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Abstract

We have developed a computational scheme for the calculation of the hydrody-

namic properties of nanoplatelets – or flat sheets – of arbitrary shape based on the

bead-modelling methodology. The procedure has been implemented in computer

codes that interface with the public-domain HYDRO++ program. When the friction

coefficient calculated for the model is normalised to the value of an infinitely thin

disk having the same surface area, its dependence on thickness normalised to a

characteristic length of the platelet surface is very weak and depends just on the

shape of the particle and not on its size. This allows for a simplified, general

treatment of the dependence on thickness. In addition to examples with various

peculiar shapes, we have calculated the friction coefficient of elliptical particles as

well as some regular polygons. The results are presented in the form of simple

equations relating the friction coefficient to the particle dimensions. The results

for the friction coefficient are applied to the formulation of the experimentally

measurable diffusion and sedimentation coefficients. The diffusion coefficient has

a very weak dependence on thickness so that it can be employed to analyse the

geometry of the surface even if the thickness is not precisely determined. How-

ever, the sedimentation coefficient depends appreciably on thickness and can be

used for its precise determination. A joint analysis of diffusion and sedimentation

can provide a complete determination of the nanoplatelet shape, dimensions and

mass.
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1 Introduction

Since the seminal work of A. Einstein, it is well known that the size of particles can be

estimated from measurements of simple properties in dilute solution or suspension, like

diffusion coefficients and viscosities [1]. Shortly after his work, T. Svedberg invented

the technique of analytical ultracentrifugation (AUC), having as a main purpose the

determination of size distribution of colloidal gold particles [2]. When applied to proteins

(for instance, serum albumin [3]), it was found that they sedimented not as polydisperse

aggregates of amino acids, but as single, well defined species. This finding was essential

to establish the macromolecular concept.

Since those early works, the properties of biomacromolecules and synthetic polymers

in solution are regarded as essential sources of information on their conformation (size,

shape, flexibility, etc) [4–6]. The relationship between such structural aspects and the

measured properties for flexible or rigid, rod-like chains was initially done in terms of

bead models, consisting of strings of frictional elements – the beads – connected by

spring-like or fixed-length connectors [7, 8]. The solution dynamics of the bead models

is described in terms of the hydrodynamic interaction (HI) effect.

In the realm of biological macromolecules, the very specific structures adopted by

proteins, nucleic acids and macromolecular complexes presented the challenge of mod-

elling in detail their peculiar shapes. For many years, rigid biomacromolecules, like

globular proteins, were simply modelled as revolution ellipsoids [9]. The possibility of

using bead models for representing such peculiar shapes was put forward by Bloom-

field and coworkers [10, 11]. Their rationale was that a rigid particle of arbitrary shape

could be modelled as a cluster of identical or unequal spherical beads, with HI effects

treated in a manner inspired in the above mentioned treatments for polymer chains.

The complexity of such treatment for arbitrarily shaped bead models would not allow

an analytical treatment, but computer procedures could be designed for that purpose.

Nowadays, the bead modelling methodology is well developed and implemented in

computer programs that allow the calculation of solution properties like the hydrody-

namic coefficients of diffusion and sedimentation, the intrinsic viscosity, and even more

complex features, like nuclear magnetic resonance relaxation. Thus, the HYDRO++ pro-

gram is devised for user-constructed bead models of arbitrary shape [12], and HYDROSUB

is for beads-shell models of cylindrical and ellipsoidal subunits [13]. Particularly use-

ful are HYDROPRO and HYDRONMR that build the model directly from a list of atomic

coordinates contained in a PDB file [14–16].

Hydrodynamic properties of nanoparticles in suspension, like diffusion coefficients

which are readily determined from dynamic light scattering (DLS) [17–20] and sedimen-

tation coefficients obtained by analytical ultracentrifugation (AUC) [21–24], are partic-

ularly useful for the determination of the size and shape of the nanoparticles. Further-

more, various modern optical and electrochemical techniques, like optical trapping [25]
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and nanoimpact chronoamperometry [26], also provide values of diffusion coefficients.

Many nanoparticles adopt spherical shapes whose hydrodynamic coefficients are triv-

ially evaluated from the classical Einstein equation. But there are also quite interesting

non-spherical nanoparticles and some workers have already used bead-model based pro-

cedures to relate their shapes to measured hydrodynamic properties. Such is the case

for short nanorods whose dimensions have been determined from translational and rota-

tional diffusion coefficients obtained from dynamic light scattering (DLS), which were in-

terpreted [27,28] using the numerical data for bead-shell models of cylinders [29]. Other

illustrative examples are the analysis of DLS data of oligomeric clusters of gold nanopar-

ticles arranged in well defined geometric (triangular, tetrahedral, etc) shapes [30–32],

and the modelling of hybrid gold-DNA nanoparticles, in which a few gold nanospheres

are joined by rigid DNA oligonucleotide linkers, that were characterized by analytical

ultracentrifugation [33].

Bead-modelling tools have been conceived having in mind three-dimensional shapes.

Corpuscular particles are somehow predominant in the fields of structural biology and

colloid science. However, two-dimensional objects, i.e. flat, thin platelets or sheets

can also be found in both fields. Some natural clays produce colloidal suspensions of

platelets [34]. Platelets can be readily obtained from some metal hydroxides, with gibb-

site (aluminum hydroxide) being a typical example. Graphite can also be prepared as

flat sheets [35]. Similar particles can be envisioned and obtained with new nanotechnolo-

gies; for instance, engineered flat particles (nanoplatelets) can be made with biological

materials, with the DNA origami being a relevant example [36], and even one-atom-thin

sheets of graphene are available [37, 38]. Recent preparative methods with a variety

of materials (gold or silver, oxides and sulphides, peptides, etc) allow the production

of nanoplatelets of precisely controlled shapes like equilateral, triangular and hexagonal

shapes [39–43]. In other instances, the platelets present arbitrary, irregular shapes which

can be precisely characterized by electron microscopy.

For flat, thin nanoplatelet particles, the only theoretical results available, which

have been employed by some authors to analyse the hydrodynamic properties, have

been the infinitely thin disk [26, 44–47], which overlooks effects arising by the small

thickness, and oblate revolution ellipsoids [48–51], which present the unrealistic feature

of having a variable thickness which is maximum at its center and zero at the border.

And, evidently, the circular surface is not appropriate for structures either regular, like

triangular ones, or those with complex or irregular shapes.

The purpose of this work has been the development of a theoretical framework and

computational procedures to be used for the prediction of properties of thin nanoplatelets

of arbitrary shape. The scheme is an adaptation of the bead-modelling methodology to

flat, thin structures. The procedure yields results for the friction coefficient from which

the experimentally observable diffusion and sedimentation coefficients can be obtained.
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2 Background and scope

The procedures presented in this paper are based in the bead-modelling methodology

which is widely employed for the calculation of solution properties of colloidal particles

and macromolecules with a rigid shape which is represented by a rigid array of N

spherical elements with radii σi, with i = 1, ...N , that reproduces the size and shape

of the particle. The theory and computer implementation of bead-modelling has been

described in previous publications [12, 52]. Nonetheless, we present here a summary of

the concepts and theory on which the program used in the present procedure, HYDRO++,

is based.

The main starting data is just a list of the coordinates of the beads, ri = (xi, yi, zi),

and their radii σi. The hydrodynamic properties are calculated from the frictional forces

experienced by the beads, taking into account the hydrodynamic interaction (HI) that

the motion of one bead affects the force experienced by the other ones. The HI effect

is described by the HI interaction tensor, a symmetric 3 × 3 matrix for each pair of

elements (i, j) given by

Tij = (8πη0Rij)
−1
(

I +
RijRij

R2
ij

+
σ2
i + σ2

j

R2
ij

(
1

3
I− RijRij

R2
ij

))
, (1)

where Rij = rj − ri is the distance vector between that pair of elements and η0 is the

solvent viscosity. Then, a 3N × 3N “diffusion supermatrix” B is constructed with the

3× 3 blocks Bij = Tij if i 6= j, and Bii = (1/ζi)I, where ζi = 6πη0σi is the Stokes’ law

friction coefficient of i-th bead and I is the 3 × 3 identity matrix. Eq. (1) was derived

for non-overlapping beads of different sizes [11]. In our models, beads are identical and

tangent but not overlapping with radii σ, and Eq. (1) reduces to the Rotne-Prager-

Yamakawa tensor [53,54], which is profusely employed in polymer hydrodynamics.

Then, a 3N × 3N “friction supermatrix” is calculated as the inverse of the diffusion

supermatrix, C = B−1, and from C, three 3× 3 friction tensors, Ξtt, Ξrr, Ξtr, correspon-

ding to translation, rotation and translation-rotation coupling, can be calculated [52].

These tensors are the blocks of the 6×6 friction tensor of the particle, which is inverted

to obtain the 6 × 6 diffusion tensor of the particle, according to a generalized Einstein

relationship:

D =

(
Dtt DT

tr

Dtr Drr

)
= kBT

(
Ξtt ΞT

tr

Ξtr Ξrr

)−1
. (2)

The superscript T indicates transposition. If the origin of the chosen system of co-

ordinates is not the particle’s center (which will be the case for irregular particles),

a transformation of the Dtt tensor is required to be referred to the so-called center

of diffusion [52]. Finally, from the Dtt and Drr, the hydrodynamic coefficients which

characterize the translational and rotational dynamics of the rigid particle can be eval-
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uated. Thus, the overall translational diffusion coefficient, measurable from dynamic

light scattering and other techniques, is obtained as

D = (1/3)Tr(Dtt) = (Dxx
tt +Dyy

tt +Dzz
tt )/3, (3)

and the friction coefficient is simply evaluated from the conventional Einstein relation-

ship, f = kBt/D, where kB is the Boltzmann constant and T is the absolute temperature.

The treatment of rotational diffusion is more complex. The properties related to

rotation (e.g. depolarized dynamic light scattering, electric birefringence decay, etc)

depend on up to five relaxation times, τk, k = 1, ...5, which are derived from the eigen-

values of Drr, and the dependencies are specific of each property. HYDRO++ does report

the values calculated for the full translational/rotational diffusion tensor, so that the

numerical values of these quantities are available in any calculation. In the present

paper, we have concentrated on properties related to translational diffusion, which are

more experimentally accessible, with the main purpose of providing a general frame-

work for hydrodynamic modelling of nanoplatelets and giving a viewpoint on how their

hydrodynamic behavior depends on their structure(shape, size and thickness).

The bead-model methodology in HYDRO++ calculates properties in the limit of infinite

dilute solution. This is the usual condition for the experimental characterization of

basic, overall features (mass, size, shape or conformation, etc) of macromolecules or

nanoparticles. The concentration dependence of the solution or dispersion properties is,

of course, of practical interest, but its interpretation requires a formalism quite different

and more complex than the present one.

3 Method

Like all the methodologies in the HYDRO suite, the procedure proposed here for nanoplatelets

is based on bead modelling, and is particularly inspired by the successful representation

of the one-dimensional topology of filamentous particles as strings of touching beads.

From the pioneering bead-modelling study of Kirkwood and coworkers [55, 56], it is

known that a string of beads provides a proper hydrodynamic model of a cylindrical

rod. Using a simplified treatment of hydrodynamic interactions (HI), these authors

demonstrated that the bead model reproduces the results of the rod of length L and

diameter d in the limit of very large aspect ratio p = L/d. A more detailed description

of HI extended the agreement to finite p [57], and recently we have shown that, when

evaluated by means of HYDRO++, a linear string of N touching beads of diameter b with

length L = Nb reproduces the results of cylindrical rods of length L if the bead diame-

ter is chosen so that the volumes of the string of beads and that of the cylinder match,

which holds when b =
√

3/2d = 1.225d [58].

This situation for one-dimensional particles provides the rationale for the present pro-
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cedure for bead-modelling planar, thin platelet nanoparticles, i.e. nanoplatelets. They

will be represented as planar arrays of touching beads with spacing equal to their di-

ameter, b, and radius σ = b/2, arranged, for simplicity, in an hexagonal, closest-packing

lattice. The contour of the nanoplatelet is superimposed onto that planar network of

beads with spacing b. Some criterion is devised to specify whether or not a node in

the network belongs to the particle, i.e. lies within the contour. The bead diameter, b,

should be related to the thickness, h, in such a way that the volume of the bead model

would equalize that of the platelet given by Ah, where A is the platelet surface area.

The implementation of our procedure requires an algorithm to place the beads. First,

maximum and minimum values are specified for the coordinates of the points belonging

to the nanoplatelet surface so that the contour is fully included within a rectangle

with lower-left and upper-right corners (xmin, ymin) and (xmax, ymax), respectively. The

rectangle is filled with a network of nodes. Finally, some criterion has to be specified to

determine whether a node belongs to the nanoplatelet.

We have written two Fortran source codes that produce input files for the general

program HYDRO++ [12], following the scheme of the MultiHYDRO code [59]. One of them,

HYDRO2D-Shape, requires a section in the code in which the user has to program the

condition fulfilled only by points within the nanoplatelet. As we shall describe later

on, this can be done in a fairly simple way for any arbitrary shape which can be mod-

elled as simple geometrical shapes like ellipses or polygons. The other code, named

HYDRO2D-Circles, works with a specification of the nanoplatelet size and shape in

terms of a set of touching or overlapping circles that closely reproduces the geometry

of the nanoplatelet (indeed, it is a 2D analogue of the bead modelling with spherical

elements in 3D).

For a surface area A, the number of nodes in an hexagonal lattice of spacing b,

and therefore the number of touching beads, will be N = (2/
√

3)A/b2 = 1.155A/b2.

The volume equalization criterion requires that the volume of the N tangent beads of

diameter b in the model is the same as that of the nanoplatelet, Ah. This condition

leads to h = 0.605b, b = 1.652h and N = 0.423A/h2. The area A of the platelet

surface is employed in the treatment of results, although it is not initially required for

the hydrodynamic calculations. It can be trivially computed geometrically for simple

models. For complex shapes, we can use the value calculated by the computer program

for the number of beads, A = (
√

3/2)Nb2.

Once the coordinates of the bead model of the nanoplatelet are determined, the

calculation is done with the general bead-model program HYDRO++. It should be kept

in mind that the HYDRO++ calculation requires a computing time proportional to N3.

Nowadays, in an ordinary personal computer, computing time for N = 3000 is less than

10 seconds. Thus, calculations for nanoplatelets with a value of A/h2 requiring up to

nearly 3000 elements can be readily made. Very thin nanoplatelets, like monoatomic

graphene platelets with even much larger A/h2 would pose a computational problem
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but, as it will be shown below, such a problem can be conveniently solved.

The HYDRO++ calculation reports the diffusion and sedimentation coefficients, D and

s, which are in turn obtained from the translational friction coefficient, f [4–6]. As

described below, the evaluation of these coefficients requires values for the temperature

and several quantities pertaining to the solvent and solute. However, the hydrodynamic

behaviour is primarily determined by the size and shape of the particle whose influence

can be jointly expressed by the equivalent radius:

aT =
f

6πη0
, (4)

where η0 is the solvent viscosity. The notation aT follows the convention of denoting as

aX the radius of a sphere having a given value for property X [60], which in the present

case is the translational friction coefficient. aT is also commonly named Stokes radius

(or simply hydrodynamics radius, Rh) as it is the value of a sphere which, according

to the Stokes equation, would have the same frictional coefficient as the particle under

consideration. We remark that aT depends only on the geometry (size and shape) of

the particle, and HYDRO++ calculates this radius from just a list of Cartesian coordinates

and radii of the beads in the bead model [29].

4 Results

4.1 Disks

The simplest case is that of a circular disk of radius R. Apart from its own interest as a

model for some planar particles, it provides a most convenient check for our procedures

because exact theoretical, analytical results, rigorously derived from fluid dynamics, are

available for an infinitely thin disk [61–64].

For highly symmetric particles, like the disk and regular polygons, if the Cartesian

system is centered at the particle’s center, with the z axis perpendicular to the parti-

cles’s plane, the translation-rotation tensor vanishes, Dtr = 0 and Ξtr = 0 in Eq. (2),

and therefore the tt tensors follow an Einstein relationship Ξtt = (kBT )−1Dtt. Further-

more, the friction and diffusion tensors are diagonal, with the in-plane x and y axes,

corresponding to motion perpendicular to the z axis, being identical and denoted by

Ξxx
tt = Ξyy

tt ≡ Ξ⊥, and the z component, corresponding to motion along the z axis, indi-

cated as Ξzz
tt ≡ Ξ‖. Thanks to this simplifications, the translational friction coefficient

is given by:

1

f
=

1

3

(
2

Ξ⊥
+

1

Ξ‖

)
. (5)

The results from exact fluid-mechanic theory are Ξ⊥ = (32/3)η0R and Ξ‖ = 16η0R.
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Figure 1: Plot of aT vs. bead size b (equivalent thickness h = 0.605b), normalised to R.

Results for (1) a disk (p = 1) of radius R, indicating a ±5% error bar over the exact

result, and (2) an elliptical particle with large semiaxis S = 4R (p = S/R = 4).

Placing these values in Eq. (5), we find

f = 12η0R, (6)

and then, from Eq. (4), the hydrodynamic radius of an infinitely thin disk of radius R

and area A = πR2 is obtained:

aT ;0 =
2R

π
= 0.6366R (infinitely thin disk), (7)

where the additional subscript 0 indicates zero thickness.

We have carried out calculations for arrays of beads representing a disk with R = 1

in arbitrary units, and values of the lattice spacing (or bead diameter) b varying from

0.12 down to 0.04. The results show a linear dependence with the bead size or lattice

spacing, b (platelet thickness is h = 0.605b, as indicated above), as displayed in Fig. 1.

The extrapolation to zero thickness yields the result aT ;0 = 0.641R, which is in excellent

agreement (difference of less than 1%) with the exact theoretical value.

4.2 General treatment for arbitrarily shaped platelets

In order to express results in a systematic manner, we can first of all define a geometric

radius equivalent to the area, A, i.e. the radius of a circle having the same area as the

nanoplatelet, given by

aA = (A/π)1/2 = 0.564A1/2. (8)
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This value serves as a geometric reference to evaluate the thickness of the nanoplatelet,

which will be expressed by the dimensionless ratio, h∗:

h∗ = h/aA = 1.772hA−1/2. (9)

Note that the reciprocal 1/h∗ can be regarded as a general aspect ratio for any particle

shape. For the treatment of hydrodynamic quantities, it can be useful to define other

dimensionless ratios, like that of the friction coefficient of a nanoplatelet of arbitrary

shape and thickness, f , referred to the value of the friction coefficient for a disk of the

same area as the nanoplatelet and zero thickness given by

fA;0 = 12η0aA, (10)

so that

f/fA;0 = (π/2)(aT/aA) (11)

or

f/fA;0 = (π3/2/2)(aT/A
1/2) = 2.785aTA

−1/2. (12)

The ratio f/fA;0 will depend on the shape of the nanoplatelet and the dimensionless

thickness h∗. The linear relationship that we have found for the thickness dependence

in the results for disks suggests a general linear relationship:

f/fA;0 = C +Qh∗, (13)

with

C ≡ (f/fA;0)(h
∗ = 0), (14)

where the dimensionless constants C and Q will depend somehow on the shape of the

nanoplatelet but not on its absolute size.

4.3 Results for arbitrarily shaped structures

With the procedure implemented in HYDRO2D-Circles and HYDRO2D-Shape, we have

calculated f for a variety of structures. In addition to polygonal and elliptical particles,

whose results are analysed in detail below, we have considered other constructs.

Using HYDRO2D-Circles we have modelled a “lollipop” shaped particle, with a disk

attached to a stem, the latter being modelled as a string of tangent disks. Another

“strange” structure is an arbitrary superposition of circles. Also, as another illustration

of the code HYDRO2D-Shape, we have programmed a shape resulting of the intersection

of two rectangles that resembles a “cross”.

These structures are depicted in Fig. 2. In Fig. 3, it is confirmed that, like for circular

particles, the dependence of f/fA;0 is linear on h∗, as indicated in Eq. (13). Linear fits
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Figure 2: Examples of platelet shapes. The models depicted here have about N ≈ 2000

beads (in calculations N reaches up to about 3000). The “cross” C and ellipses, here E4

with p = 4, were generated with HYDRO2D-Shape. The “lollipop” L and the “strange” S

shapes were constructed with HYDRO2D-Circles.

provide the results listed in Table 1. The values of the slopes vary in the range 0.6 –

1.0, with an average Q ≈ 0.76, but they are always quite small, so that the dependence

on thickness, from the term Qh∗, is rather weak regardless of particle shape.

4.4 Elliptical and polygonal nanoplatelets

In the same way as the revolution, biaxial ellipsoid has been classically considered as the

simplest model to reflect the deviation of a globular particle from the spherical shape,

an elliptical shape can play the same role for planar particles. In order to study the

dependence of the friction coefficient on the shape, we have carried out calculations

for elliptical nanoplatelets with small and large semiaxes R and S (area A = πRS),

varying the axial ratio p = S/R (up to p = 10) and varying the thickness ratio, which

for elliptical particles is h∗ = h/(RS)1/2 (see Eq. (9)). In all cases the linear relationship

with thickness, Eq. (13), was verified, always finding that the slope is quite small. For

some values of p, the thickness dependence and the extrapolation are shown in Fig. 3

and final results are collected in Table 1.

The dependence of the zero-thickness friction coefficient on p, when expressed in

the form of f/fA;0, is found to be linear for moderate values of p, as shown in Fig.

4. The interpolating equation C ≡ (f/fA;0)(h
∗ = 0) = 1 + 0.0430(p − 1) reproduces

the computed raw data with a precision of 1% or better. Furthermore, Q presents

quite slight fluctuations around a value of about 0.85. Then, the following equation can

describe the frictional coefficient of elliptical particles (for p < 10):

f/fA;0 = 1 + 0.0430(p− 1) + 0.85h∗. (15)

Thus, the calculation of f from the dimensions of the elliptical platelets (R, S and h)
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Table 1: Results for the parameters of the linear dependence expressed in Eq. (13) for

several structures.
Code Structure C Q

E1 Disk (p = 1) 1.005 0.79

E2 Ellipse (p = 2) 1.039 0.77

E4 Ellipse (p = 4) 1.136 0.81

E8 Ellipse (p = 8) 1.293 1.04

T Equilateral Triangle 1.075 0.66

R1 Square (p = 1) 1.035 0.68

R2 Rectangle (p = 2) 1.035 0.68

R3 Rectangle (p = 3) 1.103 0.62

R6 Rectangle (p = 6) 1.213 0.65

H Hexagon 1.011 0.78

S “Strange” 1.076 0.82

L “Lollipop” 1.267 0.88

C “Cross” 1.195 0.71

Figure 3: Plot of the reduced frictional coefficient, f/fA;0, vs. the reduced thickness, h∗,

for the platelet shapes shown in Fig. 2 and some other elliptical shapes (E1 or Disk, E2

and E8).
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Figure 4: Dependence of the constants in Eq. (13) for elliptical particles on the axial

ratio, p.

can be straightforwardly carried out since p = R/S, fA;0 = 12η0(RS)1/2 (from Eqs. (8)

and (10)), and h∗ = h(RS)−1/2 (from Eq. (9)).

As mentioned in the Introduction, carefully controlled preparation methods yield

nearly perfect regular polygonal shapes, mainly triangular and hexagonal. Results for

these shapes are included in Table 1. It is noteworthy that for hexagonal platelets the

shape-dependent ratio f/fA;0 is nearly unity – the value for the disk –, while for the

triangular platelet is 6% greater. Values for square and rectangular shapes with various

aspect ratios (namely p = 3 and p = 6) are also listed in Table 1.

5 Treatment of experimental data: diffusion and

sedimentation

In the preceding section, we formulated results in the form of a frictional ratio f/fA;0

that depends only on the shape parameters, C and Q, and the reduced thickness, h∗, in

order to present a simple, general form (Eq. (13)) for the dependence on size (A and h)

and shape. Explicit equations for the friction coefficient and the hydrodynamic radius

are:

f = 12η0(π
−1/2A1/2C +Qh) (16)

and

aT = 2(π−3/2A1/2C +Qπ−1h) = 0.359A1/2C + 0.637Qh. (17)
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We remark that the dependency of f and aT on the thickness h is linear. In the calcula-

tion for an arbitrary particle as described above, the bead model would be constructed

using either HYDRO2D-Circles or HYDRO2D-Shape, and the subsequent run of HYDRO++

provides the results for f and aT . If the thickness h of the nanoplatelet is so small that

the number of beads N in the model is too high, one would run calculations for a series

of larger h values which would require lower N values, and a final result for the particle’s

h could be obtained by linear extrapolation.

The determination of structural features of macromolecular or colloidal particles

from their frictional behaviour is mainly carried out by measurements of the diffusion

coefficient, D, and the sedimentation coefficient, s. D is related to the friction coefficient,

f , by the Einstein equation

D = kBT/f, (18)

where kB is the Boltzmann constant and T is the absolute temperature.

As mentioned in the Introduction, the most frequently used technique for measuring

D is dynamic light scattering [17–20]. Nowadays, simple benchtop instruments allow

the determination of D and the hydrodynamic radius,

aT =
kBT

6πη0D
. (19)

In the investigation of nanoplatelet structures using diffusion measurements by compar-

ison of calculated and experimental results, the weak dependence of D and aT on the

thickness h gives the advantage that the results regarding the shape and dimensions

of the surface would not be appreciably influenced by uncertainties in the thickness.

But, conversely, diffusion data would not be appropriate for the determination of the

nanoplatelet thickness.

Analytical ultracentrifugation is another powerful technique for hydrodynamic char-

acterization [21–24]. Sedimentation velocity experiments provide the sedimentation co-

efficient of the particles, s, which is given by the ratio of the so-called buoyant mass

of the particle, mb, to the friction coefficient, f . When dealing with sedimentation of

macromolecules in solution, we usually find in the literature the expression:

s =
M(1− v̄ρs)

NAf
, (20)

where M is the molecular mass of the solute and NA is the Avogadro’s number, so that

M/NA is the mass m of the solute particles. The buoyant mass is mb = m(1 − v̄ρs),
where v̄ and ρs are the specific volume of the solute and the density of the solution

(nearly equal to the solvent density for a dilute solution).

We consider that an equivalent but more appropriate formalism when dealing with

nanoparticles would employ the particle’s mass, m, and the densities for the particles –

which is that of the material they are made of –, ρp, and that of the suspension, ρs, which

again may be taken as that of the solvent at the high dilutions used in sedimentation
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velocity experiments. Then, the buoyant mass is m − ms, where the particle mass is

m = V ρp, V being the particle volume, and ms = V ρs is the mass of a volume V of the

suspension. Thus, the sedimentation coefficient is written as

s =
m(1− ρs/ρp)

f
, (21)

and using D in place of f we have

s

D
=
m(1− ρs/ρp)

kBT
. (22)

Eq. (22) is a particular form of the Svedberg’s equation, which states that the ratio

of sedimentation and diffusion coefficients gives the particle mass. Remarkably, this is

valid for particles of any shape.

An explicit equation for the sedimentation coefficient of nanoplatelets can be written

combining Eqs. (16) and (21):

s =
(ρp − ρs)

12η0

Ah

(π−1/2CA1/2 +Qh)
. (23)

In the treatment of diffusion and sedimentation coefficients of conventional 3D parti-

cles, a quantity that is frequently employed is the so-called frictional ratio, f/f0, where

f0 is the friction coefficient of a spherical particle having the same volume as the parti-

cle under consideration. In sedimentation-velocity AUC, the computational procedures

employed to analyse the time-dependent concentration profiles measured for the deter-

mination of s employ or report somehow this ratio. For a platelet whose volume is

V = Ah, the radius of the sphere with such a volume is aV = (3V/4π)1/3, so that

f/f0 =
aT
aV

=

(
4π

3Ah

)1/3

aT . (24)

The hydrodynamic radius aT could be either extracted from previous measurements of

diffusion or evaluated with our computer programs.

In order to present numerical values illustrating the kind and strength of the de-

pendence of both s and D on particle size, we show in Fig. 5 their variation with par-

ticle dimensions for triangular nanoplatelets, a shape frequently found among metallic

nanoparticles [65–69] and other materials, like CdSe [70]. For this example, we employ

results reported by Liebig et al. [71] for nearly monodisperse gold equilateral nanotrian-

gles with a thickness h = 7.5 nm, edge length L = 175 nm, and area A = 1312 nm2. We

evaluate the hydrodynamic coefficients of such particles in water at 25oC (ρs = 0.997

cm3/g, η0 = 0.00891 poise, and ρp = 19.3 cm3/g for gold). Thus, D is evaluated from

Eq. (18), where friction is given by Eq. (16), and s is evaluated from Eq. (23) using the

values C = 1.075 and Q = 0.66 reported in Table 1 for equilateral triangles, obtaining

D = 5.11× 10−8 cm2/s and s = 2.26× 104 S (in Svedberg units, 1 S = 10−13 s).

14
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Figure 5: Ratios of the D and s of triangular platelets to those for a platelet with

L = 175 nm and h = 7.5 nm. See text for more details.

Using these values as references (denoted Dref and sref ), we evaluate the effect of

changing the dimensions L and h of the triangular platelet, calculating the ratio of s and

D predicted for other dimensions to these reference values. The results are displayed in

Fig. 5. Regarding the dependency on thickness h, Fig. 5(a) shows how D depends very

weakly on h while s presents an appreciable and nearly linear dependency. Indeed, if

the Qh term in Eq. (16) is neglected (such would be the case for a very thin platelet and

a reasonable approximation in practical cases) then f ∝ A1/2 ∝ L. Thus, D does not

depend (or depends very weakly) on the thickness, but depends inversely proportional

to the edge length, D ∝ L−1, as observed in Fig. 5(b). For the sedimentation coefficient

in that limit, Eq. (23) predicts s ∝ A1/2h ∝ Lh, proportional to both L and h, as

demonstrated by the nearly straight lines in Figs. 5(a) and 5(b).

In addition to the previous problem that combines diffusion and sedimentation coef-

ficients, we present now some applications showing how the diffusion coefficient and the

geometry of the nanoplatelet can be inferred from each other. Such is the case, studied

by Kleshchanok et al. [48] of suspension of a clay, charge-stabilized gibbsite (aluminum

hydroxide) nanoplatelets of hexagonal shape, and polydisperse in size, having a mean
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side length L̄=44.2 nm (standard deviation 17%) and mean thickness h̄ =7.7 nm (stan-

dard deviation 55%), in DMSO with viscosity η0 = 2 × 10−3 mPa.s at 293 K. The

authors first represented the nanoplatelet as an infinitely thin circular disk, with radius

R = L̄ to obtain and estimation of the diffusion coefficient from Eq. 4.1, D = 3.8×10−12

m2/s. When attempting to improve the estimate taking into account the appreciable

thickness, considering a finite thick disk whose properties could be evaluated from the

equations of Tirado and Garćıa de la Torre [60], they noticed that the aspect ratio,

p = h̄/(2L̄)=0.087 was below the limit p > 0.1 allowed by those equations, and opted

to model the platelet as an oblate ellipsoid of revolution with the same p, obtaining

D = 3.1 × 10−12 m2/s. As commented above, the oblate ellipsoid is not an adequate

model even for discoid particles because of its variable thickness.

We have carried out an estimation based on our procedures. For the structures whose

values of C and Q have been evaluated here, a numerical calculation is easily done. The

area A of the hexagonal platelet with side length L̄=44.2 nm is A = 5075 nm2. For

the hexagon C = 1.011 and Q = 0.78 from Table 1. Then Eq. 16 gives the frictional

coefficient f from which the diffusion coefficient is D = 3.62 × 10−12 m2/s. From their

DLS measurements, these authors obtained D = 2.1 × 10−12 m2/s, somewhat smaller

than those obtained from their own approximations. The experimental D value required

extrapolation to zero angle and zero concentration, and their effects, and possibly the

effect of polydispersity, could be the reasons for the deviation. Nonetheless, their ap-

proximation for the infinitely thin disk is close to our numerical result for the hexagon.

The main reason is that the C = 1.011 value for the hexagon is very close to the value

for the disk (theoretically C = 1), and the influences of non-circular shape and finite

thickness may cancel each other.

Another experiment on nanoplatelet dynamics, now in the field of electrochemistry, is

the study of nano-impact chronoamperometry, in which the diffusion-dependent occur-

rence of impacts of individual particles with a microelectrode is monitored. Compton

and coworkers [26] have employed this technique in the characterization of graphene

nanoplatelets for the determination of the potential of zero charge and their diffu-

sion coefficient. Their graphene nanoplatelets have nearly square shape, with a width

L = 16.5 ± 5, area A = 297 ± 152 µm and thickness 7.1 ± 2 nm, as determined from

scanning electron microscopy. The ratio h/L (with h∗ = 0.00086) is so small that the

platelets can be regarded are infinitely thin. Having the infinitely thin disk as the only

model available, the authors determined an estimated diffusion coefficient D = 4×10−14

m2/s in aqueous solution. Following the same steps as for the hexagonal gibbsite, from

the values of A, h and the coefficient C = 1.035 for square platelets (the term Qh in

negligible for such small h) we obtain D = 3.84 × 10−14 again quite close to the value

for the disk, as it happened with hexagonal platelets. However, the diffusion coefficient

obtained from the analysis of the electrochemical experiment was D = 2 ± 0.8 × 10−14

m2/s which deviates appreciably from the theoretical calculations for both disks and
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squares. The authors first noted that the non-circular nature may cause deviations, but

this is not the main cause. As noted in the final discussion of these authors, the rea-

son is the wide polydispersity of the sample so that, as stated by the authors, “smaller

area nanoplatelets are expected to have a higher diffusion coefficient... Therefore it is

unsurprising that the experimentally estimated diffusion coefficient of the platelets is

significantly faster than the calculated theoretical value, as faster diffusing platelets are

more likely to impact the electrode than larger ones diffusing more slowly”. Remarkably

this work reported a detailed characterization of the distributions of area and width,

from which – hopefully – not a single, average value, but a distribution of diffusion

coefficients could be predicted.

6 Conclusions

The bead-modelling methodology, which has been shown so useful for predicting the

hydrodynamic properties of conventional 3D macromolecular and colloidal particles, has

been adapted for the translational friction, diffusion and sedimentation coefficients of

thin, planar nanoparticles. We have written simple computer programs that enable the

calculation of those properties for nanoplatelets of arbitrary shape. Then, application

is made to a variety of regular geometries like polygons or ellipses as well as other

irregular shapes. When the friction coefficient and the particle thickness are conveniently

normalised, simple relationships between them emerge.

We remark that the combination of diffusion and sedimentation coefficients can pro-

vide a full characterization of the platelet’s geometry. The diffusion coefficient depends

essentially on the size and shape of the platelet surface, but it is quite insensitive to its

thickness h. On the other hand, the sedimentation coefficient is roughly proportional to

h (as it follows from Eq. (23) if the small term Qh is neglected), so that knowing the

area A and the shape coefficient C, h can be estimated. Even more directly, from Eq.

(22) the ratio s/D provides the particle’s mass m = ρpV from which its volume would

be V = m/ρp = Ah and h = m/(ρpA).

A primary purpose in experimental studies of characterization of nanoplatelets re-

gards the shape and lateral dimensions of their surface. Recent advances have allowed

the control of the platelet thickness h and demonstrated its important influence in a

variety of relevant properties [72, 73]. Our work shows that the measurement of hy-

drodynamic coefficients of nanoplatelets in suspension can be quite useful for a full

characterization of their shape and size. From other point of view, our study of the

influence of size and shape of the nanoparticles in hydrodynamic coefficients can be use-

ful to analyse the experimental data in order to elucidate other aspects of the particles’

suspension that may be influencing their behaviour. The work reported in this paper is a

proof-of-concept that provides procedures for hydrodynamic modelling of nanoparticles

and an overview of their hydrodynamics that we intend to extend to other properties
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like rotational diffusion and solution viscosity. Also, it is our intention to adapt the

procedure to further aspects like polydispersity.
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