
STRONGLY EXCHANGE RINGS

MANUEL CORTÉS-IZURDIAGA AND PEDRO A. GUIL ASENSIO

Abstract. Two elements a, b in a ring R form a right coprime pair, written

〈a, b〉, if aR+bR = R. Right coprime pairs have shown to be quite useful in the
study of left cotorsion or exchange rings. In this paper, we define the class of

strongly right exchange rings in terms of descending chains of them. We show

that they are semiregular and that this class of rings contains left injective,
left pure-injective, left cotorsion, local and left continuous rings. This allows

us to give a unified study of all these classes of rings in terms of the behaviour

of descending chains of right coprime pairs.

1. Introduction and notation

The exchange property was introduced by Crawley and Jonsson in 1964 in their
study of the decomposition properties of algebraic systems [4, Definition 3.1] and
was later extended to arbitrary modules by Warfield in 1972 [18]. He defined that
a right module M satisfies the (finite) exchange property if for any right module
X and decompositions X = M ′ ⊕ Y = ⊕INi with M ′ ∼= M (resp., with I finite),
there exist submodules N ′i ≤ Ni such that X = M ′ ⊕ (⊕IN ′i). It is well known
that the finite exchange property implies the general exchange property for finitely
generated modules, but it is not known if this is true for every module. This is
one of the oldest open questions in Ring Theory, whose origin can be traced back
to the pioneering work of Crawley and Jonsson (see [4, p.807]). Warfield proved
that a module M satisfies the finite exchange property if and only if so does its
endomorphism ring. He also proved that this property is left-right symmetric for
rings and called them exchange rings [18]. Exchange rings were later independently
characterized by Goodearl [9, p. 167] and Nicholson [15] as those rings R satisfying
that for any element r ∈ R, there exists an idempotent e ∈ R such that e ∈ rR and
1 − e ∈ (1 − r)R. See [10, 12] for a more detailed exposition on this topic and its
relation with algebraic equations.

On the other hand, we recall that a pair a, b of elements in a commutative PID,
R, is called coprime if they do not have common divisors. This is equivalent to say
that they satisfy the Bezout identity ar+ bs = 1, for some r, s ∈ R. This definition
has been recently extended to arbitrary (not necessarily commutative) rings in a
completely different context [7]. Namely, a pair of elements a, b in a ring R is called
right coprime, denoted 〈a, b〉, when they satisfy the former condition; and an order
relation was defined among them: 〈a, b〉 ≤ 〈a′, b′〉 if and only if aR ⊆ a′R and
bR ⊆ b′R. It was shown in [7] that this order relation is a quite useful tool to
construct idempotent elements in rings. Using these ideas, the authors have proved
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dación Séneca of Murcia under grant 19880/GERM/15.

1
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that any left cotorsion ring is semiregular (that is, R is von Neumann regular modulo
its Jacobson radical J(R) and idempotents in R/J(R) can be lifted to idempotents
in R, see [16]) and R/J(R) is left self-injective. In particular, they have given an
arithmetic (and probably more conceptual) proof of the fact that endomorphism
rings of pure-injective modules enjoy the former properties (see e.g. [21]).

The main tool in most of the proofs in [7] is that certain descending chains of
right coprime pairs (the compatible ones, see Definition 3.1) have minimal lower
bounds (with respect to the aforementioned order relation), and these lower bounds
are of the form 〈e, 1− e〉 for some idempotent element e. Let us note that this fact
connects Goodearl and Nicholson characterization of exchange rings with coprime
pairs: a ring R is an exchange ring if and only if for every element r ∈ R, there
exists a minimal right coprime pair below the right coprime pair 〈r, 1 − r〉. This
key observation is the inspiration idea of the present paper. We call rings satisfying
the above descending property right strongly exchange rings and study their main
properties. We show that the class of right strongly exchange rings contains left
cotorsion rings (hence, left self-injective and left pure-injective rings), left perfect
rings, local rings and left continuous rings. Moreover, right strongly exchange rings
are semiregular. Consequently, this right strongly exchange property allows to
unify the treatment of all the above classes of rings, which had been shown to be
semiregular as well.

Let us outline the contents of this paper. We begin by obtaining in Section 2 the
basic properties of right coprime pairs. We also give in this section several examples
that show the behaviour of right coprime pairs in different rings, and observe that
this behaviour characterize local, left perfect, von Neumann regular and exchange
rings (see Proposition 2.5).

In Section 3, we define right strongly exchange rings in terms of the central notion
of compatible descending chain of right coprime pairs. By the preceding comments,
right strongly exchange rings satisfy the exchange property, although there exist
exchange rings which are not right strongly exchange (see Example 3.5). We also
show that the class of right strongly exchange rings include local, left cotorsion and
left continuous rings (Proposition 3.7 and Theorems 3.6 and 3.11).

We study in Section 4 the main properties of right strongly exchange rings.
We prove in Theorem 4.3 that they are semiregular. If we assume the stronger
property that compatible descending systems of right coprime pairs have minimal
lower bounds, then they are left continuous modulo their Jacobson radical (Theorem
4.9). We also give an example showing that the strongly exchange property is not
left-right symmetric (Example 4.10). We close the paper by showing that a ring is
semiperfect provided that it has a countable number of idempotents and is strongly
exchange (Theorem 4.11).

Let us fix some notation. For any set A, |A| will denote its cardinality. The
first infinite ordinal is denoted by ω. Moreover, R will denote an associative ring
with identity that we fix for the whole paper. Module will mean right R-module
and, when dealing with left modules, we will specify the side where scalars act.
We denote by Mod-R and R-Mod the categories of right and left R-modules, re-
spectively. As usual, we use the notation RR (resp. RR) when we consider R
as a right (resp. left) R-module over itself. Morphisms will act on the opposite
side of scalars. Consequently, if M , N and L are modules and f : M → N and
g : N → L are homomorphisms of modules, we denote their composition by gf in
case M,N,L ∈ Mod-R and by fg if M,N,L ∈ R-Mod. We will denote by J(R) the
Jacobson radical of R. Given a family of modules, {Mi | i ∈ I}, we treat elements
in
∏
i∈IMi as maps x : I →

⋃
i∈IMi with x(i) ∈ Mi for each i ∈ I. The support
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of an element x in the product is

supp(x) = {i ∈ I | x(i) 6= 0}.

Recall that a submodule K of a module M is called superfluous, written K <<
M , if there does not exist a proper submodule L of M with K + L = M . Dually,
K is called essential in M if there does not exist a non-zero submodule L with
K ∩ L = 0. A family of submodules {Mi | i ∈ I} of M is called independent if for
every i ∈ I, Mi ∩

∑
j 6=iMj = 0. Given X ⊆ M and A ⊆ R, we denote by lM (A)

and rR(X) the corresponding annihilators of A in M and of X in R, respectively.
Notice that, if e is an idempotent element, lR(e) = R(1− e) and rR(e) = (1− e)R.

2. Coprime pairs. Basic properties

We begin this section by recalling the following definition from [7].

Definition 2.1. A right coprime pair in R is a pair of elements, a, b, such that
R = aR+ bR. We denote the coprime pair by 〈a, b〉.

We are interested in the cyclic right ideals generated by the elements in the right
coprime pair. This is the reason why we define the following equivalence relation
between them:

〈a, b〉 ∼ 〈a′, b′〉 ⇔ aR = a′R and bR = b′R

We denote by RCP(R) the set of all equivalence classes of right coprime pairs
under this equivalence relation. From now on, the term ”right coprime pair” and
the notation 〈a, b〉 will refer to one of these equivalence classes. Given a right
coprime pair 〈a, b〉, any pair of elements (a′, b′) of R2 such that 〈a′, b′〉 = 〈a, b〉 will
be called a pair of generators of the coprime pair.

We may define in RCP(R) an order relation. Given two right coprime pairs 〈a, b〉
and 〈a′, b′〉, we will say that

〈a, b〉 ≤ 〈a′, b′〉 if and only if aR ≤ a′R and bR ≤ b′R.

As we will see later on, this order relation is quite useful to find idempotent
elements in R.

Examples 2.2. (1) For any a ∈ R, we have the coprime pair 〈a, 1 − a〉. We
call this coprime pair basic.

(2) For any a ∈ R and any unit u ∈ R, we have the coprime pair 〈a, u〉. We
call this coprime pair trivial. Notice that 〈0, 1〉 ≤ 〈a, u〉.

(3) If e ∈ R is an idempotent, then 〈e, 1 − e〉 is a basic coprime pair which is
easy to check that is minimal in RCP(R) with respect to ≤ (see [7]).

(4) Recall that, given a ∈ R, aR is a direct summand of RR if and only if a
is a regular element. I.e., there exists an x ∈ R with axa = a. If 〈a, b〉 is
a right coprime pair, then aR and bR are direct summands if and only if
a and b are regular elements. We call this kind of coprime pairs regular.
Notice that, in this case, we can find idempotent elements e and f such that
〈a, b〉 = 〈e, f〉.

Let us prove some basic characterizations of right coprime pairs. Recall that a
left R module M satisfies the condition (C3) if for any two direct summands, K
and L, of M , K+L is a direct summand provided that K∩L = 0 (see e.g. [13, 14]).

Proposition 2.3. Let a, b ∈ R. The following assertions are equivalent:

(1) 〈a, b〉 is a right coprime pair.
(2) The morphism of left R-modules, i : R → R ⊕ R given by (x)i = (xa, xb),

is a split monomorphism.
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(3) There exists a left R-module M and two elements m1 and m2 of M such
that the morphism f : R → M defined by (1)f = am1 + bm2 is a split
monomorphism.

(4) lR(a) ∩ lR(b) = 0 and R(a, b) is a direct summand of R⊕R.

(5) lR(a) ∩ lR(b) = 0 and there exist r, s, x0, y0 ∈ R such that

(
ra rb
sa sb

)
is

an idempotent matrix and

(x0, y0)

(
ra rb
sa sb

)
= (a, b)

(6) lR(a) ∩ lR(b) = 0 and there exist r, s ∈ R such that rR(r) ∩ rR(s) = 0 and(
ra rb
sa sb

)
is an idempotent matrix.

(7) 〈a+ J(R), b+ J(R)〉 is a right coprime pair in R/J(R).

If R is von Neumann regular, or RR satisfies (C3) and a and b are idempotent
elements, the preceding conditions are equivalent to:

(8) lR(a) ∩ lR(b) = 0.

Proof. (1) ⇒ (2). Suppose that 〈a, b〉 is a right coprime pair. Then the morphism
k : R ⊕ R → R given by (x, y)k = xr + ys is a splitting of i, where r and s are
scalars satisfying 1 = ar + bs.

(2) ⇒ (3). Trivial.
(3) ⇒ (1). Note that if g splits f , then

1 = (1)fg = a(m1)g + b(m2)g,

which implies that 〈a, b〉 is a right coprime pair.
(2) ⇔ (4). The equivalence follows from the fact that Ker i = lR(a) ∩ lR(b) and

Im i = R(a, b).
(4) ⇒ (5). If R(a, b) is a direct summand of R ⊕ R, there exists an idempotent

endomorphism h of R⊕R such that Imh = R(a, b). The endomorphism h is of the
form

(x, y)h = (x, y)

(
u v
w t

)
for some idempotent matrix

(
u v
w t

)
with entries in R. Using that (1, 0)h and

(0, 1)h belong to R(a, b) we can find r, s ∈ R such that u = ra, v = rb, w = sa, t =
sb. Finally, since (a, b) ∈ Imh, there exist x0, y0 ∈ R such that

(x0, y0)

(
ra rb
sa sb

)
= (a, b)

(5) ⇒ (4). The endomorphism h of R⊕R given by

(x, y)h = (x, y)

(
ra rb
sa sb

)
for all x, y ∈ R, is idempotent with Imh = R(a, b). Then, R(a, b) is a direct
summand of R⊕R.

(1) ⇒ (6). Since i is injective, 0 = Ker i = lR(a)∩ lR(b). Now take r, s ∈ R such
that ar + bs = 1 and note that(

ra rb
sa sb

)2

=

(
r(ar + bs)a r(ar + bs)b
s(ar + bs)a s(ar + bs)b

)
=

(
ra rb
sa sb

)
Moreover, since 〈r, s〉 is a left coprime pair, it satisfies the dual of (2) and j : R→
R⊕R given by j(x) = (rx, sx) is injective. This means that rR(r) ∩ rR(s) = 0.
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(6) ⇒ (1). Using that the matrix is idempotent we obtain the identities

(ra)2 + rbsa = ra

rarb+ rbsb = rb

sara+ sbsa = sa

sarb+ (sb)2 = sb

The first two identities together with lR(a)∩ lR(b) = 0 give that rar+ rbs− r = 0.
Similarly, from the last two identities we get that sar + sbs − s = 0. Now, using
that rR(r)∩ rR(s) = 0 we obtain that ar+ bs = 1. That is, 〈a, b〉 is a right coprime
pair.

(1) ⇒ (7). This is trivial.
(7)⇒ (1). Note that (7) implies that aR+bR+J(R) = R. Then, by Nakayama’s

lemma, aR+ bR = R as well.
(4) ⇒ (8). Trivial.
(8)⇒ (1). If R is von Neumann regular, then R(a, b) is always a direct summand

of R⊕R. Consequently, 〈a, b〉 is a right coprime pair by (4).

Finally, if RR satisfies (C3) and a and b are idempotents satisfying (5), then
R(1−a)∩R(1−b) = 0. By condition (C3), R(1−a)+R(1−b) is a direct summand
of R. Therefore, 〈a, b〉 is a right coprime pair by [21, Lemma 12]. �

By a minimal coprime pair we mean a right coprime pair which is minimal in
RCP(R). We will use the following description of minimal coprime pairs (see [7,
Proposition 3]).

Proposition 2.4. Let 〈a, b〉 be a right coprime pair. The following assertions are
equivalent:

(1) The coprime pair 〈a, b〉 is minimal.
(2) There exists an idempotent element e such that 〈a, b〉 = 〈e, 1− e〉.
(3) There exist r, s ∈ R such that a = ara, b = bsb (i. e., 〈a, b〉 is regular and

arbs = bsar = 0).

Proof. In order to prove (1) ⇒ (2), suppose that 〈a, b〉 is a minimal coprime pair
and write 1 = ar+ bs. Then 〈ar, bs〉 ≤ 〈a, b〉 and, since 〈a, b〉 is minimal, 〈ar, bs〉 is
also minimal. By [7, Proposition 3] both ar and bs are idempotents.

(2) ⇒ (3). Write e = ar, a = er′, 1 − e = bs and b = (1 − e)s′. Then a = ara,
b = bsb and arbs = bsar = 0.

(3) ⇒ (1). By (3), ar and bs are orthogonal idempotents with arR = aR and
bsR = bR. Then arR ⊕ bsR = R. This means that 〈ar, bs〉 = 〈a, b〉 is a minimal
right coprime pair. �

We obtain now some characterizations of rings R in terms of the properties of
their poset RCP(R). Recall from the introduction that R is called an exchange ring
if R has the finite exchange property as a right (equivalently, left) module, that is,
for any module X and decompositions

X = M ⊕N = A⊕B
with M ∼= RR, there exist submodules A′ ≤ A and B′ ≤ B such that X =
M ⊕A′⊕B′. Moreover, R is said to be right quasi-duo if every maximal right ideal
is a left ideal.

Proposition 2.5. Let R be a ring. Then:

(1) RR is indecomposable if and only if (RCP(R),≤) has exactly two minimal
elements.

(2) The following assertions are equivalent:
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(a) R is local.
(b) Every right coprime pair is trivial.
(c) The following two conditions are satisfied:

(i) RCP(R) has exactly two minimal elements.
(ii) For each 〈a, b〉 ∈ RCP(R), there exists a minimal right coprime

pair 〈c, d〉 such that 〈c, d〉 ≤ 〈a, b〉.
(3) R is left perfect if and only if R has DCC on right coprime pairs.
(4) R is von Neumann regular if and only if every right coprime pair is regular.
(5) R is an exchange ring if and only if for every right coprime pair 〈a, b〉 there

exists a minimal right coprime pair 〈c, d〉 with 〈c, d〉 ≤ 〈a, b〉.
(6) R is right quasi-duo if and only if every left coprime pair is a right coprime

pair.

Proof. (1). Note first that the right coprime pairs 〈1, 0〉 and 〈0, 1〉 are always
minimal in RCP(R).

Suppose now that RR is indecomposable and let 〈a, b〉 ∈ RCP(R) be minimal.
By Proposition 2.4, aR⊕ bR = R. Since R is indecomposable, aR = R or bR = R.
In the first case, 〈1, 0〉 = 〈a, b〉. And, in the second, 〈0, 1〉 = 〈a, b〉.

Assume now that 〈1, 0〉 and 〈0, 1〉 are the only minimal elements of RCP(R) and
let e ∈ R be an idempotent. As 〈e, 1−e〉 is a minimal right coprime pair in RCP(R)
by Proposition 2.4, we get that 〈e, 1− e〉 = 〈1, 0〉 or 〈e, 1− e〉 = 〈0, 1〉, which means
that e ∈ {0, 1}. Thus, RR is indecomposable.

(2). (a) ⇔ (b) follows from the fact that R is local if and only if every proper
right ideal of R is superfluous.

(b)⇒ (c). Trivial, since the hypotheses imply that 〈0, 1〉 ≤ 〈a, b〉 or 〈1, 0〉 ≤ 〈a, b〉
for any right coprime pair 〈a, b〉.

(c) ⇒ (a). First, note that 〈1, 0〉 and 〈0, 1〉 are the only minimal elements in
RCP(R). Choose two right ideals I and K of R such that I+K = R. Then 1 = y+k
for some y ∈ I and k ∈ K. By hypothesis, 〈1, 0〉 ≤ 〈y, k〉 or 〈0, 1〉 ≤ 〈y, k〉 which
implies that 〈y, k〉 is trivial. This means that I = R or K = R and, consequently,
that R is local.

(3) If 〈a0, b0〉 ≥ 〈a1, b1〉 ≥ 〈a2, b2〉 ≥ · · · is a countable descending chain of
right coprime pairs, then, since R is left perfect, both chains a0R ≥ a1R ≥ · · ·
and b0R ≥ b1R ≥ · · · stabilize. In particular, there exist an n < ω such that
〈an, bn〉 = 〈an+kbn+k〉 for each k < ω.

Conversely, if R has DCC on right coprime pairs and a0R ≥ a1R ≥ a2R ≥ · · ·
is a descending chain of cyclic right ideals, then the chain of right coprime pairs

〈a0, 1〉 ≥ 〈a1, 1〉 ≥ 〈a2, 1〉 ≥ · · ·

stabilizes, which implies that there exists an n < ω such that anR = an+kR for
each k < ω.

(4) Trivial.
(5) Suppose that R is an exchange ring and let 〈a, b〉 be a right coprime pair.

Writing 1 = ar + bs for some r, s ∈ R, we get that 〈ar, 1 − ar〉 ≤ 〈a, b〉. Now, by
[15, Theorem 2.1], there exists an idempotent e with eR ≤ arR and (1 − e)R ≤
(1 − ar)R. By Proposition 2.4, 〈e, 1 − e〉 is a minimal right coprime pair which
satisfies 〈e, 1− e〉 ≤ 〈a, b〉.

Conversely, given x ∈ R, there exists a minimal right coprime pair 〈c, d〉 with
〈c, d〉 ≤ 〈x, 1 − x〉 . By Proposition 2.4, there exists an idempotent e such that
〈c, d〉 = 〈e, 1 − e〉. Again by [15, Theorem 2.1], this implies that R is an exchange
ring.

(6) This is proved in [11, Theorem 3.2]. �
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Remark 2.6. Note that R is local if and only if R is exchange and RCP(R) has
exactly two minimal elements.

3. Strongly exchange rings. Examples

As we mentioned in the introduction, one of the key ingredients in [7] is that
certain descending chains of right coprime pairs have lower bounds. In this section,
we give the central notion of compatible descending chain of right coprime pairs,
and study the lower bounds of them.

Definition 3.1. A compatible descending chain of right coprime pairs is a chain of
right coprime pairs, {pα | α < κ}, such that, for each α < κ, there exists a pair of
generators (aα, bα) of pα, and families of scalars {rαβ | α < β} and {sαβ | α < β},
satisfying the following two conditions for each ordinals α < γ < β with β < κ.

(1) aβ = aαrαβ and bβ = bαsαβ;
(2) rαβ = rαγrγβ and sαβ = sαγsγβ.

From now on, if {〈aα, bα〉 | α < κ} is a compatible descending chain of right
coprime pairs, we will assume that (aα, bα) is the pair of generators satisfying the
compatibility condition of the preceding definition.

Of course, we could have defined descending chains with the index set being a
totally ordered set instead of an ordinal. However, since every totally ordered set
contains a cofinal well ordered subset (see e.g.[17, Theorem 36]), we can always
assume that the index set of the chain is a well ordered set.

We are interested in studying when these chains have lower bounds in RCP(R).
A minimal lower bound of a chain is a lower bound of the chain that is a minimal
element in RCP(R).

Proposition 3.2. Let {〈aα, bα〉 | α < κ} be a descending chain of right coprime
pairs. Then:

(1) The chain has a lower bound if and only if⋂
α<κ

aαR+
⋂
α<κ

bαR = R

(2) If 〈aα, bα〉 is regular for each α < κ, then the chain is compatible. In
particular, every descending chain of right coprime pairs in a von Neumann
regular ring is compatible.

(3) If R is von Neumann regular, the following are equivalent:
(a) The chain has a lower bound.
(b) There exist a, b ∈ R with lR(a) ∩ lR(b) = 0,

∑
α<κ lR(aα) ≤ lR(a) and∑

α<κ lR(bα) ≤ lR(b).

Proof. (1) If the chain has a lower bound, then trivially
⋂
α<κ aαR+

⋂
α<κ bαR = R.

Conversely, write 1 = a + b with a ∈
⋂
α<κ aαR and b ∈

⋂
α<κ bαR. Then 〈a, b〉 is

a right coprime pair and a lower bound of the system.
(2) Since 〈aα, bα〉 is regular, we may assume that aα and bα are idempotent

elements for each α < κ. Given α < β, we have that aαaβ = aβ , since aβ = aαr for
some r ∈ R. Then the families of scalars {rαβ | α < β} and {sαβ | α < β}, given
by rαβ = aβ and sαβ = bβ , for each pair α < β, make the chain compatible.

(3) Again, we may assume that aα and bα are idempotent elements for each α.
(a) ⇒ (b). Take 〈a, b〉 a lower bound of the chain. Then lR(a) ∩ lR(b) = 0 by

Proposition 2.3. Moreover, the inclusions⋂
α<κ

aαR ≥ aR and
⋂
α<κ

bαR ≥ bR
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imply, by [1, Propositions 2.15 and 2.16], that∑
α<κ

lR(aαR) ≤ lR

(⋂
α<κ

aαR

)
≤ lR(a) and

∑
α<κ

lR(bαR) ≤ lR

(⋂
α<κ

bαR

)
≤ lR(b).

(b) ⇒ (a). Since R is von Neumann regular, we may assume that a and b are
idempotents. By Proposition 2.3, 〈a, b〉 is a right coprime pair. Moreover, since
aR = rRlR(a) and aαR = rRlR(aαR) for each α < κ, we get, by [1, Propositions
2.15 and 2.16] that

aR = rRlR(a) ≤ rR

(∑
α<κ

lR(aαR)

)
=
⋂
α<κ

rRlR(aα) =
⋂
α<κ

aαR.

And, similarly,

bR ≤
⋂
α<κ

bαR.

This means that 〈a, b〉 is a lower bound of the chain. �

Motivated by the preceding results, we introduce the following natural notion of
strongly exchange ring:

Definition 3.3. We say that a ring R is right strongly exchange if every compatible
descending chain of right coprime pairs has a minimal lower bound.

Examples 3.4. (1) Let R be an integral domain. Then, for every pair of el-
ements a and b such that a ∈ bR, there exists a unique r ∈ R such that
a = br. As a consequence, every descending chain of right coprime pairs is
compatible.

(2) Z is not a strongly exchange ring since, for instance, if p and q are different
primes, the compatible descending chain {〈pn, qn〉 | n < ω} does not have a
lower bound.

We show an example of an exchange ring which is not right strongly exchange.
Actually, we are going to construct, for any regular cardinal κ, a von Neumann
regular ring S such that all compatible descending chains of right coprime pairs of
cardinality smaller than κ have minimal lower bounds, but there does exist a chain
of length κ with no lower bound.

Recall that a cardinal κ is called singular if there exists a cardinal µ < κ and a
family of cardinals {κα | α < µ} with κα < κ for each α, such that κ =

∑
α<µ κα.

A cardinal is called regular when it is not singular.

Example 3.5. Let κ be an infinite regular cardinal. There exists a von Neumann
regular ring S satisfying that:

(1) Every compatible descending chain of right coprime pairs of length smaller
than κ has a minimal lower bound.

(2) There exists a compatible descending chain of right coprime pairs with no
lower bound.

Since every von Neumann regular ring is an exchange ring, this example shows that
exchange rings do not need to be strongly exchange.

Proof. Let F a field and S, the subring of Fκ given by

{x ∈ Fκ | ∃C ⊆ κ with |C| < κ and x(α) = x(β)∀α, β ∈ κ \ C}.
It is clear that S is von Neumann regular, since for any x ∈ S, x is of the form

xyx, where, for each α, y(α) = x(α)−1 if x(α) 6= 0, and y(α) = 0 otherwise.
(1) First note that x ∈ S is idempotent if and only if x(α) ∈ {0, 1} for each α < κ

and one of the sets, {α < κ | x(α) = 1} or {α < κ | x(α) = 0}, has cardinality
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smaller than κ. Indeed, if Γ is any subset of κ and we denote by eΓ the element of
Fκ satisfying that

eΓ(α) =

{
1 if α ∈ Γ
0 if α /∈ Γ

then the set of idempotents of S is {eΓ | Γ ⊆ κ and |Γ| < κ or |κ \ Γ| < κ}.
Let us choose an ordinal λ < κ and a descending chain of right coprime pairs

{〈aα, bα〉 | α < λ}. We may assume that both aα and bα are idempotents. Since
〈aα, bα〉 is a right coprime pair,

(1) supp(aα) ∪ supp(bα) = κ,

for each α < λ.
Let us denote by Γ =

⋂
α<κ supp(aα) and ∆ =

⋂
α<κ supp(bα). We claim that

(A) Γ ∪∆ = κ.
(B) Either Γ or κ \ Γ has cardinality smaller than κ. And, similarly, either ∆

or κ \∆ has cardinality smaller than κ.

Assume that this claim is already proved and choose the idempotents eΓ and e∆.
They belong to S by (B). And 〈eΓ, e∆〉 is a right coprime pair by (A), which is
clearly a lower bound of the initial chain. Therefore, 〈eΓ, e∆\Γ〉 is a minimal lower
bound of the chain.

Let us prove our claim. In order to prove (A), take x ∈ κ. Then x ∈ supp(a0)
or x ∈ supp(b0) by equation (1). Suppose x ∈ supp(a0). If x /∈ supp(b0), then
x ∈ Γ by (1) and we are done. If x ∈ supp(b0), we have two possibilities. If
x ∈ supp(aα) ∩ supp(bα) for each α, then x ∈ Γ ∩∆ and we are done. Otherwise,
take α the minimum ordinal such that x /∈ supp(aα) ∩ supp(bα) and assume, by
(1), that x ∈ supp(aα). Then, again by (1), x ∈ Γ. This proves claim (A).

In order to prove (B), let us we check that either Γ or κ \ Γ has cardinality
smaller than κ. The proof involving ∆ is similar. If there exists an α < κ such that
| supp(aα)| < κ, then Γ ⊆ supp(aα) has cardinality smaller than κ. If | supp(aα)| =
κ for each α < λ, then |κ \ supp(aα)| < κ. Therefore,

|κ \ Γ| ≤
∑
α<λ

|κ \ supp(aα)| < κ

since κ is regular and λ < κ.
(2) Let I1 and I2 be two subsets of κ such that |I1| = |I2| = κ, I1 ∩ I2 = ∅ and

κ = I1 ∪ I2. Consider in I1 and I2 the orders induced by κ and set, for each α < κ,
Γα = κ \ {β ∈ I1 | β < α} and ∆α = κ \ {γ ∈ I2 | γ < α}. We obtain a descending
chain of right coprime pairs {〈eΓα , e∆α〉 | α < κ}. Let us check that this chain does
not have a lower bound. Suppose that 〈a, b〉 is a lower bound. Then

(i) supp(a) ⊆
⋂
α<κ supp(eΓα),

(ii) supp(b) ⊆
⋂
α<κ supp(e∆α

) and
(iii) supp(a) ∪ supp(b) = κ.

Since I1∩
(⋂

α<κ supp(eΓα)
)

= ∅, (i) implies that |{α < κ | a(α) = 0}| = κ. Since

I2 ∩
(⋂

α<κ supp(e∆α
)
)

= ∅, (ii) implies that I2 ∩ supp(b) = ∅, so that I2 ⊆ supp(a)
by (iii). Then, | supp(a)| = κ.

We have proved that | supp(a)| = |{α < κ | a(α) = 0}| = κ, which contradicts
that a ∈ R. �

Now we show, using ideas from [7, Lemma 2], that left cotorsion rings are right
strongly exchange. Recall that R is left cotorsion if Ext1

R(F,R) = 0 for each flat
left R-module F (see e.g. [7]). Let us begin by discussing the relationship between
compatible descending chains of right coprime pairs and certain direct limits.

Let {〈aα, bα〉 | α < κ} be a compatible descending chain of right coprime pairs,
and choose families of scalars {rαβ | α < β} and {sαβ | α < β} witnessing the
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compatibility of the chain. In a similar way as in [7, Lemma 2], we can construct
a direct system of split exact sequences (Σα, (fαβ , gαβ , hαβ) | α < β) in R-Mod,
associated to this descending chain and the families of scalars, as follows. For each
α, Σα is the short exact sequence

0 R R⊕R Zα 0,
kα pα

where (x)kα = (xaα, xbα) for each x ∈ R, and pα is a cokernel of kα. The fact that
〈aα, bα〉 is a right coprime pair is equivalent to Σα being split.

The morphisms fαβ , gαβ and hαβ are defined in the following way:

• fαβ is the identity;
• (x, y)gαβ = (xrαβ , ysαβ);
• hαβ is the unique morphism from Zα to Zβ induced by gαβ .

Note that, as the tensor product commutes with direct limits, the direct limit of
the system of sequences is of the form

0 R F1 ⊕ F2 Z 0k p

with F1 and F2 flat modules.

Theorem 3.6. Let R be a left cotorsion ring. Then R is right strongly exchange.

Proof. Suppose that the result is not true, that is, that R is not right strongly
exchange. Then there exists a compatible descending chain of right coprime pairs,
{〈aα, bα〉 | α < κ}, which does not have a minimal lower bound.

For each ordinal α, we are going to construct a right coprime pair 〈xα, yα〉
such that 〈xα, yα〉 < 〈xγ , yγ〉 for each γ < α and the chain {〈xγ , yγ〉 | γ ≤ α} is
compatible. This is a contradiction, since it implies that the cardinality of RCP(R)
is bigger than the cardinality of α for any ordinal α.

We will make our construction by transfinite induction on all ordinals α. If
α < κ, set xα = aα and yα = bα. Let us choose now an ordinal α ≥ κ and assume
that we have constructed right coprime pairs 〈xγ , yγ〉 for each γ < α satisfying the
above condition. Let us distinguish among two possibilities.

Suppose first that α is a successor ordinal, say α = β+1. As 〈xβ , yβ〉 is not min-
imal, by the election of the initial chain, there exists a right coprime pair 〈xα, yα〉 ∈
RCP(R) strictly smaller than 〈xβ , yβ〉. Clearly, the chain {〈xγ , yγ〉 | γ ≤ α} is
compatible.

Suppose now that α is a limit ordinal. Choose families of scalars, {rαβ | α < β}
and {sαβ | α < β}, witnessing the compatibility of the chain, and consider the
direct system of splitting short exact sequences, (Σγ , (fγβ , gγβ , hγβ) | γ < β < α),
associated to this descending chain. As shown before, the direct limit of the system
is of the form

(2) 0 R F1 ⊕ F2 Z 0k p

with F1 and F2 flat modules. This sequence is pure, since all the sequences in the
system are split (see e.g. [19, 34.5]). This implies that Z is flat by [19, 36.6]. We
deduce now that this sequence is split, since R is left cotorsion.

Take a splitting k′ of k and denote by fγ : R⊕R→ F1 ⊕ F2 the canonical map
associated to the direct limit, for each γ < α. Write (1)k = z1 +z2 for some z1 ∈ F1

and z2 ∈ F2 and note that (xγ , 0)fγ = z1 and (0, yγ)fγ = z2 for each γ < α. Denote
by xα = (z1)k′, yα = (z2)k′, rγ = (1, 0)fγk

′ and sγ = (0, 1)fγk
′ for each γ < α.

Then 〈xα, yα〉 is a right coprime pair since

1 = (1)kk′ = (z1 + z2)k′ = xα + yα.
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Moreover, for each γ < α,

xγrγ = (xγ , 0)fγk
′ = xα and yγsγ = (0, yγ)fγk

′ = yα.

Finally, if γ < β,

rγβrβ = (1, 0)fγβfβk
′ = (1, 0)fγk

′ = rγ

and

sγβrβ = (0, 1)fγβfβk
′ = (0, 1)fγk

′ = sγ .

These identities mean that 〈xα, yα〉 is lower bound of the chain and that {〈xγ , yγ〉 |
γ ≤ α} is a compatible descending chain of right coprime pairs. Moreover, 〈xα, yα〉 <
〈xγ , yγ〉 for each γ < α, since the equality 〈xα, yα〉 = 〈xγ , yγ〉 for some γ < α implies
that 〈xγ , yγ〉 = 〈xγ+1, yγ+1〉, which is a contradiction. This finishes the construc-
tion. �

Now we prove that local rings are right strongly exchange.

Proposition 3.7. Every local ring is right (and left) strongly exchange.

Proof. Take a compatible descending chain of right coprime pairs, {〈aα, bα〉 | α <
κ}. If 〈aα, bα〉 = 〈1, 1〉 for each α < κ, then 〈1, 0〉 is trivially a minimal lower bound
of the chain.

So we may assume that there exists an α < κ such that 〈aα, bα〉 6= 〈1, 1〉. Since
〈aα, bα〉 is a trivial coprime pair by Proposition 2.5, either aα or bα is a unit.
Suppose, without loss of generality, that aα is a unit. Then bα ∈ J(R). We claim
that aβ is a unit for each β < κ. Suppose, on the contrary, that there exists a β < κ
such that aβ is not a unit. Then aβ ∈ J(R). Choosing γ = max{α, β}, we deduce
that aγ ∈ J(R) (since aγ ∈ aβR) and bγ ∈ J(R) (since bγ ∈ bαR). But then,
〈aγ , bγ〉 cannot be a right coprime pair. A contradiction that proves our claim.

Consequently, aα is a unit for each α < κ and thus, 〈1, 0〉 is a minimal lower
bound of the chain. �

Using this result we can show that the class of left cotorsion rings is strictly
contained in the class of right strongly exchange rings.

Example 3.8. Let R be a local Noetherian commutative ring which is not complete
in the I-adic topology. As the completion in the I-adic topology of R is the pure-
injective envelope of R (see e.g. [8, Example 7.7]), this means that R cannot be
cotorsion by [20, Lemma 3.1.6]. However, R is strongly exchange by Proposition
3.7.

We close this section by showing that the endomorphism ring of a continuous
left R-module is right strongly exchange. Recall that a left R-module M is called
continuous when it satisfies the following two conditions (see e.g. [13, 14]):

(C1) Every submodule of M is essential in a direct summand.
(C2) Any submodule of M which is isomorphic to a direct summand of M is

itself a direct summand.

For the rest of this section, let us fix a left R-module M and an injective envelope
u : M → E of M . We will denote by T and S the endomorphism rings of M and E,
respectively. For every f ∈ T , we can use the injectivity of E to find an extension

f̂ of f to E, that is, a morphism f̂ : E → E such that uf̂ = fu.

Let f, g ∈ T and take two extensions, f̂ and ĝ, of these morphisms to E. In

general, it may happen that f̂S ≤ ĝS but fT � gT . Our next lemma shows that
this is not the case when M is continuous and f is idempotent.

Lemma 3.9. Let M be a continuous left R-module and f, e ∈ T with e idempotent.

Take f̂ and ê extensions of f and e to E, respectively. If êS ≤ f̂S, then eT ≤ fT .
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Proof. There exists, by hypothesis, an h ∈ S such that ê = f̂h. The restriction of
f to Im e is a monomorphism from Im e to M with image Im ef , since if x ∈ M
satisfies (x)ef = 0, then 0 = (x)êf̂h = (x)êê = (x)ee = (x)e. We can apply now
(C2) to conclude that Im ef is a direct summand of M .

On the other hand, by condition (C1), we can find a direct summand K of M
such that Im(1− e)f is essential in K. We claim that Im ef ∩K = 0. Suppose, on
the contrary, that there exists 0 6= y ∈ Im ef ∩K. Write y = (x)ef for some x ∈M ,
and note that, as Im(1 − e)f is essential in K, there exist z ∈ M and r ∈ R such
that 0 6= (rx)ef = (z)(1 − e)f . Applying h to this identity we get, on one hand,
that (rx)efh = (rx)e 6= 0 and, on the other, that (z)(1− e)fh = (z)(1− e)e = 0, a
contradiction that proves our claim.

We can now apply (C3) to conclude that Im ef ⊕K is a direct summand of M .
Thus, there exists a submodule L of M such that Im ef ⊕K ⊕ L = M . Consider
the endomorphism h′ of M whose restriction to Im ef is equal to h (note that,
Im efh ≤M), and its restriction to K ⊕ L is zero. Then, for each x ∈M ,

(x)fh′ = ((x)e+ (x)(1− e))fh′ = (x)efh′ + (x)(1− e)fh′ = (x)e.

This means that fh′ = e and that eT ≤ fT . �

The following lemma allows us to construct right coprime pairs in S from right
coprime pairs in T .

Lemma 3.10. Let 〈f, g〉 be a right coprime pair in T and f̂ and ĝ extensions of f

and g to E, respectively. Then 〈f̂ , ĝ〉 is a right coprime pair in S.

Proof. Take r, s ∈ T such that fr + gs = 1M . Then u(f̂ r̂ + ĝŝ) = u. As u is an

injective envelope, f̂ r̂ + ĝŝ is an isomorphism and thus, there exists an h ∈ S such

that 1E = f̂ r̂h+ ĝŝh. This means that 〈f̂ , ĝ〉 is a right coprime pair in S. �

Theorem 3.11. Let M be a continuous left R-module. Then EndR(M) is right
strongly exchange.

Proof. We follow the notation fixed in p. 11. Take a compatible descending chain
of right coprime pairs in T , {〈fα, gα〉 | α < κ}, and families of elements of T ,
{rαβ | α < β} and {sαβ | α < β}, making the chain compatible. First, we are going
to construct families of endomorphisms of E, {r̂αβ | α < β} and {ŝαβ | α < β},
extending the families rαβ and sαβ , respectively, to E, such that

(A) r̂αγ r̂γβ = r̂αβ and
(B) ŝαγ ŝγβ = ŝαβ ,

for each α < γ < β. We make the construction of {r̂αβ | α < β} by transfinite
induction on β. The construction of the family {ŝαβ | α < β} is made similarly.

If β = 0, there is nothing to construct. If β = 1, choose, using the injectivity of
E, an extension r̂01 : E → E of r01.

Let β < κ, and suppose that we have constructed r̂αγ for each α < γ < β, and
let us construct r̂αβ . If β is successor, say β = γ + 1, take r̂γγ+1 ∈ S an extension
of rγγ+1 and define r̂αβ = r̂αγ r̂γβ . It is easy to check that r̂αβ is an extension of
rαβ and that the compatibility conditions (A) hold.

Suppose now that β is a limit ordinal. We have two direct systems of left R-
modules: S1 = (Mα, rαγ | α < γ ∈ β) and S2 = (Eα, r̂αγ | α < γ ∈ β), where
Mα = M and Eα = E for each α < β. Denote by (X,mα : M → X | α < β) and
(Y, nα : E → Y | α < β) their direct limits. Since each r̂αγ is an extension of rαγ ,
u defines a monomorphism between the direct systems S1 and S2, which induces a
monomorphism v : X → Y . Similarly, (rαβ : Mα → M | α < β) is a direct system
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of morphisms from S1 to M . So, it induces a morphism r : X →M . Finally, using
the injectivity of E we can find a r̂ : Y → E making the diagram

X Y

M E

v

r r̂

u

commutative. Set now r̂αβ = nαr̂ for each α < β. It is easy to check that r̂αβ is an
extension of rαβ that satisfies the compatibility conditions (A). This finishes the
construction.

Take now k0 and l0 extensions of f0 and g0 to endomorphisms of E, respectively,
and define

kα = k0r̂0α and lα = l0ŝ0α

for every α < κ. Since kα and lα are extensions of fα and gα to E, respectively,
〈kα, lα〉 is a right coprime pair in S by Lemma 3.10. We obtain in this way a
compatible descending chain {〈kα, lα〉 | α < κ} of right coprime pairs in S. Since S
is left pure-injective (in particular, left cotorsion) by [21, Proposition 3], the chain
has a minimal lower bound 〈k, l〉 by Theorem 3.6. So, there exists an idempotent
e of S such that 〈k, l〉 = 〈e, 1− e〉 by Proposition 2.4. By [13, Theorem 2.8], there
exists an idempotent e′ ∈ T such that e is an extension of e′ to E and, consequently,
1− e is also an extension of 1− e′ to E. Since 〈e, 1− e〉 ≤ 〈kα, lα〉 for each α < κ,
Lemma 3.9 says that 〈e′, 1 − e′〉 ≤ 〈fα, gα〉 for each α < κ. This means that
〈e′, 1− e′〉 is a minimal right coprime pair below the initial chain, which concludes
the proof. �

Corollary 3.12. Suppose that R is a left continuous ring. Then R is a right
strongly exchange ring.

Remark 3.13. The converse of this result is not true. For instance, a commutative
local domain is strongly exchange by Proposition 2.5. But it is not continuous,
unless it is a field, since it does not satisfy (C2).

On the other hand, any von Neumann regular left continuous ring which is not
left self-injective (see e.g. [6, Example 13.8]) is another example of a right strongly
exchange ring which is not left cotorsion.

4. Strongly exchange rings. Main properties

We have proved in the previous section that local, left cotorsion and left con-
tinuous rings are right strongly exchange. All these rings are semiregular (see [7,
Theorem 6] and [13, Proposition 3.5]). We are going to show in this section that
right strongly exchange rings are, in general semiregular. Let us begin with a couple
of technical lemmas that we will need later on.

Lemma 4.1. Let 〈a, b〉 be a right coprime pair such that aR ∩ bR ≤ J(R). Then
(aR+ J(R)) ∩ (bR+ J(R)) ≤ J(R).

Proof. Let y ∈ (aR + J(R)) ∩ (bR + J(R)) and take r1, s2 ∈ R, j1, j2 ∈ J(R) such
that y = ar1 + j1 = bs2 + j2.

Since 〈a, b〉 is a right coprime pair, there exist s, r ∈ R such that 1 = ar + bs.
Then bsa = a(1 − ra) ∈ aR ∩ bR ≤ J(R) and arb = b(1 − sb) ∈ aR ∩ bR ≤ J(R).
Consequently, (1− ar)ar1 ∈ J(R).

On the other hand, multiplying the identity ar1 = bs2 + j2 − j1 by ar and using
that arb ∈ J(R), we conclude that arar1 ∈ J(R).

Finally, ar1 = (1− ar)ar1 + arar1 ∈ J(R), so that y ∈ J(R) as well. �

Lemma 4.2. Let 〈a, b〉 be a right coprime pair.
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(1) If aR ∩ bR is not contained in J(bR), then there exists a z ∈ R such that
〈a, z〉 is a right coprime pair strictly less than 〈a, b〉.

(2) If aR∩ bR is not contained in J(R), there exists a right coprime pair 〈x, y〉
strictly less than 〈a, b〉 and such that x = a or y = b.

Proof. (1) Choose an x ∈ (aR∩ bR)\J(bR). Then xR is not superfluous in bR and
there exists a proper submodule X ≤ bR with xR + X = bR. In particular, there
exists a z ∈ X with xR + zR = bR. Then, as x ∈ aR, aR + zR = R, which means
that 〈a, z〉 is a coprime pair satisfying 〈a, z〉 < 〈a, b〉.

(2) Take x ∈ (aR ∩ bR) \ J(R). We claim that x /∈ J(aR) ∩ J(bR). Suppose,
on the contrary, that x ∈ J(aR) ∩ J(bR) and let X be a right ideal of R such that
xR+X = R. Then, by modularity, aR = xR+ (aR∩X) and bR = xR+ (bR∩X),
which implies that aR = aR ∩X and bR = bR ∩X, since xR is superfluous in aR
and bR. In particular, R = aR+ bR ≤ X. This means that xR is superfluous in R
and thus, x ∈ J(R). A contradiction which proves our claim.

Therefore, x does not either belong to J(aR) or J(bR). Now, the result follows
from (1). �

Theorem 4.3. Every right strongly exchange ring is semiregular.

Proof. First, we claim that for any right coprime pair 〈a, b〉 there exists an element
x such that 〈a, x〉 is a right coprime pair, 〈a, x〉 ≤ 〈a, b〉 and aR ∩ xR ≤ J(xR).

Suppose that our claim is false. We are going to construct by transfinite induction
an element bα, for each ordinal α, such that

(a) 〈a, bα〉 is a right coprime pair;
(b) aR ∩ bαR is not contained in J(bαR);
(c) 〈a, bα〉 < 〈a, bγ〉, for each γ < α;
(d) if α > 0 is limit, then bα is idempotent.

For α = 0, set b0 = b.
Let now α > 0 be an ordinal and assume that we have just constructed, for

each γ < α, elements bγ ∈ R satisfying the above conditions. If α is successor,
say α = β + 1, apply Lemma 4.2 to get an element bα such that 〈a, bα〉 is a right
coprime pair strictly smaller than 〈a, bβ〉. Since we are assuming that our claim is
false, aR ∩ bαR * J(bαR).

Suppose now that α is limit. If the set {γ < α | γ is limit} is not cofinal in α,
then there exists a limit ordinal β < α such that α = β + ω. Then the descending
chain of right coprime pairs, {〈a, bβ+n〉 | n < ω}, is compatible and, by hypothesis,
it has a minimal lower bound 〈x, bα〉. By Proposition 2.4, bα can be chosen to
be idempotent. Since xR ≤ aR, 〈a, bα〉 is a right coprime pair below the chain.
Moreover, 〈a, bα〉 < 〈a, bγ〉 for each γ < α, since the identity 〈a, bα〉 = 〈a, bγ〉 for
some γ < α, implies that 〈a, bγ〉 = 〈a, bγ+1〉, a contradiction. Finally, aR ∩ bαR is
not contained in J(bαR) since we are supposing that our initial claim is false.

It remains to prove the case in which {γ < α | γ is limit} is cofinal in α. If
this holds, we have the descending chain of right coprime pairs {〈a, bγ〉 | γ <
α limit}. The arguments used in the proof of Proposition 3.2 show that this chain
is compatible. So we can find by hypothesis a minimal lower bound 〈x, bα〉, in
which bα idempotent by Proposition 3.2. Reasoning as above, we get that 〈a, bα〉 is
a right coprime pair below the chain such that aR ∩ bαR * J(bαR). This finishes
the construction.

We have constructed, for any ordinal α, a right coprime pair 〈a, bα〉 such that
〈a, bα〉 < 〈a, bβ〉 if α < β. In particular, this means that bα 6= bβ if α < β and
therefore, the cardinality of R must be at least the cardinality of α for any ordinal
α. A contradiction that proves our initial claim.
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Finally, given any a ∈ R, we can apply our claim to the right coprime pair
〈a, 1 − a〉 to get an element x ∈ R such that 〈a, x〉 is a right coprime pair with
aR ∩ xR ≤ J(xR) and 〈a, x〉 ≤ 〈a, 1− a〉. By Lemma 4.1,

(a+ J(R))R/J(R)
⊕

(x+ J(R))R/J(R) = R/J(R)

which means that (a+ J(R))R/J(R) is a direct summand of R/J(R). This proves
that R/J(R) is a von Neumann regular ring.

In order to prove that idempotents lift modulo the Jacobson radical of R, note
that R is an exchange ring and that exchange rings have this property [15, Theorem
2.1 and Proposition 1.5]. �

The converse of this result is not true, since there exist von Neumann regular
rings which are not right strongly exchange (see Example 3.5).

Remark 4.4. We have proved in Section 3 that local, left self-injective, left pure-
injective, left cotorsion and left continuous rings are right strongly exchange. All
these rings satisfy that they are left continuous modulo their Jacobson radical (see
[7, Theorem 8] and [13, Theorem 3.11]). But we do not know whether any right
strongly exchange rings enjoys this property.

If we strengthen the definition of right strongly exchange ring a little bit to include
all compatible descending systems of right coprime pairs instead of just compatible
descending chains of right coprime pairs, we can prove that the ring is left con-
tinuous modulo its Jacobson radical. However, we do not know whether any left
continuous ring satisfies this last condition.

Let us state the ideas of the preceding remark more precisely.

Definition 4.5. Let R be a ring.

(1) A descending system of right coprime pairs is a downwards directed subset
of RCP(R). I.e., a subset {pi | i ∈ I} ⊆ RCP(R) indexed by a directed set
I such that pj ≤ pi whenever i ≤ j.

(2) A descending system of right coprime pairs {pi | i ∈ I} is called compatible
if for each i ∈ I, there exists a pair of generators (ai, bi) of pi, and families
of scalars {rij | i < j} and {sij | i < j}, satisfying that
(a) aj = airij and bj = bisij;
(b) rik = rijrjk and sik = sijsjk.

for each i < j < k in I.

As in the case of chains, if {〈ai, bi〉 | i ∈ I} is a compatible descending system of
right coprime pairs, we will assume that (ai, bi) is the pair of generators satisfying
the compatibility condition of the preceding definition.

Recall that the singular submodule of a right R-module M is its submodule

Z(M) = {x ∈M | rR(x) is essential in RR}.

A module M is called singular if M = Z(M) and non-singular if Z(M) = 0.

Lemma 4.6. Let M be a non-singular module and K, N and L, submodules of M
such that both inclusions K ≤ N and K ≤ L are essential. If M

L is non-singular
(for instance, if L is a direct summand of M), then N ≤ L.

Proof. Since K ≤ N ∩ L ≤ N , we get that N ∩ L is essential in N . And, by [5,
Proposition 1.21], N

N∩L is singular. On the other hand, N
N∩L

∼= N+L
L is non-singular,

since it is a submodule of the non-singular module M
L . Therefore, N

N∩L = 0 and,
consequently, N ≤ L. �
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Lemma 4.7. Let {ei | i ∈ I} be a family of idempotents of R such that
∑
i∈I eiR

is essential in RR. Let J ⊆ I and f ∈ R, an idempotent such that
∑
j∈J ejR ≤ fR.

If fei = 0 for each i ∈ I \ J , then
∑
j∈J ejR is essential in fR.

Proof. Let us choose an r ∈ R such that fr 6= 0. Since
∑
i∈I eiR is essential in R,

there exists an s ∈ R such that 0 6= frs ∈
∑
i∈I eiR. Write

(3) frs =
∑
i∈I

eiri

for a family {ri | i ∈ I} ⊆ R satisfying that {i ∈ I | ri 6= 0} is finite. Multiplying
this identity by f on the left we obtain that

frs =
∑
j∈J

fejrj .

And, as fej = ej for each j ∈ J , we deduce that fsr ∈
∑
j∈J ejR. �

Lemma 4.8. Let R be a von Neumann regular ring, N a non-zero right ideal of
R and X a set of idempotent elements in N such that

∑
e∈X eR is direct. Then

X is contained in a set of idempotents X ′ of R such that
∑
e∈X′ eR is direct and

essential in N .

Proof. Consider the set

L =

{
F ⊆ N | F consists of idempotents,

∑
e∈F

eR is direct and X ⊆ F

}
L is an inductive non-empty partially ordered set. Thus, it has a maximal element
X ′ by Zorn’s lemma. Let us check that

∑
e∈X′ eR is essential inN . For any non-zero

x ∈ N , there exists an idempotent f such that xR = fR. By construction, the sum∑
e∈X′ eR+fR is not direct, so there exists an r ∈ R such that 0 6= fr ∈

∑
e∈X′ eR.

In particular, xR ∩
∑
e∈X′ eR 6= 0. �

Theorem 4.9. Let R be a ring. If every compatible descending system of right
coprime pairs of R has a minimal lower bound, then R/J(R) is left continuous.

Proof. Denote R/J(R) by R. For every x ∈ R, let x be the corresponding element
in R/J(R). And, for each subset X of R, denote by X the subset {x | x ∈ X} ⊆ R.

Let I be a left ideal of R. Using Lemma 4.8, and the fact that R is semiregular
by Theorem 4.3, we can find sets of idempotents of R, E and F , such that {Re |
e ∈ E} ∪ {Rf | f ∈ F} is independent,

∑
e∈E Re is essential in I and

∑
e∈E Re +∑

f∈F Rf is essential in R. We may apply now [21, Lemma 13] to conclude that

{Re | e ∈ E}∪{Rf | f ∈ E} is a local direct summand of RR. I.e., it is independent
and for every finite subset X ⊆ E ∪ F ,

∑
e∈X Re is a direct summand of R.

For each finite subset X of E, fix an idempotent eX such that
∑
e∈X Re = ReX .

Similarly, fix and idempotent fY for each finite subset Y of F . Then, for every
X ⊆ E and Y ⊆ F finite, ReX ∩RfY = 0 and ReX +RfY is a direct summand, so
that 〈1− eX , 1− fY 〉 is a right coprime pair by [21, Lemma 12]. It is easy to check
that the family

{〈1− eX , 1− fY 〉 | X ⊆ E, Y ⊆ E are finite subsets}
is a compatible descending system of right coprime pairs.

Now, we may apply our hypothesis to find a minimal lower bound 〈a, b〉 of the
system which, by Proposition 2.4, must be of the form 〈g, 1−g〉, for some idempotent
element g. Then, g ∈ (1− eX)R and 1− g ∈ (1− fY )R for each X ⊆ E and Y ⊆ F
finite, which implies that eX ∈ R(1− g) and fY ∈ Rg. In particular, e ∈ R(1− g)
and f ∈ Rg for each e ∈ E and f ∈ F . Since this implies that f(1 − g) = 0 for
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each f ∈ F , Lemma 4.7 claims that
∑
e∈E Re is essential in R(1− g). Finally, I is

essential in R(1− g) by Lemma 4.6.
We have just proved that R satisfies (C1). Since R is von Neumann regular by

Theorem 4.3, it trivially satisfies (C2). Therefore, R is left continuous. �

We use some ideas in the proof of the preceding result to show that the strong
exchange property is not left-right symmetric.

Example 4.10. Let D be a division ring and V a vector space over D with infinite
countable dimension. Denote by S the endomorphism ring of V . Then S is left
strongly exchange but not right strongly exchange.

Proof. It is well known, e. g. [5, Proposition 2.23], that S is right self-injective. By
Theorem 3.6, S is left strongly exchange.

Let {vn | n < ω} be a basis of V and denote by en : V → V the endomor-
phism of V satisfying en(vi) = 0 if i 6= n and en(vn) = vn, for each n < ω.
Moreover, let p : V → V be the endomorphism of V such that p(ei) = e0 for
each i < ω. As it is shown in the proof of [5, Propostion 2.23],

(⊕
n<ω Sen

)
∩

Sp = 0, which in particular implies, as a consequence of Proposition 2.3, that
〈1−

∑
n≤m en, 1− p〉 is a right coprime pair in S for each m < ω. Then, it is easy

to see that
{
〈1−

∑
n≤m en, 1− p〉 | m < ω

}
is a (compatible) descending chain of

right coprime pairs in S.
We are going to prove that this chain does not have a minimal lower bound.

Assume, on the contrary, that there exists an idempotent e ∈ S such that 〈e, 1−e〉 ≤
〈1 −

∑
n≤m en, 1 − p〉 for each m < ω. Then,

(∑
n≤m en

)
e = 0 for each m < ω,

which implies that
∑
n≤m en ∈ S(1− e).

Now we claim that {(1 − e)(vn) | n < ω} is linearly independent. Assume, in
order to get a contradiction, that there exists m < ω such that (1 − e)(vm) =∑n
i=1(1 − e)(vmi)di for some m1 . . . ,mn ∈ ω − {m} and d1, . . . , dn ∈ D. Then,

since em = s(1− e) for some s ∈ S, we get

vm = em(vm) = s(1− e)(vm) =

n∑
i=1

s(1− e)(vmi)di =

n∑
i=1

em(vmi)di = 0,

which is a contradiction. This proves our claim.
Finally, this claim implies that 1− e is monic and, since it is idempotent, e = 0.

But 1 = 1− e ∈ S(1− p), which implies that p = 0 as well. This is a contradiction.
�

Now we give a sufficient condition for a strongly exchange ring to be semiperfect.

Theorem 4.11. Suppose that R is a right strongly exchange ring with countably
many idempotents. Then R is semiperfect.

Proof. Let us first note that R is semiregular by Theorem 4.3 and that R/J(R) has
countably many idempotents. Suppose that R is not semiperfect. Then R/J(R)
is not semisimple and thus, it has infinite right Goldie dimension. This means
that there exists a countable infinite family {en | n < ω} of non-zero idempotents
in R such that the family {(en + J(R))R/J(R) | n < ω} is independent. By [6,
Proposition 2.14], we may assume that the family {en+J(R) | n < ω} is orthogonal.

For each infinite subset A ⊂ ω such that ω \A is infinite, write A = {in(A) | n <
ω} and ω \A = {jn(A) | n < ω}. Define the idempotents

xAn = 1−
n∑
k=0

(eik(A) + J(R)) and yAn = 1−
n∑
k=0

(ejk(A) + J(R))
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for any n < ω. We get a descending chain of right coprime pairs, {〈xAn , yAn 〉 | n < ω},
for which we can find, by hypothesis, a lower bound 〈xA, yA〉. Since R/J(R) is von
Neumann regular, we can assume that xA and yA are idempotent elements.

We claim that if A and B are distinct subsets of ω such that ω \ A and ω \ B
are infinite, then xA 6= xB . This will prove the result, since this would imply that
the set of idempotents of R is uncountable.

To prove our claim, choose an n ∈ A \B. Then n ∈ ω \B and thus, there exist
u, v < ω such that n = iu(A) and n = jv(B). Using that xA ∈ xAuR/J(R) and
(en + J(R))xAu = 0, we get that (en + J(R))xA = 0. Similarly, (en + J(R))yB = 0,
since yB ∈ yBv R/J(R) and (en+J(R))yBv = 0. Now, writing 1 +J(R) = xBr+yBs
for r, s ∈ R, we get that en + J(R) = (en + J(R))xBr, from which we deduce that
(en + J(R))xB 6= 0. As (en + J(R))xA = 0, we conclude that xA 6= xB . �

Corollary 4.12. Any right strongly exchange ring with countably many idempotent
elements and zero Jacobson radical is semisimple. In particular, any regular left
continuous ring with countably many idempotents is semisimple.

Proof. R is semiperfect by the above theorem. So it is semisimple as its Jacobson
radical is zero. Finally, note that, if R is a left continuous von Neumann regular
ring, then it satisfies these conditions by Theorem 3.11. �

Remark 4.13. The following alternative proof of the last assertion of this corollary
was communicated to us by K. Goodearl. Suppose that R is a left continuous ring
which is not semisimple. Then, by [6, Corollary 2.16], R has an infinite set of non-
zero orthogonal idempotents, {en | n < ω}. Let Q be the maximal left quotient ring
of R. Since Q is left self-injective, for every subset J of ω, there exists an idempotent
eJ of Q such that QeJ is an injective hull of

⊕
j∈J Qej. The set {eJ | J ⊆ ω} is

uncountable, which is a contradiction, since R contains all the idempotent elements
of Q by [6, Theorem 13.13].

We close this paper by suggesting some new lines of research. As we mentioned
in the introduction, it is not known whether a module M satisfying the finite
exchange property does satisfy the full exchange property. On the other hand,
Warfield proved that a module M satisfies the finite exchange property if and only
if its endomorphism ring is exchange. Therefore, it is natural to ask whether a
module M satisfies the full exchange property provided its endomorphism ring
is right strongly exchange. Let us call a module M strongly exchange when its
endomorphism ring is right strongly exchange. The above question can rephrased
as follows:

Question 4.14. Does every strongly exchange module satisfy the full exchange
property?

A ring R is called clean when every element in R is the sum of an idempotent
and a unit. Suppose that R satisfies that compatible descending systems of right
coprime pairs have minimal lower bounds. Then, by Theorems 4.3 and 4.9, R is
semiregular and R/J(R) is left continuous. By [2, Theorem 3.9], R/J(R) is clean
and by [3, Proposition 7] R is clean as well. Moreover, note that all the examples
of right strongly exchange rings exhibited in this paper are clean (for instance, left
self injective, left cotorsion, local or left continuous rings). We may pose then the
following question:

Question 4.15. Is every right strongly exchange ring clean?
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