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Pollinators are fundamental for plant reproduction in natural and agricultural ecosys-
tems. However, their populations are declining worldwide, threatening the functioning 
of the ecosystem service they provide. The factors driving this change are manifold, but 
land use changes and interspecific transmission of pathogens between managed and wild 
bees are prominent. In this context, most research efforts have focused on specific taxa 
and rarely at the community level, limiting our ability to fully understand the effects of 
global change on the functioning of plant–pollinator interactions in ecosystems.
Here, we investigate the impact of human activities (beekeeping and land use inten-
sity) on the spread of an emergent pathogen Vairimorpha ceranae in Mediterranean 
wild bee communities inhabiting landscapes with varying levels of anthropogenic dis-
turbance. Plant–pollinator interactions were sampled in nine one-hectare plots along a 
gradient of land use (urban structures, croplands and natural vegetation) and beekeep-
ing intensity. We analysed the impact of human disturbances on pollination networks 
and pathogen prevalence, and applied a network approach to examine whether total 
effects of species in networks (i.e. direct plus indirect interactions) explain pathogen 
spread through bee communities.
We found that V. ceranae prevalence in honey bees is not a good predictor of the patho-
gen spread through bee communities. There seems to be a temporal mismatch between 
pathogen dynamics in managed and wild bees. Networks with more diversity of inter-
actions and more plants showed less pathogen prevalence, but total effect analyses (i.e. 
combining direct and indirect interactions) failed to explain pathogen transmission 
across pollination networks. Croplands increased wild bee density, and interactions 
and species diversity in networks, while shrublands had the opposite effect. Our results 
highlight the importance of studying pathogen dynamics at the community level 
and analysing species interaction patterns to improve our understanding of pathogen 
spread through communities.
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Introduction

Animal pollination is a fundamental ecosystem function 
because approximately 90% of angiosperm plants are pol-
linated by animals (Ollerton  et  al. 2011). This mutualistic 
interaction is also pivotal for humans because more than 
three-quarters of global food crops rely to some extent on 
animal pollination (Klein et al. 2007). Bees stand out among 
animals as the dominant pollinator group and the only one 
that totally relies on floral resources across its entire life cycle 
(Ollerton 2017). Therefore, there is increasing concern about 
the decline of pollinators detected in several areas worldwide 
(Potts et al. 2010, Goulson et al. 2015) which may trigger a 
disruption in ecosystem functioning, harming plant repro-
duction and crop productivity (Biesmeijer et al. 2006). The 
collapse of pollinator populations is caused by multiple fac-
tors (Goulson et al. 2015). However, land use changes and 
the interspecific transmission of pathogens between man-
aged and wild pollinators can be highlighted among the 
main drivers of this decline (Proesmans  et  al. 2021). Most 
research efforts on understanding the factors of bee declines 
have focused on specific taxa and rarely at the community 
level, limiting our ability to fully understand the impact of 
global change drivers on the functioning of plant–pollinator 
interactions in ecosystems.

Growers generally rely on managed pollinators, such as the 
western honey bee Apis mellifera, for crop pollination (Morse 
1991, Rucker et al. 2012). However, recent studies report a 
complementary role of managed and wild bees in crop pollina-
tion (Garibaldi et al. 2013, Hünicken et al. 2022). Currently, 
there is an open debate on the impact of managed bees on 
wild pollinators (Geslin et al. 2017, Geldmann and González-
Varo 2018). There are controversial results on the competi-
tion between honey bees and wild bees for floral resources 
(Mallinger et al. 2017, Wojcik et al. 2018), but it seems that 
honey bees are replacing wild bees in many managed and 
unmanaged ecosystems (Herrera 2020, Garibaldi et al. 2021). 
Moreover, there is evidence on the spillover of pathogens and 
parasites from honey bees to wild bees (Graystock et al. 2016, 
Mallinger et al. 2017, Martínez-López et al. 2021, 2022) when 
they share flower resources (Graystock et al. 2015, Tehel et al. 
2016, Figueroa et al. 2019). 

Bee pathogens are related to emerging infectious diseases 
(EID, Manley et al. 2015). Among them, microsporidia have 
played a critical role in the collapse of honey bee colonies, espe-
cially in Mediterranean countries (Martín-Hernández et  al. 
2018). Microsporidia from the genus Vairimorpha (Nosema) 
have been detected in wild bees (Grupe and Quandt 2020, 
Martínez-López  et  al. 2021), and their effects on wild bee 
health have also been studied in different parts of the world 
such as central Europe (Fürst et al. 2014, Ravoet et al. 2014) 
and South America (Plischuk et al. 2009, Porrini et al. 2017). 
For instance, Vairimorpha  ceranae has spread worldwide due 

to the trade in honey bees and is now considered a grow-
ing pandemic in managed and wild bees (Grupe and Quandt 
2020). Vairimorpha ceranae can spread when its primary 
hosts, honey bee colonies, are moved across the landscape, 
a process known as migratory beekeeping (Martínez-
López et al. 2022). This pathogen has been found in several 
wild bee taxa, but information on the dissemination of this 
pathogen at the community level is scarce (Graystock et al. 
2020, Figueroa  et  al. 2020, Martínez-López  et  al. 2021), 
especially in semiarid Mediterranean areas, which are recog-
nised as hotspots of bee biodiversity (Orr et al. 2021).

Semi-natural areas are beneficial for wild bee popula-
tions because of the food and nesting resources they pro-
vide (Goulson et al. 2007, Winfree et al. 2009). When floral 
resources are scarce, managed and wild bees are more likely 
to interact via shared resources, increasing pathogen trans-
mission due to the above-mentioned role of flowers as a 
contact point for pathogen exchange (Graystock et al. 2015, 
Tehel  et  al. 2016). In contrast, mass flowering events have 
been found to cause a dilutive effect, reducing pathogen 
transmission (Piot et al. 2021). Semi-natural areas are disap-
pearing due to changes in land use such as agricultural inten-
sification and land abandonment (Robinson and Sutherland 
2002, Robledano-Aymerich  et  al. 2014) which could have 
negative consequences for pollinators. For instance, intensive 
farming usually involves an intense use of pesticides, which 
can have negative impacts on pollinators (Henry et al. 2012, 
Whitehorn et al. 2012, Nicholson et al. 2023). 

The interaction between bees and flowering plants in 
ecosystems forms complex networks whose structure can be 
studied to estimate the resilience of pollinator communities 
to anthropogenic disturbances, such as land use and global 
environmental changes (Bennett et al. 2020, Bascompte and 
Scheffer 2023), and to understand the functioning of com-
munities (Heleno et al. 2014, Vizentin-Bugoni et al. 2018, 
Bennett et al. 2020). Moreover, network structure may shape 
pathogen transmission across pollinators within communi-
ties (Proesmans et al. 2021). Networks with a large diversity 
of species and many interactions may increase the likelihood 
of interspecific pathogen transmission (Strona et  al. 2018). 
Conversely, a dilution effect on the spread of pathogens in 
plant–pollinator networks has been described when the pro-
portion of potential links between species is high (i.e high 
connectance) (Figueroa et al. 2020). Research has focused on 
the impact of direct interactions within networks on patho-
gen spread (Proesmans et al. 2021). However, previous stud-
ies have demonstrated that the analysis of the total effects of 
species in networks (i.e. direct plus indirect interactions) may 
be more informative to predict the consequences of perturba-
tions in network functioning (Pires et al. 2020). Landscape 
simplification derived from agricultural intensification and/
or land abandonment can erode plant–pollinator network 
structure, with important consequences for the functioning 

 16000587, 2024, 10, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.06979 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [20/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Page 3 of 13

D
isease Ecology Special IssueD

is
ea

se
 E

co
lo

gy
 S

pe
ci

al
 Is

su
e

of pollinator communities (Fortuna and Bascompte 2006, 
Spiesman and Inouye 2013, Shinohara  et  al. 2019, 
Colom et al. 2021). However, the effects of these changes in 
plant–pollinator interactions on the transmission and spread 
of pathogens are not fully understood.

Here, we investigate the impact of human activities (bee-
keeping and land use intensity) on the spread of a pathogen 
V. ceranae in Mediterranean wild bee communities inhabit-
ing landscapes with varying levels of anthropogenic distur-
bance. We sampled plant–pollinator interactions in nine 
one-hectare plots distributed along a gradient of land use 
(urban structures, croplands and natural vegetation) and 
beekeeping intensity (low presence versus high presence of 
honey bees) in the southeast of the Iberian Peninsula under 
a Mediterranean semiarid climate. This region and overall 
Mediterranean climatic conditions are underrepresented in 
plant–pollinator and pollinator–pathogen studies, which 
have generally been conducted at northern latitudes in 
Europe and America. Specifically, our goals were: 1) to inves-
tigate the impact of different stressors (land use intensity 
and beekeeping) on plant–pollinator networks; and 2) to 
study whether direct paths and/or total effects (direct + indi-
rect interactions) in plant–pollinator interaction networks 
explain pathogen spread through bee communities. We 
expect an effect of land use intensity and beekeeping on 
plant–pollinator networks reducing interaction diversity. 
Furthermore, we hypothesized that accounting for both 
direct and indirect paths connecting species is more effec-
tive in determining the spread of pathogens in pollination 
networks such that wild bees more strongly connected to 
honey bees through indirect paths would have higher patho-
gen prevalence.

Material and methods

Study site

Nine one-hectare sites (100 × 100 m) distributed along a 
transect of 20 km in the southeast of the Iberian peninsula 
(Fig. 1) were included in the study. Study sites were located in 
the surroundings of a protected area (Sierra Espuña Regional 
Park and Site of Community Importance of Sierra Espuña, 
ES ES0000173). Four samplings were performed from 
February to May 2017 to capture the variability in plant–pol-
linator interactions and pathogen prevalence.

The area has a semiarid Mediterranean climate with high 
temperature and low precipitation (243.51 ± 16.27 mm and 
17.22 ± 0.12 °C, La Calavera station, Alhama de Murcia, 
SIAM 1994–2018). The landscape is characterized by a 
matrix of crops (irrigated and rainfed crops), anthropogenic 
structures (urbanizations, roads, etc.) and natural vegetation 
patches (shrublands and pinewoods). Citrus trees and grapes 
are the most widespread irrigated crops, while almond and 
olive trees are the most common rainfed crops. Natural vege-
tation consists of reforested pinewoods of Pinus halepensis dat-
ing back to the end of the 19th century, and Mediterranean 
shrublands with several species such as Anthyllis cytisoides, 
Helianthemum violaceum, Stipa tenacissima, Teucrium capita-
tum, Rosmarinus officinalis and Sideritis murgetana.

Interaction sampling

Honey bees and wild bees were collected in four sampling 
periods from February to May (late winter, early spring, mid 
spring and late spring) (27.26 ± 7.36 days between sam-
plings). Samplings consisted of transects of 100 m length and 

Figure 1. Study sites (red dots) distributed within the limits of Sierra Espuña protected area. Map elaborated with QGIS ver. 2.14.3 (QGIS 
Development Team 2022).
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2 m width randomly distributed within the study plots. Field 
work was performed on sunny, windless days from 10:00 to 
18:00 with uniform sampling effort for each site (1 h/sam-
pling). Bee individuals were captured with hand nets and the 
flowering plants on which they foraged were recorded. The 
density of wild bees per site and sampling (bees/m2) were 
calculated at the community level. We also collected some 
bees within the plots outside the sampling scheme to increase 
sampling size for pathogen prevalence and pollination net-
works, but these individuals were not considered for density 
estimates. When honey bees appeared in large numbers, we 
collected only one in ten. However, we assessed the total 
number of honey bees to calculate densities.

The abundance and richness of bees is highly related to 
the availability of floral resources (Steffan-Dewenter and 
Tscharntke 2001, Potts  et  al. 2003). Therefore, we also 
assessed the flower density and the species richness of flower-
ing plants of the study sites in the four samplings, by count-
ing floral units in ten randomly distributed 1 m2 plots within 
the study areas. Flowers belonging to the Asteraceae family 
were considered as a single floral unit. Plants were identified 
at either species or genus level.

Pollinators identification

Bees were identified in a previous study (Martínez-
López et al. 2021) through an integrative taxonomy approach 
combining classical taxonomy and DNA barcoding. Briefly, 
we took individual pictures from each bee, which were sent 
to an expert taxonomist. Additionally, we amplified the bar-
coding cox1 region (cytochrome c oxidase subunit I) of the 
mitochondrial DNA for each bee. Finally, we combined both 
sources of information to identify all individuals at least up 
to the genus level.

Network analyses

We calculated the structural features of the sampled pollina-
tion networks with the R package ‘bipartite’ (www.r-project.
org, Dormann et al. 2008). The following parameters were 
computed: the number of bee species, the number of plant 
species visited by the sampled bees, the number of interac-
tions, the ratio between the richness of animal and plants 
(web asymmetry), the Shannon diversity of the interactions, 
the proportion of possible links between species that are real-
ized (connectance), nestedness (Almeida-Neto and Ulrich 
2011) which is a measure of the level of interaction among 
generalist and specialist species (Bascompte et al. 2003), and 
specialization (Blüthgen  et  al. 2006) which measures the 
niche complementarity among species (i.e. whether bees in 
networks are generalist and interact with multiple plants or if 
bees are specialist and interact only with some plants).

Assuming bee pathogens spread from honey bees to wild 
bees indirectly, through the interactions they share with 
plants, we should be better able to understand pathogen 
transmission by investigating the indirect paths connecting 
species in plant–pollinator networks. Thus, we also examined 

the matrix of total effects, which accounts for both direct 
and indirect paths between species (Pires  et  al. 2020). We 
calculated the total effects matrix by computing a depen-
dence matrix Q, with dimensions S × S, where qij represents 
the proportion of interactions of species i with species j over 
the total of interactions of species i. The total effects matrix 
is then computed as T = (I − RQ)−1, where I is the deter-
minant, R is a diagonal matrix that represents how relevant 
interactions are for each species, and Q is the dependence 
matrix. Because we are interested solely in the topology of the 
network and not on population dynamics, we chose a fixed 
value of Rii = 0.8 for all species. Each element Tij represents 
the total effects through direct and indirect paths of species 
j on species i. The sum of values over the columns, Tout, is a 
proxy for the overall influence of each species over the others 
(Pires et al 2020). We computed Tout for each species as an 
estimate of its potential to function as an infectious host, in 
the case of bees, or as a site of infection, in the case of plants. 
We also computed the T matrix for the networks represent-
ing each location and registered the potential influence of 
honey bees over other species of bees and plants locally.

Pathogen detection

Vairimorpha ceranae prevalence in the collected samples was 
determined in a previous study by molecular techniques 
(Martínez-López et al. 2021). Briefly, we used specific primers 
for the amplification of V. ceranae (Martín-Hernández et al. 
2007). Negative and positive controls were included in all 
reactions. DNA of the pathogen was detected by PCR, so, 
we can confirm the presence of the pathogen in the posi-
tive samples. This does not guarantee that these bees were 
infected, and individuals could carry the pathogen without 
developing infections.

Land use intensity calculation

We assessed land use in all the study areas at four different 
distances from the center of the plot (250–500–750–1000 
m). Information about land uses in the different areas was 
extracted from the Information System of Land Occupancy 
in Spain (Instituto Geográfico Nacional 2015) (SIOSE). 
Five categories were considered: 1) irrigated crops; 2) rainfed 
crops; 3) shrublands; 4) pinewoods; and 5) anthropogenic 
structures (i.e. roads, houses, etc.). Rainfed crops in the area 
are associated with traditional management and/or low use 
of pesticides and fertilizers, while irrigated crops are generally 
linked to intensive agricultural management. We used QGIS 
ver. 2.14.3 (QGIS 2022) to calculate the area of each land 
use for the study sites at all distances. We also assessed land 
use inside the study plots to consider its impact on the wild 
bee community.

Data analyses

To better understand the factors affecting wild bee density, 
we used generalized linear models to test how the density of 
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wild bees was impacted by land use, the density of honey 
bees, sampling period (i.e. each sampling per time and plot) 
and the density and richness of flower species. We performed 
each test separately using univariate models to assess which of 
the potential predictors would have the largest effect. 

To analyse the temporal trends in pathogen prevalence in 
wild bees we used logistic regression model with the logit link 
function with sampling period as the predictor. Variation in 
pathogen prevalence in honey bees along sampling periods 
was tested with a quasibinomial model to deal with overdis-
persion. Next, to find the main factor determining the preva-
lence of V. ceranae in wild bees we fitted a series of separate, 
univariate logistic models with the following predictors: the 
prevalence of V. ceranae in A. mellifera, the density of honey 
bees, wild bee density, flower density, flower species richness 
and each of the network structural metrics. We include honey 
bee prevalence and density as potential predictors because the 
honey bee is often assumed to be the main host of V. ceranae 
(Higes et al. 2008b). Flower density, richness and bee abun-
dance were included because floral resources and bee abun-
dances can shape pathogen transmission patterns (Adler et al. 
2018, Piot et al. 2021, Tuerlings et al. 2022). Finally, network 
structural metrics were also tested because species are directly 
and indirectly connected to one another as a result of their 
interactions, and this may also lead to pathogen transmission. 
To test whether land use can affect pathogen prevalence in 
wild bees we performed logistic regression models with land 
use type within each site and the buffer as predictors. Again, 
we used a series of univariate tests to detect the most rel-
evant scale affecting pathogen prevalence. Data from site five 
in the 3rd sampling period were excluded from this analysis 
because the site was an outlier. Excluding these data did not 
significantly alter the interpretation of our results. We also 
tested the impact of land use at different spatial scales on the 
pollination networks by using independent univariate linear 
Gaussian models.

To understand whether pathogen prevalence detected 
in the different bee species could be predicted from their 
direct and indirect interaction patterns, we analysed the cor-
relation between the total effects of the honey bee on each 
species in pollination networks representing each site, and 
their pathogen prevalence in that site, using non-parametric 
Spearman correlations for each site. If honey bees are indeed 
the main host transmitting the pathogen to other bees, we 
should expect that wild bees that were indirectly connected 
to honey bees more strongly via shared plant usage would 
have a greater pathogen prevalence. Flowers have been high-
lighted as hubs for pathogen transmission among bee species 
(Graystock et al. 2015). Therefore, plant species visited by a 
higher number of bees positive to V. ceranae are, theoretically, 
more likely to host the pathogen. Thus, we also tested the 
correlation among the total effects of the honey bee in net-
works and V. ceranae prevalence in the bees visiting each plant 
species. Pathogen prevalence per plant species was calculated 
by dividing the number of visits received by bees positive to 
the pathogen by the total number of visits. Visits performed 
by honey bees were excluded from this analysis to prevent 

bias in the results (i.e. measure the impact of the total effects 
of honey bees on the networks on themselves).

All statistical analyses were performed in R ver. 4.1.1 
(www.r-project.org). Explanatory variables were standardised 
to facilitate the comparison among the different land uses and 
variables with different scales with the R package ‘robustHD’ 
(www.r-project.org, Alfons 2019). Residuals of all the models 
were checked with the R package ‘DHARMa’ (www.r-proj-
ect.org, Hartig 2022). The absence of spatial and temporal 
autocorrelation in the models was also tested (Bjornstad 
2020). Furthermore, we tested for overdispersion in logistic 
models with the R package ‘performance’ (www.r-project.
org, Lüdecke et al. 2021). Bonferroni correction was applied 
to models testing the impact of land use on wild bee density, 
pathogen prevalence and pollination network properties, and 
models analysing the effect of pollination network properties 
on wild bee pathogen prevalence, to reduce the chances of 
having false significant relationships due to multiple models 
testing (p-valueadj) (Jafari and Ansari-Pour 2019). Note that 
the calculation of pathogen prevalence for network properties 
analyses only included bee individuals that interacted with a 
plant. Most wild bees have foraging ranges of less than 200 m 
(Kendall et al. 2022) and short life spans (< 30 days) and for-
aging periods (10–14 days) (Danforth et al. 2019). Therefore, 
densities of bees in each site and sampling period were con-
sidered as independent data.

Results

Plant–pollinator interactions

We sampled 816 individuals, 506 wild bees and 310 honey 
bees, and we recorded 705 plant–pollinator interactions 
(Supporting information). A total of 92 molecular operational 
taxonomic units of bees and 53 plant species were found in 
the overall sampling (Supporting information). We built nine 
pollination networks, one per study plot, merging the data 
from the four sampling periods. The size of the networks var-
ied between 39 and 122 interactions at sites three and one, 
respectively. See Supporting information for network param-
eters. The density of wild bees varied between 0 and 0.0275 
bees/m2 (Supporting information) and did not show any 
temporal pattern (β = 0.0003; p-value = 0.763, n = 36). Wild 
bee densities were explained neither by the density of flowers 
(β = 0.0004; p-value = 0.743, n = 36) nor by the richness of 
flowering plant species (β = 0.002; p-value = 0.154, n = 36).

Beekeeping effects on pollinators

The density of honey bees did not have any effect on the den-
sity of wild bees (β = 0.032; p-value = 0.514, n = 36). A total 
of 235 bees tested positive for V. ceranae, of which 96 were wild 
bees (Supporting information). Pathogen prevalence in honey 
bees decreased along with the sampling period (β = −1.208; 
p-value < 0.001***, n = 35) (Fig. 2a), while it increased in 
wild bees (β = 0.298; p-value = 0.009**, n = 35) (Fig. 2b). 
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Pathogen prevalence in wild bees was not related to the density 
of bees, either managed (β = −0.119; p-value = 0.427, n = 35) 
or wild (β = −0.003; p-value = 0.979, n = 35). However, the 
occurrence of V. ceranae in wild bees showed a negative signifi-
cant relationship with the pathogen prevalence in honey bees 
(β = −0.355, p-value = 0.008**, n = 35). Furthermore, flower 
density was negatively associated with pathogen prevalence in 
wild bees (β = −0.406, p-value = 0.008**, n = 35). Floral spe-
cies richness did not show any impact on V. ceranae prevalence 
in wild bees (β = −0.030; p-value = 0.781, n = 35).

Pathogen prevalence in pollination networks was nega-
tively associated with Shannon diversity of the interac-
tions (SD) (β = −0.269, p-valueadj = 0.034*, n = 9) and the 
number of plant species in the network (P) (β = −0.297, 
p-valueadj = 0.018*, n = 9) (original and adjusted p-values in 
Supporting information). Apis mellifera showed by far the 
largest total effect on the pollination networks, followed by 
Eucera sp2 and Seladonia species (Fig. 3a). With regard to 
plants, Carduus spp., R. officinalis and A. cytisoides exhibited 
the largest total effects (Fig. 3b).

Figure 2. Temporal variation in Vairimorpha ceranae prevalence in honey bees (p-value > 0.001***) (a) and wild bees (p-value = 0.009**). 
(b) T1 = late winter; T2 = early spring; T3 = mid spring; and T4 = late spring. Boxplots show the median (thick horizontal lines), the quar-
tiles (boxes and vertical lines) and the outliers (empty dots). Silhouettes taken from www.phylopic.org.

Figure 3. Total effects of bees (a) and plant species (b) on the nine pollination networks. Boxplots show the median (thick horizontal lines), 
the quartiles (boxes and vertical lines) and the outliers (empty dots). Only plant and bee species with more than one recorded interaction 
are shown. Silhouettes taken from www.phylopic.org.
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The total effects of honey bees on wild bees in pollination 
networks showed no correlation with the pathogen preva-
lence across bee species in the network (Fig. 4). Similarly, 
there was no correlation between the total effects of A. mel-
lifera on plants in the networks and the pathogen prevalence 
in plants (Fig. 5).

Impact of land use intensity on wild pollinators

Land use composition of the study sites was calculated from 
the plot level up to 1000 m (Supporting information). The 
most representative land uses at plot level in the study sites 
were rainfed crops and shrublands. Anthropogenic structures 
and pinewoods did not have any effect on wild bee densi-
ties. However, irrigated crops had a positive impact on bee 
densities at all distances (Buffer 250: β = 0.004, p-value-
adj = 0.025*; Buffer 500: β = 0.004, p-valueadj = 0.017*; Buffer 
750: β = 0.004, p-valueadj = 0.014*; Buffer 1000: β = 0.004, 
p-valueadj = 0.039*; n = 36) (Supporting information) (orig-
inal and adjusted p-values in Supporting information). 

Contrastingly, study sites with larger areas of shrublands 
showed lower densities of wild bees at the plot level (Plot 
level: β = −0.005, p-valueadj < 0.001***; n = 36). Rainfed 
crops positively affected wild bee densities only at the plot 
level (β = −0.005, p-valueadj < 0.001***; n = 36). There was 
no correlation between pathogen prevalence in wild bees and 
land uses at any spatial scale.

Shrublands increased nestedness in pollination networks 
from 250 to 750 m, but only with a marginal statistical sig-
nificance (Buffer 250: β = 5.831, p-valueadj = 0.061; Buffer 
500: β = 5.866, p-valueadj = 0.054; Buffer 750: β = 5.799, 
p-valueadj = 0.068; n = 9). There was no other significant rela-
tionship between the land uses in the surroundings of the 
study plots and the pollination networks. However, land 
uses at the plot level had an effect on the bee communities. 
Rainfed crop increased the Shannon diversity of the interac-
tions (β = 0.540, p-valueadj = 0.055; n = 9) and the number 
of bee species in the networks (β = 8.021, p-valueadj = 0.054; 
n = 9) (original and adjusted p-values in Supporting informa-
tion), both with a marginal level of significance. Conversely, 

Figure 4. Non-parametric Spearman correlation analyses between the total effects of the honey bee in networks and the pathogen prevalence 
in wild bees. Points represent the different wild bee species in the pollination networks from the different study plots. Dashed lines depict 
a trendline representing the relationship among total effects of the honey bees in the networks and the pathogen prevalence in wild bees. 
The analyses did not find any significant correlation (p-value < 0.05). Silhouettes taken from www.phylopic.org.
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shrubland decreased the Shannon diversity of the interac-
tions (β = −0.557, p-valueadj = 0.025*; n = 9) and the number 
of bee species (β = −7.999, p-value = 0.057; n = 9).

Discussion

Overall, we observed that the anthropogenic stressors con-
sidered in this study (beekeeping and changes in land use) 
had contrasting effects on wild bee communities. We assume 
that honey bees might have triggered pathogen spillover in 
wild bees as they are considered the main host of V. cera-
nae in Europe (Higes et al. 2008b) and no research to date 
has found a secondary host able to spread the pathogen in 
pollinator communities. However, we found that managed 
and wild bees showed opposite temporal trends in patho-
gen prevalence. In addition, networks with higher interac-
tion diversity and more plant species showed lower pathogen 

prevalence, but species interaction patterns failed to explain 
pathogen spread through bee communities. In contrast, 
anthropogenic land uses, such as rainfed and irrigated crops, 
seemed to benefit pollinators by increasing wild bee densities.

Pathogen spillover from managed to wild bees has been 
highlighted as a major driver of the current decline of pol-
linators (Goulson et al. 2015). The interspecific transmission 
of pathogens such as V. ceranae from the honey bee to sev-
eral wild bees has been reported in many areas worldwide 
(Grupe and Quandt 2020). However, seasonal patterns of 
this microsporidium in wild bee communities are generally 
unknown. Furthermore, most of the information available on 
the pathogen spread from managed to wild bees is restricted 
to a limited number of species, and only a few studies have 
addressed this issue at the community level (Figueroa et al. 
2020, Graystock et al. 2020,  Martínez-López et al. 2021). 
Here, we found that V. ceranae prevalence in wild bee com-
munities increased over time, while it decreased in the honey 

Figure 5. Non-parametric Spearman correlation analyses between the total effects of the honey bee in networks and the pathogen prevalence 
in plants (i.e. dividing the number of visits received by bees positive to the pathogen between the total number of visits, excluding the visits 
realized by the honey bee). Points represent the different plant species visited by wild bees in the pollination networks from the different study 
plots. Dashed lines depict a trendline representing the relationship among total effects of the honey bees in the networks and the pathogen 
prevalence in plants. The analyses did not find any significant correlation (p-value < 0.05). Silhouettes taken from www.phylopic.org.
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bees for the same period. Our results on V. ceranae prevalence 
in honey bees are congruent with previous studies conducted 
in the Iberian peninsula, which also reported peaks of infec-
tion in winter (Higes et al. 2008b), although there seems to 
be great variability (Jabal-Uriel et al. 2022). 

The honey bee is considered the main host of V. ceranae 
in Europe (Higes  et  al. 2008b). Thus, we would expect to 
find parallel seasonal trends of pathogen prevalence in honey 
bees and wild bees. On the contrary, we found that pathogen 
prevalence in honey bees and wild bees was negatively corre-
lated throughout the study period. These results suggest that 
the pathogen may be able to remain in the landscape after 
its presence in the main host has declined. Vairimorpha cera-
nae spores can be viable for at least 18 days in the environ-
ment (Higes et al. 2008a). However, this time period seems 
insufficient to explain our results, as spores would need to 
remain viable for more than a month. Wild bees may be act-
ing as secondary vectors of the pathogen without becoming 
infected; but, if so, V. ceranae prevalence in wild bees should 
decline together with, or shortly after, its decrease in the main 
host, the honey bee. On the other hand, there could be other 
hosts of the pathogen in pollinator communities. Some stud-
ies report wide host ranges (Martín-Hernández et al. 2018, 
Grupe and Quandt 2020), although others report host speci-
ficity of the pathogen (Gisder et al. 2020, Ngor et al. 2020). 
Therefore, there is still a great deal of controversy on the 
subject. Our results indicate that the mechanisms of patho-
gen spread may be more complex than previously assumed. 
Further community level studies are necessary for a better 
understanding of the threat this and other pathogens pose 
to wild bee assemblages, and to develop effective strategies to 
mitigate its impact on natural populations.

Previous work has found that the structure of plant–pol-
linator networks can predict pathogen dynamics across land-
scapes (Proesmans  et  al. 2021). We found that pathogen 
prevalence decreased in networks with more plant species and 
higher diversity of interactions. More plant species and higher 
diversity of interactions in networks can lead to an increase 
in niche partitioning, which in turn reduces the chances of 
individuals from different species interacting during visits 
and exchanging pathogens (Doublet et al. 2022). Similarly, 
previous studies have demonstrated that floral traits affect 
pathogen transmission (Adler  et  al. 2018, Figueroa  et  al. 
2019) and that increasing bee and flower species richness 
reduces pathogen interspecific transmission (Graystock et al. 
2020, Fearon and Tibbetts 2021). Furthermore, our results 
showed that flower density is negatively related to pathogen 
prevalence in wild bees, which could be explained by a dilut-
ing effect as the density of the host is reduced in the landscape 
(Graystock et al. 2020, Piot et al. 2021). Neither total effects 
of the honey bee in networks nor pathogen prevalence on 
plants showed any relationship with pathogen prevalence in 
wild bees. The temporal mismatch between pathogen preva-
lence in honey bees and wild bees may explain the lack of 
a relationship between the indirect influence of honey bees 
over wild bees and pathogen prevalence. The ability of flowers 
to host and disseminate bee pathogens varies according to the 

plant species (Adler et al. 2018, Figueroa et al. 2019), which 
can explain why our approach, considering the entire flower-
ing plant community, also failed to predict pathogen spread. 
Additionally, there may be other routes of exposure, as micro-
sporidia spores have been found in air (Sulborska et al. 2019) 
and water (Izquierdo et al. 2011).

Natural and seminatural areas are critical for maintaining 
pollinators in agricultural landscapes (Winfree  et  al. 2009, 
Roth et al. 2023). Conversely, intensification of agricultural 
lands can trigger a decline in wild bee populations and the 
extinction of the most vulnerable species (Vanbergen and 
Insect Pollinators Initiative 2013). Thus, maintaining hetero-
geneous land use matrices that combine natural patches of 
vegetation and low-intensity agricultural management prac-
tices could counteract the effect of highly intensive land uses, 
such as intensive agriculture and urbanization, by providing 
a wider variety of resources to bees (Tscharntke et al. 2005, 
Kennedy et al. 2013). Previous studies on the effects of land 
use intensification on pollinator communities and plant–pol-
linator networks found that bees are highly resistant and only 
experience sharp declines in situations of extreme landscape 
degradation, although these responses vary according to the 
biogeographical regions (Winfree et al. 2009, De Palma et al. 
2016, Morrison and Dirzo 2020, Millard et  al. 2021). For 
instance, Millard et  al. (2021) analysed the impact of vari-
able levels of land-use intensity on pollinator communities 
worldwide. They found that low levels of land use intensity 
can be beneficial for pollinators, while the negative impact of 
agricultural intensity on pollinators seems to be restricted to 
tropical areas. Our results are in line with previous research, as 
we did not detect any negative impact of anthropogenic land 
uses on wild bee densities and plant–pollinator networks. 
Contrastingly, we found a positive impact of rainfed crops 
on wild bees at plot level (higher wild bee densities, more bee 
species in networks and more diverse interactions) and irri-
gated crops (higher bee densities from 250 to 1000 m), and 
a negative impact of shrublands (lower bee densities, lower 
diversity of interactions and reduced number of bee species). 
These findings are congruent with previous research that also 
reported a positive impact of low and medium/high intensity 
croplands on bee richness and abundance in comparison with 
natural vegetation areas (De Palma et al. 2016, Millard et al. 
2021). This could be due to the higher offer of floral resources 
in agricultural patches. This trend can be particularly rele-
vant in semiarid ecosystems, like in our study area, because 
drought reduces floral resources for bees (Phillips et al. 2018). 
Therefore, irrigated crops would provide more food resources 
which turn into an increase in wild bee densities and species 
richness. However, the attractant effect of irrigated crops can 
be a double-edged sword, as these crops are often associated 
with increased pesticide use, which could increase the expo-
sure of wild bees to these chemical agents even when foraging 
on non-cultivated plants and flowers at field borders (Long 
and Krupke 2016, Ward et al. 2022). Pollinator transects in 
this study were performed in rainfed crops and shrublands, 
and hence we do not have data on pollinator abundance in 
irrigated crops, which makes it difficult to disentangle bee 
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preferences towards any particular land-use type. Therefore, 
the positive relationship between wild bee density and irri-
gated crops may be caused by bee preference for other land 
use types. Thus, future studies should assess pollinator abun-
dances in different land use types to fully understand bee 
preferences at the landscape scale.

In conclusion, our results suggest that V. ceranae prevalence 
in honey bees is not a good predictor of pathogen spread in 
bee communities. There seems to be a temporal mismatch 
between the honey bee and wild bee pathogen dynam-
ics, which highlights the importance of conducting more 
research on the seasonal patterns of pathogen dynamics in 
plant–pollinator networks (Adler et al. 2018, Tuerlings et al. 
2022). The analyses of the total effects accounting for the 
temporal dimension could help to shed light on this issue, 
but would require a sampling design focusing on obtaining a 
good temporal characterization of the interaction networks. 
Furthermore, there is an urgent need to disentangle whether 
wild bees are just secondary vectors or can become infected 
and spread V. ceranae spores across environments. The land 
use matrix composition in our study areas seems to be suit-
able for pollinators. Thus, land use change drivers leading to 
landscape simplification might have negative consequences 
for pollinators. For example, land abandonment of agricul-
tural patches is increasing in many areas of the Northern 
Hemisphere such as the Mediterranean basin (Cramer et al. 
2008). These old fields are colonized by natural vegetation 
such as shrublands, which could lead to a reduction of pol-
linators’ richness and abundance (Shinohara  et  al. 2019, 
Colom et al. 2021). Therefore, management policies should 
address these issues and take adequate measures in order to 
preserve wild bee communities.
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