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a b s t r a c t

Linear contrasts between means for the one way analysis of variance are studied for the
first time as objectivemodel selection problems. For it, Bayes factors for intrinsic priors are
used and classical and Bayesian measures of evidence are compared.

1. Introduction

Let us consider k normal populationsN(x1|µ1, σ
2
1 ), . . . ,N(xk|µk, σ

2
k ) and independent samples, xi = (xi1, . . . , xini), from

each population i = 1, . . . , k. When the hypothesis of equality of means is rejected an analysis of certain linear contrasts
between the means may be of interest. In the frequentist methodology there are several exact tests dealing with this topic,
the methods of Scheffé and Tukey are the most commonly used in the homoscedastic case; however, just asymptotic
solutions like the Welch’s test or the Hotelling’s test are obtained when heteroscedasticity is present. The first objective
in this paper is to go one step further than in Cano et al. (2013), where the homoscedastic case for the one way ANOVA
was dealt with using the intrinsic priors methodology. Here we solve as a model selection problem, linear contrasts like the
following

H0 : ϕ = 0 versus H1 : ϕ ≠ 0, (1)
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where ϕ =
k

i=1 aiµi, with
k

i=1 ai = 0 and at least one ai ≠ 0. This interesting classical problem is treated here for the
first time as an objective Bayesian model selection one, note that in Box and Tiao (1973) it was dealt with from a Bayesian
estimation point of view. In Cano et al. (2013) we argue why this type of problems are better treated from a Bayesian model
selection perspective. For it, because Bayes factors for improper noninformative priors are undefined we propose Bayes
factors based on the intrinsic methodology. See Berger and Pericchi (1996), Moreno et al. (1998), and Bertolino et al. (2000),
where contrasts are briefly discussed as estimation problems. The case of large k is not dealt with as it is behind the scope
of this paper.

The second objective is to compare the Bayesian measure of evidence, the posterior probability of the null hypothesis,
y, with the frequentist one, the p-value, p. Calibration is a simple means of establishing that comparison, see Girón et al.
(2006). We state in this paper that in linear contrasts the posterior probability of the null hypothesis depends on the sample
through sufficient statistics and the sample size, and the same is true for the p-value. That is,

y = P(H0|x, s2,n), (2)

p = PH0(T ≥ t(x, s2,n)), (3)

where T is the contrast and t is its observed value, x = (x1, . . . , xk), s2 = (s21, . . . , s
2
k) and s2i =

ni
j=1(xij −xi)2; therefore we

can define different calibration curves varying in (2) and (3) one of the sample means in an interval. Note that the posterior
probability of the null hypothesis has been computed using the prior p1 = p2 = 1/2 for the hypotheses H0 and H1 and the
p-values are the corresponding to the Scheffé test in the homoscedastic case and to the Welch test in the heteroscedastic
one.

The paper is organized as follows. In Section 2 linear contrasts between means for homoscedastic populations are
considered using the intrinsic priors methodology. In Cano et al. (2013) it is argued that it was necessary to study the
case when homoscedasticity is present, since in this case a specific method can be used, similarly to what happens in the
frequentist analysis.

In Section 3 Bayes factors for intrinsic priors are obtained for linear contrasts in the heteroscedastic case. The key idea to
develop Sections 2 and 3 was to find a reparameterization allowing to formulate linear contrasts as nested Bayesian model
selection problems forwhich the intrinsicmethodology behaves satisfactorily, see Girón et al. (2006) and references therein.
This provides us exact solutions even for the heteroscedastic case.

In Section 4 we illustrate the behavior of the calibration curves as the sample size of the involved populations increases.
Finally, in Section 5 we briefly summarize the obtained results and we give some concluding remarks.

2. Linear contrasts between means for homoscedastic populations

In this section we consider k normal populations with unknown common variance σ 2 and we want to solve linear
contrasts as (1) where, without loss of generality, we assume that a1 ≠ 0. The null hypotheses introduce a constraint
on the parameters and considering the reparameterization

ϕ1 =

k
i=1

aiµi, ϕ2 = µ2, . . . , ϕk = µk, (4)

the linear contrast (1) can be expressed as a nested Bayesian model selection problem where the simple modelM1,

f1(z|θ1) = Nn1


x1




k
i=2

diβi


1n1 , τ

2In1


k

i=2

Nni(xi|βi1ni , τ
2Ini),

with the prior

πN
1 (θ1) =

c1
τ

, (5)

is compared with the complex modelM2

f2(z|θ2) =

k
i=1

Nni


xi|ϕi1ni , σ

2Ini

,

with the prior

πN
2 (θ2) =

c2
σ

, (6)

where z = (x1, . . . , xk), θ1 = (β2, . . . , βk, τ ), θ2 = (ϕ1, . . . , ϕk, σ ) and di = −ai/a1 for i = 2, . . . , k. Note that just (k − 1)
means, β2, . . . , βk, have been left in modelM1 because of the constraint on the parameters.

To assign default priors we have always assumed that location and scale parameters are a priori independent, see Jeffreys
(1961).
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2.1. Objective Bayes factors for linear contrasts between means for homoscedastic populations

For the prior given in (6) the imaginaryminimal training sample, x(l), is a (k+1)-dimensional randomvector that consists
in two observations fromone of the populations and a single observation from each one of the remaining (k−1) populations,
that is x(l) = (x1, x2, . . . , xj1, xj2, . . . , xk), with 1 ≤ j ≤ k. Therefore it is not unique and this implies that intrinsic priors
are not unique. To solve this drawback we use a pooling approach as follows.

2.1.1. Pooled intrinsic prior
The intrinsic priors for the models under comparison are {πN

1 (θ1), π
I
2(θ2)}, where π I

2(θ2) =


π I
2(θ2|θ1)π

N
1 (θ1)dθ1 and

π I
2(θ2|θ1) is obtained as follows:

(i) if x(l) = (x11, x12, x2, . . . , xj, . . . , xk), then

π I
2(θ2|θ1) = N


ϕ1

 k
i=2

diβi,
τ 2

+ σ 2

2


HC+(σ |0, τ )

k
i=2

N

ϕi|βi, τ

2
+ σ 2 , (7)

(ii) if x(l) = (x1, x2, . . . , xj1, xj2, . . . , xk), with 2 ≤ j ≤ k, then

π I
2(θ2|θ1) = N


ϕ1

 k
i=2

diβi, τ
2
+ σ 2


N


ϕj|βj,
τ 2

+ σ 2

2


HC+(σ |0, τ )

k
i=2
(i≠j)

N

ϕi|βi, τ

2
+ σ 2 , (8)

where HC+(σ |0, τ ) denotes the half Cauchy density. The conditional intrinsic priors given in (7) and (8) are obtained in a
similarway to that in Theorem2.1 of Cano et al. (2013), where these intrinsic conditional priorswere obtained by computing
the analytical integrals involved with the global hypothesis of equality of means. Note that although the imaginary minimal
training sample is integrated out to obtain the conditional intrinsic priors given in (7) and (8), the ϕi corresponding to
the population from which two observations are taken has a variance half of the variance of the other (k − 1) remaining
populations. This implies a labeling problem and to avoid it we propose a pooled conditional distribution of θ2 given θ1, that
is

π I
2(θ2|θ1) = N


ϕ1

 k
i=2

diβi, (1 − 1/(2k)) (τ 2
+ σ 2)


HC+(σ |0, τ )

k
i=2

N

ϕi|βi, (1 − 1/(2k)) (τ 2

+ σ 2)

, (9)

where the common variance (1 − 1/(2k)) (τ 2
+ σ 2) is the average of the ϕi’s variances. Note that in linear models it is a

common practice to average over all possible training samples of minimal size and this is the idea motivating our pooled
conditional prior.

2.1.2. Bayes factors for intrinsic priors
For the data z, let mI

i(z), i = 1, 2, be the marginal densities for the intrinsic priors {πN
1 (θ1), π

I
2(θ2)}. The corresponding

Bayes factor turns out to be:

(i) whenmI
2(z) comes from the conditional distribution (7),

BI
21(z) =

2
2
3 I2

π
 

s2 + n1


x1 −

k
i=2

diβi

2

+

k
i=2

ni(xi − βi)2

−N/2

dβ2 . . . dβk

, (10)

where I2 =


Rk−1 I1dβ2 . . . dβk, with

I1 =

 π/2

0

(h(n1, θ))−1/2
k

i=2
(g(ni, θ))−1/2

(sin θ)N−k

 s2

sin2 θ
+

2n1


x1−

k
i=2

diβi

2

h(n1,θ)
+

k
i=2

ni(xi−βi)2

g(ni,θ)


N
2
dθ,

g(n, θ) = n + sin2 θ and h(n, θ) = n + 2 sin2 θ ,
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(ii) whenmI
2(z) comes from the conditional distribution (8),

BI
21(z) =

2
2
3 I2

π
 

s2 + n1


x1 −

k
i=2

diβi

2

+

k
i=2

ni(xi − βi)2

−N/2

dβ2 . . . dβk

, (11)

where I2 =


Rk−1 I1dβ2 . . . dβk, with

I1 =

 π/2

0

1

(sin θ)N−k (h(nj, θ))1/2
k

i=1
(i≠j)

(g(ni, θ))1/2

×

 s2

sin2 θ
+

n1


x1 −

k
i=2

diβi

2

g(n1, θ)
+

2nj(xj − βj)
2

h(nj, θ)
+

k
i=2
(i̸=j)

ni(xi − βi)
2

g(ni, θ)


−

N
2

dθ,

g(n, θ) = n + sin2 θ and h(n, θ) = n + 2 sin2 θ ,
(iii) whenmI

2(z) comes from the pooled conditional distribution (9),

BI
21(z) =

2I2

π
 

s2 + n1


x1 −

k
i=2

diβi

2

+

k
i=2

ni(xi − βi)2

−N/2

dβ2 . . . dβk

, (12)

where I2 =


Rk−1 I1dβ2 . . . dβk, with

I1 =

 π/2

0

k
i=1

(g(θ, ni, k))−1/2

(sin θ)N−k

 s2

sin2 θ
+

n1


x1−

k
i=2

diβi

2

g(n1,θ,k) +

k
i=2

ni(xi−βi)2

g(ni,θ,k)


N
2
dθ

and g(n, θ, k) = (1 − 1/(2k)) n + sin2 θ .

Note that expressions (10)–(12) are obtained by direct integration on the ϕi’s and changing (τ , σ ) to polar coordinates.
However, the integrals I2 need to be solved by numerical integration using standard software. This approximation is
unfeasible when the sample sizes of the populations considered are large because numerical computations with standard
software fail, then an estimate of mI

2(z) based on simulation techniques is required. In Cano et al. (2013) is stated how to
proceed in this case. Finally, we note that Bayes factors (10)–(12) depend on the sample through sufficient statistics.

2.1.3. Simulated examples in homoscedastic populations
From expressions (10)–(12) it is clear that Bayes factors for linear contrasts under homoscedasticity depend on the

minimal training sample and therefore we recommend the pooled prior (9) as a sensible approach. Despite this, in the
next example we show that the impact of the training sample seems small.

Example 1. We simulated the three normal populations N(2.5, 1), N(1, 1) and N(1, 1), with sample sizes (n1,n2,n3) =

(30, 20, 60), and the following values were obtained: (x1, x2, x3) = (2.204, 1.091, 1.086), (s21, s
2
2, s

2
3) = (35.665, 20.660,

74.211). Pairwise comparisons of the means were done and whether the mean of the first population was equal to the
average of the means of the other two populations was studied too.

Table 1 shows that the values of the posterior probabilities ofM1 for different selections of the population chosen to take
two observations are similar. Furthermore, these values are similar to the value of the posterior probability of M1 for the
pooled conditional distribution given in (9). Finally, we note that the p-values and the posterior probabilities of M1 convey
the same reasonablemessage in each case; bothmeasures favor the simplermodel in the third linear contrast and they favor
the complex model in the remaining linear contrasts.

Example 2. Three normal populations of variance 1 were considered, with sample sizes (n1, n2, n3) = (30, 20, 60), sample
means x1 ∈ (0, 3.5), (x2, x3) = (1.091, 1.086) and (s21, s

2
2, s

2
3) = (35.665, 20.660, 74.211). For each one of the infinite

values of x1 it is desired to test if:
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Table 1
P-values, values of the posterior probability of M1 when the population chosen to take two observations is 
the first, the second or the third one (j = 1, 2, 3), and values of the posterior probability of M1 corresponding 
to the pooled conditional distribution given in (9).

Linear contrasts P-values Pj=1(M1) Pj=2(M1) Pj=3(M1) P(M1)

µ1 − µ2 1.70 × 10−5 0.024 0.023 0.026 0.024
µ1 − µ3 2.92 × 10−8 0.0008 0.0009 0.0008 0.0008
µ2 − µ3 0.99 0.882 0.897 0.882 0.888
−2µ1 + µ2 + µ3 3.12 × 10−8 0.0008 0.0008 0.0008 0.0008

Fig. 1. To the left and to the right four curves are plotted (one for each prior under consideration) that represent the value of the posterior probability of
M1 for linear contrasts (a) and (b) in Example 2, respectively, as x1 varies.

(a) µ1 − µ2 = 0,
(b) −2µ1 + µ2 + µ3 = 0.

The results are illustrated in Fig. 1. To the left and to the right the graphics correspond to the linear contrasts (a) and
(b), respectively. In the graphics of Fig. 1 the solid curve, the dashed curve and the dotted curve represent the value of
the posterior probability of M1 as x1 varies and the population chosen to take two observations is the first, the second
and the third one, respectively, while the long dashed curve represents the value of this probability when the pooled prior
distribution given in (9) is considered.

It is clear that the four curves to the left in Fig. 1 practically agree and the same happens with the curves to the right.
The posterior probability of M1 convey the same reasonable message in each case, when x1 is close to 1 the value of this
probability is close to 1 and decreases progressively when x1 is going away from 1.

3. Linear contrasts between means for heteroscedastic populations

Now we consider k normal populations N(x1|µ1, σ
2
1 ), . . . ,N(xk|µk, σ

2
k ) and the reparameterization (4). This yields to

the nested selection problem of the simple modelM1

f1(z|θ1) = Nn1


x1




k
i=2

diβi


1n1 , τ

2
1 In1


k

i=2

Nni(xi|βi1ni , τ
2
i Ini),
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with

πN
1 (θ1) = c1/

k
i=1

τi, (13)

versus the complex modelM2

f2(z|θ2) =

k
i=1

Nni(xi|ϕi1ni , σ
2
i Ini),

with

πN
2 (θ2) = c2/

k
i=1

σi, (14)

where z = (x1, . . . , xk), θ1 = (β2, . . . , βk, τ1, . . . , τk), θ2 = (ϕ1, . . . , ϕk, σ1, . . . , σk) and di = −ai/a1 for i = 2, . . . , k.
Again, (k − 1) means, β2, . . . , βk, have been left in model M1 as a consequence of the constraint on the parameters. Note
that, to obtain (13) and (14) assumptions are similar to those needed to obtain (5) and (6).

3.1. Objective Bayes factors for linear contrasts between means for heteroscedastic populations

Now the minimal training sample is a 2k dimensional random vector that consists in two observations from each
population, that is x(l) = (xij) with i = 1, . . . , k and j = 1, 2. The intrinsic priors are now {πN

1 (θ1), π
I
2(θ2)}, with

π I
2(θ2) =


π I
2(θ2|θ1) πN

1 (θ1)dθ1 where π I
2(θ2|θ1) is given by

N


ϕ1

 k
i=2

diβi,
τ 2
1 + σ 2

1

2


k

i=2

N


ϕi|βi,
τ 2
i + σ 2

i

2

 k
i=1

HC+(σi|0, τi),

that is again obtained in a similar way to the conditional intrinsic priors (7) and (8). The corresponding Bayes factor BI
21(z)

is

2
3k
2 π−kI2 

s21 + n1


x1 −

k
i=2

diβi

2
−n1/2 k

i=2
(s2i + ni(xi − βi)2)−ni/2dβ2 . . . dβk

, (15)

where I2 =


Rk−1 I1 dβ2 . . . dβk, with

I1 =

 π/2

0

dθ

(sin θ)n1−1(g(θ, n1))1/2


s21

sin2 θ
+

2n1
g(θ,n1)


x1 −

k
i=2

diβi

2
 n1

2

×

k
i=2

 π/2

0

dθ

(sin θ)ni−1(g(θ, ni))1/2


s2i
sin2 θ

+
2ni

g(θ,ni)
(xi − βi)2

 ni
2

and g(θ, n) = n + 2 sin2 θ .
Expression (15) is obtained by direct integration on theϕi’s and changing (τi, σi) to polar coordinates and I2 can be carried

out by numerical integration except when the sample sizes of the populations are large; then an estimate of mI
2(z) using

simulation techniques is needed. Concretely, these integrals have been carried out using importance samplingwith a normal
distribution on the location parameters and an inverse gamma on the variances. Note that Bayes factor (15) depends on the
sample through sufficient statistics.

3.2. Simulated examples in heteroscedastic populations

In this subsection it is illustrated with two examples that the Bayes factor given in (15) is well behaved.

Example 3. Three cases, each one involving sampling from the three normal populations, N(1, 1), N(1, 2.25) and N(2.5, 2)
were considered. The corresponding sufficient statistics are shown in Table 2. It is desired to test in each case if:

(a) µ1 − µ2 = 0,
(b) µ1 − µ3 = 0.
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Table 2
Sufficient statistics for three different cases involving the three normal populations, N(1, 1), 
N(1, 2.25) and N(2.5, 2).

n x s2

Case 1 {35, 30, 35} {0.921, 0.989, 2.108} {27.082, 73.200, 44.366}
Case 2 {60, 55, 60} {0.920, 1.049, 2.804} {72.556, 144.9, 137.961}
Case 3 {85, 80, 85} {0.995, 0.965, 2.589} {71.164, 173.070, 167.738}

Table 3
Posterior probabilities of M1 and p-values corresponding to the linear contrasts considered
in Example 3. The second and third columns correspond to the linear contrast µ1 − µ2 = 0
and the fourth and fifth columns correspond to µ1 − µ3 = 0.

P(M1) p-values P(M1) p-values

Case 1 0.87 0.82 0.0005 8.78 × 10−6

Case 2 0.89 0.62 1.23 × 10−9 6.74 × 10−12

Case 3 0.92 0.86 1.72 × 1012 6.66 × 10−15

Table 4
Sufficient statistics for three cases involving three normal populations, N(3, 1), N(1, 2.25)
and N(2, 2).

n x s2

Case 1 {35, 30, 35} {2.733, 0.994, 1.999} {41.630, 50.785, 42.617}
Case 2 {60, 55, 60} {2.788, 1.063, 1.846} {85.360, 177.735, 113.571}
Case 3 {85, 80, 85} {2.991, 1.013, 1.993} {102.887, 194.969, 150.857}

Table 5
Posterior probabilities of M1 for the linear contrast µ1 + µ2 − 2µ3 = 0 for
the situations (a) and (b) in Example 4.

P(M1), situation (a) P(M1), situation (b)

Case 1 0.001893 0.88
Case 2 1.87 × 10−9 0.91
Case 3 7.30 × 10−13 0.93

Table 6
Data from three homoscedastic normal populations with variance 1.

ni xi s2i
Population 1 20 (−4, 1) 13.058
Population 2 30 −0.146 25.163
Population 3 15 −0.483 15.366

The results are shown in Table 3. Numbers in Table 3 show that the posterior probability of M1 and the p-value convey
the same reasonable message for each case. In the linear contrast µ1 − µ2 = 0 both measures favor the simpler model (the
means of the first and the second population are equal), whereas in the linear contrast µ1 − µ3 = 0 both measures favor
the complex model (the means of the first and the third population are not equal). Furthermore, the value of the posterior
probability ofM1 varieswith the sample size providingmore evidence in favor of the truemodel as the sample size increases.

Example 4. Three cases, each one involving sampling from three normal populations were considered and it was tested in
each case if µ1 +µ2 −2µ3 = 0 in the following situations:

(a) the populations and data are the same as in Example 3,
(b) the populations are the N(3, 1), N(1, 2.25) and N(2, 2), and the corresponding sufficient statistics are shown in Table 4.

The results are shown in Table 5. Numbers in Table 5 showa reasonablemessage, the simplermodel is rejected in situation
(a) and it is accepted in situation (b). Furthermore, again, the value of the posterior probability ofM1 is very well behaved.

4. Calibration of p-values

The classic p-values and the Bayes factors for linear contrasts depend on the sample through sufficient statistics. This
allows us to calibrate the p-values and the posterior probability of the simplemodel through the so called calibration curves,
see Cano et al. (2013). In this section calibration curves for the data in Tables 6 and 7 are presented.
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Table 7
Data from three heteroscedastic normal populations with variances 1, 1.5 and 
2, respectively.

ni xi s2i
Population 1 20 (−2, 2) 28.162
Population 2 30 1.037 50.602
Population 3 15 2.229 17.729

Fig. 2. Calibration curves corresponding to the linear contrast µ1 −µ2 = 0 for the data in Table 6 (to the left) and Table 7 (to the right) and the changes
stated above.

Fig. 2 illustrates the calibration curves corresponding to solve the linear contrast µ1 − µ2 = 0 for the data in Tables 6
and 7 andwhen the sample size of the first population is multiplied by 2 and 4, respectively. In both graphics the solid curve
is the calibration curve corresponding to the data shown in Table 6 (to the left) and Table 7 (to the right), respectively. The
dashed and dotted curves correspond, respectively, to the modified sample sizes of the first population stated above. Note
that s∗21 ’s are proportionally modified as s∗21 = s21n

∗

1/n1 too.
Calibration curves presented in Fig. 2 are monotonic increasing functions of the p-value with a disagreement region that

is non empty. Assuming that the usual critical values to reject the simple model are p = 0.05 and P(M1) = 0.5 the
disagreement region is the arc of the calibration curve intersecting the quadrant QU = {(x, y) : x < 0.05, y > 0.5}. As a
consequence of this both criteria onlywill convey the samemessage if the critical p-value is adequately reduced. The order of
this diminution should be given by the x-value of the intersecting point of the calibration curvewith the line y = 1/2. On the
other hand, the behavior of the calibration curves depend on the sample size. Generally, when n increases the disagreement
region becomes larger. Therefore, when n increases the critical p-value should be diminished accordingly too; otherwise,
we could reject hypotheses with high posterior probabilities.

5. Summary and conclusions

We have developed an original objective Bayesian model selection procedure for linear contrasts betweenmeans for the
one way analysis of variance. Our development is in the context of both homoscedasticity and heteroscedasticity, where a
frequentist exact test does not exist. Bayes factors for intrinsic priors have been used because they behave very well in the
nested case. In the homoscedastic case, these Bayes factors depend on the minimal training sample chosen and we propose
a pooling approach to solve this drawback. In the heteroscedastic case we have illustrated that the posterior probability of
M1 conveys a reasonable message and provides more evidence in favor of the true model as the sample size increases.



xxx

The classical p-value and the posterior probability of M1 for some linear contrasts have been compared through the so-
called calibration curves. The behavior of the calibration curves as a function of the sample size has been studied too. The
case of a null hypothesis with two or more contrasts is ongoing research that deserves special attention in its own right. All
the computations have been programmed in Mathematica and are available under request to the authors
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