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Exact edge, bulk, and bound states of finite topological systems
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Finite topologically nontrivial systems are characterized, among many other unique properties, by the presence
of bound states at their physical edges. These topological edge modes can be distinguished from usual Shockley
waves energetically, as their energies remain finite and in gap even when the boundaries of the system represent
an effectively infinite and sharp energetic barrier. Theoretically, the existence of topological edge modes can be
shown by means of the bulk-edge correspondence and topological invariants. On a clean one-dimensional lattice
and reducible two-dimensional models, in either the commensurate or semi-infinite case, the edge modes can be
essentially obtained analytically, as shown previously [Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993); D. Hügel and
B. Paredes, Phys. Rev. A 89, 023619 (2014)]. In this work, we put forward a method for obtaining the spectrum
and wave functions of topological edge modes for arbitrary finite lattices, including the incommensurate case. A
small number of parameters are easily determined numerically, with the form of the eigenstates remaining fully
analytical. We also obtain the bulk modes in the finite system analytically and their associated eigenenergies,
which lie within the infinite-size limit continuum. Our method is general and can be easily applied to obtain the
properties of nontopological models and/or extended to include impurities. As an example, we consider a relevant
case of an impurity located next to one edge of a one-dimensional system, equivalent to a softened boundary in
a separable two-dimensional model. We show that a localized impurity can have a drastic effect on the original
topological edge modes of the system. Using the periodic Harper and Hofstadter models to illustrate our method,
we find that, on increasing the impurity strength, edge states can enter or exit the continuum, and a trivial Shockley
state bound to the impurity may appear. The fate of the topological edge modes in the presence of impurities can
be addressed by quenching the impurity strength. We find that at certain critical impurity strengths, the transition
probability for a particle initially prepared in an edge mode to decay into the bulk exhibits discontinuities that
mark the entry and exit points of edge modes from and into the bulk spectrum.
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I. INTRODUCTION

The discovery of the quantum Hall [1] and fractional quan-
tum Hall effects [2,3], and their subsequent characterization in
terms of topological invariants [4], lead to the establishment of
a new paradigm that does not follow the premises of Landau’s
theory of symmetry breaking [5]. More recently, there has
been a great surge of interest in topologically nontrivial
systems due to the theoretical prediction and experimental
realization of time-reversal-symmetric topological insulators
[6–12]. Topological systems can also be engineered out of
equilibrium. In particular, time-periodic modulation of lattices
can lead to quasistatic Floquet states with nonzero Chern
numbers in the fastly driven regime [13], and chiral edge
modes when boundaries are present. It is also possible to
establish topological invariants (winding numbers) that go
beyond the quasistatic case in slowly driven Floquet systems
[14], and also exhibit topological edge modes, which have been
experimentally observed with photonic lattices [15,16]. The
great generality of topological systems is further attested by
experimental realizations in a variety of systems, including
condensed matter [8,12], ultracold atoms [17,18], and even
mechanical systems [19].
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One of the main features of symmetry-protected topological
insulators is their robustness against weak local perturbations.
For a symmetry-protected topological state, a closing of the
bulk band gap is expected at any topological phase transition.
This is according to the bulk-edge correspondence, as the
gap must close for there to be a change in the topological
invariant [20]. However, recently, topological phase transitions
without closing the bulk band gap have become of interest
[21,22]. These works consider Hamiltonians which are the
sum of a topologically nontrivial Hamiltonian and a trivial
global perturbation, whose bulks may even be isospectral,
as in the case of the Su-Schrieffer-Heeger (SSH) and ionic
Hubbard models [23]. Once the trivial global perturbation
outweighs the topological unperturbed Hamiltonian, which
by no means implies gap closing in general, it is obvious
that the system will become nontopological. Therefore, these
examples pose no threat to the robustness of topological phases
against local perturbations since these are global in nature and,
quite trivially, do not require gap closing for a topological
transition to occur. There have also been many works studying
the properties of topological insulators and their robustness
against local perturbations and disorder [24–38].

Aside from the calculation of topological invariants, which
give information about the number of topological modes
[4,39], one may directly calculate the edge modes and their
eigenenergies. While brute force numerical diagonalization is
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always an option, there are some instances where edge modes
have been obtained essentially analytically: for example, the
Harper and Hofstadter models, investigated by Hatsugai [40]
using the transfer matrix, and later on by Hügel and Paredes
[41] using the extension of Bloch’s theorem to complex
quasimomenta first developed in Ref. [42]. These methods, un-
fortunately, only work in two particular situations, namely, (i)
on a semi-infinite lattice and (ii) on a commensurate lattice, i.e.,
with a number of lattice sites N that is an integer multiple of the
spatial period τ of the Hamiltonian, minus one (N = nτ − 1,
with n ∈ Z+). The possibility of dealing with the last case is an
immediate consequence of Bloch’s theorem and case (i). Exact
helical edge states have also been constructed from an ansatz
in the quantum Hall and Bernevig-Hughes-Zhang models
[43–45], under similar conditions. In addition, exact topologi-
cal eigenstates have been found for stacked lattices [46,47],
under certain conditions on the lattice structure, boundary
conditions, commensurability, and couplings between stacked
layers.

The scattering matrix, or S matrix, approach is a useful
method to find bound states and their properties in open
systems [48,49]. This approach has been of importance in the
understanding of superconducting junctions [50–54], and has
also been utilized in the context of photonic crystals [55–57],
the calculation of topological invariants [58], and the topic
of quantum chaos in billiards [59,60]. Recently, the S-matrix
method was used to solve for the Zak phase in one-dimensional
tight-binding models [61], bringing it closer to the models we
will consider in this work.

For finite lattices with arbitrary parameters of general, in-
commensurate size, and for the aperiodic case, which we shall
call inhomogeneous from here on, while the clean case shall
be called homogeneous, where impurities are present, fully nu-
merical solutions have been required. Moreover, the analytical
derivation of bulk modes in the presence of any boundaries
has not been addressed so far, not even in the semi-infinite
and commensurate cases. There are a number of reasons why
the knowledge of the exact form of all the eigenstates of
topologically nontrivial systems is important, aside from their
theoretical relevance. First of all, purely numerical calculations
cannot attach any quantum numbers to the eigenstates, except
for their energy, a matter fully resolved by analytical methods
when these exist. Moreover, the knowledge of the exact
wave functions and their properties allows for much-needed
simplifications when calculating interaction matrix elements
in many-particle systems, or single-particle response functions
that would otherwise have to be performed by means of either
numerical brute force or Monte Carlo simulation.

In this work, we consider finite one-dimensional and sepa-
rable two-dimensional topological lattice models. The Hamil-
tonians considered will be nearest-neighbor, tight-binding
lattices with time-reversal symmetry preserved. We will not
invoke the bulk-edge correspondence or topological invari-
ants to confirm the existence of topological edge states, for
which there have been several previous theoretical works (see
Refs. [62–66] and references therein). Instead, we will set out
a method for writing the full edge and bulk states analytically
for arbitrary (i.e., commensurate and incommensurate) system
sizes. We will then extend our method to inhomogeneous
systems which, for the sake of concreteness, will correspond

to a single impurity located next to one edge of the system.
Throughout the paper, we will use our method for particular
models, namely, the SSH and diagonal Harper models in one
dimension, and the two-dimensional Hofstadter model on a
square lattice. We find that a single impurity can have drastic
effects on the edge modes of these systems when the impurity
is of significant strength, i.e., on the order of the finite band
gap. In the models we consider, we find that there can be
several “critical” impurity interaction strengths at which edge
modes may enter or exit the continua of bulk bands, while usual
Shockley states [67] appear as the impurity strength is cranked
up. Finally, we study dynamical transitions of edge modes into
the bulk as the strength of the impurity is ramped. To do this,
we consider an initially homogeneous system, with an edge
mode as an initial state. We introduce a sudden increase to
the impurity strength and find that the edge-to-bulk transition
probabilities exhibit distinctive discontinuities at the different
critical interaction strengths. The transition probabilities are
not negligible for edge states bound to the boundary next to
which the impurity is located, even at low and intermediate
impurity strengths. The size of the discontinuity at the critical
point where the initial edge state adiabatically connects to the
bulk is quite large, and should be observable experimentally
with ultracold atoms [68–71] or photonic lattices [72,73].

II. HAMILTONIAN OF THE SYSTEM

We shall consider here one-dimensional (1D) tight-binding
lattice models whose Hamiltonians have nontrivial period-
icities of τ lattice sites, 2 � τ ∈ Z+, and two-dimensional
models that can be reduced to one dimension, resulting in
single-parameter fiber Hamiltonians. In the latter case, we
shall consider square lattices for simplicity, which result in
one sublattice only, but note that other geometries, including
graphene’s noninteracting tight-binding Hamiltonian, can be
reduced to one dimension, albeit with several sublattices [74].
Solving the 1D sublattice of graphene and obtaining the Zak
phase has been considered in Ref. [63].

The general one-dimensional Hamiltonian we consider is
of the form (we set the lattice spacing d = 1)

H = −
∑

x

(tx+1,x(ξ,τ1)ĉ†x ĉx+1 + H.c.) +
∑

x

Vx(λ,τ2)ĉ†x ĉx .

(1)

Above, ĉx (ĉ†x) annihilates (creates) a particle at site x and we
will take x = x0 + 1, . . . ,Ls − 1, with open boundary condi-
tions. We will consider the tunneling coefficients tx,x+1 and
onsite potentials Vx to have, in general, different periodicities
τ1 and τ2, with the largest of them (τ ) being proportional to the
smallest, and strengths controlled by dimensionless parameters
ξ and λ, respectively. We note that the eigenenergy εσ (k)
associated with a Bloch state in band σ at quasimomentum k

[∈ (−π/τ,π/τ ] satisfies εσ (k) = εσ (−k), due to Hermiticity.

III. EIGENSTATES IN THE HOMOGENEOUS CASE

Here, we present a method to extract bulk and edge modes
of topological models, with Hamiltonians of the form (1), in
a finite lattice under open boundary conditions, without any
impurities (“homogeneous” case). Although this is a particular
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case of the problem including impurities, it makes our discus-
sion of the more general problem much clearer, as this is just
a generalization of the method. For later reference, we write
a general single-particle eigenstate |ψ〉 of Hamiltonian (1)
in the form

|ψ〉 =
Ls−1∑

x=x0+1

ψ(x)c†x |0〉, (2)

where |0〉 is the vacuum of particles. Below, we first discuss
the bulk modes of the system and then move on to discuss edge
states.

A. Bulk states

By definition, we shall call bulk states in a finite lattice those
eigenstates with associated eigenenergies lying in the infinite-
size continuum. In this limit (−x0,Ls → +∞), all eigenstates
have the form of Bloch states, i.e.,

ψσ,k(x) = eikxφσ,k(x), (3)

where φσ,k(x + τ ) = φσ,k(x) with σ = 1,2, . . . ,τ the band
index and k ∈ (−π/τ,π/τ ] the quasimomentum.

Since the spectrum satisfies εσ (k) = εσ (−k), we can freely
superpose |ψσ,k〉 and |ψσ,−k〉 to form eigenstates. Since these
are the only eigenstates with energies in the infinite-size
continuum, the bulk states of the finite-size Hamiltonian (1)
must have the form

ψσ,k(x) = Aφσ,+k(x)eikx + Bφσ,−k(x)e−ikx . (4)

Using the boundary conditions [ψσ,k(x0) = ψσ,k(Ls) = 0] we
obtain the general quantization condition for k:

e2ik(x0−L) = φσ,+k(Ls)φσ,−k(x0)

φσ,+k(x0)φσ,−k(Ls)
, (5)

and the coefficients in Eq. (4) are related as

A

B
= −φσ,−k(x0)

φσ,+k(x0)
e−2ikx0 = −φσ,−k(Ls)

φσ,+k(Ls)
e−2ikLs . (6)

We can now write the un-normalized bulk states in the form

ψk(x) = φσ,+k(x)eikx − φσ,+k(Ls)

φσ,−k(Ls)
φσ,−k(x)e−ik(x−2Ls ), (7)

with the set of allowed quasimomenta k satisfying Eq. (5).

B. Edge states

When these exist, edge states are formally not different from
usual bound states. Therefore, in the semi-infinite limit (either
x0 → −∞ or Ls → ∞), the edge states must have the form
of

ψ(x) = φ(x)αx, (8)

where 0 < |α| < 1, x � x0 + 1 if Ls → ∞ (|α| > 1, x �
Ls − 1 if −x0 → ∞). The Bloch functions in Eq. (8), φ(x),
are found for a given α as if the edge states were bulk modes,
i.e., by solving the Schrödinger equation for ψ in Eq. (8) with
periodic boundary conditions for φ(x) = φ(x + τ ). Note that α
is allowed to be real or complex. In fact, its structure can be de-
rived exactly from symmetry arguments. To see this, we write
α = eik = e−λ+iκ , with λ and κ real. The corresponding energy

is given by E = ε(iλ + κ). From the Schrödinger equation for
the Bloch states we see that ε(iλ + κ) = [ε(iλ − κ))]∗. The
energies for the allowed values of α must be real, which implies
that the allowed values for κ are κ = 0,π/τ , i.e., vanishing
quasimomentum or its value at the edge of a band. We can see
this using the periodicity property ε(k + 2π/τ ) = ε(k).

For the case of a system with |Ls |,|x0| < ∞ the state with
|α| > 1 is normalizable. Hence, as long as the energy has α →
1/α symmetry, guaranteed if ε(k) = ε(−k), we can write the
most general bound state wave function for finite x0 and Ls as

ψ(x) = Aφ+(x)αx + Bφ−(x)α−x. (9)

Note that while the energy has the symmetry α → 1/α, the
Bloch states do not possess this symmetry in general. Hence,
the notation of φ+(−)(x) corresponding to the Bloch functions
associated with the α(1/α) bound states.

Imposing the open boundary conditions on the general
bound state (9) implies the following transcendental equation
for α:

α2(Ls−x0) = φ+(x0)φ−(Ls)

φ+(Ls)φ−(x0)
. (10)

The edge states can be written by applying one of the
boundary conditions and then absorbing a factor into the
normalization. By applying the condition ψ(Ls) = 0 to Eq. (9)
or applying ψ(x0 = 0) = 0, we obtain the un-normalized edge
state to be of either of the two following forms:

ψ(x) = φ+(x)αx − φ+(Ls)

φ−(Ls)
φ−(x)α2Ls−x, (11)

ψ(x) = φ+(x)αx − φ+(x0)

φ−(x0)
φ−(x)α2x0−x. (12)

For concreteness, throughout this work we will make use of
edge states written in the form of Eq. (11).

At this point, it is worth noting that although we write the
solutions for the edge and bulk states separately, they are, of
course, part of the same general solution. With the edge states
being complex momentum solutions of the bulk-state ansatz
of Eq. (4), as used in the symmetry argument earlier in this
section. In the simplest of cases, we can solve for all states using
either the bulk or edge ansatz. For more complex systems it is
conceptually simpler to separate into the bulk and edge ansatz
and constrain the solutions appropriately to solve for the states.

IV. EIGENSTATES WITH AN IMPURITY

Now, we place an impurity of strength U , which can be
arbitrarily attractive (U < 0) or repulsive (U > 0), on the
lattice. We choose the location of the impurity to be x =
x0 + 1, i.e., the first lattice site of the finite system. This makes
the solution slightly simpler than in the general case of arbitrary
location since one only needs to deal with wave functions
to the right of the impurity, but the solution can be obtained
analogously in general. Moreover, this is the most physically
relevant case since it models edge softening.

We begin by studying the edge states. These can still be
written in the exact same form as in the homogeneous (U = 0)
case. However, Eq. (10) for α is no longer valid, as the Bloch
states do not take into account the presence of the impurity
on the edge, they are solely dependent on the periodic nature
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of the lattice. To account for the impurity, we are required to
solve the Schrödinger equation at x = x0 + 1 in order to extract
α, as is usual for bound-state problems on a lattice [75–77].
The total Hamiltonian of the system now reads as, in second
quantization,

H = H0 + Uĉ
†
x0+1ĉx0+1, (13)

where H0 is given by the impurity-free Hamiltonian of Eq. (1).
We insert the general form of the edge modes with the open
boundary conditions already implemented [Eq. (11)] into the
Schrödinger equation for Hamiltonian (13) at x = x0 + 1. We
use the fact that ψ(x0) = 0 and obtain

E = −tx0+2,x0+1(ξ,τ1)
ψ(x0 + 2)

ψ(x0 + 1)
+ Vx0+1(λ,τ2) + U, (14)

where ψ(x) is given by Eq. (11) for the topological edge state.
The other equation for the eigenenergies E is simply given by
E = ε(iλ + κ), where α = e−λ+iκ (recall that κ is either 0 or
π/τ ). Therefore, in the case of an impurity, the equation for α

reads as

−tx0+2,x0+1(ξ,τ1)
ψ(x0 + 2)

ψ(x0 + 1)
+ Vx0+1 + U =ε(iλ+κ). (15)

For bulk modes, the same procedure is applied, with the
eigenfunctions given instead by Eq. (7), and the quantization
condition for the quasimomenta k is given by

−tx0+2,x0+1(ξ,τ1)
ψk(x0 + 2)

ψk(x0 + 1)
+ Vx0+1 + U = ε(k), (16)

completely analogous to the edge modes.
Before tackling some examples, it is worth discussing the

robustness of topological states. It is often, and correctly, stated
that topological states are robust against weak local perturba-
tions [62,78,79]. Of course, it is reasonable to expect that this
assumption will break down for an infinite perturbation, i.e., a
wall. However, the energy scale of the system is well defined by
a finite bulk band gap [27]. It is straightforward to see that the
topological edge state will be affected by the impurity we are
considering. The final term on the left-hand side of Eq. (15) will
lead to an energy contribution of the order ofU to the edge state.
Of course, this in itself will not destroy the topological state,
but simply change the energy of it within the bulk band gap.
However, if the impurity is of the order of the energy difference
between the original topological state and the bottom (repulsive
U ) or top (attractive U ) of the next infinite-size bulk band,
then the original topological state may now have an energy
which lies in the bulk band. A state with an energy in the
infinite-size bulk band has a real well-defined momentum, i.e.,
κ = 0. Therefore, the original topological edge state can no
longer be bound to the boundary and is hence no longer an
edge (or topological) state.

V. SU-SCHRIEFFER-HEEGER MODEL

In this section we investigate the Su-Schrieffer-Heeger
(SSH) model [80], a special limit of the Rice-Mele [81]
and Harper [82] models. This was recently realized in an
ultracold atom experiment by the group of Gadway, including
the probing of the edge mode of the model [68]. The effect
of an impurity at an edge on the SSH model energy spectrum

has been previously considered numerically [32]. The SSH
model is very instructive since it is the simplest model that
supports nontrivial topology. The off-diagonal Harper model
has a Hamiltonian of

H =
∑

x

(tx,x+1ĉ
†
x ĉx+1 + H.c.), (17)

where we will take x = 0,1, . . . ,Ls − 1 for concreteness
(x0 = −1) and where

tx,x+1 = t + � cos

(
2πx

τ
+ θ

)
, (18)

with � being the amplitude of the periodic modulation of the
tunneling and θ a constant phase. For the SSH model we take
τ = 2 and θ = π , and we will set λ = �/t throughout. This
results in

tx,x+1 = 1 − λ(−1)x (19)

and the stationary Schrödinger equation of

[1−λ(−1)x−1]ψ(x−1) + [x−λ(−1)x]ψ(x + 1)=εψ(x),

(20)

with ε ≡ E/t . It is known that the SSH model is topological
if the intersite tunneling is larger than the intrasite tunneling
[32,78,83–86]. This has been confirmed by a direct mea-
surement of the Zak phase [17] and an observation of the
topological state [68] in cold atoms. In our notation, the SSH
model is topological if λ > 0, which we will set throughout.
The topological invariant of this model is the winding number
and it is zero for λ < 0 and one for λ > 0.

We begin by solving the Schrödinger equation in the
infinite-size limit. Using Bloch’s theorem, we write the eigen-
functions as ψk(x) = φk(x) exp(ikx) with ψk(x + 2) = ψk(x).
Inserting this into the Schrödinger equation, we obtain, after
minor algebraic manipulations,

φs,±k(x) =
(

1
(1−λ)e∓ik+(1+λ)e±ik

εs

)
, (21)

with s = 0,1 labeling the two bands of the system. For the
energy bands we obtain

ε = (−1)s
√

(2 cos k)2 + (2λ sin k)2. (22)

The bulk states in the finite case, i.e., x0 = −1 and Ls < ∞
are then given by Eq. (7), with the Bloch functions in Eq. (21),
while the quasimomentum is quantized according to Eq. (5).

A. Solving for the states

As already discussed, the edge states of the system can be
constructed analytically, with the general form of Eq. (9). If
we consider the case of a fully homogeneous lattice (λ ≡ 0),
the conformal transformation

ε = −2 cos k = −1 + α2

α
(23)

maps the range 0 <| α |< 1 into −2 � ε � 2 [42]. We can
utilize this mapping to transform the bulk energies with k

dependency to that of the α-dependent edge states.

195439-4



EXACT EDGE, BULK, AND BOUND STATES OF FINITE … PHYSICAL REVIEW B 97, 195439 (2018)

Substituting the expression for cos k of Eq. (23) into
Eq. (22), we obtain the following form for the energy of the
bound states:

εs = (−1)s

√(
1 + α2

α

)2

−
(

λ
α2 − 1

α

)2

, (24)

which agrees with the derived form starting with an ansatz of
Eq. (8). For the case of no impurity (U = 0), α is extracted by
solving Eq. (10) with the energy given by Eq. (24), while for
U 	= 0 we must use Eq. (15). Before moving on, we need to
obtain the Bloch functions φ± for the bound states. To do this,
we substitute the infinite-size limit for the edge states [Eq. (8)]
into the Schrödinger equation (20) with periodic boundary
conditions (τ = 2) for φ±. We obtain

φs,+(x) =
(

1
(1+α2)−λ(1−α2)

εsα

)
, (25)

with |α| < 1, while for φs,− we carry out the transformation
α → 1/α on Eq. (25).

B. Effect of an impurity

Due to the simplicity of this model, it is instructive to treat
the case of an impurity of strength U at x0 + 1 explicitly,
even though this has been done in general in the previous
sections. We will take the impurity to be placed at x = 0,
with the boundary conditions ψ(−1) = 0 and ψ(Ls) = 0. The
Schrödinger equation of the SSH model with an impurity at
x0 + 1 is given by

[1 − λ(−1)x−1]ψ(x − 1) + [1 − λ(−1)x]ψ(x + 1)

+ U

t
δx,x0+1ψ(x) = εsψ(x). (26)

We solve Eq. (26) for the energy at x = 0, obtaining

εs = U

t
+ (1 − λ)

ψ(1)

ψ(0)
. (27)

For the edge states we substitute Eq. (11) into Eq. (27), taking
the energy to be given by Eq. (24) and solve for α. Similarly,
for the bulk states we substitute Eq. (7) into Eq. (27), taking
the energy to be given by Eq. (22) and solve for k.

We observe a perfect agreement between the method
proposed in this work and the results of numerical exact
diagonalization of the system. This is shown for the spectra in
Fig. 1 and the topological edge and Shockley states in Fig. 2.

First, we consider the behavior of the edge states. As the
impurity strength is increased, the topological edge state bound
near x = 0, whose energy lies in the gap, increases in energy.
This is observed for any system size, as seen in Fig. 1, including
for Ls that is incommensurate with the periodicity τ (Ls 	=
2n − 1, n ∈ Z+). We observe that even a weak impurity has
an effect on the system but as expected does not destroy the
topological state. The Ls = τn system, in this case, are two
edge states that for U = 0 are hybridized into a symmetric and
antisymmetric pair [65,78]. The introduction of even a small
impurity (U ∼ 0.01) breaks the symmetry that leads to this
hybridization, splitting the edge states into two states localized
separately to the x = 0 and Ls − 1 edges (left and right) of the
system, respectively. In the SSH model, there is little effect

(a) (b)

(c) (d)

0 1 2 3U/t 0 1 2 3U/t

0ε

4

-3

0ε

4

-3

0ε

4

-3

(e) (f)

FIG. 1. Energy spectrum of the SSH model with an impurity U .
Parameters are λ = 0.5 and (a), (b) Ls = 10, (c), (d) Ls = 11, (e),
(f) Ls = 20. (a), (c), (e) Exact diagonalization of the Hamiltonian
numerically. (b), (d), (f) The analytical approach, with bulk states
solid (black) lines, the original edge U = 0 left and right edge state
with phase π/τ given by dashed (red) and dotted (orange) lines and
the Shockley state with 0 phase by a dashed-dotted (blue) line.

of the impurity on the state now localized to the right edge,
due to its negligible probability density at the location of the
impurity.

With increasing U , the edge state bound to the x = 0 edge
eventually merges with the bulk resonantly, i.e., |α| = 1 at the

1

0

-0.6

0

0.9

0 19 0 19j j

ψ( j)

ψ( j)

(a) (b)

(c) (d)

FIG. 2. Wave functions of the edge/bound state at j = 0 of the
SSH model, withλ = 0.5 andLs = 20. (a)U = 1 withα = 0.725ei π

2 ,
(b) U = 1.42 with α = 0.977ei π

2 , (c) U = 1.54 with α = 0.978, and
(d) U = 2 with α = 0.583. The solid (red) lines are a guide for the eye
between the analytical points and the circles (black) are from solving
numerically.
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merging point. The resonant value of U/t is inferred from
Fig. 1, and corresponds to the value at which the in-gap
red-dashed line (edge mode) disappears. As expected, the
resonant value of the impurity strength is of the order of the bulk
band gap. In the Bloch state picture, the edge state resonantly
disappears when its quasimomentum goes from being complex
to real, i.e., the wave function goes from one that is localized
(“decaying”) to one that is delocalized. This transition is indeed
observed in the form of the states in Figs. 2(a) and 2(b).

As the edge state is merging with the bulk band, the ejection
of a state from the top of the band takes place. This state is
trivially bound to the impurity, hence, it is a Shockley state
[67]. This is most easily seen in the limit of large U , in which
ψ(0) → 1 while the states eigenenergy is ε ∼ U/t . This state
is distinctive as it corresponds to a real value of α (κ = 0). As
U is increased, as expected, we observe the state becoming
further localized to the left edge, as seen in Figs. 2(c) and 2(d).

It comes as no surprise that the bulk states are changed
in a more subtle way by the impurity. Away from regions of
merging and ejection of bound states, little changes in their
energy. However, around the point where the left edge state
merges with the bulk, the energies of the bulk states are pushed
up to accommodate the addition of the state from below and
the ejection of a state from the top of the band. This effect is
clearly observed in Figs. 1(b) and 1(d).

VI. DIAGONAL HARPER MODEL

We now move on to consider the diagonal Harper, or
Aubry-Andé, model consisting of a periodic modulation of
the onsite potential and a constant tunneling rate. This model
corresponds to the tight-binding approximation of a particle in
a superlattice, and has been realized in photonic lattices [72,73]
and trapped ultracold atomic systems [69]. The dimensionless
Hamiltonian of the system is given by

H = −
∑

x

(ĉ†x ĉx+1 + H.c.) +
∑

x

Vx(�,τ,θ )

t
ĉ†x ĉx, (28)

with x = 0, . . . ,Ls − 1 (i.e., we set x0 = −1 for concreteness),
and the periodic potential given by

Vx(�,τ,θ ) = � cos

(
2πx

τ
+ θ

)
. (29)

Above, θ is a constant phase and τ the spatial periodicity. We
will consider the dimensionless potential strength λ = �/t

throughout. It is known that the 1D Harper model is a single
phase component of the 2D Hofstadter model and that the
topological nature of the Hofstadter model is captured by this
model [87,88].

Effect of an impurity

We consider the effect of an impurity at x = 0 in the Harper
model. In the following examples, we study the cases of τ = 3
and 4, both with λ = 1

2 and θ = π . We choose Ls = 14 and
15 for τ = 3 and 4, respectively. These sizes correspond to
the commensurate case in the limit U = 0, while they become
effectively incommensurate (Ls →Ls −1) in the limit U →∞
after dropping the trivial Shockley state that is ejected from the
highest band at finite U/t (see Fig. 3).

0ε

4

-3

0ε

5

-3
U/t U/t

(a) (b)

(c) (d)

0 5 0 5

0 2 40 2 4

FIG. 3. Energy spectrum of the Harper model with an impurity U ,
shaded areas represent the continuum bulk bands. Values of λ = 0.5,
θ = π and (a), (b) τ = 3, Ls = 14, (c), (d) τ = 4, Ls = 15. (a), (c)
Numerical exact diagonalization. (b), (d) Analytical approach with
bulk states solid (black) lines, edge states of phase 0 with dashed-
dotted (blue) lines and edge states of phase π/τ with dashed (red)
lines.

The behavior of the spectra as the impurity strength is
increased is shown in Fig 3. There, numerical exact diagonal-
ization results are plotted on the left panels for comparison
[Figs. 3(a) and 3(c)], while the results using our method
are plotted on the right panel [Figs. 3(b) and 3(d)]. Again,
we observe a perfect agreement between numerics and the
detailed method of this work. The energies of bound states
corresponding to real values of α are plotted in dashed-dotted
(blue) lines, while for α = |α| exp(iπ/τ ) their energies are
plotted in dashed (red) lines. For τ = 3 [Figs. 3(a) and 3(b)], at
U = 0 there are three bands (shaded regions) where the bulk
modes lie, and two edge modes, one per band gap. As the
impurity strength is increased, the edge mode in the first band
gap has a corresponding energy increase until it disappears
into the bulk, at U/t = 3.76. The behavior of the energy of
the edge mode in the second band gap is quite different for
0 < U/t < 1, as it is essentially unchanged by the impurity,
indicating that in this regime this edge mode is localized to
the opposite edge. At U/t = 1.15, however, a further bound
state appears in the second band gap, pushing the other state
upwards in energy, where eventually it merges with the bulk
at U/t = 3.76, the same value as the other original edge state.
The state appearing at U/t = 1.15 approaches, asymptotically
(U/t → ∞) the energy of an edge state in the commensurate
case, indicating that it is bound to the Ls − 1 (right) edge of
the system. These two levels exhibit an avoided crossing in
which their characters, left- and right-edge localization, are
eventually interchanged. This effect may be interesting from
a Landau-Zener perspective. At U/t = 1.36, a Shockley state
appears above the highest band of the system, and its energy
approaches, asymptotically, ε ∼ U/t .

For τ = 4 [Figs. 3(c) and 3(d)], there are four energy
bands. However, two of them cross forming a single continuum
(shaded area) in the center of the spectrum. The behavior
of the spectrum as the impurity strength is cranked up is
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(h)

0

1

(f)

0

0.4

|ψ( j)|2

0

0.35

|ψ( j)|2

0

0.35

|ψ( j)|2

(g)

(e)

(a) (b)

(c) (d)

|ψ( j)|2

0 14 0 14 j  j
FIG. 4. The edge states of the diagonal Harper model for τ = 4,

Ls = 15 with impurity U . (a), (b) U = 0 edge state in the first band
gap for (a) U = 0 and (b) U = 4; (c), (d) emerging state in second
band gap that emerges from the band for (c) U = 1.07 and (d) U = 4;
(e), (f) U = 0 edge state in the second band gap at (e) U = 0 and
(f) U = 4; and (g), (h) Shockley state emerging from second band
for (g) U = 1.39 and (h) U = 4. Each state has ε and α of (a) ε =
−1.500, α = 0.841ei π

4 , (b) ε = −1.186, α = 0.999999ei π
4 , (c) ε =

1.187, α = 0.990ei π
4 , (d) ε = 1.495, α = 0.840ei π

4 , (e) ε = 1.500,
α = 0.841ei π

4 , (f) ε = 1.686, α = 0.999999ei π
4 , (g) ε = 2.062, α =

0.987, (h) ε = 3.789, α = 0.287.

qualitatively identical to the case of τ = 3, with the original
edge states merging with the bulk bands at U/t = 4.01, a
bound state emerging in the second band gap at U/t = 1.068,
and a Shockley state emerging from the highest band at U/t =
1.388. We now move on to discuss the form of the edge states,
whose probability densities are plotted in Fig. 4. In Figs. 4(a)
and 4(e), we plot the probability densities for the topological
edge modes in the first and second gaps, respectively, at
U/t = 0. As was discussed through their energetic properties,
these states are bound near the left and right edges of the
system, respectively, when the impurity is absent, a fact that is
clearly observed in the figures. In Fig. 4(b) we show the edge
state in the first band gap for U/t = 4, a value very close to the
resonance, and hence its large extension inside the bulk of the
system. The probability density of the state that emerges from
the middle bulk bands into the second band gap at U/t = 1.068
is plotted for near-resonant coupling (U/t = 1.07) in Fig. 4(c)
where, again, we see that it is rather extended. In Fig. 4(d) we
show this state in the strong-coupling limit (U/t = 4), where
it clearly becomes localized to the right edge with a probability
density that is perturbatively close to that in Fig. 4(e), discussed

above. The opposite effect happens to the edge mode that exists
for U/t = 0 in the second band gap. For U/t = 4 (near the
resonance), this edge mode has moved towards the left, and
its extension has become larger. The probability density of the
trivial Shockley state is plotted in Figs. 4(g) and 4(h), where
we observe increasing localization to x = 0 as the impurity
strength goes up, as expected.

VII. TWO-DIMENSIONAL MODELS

We consider next two-dimensional (2D) periodic models on
a square lattice described by Hamiltonians of the form

H = −
∑
x,y

[t1ĉ
†
x+1,y ĉx,y + t2(x)ĉ†x,y+1ĉx,y + H.c.], (30)

where we have set the lattice spacing d = 1, with t1 = t a
constant and t2(x + τ ) = t2(x). ĉx,y (ĉ†x,y) annihilates (creates)
a particle at site (x,y). We particularize to the Hofstadter model
[89] in the Landau gauge, for which the periodic tunneling
function t2 can be written as

t2(x) = �ei�(x), (31)

where � is a constant and �(x) = 2πxp/q with p, q ∈ Z. As
before, we will study the properties of the model in terms of the
dimensionless parameter λ = �/t . The Hofstadter model has
been realized in ultracold atom experiments by the group of
Ketterle [70,71]. This model is well known to be topological
[4,41,89,90], with each band of the phase diagram having a
nonzero Chern number [88]. The nonzero Chern numbers of
the bands in the Hofstadter model have been directly measured
in cold atoms [91].

We take the boundary conditions to be those of an infinite
strip geometry, with the system being boundary free in the y

coordinate and with sharp edges in the x coordinate. In this
geometry, the stationary Scrödinger equation H� = E� for
the 2D Hamiltonian of Eq. (30) can be separated by writing

�(x,y) = ψ(x)eikyy, (32)

with ky being a quasimomentum with ky ∈ [0,2π ). Substi-
tuting Eq. (32) into the stationary Schrödinger equation for
Hamiltonian (30), we obtain a one-dimensional Schrödinger
equation corresponding to a parametric (in ky) diagonal Harper
model [Eq. (28)], with the onsite periodic potential Vx given
by

Vx = −2λ cos[�(x) − ky]. (33)

The edge and bulk states of the Hofstadter model are equivalent
to those of the diagonal Harper model, albeit with a phase θ =
−ky . The case of an impurity next to the edge in Harper’s model
becomes now that of a line defect. This is very relevant in this
system, as it may be viewed as the minimal model for a softened
edge potential. As we have already discussed, the Harper model
in some detail we will move straight on to considering the effect
of an impurity in the Hofstadter model.

Effect of an impurity

We will consider as an example the case of x0 = −1,
Ls = 23 (commensurate for U/t = 0), λ = 1

2 , and τ = 4 (or
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FIG. 5. Spectra for the Hofstadter model obtained via the exact
method for t = 1, λ = 0.5, Ls = 23 and an impurity of (a) U = 0, (b)
U = 1, (c) U = 2, (d) U = 3. Bulk states given by solid (black) lines,
edge states with phase π/τ by dashed (red) lines, and edge states with
phase 0 by dashed-dotted (blue) lines.

p/q = 1
4 ). Spectra corresponding to four different values of

the impurity strength U/t are shown in Fig. 5.
From the results of the diagonal Harper model, examples

of which were presented in the previous section for ky = −π

(θ = π ), we would expect the edge states localized around
x = 0 to survive the presence of an impurity in the Hofstadter
model only for some quasimomenta ky , while those near the
right end of the system are expected not to be affected in any
visible way. This is indeed the case. In Fig. 5 (U/t = 0), we
have one edge mode within each of the band gaps, as is known,
since the edge mode spectrum coincides, for the commensurate
case, with that on a semi-infinite (Ls = ∞) plane [41]. As
observed in Figs. 5(b)–5(d), the impurity changes the spectrum
of bound states qualitatively. For small-to-moderate impurity
strength [U/t = 1, Fig. 5(b)], there are different regions of
quasimomenta where edge states disappear and none are
remaining, in each of the band gaps, while two separate
branches of edge states are now present in the highest energy
gap. A band of Shockley states appears above the highest
continuum band of the system. This phenomenology is also
present for stronger coupling U/t [Figs. 5(c) and 5(d)], with
the addition of further edge modes in the first and second band
gaps in some regions of quasimomentum. Note that at points
where the edge states cross in Figs. 5(b)–5(d), there is the
opening of a small gap of the order of ε ∼ 0.001 or smaller.
The size of this gap decreases with increasing impurity strength
and system size.

VIII. TRANSITION PROBABILITIES AFTER A QUENCH

In order to gain further understanding of the robustness
of edge modes or absence thereof, it is important to discuss
feasible ways of probing their stability when an impurity
or a potential near the edge is present. In particular, the
transition or decay probability of an initially prepared edge

mode into the bulk continua when the system is perturbed
is a relevant measure of robustness. Moreover, its calculation
shows the power of knowing the exact analytical form of all
eigenfunctions for simplifying related problems, especially
for more than one particle and in higher dimensions. For
concreteness and simplicity, we focus on the diagonal Harper
model in 1D. Extension to other 1D and reducible 2D models
is straightforward.

We consider a model that has an initial Hamiltonian of
Eq. (28) with the addition of a perturbation that starts at time
T = T1. The perturbing operator corresponds to a potential
acting on the lattice well next to the left (x0 + 1) edge of the
system. The Hamiltonian of the system is then given by

H ′(T ) = H + U
t
θ (T − T1)ĉ†x0+1ĉx0+1, (34)

where H is the diagonal Harper’s Hamiltonian in dimension-
less form [Eq. (28)], U is an impurity strength constant, T

denotes time, and T1 is the time when the perturbation is
switched on, while θ (T − T1) is the Heaviside step function.

The transition probability for an initial state |i〉, which is an
eigenstate of the Hamiltonian for T < T1, to transition into a
set of final states F = {|fU 〉}, all of which are eigenstates for
T > T1, can be written as

Pi→F (T ) =
∑
fU∈F

|〈fU |i(T )〉|2, (35)

where |i(T )〉 satisfies the time-dependent Schrödinger equa-
tion at time T > T1 with initial condition |i(T1)〉 = |i〉. We
notice that, since the spectrum of edge and bulk modes is
not only quantitatively but also qualitatively changed by the
presence of a static potential, the overlaps in Eq. (35) must be
between the time-evolved initial state and a set of final states
corresponding to eigenstates of the quenched Hamiltonian.
The transition probability in Eq. (35) is time independent,
which is seen by writing |i(T )〉 = Û (T ,T1)|i〉, where Û (T ,T1)
is the propagator for Hamiltonian (34) for T > T1. Since |fU 〉
are eigenstates of the perturbed Hamiltonian, the transition
probability takes the form

Pi→F (T ) =
∑
fU∈F

|〈fU |i〉|2. (36)

The most interesting process upon quenching the system
is the transition of an initial topological edge state |i〉 =
|ψe(T < T1)〉 into the bulk. The transition probability is given
by Eq. (36) with the set of final states F = {|fU 〉} with |fU 〉
eigenstates of the perturbed Hamiltonian with energies lying
in the infinite-size limit continua (the bulk, by definition). We
note that as we sum over all bulk states at time T , the transition
probability from edge to bulk is not a continuous function of
U/t , as we have seen that the number of bulk states is not
conserved as the perturbation of Eq. (34) crosses a resonance.
In fact, we shall see that the expected discontinuities constitute
unambiguous measures of transition points where states enter
or leave the bulk.

The calculations of the transition probabilities can be
simplified using the analytical form of the eigenfunctions both
in the perturbed and unperturbed situations. We shall consider,
without loss of generality, x0 = −1 for the sake of clarity. For
instance, the amplitudes 〈ψU

k |ψα〉, where ψU
k is a perturbed
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bulk state and ψα is an unperturbed edge mode, are given by

〈ψU
k |ψα〉 =

Ls−1∑
x=0

[A∗
kφ

∗
k (x)e−ikx + B∗

k φ∗
−k(x)eikx]

× [Āαφ+(x)αx + B̄αφ−(x)α−x], (37)

where the constants Ak , Bk , Āα , and B̄α are related in such a
way that the states are normalized and solutions to their re-
spective stationary Schrödinger equations, as discussed above
at length. What is important here is the periodicity of φ±k and
φ±. By expanding Eq. (37) we obtain four different terms, all
of which are proportional to sums of the form

S =
Ls−1∑
x=0

φ∗
1 (x)φ2(x)ezx, (38)

where the functions φ∗
1 and φ2 have periodicity τ . Given Ls , we

find the largest positive integer n such that (n − 1)τ < Ls �
nτ − 1. Using the periodicity property of φ∗

1 and φ2, the sum
S in Eq. (38) can be rewritten as

S =
τ−1∑
j=0

φ∗
1 (j )φ2(j )ejz

n−1−j∑
m=0

emzτ +
Ls−1∑

x=(n−1)τ+1

φ∗
1 (x)φ2(x)ezx

=
τ−1∑
j=0

φ∗
1 (j )φ2(j )ejz ezτ (n−j ) − 1

ezτ − 1

+
Ls−1∑

x=(n−1)τ+1

φ∗
1 (x)φ2(x)ezx. (39)

We see now that, by knowing the analytical form of the eigen-
functions and their properties we can simplify matrix elements
involving them significantly. The basic sums in Eq. (38) have
been simplified to sums of a very small number of terms
[Eq. (39)]. Moreover, in the infinite-size case, edge-to-bulk
matrix elements become even simpler to evaluate. In this case,
the α−x term (|α| < 1) for the edge states and the e−ikx term
for the bulk states [Eqs. (9) and (4), respectively] disappear.
Notice that in this case we must normalize the bulk modes as
〈ψs ′,k′ |ψs,k〉 = δs,s ′δ(k − k′), where we have reintroduced the
band indices s and s ′. The sum in Eq. (39) then takes the form

S∞ = 1

1 − ezτ

τ−1∑
j=0

φ∗
1 (j )φ2(j )ejz. (40)

We now consider a particular system: the diagonal Harper
model. In order to connect with what was found in previous
sections, we take τ = 4, x0 = −1, and Ls = 15. These values
correspond to the spectra in Fig. 3(d) and the probability den-
sities of Fig. 4. First, we consider the transition probability of
the lowest-energy edge state (at ε ≈ −1.5) for the unperturbed
Hamiltonian [see Fig. 3(d)], to go into the bulk as a function
of the quench strength. This is given by Eq. (36) and shown
in Fig. 6(a). We observe the expected discontinuities in the
probability when states enter or leave the bulk. For U/t > 4
we observe a large probability for the state transitioning to the
bulk, while for U/t < 4 there is still non-negligible overlap
with bulk states that would allow such a transition to the bulk.

0

0.8

0 5
1.068
1.388 4.01

1.068
50

0.016

0 1.388 4.01

Pi→f (T)

0 5
0

1

U/t 1.068
1.388 4.01 50

0.2

1

U/t

(a) (b)

(c) (d)

Pi→f (T)

FIG. 6. Transition probabilities denoted by Eq. (35) for the
perturbed diagonal Harper model with Ls = 15 and τ = 4 from an
initial state (i) at T = 0 to a set of (or single) final states (f ) at T .
(a) i: edge state with ε = −1.5, f : all bulk states of the perturbed
Hamiltonian (denote as B), (b) i: edge state with ε = 1.5, f : B, (c)
i: edge state with ε = 1.5, f : the 11th state, which starts in the bulk
and in the U → ∞ is in the band gap [see Fig. 3(d)], and (d) i:
highest-energy state with ε = 2.03, f : B. Points of discontinuity are
marked on the plots and correspond to points where states enter/leave
the bulk.

The behavior of the transition probability as a function of
the quench strength is very different for the second unperturbed
edge state [at ε ≈ 1.5, see Fig. 3(d)], as shown in Fig. 6(b).
Most strikingly, the transition probabilities are of far lower
magnitude than those of the lower-energy edge state, showing
further that this edge state is stable under the perturbation.
This comes as no surprise, as this edge state is localized to
the wall away from the impurity (right edge) [see Fig. 4(e)].
The low transition probability also matches up with the spectra
in Fig. 3(d), where the edge state is still present for large U .
In fact, if we consider the overlap between the initial edge
state and the state which moves into the second band gap with
increasing potential strength [Fig. 6(c)], we observe an almost
perfect transition of the initial edge state to the new band-gap
state.

We can also consider the properties of the Shockley state
that appears out of the top of the highest band for U � 1.4
[see Fig. 3(d)]. For this we consider the initial state to be
the highest-energy state of the spectrum, a bulk mode of the
unperturbed Hamiltonian, and we calculate the overlap with
all bulk states of the perturbed Hamiltonian. We observe that
there is a significant probability of finding the state outside of
the bulk for moderate U/t , due to the Shockley state’s energy
being close to the energy at the top of the bulk. However, since
the energy of the bound state that exits the band scales linearly
with the impurity strength, a transition to this state becomes
highly unfavorable for large U/t .

In this section, we have seen that, while for very weak
impurity potentials edge states are robust, they can become
unstable. Even for small-to-intermediate impurity strengths,
the edge state can still have a non-negligible probability of
going to the bulk under quenches of the form discussed here.
It can also be seen that edge states away from the impurity
are relatively stable. Their transition probabilities may exhibit
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large discontinuities at the critical potential strengths for which
edge modes enter or exit the bulk. These “critical points” are
nothing but resonances, and should have a major effect on the
dynamics of these systems, not only on the transition proba-
bilities. As such, these resonances may be clearly identified in
observables with the introduction of an impurity in topological
models that have already been realized in cold atomic [68–71]
and photonic lattice systems [72,73].

IX. CONCLUSIONS

In this paper, we have established a method for obtaining the
exact wave functions and spectrum of general one-dimensional
periodic Hamiltonians and two-dimensional periodic models
that are reducible to one dimension. The method described
is very general and simple. It is also powerful in its ability
to obtain all states and energies of finite periodic systems
analytically, without any constraints or fine tuning of its size,
such as commensurability. For topologically nontrivial models
of this kind, to which some of the most relevant systems belong,
it is possible to extract topological states and their properties by
their exact derivation. We show this in multiple examples of the
SSH, diagonal Harper, and Hofstadter models. As the method
is fully general, it is also possible to consider the effect of
impurities on the system. In various examples of different topo-

logical models, we have shown that the symmetry-breaking
placement of an impurity at an edge site of the lattice can
have a drastic effect on the topological states of the system
and even lead to their merging into the bulk bands without the
requirement of closing the band gap or the addition of trivial
global perturbations. We have found that there exist resonant
points where edge states merge into or emerge from bulk
continuum bands and described the possibility of observing
these transitions by quenching the strength of an impurity in a
topological system. We also envisage technical applications of
our method since the knowledge of the analytical form and
properties of edge and bulk modes allow for the reduction
of large summations needed for calculating interaction matrix
elements to a small number of terms. In large systems and for
many-particle problems, such a reduction may be essential in
both theoretical and computational applications.
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