processes, although studies 

343 usually focus only on one single daily sample (Yúfera et al., 2018). 

344 In recent years, the ontogeny of rhythms in digestive factors has been reported in the 

345 larvae of two marine species: gilthead seabream and Senegalese sole (Navarro-Guillén et al., 

346 2015; Mata-Sotres et al., 2016; Zeytin et al., 2016). In both these species, most of the larval 
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347 stages analyzed had already started the exogenous feeding and, under these conditions, daily 

348 rhythms in digestive enzymes correlated with feeding (Navarro-Guillén et al., 2015; Mata-

349 Sotres et al., 2016). This is similar to the result herein found for the TC larvae on 13 dpf, where 

350 proteases (chymotrypsinogen and trypsinogen) and lipase presented the highest values around 

351 feeding time. The food digestion process depends, among other factors, on the presence and 

352 availability of adequate digestive enzymes throughout the gastrointestinal tract (Gisbert et al., 

353 2013). The enzymes observed to display rhythms in tilapia larvae are amongst the most 

354 important for protein (trypsin and chymotrypsin) and lipid digestion (lipase acting to release 

355 fatty acids and glycerol) (Almeida et al., 2018; Durigon et al., 2019). Besides, hormones npy 

356 and cck also presented rhythms with the highest values at around mealtime in the 13 dpf larvae 

357 reared at TC. Npy is a growth hormone (Gh) regulator (Peng and Peter, 1997) that stimulates 

358 food consumption in fish (Narnaware et al., 2000). In addition, Cck is one of the most important 

359 regulators of food intake and digestion in fish and is largely responsible for the secretion of 

360 pancreatic enzymes (Koven et al., 2002; Volkoff et al., 2005; Zhang et al., 2018). The rhythms 

361 displayed by these endocrine factors, which were synchronized with mealtime in the TC larvae, 

362 could have improved the digestive processes and nutrient utilization in these larvae compared 

363 to the CTE larvae. Taken together, the rhythms in both digestive enzymes and hormones could 

364 have increased the efficiency of physiological processes, leading to improved efficiency of food 

365 intake, digestion and growth. This, in turn, would have led to the enhanced growth rates 

366 observed in the TC larvae compared with the CTE group.

367 On the other hand, maltase and isomaltase presented shifted acrophases and peaked at 

368 nighttime. These genes encode for enzymes that act in the final steps of the digestion of dietary 

369 carbohydrates (Tengjaroenkul et al., 2002). The peaks of maltase and isomaltase could have 

370 occurred later than other enzymes given the process phase in which they are involved. In 

371 addition, carbohydrate digestibility is generally poor in fish, although omnivorous fish like 
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372 tilapia have better digestion rates (Moon, 2001; Kamalam et al., 2017). Thus one possibility 

373 could be that carbohydrates remained for longer in the gut and, hence, the expression of these 

374 enzymes was delayed. On the other hand, gene expression does not necessarily correlate with 

375 the activity of the encoded enzyme (Yúfera et al., 2018), which could be the case for maltase 

376 and isomaltase and would explain why their rhythms are shifted compared to mealtime and to 

377 the other analyzed factors.

378 Previous studies have highlighted the importance of maintaining embryos/larvae under 

379 rearing conditions that are similar to the natural conditions that animals experience in the wild. 

380 This mainly involves using environmental cycles instead of constant conditions. For instance, 

381 it has been reported that LD cycles are required for correct circadian clock maturation in fish, 

382 and constant lighting conditions (either darkness or light) can delay or even suppress the 

383 appearance of daily rhythms (Ziv and Gothlif, 2006; Martín-Robles et al., 2013; Cuesta et al., 

384 2014; Di Rosa et al., 2015). The temperature factor has been less studied than light. In zebrafish, 

385 thermocycles are able to synchronize the circadian rhythms of embryos/larvae during the first 

386 days of development in the absence of lighting cues, which indicates that thermocycles are a 

387 strong environmental signal for the ontogeny of the clock in fish (Lahiri et al., 2014). Likewise 

388 in tilapia, thermocycles enhance the ontogeny of digestive circadian rhythms, which highlights 

389 the importance of this signal. In addition, the results from both zebrafish (Lahiri et al., 2014) 

390 and our study could indicate an important role of thermocycles on fish circadian clock 

391 development, especially for freshwater species.

392 Furthermore, when fish develop under similar cyclic environmental variations to those 

393 they experience in the natural environment, they show beneficial effects on parameters other 

394 than the ontogeny of the circadian system. Tilapia juveniles presented higher growth rates under 

395 thermocycles than at constant temperatures, although this effect was lost as fish were becoming 

396 bigger and size dispersal was greater (Azaza et al., 2010). In addition, Senegalese sole and 
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397 zebrafish present higher growth rates and a lower incidence of malformations when they are 

398 kept, during the early development, in thermocycles compared to constant temperatures 

399 (Blanco-Vives et al., 2010, 2011; Villamizar et al., 2012; Sánchez-Vázquez and López-Olmeda, 

400 2018). This agrees with the results obtained in tilapia growth with thermocycles. In these 

401 previous studies, however, the only analyzed molecular or physiological markers to explain the 

402 effects on development induced by thermocycles were some genes involved in sex 

403 differentiation as thermocycles also affect sex ratios (Blanco-Vives et al., 2010, 2011; 

404 Villamizar et al., 2012). Thus, the present results obtained in tilapia are the first to shed light 

405 on the molecular mechanisms used by thermocycles to improve growth, which indicates that at 

406 least one of the factors may be faster maturation and better synchronization of the rhythms of 

407 digestive physiology.

408

409 CONCLUSIONS

410

411 In summary, our research shows that applying daily thermocycles during early 

412 development improves the ontogeny and maturation of the daily rhythms of digestive enzymes 

413 in tilapia. This turns into a higher growth in the larvae reared under thermocycles, which may 

414 be due to higher digestion rates and better food efficiency. Therefore, employing similar 

415 conditions to natural environmental conditions (e.g. thermocycles instead of constant 

416 temperatures) is suggested when designing protocols for tilapia larviculture.
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593 FIGURE LEGENDS

594

595 Table 1. Primer sequences used for the quantitative analysis by qPCR.

596

597 Table 2. Acrophase (in Zeitgeber Time, h) and statistical significance values of the genes 

598 subjected to Cosinor analysis.

599

600 Figure 1. Standard length (mm) of tilapia larvae on 4, 8 and 13 days post fertilization (dpf) at 

601 a 12:12LD cycle. Larvae were subjected to two different temperature regimes: a thermocycle 

602 (TC) of 31ºC:25ºC (black bars) or constant temperature (CTE) of 28ºC (white bars). Asterisks 

603 indicate statistically significant differences between groups at the same age (t-test, p<0.05).

604

605 Figure 2. Daily variations in the relative expression of pepsinogen analyzed in tilapia larvae on 

606 4 (A), 8 (B) and 13 (C) days post fertilization (dpf) at a 12:12 LD cycle. Larvae were subjected 

607 to two different temperature regimes: a thermocycle (TC) of 31ºC:25ºC (represented by black 

608 circles, ●) or constant temperature(CTE) of 28ºC (represented by white squares, □). No 

609 statistically significant daily rhythms were detected in any group (Cosinor, p>0.05). Different 

610 letters indicate statistically significant differences between time points on the same graph (two-

611 way ANOVA, p<0.05). The white and black bars above each graph represent the light phase 

612 and dark phase, respectively. The time scale (x-axis) is expressed as Zeitgeber Time (ZT), 

613 where ZT0 h corresponds to light onset.

614

615 Figure 3. Daily variations in the relative expression of chymotrypsinogen analyzed in tilapia 

616 larvae on 4 (A) and 13 (B) days post fertilization (dpf) at a 12:12 LD cycle. Larvae were 

617 subjected to two different temperature regimes: a thermocycle (TC) of 31ºC:25ºC (represented 
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618 by black circles, ●) or constant temperature (CTE) of 28ºC (represented by white squares, □). 

619 The sinusoidal dashed line represents the adjustment to a sinusoidal rhythm whenever the 

620 Cosinor test was significant (p<0.05). Different letters indicate statistically significant 

621 differences between time points on the same graph (two-way ANOVA, p<0.05). The white and 

622 black bars above each graph represent the light phase and dark phase, respectively. The time 

623 scale (x-axis) is expressed as Zeitgeber Time (ZT), where ZT 0 h corresponds to light onset.

624

625 Figure 4. Daily variations in the relative expression of trypsinogen analyzed in tilapia larvae 

626 on 4 (A), 8 (B) and 13 (C) days post fertilization (dpf) at a 12:12 LD cycle. Larvae were 

627 subjected to two different temperature regimes: a thermocycle (TC) of 31ºC:25ºC (represented 

628 by black circles, ●) or constant temperature (CTE) of 28ºC (represented by white squares, □). 

629 The sinusoidal dashed line represents the adjustment to a sinusoidal rhythm whenever the 

630 Cosinor test was significant (p<0.05). Different letters indicate statistically significant 

631 differences between time points on the same graph (two-way ANOVA, p<0.05). The white and 

632 black bars above each graph represent the light phase and dark phase, respectively. The time 

633 scale (x-axis) is expressed as Zeitgeber Time (ZT), where ZT 0 h corresponds to light onset.

634

635 Figure 5. Daily variations in the relative expression of lipase analyzed in tilapia larvae on 4 

636 (A), 8 (B) and 13 (C) days post fertilization (dpf) at 12:12 LD cycle. Larvae were subjected to 

637 two different temperature regimes: a thermocycle (TC) of 31ºC:25ºC (represented by black 

638 circles, ●) or constant temperature (CTE) of 28ºC (represented by white squares, □). The 

639 sinusoidal dashed line represents the adjustment to a sinusoidal rhythm whenever the Cosinor 

640 test was significant (p<0.05). Different letters indicate statistically significant differences 

641 between time points on the same graph (two-way ANOVA, p<0.05). The white and black bars 
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642 above each graph represent the light phase and dark phase, respectively. The time scale (x-axis) 

643 is expressed as Zeitgeber Time (ZT), where ZT 0 h corresponds to light onset.

644

645 Figure 6. Daily variations in the relative expression of maltase analyzed in tilapia larvae on 4 

646 (A), 8 (B) and 13 (C) days post fertilization (dpf) at a 12:12 LD cycle. Larvae were subjected 

647 to two different temperature regimes: a thermocycle (TC) of 31ºC:25ºC (represented by black 

648 circles, ●) or constant temperature (CTE) of 28ºC (represented by white squares, □). The 

649 sinusoidal dashed line represents the adjustment to a sinusoidal rhythm whenever the Cosinor 

650 test was significant (p<0.05). No significant differences were observed between groups and 

651 time points (two-way ANOVA, p>0.05). The white and black bars above each graph represent 

652 the light phase and dark phase, respectively. The time scale (x-axis) is expressed as Zeitgeber 

653 Time (ZT), where ZT 0 h corresponds to light onset.

654

655 Figure 7. Daily variations in the relative expression of isomaltase analyzed in tilapia larvae on 

656 4 (A), 8 (B) and 13 (C) days post fertilization (dpf) at a 12:12 LD cycle. Larvae were subjected 

657 to two different temperature regimes: a thermocycle (TC) of 31ºC:25ºC (represented by black 

658 circles, ●) or constant temperature (CTE) of 28ºC (represented by white squares, □). The 

659 sinusoidal dashed line represents the adjustment to a sinusoidal rhythm whenever the Cosinor 

660 test was significant (p<0.05). Different letters indicate statistically significant differences 

661 between time points on the same graph (two-way ANOVA, p<0.05). The white and black bars 

662 above each graph represent the light phase and dark phase, respectively. The time scale (x-axis) 

663 is expressed as Zeitgeber Time (ZT), where ZT 0 h corresponds to light onset.

664

665 Figure 8. Daily variations in the relative expression of neuropeptide Y (npy) analyzed in tilapia 

666 larvae on 4 (A), 8 (B) and 13 (C) days post fertilization (dpf) at a 12:12 LD cycle. Larvae were 
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667 subjected to two different temperature regimes: a thermocycle (TC) of 31ºC:25ºC (represented 

668 by black circles, ●) or constant temperature (CTE) of 28ºC (represented by white squares, □). 

669 The sinusoidal dashed line represents the adjustment to a sinusoidal rhythm whenever the 

670 Cosinor test was significant (p<0.05). Different letters indicate statistically significant 

671 differences between time points on the same graph (two-way ANOVA, p<0.05). The white and 

672 black bars above each graph represent the light phase and dark phase, respectively. The time 

673 scale (x-axis) is expressed as Zeitgeber Time (ZT), where ZT 0 h corresponds to light onset.

674

675 Figure 9. Daily variations in the relative expression of cholecystokinin (cck) analyzed in tilapia 

676 larvae on 4 (A), 8 (B) and 13 (C) days post fertilization (dpf) at a 12:12 LD cycle. Larvae were 

677 subjected to two different temperature regimes: a thermocycle (TC) of 31ºC:25ºC (represented 

678 by black circles, ●) or constant temperature (CTE) of 28ºC (represented by white squares, □). 

679 The sinusoidal dashed line represents the adjustment to a sinusoidal rhythm whenever the 

680 Cosinor test was significant (p<0.05). No significant differences were observed between groups 

681 and time points (two-way ANOVA, p>0.05). The white and black bars above each graph 

682 represent the light phase and dark phase, respectively. The time scale (x-axis) is expressed as 

683 Zeitgeber Time (ZT), where ZT 0 h corresponds to light onset.

684

685 Figure 10. Map of the acrophases of the digestive factors and hormones analyzed in tilapia 

686 larvae from 4, 8 and 13 days post fertilization (dpf) at a 12:12 LD cycle and by two different 

687 temperature regimes: a thermocycle (TC) of 31ºC:25ºC or constant temperature (CTE) of 28ºC. 

688 The acrophases from the larvae reared in the TC group on 4, 8 and 13 dpf are represented by 

689 black squares, triangles and circles, respectively. The acrophases from the larvae reared in the 

690 CTE group on 4, 8 and 13 dpf are represented by white squares, triangles and circles, 

691 respectively. The acrophase is indicated only for the statistically significant rhythms 

1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593



28

692 (Cosinorp<0.05). The name of each represented gene is indicated on the left. The white and 

693 black bars above the graph represent the light and dark phases, respectively. The time scale (x-

694 axis) is expressed as Zeitgeber Time (ZT), in which ZT0 h corresponds to light onset.

695

696 Supplementary Figure 1. Daily average water temperature throughout the experiments in the 

697 two temperature regimes herein tested: a thermocycle (TC) of 31ºC:25ºC (dashed line) or 

698 constant temperature (CTE) of 28ºC (continuous line). The presented data are expressed as 

699 mean±S.D. The white and black bars above the graph represent the light and dark phases, 

700 respectively. Time scale (x-axis) is expressed as Zeitgeber Time (ZT), in which ZT0 h 

701 corresponds to light onset.

702

703 Supplementary Figure 2. Standard tilapia larvae length measurement.

704
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Gene F/R Sequence (5′-3′)
Ensembl/GenBank

Accession Number

pepsinogen
F TGACCAATGACGCTGACTTG

JQ043215.1
R GGAGGAACCGGTGTCAAAAATG

chymotrypsinogen
F TTCTGCCTTCGCTTCTCATC

ENSONIG00000003237
R TTCAACGCCATCTGCTACTG

trypsinogen
F AGTGCGCAAAGAACTCTGTG

AY510093.1
R AATGTTGTGCTCACCAAGGC

lipase
F CTACAACTGCTCCACCAGCA

NM_001279753.1
R GGTGTAGTCGGTGAGCCATT

maltase 
F ACGGTGGAATCACAGGACTC

XM_005459498.4
R GAAGGCTGCTGATGTGTTCA

iomaltase
F GGATCATTCTTCTGGGACGA

XM_003441717.4
R AGGTTGTGCTGTGGGGTTAG

cck
F AGAAACTCCACGGCAAACAG

ENSONIG00000019439.1
R ACTCATACTCCTCTGCACTGC

npy
F ACACCCAACACTGCTTGAAG

ENSONIG00000004499
R TGTTGCACAGATGACGACTC

βactin
F TGGTGGGTATGGGTCAGAAAG

ENSONIG00000008505
R CTGTTGGCTTTGGGGTTCA

Table 1



Genes dpf
Acrophase (ZT h)

 
TC                CTE

pepsinogen
4 �  �
8 � �
13 � �

chymotrypsinogen
4 � 18:06 ± 3:49*
8 14:02 ± 3:56* 21:35 ± 3:11*
13 2:36 ± 5:10* �

trypsinogen
4 3:10 ± 4:52* �
8 10:11± 4:12* �
13 � �

lipase
4 3:54 ± 5:05* � 
8 � �
13 2:47 ± 3:16** �

maltase
4 � �
8 � �
13 17:27 ± 4:03* �

isomaltase
4 � �
8 � �
13 19:33 ± 2:08** 5:28 ± 4:09**

npy 
4 � 18:38 ± 4:38 *
8 � �
13 3:00 ± 3:09** �

cck
4 � -
8 - �
13 4:19 ± 3:57*  -

Cosinor *p<0.05 **p<0.01. Acrophase is not indicated for non-significant genes (p> 0.05).

Table 2



Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests: 


