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Abstract

This article is intended to be an overview of the current possibilities offered by hydrodynamic methods in the
calculation of properties and prediction of the behavior of biomacromolecules in solution. First, we briefly cover
the experimental techniques, mentioning their fundamentals and current status. Using a tutorial approach, we
provide basic hints to understand conceptual aspects of macromolecular hydrodynamics which underlie the
instrumental methods and the modeling and computational procedures. The description is focused on the
bead model methodology as implemented in the HYDRO suite of computer programs. For rigid particles, we
cover simple models, such as ellipsoids and cylinders, to the most detailed models with atomic resolution. The
fundamentals and applicability of the basic random coil and wormlike models for flexible particles are also
briefly described. In addition to the simple linear, more or less flexible chain, flexibility may appear in other
more specific forms. These cases can be treated by Monte Carlo and Brownian simulation methods, for which
computational tools are also available. Finally, we present in some detail the applicability of these tools for
unfolded and intrinsically disordered proteins. For the particular case of partially disordered proteins
comprising both globular domains and flexible linkers or tails, solution properties can be accurately predicted,

and this validation makes the methodology quite promising for future work.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

Introduction

For over a century, hydrodynamic properties have
been essential sources of information about the
structure of biological macromolecules. Historically,
the first landmark was the doctoral thesis of Albert
Einstein, who developed the theory of Brownian
diffusion and carried out its first application to the
determination of the size of a biomolecule — sucrose
[1,2]. His pioneering work prompted the invention by
T. Svedberg of analytical ultracentrifugation (AUC),
which made it possible to demonstrate that a
biological macromolecule, hemoglobin, is a single
species with a well-defined molecular weight, which
was determined by observing its sedimentation in
the ultracentrifuge [3]. In the early years of modern
molecular biology, AUC was used in the famous
Meselson—Stahl experiment [4], demonstrating the
semiconservative replication of DNA, and thus
supporting the Watson-Crick double helix model. A

particular mention is relevant here to the very first
paper published in the Journal of Molecular Biology,
in which Zubay and Doty [5] described the char-
acterization of nucleohistones by hydrodynamic
methods, namely intrinsic viscosity and flow
birefringence.

For many years, hydrodynamic properties such as
the diffusion and sedimentation coefficients and the
intrinsic viscosity were the main choice (along with light
scattering) to ascertain structural information about
size, overall shape, flexibility, etc., of biomacromole-
cules. During the 1980s and 1990s, the emergence of
high-resolution techniques such as X-ray crystal-
lography, solution NMR spectroscopy, cryoelectron
microscopy, etc., to some extent relegated hydrody-
namic techniques to a secondary role. But recently,
mainly over the last two decades, macromolecular
hydrodynamics has emerged again as amostvaluable
structural approach. There are several reasons for this
resurgence.
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Complex, bulky machinery for analytical ultracen-
trifugation or dynamic light scattering has been
replaced by much more simple and compact instru-
ments, with data collection, handling, and analysis
facilitated by user-friendly software. High-perfor-
mance computational methods allow numerical
approaches for difficult problems in hydrodynamic
theory. Such methods are implemented in hydro-
dynamic modeling procedures that allow the direct
calculation of hydrodynamic properties from the
high-resolution structures specified by, for instance,
atomic coordinates in a PDB (protein data bank) file
[6] or an electron density map [7]. Thus, it is possible
to confirm, from simple measurements and calcula-
tions, that structures obtained from crystal diffraction
or cryoelectron microscopy are compatible with the
true structure in solution.

The technicalities in modern instrumentation, soft-
ware for data acquisition and analysis, and compu-
tational tools for hydrodynamic studies may blur
essential concepts that are necessary for a proper
interpretation of experiments and computations.
With this idea in mind, the scope of this article is
essentially that of a tutorial, intending to provide
background for such an interpretation. We first
describe the basic concepts underlying the various
techniques for the experimental determination of
hydrodynamic properties. Then, we describe funda-
mental aspects that relate the experimentally deter-
mined properties (e.g., diffusion and sedimentation
coefficients, intrinsic viscosity, etc.) to the structure
of biomacromolecules. We emphasize that the
primary outcome of any hydrodynamic theory are
some hydrodynamic radii, which are computed
directly from the geometry of the hydrodynamic
model. Observable properties such as diffusion or
sedimentation coefficients are only obtained later by
combining those hydrodynamic radii with data of the
system under study (e.g., temperature, solvent
viscosity, etc.). A description of the hydrodynamics
of rigid particles in terms of simple models such as
ellipsoids and cylinders provides, in addition to
practical applications, notable insights into such
hydrodynamic concepts. Modeling procedures, at
different levels of detail, are available for arbitrarily
shaped particles. The hydrodynamic description of
macromolecules that have any kind of flexibility
(continuous or segmental) depends on hydrody-
namic (frictional) aspects and also on their con-
formational variability. Over the years, our group has
been active in the development of the theory and
computational tools to enable the calculation of
hydrodynamic properties of rigid and flexible macro-
molecules. Thus, along this article, we mention and
provide an overview of those tools. Certainly, in
addition to the bead modeling methodologies that we
describe, there are other hydrodynamic approaches,
and there are also a variety of programs for bead
model calculations, as mentioned below. None-

theless, we do not intend to review all the various
alternative approaches and programs. Instead, we
concentrate our tutorial review on the bead modeling
methodology and computer programs of the HYDRO
suite, which is an integrated, easily accessible
resource for understanding hydrodynamic modeling
and calculating and analyzing solution properties of
both rigid and flexible macromolecules.

Hydrodynamics is particularly helpful in the study
of protein structure. The case of quasirigid globular
proteins is nowadays well covered by a variety of
computational methodologies. The new field of
intrinsically disordered (ID) proteins presents a new
challenge: the description of macromolecules which
are partially ordered, partially unfolded, and partially
flexible. The importance that macromolecular hydro-
dynamics has for structural determination of folded
proteins can and should be extended to ID proteins.
Thus, throughout this article, we describe here some
recent contributions in this regard, where the
hydrodynamic properties of partially disordered
proteins have been predicted with remarkable
success.

Hydrodynamic techniques and solution
properties

Translational friction and diffusion

The translational diffusion coefficient, D;, deter-
mines the microscopic translational Brownian motion
of the solute molecules and is experimentally
observable from the spread of a solution/solvent
boundary [8], or indirectly observable in techniques
that depend on diffusion, as described below. The
fundamental theory of Einstein, which will be out-
lined in the next section, relates D; to the frictional
coefficient f;, as D; = kgT/f;, where kp is the
Boltzmann's constant and T is the absolute tem-
perature. The frictional coefficient, f;, depends on
the size and shape of the particle. For spherical
particles of radius a, Stokes law is f; = 6m1,a, where
7, is the solvent viscosity, so the particle size can be
determined as

kgT
= =R 1
@ 67Ny Dy Hy (1)

For nonspherical particles, eq. (1) is still used as a
definition of the so-called hydrodynamic radius, Rg
(sometimes called Stokes radius), which corre-
sponds to the radius of a spherical particle that has
the same values of the translational frictional and
diffusion coefficients as the nonspherical particle.

Diffusion coefficients can be experimentally deter-
mined by a variety of techniques which monitor in
some way the Brownian motion of the solute
molecules. Such is the case of dynamic light
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scattering (DLS), which monitors fluctuations of the
intensity of the light scattered, related to the diffusive
behavior of the solute. The monograph by Berne and
Pecora [9] is the classical reference, and a particu-
larly readable description of theory, instrumentation
and data analysis can be found in the review of
Stetefeld et al. [10].

The data analysis in DLS allows the consideration
of heterogeneity, resulting in a distribution of diffu-
sion coefficients or hydrodynamic radii. Notably, the
distribution may cover a wide range of sizes, from
about 1 nm up to over 1000 nm. Thus, DLS is most
suitable for the characterization of widely polydis-
perse samples, and the detection of aggregation.
The disadvantage of such a dynamic range is the
lack of fine resolution. Furthermore, even well-
defined species present a peak with some instru-
mentally caused width. Thus, two species differing in
D, or Ry by a factor of, say, about 2 (for instance
monomer and dimer), could not be distinguished and
their peaks would overlap.

Thanks to technical advances and the develop-
ment of control and data treatment software, DLS is
the most frequently used technique for macromole-
cular characterization based on diffusion, but other
methodologies, based on spectroscopic phenom-
ena, are available. Such is the case of pulsed-field
gradient (PFG)-NMR spectroscopy [11], which
seems particularly suitable for proteins and small
peptides [12], or fluorescence correlation spectro-
scopy [13].

Sedimentation in analytical ultracentrifugation

As indicated in the Introduction, AUC has been for
many years the most valued hydrodynamic tool for
macromolecules; until the 1970s determination of
the sedimentation coefficient was a standard part in
the characterization of proteins and nucleic acids,
and in the last two decades it has emerged again as
an advance thanks to instrumental and computa-
tional developments [14,15]. The movement of
particles in the ultracentrifuge results from the
balance of two forces. One of them is the centrifugal
force, m®) w?r, where w is the rotor angular velocity, r
is the distance to the axis of rotation and m(®) =
m(1 —op) is the buoyant mass of the particle of mass
m = M /N4, partial specific volume v and molecular
weight M, in a solution of density p; M) = M (1 —op)
is the buoyant molecular weight. The other one is the
frictional force experienced by the particles, f;v,
whose frictional coefficient is f; when they move with
velocity v. The sedimentation coefficient is defined
as the ratio of velocity to centrifugal acceleration.

s=v/ () (2)

From the balance of forces, it follows that s is
determined by f; and M(®, with f; in turn related to

the diffusion coefficient, D;, as per the Einstein
equation, so that

m® MO A p,
fi  Nafi RT

(3)

S =

where N, is Avogadro's number. Thus, s may
provide, such as D, information on the size and
shape of the solute molecules. In the case of
spherical particles, the Stokes-Einstein relationship
leads to

M(1 —7p)

o 6N 4T a )

The sedimentation velocity is monitored during the
time course of sedimentation by the displacement of
the boundary that separates clear solvent from
sedimenting solute. For small solutes, or low rotor
speeds, the boundary is not sharp but broadened by
a concurrent effect of diffusion. The concentration
gradient created by sedimentation causes a diffu-
sional counterflow. Thus, the description of the
particles' motion is more complex but feasible with
present methods of data analysis [16—18], which
allow not only the determination of s but also the
estimation of M and D,. AUC is also a separative
methodology which is particularly useful for hetero-
geneous samples. The concentration or signal
profile along the cell is the superposition of contribu-
tions corresponding to the various species with
different s and M, so that their molecular properties
can be obtained with proper data analysis methods.
Furthermore, thanks to the sensitivity of the techni-
que, species with not-too-different parameters can
be differentiated.

Intrinsic viscosity

The viscosity of a solution, 1, is greater than that of
the pure solvent, 7. The increase, due to the solute,
can be expressed as a relative viscosity 1, = /1, or
specific viscosity
_77r—1:77—770 (5)

P c NoC

which depends on concentration and is related to the
size and conformation of the solute molecules. At
sufficiently low concentrations, the specific viscosity
is proportional to the mass concentration, ¢, and the
proportionality constant is the intrinsic viscosity, [1].
The concentration dependence can be expressed as
2 ) + g fne (6)
where kg is the so-called Huggins constant. The
primary result, namely the intrinsic viscosity [7], can
be obtained from a series of measurements of
solution viscosity at several concentrations, by linear
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extrapolation of 1, /c vs. c. There is a useful shortcut
to obtain [] from just one measurement at single
concentration, based on the Solomon-Ciuta-Gotes-
man equation [19,20]:

] = [2(n,, —Inm,)]'? [ (7)

Actually, the numerator of the right-hand side of
eq. (7) depends on concentration so weakly that
even at moderate concentration it allows a precise
single-point determination of [n].

Solution viscosities have traditionally been mea-
sured using conventional capillary glass visc-
ometers. To obtain sufficiently accurate viscosity
increments, measurements had to be carried out at
moderate concentrations that require the above-
mentioned extrapolations. Nowadays, these short-
comings are overcome with modern instruments,
such as those based on the rolling-ball design or
microfluidic devices [21,22]. Detailed information on
measurement, interpretation, and applications of the
intrinsic viscosity in molecular biology can be found
in the review by Harding [23].

As shown by Einstein, the increase of viscosity
over that of the solvent, caused by the solute,
depends on the size and shape of its molecules. As
detailed below, the intrinsic viscosity can be for-
mulated as [n] =vVN,/M, where the size is
given by the particle's volume V, and the numerical
factor v depends on the shape. For a spherical
solute, Einstein found the numerical factor to be v =
5/2, so for a sphere of radius a, with V = 4ma?/3, we
have

a3
=TT 0

Knowing the particle's molecular weight, its size
can be determined as

M)\ _
a= <M> :RH,T] (9)

For particles of arbitrary shape, eq. (9) can be
used to express an effective hydrodynamic radius,
Ry, Which is the radius of a sphere having the
same value of [].

Rotational diffusion and related techniques

Rotational diffusion is studied by means of
techniques that monitor the reorientation due to
Brownian motion of some characteristic vector within
the particle, such as the fluorescence transition
dipole moment in fluorescence polarization [24,25],
or "®C—H or N—H bonds in NMR relaxation
[26—30]. While translational dynamics is character-
ized by a single diffusion coefficient, which corre-
sponds to the Brownian motion of the molecule's
center of mass, averaged over orientations, the

theoretical description of rotational diffusion in those
techniques is made in terms of a rotational diffusion
tensor (a symmetric 3 x 3 matrix, D,..). The observed
dynamics depends on the eigenvalues of this tensor
and the orientation of the dipole of the bond with
respect to its eigenaxes. For a particle of arbitrary
shape, the time or frequency dependence of
observed properties depends on up to five relaxation
times (for details, see equations (1)—(12) in
Ref. [31]). When many dipoles within the molecule
are contributing simultaneously to the observations,
one single rotational diffusion coefficient, D, (the
trace of D) suffices. Such is also the case when
only one dipole is acting, as when the particle has
spherical shape, with fully isotropic rotational motion.
The primary outcome of the fluorescence polariza-
tion or NMR relaxation is a rotational correlation time
T.=1/(6D,).

The rotational diffusion coefficient of a sphere of
radius a is related to a rotational frictional coefficient
fr» as in the case of translation, with D, = k5T/ f,,
where f, = 8mn,a® = 6Vn,, where V =4ma3/3 is
the volume of the sphere. Therefore, the correlation
time for a spherical particle, which is the primary
outcome of fluorescence or NMR techniques, is
given by

. _Amnga® Vi
" 3kpT kT

(10)

and the radius of the spherical particle can be
obtained from ..

3kpTr.\ /?
= - = r 11
¢ < 4, ) Ba, )

For nonspherical particles, 7. is greater than the
value for a sphere of the same volume; instead of the
particle's volume, eq. (10) requires then a greater
effective volume that depends on the particle's size
and shape. Nonetheless, eq. (11) can then be used
to transform a value of 7. for any arbitrarily shaped
particle into another hydrodynamic radius, Ry .

Hydrodynamic theory and simple
models

Basic hydrodynamic theory

One of the fundamental insights of Einstein was
the connection between the macroscopically obser-
vable diffusion of solute molecules, their microscopic
Brownian motion, and the friction that they experi-
ence when moving in a viscous solvent, expressed
by the Einstein equation, D; = kgT'/ f;. The frictional
coefficient f; is the proportionality constant between
the translational velocity of a particle, v, in a viscous
liquid (the solvent) and the frictional force F = fiv
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that it experiences. The problem of viscous friction
belongs to the field of fluid mechanics, which shows
that f; is proportional to the solvent viscosity 7,, and
takes the general form that we indicate as

fr=m0/7i (size, shape) (12)

where f} (size, shape) is a quantity, with dimension of
length, that depends only on the size and shape or
conformation of the solute molecules, as described
below. For spherical particles of radius a, the
frictional coefficient is given by Stokes law, f; =
6mnga, such that f;(size, shape) = 6ma, where a is
the measure of size, and 67 is the numerical factor
for a spherical shape. For any general model of
arbitrary geometry, f; can be put in the form of a
hydrodynamic radius,

Ryt =} / (6m)=0.053; (13)

Likewise, for rotational diffusion around a given
axis, the rotational diffusion coefficient and the
corresponding relaxation time are proportional to
solvent viscosity, with a factor f7 (size, shape), which
in the case of spherical particles is 87a®, and can be
calculated for any arbitrary shape, and transformed
into the (rotational) hydrodynamic radius,

Rpg, = [f;/(3m)]"° =0.341(f7)"" 14)

For the solution viscosity, Einstein's theory tells us
that the intrinsic viscosity can be expressed as the
ratio of an effective, hydrodynamic volume V' which
depends on the size and shape of the partic:Tie, and
its mass, m = M/N,. The effective volume is the
particle volume V multiplied by a numerical factor, v,

[n] =V} (size, shape) /m=vVNy | M (15)

The dependence on particle size is through V,
while v depends only on the shape of the particle.
For spherical particles, the famous Einstein result is
v=>5/2. For an arbitrarily shaped rigid particle,
hydrodynamic theory provides, simply, a result for
v from which the hydrodynamic radius comes out
immediately as

1/3
Rpy= (%) =0.457(»V) 3 (16)

To summarize, the quantities f;, fr, and v, or
alternatively the radii Ry Ry, and Ry y, must be
considered as the primary results of the hydrody-
namic theory that is embodied in the various
computational tools intended to calculate hydrody-
namic properties from structural models; these are
the only quantities than can be obtained from the
model geometry. Of course, one would like to predict
values for the measurable properties, Dy, s, [1], D,'s,
and 7's, to compare them with experimental data.
The computer tools do this from the Ry's using egs.

(1), (9) and (11), but require additional experimental
data of the solute and solvent. Thus, temperature, T,
and the strongly temperature-dependent solvent
viscosity, 7,, are needed for D;, molecular weight
M is required for [n], and all these, along with solute
specific volume w, are needed to obtain the
sedimentation coefficient, s. The result would accu-
mulate not only the inaccuracies in the hydrody-
namic model and the hydrodynamic calculations, but
also the uncertainties in all these additional data.
As an example, consider the calculation of the
sedimentation coefficient according to

oo M1 —-wp) 1

6TNaNy  Ruy

(17)
from a computed hydrodynamic radius
Rpy = 3.58 nm. Suppose that the values of the
quantities involved in the first term of the r.h.s. of
eq. (17) were as follows: M = 66+1 (1.5%) kDa; v =
0.733+0.004 (1.5%) cm®/g, with p = 0.9983+0.0001
(0.1%) g/cm?®, so that 1—op=0.267+0.004
(1.6%); 1y = 1.002+0.012 (1.2%) Poise (values and
uncertainties in p and 7, corresponding to a
temperature of 20.0 + 0.05 °C). Then, eq. (17)
gives the following relationship between s in
Svedberg units and Rg: in nanometers: s (S) =
[15.52 +£0.65(4.3%)]/[Ru+ (nm)]. Thus, even if the
computed Ry ; value were absolutely exact, the
uncertainty in the predicted sedimentation coefficient
would be about 4%. Furthermore, the uncertainty in
the experimental value of sedimentation coefficient
determined by conventional protocols can be as
large as 4%, or at least about 1% with special
calibration procedures [32].

Accordingly, we suggest that the analysis of
hydrodynamic properties—for example, when com-
paring calculated and experimental values, or results
of calculation from different procedures—should be
made better in terms of the hydrodynamic radii.

Equivalent radii and ratios of radii

The concept of equivalent hydrodynamic radii can
be extended to practically any solution properties.
Ortega and Garcia de la Torre [33] proposed a
systematic form of expressing a set of solution
properties in the form of equivalent radii. Radius ax
is the value of the radius of a sphere that would
have the same value of property X. This is just a
definition of a different way to express the value of
property X, and does not mean at all that the real
particle would be spherical. The use of these
equivalent radii has important advantages: (i) they
all have the dimension of length, (ii) their values are
not identical, but not too different from each other,
and (iii) they jointly express the size and conforma-
tion of the solute in solution, independent of solvent
and temperature.
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For instance, the equivalent radius for translational
diffusion and sedimentation, a7 in this notation, is the
Stokes hydrodynamic radius, Rz, obtained from eq.
(1). Similarly, for the intrinsic viscosity, a; is Ry, and
for rotational dynamics, ar is Ry,. Yet other useful
equivalent radii are those corresponding to the
geometry of the particle; thus, a¢ is the radius of a
sphere having the same value of the radius of
gyration, R,, and ay is that which equalizes the
particle's volume, which may, in turn, be expressed
in terms of mass and specific volume. Table 1 lists
expressions for various equivalent radii.

The use of equivalent radii permits a simple and
systematic way to compare values of solution
properties. The various properties depend in differ-
ent ways on particle size (translational properties
depend on a linear size, while rotational ones and
intrinsic viscosity are related to volume). Further-
more, various physical-chemical properties of
solute and solvent enter in several ways. Thus, to
compare values for two sets of properties (e.g.,
computed vs. experimental s, D, [n], 7's, etc.), we
prefer to transform all of them into hydrodynamic
radii, ax, and then express the differences as the
sum of relative square deviations of the equivalent
radii:

o 1 1 (ax — axrer)?,
ety (e,

Nspecies species ax ref
Ao, =100V A?

The ref values could be those obtained from the
experimental data when comparing them with the
computed ones. As indicated by >~ in eq. (18),

species

this scheme can be applied to analyze data for a
collection of species, samples, fractions, etc. Note
that the value of the percent root mean square
deviation Ao, is a useful indicator of the agreement
between the two sets. We have written a computer
code, HYDFIT [34], to obtain the overall deviation of
Ao, for a set of experimental or reference data from
values of the properties calculated by other pro-
grams of the HYDRO suite. Examples are described
below.

The ax radii depend on both the size and
conformation of the particle. The dependence on
size can be eliminated by formulating ratios of

(18)

Table 1. Expressions for the equivalent radii.

equivalent radii for two properties, XY = ax/ay,
which depends only on conformation. As the
equivalent radii for different properties are just
slightly different, their ratios are of the order of
unity, and present a smooth, moderate depen-
dence on conformation. The ratio TV = ar/ay is
the same as the so-called frictional ratio classi-
cally used in macromolecular hydrodynamics,
f/fo. Other ratios are related to other classical
expressions involving two properties, such as the
Flory P and ® ratios combining R, and either f or
[n], respectively, or the Scheraga-Mandelkern f
coefficient, that combines M, f, and [n]. The
advantage of the ratios of radii is that they are
defined in a more systematic way, and take values
that are easily comparable and not far from unity.
Thus, for a fully flexible chain in a good solvent,
P=53 ¢®=19x10% and §=2.19x 10 [35],
while the corresponding ratios of radii are
GT =1.87, GI =1.69, IT = 1.11. Some examples
of values of the ratios of radii are listed in Table 2.
Note that the ratios are easily interconvertible,
since

ax CLX/ay XY

XZ=— —=XYYZ 19
ayz az/ay 7Y ( )

As the ratios of the radii depend only on
conformational aspects, their main utility lies in
obtaining conformational information. The combi-
nations most sensitive to conformation are those
involving one geometric property, either the
volume V or the radius of gyration. The hydro-
dynamic volume is only well defined for compact
particles, and is possibly influenced by hydration.
The combinations in the GX ratios are most
suitable for this purpose. On the other hand, we
note that the combinations of two properties
produce ratios that may be quite insensitive, and
very close to unity—the only exceptions are very
long rods and some stiff, not-too-long wormlike
macromolecules. This happens for the ratio IT =
ar/ar = Rh,n/Rh,t of the Stokes and Einstein
hydrodynamic radii, which—with the above
exceptions—is usually in the range 1.00—1.10.
However, this situation offers an interesting
property—the approximate estimation of molecular
weight from the measurements of viscosity
and diffusion or sedimentation. From equations
(1) and (9),

Radius From Definition

ar, Rig sand M, or D F/(6mn0) = kpT /(6110 D) = M) /(6115)
ar, Riy [n] and M ((3M(a)) /(107N )]/

ag Ry \/SﬁRg

ay V. orv, and M [3V/(4mN)"* = [(3M7)/(4mN 1))/
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Table 2. Ratios of radii for some typical conformations of rigid and flexible particles.

Conformation, axial ratio (p) GT Gl IT TV v
Ellipsoid, p = 2% 1.075 1.067 1.007 1.044 1.052
Cylinder, p = 3° 1.30 1.25 1.04 1.46 1.13
Cylinder, p = 18° 2.42 1.96 1.24 1.85 2.29
Flexible chain, no-EV ¢ 1.65 1.53 1.08 — —
Flexible chain, EV © 1.87 1.69 1.11 — —
Wormlike chain, L/ P = 15' 2.61 2.08 1.25 - -
Wormlike chain, L/ P = 1090° 1.96 1.74 1.12 — —

2 An appreciably prolate globular protein, p=2.
P A 20 base pair B-DNA with L=6.4 nm, d=2.1 nm, p=3.

¢ Tobacco mosaic virus, with L =318 nm, d=17 nm, p=19 (ref. [33] and references therein).

9 Very long random coil, no EV (excluded volume).

€ Very long random coil with EV, e.g., high-M single-stranded DNA.
¥ A 2311 basepair double-stranded DNA, with M;, = 1950 Da/nm, a =55 nm, d=2.1 nm (ref. [36]).
9 T2 bacteriophage double-stranded DNA, with M = 1.17 x 10% Da (ref. [37]).

D M 1/3
[T:% 37[7’] (20)
kT 107N 4
with the proper value for the constants, we have
M =247 x 10—27(IT)3< T )3 ! (21)
' NoDt) ]

If, in the absence of information on the particle's
conformation, one accepts a consensus value I'T =
1.05+0.05, with an uncertainty of just 5%, then eq.
(21) gives an estimate of the molecular weight with
an uncertainty of 15% from data for D; and [n]. A
similar approach can be carried out with viscosity
and sedimentation data.

Ellipsoids and cylinders

The first, classic model for anisometric rigid
particles [38,39], mainly used to describe globular
proteins, was the revolution ellipsoid, which has two
identical, b, and one distinct, a, semiaxes, with axial
ratio p = a/b, such that p > 1 for prolate and p < 1 for
oblate ellipsoids, respectively. Expressions for the
frictional coefficient and intrinsic viscosity derived by
Perrin [40,41] and Simha [42] can be found in the
literature [39,43—45]. The volume and radius of
gyration of revolution ellipsoids are V = 4wab®> and
Ry = [(a® 4+2b%) /5]. Harding et al. extended the
model to consider triaxial ellipsoids with three
unequal semiaxes [23,46,47].

For the representation of rigid, rodlike macromo-
lecules and nanoparticles whose cross-section is
uniform (e.g., oligonucleotides, nanotubes, tobacco
mosaic virus, etc.), the ellipsoid—being thicker at its
center than at the ends—is not appropriate, and a
cylindrical model is preferred. The hydrodynamic
properties of a cylindrical particle are determined by
its length, L, and diameter, d, with aspect ratio p =
L/d. The asymptotic expressions, for very large p
have been known for many years; however, long

rods are likely curved (wormlike, vide infra) rather
than straight, and the accurate evaluation of proper-
ties of moderately long cylinders was made possible
more recently, using shell-modeling [48], as
described below. The volume and radius of gyration
of a cylinder are V=nd’L/4 and R, = (L*/
12 + d2/8)'/2.

We have written a simple computer program,
EllipCylin, for the calculation of hydrodynamic
properties of revolution ellipsoids and cylinders.
Using just the value of p, the program can already
evaluate the ratios of radii. With the whole size
information, i.e., the values of a and b or L and d, it
calculates all the pertinent equivalent radii. As
indicated above, the appropriate hydrodynamic
calculation ends here, obtaining the equivalent radii
from the particle's geometry. If values of M, 7,, 7,
etc., are supplied, the program will report finally
values for the solution properties s, D, [7], etc.

Fig. 1 displays the values of several ratios of radii
of cylindrical particles, both rodlike p>1, and
disklike p<1. We note the different sensitivity of
the various ratios to the shape of the particle. For
rods, the combinations involving a geometric
property, present an appreciable dependence on
the aspect ratio. As the molecular volume V may be
somehow undefined, the most suitable combina-
tions are those involving the radius of gyration. With
the value of GT from measurements of R, and s or
Dy, or Gl from R, and [n], the dimensions of the
particle can be readily evaluated. However, as
anticipated above, the IT ratio which combines two
hydrodynamic properties remains very close to
unity for disks and moderately long rods, and so
the two hydrodynamic radii are very similar. A
similar plot for ellipsoids covering both oblate and
prolate (not shown) presents the same tendencies,
such that the procedure for estimating molecular
weight based on IT would apply for structures
representable as ellipsoids, disks, or moderately
long rods.
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Fig. 1. Ratios of radii GT,GI,IV,IT for cylinder of
varying aspect ratio p = L/d, from thin disks to moderately
long rods. Results from program E11ypCylin.

Hydrodynamic properties from rigid
molecular structures. Detailed models
and computational tools

Bead models

The simple ellipsoidal or cylindrical models can be
appropriately applied in various cases, as an
approximate representation of globular proteins, or
short rigid oligonucleotides. However, they are
certainly inadequate in many other circumstances
dealing with complex multisubunit proteins and
macromolecular complexes. In primitive theories of
macromolecular hydrodynamics, long macromole-
cular chains, either rigid rods of flexible coils, were
represented by models (like the “pearl necklace”)
whose frictional elements are identical spherical
beads [49,50], treated with hydrodynamic theories
that involve several approximations with the purpose
of arriving at analytical expressions. Bloomfield et al.
[51] had the remarkable insight of modeling particles
of complex, shapes as arrays of not necessarily
identical beads. With a moderate number N of beads
of arbitrary sizes, a sufficiently detailed model can be
constructed for any shape. In addition to this
procedure for bead modeling in a strict sense,
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Fig. 2. Two kinds of bead model. (A) Bead model in
strict sense, with a moderate number of beads of varying
size. (B) Shell model with a large number of minibeads
describing the patrticle's contour.

Bloomfield et al. [52] devised a variant in which the
contour of the particle is represented by a shell of
small, identical minibeads. The number of elements
in the shell model is greater (usually, a few
thousand), but allows for a more detailed description
as displayed in Fig. 2.

With the primitive computing resources available
fifty years ago, the hydrodynamic calculations for
bead models had to be carried out with various
physical and mathematical approximations. Years
later, the advent of more powerful computers made it
possible to incorporate in the computational scheme
a more rigorous hydrodynamic treatment, particu-
larly in regard to the concept of hydrodynamic
interaction (HI). The frictional force experienced by
one element in the model does depend linearly on
those acting on all the others, and the HI is mediated
by the so-called HI-tensors, which had been
formulated for polymer models with identical beads
[58,54]. Garcia de la Torre and Bloomfield [55—57]
extended the treatment for unequal beads and
developed a computational scheme for treating the
HI effect. The calculation of the three components of
the forces acting at the N elements in the model
requires the inversion of a matrix of dimension 3V x
3N. For an overview of theoretical aspects and
modeling strategies, see Ref. [31].

These advances were implemented in the com-
puter program HYDRO [58], and upgraded later on to
version HYDRO++ [59], intended for bead models in
the strict sense. The primary input is just a user-
supplied list of Cartesian coordinates and radii of the
N beads, from which the hydrodynamic radii are
obtained. Then, the hydrodynamic coefficients and
other solution properties are computed with the
additional data for the physical properties of solvent
and solute.
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Solution properties from molecular structure

The advent of detailed, atomic-level structures of
biomacromolecules experimentally determined by
crystallography or NMR, or constructed with bioinfor-
matic tools, motivated the development of the
computer program HYDROPRO, whose main input is
just a PDB-formatted file containing atomic coordi-
nates. From the PDB file, a primary hydrodynamic
model (PHM) is generated, replacing each nonhy-
drogen atom by a bead. A bead radius a = 2.9 A
gives the best fit of calculated properties to a large
set of experimental data of proteins and nucleic
acids. Because of the bead size, which is larger than
typical bond lengths, beads in the PHM overlap
appreciably. Then, in the first version of HYDROPRO
[6,60], the PHM is internally replaced by a shell
model constructed with a large number of identical
minibeads. This process is illustrated in Fig. 3.
Thanks to the optimization of the computational
methods for parallel computing in multicore compu-
ters, the CPU time is just a few seconds in a personal
computer.

The present version of HYDROPRO [61] also
implements additional, alternative computational
procedures. The problem about bead overlapping
has been circumvented using advances in the
hydrodynamics of multisphere systems [59,62,63].
Thus, calculations can be made directly from the
PHM.

5 e
e

Fig. 3. Schematic description of the construction of
hydrodynamic models for a protein. (A) Indicates an
atomic-level structure. (B) Beads representing atoms are
expanded to account for hydration. (C) The array of
overlapping beads is the primary hydrodynamic model,
PHM. The contour of this array is filled with closest-packed
minibeads (not shown). This “filled model” is used for
calculating scattering properties. (D) Removing all the
internal beads (those which are surrounded by the
maximum number of neighbors) the shell model is
obtained.

As the number of beads is the same as the number
of non-H atoms, for structures having up to a few
thousand atoms, this way of computing is faster than
shell modeling, which requires up to 2000 beads.
Conversely, for very large biomacromolecules (say,
over 200 kDa) the number of atomic beads would be
excessive, and then the option is a shell-model
calculation. Another possibility in the new version is
to make the calculation at the residue-level, with one
bead per amino acid residue in the PHM; the
optimum bead radius is then apgy = 6.1 A. This
allows us to obtain properties from low-resolution
structures, or to make calculations faster as the
number of elements in the model is much smaller.
We note, also, that the same approach used for
proteins can be applied to small oligonucleotides
[64].

The accuracy of HYDROPRO was tested [61] by
comparison of calculated equivalent radii with values
from diverse experimental properties (D, s, [], and
), for a large set of proteins, in terms of the overall
deviation Ao, formulated in eq. (18) using the
HYDFIT method. The result varies slightly among
the various working modes of HYDROPRO; the overall
deviation is within 4—6%.

Following the same aim as HYDROPRO, other
computer programs have been presented for the
calculation of hydrodynamic properties from atomic
coordinates: ZENO [65], SOMO [66], BEST [67], US—
SOMO [68], HullRad [69], GRPY [70], and Finitele-
ments [71]. They differ in the modeling strategy or
the hydrodynamic formalism for the computation.
Comparative descriptions [69,72—74] reveal that the
accuracy of these methods does not improve
appreciably on that of HYDROPRO. This was, in a
way to be expected, because, as described above,
the experimental equivalent radii carry an uncer-
tainty that comes from (i) the values of M, 74, ©
required in their evaluation from the properties (e.g.,
4% in Ry from s) and (ii) the experimental error of the
property itself (e.g., at least 1%, for s, which results in
an expected deviation of 5%). As is obvious, the
hydrodynamic model and theories are never perfect.

Based on the same approach as HYDROPRO, our
program HYDRONMR [75—77] extends the hydrody-
namic calculations to NMR relaxation times. In
addition to the single value of the correlation time,
T., Which describes overall rotation, as outlined
above, NMR measurements provide results for the
ratio of spin-spin, 7'1, and spin-lattice, 72, residue-
specific relaxation times. HYDRONMR predicts the
sequence of values of the T'1/T2 ratio; this series,
with one value for each amino acid residue, has
much more information content than a single-valued
property, and depends not only on the shape of the
protein molecule through its anisotropic rotatlonal
diffusion, but also on the orientation of the '>N—H
bonds within the molecule. An example of the results
is shown in Fig. 4.
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Fig. 4. NMR relaxation results (T1/T2 vs. residue number) for Borrelia burgdorferi Outer Surface Protein A (600 MHz,
318 K), compared with HYDRONMR calculation with a shell model calculation from atomic coordinates in 1osp.PDB [78].

Another source of biomolecular structures is
cryoelectron microscopy, which is particularly valu-
able for large macromolecular complexes that are
difficult to crystalize. The output of this technique is
an electron density 3D map, from which the contour
of the particle is determined by a cut-off value of the
density. The HYDRO suite includes the computer
program HYDROMIC [7] which—instead of atomic
coordinates, such as in HYDROPRO—takes the
density map and constructs a primary hydrodynamic
model for which the solution properties are calcu-
lated similarly.

Yet another useful tool to predict properties from
structural information is HYDROSUB [79] which is
intended for situations when a detailed structure is
not available. Such is the case for large, partially
flexible or labile multisubunit proteins and com-
plexes, such as antibodies [80]. With information on
the overall structure of the individual subunits or
domains, or their hydrodynamic properties, these
can be modeled as ellipsoids or cylinders to obtain
their a and b, or L and d dimensions. The geometry
of the global model for HYDROSUB is specified by a
set of values including coordinates of the subunit
centers, dimensions, and orientations specified by a
pair of polar angles. The output of HYDROSUB can be
transferred to HYDFIT to find the geometry which
best fits the solution properties [81].

Although mainly intended for the prediction of
hydrodynamic properties, it should be noted that the
programs in the HYDRO suite also calculate other
solution properties, such as the molecular covolume,
which determines the steric contribution to the
second virial coefficients. Particularly useful can be
the calculation of scattering-related properties; all
the programs report the radius of gyration, R,, the
angular dependence of scattering intensity and the
distribution of distances, p(r). The calculations are
based on particular methods adapted to bead

models [82]. Although tools are available for making
such calculations directly from atomic coordinates,
e.g., the program CRYSOL [83], the estimations
provided by our programs may be suitable and
sufficient for some purposes.

Flexible macromolecules

So far, we have considered the case of rigid
macromolecules, with a unique conformation, whose
shape can be modeled, with more or less detail, as a
rigid body for which a hydrodynamic model can be
constructed. Theoretical schemes of fluid mechanics
are implemented in computational tools that allow
the calculation of properties. In the case of flexible
particles, able to adopt a variety of conformations,
the conformational variability is important, and
additional aspects about conformational statistics
and internal motion have to be introduced in the
theory and computations. In the rest of this article,
we describe simple models for flexible macromole-
cules as well as methods and tools than can be
applied in general situations.

The random coil model

The skeleton of macromolecular chains is, in most
cases, flexible because of the allowed internal
rotation around single bonds. In the absence of
strong intramolecular interactions—such as those
determining the rigid, secondary structure of proteins
or nucleic acids—the conformation looks like a more
or less flexible filament. It should be kept in mind that
the conformation does not depend just on the local
rigidity of the macromolecule but also on the chain
length. For very long chains, segments which are far
apart in the chain contour behave quite indepen-
dently, and the molecule adopts the typical random
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coil conformation, with the only long-range interac-
tion being the excluded-volume (EV) effect. The
conformational statistics of this model [84,85] con-
clude that the mean (conformationally averaged)
radius of gyration R, of this model can be described
by a power-law dependence on the number of
segments, N, or molecular weight M (= NM; for a
chain of identical elements of molecular weight Mj).
In the absence of excluded volume effects, which is
the case for moderately long chains, or long chains
in good solvents, the mean square radius of gyration
R?J is proportional to N, with R, proportional to N1/2
or M'/2. A general expression, which accounts for
possible EV effect, is R, = K,M%, where a; =1/ 2if
EV is absent, and slightly larger, a;,=0.6 with EV
effects in good solvents. The quantity K, combines
properties depending only on the local molecular
structure of the chain.

Over the years, polymer physicists have devised a
number of theoretical treatments for the conforma-
tional statistics and hydrodynamic properties of
random coil macromolecules. A classical, concep-
tually clear, and still applicable treatment is the Flory
theory [86,87], based on the “equivalent sphere”
model. The random coil chain, with the solvent
molecules wrapped up by the coil, behaves hydro-
dynamically as a spherical particle, whose radius Ry
should be, simply, proportional to, and not too
different from, its radius of gyration, Ry = QR,,
where Q is some numerical factor to be determined.
From the general relationships between the Rpy's
and the hydrodynamic properties (egs. (1) and (9)),
their molecular weight dependence turns out to be
given by power laws, D = kpM®*>, s = k,M%, and
[n] = kyM®, with exponents ap = — ay, @y = 1—
oy, 0y = 30y — 1, which take the values —1/2, 1/2,
and 1/2, respectively, if EV effect is absent, or —0.6,
0.4, and 0.8 in presence of intense EV effect in good
solvents. The power-law exponents followed by
experimental data are a convenient test to check
the random coil behavior of a macromolecule.

The concepts of equivalent radii and ratios of radii
are inherent in Flory's theory. The proportionality
Ry = QR,, with Q being a universal constant,
applicable to any random coil polymer, implies that
the ratios of radii GT = a¢/ar and GI = a¢/a;y (recall
that aTERH’T, aIERH,n, and an\/E)/BRg = 1.29Rg)
should also be universal constants valid for random
coil macromolecules in the long-chain limit. For years
after Flory's work, the values of these ratios were
uncertain because of theoretical difficulties that
required various approximations. With the advent of
computer simulation methods [35], refined numerical
values were reported. The currently accepted values
are listed in Table 2.

Thus, the way to evaluate hydrodynamic proper-
ties of long random coil polymers begins with the
value of R,. Using the GT and Gl ratios, the
equivalent radii ar and a; are evaluated. Finally,

the values of properties, s, D and 1 can be calculated
from eqgs. (1) and (9). It should be kept in mind that
adherence to the random coil method requires that
the molecular chain be sufficiently flexible and long.
As described below, stiff chains can be represented
by the wormlike model and, for short chains, one
could use model-specific, numerical simulation
procedures, which will be presented below.

Wormlike chains

The wormlike chain model, as originally proposed
by Kratky and Porod [88], can be envisioned as a
continuously curved filament, whose direction of
curvature is random, and the degree of curvature
depends on the stiffness of the molecular chain that
is being represented. It is characterized by three
parameters: (i) the contour length, L, which is related
to the molecular weight as M = ML where the
mass per unit length, M7, is determined by the local
molecular structure; (ii) the thickness diameter d of
the filament; and (iii) a conformational parameter, the
persistence length, P, depending on the filament
stiffness, which gauges the chain curvature and
overall conformation, such that when L> P the
chain behaves as a fully flexible coil, and when L < P
it behaves as a rigid, straight rod.

The radius of gyration R, of an infinitely thin
(d < L) wormlike chain is given by an exact
expression derived by Benoit and Doty [89] (Paul
Doty was author of the first paper published in J. Mol.
Biol. [5], as indicated in the Introduction):

11 1 1 -x)

2
where X = L/P is the ratio of contour length to
persistence length, which is very large for coillike
conformations and very small for rodlike ones.

The first, classical but useful, treatment of hydro-
dynamic properties of wormlike treatments was
presented by Yamakawa and Fujii [90,91]. As it
happened with the random coil model, their results
were influenced by some theoretical approximations
regarding hydrodynamic interaction effects, and
restrictions about the hydrodynamic diameter, d.
These deficiencies were overcome recently by
means of computer simulation. Amords et al. [92]
have obtained numerical results for the equivalent
radii and hydrodynamic properties of wormlike
chains, which have been implemented in the
computer program WormCy1l. With data for the set
of parameters, L, (or M and M), d, and P, which fully
determine the conformation of the wormlike chain,
the program computes the equivalent radii, and
finally obtains the values of the solution properties
Ry, D, s, and [n]. Furthermore, the core of the
WormCyl code has been implemented in program
HYDFIT, which analyzes experimental values of the
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solut|on properties in terms of the global deviation,
4%, defined in eg. (18). Considering the deviation as
a functlon of the structural parameters M7y, d, and P,
their optimum values are obtained by minimization.

The wormlike model is useful to interpret solution
properties of a variety of biomacromolecules, such
as polysaccharides whose molecular chain is rather
stiff. But the paradigmatic application has been, for
many years now, for double-helical, double-stranded
DNA (dsDNA). Amords et al. [92] undertook the
analysis of solution properties for a very large set of
experimental data of R,, D, s, and [n] for a number of
samples in a very wide range of molecular weight:
from oligonucleotides with 8 base pairs, to bacter-
iophage with M over 10° Da and about 200 000 base
pairs. HYDFIT found an excellent fit of the whole
data set with P = 560 A, M; =195 Da/A, and
d =23 A, with a root mean square percent deviation
of 6%. The value of P agrees with previous estimates
from light- scattering data of R, analyzed in terms of
eq. (22). This gives confldence to the procedures for
modeling the wormlike chain. The values found for
the other two parameters are particularly relevant
with regard to the structure of dsDNA. Note that L =
ny,r, Where ny, is the number of base pairs and r is
the rise-per-base pair of the helix, and M = n, M,
where M, =660 Da is the average molecular welght
of a base pair, such that r = M,,/M;=3.3 A, which
is in very good agreement with the crystallographic
value for B-DNA. Also, the hydrodynamic diameter
agrees very well with the diameter of the bare double
helix (20 A) increased by a monolayer of hydration
water. The noteworthy conclusion is that such
precise structural information about the double
helix can be gathered simply from measurements
and computations of hydrodynamic properties.

General model and computer simulations. MON-
TEHYDRO and SIMUFLEX

Although the random coil and the wormlike model
are applicable in many relevant situations, they are
just models for more or less flexible linear-chain
macromolecules, and do not cover many other
relevant situations, which can include, for instance,
branched topologies, localized (not uniform) seg-
mental flexibility, etc. The treatment of such cases
requires a general physical model which, in addition
to beads (obviously required as the frictional
elements for hydrodynamics) would take in a variety
of intramolecular interactions that account for con-
nectivity (bonds), local angular interactions (bend-
ing, torsions), excluded volume effects, electrostatic
interactions, etc.

The conformational statistics of such a general
model can be simulated by standard Monte Carlo
procedures, in which a number of possible con-
formations are sequentially generated. The simula-
tion is based on the evaluation of the total potential

energy of the model, as the sum of the contributions
from all the intramolecular interactions at each
simulation step. Conformational properties, such as
the radius of gyration R, are evaluated as the mean
over the values for the individual conformations.
However, Monte Carlo is not a dynamic simulation;
the successive conformations do not correspond to
the real time evolution of the model. Nonetheless,
following a proposal by B. Zimm [93] in the so-called
rigid-body Monte Carlo method (RBMC), hydrody-
namic properties are also evaluated, as was R, as
conformational averages over the individual values
for each conformation, obtained as if they were rigid
particles [94,95]. Indeed, this was the procedure
used to obtain the abovementioned computational
results for random coils and wormlike chains. We
have developed a computer program, namely
MONTEHYDRO [96] which carries out all the tasks in
this scheme: Monte Carlo generation of conforma-
tions, hydrodynamic calculations, and conforma-
tional averaging.

A most detailed way to simulate the time evolution
of biomacromolecules is molecular dynamics (MD)
simulation with atomic-level models and explicit
solvent. Conformations of the macromolecular
solute can be extracted from the MD trajectory,
and in the spirit of the RBMC method, they can serve
as the starting data for hydrodynamic calculation.
Until recently, computing costs for running suffi-
ciently large trajectories (to reach the long times
proper of overall diffusion and conformational
changes) were prohibitive, but the ever increasing
performance of modern computers is making MD
increasingly tractable. References [97—99] are just
three nice examples of a combined approach in
which conformations generated by MD simulations
are the basis for building bead models whose
hydrodynamic properties are evaluated with
HYDROPRO.

Still, there are many situations in which MD is not
appropriate. For large macromolecules and macro-
molecular complexes, MD may be still prohibitive. In
addition, in the absence of detailed, atomic-level
information, one may use more coarse-grained
models in a continuous solvent.

A rigorous way to simulate the time evolution of a
macromolecular model is Brownian dynamics (BD)
simulation, in which the new conformation after a
time step is calculated from the element positions
before the step, adding (i) a deterministic displace-
ment caused by the total force acting on the element,
balanced by the frictional resistance, and (i) a
random displacement depending on the model's
diffusivity, which obeys the Einstein laws for Brow-
nian motion. A simple, popular implementation is the
Ermak-McCammon algorithm [100], and other com-
plex but more efficient algorithms are available [101].
In brief, BD simulation requires the evaluation of
internal forces (instead of potentials as in RBMC
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simulation) and hydrodynamic properties, and the
outcome of the simulation is a trajectory of the
model, i.e., a succession of conformations corre-
sponding to real time-steps. The determination of
solution properties requires a subsequent process to
extract them from the trajectory. For example, the
diffusion coefficient, D;, is evaluated from the
trajectory followed by the center of mass, according
to the Einstein equation,

([renr(to +t) — renr(to)]*), = 6Dyt (23)

where roy(to) and rop(to +t) are, respectively, the
position vectors of the center of mass at some time
to, and after a time t has elapsed, and (...);, means
an average over the choice of the initial time ¢, along
the simulated trajectory.

We have developed other computer software,
SIMUFLEX [102] for BD simulations of flexible
macromolecular models, which comprises two
separate tools. First, SIMUFLEX is in charge of
simulating the Brownian trajectory, using the same
force field as MONTEHYDRO, with the possibility of
including also the action of external agents, such as
electric fields, flows, obstacles, etc., and so it is
useful to predict (corresponding) properties, and for
the simulation of single-molecule experiments. For
instance, it has been possible to simulate the famous
experiments of stretching DNA in elongational flows
[103]. The other tool, ANAFLEX contains the proce-
dures, similar to that for D in eq. (23), which analyzes
the BD trajectory to obtain hydrodynamic properties
and describe various aspects of the dynamic
behavior of the macromolecule in solution.

Disordered proteins

Generalities

As is now widely recognized, intrinsically disor-
dered (ID) proteins, which in their native state
present a more or less unfolded conformation, play
essential roles in a number of physiological aspects.
These roles are related to their peculiar conforma-
tional and dynamic behavior, and therefore the
possibility of analyzing or predicting their conforma-
tion and solution properties is evident. Indeed, clear
evidence that the native state of these properties is
somehow disordered comes from the analysis of
solution properties—particularly hydrodynamic
radii—in terms of classical macromolecular models,
as shown by Uversky [104]. A detailed prediction of
functional aspects by simulation would obviously
require a detailed, complex model and costly
computation, but it seems that simple, coarse-
grained models could be sufficient for the overall
aspects [105] and even functional aspects [106]. As

ID proteins are more or less flexible, the simulation
methodologies implemented in our computer pro-
gram MONTEHYDRO and SIMUFLEX are readily
applicable to their simulation. Our group has
proposed a minimal, coarse-grained model which
satisfactorily predicts their solution properties, not
only the single-valued coefficients, but also more
involved and informative data, such as SAXS or
NMR relaxation. In this section we summarize some
modeling and computing aspects of our work; more
details can be found in Ref. [107].

For a minimalistic description of the polypeptide
chain, we use a model that contains identical beads,
one per each amino acid residue. Beads are joined
by bonds corresponding to the C*—C* virtual bonds,
whose equilibrium length is b, = 3.8 A. The force
field, inspired by the so-called Go model success-
fully used in protein folding [108,109], includes only
potentials for bonds, angles and pairwise non-
bonded interaction.

N-2
V= Z V}(md + z; Vangle(ai)
1=
+ Z Vin(rij) (24)

0> i+2

A Hookean potential, Vionq(bi) = (1/2)K;(b; — b )2,
quadratic in the instantaneous bond Iength b, is
used for bonds. For bond angles in the virtual chain,
another quadratic potential V() (1/
2)ka(0; — o, )? represents an approximately Gaus-
sian distribution of bond angles «; in the coarse-
grained model chain, centered at «, and with a
width determined by K,. A torsional potential for
dihedral angles is usually included in this force field,
but preliminary calculations showed that it had no
important effect on the final results. Values for the
parameters in all these potential are extracted from
statistics of a data base of protein structures [110].
The last term in eq. (24) is a function of the distance
r;; between the i and j residues, which differs
depending on the region where the residues are
placed, as described below.

Unfolded proteins

The simulation methods can be readily applied to
the fully unfolded conformation of denatured pro-
teins, for which there are abundant solution property
data. A minimal model for fully unfolded proteins
would include the potentials for bonds and bond
angles, and an excluded-volume repulsion for non-
bonded residues. The latter could be simply a hard-
spheres potential, V;,(ri;) =0 if rjj > dyg, where
dys is the hard-sphere diameter, and V(r; ;) =
Kpg if rj<dgg, where Kgg is an arbitrarily large
value. This potential is useful for Monte Carlo
simulations but, because of its discontinuity, it
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cannot be used in Brownian dynamics simulation,
where we can use another simple continuous
potential which, in the Go model, is

Vin(rij) =€ (0/7"@]')12 (25)

with ¢ =4 A in the original Go model. The main
excluded-volume parameter can be determined by
comparison of computed and experimental results.
A compilation of data for the radius of gyration of
denatured proteins has been reported by Kohn et al.
[111]. The simulation of R, can be made efficiently
with MONTEHYDRO, with the results shown in Fig. 5.
The optimum value of the hard-spheres diameter,
which provides a very good fit of the experimental
R,, was dyg = 4.5 A. Also, hydrodynamic properties
of denatured proteins have been profusely studied,
with several compilations of data available in the
literature [104,112,113]. The prediction of hydrody-
namic properties requires, in addition to the force-
field parameters, a value for the hydrodynamic
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Fig. 5. (A): Radius of gyration of denatured and

intrinsically disordered proteins. Denaturation by urea
and guanidinium chloride (GuCl). Calculations with the
coarse-grained force-field and the adjusted value of the
hard-spheres diameter. (B): Hydrodynamic radius from
AUC, DLS, and size-exclusion chromatography. Calcula-
tions as for R, with the same bead hydrodynamic radius as
for globular proteins.

radius of the beads representing the amino acid
residues, which has the same meaning as the bead
radius in the primary hydrodynamic model of
globular proteins at the residue level used in
HYDROPRO [61]. Then, we take the same apgy =
6.1 A value for unfolded, flexible protein chains.
Results for predictions of hydrodynamic properties
carried out with MONTEHYDRO or SIMUFLEX showed
a satisfactory agreement with experimental data for
the translational (Stokes) radius in Fig. 5.

Along with the data for denatured proteins, Fig. 5
also includes data points for some ID proteins which
are extensively unfolded, [114]. Although there
should be a variety of specific intramolecular
interactions in ID proteins that are not present in
denatured proteins, it is noticeable that they seem to
follow the same tendency.

Unfolded proteins are assumed to behave as
random coils. When experimental solution properties
are analyzed in terms of their power-law on chain
length, as described in a previous section, values of
the exponents typical of the random coil model with
excluded-volume effects are found: oy = 0.59 [111],
ap = — 0.52, oy =0.48, and ay = 0.66 [113]. How-
ever, this concordance does not discard such
intramolecular interaction [115]. Certainly, the mini-
malistic model does not include features that may be
present in either denatured or intrinsically disordered
proteins, but looking at the overall good agreement
with experimental measurements we consider that it
can be reliably used for modeling flexible, unfolded
domains in partially disordered proteins, as
described in next section.

Partially disordered proteins

Our work on ID proteins [92] focused on a
particular kind of ID protein possessing several
distinct regions, with some being globular, quasir-
igid domains, and others acting as flexible linkers
or tails. The function and the solution properties
and dynamic behavior of these proteins must be
related to the presence of domains of both types,
with different local structure and dynamics. There-
fore, the development of a methodology for their
simulation with mesoscale, coarse-grained models
using MONTEHYDRO and SIMUFLEX was
challenging.

Although rigid bead models are adequate for
globular proteins, the coexistence of globular and
flexible domains requires treating the globules as
quasi-rigid parts of the polypeptide chain of marginal
flexibility. To maintain the order in the globular
domain, an intramolecular potential based on the
concept of essential, native contacts can be used.
Native contacts that are essential for the three-
dimensional tertiary structure of a protein are
determined by an algorithm implemented in the
Contacts of Structural Units (CSU) software [116].
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From PDB files for the globular domains in the
partially disordered proteins, program CSU identifies
the (i,j) pairs involved in native contacts, and
assigns them a short-ranged attractive potential,
given by a 10—12 Lennard-Jones equation, as
suggested by other authors [117,118]:

T 12 T 10
v =a5(7) -o(%) (26)
TZ‘]‘ TZ‘]‘

The potentials for bonds, angles, and all the pairs
except those in native contacts are the same as for
unfolded chains. All these potentials are implemen-
ted in MONTEHYDRO and SIMUFLEX. Values of the
parameters can be found in Ref. [92], where this
methodology is applied to a variety of partially
disordered proteins. A summary of the results is
presented in Table 3. Considering the complexity of
the diverse aspects involved in the computation
(modeling, simulation, conformational statistics,
hydrodynamics, etc.), the performance of this
scheme, based on our modeling and simulation
tools, is certainly satisfactory. In addition to single-
valued properties, other more detailed results have
been obtained for the angular dependence of
scattering intensities, distribution of distances, resi-
due-specific and global correlation time, etc.

Our work on unfolded and partially disordered
proteins was based on rather simplified models of
the polypeptide chain, with identical elements,
neglecting charge effects, etc. Nonetheless, MON-
TEHYDRO and SIMUFLEX allow—even within a
coarse-grained description—to include in the model
a variety of intramolecular interactions, such as
competing repulsive/attractive van der Waals forces
and screened electrostatic interactions, which have
successfully used to model the coil-globule collapse
transition [126] and polyelectrolyte effects [127] in
polymer models. Thus, these tools could be helpful
to simulate relevant intramolecular effects in dis-
ordered proteins such as formation of blobs
[128,129], temporary intrachain links [115] or col-

Table 3. Results for some partially disordered proteins.

lapsed regions, in which hydrodynamic interactions
may play an important role.

Concluding remarks and perspectives

Hydrodynamic properties were classically, and are
again today, extremely useful for the determination
of the structure of macromolecules in solution. The
availability of readily available instrumentation—like
DLS for measuring the diffusion coefficient, and
simple viscometers for intrinsic viscosity—and com-
putational tools to predict properties from structure,
should encourage their use to confirm structures
obtained by techniques like crystallography or
microscopy, where the biomacromolecule in not in
its natural environment, the aqueous solution. In
cases when such techniques are not applicable,
data for solution properties—preferably combining
two of them—suffice to obtain information on the
overall structure, or to fit parameters of a suitable
model.

Hydrodynamic calculation can start directly from
atomic coordinates, but this is by no means
necessary. More coarse-grained hydrodynamic
models with, say, one element per amino acid or
nucleotide residue may suffice. Instead of atomistic
molecular dynamics simulation, more efficient Monte
Carlo or Brownian dynamics simulation can yield
sufficient structural and dynamic knowledge to
analyze properties and predict physiologically rele-
vant behavior in solution. Available tools for model-
ing and simulation at this level, as described in this
article, have found promising applications for intrin-
sically disordered proteins, whose properties and
function are determined by their heterogeneous
structure. These tools predict their dilute solution
properties with remarkable accuracy, and may,
hopefully, be applied to predict also their behavior
(dynamics and interactions) in more complex,
physiologically relevant systems.

Protein Topology # Properties ° Reference
Experimental Calculated

pX, 95 = 42(L)+53(G) Rg =29.7 or 25 Rg = 26.7 [119,120]

Sendai virus

ZipA 306 = 163(L)+143(G) s=20 s=21 [121]

S4 336 = 193(9)+50(L)+193(G) Rg = 39.8 Rg =38.3 [122]

MMP-12 365 = 155(G)+30(L)+180(G) Rg =25 Rg = 30.3 [123]

BTK 659 = 169(G) + 51(L) + 55(G) Rg = 50 Rg =49 [124]
+8(L) + 96(G) + 22(L) s=33 s =236 [125]

a Topology total number of amino acid residues, indicating type globular (G) or flexible linker or tail (L).

P Properties: sedimentation coefficient in S, radius of gyration in A.
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Computer programs

The computer programs mentioned in this article
are of public domain and can be downloaded free
from our website, http://leonardo.inf.um.es/
macromol.
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