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The rapid technological evolution of the last years has motivated students to develop capabilities that will prepare them for an
unknown future in the 21st century. In this context, many teachers intend to optimise the learning process, making it more dynamic
and exciting through the introduction of gamification. Thus, this paper focuses on a data-driven assessment of geometry competencies,
which are essential for developing problem-solving and higher-order thinking skills. Our main goal is to adapt, evaluate and compare
Bayesian Knowledge Tracing (BKT), Performance Factor Analysis (PFA), Elo and Deep Knowledge Tracing (DKT) algorithms applied
to the data of a geometry game named Shadowspect, in order to predict students’ performance by means of several classifier metrics.
We analysed two algorithmic configurations, with and without prioritisation of Knowledge Components (KCs) – the skills needed to
complete a puzzle successfully, and we found Elo to be the algorithm with the best prediction power with the ability to model the real
knowledge of students. However, the best results are achieved without KCs because it is a challenging task to differentiate between
KCs effectively in game environments. Our results prove that the above-mentioned algorithms can be applied in formal education to
improve teaching, learning, and organisational efficiency.
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1 INTRODUCTION

Recent years have been marked by rapid technological advancements, leading to a considerable change in the way of
teaching, learning and personal development in general. Accordingly, it has become necessary to motivate students to
develop competencies and capabilities that prepare them for an unknown future and contemporary challenges [48]. In
response to this need, many schools intend to improve the learning process by making it more dynamic and exciting
through the introduction of technology-mediated environments such as simulations, virtual reality or games. The
latter are a good way to digitise and optimise the learning process [8] and has demonstrated significant benefits
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2 Strukova et al.

for both learning and assessment, given the student’s ability to become competent in a specific field [6, 30]. Within
these game-based settings, gamification assessment plays a critical role. It involves evaluating student learning and
performance within these games, often incorporating various elements to motivate students. Gamification assessment
also provides immediate feedback and clearly defined goals, enabling students to track and improve their learning
progress [26]. Besides, it allows for adaptive difficulty levels and personalised learning pathways, providing valuable
insights into students’ performance and behaviour within the game. This not only fosters competency in specific fields
but also promotes the development of higher-order thinking skills.

In this purview, one of the most highly valued capabilities in the modern world is mathematical proficiency. Within
mathematics, there is no doubt about the importance of geometry skills and spatial reasoning because they are
essential human abilities that contribute to mathematical expertise. These skills can be crucial to functioning in the
twenty-first-century society, especially in careers associated with Science, Technology, Engineering and Mathematics
(STEM). More specifically, Giofrè et al. [18] explored the relationship across working memory, intelligence and geometry
skills in children and concluded that working memory is strongly related to geometrical achievement irrespective
of their intelligence. While there are obvious benefits, geometry can lead to both anxiety in students and teaching
difficulties in teachers. The gamification of the learning process or game-based settings might be a promising solution
to these two issues, increasing the engagement and motivation of students [43]. They both can include similar gaming
elements such as points, badges, and challenges. However, the main difference in the use of elements and features
between gamification and game-based settings is that gamification uses game-like elements to enhance an existing
process, while game-based settings use a fully-fledged game to teach or reinforce a specific skill or objective.

In our work, taking into account the emerging significance of geometry competencies for developing problem-solving
and higher-order thinking skills and the proven reliability of game-based assessment (GBA) [22], we will focus on
Shadowspect1, a GBA tool developed by the Massachusetts Institute of Technology (MIT) that aims to provide metrics
related to geometry content and other behavioural and cognitive constructs. In the context of games for educational
purposes, we are interested in knowledge inference, a sequence problem whose primary goal is to predict or model the
students’ knowledge (or gaps in their knowledge) over questions as they are interacting with a learning platform at
a specific time. It can be equivalent to monitoring Knowledge Components (KCs), which are associated with every
problem-solving item. KCs were defined by Koedinger et al. [23] as acquired units of cognitive function or structures
that can be inferred from performance on a set of related tasks, and they generalise across terms for describing pieces
of cognition or knowledge, including skills, concepts or facts. Through them, we can improve students’ knowledge,
explore the influence of education and make automatic pedagogical decisions. Moreover, through knowledge inference
algorithms and based on the outcome prediction of the tasks attempted, we measure how good the learner modelling is
– the estimation of actual latent knowledge of students. Ultimately, this can be used as part of the formative assessment
process, where data generated by learners can potentially guide adaptive learning, whose goal is to address the unique
needs of each user [27].

Notwithstanding, digital GBAs yield student process data that are much more difficult to analyse than traditional
assessments [11]. Moreover, several studies prove that knowledge tracing algorithms can be an effective tool for
improving learning outcomes in games by providing personalised support and feedback, and identifying areas of
difficulty for targeted intervention. Among them, Nagatani et al. extended the deep knowledge tracing model in order to
model and predict a student’s knowledge by considering their forgetting behaviour [33] and Long et al. with the usage

1https://shadowspect.org/
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of knowledge tracing estimated the students’ cognition on the question before response prediction and assessed their
knowledge acquisition sensitivity on the questions before updating the knowledge state [29]. However, to the best of
our knowledge, the above-mentioned knowledge inference approaches have not yet been applied and compared in GBA
to predict the learners’ performance [19]. Therefore, in the paper at hand, we will perform adaptive and comparative
research of Bayesian Knowledge Tracing (BKT), Performance Factors Analysis (PFA), Elo and Deep Knowledge Tracing
(DKT) algorithms for predicting learners’ performance in the context of the Shadowspect game. We chose these
algorithms because they represent the most common ones showing the best results applied to similar problems in
non-game contexts. To the best of our knowledge, this is the first study that will adapt and evaluate all these algorithms
to GBA. Additionally, in our work, we question the significance of KCs in GBA following our previous work [47].
Previously, we applied the BKT, PFA and Elo algorithms to Shadowspect to predict the performance of students not
separating or prioritising KCs. Now, we will perform additional experiments in order to reflect on the improvement
of algorithms’ performance. We presuppose that the use of KCs can help to unpack more complex constructs within
individual KCs that will provide the opportunity for teachers to understand better the behaviour of students and give
them more personalised feedback. In this way, we intend to suggest new ways of evaluating both the performance
of students and the effectiveness of adaptive learning approaches. We believe this is an important novelty that could
transform the educational process significantly.

The remainder of this paper is structured as follows. In Section 2, we focus on the background of our study and
related works. In Section 3, we present the research methodology. Our findings are outlined in Section 4, while we
extend the results in Section 5. Finally, we draw our conclusions and future research directions in Section 6.

2 BACKGROUND

2.1 Knowledge inference

As a general rule, it is not a trivial task to measure or predict the latent knowledge of learners. There are two main
reasons why a student’s performance in a specific task attempt might not mean that the student has the skill: 1) the
student can slip, which means not to demonstrate the skill despite having it, and 2) the student can guess, which means
to demonstrate the skill without having it. Moreover, we cannot directly estimate these skills. Even so, we can measure
knowledge inference by looking at the performance of the student over time. In this way, there is an extensive variety
of methods that aim to measure the existing knowledge and forecast the future outputs of users. The first proposed
method for observing students’ past successes and failures was BKT [9]. BKT employs a two-state dynamic Bayesian
network to estimate the latent cognitive state from students’ performance where each KC is either learned or unlearned.
An alternative approach for performance prediction is PFA [36], which uses a logistic regression equation that models
changes in performance in terms of the number of student successes and failures that have occurred for each skill [46].
Another approach is the Elo rating system (named after its creator Arpad Elo) [16, 38] – a version of Item Response
Theory (IRT), whose classical approach has some fundamental limitations. In our work, we will not use the original
algorithm but its variant design to perform learner modelling. The main idea of the Elo algorithm is to continually
estimate the difficulty of an item and the ability of a student, updating both of them every time a student encounters
an item. Finally, Deep Knowledge Tracing (DKT) [40] predicts performance on future items within a system based on
Recurrent Neural Networks (RNNs) that are ‘deep’ in time to the task of knowledge tracing. In the following subsection,
we will analyse the works examining and/or applying the above-mentioned knowledge inference algorithms in order
to build properly the methodology of the paper at hand. A complete overview of all the existing knowledge tracing
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algorithms, their categorisation from a technical perspective and research gaps in their application can be found in a
survey carried out by Liu et al. [28].

2.2 Related work

The task of solving the knowledge inference problem has attracted a lot of researchers. Several authors conducted
surveys comparing different variations of the above-mentioned approaches [2, 39]. These works served as a base for
others to conduct experiments on real-world data sets. For example, Sahebi et al. [44] explored several log-driven
approaches predicting student performance in solving exercises on a data set collected from the online self-assessment
system, which provides parameterised questions for learning Java programming. After comparing BKT, PFA, the
advanced collaborative filtering approach (three dimensional and four-dimensional tensor factorisation) [24], and
Feature-Aware Student Knowledge Tracing [20], the authors concluded that the last two approaches produce better
performance by taking into account the knowledge structure. Also, Gervet et al. [17] analysed the performance of
various algorithms such as DKT [40], IRT, PFA, and BKT, amongst others, exhibiting two main advantages with respect
to other articles: 1) they explored a wide variety of methods to predict the learner performance, and 2) the efficiency
of the algorithms as mentioned above was proved on nine real-world data sets with different characteristics, i.e., the
number of items and KCs they cover, the number of learners or total interactions they contain. The authors concluded
that DKT leads on large data, or where precise temporal information matters most. In contrast, other algorithms can
perform better on data sets of moderate size, or containing a vast number of interactions per student. This also happens
in more typical applications of deep learning – for example, Dutta and Gros classified medical images and depending on
the training size and network layout used, the accuracy changed from 74.1% for the smallest training size and increasing
to 92.3% for the biggest training size [15].

From the works mentioned above, we can observe that the research covered by these areas is currently and constantly
increasing. Even so, these articles worked in Intelligent Tutoring Systems (ITSs), where it is easier to model student
learning because they have clearly defined tasks. ITS offers individual tutoring benefits automatically and autonomously,
making each user progress at their own pace [14]. One of the fundamental principles of the ITS states that a learner
borrows the needed information fromworked examples and connects the new information with the prior knowledge [32].
In contrast, modelling learning in games is more challenging because they are more open environments where students
should keep a friendly and motivating atmosphere all the time. Accordingly, we found a few works applying the
algorithms mentioned above to GBA. For example, [11] applied BKT and Dynamic Bayesian Networks (DBNs) for
analysing students’ response process data from an interactive GBA. This game measures if students can interpret
weather phenomena and the related human activity in a correct way. The authors found that BKT and DBNs proved
to be valuable and informative for analysing the process data for their particular GBA case study, considering that
they both allow tracking of the state of students mastery of knowledge and skills, which are changing over the game.
Based on the findings of this study, we will go beyond by adapting more knowledge inference algorithms and doing
experiments on prioritising certain KCs.

After exploring related works, we are confident that the GBA tool Shadowspect, which was previously designed for
the very purpose of measuring geometry content standards so that teachers can use it in their core geometry curriculum,
can also benefit from the use of the above-mentioned processes. Moreover, as far as we know, this is the first study that
will adapt and apply a wide range of knowledge inference algorithms to GBA.
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Adapting Knowledge Inference Algorithms to Measure Geometry Competencies through a Puzzle Game 5

3 METHODOLOGY

In this section, we will describe our research goals (RGs), we will characterise the context of the geometry game
environment employed in this work, and, finally, we will give details of the BKT, PFA, Elo and DKT algorithms
implementation that we performed, discussing each of them and the metrics that we used to measure their performance.

3.1 Research goals

After examining the state of the art regarding the knowledge inference problem applied to educational settings and to
games, application of its algorithms and the existing related works, we stated the following research goals (RGs):

• RG1. To adapt and compare the effectiveness of four different knowledge inference algorithms – Bayesian
Knowledge Tracing (BKT), Performance Factor Analysis (PFA), Elo, and Deep Knowledge Tracing (DKT) –
within the context of a geometry game called Shadowspect. The efficacy of these algorithms will be measured
by their capacity to predict students’ performance and accurately model their knowledge, using classifier
metrics such as the Area Under the Receiver Operating Characteristic Curve (AUC), accuracy, and F1 score. This
objective further includes an examination of the impact of Knowledge Components (KCs) – the skills required
to solve a puzzle successfully – on the performance of learner modelling. We aim to explore how the inclusion
or exclusion of KCs affects the performance of the aforementioned algorithms in predicting and modelling
student knowledge.

• RG2. After identifying the algorithm with the highest performance from the RG1, our second goal is to perform
a thorough evaluation of this algorithm. The evaluation process involves computing metrics such as accuracy
per puzzle, accuracy per user, puzzle difficulty, and individual student competence. These metrics will provide a
comprehensive understanding of students’ behaviours, which can subsequently inform the development of
personalised feedback mechanisms in game-based learning environments.

3.2 Context of the game environment

Fig. 1. Two puzzle examples in Shadowspect

The game environment Shadowspect was developed at the MIT Playful Journey Lab, and its overall objective is to
solve geometry puzzles. It has clearly defined goals, rules, obstacles for the players to overcome and it provides only
intrinsic rewards [42]. In the version of Shadowspect (see Figure 1) that we used for this case study, there are nine
tutorial levels (teaching the basic functionality of the game, i.e., how to build different primitives, scale and rotate them),

Manuscript submitted to ACM



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Strukova et al.

nine intermediate levels (giving students more freedom so they do not receive much help to solve the puzzles) and 12
advanced levels (challenging the students who already proved to gain experience). When students begin a puzzle, they
receive a set of silhouettes from different views representing the figure they need to create by using other primitive
shapes (i.e., cubes, pyramids, ramps, cylinders, cones and spheres), which can be scaled, moved and rotated. Moreover,
the students can move the camera to see the figure they are building from different perspectives and then use the
‘Snapshot’ functionality to generate the silhouette and see how close they are to the specified goal. Finally, the students
can submit the puzzle, and the system will evaluate the solution and provide feedback. Based on the proven importance
of geometry skills, the ability of the Shadowspect game environment to measure them and the overall satisfaction
already reported by students while playing, we are confident that choosing this puzzle game for our experiments has
great potential.

Shadowspect was specifically chosen for this study due to several reasons that made it an ideal platform for this kind
of investigation. Firstly, Shadowspect is a highly engaging and interactive geometry puzzle game, which incorporates a
robust range of geometry-related tasks and has clearly defined goals and rules, making it an excellent tool for learning
and assessment [42]. More importantly, Shadowspect presents tasks associated with multiple KCs. The game’s tasks
offer a lot of opportunities for assessing students’ understanding and application of these geometry concepts. This
diverse range of KCs, in turn, contributes to the rich data set that allowed us to effectively adapt, evaluate and compare
the knowledge inference algorithms in our study.

Furthermore, the choice of Shadowspect highlights the generalizability of our study. While Shadowspect serves as
an ideal case study environment due to its comprehensive integration of geometric KCs and gameplay design that
encourages learning, our approach is not limited to this specific game. In fact, our methodology can be extended to any
educational game that embodies certain characteristics, such as the presence of multiple atomic tasks, association of
tasks with KCs, and the potential for re-attempts.

3.3 Data collection of the case study

Generally, the process of obtaining knowledge from data consists of several steps, namely, data collection (student
performance, engagement, behaviour, information about the learning environment, content and structure of the course),
data cleaning including removal of any errors or inconsistencies, data analysis using statistical or machine learning
techniques and finally knowledge discovery which can be used to make informed decisions and improve learning
outcomes. In games, data analysis step could also include the usage of knowledge tracing algorithms which can be a
powerful tool for improving learning outcomes by providing personalised support and feedback, and identifying areas
of difficulty for targeted intervention. Next, we will explain the process of obtaining knowledge from the Shadowspect
data.

Firstly, the data used for this work were collected as a part of an assessment machinery development. The MIT
team recruited seven teachers in order to use the Shadowspect game for two hours in their 7th-grade and 10th-grade
math and geometry classes. The complete data collection recorded in an input experiment document includes around
428,000 events (an average of 1,320 events per user). Students were active in the game environment for 260 hours (an
average of 0.82 active hours per student), and students solved a total of 3,802 puzzles (an average of 13 puzzles per
student). For this paper, we used the data from 322 different students. Since our study was conducted with minors, and
in accordance with ethical considerations and privacy laws, we deliberately avoided collecting any personal data from
the students involved. The only identifier we used was a nickname chosen by the students themselves, which offers
no insight into their individual demographic characteristics. Besides, the personal attributes of the students, such as
Manuscript submitted to ACM
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Adapting Knowledge Inference Algorithms to Measure Geometry Competencies through a Puzzle Game 7

gender, were not directly relevant to the primary goal of this study. Moreover, the omission of personal data ensures
that we avoid collecting unnecessary and potentially sensitive information from minors.

It is also important to note that our study was conducted in schools across the United States, with the assistance of
mathematics teachers participating in a fellowship program dedicated to the introduction of GBA in their classrooms.
Thus, while we cannot provide specific demographic information, we can assure that the study was conducted in a
real-world educational setting with a diverse set of students representing typical classrooms.

3.4 Knowledge Components in Shadowspect

The KCs in the game environment Shadowspect are the skills needed to complete a puzzle successfully. A math
teacher-consultant was hired to identify these common core standards from the match curriculum supported by the
Council of Chief State School Officers of the United States. The math teacher-consultant, following common core state
standards of geometry [1], reviewed puzzles presented in the Shadowspect game and defined four main KCs, and most
of the puzzles have the representation of three (GMD.4, CO.5 and CO.6) of them.

After developing the coding process, the following four common core standards were identified:

• MG.1: Use geometric shapes, their measurements and their properties to describe objects.
• GMD.4: Identify the shapes of the two-dimensional cross-sections of the three-dimensional objects and identify

the three-dimensional objects generated by the rotations of the two-dimensional objects.
• CO.5: Given a geometrical figure and a rotation, reflection or translation, draw the transformed figure using,

for example, graph paper, tracing paper or geometry software. Specify a sequence of transformations that will
take one given figure to another.

• CO.6: Use geometric descriptions of rigid movements to transform figures and predict the effect of a given
rigid movement on a given figure; in the case of two figures, use the definition of congruence in terms of rigid
movements to decide if they are congruent.

Both puzzles represented in Figure 1 assume that to solve them, the student must have the following KCs: GMD.4,
CO.5 and CO.6. It implies that in the case of these two puzzles, the importance of each KC means to have the same
proportional weight (33%). In order to select the KCs for each puzzle and avoid the KCs co-occurrence issue, again, a
math teacher-consultant was involved. Accordingly, most puzzles (90%) reflect the same idea of requiring the same three
KCs because they are highly correlated, while the rest of the puzzles request one more KC, namely MG.1. In practice,
it is not precise because one KC might play a dominant role. For the reason that it is a complex task to implement
an algorithm taking into account the correct weights of each KC in a puzzle, in our previous work [47], we assumed
that all the present KCs had the same weight meaning that we considered that we did not have KCs prioritisation.
In contrast, in the current work, we focus on doing an additional experiment of assigning priorities to certain KCs.
Thus, we will compare the results of these two algorithmic configurations. We will describe the current formulas and
description of the selected knowledge inference algorithms according to the new algorithmic configuration in the
respective Section 3.6.

3.5 Algorithms implementation

The entire methodology process to predict the students’ performance and model their actual knowledge is represented
in Figure 2. As commented earlier, firstly, students of 7th-grade and 10th-grade math and geometry classes played
Shadowspect as a part of their curriculum. Accordingly, in the second step, the data from students for this study were
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compute computestudent,
timestamp,

puzzle,
event type

BKT PFAElo

MySQL

STUDENTS

algorithms

Student 1 Student n

student puzzle KC correct timestamp

Alice Not Bird CO.6 1
2019-09-09

13:29:30.215461-
04:00

STUDENTS

PREDICT THE STUDENTS'
PERFORMANCE WITH KCS

PRIORITISATION

1

3
DKT

PLAY

student puzzle correct timestamp

Bob Not Bird 1 2019-09-09
13:29:30.215461-04:00

IDENTIFY AND COMPUTE
THE VARIABLES FOR

THE ALGORITHMS

4

5 CHOOSE THE BEST ALGORITHMIC CONFIGURATION
(WITH OR WITHOUT KCS) AND THE BEST

PERFORMING ALGORITHM

BKT PFAElo
algorithms

PREDICT THE STUDENTS'
PERFORMANCE WITHOUT

KCS

DKT

4'

6COMPUTE ADDITIONAL METRICS (PUZZLES'
DIFFICULTY, USERS' COMPETENCY, ETC)

2 DATA
COLLECTION

Fig. 2. Overview of the methodology to predict the students’ performance and evaluate the models

collected, and all interactions with the game were stored in a MySQL database. To be consistent with the common
steps, we made the same data-related assumptions for all the algorithms. Respectively, we iterated through the input
experiment database, identifying and storing the types of events (e.g., start a game, complete a puzzle, create, move,
rotate, scale or delete a shape, exit to the menu, etc.) aligned with each user, the timestamp and the name of the puzzle
in which the events occurred. As the events of the data are sorted given their respective timestamps, and the events
of different students are interspersed, we made the separation between the events of each student. Then, in the third
step, we computed if the student was correct or not in their attempt to solve the puzzle. At this point, we saw that our
data set was imbalanced because we had many more records of students solving the puzzles than being incorrect in
their attempts. In this way, it is crucial to describe the puzzle-related assumptions. Firstly, if a student made more than
one submission of the solution to the puzzle, we considered it as one attempt. Moreover, if a student already solved
the puzzle and made another attempt to complete it, we discarded the latter. We also did not count as an attempt the
situations when the student made no submissions.

In the fourth step, we implemented the BKT, PFA, Elo and DKT algorithms for both algorithmic configurations
(with and without KCs) in order to predict the students’ performance based on the current modelling of each student.
Next, the fifth step consisted in choosing the best-performing algorithm and the according algorithmic configuration
(with or without KCs), and for it, the final sixth step was to compute additional metrics such as difficulty per puzzle or
competency per student. With these values in mind, the teacher can know the learner’s ability before making a formal
assessment, intervene to see the cause of strange behaviour and help the student to improve. Through these measures,
we seek to help support both students’ evaluation and potential adaptive learning approaches.

3.6 Algorithms

In this section, we describe the key approaches for knowledge inference, namely: BKT, PFA, Elo and DKT . We chose
these algorithms because they represent the most common ones showing the best results applied to similar problems.
Manuscript submitted to ACM
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3.6.1 Bayesian Knowledge Tracing (BKT). BKT [9] estimates the students’ knowledge from their observed actions –
the history of performance with that skill. This algorithm maintains a continuous evaluation of the probability that
a student currently knows each skill, updating that estimated value based on the student’s behaviour [12]. In this
algorithm, only the first attempt on each task matters and learning is modelled by a discrete transition from an unknown
to a known state. A fundamental assumption is that once a student knows a skill, they do not forget it.

The advantage of BKT is that it is easy to interpret its parameters as well as their effects on the model performance.
The standard BKT model is using the following probabilities:

• 𝑝 (𝐿0) - the probability that the student has prior knowledge meaning that they know a KC before practising on
any items associated with the KC;

• 𝑝 (𝑇 ) - the probability of learning, meaning that the student will learn a KC by practising;
• 𝑝 (𝐺) - probability that the student will guess the item correctly;
• 𝑝 (𝑆) - probability that the student will slip.

These parameters can be fit from prior student data for each KC. Based on them, the inference is made about the
student’s probability of knowledge at time opportunity 𝑛, 𝑝 (𝐿𝑛) which provides a powerful ability to track individual
differences with each KC. The parameters and inferred probability of knowledge can also be used to predict the
correctness of a student response with the following equations:

𝑃 (𝐿𝑛−1 |𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛) =
𝑃 (𝐿𝑛−1) · (1 − 𝑃 (𝑆))

𝑃 (𝐿𝑛−1) · (1 − 𝑃 (𝑆)) + (1 − 𝑃 (𝐿𝑛−1)) · 𝑃 (𝐺)
(1)

𝑃 (𝐿𝑛 |𝐴𝑐𝑡𝑖𝑜𝑛𝑛) = 𝑃 (𝐿𝑛−1 |𝐴𝑐𝑡𝑖𝑜𝑛𝑛) + ((1 − 𝑃 (𝐿𝑛−1 |𝐴𝑐𝑡𝑖𝑜𝑛𝑛)) · 𝑃 (𝑇 )) (2)

In the first place, an initial probability that the student has the knowledge is established because not all students
have the same base, and this can have a negative influence if equality in previous knowledge is considered. Once the
student was subjected to the task, a new probability appears, since now the knowledge is modified when exposed to
the problem in question. We also consider the probabilities that the student will guess without having the skill acquired
or that the student will not be correct actually having the knowledge. Notwithstanding, the puzzles in Shadowspect are
less suitable for this type of algorithm because the guessing factor is reduced to almost 0. This algorithm presents an
acceptable option for the problem we want to address. This is because it is a simple form of modelling the behaviour of
each student and observe their competencies.

3.6.2 Performance Factors Analysis (PFA). The goal of the PFA model is to measure how much skill a student has during
the learning process. It has considerable power to fit data and provides the adaptive flexibility to create the model
overlay to be used adaptively by a tutor [36]. In the standard PFA model, the data about learner performance are used to
compute a skill estimate. This estimate is then transformed using a logistic function into the estimate of the probability
of a correct answer. In this way, the model is using the following parameters:

• 𝛽 - the easiness of the KC;
• 𝑠𝑖 𝑗 - the prior successes for the KC of the student;
• 𝑓𝑖 𝑗 - the prior failures for the KC of the student;
• 𝛾 and 𝜌 - success learning rate and failure learning rate of each skill, respectively.

Equation 3 reveals how to compute the probability 𝑃 (𝑚) that the learner 𝑖 will get the item 𝑘 correct wherem is a logit
value representing the accumulated learning for student i (ability captured by 𝛾 parameter) using a KC j. Accordingly,
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10 Strukova et al.

it can be easily adapted to both algorithmic configurations – with KCs prioritisation and without. Moreover, the
parameters in the PFA algorithm combined information from correctness with improvement from practice improvement,
and we adjusted them for our particular case study.

𝑃 (𝑚) = 1
1 + 𝑒−𝑚 (3)

𝑚(𝑖, 𝑗 ∈ 𝐾𝐶𝑠, 𝑘 ∈ 𝐼𝑡𝑒𝑚𝑠, 𝑠, 𝑓 ) = 𝛽 +
∑︁
𝑗 ∈𝐾𝐶𝑠

(𝛾 𝑗𝑠𝑖 𝑗 + 𝜌 𝑗 𝑓𝑖 𝑗 ) (4)

3.6.3 Elo rating system. Elo [38] is a skill calculation system that has been predominantly used to rank players, for
example, in chess tournaments. It was developed for the purpose of measuring players’ strength, but it was also applied
in the context of educational research and was used for measuring both learner ability and task difficulty [34]. Its basic
principle is as follows: a score is assigned to each player, and then this score is updated after each game proportionally
to how surprising the result of the game was (if a weak player beats a strong one, the results were unexpected and
therefore the update is big). In our case, we face a student with a task, but students never compete against each other.
Accordingly, the expected outcome of the task and the probability of success for a user attempting a task are calculated.
Based on them, we obtain the new Elo rating score [13].

First, we must obtain the probability that a student answers correctly a question by using a logistic function with
both the competency of the student 𝜃𝑠 and the difficulty of the question 𝑑𝑖 while the correctness of an answer of a
student on an item is 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖 ∈ {0, 1}:

𝑃 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖 = 1) = 1
1 + 𝑒−(𝜃𝑠−𝑑𝑖 )

(5)

Next, we calculate the probability of each student-question confrontation. Initial values of 𝜃𝑠 and 𝑑𝑖 parameters are
set to 0. The value of the constant 𝐾 determines the behaviour of the system (i.e., if 𝐾 is small, the estimation converges
too slowly). For our particular case study, 𝐾 = 0.05. The following equations represent updates for both the competency
of the student and the difficulty of the puzzle:

𝜃𝑠 = 𝜃𝑠 + 𝐾𝐶𝑠 · 𝐾 · (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖 − 𝑃 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖 = 1)) (6)

𝑑𝑖 = 𝑑𝑖 + 𝐾 · (𝑃 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖 = 1) − 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖 ) (7)

This Elo variant based on learning is a suitable algorithm given the characteristics that we have. The idea is to replace
the pair of players that face each other and that we must analyse in the traditional algorithm for each student-question
pair, simulating a competition in which the student wins if they answer the question and vice-versa.

3.6.4 Deep Knowledge Tracing (DKT). DKT [40] predicts performance on future items within a system based on
Recurrent Neural Networks (RNNs) that are ‘deep’ in time to the task of knowledge tracing. Similar to BKT, this
algorithm observes knowledge at the KC level and the correctness of each problem [56]. DKT uses the information
from previous timestamps in order to make better future performance predictions while the student progresses through
the task. Specifically, the algorithm uses Long Short-Term Memory to represent the latent knowledge space of students
dynamically, determining how much information to remember from previous timestamps and how to combine that
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memory with information from the current timestamp. DKT uses large numbers of artificial neurons to represent latent
knowledge state so the model can learn the latent knowledge state from data.

Traditional RNNs map an input sequence of vectors 𝑥1, . . . , 𝑥𝑇 , to an output sequence of vectors 𝑦1, . . . , 𝑦𝑇 . This is
achieved by computing a sequence of ‘hidden’ states ℎ1, . . . , ℎ𝑇 – successive encodings of relevant information from
past observations that will be useful for future predictions. The variables are related using a simple network defined by
the following equations:

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑥𝑥𝑡 +𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) (8)

𝑦𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑦ℎℎ𝑡 + 𝑏𝑦) (9)

In DKT, both 𝑡𝑎𝑛ℎ and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 functions are applied to each dimension of the input and parameterised by an input
weight matrix𝑊ℎ𝑥 , recurrent weight matrix𝑊ℎℎ , initial state ℎ0, and readout weight matrix𝑊𝑦ℎ . Biases for latent and
readout units are represented by 𝑏ℎ and 𝑏𝑦 .

3.7 Algorithms comparison applied to the geometry game environment

This section presents a methodological comparison of the above-described algorithms in order to analyse how they
could perform better in our particular GBA case study, highlighting their advantages and disadvantages. Based on it,
we will be able to select features for this context among algorithms.

Firstly, BKT is the most potent technique for cases when each question/task is primarily associated with a single KC.
Therefore, observing students’ performance on a given task only updates the probability of a single KC being in the
learned state. Also, only the first attempt of each item is taken, so the algorithm throws out some information but, on
the other hand, uses the most precise data because traditionally, the first answer that the student gives represents their
real knowledge. Thus, this model fits well our case study, where we consider that puzzles do not have KCs prioritisation.
However, one weak point of BKT is shown by Corbett and Bhatnagar [10], who stated that the knowledge tracing
process tends to consistently overestimate students’ performance by an average of 8%. The authors explained it by
the following reasons: 1) it was hard for students to meet the tutor’s expectations because they forgot the material
they knew before, or 2) students were acquiring the knowledge that was not sufficient to perform adequately in a test.
However, the advantage of this model is that it is easy to interpret the parameters as well as their effects on the models’
performance.

In different circumstances, if multiple KCs at the same time are relevant to perform tasks, the rest of the algorithms
are the most effective. As said before, unlike in BKT, in PFA, each item may involve multiple latent skills or KCs.
Moreover, in PFA, each skill has a success learning rate and a failure learning rate, while in BKT, the learning rate is the
same: success or failure. This is important in GBA and, in particular, in the considered puzzle game because students
can learn a lot even while failing to solve the puzzle completely. In addition, PFA has an essential advantage over BKT
because it does not consider errors in the decisive exercises, and it implies a more gradual modification. However, a
disadvantage is that it ignores the order of the student’s activities, leading to some information loss. Moreover, in the
original formulation of the model, it assumes that the context in which a KC is learned has no effect on whether the
concept is learned or not. However, we find an important strength to be considered for PFA in our environment: it
softens the impact of incorrect answers. Therefore, the created model is more realistic and does not modify as much in
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the face of error. Despite the benefits it brings, it is a fairly complex algorithm to implement since it takes into account
numerous factors that make it difficult to adapt (e.g., the difficulty parameter).

Another algorithm that allows associating each puzzle with several KCs is the Elo algorithm. It is easy to implement
in educational systems and can be easily used in an online setting. Also, Elo is not restricted to binary results and can
be used for problems where time is the only performance measure which is a common situation in GBA. Besides, the
implementation and the adaptation of the Elo algorithm to the data are not that complicated. The algorithm has few
adjustment parameters, and it is also computationally very simple and fast [49].

Finally, the DKT algorithm proved to show decent results in comparison with other approaches. While the key
reason for the success of this model is its ability to capture the sequential dependencies among questions embedded
in the question-answer sequences [51], it suffers from two major problems. Firstly, the model fails to reconstruct the
observed input. As a result, even when a student performs well on a KC, the prediction of that KC’s mastery level could
decrease instead, and vice versa. Secondly, the predicted performance for KCs across time-steps is not consistent. This
is undesirable and unreasonable because student’s performance is expected to evolve gradually over time [55].

Considering all advantages and disadvantages of the selected algorithms, we decided to adapt and apply all of them
to our case study though their implementation and results interpretation will heavily rely on the stated drawbacks.

3.8 Classifier Metrics

We will be using each algorithm to obtain a standardised numerical value between 0 and 1 representing the geometry
capabilities of every student according to each KC based on the history of each student’s interactions with the activity.
After exploring the work performed by Pelánek [37], who carried out an overview of all commonly used metrics and
discussed their properties, advantages and disadvantages applied to educational data mining, we decided to rely on
the following metrics for comparing the applied algorithms between each other keeping in mind that our data set is
imbalanced:

• Accuracy is the total percentage of correctly classified elements. In other words, accuracy looks at fractions of
correctly assigned positive and negative classes.

• AUC is a more comprehensive measure of how good the classifier is at distinguishing between classes. In other
words, AUC is equal to the probability that a classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative example. This metric is representative but not discriminative. The higher the
AUC, the better the model is at correct predictions.

• F1 score is a measure of a test’s accuracy, which is calculated based on the precision and recall of the test.
The recall is the number of true positive results divided by the number of all samples that should have been
identified as positive. The classical counterpart to recall is precision which is the number of true positive results
divided by the number of all positive results, including those not identified correctly.

For our particular case study, we first chose a more traditional accuracy metric. The overall accuracy depends on
the ability of the classifier to to order data points and also on its power to select a threshold in the ranking used to
assign patterns to the positive class if above the threshold and to the negative class if below. The classifier with the
higher AUC metric is likely to also have higher overall accuracy as the ranking of patterns is beneficial to both AUC
and overall accuracy. However, if one classifier ranks patterns well but selects the threshold badly, it can have a high
AUC but a poor overall accuracy. On the other hand, both metrics look at fractions of correctly assigned positive and
negative classes. It means that if our problem is highly imbalanced, we can get high scores by simply predicting that all
Manuscript submitted to ACM
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observations belong to the majority class. In this way, the last metric we decided to include is the F1 score that works
well with such cases. We believe that with these three metrics, we can reasonably conclude the performance of the
selected algorithms considering all the advantages and disadvantages of the metrics.

4 RESULTS

In this section, we will highlight our findings following the stated RGs. First, we will discuss the results obtained by
building each algorithm in the configuration without KCs and then, after prioritising certain KCs. We will compare the
performance of selected algorithms by the use of selected metrics. Finally, we will choose the best performing algorithm
and conduct additional experiments in order to present a more detailed overview.

4.1 Algorithms metrics comparison (RG1)

w/o KCs AUC Accuracy F1 Score with KCs AUC Accuracy F1 Score
BKT 0.78 0.87 0.93 BKT 0.72 0.84 0.91
PFA 0.78 0.87 0.93 PFA 0.72 0.85 0.92
Elo 0.89 0.94 0.97 Elo 0.87 0.94 0.97
DKT 0.79 0.88 0.93 DKT 0.74 0.85 0.91

Table 1. Comparison of the BKT, PFA, Elo and DKT algorithms by AUC, accuracy and F1 score metrics

From Table 1, we can observe the fact that all the algorithms show decent results for the selected metrics, in both
cases: before and after declaring the KCs. In the case without KCs, the accuracy of the BKT and PFA algorithms is
identical, and DKT shows a slightly better result while the Elo algorithm outperforms them by ∼7-8%. We also observe
a similar pattern in the AUC metric; however, in this case, Elo performs better by a more significant value of ∼10-11%.
With these values in mind, we conclude that the models have a very high precision indicating that the adjustment was
carried out correctly. However, we should always take into account any imbalance when looking at the accuracy and
the AUC metrics. Finally, since we have a skewed sample distribution, in Section 3.8, we decided to use both precision
and recall. The results of the F1 score metric reveal that all the algorithms indicate outstanding precision and recall
(while Elo again outperforms by ∼4%). Therefore, we can deduce that the BKT, PFA, Elo, and DKT algorithms are precise
and robust.

After prioritising KCs, we still see the acceptable metrics outcomes of all the algorithms. However, all of them
narrowly worsened, and the metric that was affected the most is AUC. On the other hand, accuracy and F1 score
decreased only by ∼1-3%.

To sum up, the results reveal that all the algorithms show reasonable outcomes considering our case study on a game
environment, and therefore we believe that our adaption into Shadowspect was successful. While BKT, PFA and DKT
perform sufficiently well, we can observe that the Elo algorithm outperforms them in the most critical metrics – AUC
and F1 score. Therefore, we conclude that for both cases (with and without KCs), the most predictive model is Elo, which
outperforms the overall accuracy of BKT, PFA and DKT by ∼8% and F1 score by ∼5% without KCs. Simultaneously, it
shows pretty similar results after KCs prioritisation decreasing the AUC metric only by ∼2% while other algorithms
worsened their metrics results much more.

One of the primary contributions of our work is adapting knowledge inference algorithms to the context of the
Shadowspect game. These algorithms are often used in ITSs but our adaptation to games is novel. Therefore, there
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are not that many studies published with which we can perform a fair comparison. Specifically, recently, there was
not performed any similar study including the Elo algorithm. However, other studies in different settings have similar
performance and our results coincide with other works in the fact that generally DKT outperforms more traditional
models like BKT and PFA [45].

4.2 Elo algorithm detailed results (RG2)

In this section, we will present the additional results of the best-performing algorithm. As we concluded earlier, Elo is
showing the best results, and since the algorithm changes the student parameter and an item parameter every time it
encounters a new experience taking the difference between the students’ actual response and predicted response and
weighting it by a coefficient (see Equations 6 and 7), we see potential in performing additional experiments. Therefore,
we will discuss the Elo algorithm in detail, presenting additional metrics such as accuracy and difficulty computed for
each puzzle and accuracy and average active time obtained for each student.
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Fig. 3. Elo accuracy and difficulty results per puzzle split by Shadowspect designers’ difficulty

In Figure 3, we represent the accuracy metric per puzzle, the puzzle difficulty generated by the Elo algorithm (see
Equation 7) and the difficulty regression curve, additionally splitting the puzzles by Shadowspect designers’ difficulty
(basic, intermediate and advanced). Accordingly, the x-axis is ordered based on the sequence order of puzzles presented
in the Shadowspect game, the left y-axis represents the accuracy, and the right y-axis stands for both the difficulty
and the difficulty regression curve. We can observe the fact that the curve of the difficulty goes up at the same time
as the difficulty levels. This is a feature implemented in a lot of games in order to maintain the user engaged and
challenged as the game advances. This is called intrinsic motivation while studying directed towards the enjoyment of
experience [53].
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We can notice that it is easier to predict the student’s performance in the most manageable basic levels, while in
more sophisticated levels, the accuracy decreases due to a higher variance in students’ capabilities to solve each puzzle.
It can be readily explained by the fact that in Shadowspect, the first nine puzzles are used for teaching the fundamentals
of the game, while later on, the users are making their own decisions to solve the puzzles. We can observe that the
difficulty of several puzzles (e.g., Bear Market and Orange Dance) stands out above the rest. Accordingly, it is harder to
predict the students’ performance in them.
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Fig. 4. Elo average activity time and accuracy results per user

In Figure 4, we represent calculations of the accuracy metric per user and their competency, specifying how many
puzzles each student solved. Accordingly, the x-axis represents the accuracy while the y-axis stands for the competency.
The intensity of the dot’s colour codifies the number of puzzles the student solved (the darker the dot is, the more
puzzles the student solved). It is essential to say that we selected only those students who spent a reasonable amount
of time playing the game (more than 60 seconds of active time per puzzle). In total, 85 students met this criterion. At
the same time, we only analysed the behaviour of those students who attempted to solve at least 12 puzzles because
we suppose that students solve the puzzles by difficulty starting with an intermediate level which teaches the game
functionality and finishing with an advanced level for the students who already have enough experience. As stated
before, the intermediate level includes a total of nine puzzles, and we consider that it is reasonable to include in the
study only those students who started to take their personal decisions in the game starting from the tenth puzzle. In
total, 51 students met this criterion, and the same amount of students met all the criteria stated before.

Moreover, following the Equation 6, we calculated the competency of each student for all KCs, which is obtained
based on the history of each student’s interactions with the activity. With this value in mind, the teacher knows the
learner’s ability before conducting a formal assessment. Thus, it is intended to act both individually and collectively,

Manuscript submitted to ACM



781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Strukova et al.

e.g., if strange behaviours appear at an individual level, the teacher can intervene to see the cause and help the student
improve. Through these measures, we seek to collaborate both in the evaluation of students and in adaptive learning.

5 DISCUSSION

In this section, we will present a discussion following the obtained results. Firstly, we will generally discuss our findings.
Next, we will raise two critical topics: the importance of KCs and the feasibility of using the Elo algorithm for formative
assessment. Finally, we will raise the limitations of our work.

5.1 Performance of the algorithms

Based on the metrics comparison presented in Table 1, we are assured that our results proved that it was possible to
effectively adapt the BKT, PFA, Elo and DKT algorithms to a GBA. Therefore, our study conducted on Shadowspect
can serve for future research conducted on games with similar characteristics. It demonstrates a scalable approach to
applying knowledge inference algorithms in diverse game-based learning environments, extending beyond the specific
context of geometry learning. We did not find any work adapting and/or applying all mentioned above knowledge
inference algorithms to one case study and particularly to GBA. Therefore, we do not have any reference with which to
compare our outcomes. However, in Section 2.2 we mentioned several works comparing other algorithms. For example,
Gervet et al. [17] stated that DKT could perform better when precise temporal information matters most. In our case
study, DKT also showed decent results, but Elo outperformed it. We explain it with the fact that this was the algorithm
customised the most to GBA. On the other hand, we found a unique work whose authors applied and compared several
knowledge algorithms (BKT and DBNs) to GBA [11]. They concluded that both models are valuable and informative,
while in our case, BKT was not the algorithm showing the best results in modelling the real knowledge of students.
This could be expected because the game presented in their work has different functionality and goals.

Considering another goal of the paper at hand of comparing two algorithmic configurations – with KCs prioritisation
and without – we are not aware of any study exploring this issue, and therefore, we draw our conclusions in the
following subsection.

5.2 Do KCs matter?

In our work, we compared the performance of the BKT, PFA, Elo and DKT algorithms in the context of the geometry
game environment Shadowspect. Additionally, considering our particular case study, we decided to do complementary
experiments on separating KCs and prioritising them for certain puzzles. After comparing the results (see Table 1),
we observed the fact that the algorithms showed better results before the separation of KCs. This could be explained
by the fact that assigning priorities to KCs, in fact, signifies information loss. To illustrate, initially, the puzzle "Bull
Market" encompassed all four KCs. However, once the expert determined that the prioritised KC for this puzzle was
MG.1, we effectively lost the representation of the other three KCs, which constitutes 75% of the original information.
However, our output does not signify that every case study would not benefit from KCs separation.

Moreover, we concluded that Elo is the best performing algorithm. We saw that its metrics did not deteriorate
significantly after we prioritised some KCs (accuracy and F1 score remained the same while AUC decreased from 0.89
to 0.87). This means that each particular case is different, so the choice of according metrics and the usage of KCs will
vary. The geometry game Shadowspect was designed explicitly for developing geometry capabilities where KCs are
highly correlated with one another. We are of the opinion that there could be an effect on separating KCs in other
studies. ITS environments could significantly benefit, as their goal is to provide immediate and customised feedback to
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students. This is also explained by the reason that ITSs are constrained environments while games are much more
open environments without a clear balance between reliability and entertainment. Moreover, it could be helpful if the
feedback provided to learners could be separated by focusing on every particular KC. In this way, both teachers and
students would know what exact skills they need to polish. Nevertheless, the generalizability of our results should be
approached carefully since the outcomes we obtained do not guarantee similar results in all studies adapting knowledge
inference algorithms to GBA.

5.3 Use of the knowledge inference algorithms for formative assessment and GBA within the example of
Elo

Following the results presented in Section 4, we are confident that the Elo algorithm can be used for formative
assessment. There are two main simplest scenarios that could benefit from it. The first one was described by Pankiewicz
and Bator [34], who comparedmethods of task difficulty estimations suitable for use within online learning environments
for the purpose of adaptive item sequencing. Accordingly, in two groups of learners (beginners and experienced learners)
Elo outperformed two other methods, namely, proportion correct and learner feedback. The second scenario is the
estimation of the learner’s proficiency level [52].

As we saw in Figure 4, there is some variance in students’ performance throughout the puzzles. More specifically,
there are some students whose results significantly negatively differ from others. Among the various student cases, we
can distinguish between top performers and those who are struggling. It is easier to predict the behaviour and outcomes
of students solving the puzzles better than the average. Additionally, it is not a trivial task to predict the performance of
those students whose competence is low. We can also see that the competency of students increases while they solve
more puzzles. When a teacher analyses the performance of a particular student and encounters such a case, they
must investigate the cause. Interpreting these cases can be tricky, as various factors might be at play: (1) the student
may have behaved in a thoughtless manner, causing the data to stand out; (2) the student might be struggling with
a particular aspect that appears in that puzzle, indicating an individual-level problem; or (3) the specific puzzle may
present a greater level of difficulty compared to the others (see Figure 3).

In this sense, there are several challenges of implementing the Elo algorithm in real scenarios. These challenges
stem from the intricacies of the formative assessment process, an example of which is [41]. The authors developed a
visualisation dashboard that can play the role of a tool supporting teachers using educational games in the classroom.
In this case, teachers are able to receive useful information derived from the knowledge inference algorithms via the
dashboard and then provide personalised feedback to students who accordingly can improve their skills based on
the previous experience. Respectively, the first challenge is to establish clear instructions for the teachers especially
considering already existing obstacles while handling big classes. For example, if it is evident that there is one puzzle
in which most of the students fail or have difficulties, the instructor can explain how this particular task is solved.
However, if distinct students have doubts about different puzzles, the situation is more unclear. On the other hand, it is
compensated with the fact that the algorithm can be applied in real-time scenarios because the competency of students
and the difficulty of puzzles are evaluated for each particular case.

Also, with the metrics presented in 4.2, we can address two critical problems – academic dishonesty (or cheating)
and teachers’ trustworthiness. Cheating is a common issue in the classroom being yet unresolved [3]. The most spread
reason for it is to gain a competitive advantage in the race of position The most common reason for cheating is to
gain a competitive advantage in the quest for status or power [50]. In regular classrooms, students cheat in order to
achieve better results and, therefore, higher grades. In this case, it is important to early identify these students and
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understand the reasons. More than that, to avoid these situations, it is vital that teachers do not teach the test (similar
to the exam questions) but introduce the thinking strategies and do not neglect any topic that will not be tested on.
Also, another challenge brings the existence of the phenomena called “gaming the system", which represents the idea
that a student attempts to succeed in an educational environment by exploiting properties of the help and feedback
tools of the system rather than by learning the material [4]. We saw these situations in Shadowspect when students,
while solving the puzzles, were explicitly asking for help by repeatedly clicking on the submit button in order to receive
feedback on the solution.

It is also important to mention that there are various types of students. For example, shallow learners – they do well
on tests they learned from the system but are not able to transfer their knowledge to new contexts [5]. Also, there are
students that just randomly insert solutions with erratic behaviours. This could be happening due to several reasons,
including lack of educational self-drive, frustration during the learning process or simply that the student dislikes the
subject matter. Accordingly, it is harder to predict the behaviour and model the real knowledge of such learners. This
brings the limitations of our work presented in the next section.

In conclusion, the ability to predict students’ performance with knowledge tracing algorithms is of global interest
because it has the potential to revolutionise the field of education and make learning more effective, efficient, and
personalised. This is supported by the fact that these algorithms can improve learning outcomes, lead to a more efficient
resource allocation and offer cost-effective solutions [31]. Additionally, the development of knowledge tracing algorithms
requires interdisciplinary collaboration and innovation in the fields of computer science, education, psychology, and
data analytics which can lead to new discoveries, approaches, and technologies that can benefit a wide range of
industries and fields [54]. Finally, education is a critical tool for addressing global challenges such as poverty, inequality,
and sustainable development. Knowledge tracing algorithms can help make education more effective, accessible, and
inclusive, thereby contributing to the achievement of these goals.

5.4 Educational implications

Given that the knowledge tracing algorithms are performing effectively, it follows that we are able to accurately evaluate
one’s competence in geometry and spatial reasoning. This outcome is significant not only due to the importance of these
skills, but also because of their correlation with other advanced cognitive abilities and problem-solving aptitudes [7].
Specifically, individuals who demonstrate proficiency in spatial reasoning often exhibit similar aptitudes in solving a
diverse range of problems [21]. Therefore, this assessment machinery can be helpful to detect and provide feedback on
problem-solving skills that are key for the 21st century society. In this way, there are several practical and educational
implications of using knowledge tracing algorithms in games to predict student performance and model their real
knowledge:

• Personalised Learning. Knowledge tracing algorithms are able to help in the task of personalising the learning
experience for each student. By modelling each student’s knowledge level and predicting their performance,
the game can be adapted to meet their individual learning needs. In result, we can obtain increased engagement
and motivation, and ultimately students can achieve better learning outcomes.

• Early Intervention. Knowledge tracing algorithms can identify areas of difficulty or misconceptions early on,
allowing for targeted intervention and support before the problem becomes more serious. Accordingly, this
can be beneficial in preventing students from falling behind and ensure that they have a solid foundation of
knowledge before moving on to more advanced concepts.
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• Adaptive Assessment. Knowledge tracing algorithms can also adapt the assessment process to each student’s
level of knowledge and skill based on the prediction of each student’s performance.

• Improved Instructional Design. The data generated by knowledge tracing algorithms can be used to inform
instructional design and improve the overall effectiveness of the games. By analysing patterns and trends in
student performance and behaviour, designers can make informed decisions about how to improve the game
mechanics, learning objectives, and instructional strategies.

In summary, the use of knowledge tracing algorithms in games has the potential to significantly improve the learning
experience for students, while also providing valuable insights to instructors and designers [25]. These algorithms can
help to personalise the learning experience, identify areas of difficulty, and inform instructional design since they are
able to model the knowledge of every student and predict their performance. In this way, the ability to predict students’
performance with knowledge tracing algorithms can have a significant impact on the design and use of games in several
ways. Apart from adapting the content, difficulty level, and feedback to the individual needs and learning progress
of each student and accordingly, providing real-time feedback to students on their performance and progress, our
study suggests two additional recommendations. Firstly, knowledge tracing algorithms can be used to assess students’
knowledge and skills in a more accurate and objective way than traditional assessments. Also, they can be used to
optimise the design of games by identifying the most effective learning strategies, game mechanics, and content for
different types of learners. This can help game designers and developers create more engaging and effective learning
experiences, as well as improve the overall quality of games.

Beyond these practical implications, our study also contributes to the broader field of educational research in several
significant ways. Firstly, our research exemplifies how theoretical algorithms from the field of data analytics and
knowledge tracing can be practically applied to real-world educational contexts. Secondly, by using these algorithms,
educators gain a more complete understanding of each student’s learning path which could help to target the resources
more effectively and may aid in lesson planning and resource allocation. Thirdly, the approach suggested in our research
could lead to more inclusive education by ensuring that each student’s unique learning needs are addressed. Lastly,
our findings have implications beyond the classroom and can inform educational policy and curriculum design. By
demonstrating the effectiveness of gamified learning and knowledge tracing, our study can contribute to discussions on
modernising educational approaches and curricula. In conclusion, our study not only introduces a novel method for
applying knowledge tracing algorithms to geometry-based games, but also offers valuable insights and implications for
educators, game designers, policymakers, and researchers in the field of education.

5.5 Limitations

By exploring the example of the Elo algorithm applied to the Shadowspect case study, we conclude that other knowledge
inference algorithms could also be adapted to formative assessment and GBA. However, following the challenges
of implementing them in formative assessment and GBA mentioned in the previous section, we will mention the
limitations of our work.

First of all, our particular case study shows the results of the experiments performed by using data collected from
322 different students. We are confident that this represents a decent sample size in order to conclude reliable results.
However, these results come from the sample from a single context since these data were collected as a part of an
assessment machinery development. Respectively, in order to have more diverse data, it is needed to collect data from
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users that were not solving the puzzles as a part of their curriculum. Therefore, we are not confident that our algorithms
adaptation and outcomes would generalise to other contexts.

Moreover, at the beginning of our work, we questioned if the results of our experiments would be different while
comparing two algorithmic configurations – with KCs prioritisation and without. It is worth mentioning that the
geometry game Shadowspect requires the mastery of four KCs that are highly correlated to each other, and moreover
the data we tagged had overlapping between KCs. Accordingly, the limitation that we faced consisted in the fact that
the puzzles were designed before taking into account the KCs. Respectively, we are of the opinion that it could be
beneficial to consider KCs from the very beginning of designing game levels. In this way, our study can serve as a base
only for similar GBAs where the KCs are focused on similar skills.

6 CONCLUSIONS AND FUTUREWORK

Understanding learners and their contexts has undoubtedly become one of the most promising educational research
topics of the past decade. Accordingly, every year there are more novel solutions to promote various educational settings
and motivate students. In this way, gamification proved to be an important way of engaging students with learner
perspectives. This work presents a novel adaptation analysis and comparison of four knowledge inference algorithms –
namely, BKT, PFA, Elo and DKT – applied to a geometry game environment to model learners’ latent knowledge. We
analysed the results of two algorithmic configurations – one with prioritisation of KCs, the skills needed to successfully
complete a puzzle, and one without this prioritisation. We measured the performance of the algorithms mentioned
above by examining the following metrics: AUC, accuracy and F1 score. We observed that all the algorithms showed
more decent results before we separated the KCs, which could be explained by the fact that assigning priorities to
KCs esentially signifies information loss. Moreover, Shadowspect was designed explicitly for developing geometry
capabilities where KCs are highly correlated. Among all the algorithms, we found Elo to have the best predictive power
and the ability to model the real knowledge of students. However, the rest of the algorithms also showed decent results
and, therefore, we can conclude that they all hold the potential to measure and estimate the real knowledge of students.
In turn, this confirms that all the four analysed algorithms are suitable for application in formal education to improve
teaching, learning, and organisational efficiency.

Besides, we are confident that this work can motivate teachers and students to use game-design elements for the
learning process as discussed in Section 5.4. This is due to the fact that the paper at hand proved that it is possible not
only to make the educational process enjoyable through playing but also to meet the desires and needs of every student.
We discussed the possible scenarios of the Elo algorithm application in formative assessment and identified that it
could be used for the estimations of task difficulty and the learner’s proficiency. Moreover, this experience could also be
transferred into not formal educational settings with new innovative products.

As far as we know, this is the first research conducted on adapting and applying and comparing the above-mentioned
knowledge inference models in GBA to predict learners’ performance. Besides, there are several possible extensions
to this research. For example, further experiments are needed to conclusively determine whether KCs prioritisation
might not work well in GBA. Moreover, Pardos et al. [35] concluded that combining multiple approaches through
ensemble selection can be more effective for large data sets than single models and accordingly, this approach could be
explored further for every particular case study.
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