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Strongly interacting confined quantum systems
in one dimension
A.G. Volosniev1, D.V. Fedorov1, A.S. Jensen1, M. Valiente2 & N.T. Zinner1

In one dimension, the study of magnetism dates back to the dawn of quantum mechanics

when Bethe solved the famous Heisenberg model that describes quantum behaviour in

magnetic systems. In the last decade, one-dimensional (1D) systems have become a forefront

area of research driven by the realization of the Tonks–Girardeau gas using cold atomic gases.

Here we prove that 1D fermionic and bosonic systems with strong short-range interactions

are solvable in arbitrary confining geometries by introducing a new energy-functional

technique and obtaining the full spectrum of energies and eigenstates. As a first application,

we calculate spatial correlations and show how both ferro- and antiferromagnetic states are

present already for small system sizes that are prepared and studied in current experiments.

Our work demonstrates the enormous potential for quantum manipulation of magnetic

correlations at the microscopic scale.
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S
trongly interacting quantum particles are ubiquitous in
nature and play a vital role in superfluidity, superconduc-
tivity and magnetism, and low-dimensional magnetic

systems have great potential to deliver the key insights into
fundamental properties of the materials used in modern
technology1. The study of magnetism in one-dimension (1D)
goes back to the dawn of quantum mechanics when Bethe solved
the Heisenberg model by introducing the famous Bethe ansatz
method2. During the 1960s the technique was used to solve
several paradigmatic models including the Lieb–Liniger model of
repulsive bosons3, impurity problems with fermions by
McGuire4,5 and Yang’s solutions of homogeneous two-
component Fermi systems6 that led to Lieb and Wu’s solution
of the 1D Hubbard model in 1968 (ref. 7). Common to the
theoretical models is that periodic or open boundaries are
essential ingredients, and the Bethe ansatz cannot be applied for
general confinement, which is nevertheless the reality in many
state-of-the-art set-ups that have for instance been used to realize
the Tonks–Girardeau8,9 gas using cold bosonic atoms10–12.

We present a new functional method that is specifically
designed to overcome these problems and include the external
confining geometry exactly in the strongly interacting regime to
linear order in the inverse interaction strength. Furthermore, it
can be used to interpolate from few to mesoscopic particle
numbers and address how spatial correlations emerge and
evolve13–16. Our basic example below is a four-body system of
two spin up and two spin down fermions in an external trap that
is solved exactly for the first time here. Direct access to the wave
function allows us to see ferro- and antiferromagnetic
correlations in the eigenstates and give exact probabilities for
these configurations. This is an extremely important feature of
this new approach as multicomponent systems become highly
degenerate for strong interactions, and thus the energy itself
yields little information about the system. Furthermore, we solve
exactly the impurity or polaron problem of one spin down
interacting strongly with a number of spin up particles in a
harmonic trap, a set-up that has been realized experimentally16.
This allows us to compare different confining potentials and show
that correlations are strongly influenced by the geometry. This
has ramifications on density functional approaches for strong
interactions, and our scheme can provide invaluable benchmarks
of procedures where Bethe ansatz solutions obtained with
periodic boundary conditions are supplemented by the local
density approximation. For finite particle numbers, periodic
boundary conditions is a strong assumption whose justification
can now be addressed using exact solutions. Ultimately, our
method could realize the goal of answering the key question: how
many particles does it take to make a strongly interacting many-
body system?

Results
Derivation of the energy functional. The general system we
consider has N particles of mass m with coordinates x1,y, xN and
is described by the Hamiltonian

H ¼
X
i

p2i =2mþVðxiÞ
� �

þ g
X
i4j

dðxi � xjÞ; ð1Þ

where pi is the momentum operator of particle i and V(xi) is an
external confining potential. We assume a short-range two-body
interaction that we model by a Dirac delta function of strength g.
In the following, we are interested in the strongly interacting limit
where g-N (or 1/g-0). For simplicity, our focus will be the
repulsive case (g40), although our results can be extended lin-
early to the attractive side (go0) of 1/g¼ 0. The deeply bound
states for g - �N (refs 17,18) are irrelevant for our arguments

and will not be addressed here. The external potential produces
an energy scale, E, and a length scale, l, in which we will express all
other quantities. In the examples below, we will consider a
double-well potential, V(x)¼mo2(|x|� b)2/2, with barrier
parameter, b, and a hard wall potential of length L that
vanishes for 0oxoL and has infinite strength for xo0 and
x4L. A double-well potential has recently been realized
experimentally15,19. For b¼ 0, the double well reduces to the
harmonic oscillator potential from which we adopt our units of
length, l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘=mo

p
, and energy, E¼ ‘o. Here o is the oscillator

angular frequency and ‘ ¼ h/2p is the reduced Planck’s constant.
For the hard wall, we have l¼ L and E¼ ‘ 2/2mL2. Henceforth, we
will measure lengths, energies and g in these units. Our focus will
be on fermions with two internal spin states, up and down.
Systems with more than two internal states can be addressed in a
similar manner (see Methods).

A general eigenstate wave function has the form C(x1,y, xN).
For simplicity, we omit the coordinates from now on. The zero-
range interaction implies that C obeys the boundary conditions

1
2g

@C
@xi

� @C
@xj

� �
þ
� @C

@xi
� @C

@xj

� �
�

" #
¼ Cðxi ¼ xjÞ; ð2Þ

where the ±subscripts indicate the limits xi� xj-0±, that is,
they are derivatives from each side of the point xi¼ xj. In the limit
where 1/g-0, the boundary conditions and the Pauli principle
imply that C must vanish whenever xi¼ xj for any i and j. Such
functions can be constructed from the eigenstates of the single-
particle Hamiltonian (the first term in equation (1)) by taking the
antisymmetrized product of N states. This state we denote CA. Its
energy, EA, is a sum of the occupied single-particle energies.
However, the boundary conditions allow us to write a more
general state on the basis of CA

9,20–22,

C ¼
XN !

k¼1

akyðxPkð1Þ; . . . ; xPkðNÞÞCAðx1; . . . ; xNÞ; ð3Þ

where we sum over the N! permutations, Pk, of the N coordinates,
and y(x1,y,xN)¼ 1 when x1ox2oyoxN and zero otherwise.
Fortunately, symmetries reduce the number of independent ak
coefficients. For the present case of two-component fermions, the
Pauli principle dictates that there are only M¼N!/(Nm!Nk!)
degrees of freedom. This is the number of degenerate states at
1/g¼ 0, which shows that the functions in equation (3) constitute
a basis. The basic idea is now very simple. To linear order in 1/g
we can write E¼ EA�K/g, where K¼K(a1,y,aM) is a functional
of the ak coefficients and is independent of g by the Hellmann–
Feynman theorem. One can now prove that K has the simple
form (see Methods)

K ¼

P
k;p

ak;pðak � apÞ2P
k
a2k

; ð4Þ

where k and p run from 1 to M, and ak,p are matrix elements that
depend only on the single-particle potential, V(x). The
eigenfunctions and eigenenergies to order 1/g can now be
obtained by variation of K with respect to ak and diagonalizing
the resulting matrix. K is equivalent to Tan’s contact parameter23

in 1D24 and we compute it exactly for 1/g-0. Furthermore, the
derivation can be easily extended to multicomponent bosons,
fermions or mixtures, and it provides an effective Hamiltonian
that can be used to study perturbations in the strongly interacting
limit (see Methods for details).

Remarkably, in the strongly interacting regime, the effective
Hamiltonian can always be written as a spin model. In the
important case of N spin 1/2 fermions or two-component bosons
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governed by the Hamiltonian in equation (1), it is a Heisenberg
model of the form

PN � 1
i¼1 JiSi � Siþ 1 (ref. 25,26), which is a

favourite starting point for research into quantum magnetism27.
Here Si is the spin operator of particle i. It has been shown20 that
for a half-filled Hubbard model, Ji¼ J is constant. This is obtained
by using the Bethe ansatz and by the same method one can also
prove that Ji¼ J for particles in hard wall (box) confinement28.
Our approach generalizes these important results and not only do
we find that Ji depends on the external confinement but also
provide a procedure for computing these nearest-neighbour
interaction coefficients exactly. We may therefore use the external
confinement to tailor the Ji coefficients into desirable spin models
and thus manipulate static and dynamic quantum magnetic
correlations26. Note also that this is not only true for the ground
state manifold but also for higher manifolds as illustrated in
Fig. 1a. Each manifold will have its own unique set of Ji
coefficients that we can compute exactly. In the language of the
Hubbard model, one can think of higher manifolds as belonging
to higher bands.

Four-body systems. A central example is the hitherto unsolved
four-body problem since it illustrates the method and it allows us
to address magnetic correlation physics. We take Nm¼Nk¼ 2
with an M¼ 4!/(2!)2¼ sixfold degeneracy at 1/g¼ 0 as shown in
Fig. 1a for the case of a harmonic trap (b=0). In general, the
spectrum around 1/g-0 has the form of a ladder of manifolds
each of which contains an M-fold ‘fan’ of states as illustrated in
Fig. 1a. For the ground state manifold we also show the adiabatic
connection of states from weak to strong coupling where the third
and fourth excited states are initially degenerate at g¼ 0. The
parity invariance of the double well and hard wall potentials
means that the three types of spatially correlated states shown in
Fig. 1b,c, ferromagnetic, antiferromagnetic and mixed, completely

specify all solutions at 1/g¼ 0. Figure 1b shows the configuration
probabilities for C1 and the state C4 for the hard wall, which
turns out to have exact opposite ferro- and antiferromagnetic
probabilities compared with the ground state. In Fig. 1d we show
the double-well probabilities as functions of b for C1 and C3,
again picked as examples because of their significantly different
correlations. In both cases we find a ground state that is
dominantly spatially antiferromagnetic, and perhaps more
remarkably we find excited states that are dominantly spatially
ferromagnetic. Preparing different states at g¼ 0 and then tuning
to 1/g¼ 0 (refs 14,16) would thus produce completely different
correlation patterns. Note that if one considers two-component
bosons instead of fermions the results are very different
(see Methods).

One can understand intuitively what is going on by looking at
equation (4). The antiferromagnetic configuration is favoured
since (ai� aj)2 is large for ai and aj differing in both sign and
magnitude. The functional approach presented here thus provides
a very precise mathematical insight into the preference for
domain walls of opposite spin in the strongly interacting regime
and provides a spatial explanation of antiferromagnetism in
repulsively interacting 1D systems. Moreover, our results also
demonstrate the potential for manipulating correlations by state
preparation and trap shape modulation. A step in this direction
was recently reported using anisotropic optical lattices15. Most
often one discusses ferromagnetism induced by symmetry
breaking. We clearly have the presence of a degenerate
manifold of states to induce such breaking and a small spin
gradient is enough to drive the system into a purely ferromagnetic
state. However, our direct access to the exact wave function
demonstrates the presence of intrinsic magnetic correlations even
without breaking the spin symmetry. More generally, our method
can be used to study the correlations that drive quantum phase
transitions in larger systems using exact wave functions.
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Figure 1 | Four-body system with two spin up and two spin down particles. (a) Schematic spectrum of eigenstates showing the ground state and an

excited state manifold. The slopes at infinite g will generally be different around E0 and E1. For the ground state manifold, we indicate the adiabatic

connection between the strongly and weakly interacting regime for a harmonic trap (b¼0). The red lines are positive, while the green lines are negative

parity states. The structure around 1/g¼0 is the same for both double-well and hard wall traps, although the slopes are different. (b) Hard wall trap

configurations and their probabilities for C1 and C4 that have opposite antiferromagnetic (AF) and ferromagnetic (F) contributions. The probabilities

include both the configurations shown and their parity inverted partners that are equal. (c) Same as b for the double-well trap. (d) The probability to find

the three configurations in c as function of the barrier parameter, b, for the ground state, C1, and an excited state, C3.
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Impurity problems. As another demonstration of the nature of
the strong coupling regime, we consider the case of a single spin
down (impurity) interacting with a variable number of spin up
fermions. An impressive recent experiment has considered this
system for Nr6 (ref. 16). As the energy at 1/g-0 is degenerate,
further insight into the strongly interacting regime has to come
from correlations in the N-body wave functions. Here we
consider the probability for the impurity to tunnel out of the
trap as shown in Fig. 2a. In a simple model, we assume that
because of the strong repulsion only the particle on the far right
can tunnel out as the barrier is lowered (see Methods for details).
Since the wave function in equation (3) contains a superposition
of states with the impurity in different positions, the probability is
simply given by the amplitude for it to be on the right, aN. In
Fig. 2b we plot the impurity tunnelling probability, Pk¼ |aN|2, for
N¼ 2,y, 10 for the ground state of both a harmonic trap and a
hard wall potential (see Methods for details). The results for
N¼ 2 and 3 are trap-independent, while for NZ4 we see a clear
geometrical dependence. In particular, we find that the scaling
with N is completely different; whereas by a fit we find
approximately PkpN� 3 for the hard wall, the harmonic trap is
not a power law but rather closer to a 1/N! behaviour as seen in
the inset of Fig. 2b. The exact results thus allow us to conclude
that geometry has a strong effect on correlations in the wave
function. The exact wave functions also show that the impurity
has a peak in its probability density at the centre of the trap. This
is already true for N¼ 3 and shows that for strongly interacting
systems, studying the few-body limit gives insight into the
behaviour of larger systems. Also note that the combination of
McGuire’s solution (using periodic boundary conditions)4 and
the local density in the trap29 can only capture the energy in the
strongly interacting regime but does not reproduce the energy
slope to order 1/g. The 1/N line in Fig. 1b applies to the

non-interacting state CA (which is often referred to as the
’fermionized’ state). More importantly, 1/N is also the probability
obtained if the spin up particles had instead been strongly
interacting bosons (see Methods for further details). This
demonstrates a very strong deviation from the common
perception of the similarity of strongly interacting fermions and
bosons in 1D.

Discussion
The strongly interacting regime is very difficult to access both
numerically and analytically because of many (nearly) degenerate
energy eigenstates. The present approach finds the exact solution
to linear order in 1/g in a manner that automatically yields
eigenstates that are adiabatically connected to the eigenstates for
smaller values of g. Combining our analytical approach with
numerical techniques that perform well in the weakly and
intermediate strength regime will allow us to access the
quantitative and qualitative behaviour of 1D systems in arbitrary
confining geometries. Furthermore, our approach provides a
necessary starting point for including higher orders in 1/g (refs
30,31) and it represents an essential benchmark for numerical
calculations. References 17,18,25 contain recent numerical
calculations very close to the 1/g¼ 0 limit. The results presented
here are in agreement with those calculations. A leading numerical
method used for 1D systems is the density matrix renormalization
group technique. As this is intrinsically a variational approach, it is
not clear how well it will perform in strongly interacting limit for
multicomponent systems where the degeneracy of the spectrum is
large. In addition, our method can provide a fairly simple
benchmark of density matrix renormalization group by using the
exact slopes of the energy as 1/g-0.

It is extremely important to note that with no extra effort our
method obeys the Lieb–Mattis theorem32, which states that the
energies may be ordered according to total spin, S, with the
ground state having the minimal S. It is tempting to conclude that
the exact solution can be obtained by constructing eigenstates
with well-defined total spin at 1/g¼ 0, and many previous
attempts to solve this problem have been based on spin algebra
and spin mappings in one way or another21,22. However, this
construction is not unique and our method demonstrates that the
condition is insufficient to determine the eigenstates to order 1/g
for N43 for multicomponent systems where M43. Insisting on
states that are eigenstates of the total spin provides just one extra
constraint and this is not enough to determine all the coefficients
ak. A more direct way to see that the spin algebra approach is
incomplete is to note that the construction of the spin functions
ignores the confinement V(x)22. While it does yield eigenstates in
the strict limit 1/g¼ 0, the spin states obtained for N43 are
generally not adiabatically connected to states at large but finite g.
The method presented here overcomes this naturally by
extremizing the slope of the energy as the criteria that
determines the eigenstates.

Several previous papers have introduced Bose–Fermi and
Fermi–Fermi duality mappings for interacting 1D systems33–36.
This is a very nice mathematical tool for transforming between
strongly and weakly interacting systems; however, it must be
stressed that these techniques cannot be used to solve the problem
considered here. Many of these techniques start from the
antisymmetrized noninteracting state and then multiplies by a
factor that ensures that under exchange of two particles the sign
comes out correctly (plus for two bosons and minus for two
fermions). As we have clearly shown, the coefficients (ak) are
generally not integer. For multicomponent systems and for Bose–
Fermi mixtures, duality mappings must be supplemented by
knowledge of the solution on either the fermion or boson side of
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Figure 2 | Tunnelling of a strongly interacting impurity in a Fermi sea.

(a) Illustration of a tunnelling experiment where the trap is opened on one

side and the out-going particle and its spin is detected14 for the case of

Nm¼ 3 and Nk¼ 1. (b) Probability to find the spin down impurity on the far

right for Nm¼ 1,?, 9 in a b¼0 harmonic trap (solid) and a hard wall

trap (dashed) for the ground state. The dotted line is 1/N and is the

probability in both traps for the non-interacting state, CA. It is also the

result if the Nm majority particles are strongly interacting identical bosons.

The inset shows the same data on a double-log plot. The dash-dotted

line is 1/N! for comparison.
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the duality transformation. Without our solution one would
merely be mapping into another unsolved problem. On the other
hand, combining our technique and duality transformations we
expand the class of solvable systems.

Methods
Details of the energy-functional derivation. As noted in the main text, in the
strongly interacting limit, 1/g-0, the boundary conditions in equation (2) imply
that the total wave function C must vanish whenever xi¼ xj. For two identical
fermions, this is trivial since the Pauli principle dictates that both sides of
equation (2) vanish. For non-identical particles, the wave function must still vanish
when they overlap; however, the derivatives from each side can generally be
different since the Pauli principle provides no restrictions. The basic idea of our
method is now very simple. First construct an antisymmetric function, CA,
with energy EA using single-particle states as described in the main text. The
most general N-body wave function is shown in equation (3). The number of
independent coefficients in equation (3) can be deduced from Pauli symmetry to be
M¼N!/S, where the symmetry factor is calculated according to the number of
groups of identical particles in the system; S¼N1!N2!yNn! if there are n groups of
identical particles with N1,N2,y,Nn in each group. Now we can construct an
energy-functional, K(a1,y,aM), such that E¼ EA�K/g. Subsequently, we vary K
with respect to ak and diagonalize the resulting linear system to obtain the exact
eigenstates and slopes of the energy to linear order in 1/g. Intuitively, the functional
gives the slopes of the energy so that the ground state on the repulsive side (g40)
around 1/g¼ 0 will maximize K, the first excited state will be the next extreme
point, and so on.

The proof of equation (4) is an exercise in application of techniques
from standard quantum mechanics. Using either perturbation theory or the
Hellmann–Feynman theorem, we have

K ¼ � @E
@g � 1

¼ g2
@E
@g

¼ lim
g!1

g2

P
i4j

R QN
k¼1 dxk j C j 2 dðxi � xjÞ

hC j Ci ; ð5Þ

where the Dirac bracket /C|CS denotes the normalization integral. The
dependence on g can be eliminated by using equation (2) in equation (5) that
yields

K ¼ 1
4

P
i4j

R QN
i¼1 dxidðxi � xjÞ @

@xi
� @

@xj

� �
xi � xj!0þ

� @
@xi

� @
@xj

� �
xi � xj!0�

	 

C

����
����
2

hC j Ci ;

ð6Þ
where it is important that one first evaluates the derivatives and then integrates out
the delta function. Note that if i and j are the indices of identical fermions, then the
Pauli principle requires antisymmetry under permutation and we get a vanishing
contribution to K. We can now split this integral into N! sectors with different
particle orderings, that is,

K ¼ 1
4

P
ioj

P
k

R
Gk

QN
i¼1 dxidðxi � xjÞ @

@xi
� @

@xj

� �
xi � xj!0þ

� @
@xi

� @
@xj

� �
xi � xj!0�

	 

C

����
����
2

hC j Ci ;

ð7Þ
where we sum over permutation of the coordinates, Pk, and the integration regions,
Gk, are such that xPk 1ð ÞoxPk 2ð Þo:::oxPk Nð Þ. This is very much in the spirit of the
Bethe ansatz of course. In the Bethe ansatz, the assumption is that the two-body
potential scatters without diffraction37. In our case, the very notion of scattering is
compromised by the presence of the external trap and not even asymptotically can
we talk about free particles in a general confining 1D geometry. Here we use
instead the local properties of the two-body interaction.

From every boundary where two particles coincide, we will obtain a factor
(ak� ap)2 times a derivative of CA. If they are identical fermions, then ak¼ ap and
the term vanishes; however, to keep it general we do not make such an assumption
here. K can thus be written as a sum of quadratic differences of the ak coefficients.
Likewise, we may use the normalization C Cjh i ¼

P
k a

2
k (corresponding to unit

normalization on each of the M sectors in the expansion equation (3)). Therefore,
K can be written as

K ¼

P
k;p
ðak � apÞ2ak;pP

a2k
; ð8Þ

where k and p run over the number of independent coefficients M¼N!/S and we
have used the antisymmetry of CA to eliminate the factor 1/4. This is equation (4)
of the main text. The quantity ak,p is defined as

ak;p ¼
Z
Gk

dx1 . . . dxNdðxi � xjÞ
@CA

@xi

� �����
����
2

: ð9Þ

In addition, we first have to take the derivative before integrating over the delta
function. Here Pk is a permutation of the coordinates that has the property that xi

and xj are next to each other so that they can interact, while p denotes a
permutation, Pp, of the same kind but with xi and xj in reverse orders. This shows
why we do not need to put the index p explicitly on the right-hand side since
it is uniquely specified for given k, i and j. Note that these integrals will generally
also depend on the ordering of all the other particles besides xi and xj, which is
specified by Pk.

The decisive observation is that the ground state in the vicinity of 1/g-0 will be
the state that maximizes the slope K. In fact, all sets of ak that extremize K define a
wave function that is an eigenstate around 1/g-0, and these will be orthogonal.
This is proved as follows. First define a basis of states given by setting ak¼ 1 and
ap¼ 0 for pak; this defines a set of M so-called bump functions that all have
energy EA through CA. We now apply degenerate perturbation theory to first
order, which yields a secular matrix (to be discussed below) whose eigenvalues are
the slopes Ki and eigenstates are the correct eigenfunctions for 1/g-0. The result
now follows from the linear variation method, which states that the extremizing
combinations are orthogonal eigenstates. We have just shown that we can use
either degenerate perturbation or variation to find the exact wave functions for the
ground state for 1/g-0 and we obtain the slopes, K, automatically. It is
straightforward to argue for the adiabatic connection of the ground state at g¼ 0
and the ground state around 1/g-0þ for the lowest EA value possible where CA

constructed by one particle in each of the N lowest single-particle states. This
follows from the Lieb–Mattis theorem and the fact that the largest total spin state is
uniquely defined. For higher states, one must be more careful in connecting the
states, and symmetry classifications at both weak and strong interactions is a very
useful tool38. However, we stress that symmetries (permutation group, parity
invariance and so on) cannot be used to determine the ak coefficients themselves
for general external confinement and arbitrary number of particles.

The determination of the amplitudes, ak, now proceeds by linearization
of the functional, qK/qak¼ 0. This produces an eigenvalue equation of the form
Au¼Ku, where u is a vector with ak as entries, while A is a symmetric matrix
containing combinations of the ak,p coefficients. By diagonalizing A we obtain the
orthogonal and complete set of eigenstates. This completes the proof of the
solvability of the strongly interacting problem in an arbitrary confining potential
in 1D to linear order in 1/g. The derivation above allows us to write down the
effective strong interaction Hamiltonian Heff¼ EAIM� (1/g)A, where IM is an
M-dimensional identity matrix. Heff can be used to study additional perturbations
on the system such as external electromagnetic fields in the strongly interacting
regime.

The exact solutions generically have different ak coefficients (in fact a subset of
coefficients can even vanish in a given eigenstate). This explains why it is very
difficult to achieve convergent results in the strongly interacting limit using
numerical techniques that are not optimized to take this into account. By taking
different CA with different energies EA we can now build the entire spectrum that
will consist of a ladder of states each with an M-fold degeneracy at 1/g¼ 0 and
determine their slopes, K, around 1/g¼ 0. This is illustrated for ground state and
excited state manifolds in Fig. 1 in the main text.

Fermions with I42 internal states or colours (such as an SU(I) model) are
solved by exactly the same method but with a different M, depending on the
number of such colours. A minor adjustment for strongly interacting bosons is that
when two identical bosons are interchanged in permutations Pk and Pp of
equation (4), we must take ak¼ � ap to compensate the antisymmetry of CA and
consequently add a term 4akpa2k to the numerator in equation (8) to account for the
interactions in equation (1). Mixtures of fermions and bosons run along the same
lines. Our only assumptions are that the particles have equal masses, the same
interaction strength g between all components and a confining potential, V(x),
which is the same for all particles.

Details for four-body systems. The two spin up and two spin down systems
discussed in the text have the general wave function

C ¼

a1CA for x1ox2ox3ox4 ð""##Þ
a2CA for x1ox3ox2ox4 ð"#"#Þ
a3CA for x3ox1ox2ox4 ð#""#Þ
a4CA for x1ox3ox4ox2 ð"##"Þ
a5CA for x3ox1ox4ox2 ð#"#"Þ
a6CA for x3ox4ox1ox2 ð##""Þ

8>>>>><
>>>>>:

ð10Þ

where we have fixed x1 and x2 to be spin projection up, while x3 and x4 have spin
projection down. The topology of each configuration is indicated by the arrows.
Note that we have only written the independent pieces of the wave function; the
remaining terms are dictated by the Pauli principle. In the example we consider the
ground state manifold (lowest energy at 1/g¼ 0), meaning that CA(x1, x2, x3, x4) is
the antisymmetric function formed by occupying the four lowest states in the
confining potential. The functional for the energy around 1/g¼ 0 using this basis
becomes

K ¼ a1;2ða1 � a2Þ2 þ a2;3ða2 � a3Þ2 þ a2;4ða2 � a4Þ2 þ a3;5ða3 � a5Þ2 þ a4;5ða4 � a5Þ2 þ a5;6ða5 � a6Þ2P6
k¼i a

2
k

;

ð11Þ

where we notice the absence of a term with a3,4 since those configurations have no
matching boundaries. By using parity invariance, one sees that a1,2¼ a5,6�a and
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a2,3¼ a2,4¼ a3,5¼ a4,5�b, so that we have only two independent coefficients. By
variation of K with respect to ak, we obtain the A matrix that has the rather
simple form

A ¼

a � a 0 0 0 0
� a aþ 2b � b � b 0 0
0 � b 2b 0 � b 0
0 � b 0 2b � b 0
0 0 � b � b aþ 2b � a
0 0 0 0 � a a

2
6666664

3
7777775
; ð12Þ

and acts on the vector u¼ [a1, a2, a3, a4, a5, a6]T, where the superscript T denotes
the transpose. Note how parity symmetry is explicitly featured in A since it is
symmetric when reading it from the top left corner to the bottom right corner or
vice versa. The explicit forms of a and b are

a ¼
Z

x1ox2ox4

dx1dx2dx3dx4dðx2 � x3Þ j
@CA

@x3
j 2 ð13Þ

b ¼
Z

x1ox3ox2

dx1dx2dx3dx4dðx2 � x4Þ j
@CA

@x4
j 2; ð14Þ

where the difference between the two quantities is the ordering of coordinates in
the integration region. Integrating out the delta function and renaming the
variables in a (x4-x3) show that we have x1ox2ox3 and x1ox3ox2, respectively.
An easy way to think about the difference is that b has the pair that interacts on the
side of the system (left and right sides are equivalent because of parity invariance),
while for a the interacting pair is in the middle. These two are generally not the
same. However, for the particular case of the hard wall confinement, it turns out
that a¼ b. In this case our results are consistent with the Bethe ansatz approach28.
For the double-well potential, aab. This is perhaps a subtle point even to experts
in the field and may explain a number of previous failed attempts to obtain the
exact solution. By diagonalization of A we obtain the slopes and wave functions
that allows us to determine the structures and probabilites discussed in the
main text.

For the case where the two pairs of identical particles are instead bosons, there
are additional interaction terms when the two identical bosons are next to each
other. The modification to the A matrix is very simple and consists of adding a
diagonal matrix diag(4b, 0, 2a, 2a, 0, 4b) to A. The ground state is then of the
simple form u¼ [1,� 1,1,1,� 1,1]T, which is easily seen to correspond to C¼ |CF|
where CF is the wave function for spinless fermions, that is, the Girardeau
wave function9. Thus, we get uniform probability of 1/3 for each of the three
configurations shown in Fig. 1. In addition, we notice the differences between
strongly interacting bosons and fermions.

Details for polaron systems. The fermionic polaron system where a single spin
down (often called an impurity for obvious reasons) interacts with a number of
identical spin up fermions is handled in a similar manner to the four-body system,
although the A matrix has an even simpler structure. Let the single spin down
particle have coordinate x1, and the N� 1 spin up particles have coordinates x2,y,
xN. There are N!/(N� 1)!¼N independent ak coeffiecients. The wave function is
now given by

C ¼

a1CA for x1ox2ox3o . . . oxN � 1oxN ð#"" . . . ""Þ
a2CA for x2ox1ox3o . . . oxN � 1oxN ð"#" . . . ""Þ
a3CA for x2ox3ox1o . . . oxN � 1oxN ð""# . . . ""Þ
:
:
aNCA for x2ox3o . . . oxN � 1oxNox1 ð""" . . . "#Þ

8>>>>>><
>>>>>>:

ð15Þ

It is now straightforward to obtain the slope, which is given by

K ¼

PN � 1

k¼1
ak;kþ 1ðak � akþ 1Þ2

PN
k¼1

a2k

: ð16Þ

As before, we can use parity invariance of the confinement to conclude that
a1,2¼ aN� 1,N, a2,3¼ aN� 2,N� 1 and so forth. This means that the number of
independent ai,j is N/2 for N even and (N� 1)/2 for N odd. The corresponding
A matrix is tridiagonal with entries

A ¼

a1;2 � a1;2 0 0 . . . 0 0 0
� a1;2 a1;2 þ a2;3 � a2;3 0 . . . 0 0 0
: : : : . . . : : :
: : : : . . . : : :
0 0 0 0 . . . � a2;3 a2;3 þ a1;2 � a1;2
0 0 0 0 . . . 0 � a1;2 a1;2

2
6666664

3
7777775
:

ð17Þ

The different coefficients of the matrix are

ak;kþ 1 ¼
Z
G

YN
l¼1

dxldðxkþ 1 � x1Þ j @CA

@xkþ 1
j 2; ð18Þ

for k¼ 1,y, N/2 for N even and k¼ 1,y, (N� 1)/2 for N odd. Here the integral is
over the region G¼ x2ox3oyox1oxkþ 1oyoxN. In addition, we note that
these constants are not equal for general potentials. However, once more the hard
wall confinement is a truly special case. There one can prove that the ak,kþ 1 are
equal and one recovers the Bethe ansatz results28.

The results above can be applied to the case where x2,y, xN are identical
bosons instead of fermions. For the Hamiltonian in equation (1) with a single
coupling, g, for all pair-wise interactions, the ground state is the one found by
Girardeau many years ago9 since the Hamiltonian does not distinguish between the
identical bosons and the impurity. Alternatively, by counting interacting pairs in
each configuration one can show that in a hard wall confinement the two-
component boson case is obtained by adding a diagonal matrix to A of the form
diag(2(N� 2), 2(N� 3), 2(N� 3),y, 2(N� 3), 2(N� 2)). Note that the inter- and
intraspecies interactions are the same for these two-component bosons, and the
coupling constant goes to infinity (1/g-0). This follows from the structure of our
Hamiltonian that does not distinguish between the two species. An interesting
example of non-identical inter- and intraspecies interactions can be found in
ref. 39.

For general potentials with nonconstant ak,kþ 1, the matrix to add will still be
diagonal but now the entries are sums over a set of ak,kþ 1 with a contribution from
each adjacent pairs of identical bosons for a given configuration. Let us denote the
two species as A and B and consider the example with three A-type bosons and one
B-type (acting as the impurity). In this case the four diagonal terms (corresponding
to configurations BAAA, ABAA, AABA and AAAB) are 2(a2,3þ a3,4) for BAAA and
also for AAAB, and 2a1,2 for ABAA and also for AABA (there is symmetry around
the centre of the diagonal because of the parity symmetry of the potential). Thus, in
the limit |g|-N, we have the ground state wave function C¼ |CA|. This has
probability 1/N for the impurity to sit on the right-hand side of the system. This is
a clear demonstration of the differences between fermions and bosons when there
are multiple internal states. Our formalism can also be applied to a mixture with N1

single component fermions and N2 single component bosons. However, if the
Bose–Fermi and Bose–Bose zero-range interactions have different strength
parameters, then the situation changes drastically and the ground state depends on
the ratio of these strength parameters as they diverge to infinity39.

Tunnelling. The tunnelling problem considered in the main text is considered
within a simple model that can be justified in several different ways. Here we will
use arguments based on the many-body tunnelling theory of Bardeen40. It has
recently been shown41 that the Bardeen theory can reproduce experimental results
on strongly interacting two-body systems14, and we assume that this remains true
for more particles as studied in the main text.

We assume that the exact eigenstate we have obtained is the initially stationary
state that starts to decay as the barrier is lowered. This initial state can be written as
a sum of eigenstates of the new Hamiltonian with a lowered barrier, and we arrive
at a dynamical problem. While this may sound very complicated, the new
Hamiltonian is still assumed to be strongly interacting and particles are still not
allowed to exchange positions. The particle that was initially closest to the barrier
before it is lowered will therefore provide the dominant contribution to the flux
going out of the trap. The initial state therefore contains the information about the
tunnelling rates. This can be made quantitative by computing very accurate matrix
elements for the rates. Since our main purpose is to point out the difference of
different initial states in tunnelling experiments, we postpone further tunnelling
calculations for future studies.
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