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Abstract An objective Bayesian procedure for testing in the two way analysis of 
variance is proposed. In the classical methodology the main effects of the two factors 
and the interaction effect are formulated as linear contrasts between means of normal 
populations, and hypotheses of the existence of such effects are tested. In this paper, 
for the first time these hypotheses have been formulated as objective Bayesian model 
selection problems. Our development is under homoscedasticity and heteroscedastic-
ity, providing exact solutions in both cases. Bayes factors are the key tool to choose 
between the models under comparison but for the usual default prior distributions 
they are not well defined. To avoid this difficulty Bayes factors for intrinsic priors are 
proposed and they are applied in this setting to test the existence of the main effects 
and the interaction effect. The method has been illustrated with an example and com-
pared with the classical method. For this example, both approaches went in the same 
direction although the large P value for interaction (0.79) only prevents us against to 
reject the null, and the posterior probability of the null (0.95) was conclusive.
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1 Introduction

Along this paper the classical twoway analysis of variance and the usual notation of the
frequentist methodology are considered. For it, let xi j1, xi j2, . . . , xi jq , i = 1, . . . , k;
j = 1, . . . , n be nk random samples, each one of size q, from normal populations
with means μi j and a common variance σ 2 that are unknown. The two way analysis
of variance assumes that

xi jl = μi j + εi jl , i = 1, . . . , k; j = 1, . . . , n; l = 1, . . . , q, (1)

where xi jl is the l-th observation corresponding to the i-th treatment and the j-th
block, and εi jl is the l-th value of the error random variable corresponding to the
i-th treatment and the j-th block. The error random variables are independent and
identically distributed as normal variables with mean 0 and variance σ 2.

Model (1) can be rewritten as

xi jl = μ + αi + β j + γi j + εi jl ,

with
k∑

i=1

αi =
n∑

j=1

β j =
k∑

i=1

γi j =
n∑

j=1

γi j = 0,

where μ = ∑k
i=1

∑n
j=1 μi j/nk is the grand mean, αi = μi. − μ with μi. =

∑n
j=1 μi j/n is the effect of the i-th treatment, β j = μ. j −μ with μ. j = ∑k

i=1 μi j/k
is the effect of the j-th block and γi j = μi j − (μ+αi +β j ) is the interaction effect of
the i-th treatment and the j-th block. The objective of the two way analysis of variance
is to test the following hypotheses:

HT : α1 = α2 = · · · = αk = 0 (no treatments effect),

HB : β1 = β2 = · · · = βn = 0 (no blocks effect),

HT B : γi j = 0, i = 1, . . . , k; j = 1, . . . , n (no interaction effect).

Our proposal here is to develop a testing procedure to treat the two way analysis
of variance from an objective Bayesian perspective. The key idea is testing the null
hypotheses HT , HB and HT B formulating them asBayesianmodel selection problems.
This Bayesian analysis allows us to design the two way analysis of variance under the
assumptions of homoscedasticity and heteroscedasticity.

The main tool to solve an objective Bayesian model selection problem is the Bayes
factor for default priors. For the comparison of two Bayesian models, Mi : { fi (z |
θi ), πi (θi )}, where fi (z | θi ) is the parametric model to explain the data z, and πi (θi )

is the prior distribution, i = 1, 2, the Bayes factor of M2 to M1 is

B21(z) =
∫

f2(z | θ2)π2(θ2)dθ2∫
f1(z | θ1)π1(θ1)dθ1

,
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which is interpreted as the odds provided by the data for M2 to M1, see Berger and
Pericchi (2015). Usually the priors πi (θi ), i = 1, 2, are chosen as default estimation
priors πN

i (θi ), i = 1, 2, like the Jeffreys priors (Jeffreys 1961).
Unfortunately, these priors are usually improper and lead to a Bayes factor defined

up to a positive multiplicative constant. To avoid this difficulty we have computed the
Bayes factors for intrinsic priors introduced in Berger and Pericchi (1996), that is,
π I
1 (θ1) = πN

1 (θ1) and

π I
2 (θ2) = πN

2 (θ2)E f2(x |θ2)

(
mN

1 (x)

mN
2 (x)

)
,

where x is an imaginary sample of minimal size for which the predictive distribution
mN

i (x) = ∫
fi (x | θi )π

N
i (θi )dθi is finite, i = 1, 2. Note, that here we are comparing

nested models. In each situation the null hypothesis is the simpler model that will be
denoted as M1 while M2 is the complex model, that is the one with the larger number
of parameters. A more detailed explanation can be found in Bertolino et al. (2000),
and Cano et al. (2004).

To compute the intrinsic priors we have considered as default priors the conven-
tional Jeffreys priors assuming that the location and the scale parameters are a priori
independent, see Jeffreys (1961, page 138). Furthermore, the posterior probability
of the simple and complex models has been computed assigning the same prior
probability to both models. Finally, we will use the following notation, z = (x11,
. . . , xkn) is our set of data, where xi j = (xi j1, . . . , xi jq), xi j = ∑q

h=1 xi jh/q, x =∑k
i=1

∑n
j=1

∑q
h=1 xi jh/N with N = knq, s2i j = ∑q

h=1(xi jh − xi j )2 and S2 =
∑k

i=1
∑n

j=1 s
2
i j , Nq(x | μ,	) denotes the density of the q-dimensional normal dis-

tribution with mean μ and covariance 	.
In summary, we present the problem in the context of Bayesian model selection.

The usual default estimation priors cannot be used for this model selection problem
and to solve this drawback we develop the intrinsic priors. The paper is organized
as follows. For the sake of Occam’s Razor principle, in Sect. 2 a Bayes factor for
testing homoscedasticity versus heteroscedasticity is computed, which will enables us
to use the homoscedastic approach when it can be assumed. Furthermore, in Sect. 2.1
the good behavior of this Bayes factor is illustrated with an example. In Sect. 3 the
two way analysis of variance is considered in both, the homoscedastic and the het-
eroscedastic settings. In Sect. 3.1 a Bayes factor for intrinsic priors to test the global
effect of treatments and blocks on the dependent variable is computed. In Sect. 3.2
Bayes factors for testing the effects of treatments and blocks, and the interaction effect
are computed when k = n = 2. In this particular case, each one of the null hypothe-
ses are formulated as a simple linear contrast between means and Bayes factors have
been computed following the Bayesian methodology developed in Cano et al. (2016).
However, when k > 2 or n > 2 at least one of these null hypotheses is formulated
as a set of several linear contrasts. In Sect. 3.3, we develop a Bayesian solution for
simultaneously testing two linear contrasts between means of heteroscedastic popula-
tions. In Sect. 3.4 an example illustrates the reasonable behavior of the Bayes factors
computed in Sect. 3.2 for the homoscedastic case; furthermore, the results that are

123



xxx J. A. Cano et al.

obtained from the frequentist and Bayesian methodologies are compared. Finally, in
Sect. 4, we briefly summarize the results we have obtained.

2 Bayes factor for testing homoscedasticity

When homoscedasticity is present the dimension of the parameter spaces of the
models under comparison diminishes. Therefore, it is of interest testing whether the
homoscedastic assumption can be done. In a frequentist setting testing homoscedas-
ticity versus heteroscedasticity can be done using Bartlett’s test, see Snedecor and
Cochran (1989). Under the Bayesian approach the nested models to be compared are:

M1 :
⎧
⎨

⎩ f1(z|θ1) =
k∏

i=1

n∏

j=1

Nq(xi j |μi j1q , τ
2 Iq), π

N
1 (θ1) = c1

τ

⎫
⎬

⎭ , (2)

and

M2 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
f2(z|θ2) =

k∏

i=1

n∏

j=1

Nq(xi j |βi j1q , σ
2
i j Iq), π

N
2 (θ2) = c2

k∏
i=1

n∏
j=1

σi j

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (3)

where θ1 = (μ11, . . . , μkn, τ ), θ2 = (β11, . . . , βkn, σ11, . . . , σkn), c1 and c2 are
arbitrary positive constants, and πN

1 (θ1) and πN
2 (θ2) are the default prior distribution

obtained as the independent Jeffreys priors.
For sample z, the Bayes factor for the intrinsic priors corresponding to models (2)

and (3) turns out to be

BI
21(z) = 1

2
N−3kn

2 −1πkn�( N−kn
2 )

SN−kn I1, (4)

where

I1 =
∫ ∞

0
τ kn−1

⎧
⎨

⎩

k∏

i=1

n∏

j=1

∫ ∞

0

exp{−s2i j/2σ
2
i j }

(σ 2
i j + τ 2)σ

q−1
i j

dσi j

⎫
⎬

⎭ dτ.

The integral I1 can be computed by numerical integration using standard software,
e.g. Mathematica. The proof has been omitted since Bayes factor (4) is a particular
case of the Bayes factor developed in Section 5 of Bertolino et al. (2000).

2.1 Example

Next we illustrate the reasonable behavior of Bayes factor (4). We also compare the
values of the posterior probabilities of M1 with the P values of Bartlett’s test.
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Table 1 P values, Bayes factors
and posterior probabilities of M1
for different values of (s211, s

2
12)

(s211, s
2
12) P values BI

21 P(M1)

(12.83, 11.02) 0.99 0.0008 0.99

(44.32, 60.05) 0.13 0.05 0.95

(84.32, 90.05) 0.01 1.02 0.50

(230.06, 320.05) 7.27 × 10−6 5579.77 0.0001

Table 2 P values, Bayes factors
and posterior probabilities of M1
for different values of s211 and

s212 = 10.34

s211 P values BI
21 P(M1)

12.10 0.99 0.0008 0.99

75.08 0.07 0.13 0.87

110.06 0.01 1.67 0.37

210.51 0.0001 318.85 0.002

Example 1 (Testing homoscedasticity versus heteroscedasticity) Data refer to a two
way analysis of variance with three treatments and two blocks. The data are the fol-
lowing:

{
s2i j , i = 1, 2, 3, j = 1, 2

}
= {(84.32, 90.05), (10.33, 10), (12.13, 11.33)}.

Tables 1 and 2 show the P values and the posterior probabilities of M1 along with their
corresponding Bayes factors for different values of (s211, s

2
12) while the remaining

sampling values are kept fixed.
Second and third rows of Table 1 indicate that the value of the posterior proba-

bility of M1 is large for values of (s211, s
2
12) close to the remaining sampling values;

therefore the homoscedastic model is favored in these cases. However, for values of
(s211, s

2
12) far from the remaining data the posterior probability of M1 clearly favors the

heteroscedastic model as the fifth row indicates. Furthermore, the P values for these
three rows convey the same reasonable message. On the other hand, for the fourth row
the messages from the P value and the posterior probability of M1 are different. The
P value suggests rejecting the null hypothesis while the posterior probability of M1 is
not concluding.

Numbers in Table 2 show similar conclusions to those in Table 1. Second and
third rows indicate that for values of s211 close to s212 = 10.34 and to the remaining
sampling values, the P value and the posterior probability of M1 reasonability favor
the homoscedastic model; however, for values of s211 far from the remaining sampling
values, both evidence measures favor the heteroscedastic model, as it is shown in the
fourth and the fifth rows.

3 Bayes factors for the two way analysis of variance

In this Section the basic proposals of the classic two way analysis of variance are
considered from an objective Bayesian perspective; that is, Bayes factors for testing
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the null hypotheses HT , HB and HT B are computed. Nevertheless, firstly we test
whether or not there exists a global effect of treatments and blocks on the dependent
variable since if there is not such a global effect a two way analysis of variance would
not be needed.

3.1 Bayes factors for testing the global effect of treatments and blocks

Let zbeour set of data fromnormal populationswithmeansμi j , if theμi j , i = 1, . . . , k
and j = 1, . . . , n, are all equal it will not exist a global effect of the k treatments and
the n blocks on the dependent variable. Therefore, to deal with this issue a one way
analysis of variance is needed. Since the Bayesian model selection approach to the
oneway analysis of variance under homoscedasticity and heteroscedasticity have been
developed in Cano et al. (2013) and Bertolino et al. (2000), respectively, proofs will
be omitted.

The nested models to be compared are:
(a) under homoscedasticity,

M1 :
⎧
⎨

⎩ f1(z|θ1) =
k∏

i=1

n∏

j=1

Nq(xi j |μ1q , τ 2 Iq), πN
1 (θ1) = c1/τ

⎫
⎬

⎭ ,

M2 :
⎧
⎨

⎩ f2(z|θ2) =
k∏

i=1

n∏

j=1

Nq(xi j |μi j1q , σ
2 Iq), π

N
2 (θ2) = c2/σ

⎫
⎬

⎭ ,

where, θ1 = (μ, τ) and θ2 = (μ11, . . . , μkn, σ ), and
(b) under heteroscedasticity,

M1 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
f1(z|θ1) =

k∏

i=1

n∏

j=1

Nq(xi j |μ1q , τ 2i j Iq), πN
1 (θ1) = c1

k∏
i=1

n∏
j=1

τi j

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

M2 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
f2(z|θ2) =

k∏

i=1

n∏

j=1

Nq(xi j |μi j1q , σ
2
i j Iq), π

N
2 (θ2) = c2

k∏
i=1

n∏
j=1

σi j

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

where θ1 = (μ, τ11, . . . , τkn) and θ2 = (μ11, . . . , μkn, σ11, . . . , σkn).
The Bayes factors for intrinsic priors corresponding to these comparisons are given

by:
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(a) under homoscedasticity,

BI
21(z) =

2N
1
2 �( N2 )

(∑k
i=1

∑n
j=1

(
s2i j + q(xi j − x)2

)) N−1
2

π
3
2 �( N−1

2 )
I2,

where I2 =
∞∫

−∞
I1dμ and

I1 =
π/2∫

0

(g(q, θ, n, k))−kn/2

(sinθ)N−kn

⎛

⎜⎝ S2

sin2θ
+

q
k∑

i=1

n∑
j=1

(xi j−μ)2

g(q,θ,n,k)

⎞

⎟⎠

N/2 dθ,

with g(q, θ, n, k) = q(1 − 1
2kn ) + sin2θ , and

(b) under heteroscedasticity,

BI
21(z) = 23kn/2

πkn

∫ ∞
−∞

{∏k
i=1

∏n
j=1 Ii j

(
μ, xi j , s2i j , q

)}
dμ

∫ ∞
−∞

{∏k
i=1

∏n
j=1(s

2
i j + q(xi j − μ)2)−q/2

}
dμ

,

where

Ii j
(
μ, xi j , s

2
i j , q

)
=

∫ π/2

0

dθ

(sinθ)q−1g (θ, q)1/2 h
(
θ, xi j , s2i j , q

) ,

with

h
(
θ, xi j , s

2
i j , q

)
=

(
s2i j

sin2θ
+ 2q(xi j − μ)2

g (θ, q)

)q/2

,

and g (θ, q) = q + 2sin2θ . Note that the above integrals cannot be expressed in a
closed form but can be solved by numerical integration.

3.2 Bayes factors for testing the effects of treatments, blocks and the interaction

The hypotheses to be tested are:

HT : α1 = α2 = · · · = αk−1 = 0,

HB : β1 = β2 = · · · = βn−1 = 0,

HT B : γi j = 0, i = 1, . . . , k − 1; j = 1, . . . , n − 1,
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which are formulated as (k − 1),(n − 1) and (k − 1) × (n − 1) linear contrasts,
respectively. In particular, these null hypotheses in a two way analysis of variance
with two treatments and two blocks are written in the form

∑2
i=1

∑2
j=1 ai jμi j = 0

as:

HT : 1
4
μ11 + 1

4
μ12 − 1

4
μ21 − 1

4
μ22 = 0,

HB : 1
4
μ11 − 1

4
μ12 + 1

4
μ21 − 1

4
μ22 = 0,

HT B : 1
4
μ11 − 1

4
μ12 − 1

4
μ21 + 1

4
μ22 = 0.

Each one of these hypotheses can be formulated as nested model comparisons in
the following way:

(a) under homoscedasticity, the simple model, M1, is

f1(z|θ1) = Nq

⎛

⎜⎜⎜⎝x11|

⎛

⎜⎜⎜⎝

2∑

i=1

2∑

j=1
(i, j)�=(1,1)

di jμi j

⎞

⎟⎟⎟⎠ 1q , τ
2 Iq

⎞

⎟⎟⎟⎠

2∏

i=1

2∏

j=1
(i, j)�=(1,1)

Nq(xi j |μi j1q , τ
2 Iq),

with prior distribution

πN
1 (θ1) = c1

τ
,

and the complex model, M2, is

f2(z|θ2) =
2∏

i=1

2∏

j=2

Nq(xi j |βi j1q , σ
2 Iq),

with prior distribution

π N
2 (θ2) = c2

σ
,

where z = (x11, x12, x21, x22), θ1 = (μ12, μ21, μ22, τ ), θ2 = (β11, β12, β21, β22, σ )

and di j = −ai j/a11 for i = 1, 2; j = 1, 2 with (i, j) �= (1, 1), and
(b) under heteroscedasticity, the simple model, M1, is

f1(z|θ1) = Nq

⎛

⎜⎜⎜⎝x11|

⎛

⎜⎜⎜⎝

2∑

i=1

2∑

j=1
(i, j)�=(1,1)

di jμi j

⎞

⎟⎟⎟⎠ 1q , τ
2
i j Iq

⎞

⎟⎟⎟⎠

2∏

i=1

2∏

j=1
(i, j)�=(1,1)

N (xi j |μi j1q , τ
2
i j Iq),

with prior distribution

πN
1 (θ1) = c1/

2∏

i=1

2∏

j=1

τi j ,
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and the complex model, M2, is

f2(z|θ2) =
2∏

i=1

2∏

j=2

Nq(xi j |βi j1q , σ
2
i j Iq),

with prior distribution

πN
2 (θ2) = c2/

2∏

i=1

2∏

j=1

σi j ,

where z = (x11, x12, x21, x22), θ1 = (μ12, μ21, μ22, τ11, τ12, τ21, τ22), θ2 = (β11,

β12, β21, β22, σ11, σ12, σ21, σ22) and di j = −ai j/a11 for i = 1, 2; j = 1, 2 with
(i, j) �= (1, 1).

Using the theory of theBayesianmodel selection approach to simple linear contrasts
developed in Cano et al. (2016) it is obtained that, for the sample z, the Bayes factors
for the corresponding intrinsic priors are given by:

(a) under homoscedasticity,

BI
21(z) = 2π−1

∫ (
s2 + qh

(
di j , μi j , xi j

))−2q
dμ12dμ21dμ22

I2,

where I2 =
∞∫

−∞
· · ·

∞∫
−∞

I1 dμ12dμ21dμ22, with

I1 =
π/2∫

0

(sinθ)−4(q−1) (g (θ, q))−2

(
s2

sin2θ
+ qh(di j ,μi j ,xi j)

g(θ,q)

)2q dθ,

where

h
(
di j , μi j , xi j

) =

⎛

⎜⎜⎜⎝x11 −
2∑

i=1

2∑

j=1
(i, j)�=(1,1)

di jμi j

⎞

⎟⎟⎟⎠

2

+
2∑

i=1

2∑

j=1
(i, j)�=(1,1)

(xi j − μi j )
2,

and g (θ, q) = (1 − 1
8 )q + sin2θ , and

(b) under heteroscedasticity,

BI
21(z) = 26 I3

π4 I1
,
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where

I1 =
∫

⎛

⎜⎜⎜⎝s211 + q

⎛

⎜⎜⎜⎝x11 −
2∑

i=1

2∑

j=1
(i, j)�=(1,1)

di jμi j

⎞

⎟⎟⎟⎠

2⎞

⎟⎟⎟⎠

−q/2

×
2∏

i=1

2∏

j=1
(i, j)�=(1,1)

(s2i j + q(xi j − μi j )
2)−q/2dμ12dμ21dμ22,

with I3 =
∞∫

−∞
· · ·

∞∫
−∞

I2 dμ12dμ21dμ22, where

I2 =
π/2∫

0

dθ

(sinθ)q−1(g(θ, q))1/2

⎛

⎝ s211
sin2θ

+ 2q
g(θ,q)

(
x11 − ∑2

i=1
∑2

j=1
(i, j)�=(1,1)

di jμi j

)2
⎞

⎠

q
2

×
2∏

i=1

2∏

j=1
(i, j)�=(1,1)

⎛

⎜⎜⎜⎝

π/2∫

0

dθ

(sinθ)q−1(g(θ, q))1/2
(

s2i j
sin2θ

+ 2q
g(θ,q)

(xi j − μi j )2
) q

2

⎞

⎟⎟⎟⎠ ,

and g(θ, q) = q + 2sin2θ .
Nevertheless, when k > 2 or n > 2 some of the null hypotheses HT , HB and HT B

are formulated as a set of several linear contrasts. In these cases, theBayesian procedure
developed inCano et al. (2016) cannot be used and amethod for simultaneously testing
several linear contrasts is needed. For the sake of brevity we have developed a solution
for simultaneously testing two linear contrasts in the general heteroscedastic case. The
results that have been obtained are the following.

3.3 Simultaneous testing of two linear contrasts for heteroscedastic populations

Let N
(
x1|μ1, σ

2
1

)
, . . . , N

(
xk |μk, σ

2
k

)
be k normal distributions with means μ1, . . . ,

μk and variances σ 2
1 , . . . , σ 2

k unknown. The key idea is to find a reparameterization
allowing us to simultaneously test two independent linear contrasts. For it, we consider
the two following independent linear contrasts:

0 = a11μ1 + a12μ2 + · · · + a1kμk, (5)

0 = a21μ1 + a22μ2 + · · · + a2kμk, (6)
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with k > 2. Without lost of generality, this system of two equations can be written as

μ1 =
k∑

i=3

b1iμi , μ2 =
k∑

i=3

c2iμi .

Now, simultaneously testing the two linear contrasts (5) and (6) above can be
formulated as aBayesianmodel selection problem,where the density function f1(z|θ1)
for the simple model, M1, is

Nn1

(
x1|

(
k∑

i=3

b1iμi

)
1n1, τ

2
1 In1

)
Nn2

(
x2|

(
k∑

i=3

c2iμi

)
1n2 , τ

2
2 In2

)

×
k∏

i=3

Nni (xi |μi1ni , τ
2
i Ini ),

with πN
1 (θ1) = c1/

∏k
i=1 τi , and the complex model, M2, is

f2(z|θ2) =
k∏

i=1

Nni

(
xi |βi1ni , σ

2
i Ini

)
,

with πN
2 (θ2) = c2/

∏k
i=1 σi , where z = {x1, . . . , xk}, θ1 = (μ3, . . . , μk, τ1, . . . , τk)

and θ2 = (β1, . . . , βk, σ1, . . . , σk).
The sampling model M1 is nested in M2 and for the priors above the minimal

training sample is a 2k−dimensional random vector that consists of two observations
from each population, see Berger and Pericchi (1996). Applying the standard intrinsic
priors methodology we have obtained the following result.

Theorem 1 The intrinsic priors for comparing model M1 versus model M2 are
{πN

1 (θ1), π
I
2 (θ2)} with π I

2 (θ2) = ∫
π I
2 (θ2|θ1)πN

1 (θ1)dθ1, where

π I
2 (θ2|θ1) = N

(
β1|

k∑

i=3

b1iμi ,
τ 21 + σ 2

1

2

)
N

(
β2|

k∑

i=3

c2iμi ,
τ 22 + σ 2

2

2

)

×
k∏

i=3

N

(
βi |μi ,

τ 2i + σ 2
i

2

)
k∏

i=1

HC+(σi |0, τi ),

and HC+(σ |0, τ ) denotes the half Cauchy density.

Proof It is obtained adapting the proof of Theorem 1 in Bertolino et al. (2000).
For the sample z, the Bayes factor for these intrinsic priors turns out to be

BI
21(z) = 2

3k
2 I3

πk I1
, (7)
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where

I1 =
∫ ⎛

⎝s21 + n1

(
x1 −

k∑

i=3

b1iμi

)2⎞

⎠
−n1/2

×
⎛

⎝s22 + n2

(
x2 −

k∑

i=3

c2iμi

)2⎞

⎠
−n2/2

×
k∏

i=3

(s2i + ni (xi − μi )
2)−ni /2dμ3 . . . dμk,

and I3 =
∞∫

−∞
· · ·

∞∫
−∞

I2 dμ3 . . . dμk, with

I2 =
π/2∫

0

dθ

(sinθ)n1−1(g(θ, n1))1/2
(

s21
sin2θ

+ 2n1
g(θ,n1)

(
x1 − ∑k

i=3 b1iμi

)2)
n1
2

×
π/2∫

0

dθ

(sinθ)n2−1(g(θ, n2))1/2
(

s22
sin2θ

+ 2n2
g(θ,n2)

(
x2 − ∑k

i=3 c2iμi

)2)
n2
2

×
k∏

i=3

⎛

⎜⎜⎜⎜⎝

π/2∫

0

dθ

(sinθ)ni−1(g(θ, ni ))1/2
(

s2i
sin2θ

+ 2ni
g(θ,ni )

(xi − μi )2
) ni

2

⎞

⎟⎟⎟⎟⎠
,

where g(θ, n) = n + 2sin2θ .
Note that expression (7) is computed by first integrating out the βi

′
s and then

transforming (τi , σi ) to polar coordinates. It is not possible to compute integrals I1
and I3 analytically but this is not a serious inconvenience, as they can be approximated
numerically with an appropriate software such as Mathematica or some common
simulation techniques, see Robert and Casella (2001).

3.4 Example

To illustrate the Bayesian methodology developed in this Section we have applied it to
Example 1 in Rohatgi (1984, page 822). Furthermore, we have compared our results
with those obtained from the frequentist approach.

Example 2 (Comparing Two Workers in Two Machines) Suppose we wish to test
whether there are any differences in two machines that are used by two workers.
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Table 3 Number of units
produced per day for every
worker and machine,
respectively

Source Machine 1 Machine 2

Worker 1 69, 68, 72, 74, 75 95, 98, 100, 96, 97

Worker 2 81, 88, 84, 87, 88 105, 110, 107, 112, 118

Table 4 Frequentist analysis of variance for data in Table 3

Source DF SS MS P values

Workers and machines 3 4100.8 1366.93 4.91 × 10−11

Workers 1 924.8 924.8 1.54 × 10−7

Machines 1 3175.2 3175.2 2.12 × 10−11

Interaction 1 0.8 0.8 0.79

Error 16 190.4 11.9 –

Total 19 4291.2

Table 5 Bayes factors and
posterior probabilities of M1 for
the two way analysis of variance
for data in Table 3

Source BI
21 P(M1)

Workers and machines 1.69 × 108 5.90 × 10−9

Workers 67.47 0.01

Machines 2.96 × 1010 3.37 × 10−11

Interaction 0.05 0.95

Suppose, further, that four weeks are selected for this study, each week consisting of
five working days. During the first and the second week worker 1 is used and during
the third and the fourth week worker 2 is used. Machine 1 is used during the first and
the third week and machine 2 is used during the second and the fourth week. Suppose
that other conditions are identical. Data in Table 3 are the number of units produced
per day.

There are two factors to be considered here. The firs one is the effect of the workers
and the other one is the effect of themachines. Furthermore, the effect of the interaction
between the workers and the machines is to be considered too. The results of the
frequentist analysis of these effects are summarized in Table 4.

Second row of Table 4 indicates that there is a joint effect of the two factors. This
effect is decomposed as follows, third and fourth rows indicate that there is an effect
on the production that can be attributed to differences in the workers and another one
attributed to differences in the machines. On the other hand, there is no interaction
between workers and machines as it can be seen from the fifth row.

From our objective Bayesian approach the results obtained are displayed in Table 5,
where it is shown that all the rows convey similar conclusions to those in Table 4.
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4 Summary

We have found a satisfactory objective Bayesian model selection approach to the
classic two way analysis of variance. We have shown how objective model selection
priors like intrinsic priors can be applied in the two way ANOVA model. This model
is nowadays very used, and therefore we will continue our research using other type
of priors.

Our development is in both the homoscedastic and the heteroscedastic settings and
hence deserves special attention since the exact frequentist analysis of variance is
based on the homoscedastic assumption. Furthermore, a well behaved Bayes factor
for testing homoscedasticity versus heteroscedasticity have been computed too.

A detailed two way analysis of variance is only needed if a joint effect of treatments
and blocks on the dependent variable is previously detected; therefore, we have firstly
focussed on this question. On the other hand, the effects of the two factors and the
interaction effect have been formulated as linear contrasts between means of normal
populations and the Bayesian methodology approach to simple linear contrasts devel-
oped in Cano et al. (2016) have been used to study the existence of these effects in
the particular case when k = n = 2. An example illustrates the good behavior of the
Bayes factor for this particular analysis of variance. However, when k > 2 or n > 2
at least some of the classic null hypotheses is formulated as a set of several linear
contrasts. For the sake of brevity, we have developed a solution to simultaneously
testing two linear contrasts between means in the general heteroscedastic case. Note
that when we have more than two simultaneous linear contrasts the complexity of the
involved computation is not increased. Furthermore, the integrals needed to compute
the Bayes factors can be solved by numerical integration with current software, as
Mathematica, or some common simulation techniques.
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