
Expert Systems With Applications 242 (2024) 122864

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

A multimodal study of the interplay between stress, executive function, and
biometrics in game-based assessment
Mariano Albaladejo-González a,∗, Rubén Gaspar-Marco a, Nancy Tsai b, Félix Gómez Mármol a,
José A. Ruipérez-Valiente a

a University of Murcia, Calle Campus Universitario, 30100, Murcia, Spain
b McGovern Institute for Brain Research, Massachusetts Institute of Technology, MA 02139, Cambridge, USA

A R T I C L E I N F O

Keywords:
Stress
Biometrics
Executive functions
Artificial Intelligence

A B S T R A C T

Managing stress is a crucial soft skill that affects cognitive performance and health. Stress detection through
biometrics can be used to improve and evaluate stress management. However, measuring the effects of stress
on biometrics and executive functions is difficult and dependent on the individual. Despite these challenges,
this paper presents a case study that collects a comprehensive multimodal dataset with two stress metrics,
four biometric signals, and twenty-two executive function metrics from Game-based Assessment (GBA) trace
data specifically designed for this purpose. The experiments suggest that biometrics, especially the heart rate
and skin temperature, are effective predictors of stress. Additionally, noteworthy correlations were observed
between heart rate and certain executive function variables. The levels of GBA that measured shifting and
processing speed showed a higher heart rate than the response inhibition levels. This case study, together with
the developed stress detectors, enables the detection of persons who struggle to manage stress and measure
their executive function performance under stressful situations.
1. Introduction

Soft skills such as stress management, teamwork, and leadership
are considered indispensable for modern workers (Vasanthakumari,
2019). This paper focuses on stress management, one critical soft
skill due to its relationship to health (O’Connor et al., 2021) and
executive functions (Tsai et al., 2019), affecting students’ and workers’
performance (Pascoe et al., 2019; Pluntke et al., 2019). Nevertheless,
stress self-awareness is a complex self-regulated capability that most
people do not have (Albaladejo-González & Ruipérez-Valiente, 2022).
Therefore, they might not detect their high stress levels until the
situation is problematic and difficult to reverse. Stress management
is important for all workers, but it is especially essential for those
who work in high-pressure environments and make critical decisions,
such as emergency professionals. In these situations, inadequate stress
management can result in deficient performance, which can have fatal
consequences (Pluntke et al., 2019).

While stress detection can help address the problem mentioned
above, the most straightforward method for measuring stress is through
subjective self-reporting using validated questionnaires. However, this
approach has limitations, such as self-biases and the time required
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for sustained use, making it inconvenient. To overcome these limita-
tions, affective computing aims to develop machine systems that can
automatically recognize emotions, including stress, without relying on
self-reporting. One approach for automatic stress prediction is affective
computing with biometrics data (Mohammadi et al., 2022; Motogna
et al., 2021) given that some biometrics are linked to stress, mainly
heart rate and heart rate variability (Szakonyi et al., 2021). Stress also
affects executive functions, which refer to the high cognitive processes
that allow planning, forethought, and goal-directed actions (Shields
et al., 2016). We propose to analyze the relationship between exec-
utive functions, biometrics, and stress together to explore potential
applications for stress detection. However, the differences between in-
dividuals can make it challenging to use biometrics for this purpose (Hu
et al., 2019). Moreover, previous studies have shown that individual
factors play a critical role in how stress affects a person’s executive
functions (Tsai et al., 2019). Therefore, not all individuals experience
changes in their executive functions in the same way during stressful
situations, making it difficult to use these functions for stress detection.
Another challenge is to measure biometrics and executive functions,
especially at the same time, because too invasive and uncomfortable
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sensors can affect the executive function evaluation itself (Zamkah
et al., 2020).

Analyzing the relationship between stress, biometrics, and executive
function is highly relevant for today’s society. On the one hand, it
allows progress in stress prediction through biometrics in order to avoid
the harmful consequences of stress on health. On the other hand, this
analysis contributes to research on executive functions under stressful
conditions, which is especially relevant for professionals who make
critical decisions and students who are often under stressful conditions,
such as during exams.

Due to the importance of analyzing stress, biometrics, and executive
functions, this paper presents a case study to collect and analyze the
three of them. The case study records different biometrics under non-
stress and stress conditions and also calculated different executive
function metrics in the stress conditions. To calculate the executive
function metrics, we employed Game-based Assessment (GBA), which
refers to the use of games to assess learners’ competencies, skills,
or knowledge (Gomez et al., 2022). Using a novel GBA of executive
functions is one of the unique contributions of this study. Furthermore,
the study stands out for including a wide variety of multimodal data
from different sources; specifically, the combined analysis of execu-
tive functions, biometrics (blood volume pulse, electrodermal activity,
temperature, and three-axis acceleration), and trace data from GBA for
stress prediction is a novelty in the state-of-the-art. Because no author
has previously measured all these data together, the findings of this
analysis are highly relevant due to their novelty. Finally, the case study
and the developed Artificial Intelligence (AI) stress predictors can be
utilized to find subjects who do not manage stress correctly and may
be used to train stress management. Since our case study incorporates
the assessment of executive function metrics, we can delve deeper into
the cognitive abilities of individuals under stressful conditions. Poor
executive function performance and elevated stress levels suggest diffi-
culties managing stress effectively, which is essential for professionals
who make critical decisions in stressful scenarios.

We establish the following research questions (RQs) for this study:

RQ1 What is the relationship between the subjects’ executive function
metrics and biometrics and self-reported stress? We split this RQ
into two sub-RQs.

• RQ1.1 Which executive function and biometric variables
have the higher prediction power for stress?

• RQ1.2 What is the potential effectiveness of a stress detec-
tor that utilizes a combination of biometric measurements
and executive function metrics?

RQ2 What is the relationship between biometrics and executive func-
tion metrics?

RQ3 Do the stressors presented in the GBA influence the subjects’ heart
rate?

The rest of the paper is organized as follows. Section 2 provides
a background of stress, biometrics, and executive functions. Section 3
presents the multimodal case study developed. Section 4 introduces
the methodology followed to answer through the dataset each of the
RQs. Section 5 shows the results obtained, and Section 6 contains the
discussion about the outcomes, implications, and limitations. Finally,
we present the research conclusions and future work in Section 7.

2. Related works

Stress and mental health are a worldwide concern (Pourmohammadi
& Maleki, 2020). Stress is described as either being acute or chronic
in nature (Wolff et al., 2020). Acute stress constitutes physiological,
psychological, and behavioral responses to demands that exceed an
2

organism’s regulatory capacity, mainly in uncontrollable or unexpected
situations and lasts only for a short period of time. When these stressful
situations are continuous or prolonged, they induce chronic stress that
can lead to serious physical and mental diseases (Greene et al., 2016).
Proper stress management is necessary to avoid its negative effects on
health (O’Connor et al., 2021) and cognitive consequences in today’s
society (Tsai et al., 2019).

Due to the aforementioned reasons, acute stress prediction is a
hot topic (Motogna et al., 2021; Panicker & Gayathri, 2019) and
one of the main approaches is to use biometrics because they are
linked to stress, mainly heart rate (Motogna et al., 2021; Szakonyi
et al., 2021). Typical data processing consists of splitting the biometric
signals into time windows and extracting a series of features from
each window (Albaladejo-González et al., 2022). Most authors of the
state-of-the-art trained AI models with features from windows recorded
in stress and non-stress conditions (Albaladejo-González et al., 2022).
Therefore, most authors have considered stress prediction a binary
classification problem (Panicker & Gayathri, 2019), whereas in this
case study, we operationalize it as a regression problem, testing two
different stress metrics from self-reported validated instruments. Em-
ploying this regression approach enables a higher level of granularity in
stress prediction. Instead of simply categorizing individuals as stressed
or not stressed, we can provide a more accurate estimation of the stress
level. This is particularly relevant to evaluate stress management and
its improvement.

Although other authors have analyzed stress prediction through
biometrics, there is a lack of datasets to train AI models to pre-
dict stress and compare results. As far as we know, these are the
three most comprehensive datasets that contain stress and biomet-
rics: AffectiveRoad (Haouij et al., 2018), Wearable Stress and Affect
Detection (WESAD) (Schmidt et al., 2018), and Smart Reasoning Sys-
tems for Well-being at Work and at Home-Knowledge Work (SWELL-
KW) (Koldijk et al., 2014). Like the case study presented in this paper,
the case studies from which these datasets were generated enclosed
stress and non-stress phases. The stress phase incorporated some stres-
sors that induce high levels of stress. However, none of these datasets
included as many stressors as our case study. About the biometric
data collected, WESAD includes, in addition to our biometrics, the
electromyogram (EMG) and respiration. Nevertheless, none of these
datasets also contain any executive function metrics; therefore, there
is no information on how stress affects the subjects’ cognitive perfor-
mance. It is also worth noting that these biometrics and stress datasets
do not contain a very large number of different subjects because it is
difficult to find subjects to record biometrics data, and it is common
to lose some subjects due to poor-quality measurements or problems
with some sensors. AffectiveRoad, WESAD, SWELL-KW, and our dataset
comprise 10, 15, 25, and 20 subjects, respectively. Therefore, the
research community still needs more similar studies.

In addition to acute stress prediction, our dataset has also allowed
the analysis of stress and executive functions, which is another rel-
evant research field with no definitive conclusion (Plieger & Reuter,
2020; Tsai et al., 2019). Some authors have found that acute stress
impairs working memory and cognitive flexibility (Shields et al., 2016);
other authors have noticed that the acute stress reaction is adaptive,
providing power and helping the organism to deal with stressors in
challenging situations (Dhabhar, 2018).

The analysis of executive functions under stressful conditions in-
cluded in our case study allows for detecting subjects who need to
improve their capacity to work in stressful situations. With this purpose,
we can find some previous applications to improve stress management
for specific professionals such as firefighters (Pluntke et al., 2019) or
soldiers (Friedl, 2018). However, these applications focus on specific
professionals, while our case study and the AI stress detector developed
can evaluate any individual.

To measure executive functions, there exist validated tests such

as the 𝑛-back task for working memory, the continuous performance



Expert Systems With Applications 242 (2024) 122864M. Albaladejo-González et al.
Fig. 1. AquaPressure video game screenshots.
task for inhibitory control, or the Wisconsin Card Sorting Test for
shifting (de Assis Faria et al., 2015). Outside the laboratory, there are
also a couple of GBA to measure these cognitive skills (Gomez et al.,
2022), but neither combine the executive function metrics with bio-
metrics. Furthermore, we also collected two self-reported stress metrics,
making our case study stand out for the different sources and modalities
analyzed. Therefore, this multimodality represents an advance with
respect to the state of the art.

3. Dataset collection

This section introduces the case study developed to obtain the data
analyzed in the following sections. To obtain further details regarding
the dataset or the code developed, please contact the authors.

3.1. AquaPressure

AquaPressure is a GBA of executive functions developed at the
Massachusetts Institute of Technology (MIT). This GBA consists of 50
levels where the player must navigate through maze-like rooms to reach
an exit without running out of oxygen. Levels assess the executive func-
tions of inhibitory control, shifting, and working memory and are all
designed with slight modifications using basic mechanics of following
arrows to navigate through the rooms. For example, in the inhibitory
control levels, arrows are accompanied by arrows with special symbols
indicating the player should stop rather than pass through the arrow.
Levels assessing shifting and working memory are also designed to
uniquely test the cognitive construct of interest. Please see Fig. 1 as
an example of three levels within AquaPressure.

Two versions of AquaPressure were designed to examine the effects
of low and high stress on executive functions. In the present study,
only the high-stress version of AquaPressure was used thus, this version
will simply be identified as AquaPressure. The first three levels of
AquaPressure include tutorial levels where no stressors are present in
the game.

3.2. Case study

To answer the aforementioned RQs, we have designed and con-
ducted a case study to record biometric measurements in non-stress
and stress conditions and also calculated different executive function
metrics in the stress conditions.

3.2.1. Procedure
The developed case study is summarized in Fig. 2. To collect biomet-

rics under non-stress conditions, we created the video phase, in which
the volunteer watched an introductory video about executive functions.
The stress phase was conducted using AquaPressure, allowing us to
collect biometrics and executive functions under stress conditions.
3

Before starting the experiment, the volunteers watched an intro-
ductory video about the case study. This video introduced the case
study briefly to the volunteers, informing them about the two phases
of the case study and that they had to wear a non-invasive wristband
to collect their biometrics. We used a video to give all volunteers the
same information about the case study.

Subsequently, the volunteers had to sign a consent form to partici-
pate in the experiment. After these previous steps, the volunteers put on
the Empatica E4 (a wristband to record biometrics) (Empatica, 2023)
in their left hand, and the experiment started with the video phase. In
the video phase, we showed a video about executive functions to record
the biometric signals under non-stress conditions. We did not include
questions about the content of the video, and the video did not contain
any relevant information to play AquaPressure. Therefore, the video
did not contain any stressors.

Then, the volunteers performed the AquaPressure phase, including
the tutorial, test, and game phases, while recording the biometric sig-
nals. The next phase was the test phase, which consisted of participants
completing a mental arithmetic task out loud. The mental arithmetic
task is adapted from the Trier Social Stress Task (Kirschbaum et al.,
1993) which aims to induce stress. Participants were told, in order
to stress them, that performance on this math task is used to assign
them to play at beginner, intermediate, or advanced levels, though
all participants are assigned to the beginner level irrespective of their
actual performance. Moreover, the researcher told the volunteers that
they would be playing against prior players and that their performance,
based on accuracy and speed, would be ranked on a live scoreboard,
again to stress the volunteers. At the start of the mental arithmetic
task, a second observer is welcome to join to monitor the participant,
a fictitious ‘‘Professor Eli’’ connected via Zoom, who would analyze
their games and screen recordings. The inclusion of ‘‘Professor Eli’’ was
intended to increase the volunteers’ stress by making them feel evalu-
ated and observed. Finally, during the game phase, the subjects played
AquaPressure which includes various additional features designed to
enhance feeling stressed, such as exaggerated visual and auditory cues
when mistakes are made, a fictitious red-blinking video recording icon,
and shortened time to complete levels.

Once the gameplay was over, the participants filled out a question-
naire reporting their stress levels during the video and AquaPressure
phases. We collected the stress levels in both phases to calculate the
stress difference between the two phases.

3.2.2. Participants
The dataset contains 20 subjects without missing variables

(i.e., complete cases), reporting a stress level during the AquaPressure
phase equal or higher than in the video phase. All users collected are
of legal age and are mostly students or professors at the University of
Murcia, Spain. The age of the participants ranged from 18 to 47 years,
and 60% of the participants were males.
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Fig. 2. Phases of the case study.
.2.3. Instruments and collected data
Our study used three sources to collect physiological, behavioral,

nd self-report data: the Empatica E4 (Empatica, 2023), AquaPressure
xecutive function GBA, and questionnaires. The Empatica E4 is a non-
nvasive wristband that measures BVP, electrodermal activity (EDA),
emperature, and three-axis acceleration. We chose the Empatica E4 be-
ause it is the non-invasive device that measures most biometric signals
ith high precision (McCarthy et al., 2016). This wristband recorded
iometrics from subjects under stress and non-stress conditions. To split
he signals in each phase, we also noted the beginning and end of each
hase through the Empatica by adding an event through the Empatica
nd manually by taking notes. On the other hand, AquaPressure execu-
ive function GBA recorded behavioral executive function performance
etrics under the stress phases. The AquaPressure logs contain the

olunteer’s interactions with the video game for each level. These
quaPressure logs and biometrics required previous preprocessing and

eature engineering to obtain the final variables needed for the RQs.
inally, the questionnaires include the State-Trait Anxiety Inventory
STAI; Marteau & Bekker, 1992), a 5-point Likert scale, and a Visual
nalog Scale (VAS) from 0 to 100 to register self-reported stress levels
uring the video and AquaPressure protocol. The questionnaires also
equired previous steps to compute the scores.

. Methodology

The methodology followed to answer the aforementioned RQs is
epicted in Fig. 3. This figure shows the data sources for the case study
nd their use in each RQ.

.1. Preprocessing and feature engineering

The preprocessing and the feature extraction applied to generate the
ariables employed are summarized in Fig. 4, including the prefixes
sed in the variable names according to their origin and the suffixes
ndicating the function applied in the final aggregation.

To extract the variables from the biometric signals, we split the
ignal of each phase into sliding time windows with a duration of 180
econds and a shift of 15 seconds with the previous signal. The window
nd shift sizes were selected after several trials from window sizes rang-
ng from 120 to 390 seconds and shift sizes between 0 and 30 seconds,
hecking the performance achieved in RQ1.2 and the robustness fea-
ures extracted. Then we extracted different variables for each window
nd signal. We employed the library Neurokit 2 (Makowski et al., 2021)
o extract the heart rate and EDA variables. Finally, we aggregated
he data of each subject’s windows, obtaining six variables for each
f the variables extracted during the previous step. The application of
liding windows for biometric signal processing is common in the state-
f-the-art; however, we had to summarize these data to generate one
ingle input per subject since the executive function metrics calculated
y GBA through the AquaPressure video game are only obtained per
ubject. Even so, we tested the RQ1.2 experiments without aggregating
he data in windows and observed that aggregating the data in windows
ainly improved the AI models’ performance; one possible reason is

hat aggregating the data in windows reduced the impact of noise.
he aggregation functions used were the maximum, minimum, mean,
edian, standard deviation, and variance.

To measure executive functions, we used the log file provided by
4

quaPressure, which contains the video game events in a JSON format,
including the room and level where the event occurred. Another file
stored the content of the rooms of each level which allowed us to
identify the peculiarities of the rooms and levels of the player’s events
as the presence of inverted controllers. For inhibitory control, shifting,
and working memory, we calculated different metrics summarized in
Table A.5 in Appendix A.

To calculate stress, we computed from the STAI and VAS the stress
variation between the video and the AquaPressure protocol (including
the tutorial, the math test, and the video game). We calculated the
difference between the reported stress on AquaPressure and the video
phase, named as change, following the formula: (𝑠𝑡𝑟𝑒𝑠𝑠_𝑎𝑞𝑢𝑎𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 −
𝑠𝑡𝑟𝑒𝑠𝑠_𝑣𝑖𝑑𝑒𝑜), being 𝑠𝑡𝑟𝑒𝑠𝑠_𝑎𝑞𝑢𝑎𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 the stress reported in AquaPres-
sure, and 𝑠𝑡𝑟𝑒𝑠𝑠_𝑣𝑖𝑑𝑒𝑜 the stress watching the video. Therefore, we
obtained the stress metrics: STAI_change and VAS_change.

4.2. Final dataset

Finally, from the biometrics, we obtained 582 variables (see Fig. 4).
From AquaPressure logs, we obtained 22 executive function metrics
of response inhibition, processing speed, shifting, cognitive inhibi-
tion, and working memory (see Table A.5). Finally, the STAI_change
and VAS_change variables, used as response variables in RQ1, were
calculated from the questionnaires.

4.3. RQ-specific analysis details

This subsection introduces the methodology followed specifically
for each research question.

4.3.1. RQ1.1. Which executive function and biometric variables have the
higher prediction power for stress?

To answer this RQ, we calculated the Pearson correlation coefficient
of the biometric and executive function variables. Later, the two vari-
ables most correlated with each stress metric were used to model the
stress change as a linear regression. We selected only two variables to
comply with dummy rules, such as 10 cases per predictor variable. To
avoid the collinearity of these two variables, we employed the Variance
Inflation Factor (VIF) metric. If these variables showed VIF values
above 5, the second variable was switched to the next most correlated
variable until the VIF was lower than or equal to 5.

4.3.2. RQ1.2. What is the potential effectiveness of a stress detector that
utilizes a combination of biometric measurements and executive function
metrics?

Stress prediction using AI is a relevant field of research in today’s
society due to the numerous benefits of detecting high-stress levels
in different environments and contexts. RQ1.2 focus on developing
a stress detector using our dataset. In contrast to RQ1.1, we applied
for RQ.1.2 a leave-one-subject-out (LOSO) cross-validation to obtain a
more realistic performance evaluation. In LOSO cross-validation, one
subject is used as the test set and the rest as the training set; this
process is repeated until all subjects have been employed as a test
set. The LOSO cross-validation was repeated with the two variables
most correlated with each stress metric with a VIF lower or equal to
5 (obtained in RQ1.1), the two variables selected by Recursive Feature
Elimination (RFE), and all the variables. Besides, in RQ1.2, we eval-
uated more AI models: Regression Tree, Random Forest (RF), Support
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Fig. 4. Preprocessing and feature engineering applied to the collected data.
ector Regression (SVR), Elastic Net (a linear regression that combined
1 and L2 regularizers), and a dummy model that predicts the mean
f the target variable to have a baseline performance. To configure the
yper-parameters of these models, we included a grid search with LOSO
ross-validation; therefore, we applied LOSO cross-validation to each
onfiguration.

.3.3. RQ2. What is the relationship between biometrics and executive
unction metrics?

The methodology applied in RQ2 is similar to the first part of RQ1.1.
e calculated the Pearson correlation coefficient between biometric

ariables and the executive functions metrics. Then, we calculated the
verage correlation between the biometric variables and each type of
xecutive function (working memory, response inhibition, processing
peed, shifting, and cognitive inhibition). We applied this aggregation
o summarize the results due to the high amount of executive function
5

metrics. Finally, we utilized the two biometric variables most correlated
to each executive function metric with a VIF lower or equal to 5 to
model the executive function metrics as linear regression.

4.3.4. RQ3. Do the stressors presented in the GBA influence the subjects’
heart rate?

The first step was to analyze the mean heart rate of all the users
in the different phases of the case study. We decided to use the mean
heart rate because heart rate variables were the most common in the
rankings of correlations with both stress metrics in RQ1, and among the
heart rate variables, the mean heart rate is the easiest to interpret and
measure with external devices. Heart rate values due to measurement
error were removed. Then we evaluated the mean heart rate at each
level to detect patterns such as heart rate increases in specific types
of levels. Finally, we looked for differences in the heart rate after
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Table 1
Most correlated variables with the stress metrics (RQ1.1).

# STAI_change VAS_change

1 TEMP_Mean_var (0.75***) HR_CD_std (0.55**)
2 HR_AI_max (0.75***) SCR_Peaks_Per_Second_var (−0.52**)
3 TEMP_Mean_std (0.72***) SCR_Peaks_Per_Second_std (−0.49**)
4 TEMP_Max_std (0.71***) HR_CD_var (0.49**)
5 HR_AI_std (0.7***) HR_PAS_median (−0.48**)
6 TEMP_Max_var (0.69***) HR_AI_max (0.47**)
7 HR_CVI_std (0.69***) TEMP_Mean_std (0.46**)
8 TEMP_Min_var (0.68***) TEMP_Min_std (0.45**)
9 HR_HFn_std (0.68***) HR_GI_max (0.45**)
10 HR_MFDFA_alpha2_ Fluctuation_std (0.67***) HR_PAS_mean (−0.45**)

the subjects’ AquaPressure errors, which showed a jarring sound and
lowered the subject’s oxygen bar.

For this purpose, we obtained the heart rate variation in a normal
movement, in the collision with a wall, and in the collision with a
door that opens and closes automatically. The 30 seconds before and
the 3 seconds after the event were utilized to calculate the heart rate
variation. To select the time before the event, we carried out different
tests looking for the size of time that would return the heart rate in a
time interval large enough to average the effect of previous events but
trying to reduce the number of previous events. Again, the time after
the event was selected by different tests whose objective was to use
the shortest time possible to avoid losing the event’s influence on the
heart rate and also overlapping with the influence of the next events,
still being long enough to process the heart rate. Furthermore, in the
three analyses performed for RQ3, we looked for significant differences
employing Friedman’s non-parametric test (Friedman, 1937) since none
of the distributions satisfied the normality conditions for applying
ANOVA. In the case of finding significant differences, the Nemenyi
test (Nemenyi, 1963) was applied to locate them.

5. Results

5.1. RQ1.1. Which executive function and biometric variables have the
higher prediction power for stress?

The Pearson correlation coefficient between the top ten biometric
and executive function variables most correlated to stress metrics and
the stress metrics are shown in Table 1. In this table, we appreciate
that all the top ten correlated features in absolute value are biometric
variables, mainly from heart rate and skin temperature. In contrast,
EDA features only appear two times in all the rankings, and accelerom-
eter variables and executive function metrics do not appear in the
rankings. These top ten correlated features have high correlation values
with significant p-value (lower than 0.05), showing that heart rate and
temperature features have high explanation power of the stress.

The two variables most correlated to each stress metric with a
VIF lower or equal to 5 and the performance of the deployed linear
regressor with these variables are summarized in Table 2. Between the
two stress metrics, STAI_change achieved the highest 𝑅2 and adjusted
𝑅2 with 0.67 and 0.63, respectively. Furthermore, this linear regression
has the independence of errors tested with a Durbin and Watson (1950)
of 2.13. In contrast to the promising results achieved with the STAI
metric, the STAI_change linear regression only achieved a 𝑅2 of 0.42 and
an adjusted 𝑅2 of 0.35. These values are reasonable considering that
we only used two variables, but they are significantly lower than the
results achieved with STAI_change. However, the independence of errors
is not clear, as we got a Durbin–Watson statistic of 3.14 in VAS_change.
Finally, Fig. 5 shows a regression plot of the most correlated biometric
6

variable with each stress metric to display the apparent relationship.
Table 2
Performance of stress linear regressors using two variables (RQ1.1).

STAI_change VAS_change

Var. 1 TEMP_Mean_var
(43.6**)

HR_CD_std (100.4*)

Var. 2 HR_AI_max
(1.01**)

SCR_Peaks_Per_Second_var
(−26598.8*)

Const. −48.24** 26.53*
𝑅2 0.67 0.42
Adj 𝑅2 0.63 0.35
Durbin-Watson 2.13 3.14
VIF 2.13 1.33

Table 3
Performance of the stress models applying a LOSO cross-validation (RQ1.2).

Stress metric Model Linear RFE All

MSE MAE MSE MAE MSE MAE

STAI_Change

RF 9.19 2.37 14.66 3.01 17.11 3.56
Tree 11.95 2.76 18.75 3.49 17.91 3.11
ElasticNet 10.80 2.69 16.49 3.22 283.78 10.04
SVR 10.62 2.38 23.70 3.85 19.83 3.53
Dummy 23.72 4.25 23.72 4.25 23.72 4.25

VAS_Change

RF 472.44 16.07 602.40 19.82 605.16 19.94
Tree 400.72 14.93 651.18 20.03 851.84 23.47
ElasticNet 463.05 17.22 633.53 21.11 6609.39 55.66
SVR 420.45 15.97 1038.72 26.22 503.85 18.61
Dummy 571.59 20.02 571.59 20.02 571.59 20.02

5.2. RQ1.2. What is the potential effectiveness of a stress detector that
utilizes a combination of biometric measurements and executive function
metrics?

The results of the applied cross-validation employing the two vari-
ables obtained in RQ1.1 and with all the variables are summarized in
Table 3. For these results, we calculated the error metrics of Mean
Square Error (MSE) and Mean Absolute Error (MAE). In this exper-
iment, the best configuration of all models analyzed outperformed
the dummy model; therefore, the predictors include information that
enhances stress prediction. Besides, it is worth noting that all the
models achieved the highest performance using only the two variables
selected in RQ1.1.

5.3. RQ2. What is the relationship between biometrics and executive func-
tion metrics?

In the top four most correlated variables between the biometric vari-
ables and the executive functions, there are only heart rate variables in
all the executive functions, and variables from the temperature and the
accelerometer are very rare. Response inhibition and processing speed
have one and two correlations equal to or higher than 0.5, showing an
interesting correlation with the heart rate variables. In contrast, shifting
stands out as the executive function with the lowest correlation value.
The top ten average absolute values of Pearson correlation coefficients
between the biometric and the executive functions are summarized in
Table A.6 included in Appendix A

Employing the above results, we deployed a linear regressor using
the biometric variables most correlated with a VIF lower or equal to
5 to predict each executive function metric; the performance of these
regressors is summarized in Table 4. In this table, the maximum 𝑅2

is at least 0.48 in all executive functions and 0.42 in the adjusted 𝑅2.
Besides, in cognitive inhibition and processing speed, the minimum 𝑅2

is 0.41, and the adjusted 𝑅2 is 0.34, showing that biometric variables,
especially heart rate variables, correlate with both executive functions.
In contrast, in working memory, the median adjusted 𝑅2 is 0.3, and
the minimum is 0.15, indicating that some working memory metrics
are more difficult to predict using biometric variables. To visualize

this relationship, we also display in Fig. 6 the regression plot of the
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Fig. 5. Regression plot illustrating the apparent relationship between stress metrics and biometric variables.

Fig. 6. Regression plot illustrating the apparent relationship between executive function metrics and biometric variables.
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Table 4
Performance of executive function metrics regressors (RQ2).
Executive
function

Best regressed
variable

Max. 𝑅2 Med. 𝑅2 Min. 𝑅2

Response
Inhibition

EF_RI_RT 0.62
(adj. 0.57)

0.5
(adj. 0.44)

0.38
(adj. 0.31)

Cognitive
Inhibition

EF_Conflict_Resolution_Accuracy 0.48
(adj. 0.42)

0.46
(adj. 0.39)

0.41
(adj. 0.34)

Processing Speed EF_Baseline_RT 0.59
(adj. 0.54)

0.5
(adj. 0.44)

0.41
(adj. 0.34)

Shifting EF_Shifting_Congruent_Accuracy 0.7
(adj. 0.67)

0.46
(adj. 0.4)

0.36
(adj. 0.29)

Working
Memory

EF_WM_FA 0.59
(adj. 0.54)

0.38
(adj. 0.3)

0.24
(adj. 0.15)
Fig. 7. Boxplot of the average heart rate in each phase.

ost correlated metric between a biometric variable for each executive
unction.

.4. RQ3. Do the stressors presented in the GBA influence the subjects’ heart
ate?

The average heart rate in each phase of the case study is summa-
ized in Fig. 7. In this figure, we can notice that during the tutorial
hase, the volunteers’ heart rates increased compared to the video
hase. Another observation is that the volunteers’ heart rate is more
ispersed during the tutorial, noting that the distance between the first
nd the third quartile is the largest of all the phases. In the test phase,
he minimum, maximum, mean, and median increased their values
ompared with the tutorial; in contrast, the third quartile is lower.
uring the game phase, the heart rate decreased, with a minimum,
aximum, and all the quartiles lower than in the test phase.

Friedman’s test found significant differences in distributions of the
ean heart rate of the subjects in each phase. The Nemenyi test located

hese differences between the video and the test phases, where we can
ppreciate that the heart rate during the video is lower than in the test
hase. These findings are easy to visualize in some subjects, as Fig. 8
llustrates. This figure shows how the heart rate is the lowest during
he video phase, increases during the tutorial, reaches the maximum
uring the test and decreases again during the game.

Later, we focused on heart rate during the game phase, looking
or differences between the levels according to the executive function
nalyzed. These results are summarized in Fig. 9, where we see that the
rocessing speed and shifting levels have a slightly higher third quartile
han the rest of the levels. Friedman’s test found significant differences
n distributions, and the Nemenyi test located these differences in the
ubjects’ heart rate between the levels of shifting and the levels of cog-
itive and response inhibition, and the levels of processing speed and
8

response inhibition. Therefore, we detect higher heart rate distribution
in processing speed and shifting, especially noticeable compared with
response inhibition.

Finally, we examined the heart rate variation after the subjects’
errors in AquaPressure. We obtained the heart rate variation in normal
movements, hit with a wall, and slamming the door. Fig. 10 shows
the heart rate variations 30 seconds before and 3 seconds after the
movement. We cannot appreciate big differences in the heart rate
variation between the types of movements analyzed, and Friedman’s
test did not find significant differences. In Fig. 8, we also do not observe
that collisions with walls or doors change the subject’s heart rate. As
we have explained in the methodology, the time interval analyzed
before and after the movements come from different tests previously
performed.

6. Discussion

6.1. Experiments

The experiments developed for RQ1.1 show that biometrics, espe-
cially the heart rate and the skin temperature, have a high prediction
power of stress metrics, especially the metrics calculated through the
STAI questionnaire (RQ1.1). In addition, a prediction of both stress
metrics is feasible in our case study, emphasizing a higher performance
with the stress metric extracted from the STAI questionnaire (RQ1.2).
It is worth noting that the best configurations of all the AI models
used only two variables rather than all variables during the RQ1.2
experiments, indicating that using all variables is less recommendable
in our database. This finding is interesting to consider for other studies
and applications since obtaining and computing some of these variables
can be tricky.

It is difficult to compare these results with the performance ob-
tained by other authors because they considered stress prediction as a
classification problem and reported classification error metrics. These
authors have achieved high performance in stress classification in
different contexts employing AI and biometrics (Albaladejo-González
& Ruipérez-Valiente, 2022; Albaladejo-González et al., 2022; Panicker
& Gayathri, 2019; Pourmohammadi & Maleki, 2020; Siirtola & Rön-
ing, 2020). Furthermore, we found one example of stress regression;
however, authors of Siirtola and Röning (2020) finally chose a thresh-
old and transformed the regression into a binary classification. It is
also worth noting that authors of Siirtola and Röning (2020) and us
predicted user-reported stress rather than whether subjects are in a
stress phase or not (Albaladejo-González & Ruipérez-Valiente, 2022;
Albaladejo-González et al., 2022; Panicker & Gayathri, 2019; Pourmo-
hammadi & Maleki, 2020). Another difference is that after extracting
the features of each window from the biometrics, other authors did not
apply an aggregation of the windows for each user as we did due to
the calculation of the executive function metrics for each subject and
not each time window. This allowed them to have multiple inputs per
user; thus, they had more data to train their models.

In our results, we also observed the highest correlations in the

variables obtained from heart rate and skin temperature, and we can
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Fig. 8. Example of one subject’s heart rate during the case study.
Fig. 9. Boxplot of the average heart rate within each level type.
Fig. 10. Change in average heart rate between 30 seconds before a movement and 3 seconds after.
use these variables to develop stress detectors. Other authors have
also previously noticed the importance of heart rate in stress pre-
diction (Panicker & Gayathri, 2019; Zontone et al., 2019) and skin
temperature (Siirtola & Röning, 2020). This conclusion is helpful be-
cause low-cost sensors in commercial wristbands can record these
signals.

During RQ2, we found interesting correlations between heart rate
and some executive function variables. One reason might be that heart
rate and some executive function variables are both influenced by
stress. This finding is relevant for the affective computing field because
some AI models, such as linear regressors, do not work properly with
correlated input variables. These correlations may also be one of the
9

reasons why the best RQ1.2 configurations only use two variables
instead of all variables.

In RQ3, we detected that during the test phase, which includes the
mental arithmetic task and the inclusion of the fictitious professor, the
subjects’ heart rate increased compared to the video phase. On the
other hand, the levels focused on measuring shifting and processing
speed showed a higher heart rate distribution, mainly compared to the
response inhibition levels. The levels focused on processing speed stand
out for the presence of doors that open and close automatically, and
levels of shifting are characterized by arrows indicating the opposite
path to the one the subject should follow. In contrast, there is no clear
cause for the null results obtained in the analysis of collisions and heart
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rate; maybe the stakes of playing the AquaPressure video game are that
high for participants to get stressed over small errors.

6.2. Implications

The results of RQ1 combined with results obtained by other authors
demonstrate that stress prediction is feasible using biometrics, espe-
cially heart rate and skin temperature, which are available in many
non-invasive commercial wristbands. This idea reinforces the argument
that non-invasive stress detectors can be developed and used in many
applications, such as work or educational environments, avoiding ex-
cessive exposure to high and dangerous stress levels. Furthermore, we
found that executive function metrics do not provide essential informa-
tion for stress prediction and that biometrics have a higher prediction
power. In this paper, we are pioneers in combining biometrics and GBA
trace data for stress prediction using AI. Although our experiments have
shown that executive function metrics are not essential for predicting
stress, we suggest their test in other affective computing applications.
In RQ2 and RQ3, we also discovered interesting findings (mentioned
in Section 6) that other authors could continue investigating to achieve
more complete conclusions with high impact.

Finally, the case study combined with the stress predictors devel-
oped in RQ1 can be utilized to find subjects who do not manage
stress correctly. The stress detector would indicate the subject’s per-
ceived stress, and through AquaPressure, we could obtain his executive
function performance. High stress and low performance in executive
function indicate poor stress management. It is essential to detect pro-
fessionals who make critical decisions under stressful conditions that do
not handle these situations appropriately. In addition, detecting poor
stress management in subjects is also relevant because it affects their
learning and performance. Furthermore, the case study can be utilized
to train stress management, but we recommend further investigations
into the long-term use of the case study.

6.3. Limitations

The main limitation of the paper is the number of subjects in our
dataset, mainly due to the difficulty in finding volunteers to record
biometrics. However, as we mentioned before, the size of our dataset is
normal in the context of stress with biometrics. The other limitation to
mention is that if we use our case study to detect individuals who do not
manage stressful situations properly, some stressors may lose efficacy
in sustained use, which is particularly relevant to be utilized to improve
stress management. Therefore, we recommend new experiments about
the long-term application of this case study.

7. Conclusions and future work

In the paper at hand, we developed a case study to record four bio-
metric signals, twenty-two executive function metrics, and two stress
metrics to research them together. The experiments showed that bio-
metric variables, especially heart rate and skin temperature, had a
high prediction power of stress metrics. In contrast, including executive
function metrics in stress prediction was not essential, confirming with
the results of other authors that stress prediction is feasible through
biometrics. Furthermore, we observed correlations between executive
function metrics and biometrics, especially heart rate data. This finding
can be explored in other research to know the cause of these correla-
tions. In the analysis of the heart rate during the case study, we found
that the subject’s heart rate increased during the test phase (one stress
phase) compared to the video phase (non-stress phase). Besides, the
GBA levels focused on measuring shifting and processing speed showed
a higher heart rate distribution, mainly compared to other levels, espe-
cially the response inhibition levels. Finally, the developed case study
enables the measurement of executive functions and biometrics under
10
stressful conditions; together with the developed AI stress predictors, it
can be utilized to find subjects who do not manage stress correctly.

In the future, these results could be replicated in new case studies
to make additional and more robust conclusions, for example, by
analyzing the correlations detected between biometric variables and
executive function variables. Besides, other researchers may focus on
validating some of our conclusions through variants of our case study.
On the other hand, a front end could be implemented to facilitate the
application of the case study to detect individuals with poor stress
management. The long-term effect of the case study could also be
analyzed, including different variants of the test phase and randomized
levels, mainly to use the case study and the stress predictors for stress
management training.
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