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Abstract: Background: Accurate segmentation of the left ventricular myocardium in cardiac
MRI is essential for developing reliable deep learning models to diagnose left ventricular
non-compaction cardiomyopathy (LVNC). This work focuses on improving the segmenta-
tion database used to train these models, enhancing the quality of myocardial segmentation
for more precise model training. Methods: We present a semi-automatic framework that
refines segmentations through three fundamental approaches: (1) combining neural net-
work outputs with expert-driven corrections, (2) implementing a blob-selection method
to correct segmentation errors and neural network hallucinations, and (3) employing a
cross-validation process using the baseline U-Net model. Results: Applied to datasets
from three hospitals, these methods demonstrate improved segmentation accuracy, with
the blob-selection technique boosting the Dice coefficient for the Trabecular Zone by up
to 0.06 in certain populations. Conclusions: Our approach enhances the dataset’s quality,
providing a more robust foundation for future LVNC diagnostic models.

Keywords: left ventricular non-compaction diagnosis; cardiomyopathies; convolutional
neural networks; MRI Image segmentation

1. Introduction
1.1. Clinical Context of LVNC

Cardiovascular diseases remain the leading cause of mortality worldwide, accounting
for approximately 32% of all deaths globally [1,2]. Early and accurate detection of cardiac
anomalies is crucial for improving patient outcomes. Among these illnesses, left ventricular
non-compaction cardiomyopathy (LVNC) is a severe but rare cardiac disorder characterized
by excessive trabeculations and deep recesses in the left ventricular myocardium due to
incomplete myocardial compaction during embryonic development. Given the lack of
morphometric evidence for ventricular compaction in humans, the ESC recommends the
term ‘hypertrabeculation’ instead of LVNC, particularly when the condition is transient or
clearly of adult onset [3]. LVNC can cause a spectrum of symptoms ranging from fatigue
and dyspnea to heart failure, and it is also associated with an increased risk of arrhythmias
and thromboembolic events. Hypertrabeculation in hypertrophic cardiomyopathy presents
additional diagnostic difficulties due to the asymmetry of wall thickness in the different
areas of the left ventricular myocardium. An association has been found between the
presence of crypts (trabeculae) and different mutations of sarcomeric genes in genetically
affected patients with mild forms of hypertrophy. This suggests that quantification of
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trabeculae in hypertrophic cardiomyopathy may add diagnostic or prognostic value in
these patients [4,5].

Magnetic resonance imaging (MRI) is the preferred modality for diagnosing LVNC,
providing high-resolution images that allow detailed visualization of myocardial structures.
Quantifying the degree of trabeculation is essential for diagnosing LVNC [6–9] and assess-
ing its severity, typically achieved by calculating the percentage of trabeculated myocardial
volume (see Section 1.4).

1.2. Evolution of Segmentation Methods

The accurate segmentation of the left ventricular myocardium is crucial for the reliable
quantification of trabeculated myocardial volume. Manual segmentation methods are pre-
cise; however, they are labor-intensive, time-consuming, and susceptible to inter-observer
variability. Consequently, there has been significant interest in developing automated
segmentation techniques utilizing computer vision algorithms. In an initial research study,
we proposed QLTVHC [10], a semi-automated software tool leveraging medical expertise.
QLTVHC was developed to quantify the extent of non-compaction using cardiac MRI.
This tool employed conventional computer vision techniques and required cardiologists to
adjust it manually. Afterwards, in order to improve QLTVHC, we proposed an automatic
tool called SOST [11] by applying a least squares adjustment.

Another way to automatically segment images is to use deep neural networks (DNNs).
Due to their ability to learn complex patterns directly from data, DNNs have been success-
fully applied across various scientific domains, including medical imaging [12–15]. DNNs
are considered foundational tools in modern artificial intelligence (AI) [16]. Consequently,
our subsequent step was to explore this approach by proposing DL-LVTQ [17]. DL-LVTQ
is an automated method based on a U-Net architecture designed specifically for the diagno-
sis of LVNC [17]. Using the fully automatic segmentation method of DL-LVTQ [17], we
showed that the U-Net model can accurately segment the left ventricle to detect LVNC [18].
However, the segmentations obtained, while promising, were not flawless, limiting our
ability to optimize the performance of our models.

In addition, to improve segmentation accuracy in myocardial images, we increased
the dataset size and tested more advanced neural network architectures such as MSA-
UNet, AttUNet, and U-Net++ [18]. We also implemented a clustering algorithm to reduce
hallucinations [18]. However, our best results reached a Dice score of 0.87 in the Trabecular
Zone on a particular subset of the dataset (P).

1.3. Proposed Approach and Objectives

Our previous work showed us the potential of semi-automatic segmentation methods
in improving both the diagnosis of LVNC and the segmentation images used for training
these models. Due to the complexity of left ventricular trabeculations and the limitations of
fully automatic methods for creating training datasets, we believe that an approach that
combines the strengths of automatic segmentation with expert validation can improve
accuracy and efficiency.

Consequently, in this current study, we propose a new semi-automatic method to
further improve the quality of these segmentations. This new method combines user-
friendly interfaces with predictions from our existing neural network models. This method
allows for the refinement of segmentations with minimal manual intervention, achieving
an optimal balance between efficiency and accuracy.

The main aim of this paper is to enhance the accuracy and reliability of myocardial
image segmentation by improving the quality of the training datasets used for deep learn-
ing models. We design and implement a semi-automatic image correction framework
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that refines and corrects segmentations within the training data. This framework tackles
common issues such as incomplete border coloring, hallucinated structures, and general
inconsistencies by combining multiple neural network outputs with user intervention. To
achieve this, this work comprehends:

1. A Semi-Automatic Image Fixing Method: We create a cross-validation framework that
utilizes multiple neural network models to identify and correct errors in image seg-
mentation. Our aim is to propose a refined version for each image by identifying and
automatically correcting the areas of disagreement between the outputs of multiple
trained models. We manually validate and incorporate these corrections to establish
the blob-selection method.

2. An Image Fixer Program: We design and implement a user-friendly software tool
for interactive image segmentation correction. This tool displays the original seg-
mentation alongside the corrected version, highlighting differences and enabling
clinical experts to apply targeted adjustments efficiently. We refer to this process as
the manually fixed method.

3. An Image Selector Tool: We develop an application that presents multiple segmen-
tation options for a given image and allows users to select the most accurate one.
This tool facilitates subjective evaluation and selection and ensures that the final
segmentation used for diagnosis is the one with the highest quality.

Through these initiatives, we seek to refine existing segmentation methods by lever-
aging automated correction techniques and expert validation. By improving the training
dataset to better reflect the true myocardial segmentation, we develop more reliable models
for the LVNC diagnosis and contribute to better patient outcomes.

1.4. Left Ventricular Non-Compaction Cardiomyopathy (LVNC)

LVNC is diagnosed by quantifying the degree of trabeculation, which is essential for
even assessing its severity. To calculate the percentage of trabeculated myocardial volume,
we use the equation:

VT% =
TZ

TZ + EL
· 100 (1)

where TZ represents the volume of the trabeculated zone and EL denotes the volume of the
compact external layer. A threshold of 27.4% is commonly used as a diagnostic criterion [6],
with values above this indicating significant hypertrabeculation consistent with LVNC.

1.5. Semi-Automatic Segmentation Methods

Semi-automatic segmentation methods have gained widespread use in medical imag-
ing. For example, a semi-automatic approach to facial wrinkle detection reduces manual
effort while improving detection accuracy by focusing on intricate textures [19]. In bladder
cancer diagnosis, semi-automatic segmentation achieves results comparable to manual
methods, significantly reducing processing time [20]. Similarly, in dental imaging, a semi-
automatic coarse-to-fine segmentation method utilizing intuitive single clicks effectively
segments complex 3D tooth models, improving efficiency and accuracy over fully auto-
matic approaches [21]. The use of these methods in rectal cancer tumor segmentation
further highlights the growing preference for semi-automatic approaches, which streamline
workflows without compromising precision [22].

2. Materials and Methods
We developed a semi-automatic correction method to address segmentation errors in

a database of images, including issues such as incomplete border coloring, hallucinated
trabeculae in empty regions, and general inconsistencies.
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Although the images generated from the proposed method here are automatic, we call
it semi-automatic since many of the changes provided by these methods are not desired and
should, therefore, be sorted out. For this reason, we developed a user-friendly application
to refine and compare these segmentations efficiently.

2.1. Cross-Validation Method

The cross-validation method splits the dataset into five equal parts (called folds). For
each fold, one part is used as the validation set, while the remaining four are used to train
the neural network model. Figure 1 shows this method. This process is repeated five times,
with each part used as the validation set precisely once, resulting in a total of five neural
nets being trained.

For each image, we look at the four outputs of neural nets that have used that image
in the training dataset. For each pixel of that image, we look at the four outputs, and if
three of them contain the same output class, that will be the new value for that pixel; if not,
the value will remain the same as the original.

Figure 1. Cross-validation method.

Modifying only images in the training dataset allows the model to learn that image in
depth, making it unlikely to do any big changes, leading to more stable results than if we
did a normal cross-validation.

We use the baseline U-Net in this method due to the lengthy training times of neural
networks, with the same architecture applied across all training sets, as shown in Figure 2.
As the original segmentations were made at 800 × 800, we upscale our images to 800 × 800
but then cropped them to 384 × 384 to focus on the left ventricle. Our U-Net takes these
384 × 384 images as input, as the images are crop to focus on the left ventricle, eliminating
the need for additional downsampling. Each step of the encoder path includes two 3 × 3
convolutions with instance normalization and leaky ReLU (0.01 negative slope), followed by
a stride-two convolution to reduce spatial dimensions. The resulting network has different
filters in each convolutional block, ranging from 64 in the first layer to 1024 in the bottom
layer. The U-Net then outputs a segmentation map with the same 384 × 384 resolution,
with four channels representing each class’s probabilities.
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Figure 2. U-Net from [17] adapted to our use case.

This automated framework minimizes the need for manual segmentation adjustments
by offering modification suggestions to clinical experts, enabling them to identify patterns
that might otherwise go unnoticed.

2.2. Neural Nets Used for Testing

After fixing the images, we perform cross-validation with U-Net on train/val/test
sets. We train on full-sized 800 × 800 images to allow a fair comparison to the U-Net
model from our previous work [18]. We adopt the same architecture as the prior study
to handle these larger images effectively, incorporating additional layers designed to
process 800 × 800 inputs. This ensures both consistency in architecture and the capacity
to manage the increased resolution. First, images are downsampled to 200 × 200 using
two 3 × 3 convolutions with instance normalization and leaky ReLU activations (negative
slope 0.01), each with a stride of two, effectively halving each dimension. The model then
processes this 200 × 200 input and outputs at the same resolution.

To upscale back to 800 × 800 before the final output, we add a decoding layer compris-
ing two transposed convolutions (stride of two), each followed by two 3 × 3 convolutions
with instance normalization and leaky ReLU. This configuration restores the spatial resolu-
tion to 800 × 800, preparing the model for the final segmentation output.

2.3. Image Fixer

Now, the goal is to obtain a segmentation for our image that is closest to what we
believe to be as correct as possible. To facilitate this, we use two different segmenta-
tion methods.

This program presents two images as shown in Figure 3. The image on the left is
obtained from our previous method (QLVTHC), while the one on the right is obtained from
our neural networks (Section 2.1). The final output of our program is the segmentation on
the right.

We use a muted color scheme to make the colors distinguishable for colorblind people.
In the image on the right, the External Layer is olive green, the Internal Cavity is cyan, and
the Trabecular Zone is rose.

On the figure on the left, we mark the differences between both segmentations. This
way, where there is an External Layer on the left and something else on the right, we mark
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it with green. For additional Internal Cavity, we mark it with blue; for Trabeculae, we mark
it with wine red; for Background, we mark it with purple.

Figure 3. Initial interface for Image fixer.

The differences between both images can be leveraged for easy transformations of the
output image. The transformation is applied to the image on the right by simply clicking
one of the differences. For example, if we click a blob that is colored green on the left
(meaning an additional External Layer), an External Layer will appear in that zone of
the image on the right. Some of these blobs are very small, so you can select them by
right-clicking and dragging over them for ease of use.

Painting directly on the output image (the image on the right) is also possible. For
this, we select either BG (Background), EL (External Layer), IC (Internal Cavity), or TZ
(Trabecular Zone). Then, we simply left-click where we want to paint (as shown in Figure 4).

Figure 4. Painting Trabecular Zone on output image.

When we finish the image, we just save the image and go to the next image automati-
cally. However, if we want to restart the editing of the image, we can refresh it and erase
the modifications made.
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Finally, we can also toggle the segmentation which helps us view the borders’ coloring.
It is important to note that you can still paint when the image is toggled to the raw image.

2.4. Image Selector

This tool allows the user to select the most accurate segmentation for a given image
from three different segmentations. The process is designed as a blind test to ensure
an unbiased evaluation, allowing the user to choose the segmentation that most closely
represents reality.

The program presents four images on a grid, as shown in Figure 5. The raw image is
presented in the top-left corner, while the other three images are segmentations obtained
differently. These three images are randomly placed in each iteration to ensure that this is a
blind test.

On top of each image, we show the percentage of image trabeculation for the given
segmentation (Equation (1)).

Again, we use a muted color scheme to make the colors distinguishable for colorblind
people. The External Layer is olive, the Internal Cavity is cyan, and the Trabecular Zone
is rose.

Figure 5. Image selector interface.

To select an image, you have to left-click on the image, and then a green box appears
around the selected image (see Figure 6). On the right, we can choose a mark of 1–5,
indicating how good the image is. Table 1 shows the subjective evaluation scale proposed
in [23]. Finally, we can save it, which automatically brings up the next batch.

In addition, we can give feedback in the textbox on the left. We can also indicate
whether the quality of the image is bad by selecting the checkbox at the center top.

It is possible to zoom in on an image using the mouse wheel. It is also possible to
toggle between viewing each image as the raw image for easy comparison between borders.

The three images presented (see Figures 5 and 6) are obtained using the following
methods:

1. Original targets: QLVTHC output [11].
2. Blob-selection method: We compare the cross-validation method (Section 2.1) for

improving images to the QLVTHC method on the image fixer. We improve the images
only by choosing the best blobs based on their differences.
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3. Manually fixed method: We manually fix 100 images by coloring on the image fixer
(left-click). We perform the cross-validation method on these 100 fixed images and
continue manually fixing 400 more images using these outputs as a new base.

Table 1. Subjective evaluation scale proposed in [23].

Score Segmentation Quality

5.0 Exact match: there are no noticeable differences
4.5
4.0 Noticeable differences: they are not diagnostically significant
3.5
3.0 Small diagnostically significant differences
2.5
2.0 Significant diagnostic information is lost
1.5
1.0 Large diagnostically significant differences

Figure 6. Image selector with the bottom-left image selected.

2.5. Datasets

The datasets used in this study are derived from three hospitals: Virgen de la Arrixaca
of Murcia (HVAM), Mesa del Castillo of Murcia (HMCM), and Universitari Vall d’Hebron
of Barcelona (HUVHB). These hospitals provide the medical imaging data for the analysis
and contribute a variety of patient profiles that enrich the study.

HVAM operates two scanners, one from Philips and one from General Electric, with
a field strength of 1.5 T. The acquisition matrices for these scanners are 256 × 256 pix-
els and 224 × 224 pixels, respectively, with pixel spacing of 1.5 × 1.5 × 0.8 mm and
1.75 × 1.75 × 0.8 mm. HMCM uses a General Electric model scanner identical to HVAM’s,
while HUVHB utilizes a 1.5 T Siemens Avanto scanner with an acquisition matrix of
224 × 224 pixels. For all institutions, the images were captured using balanced steady-state
free precision (b-SSFP) sequences. The primary parameters for the scans, including echo
time (1.7 ms), flip angle (60º), slice thickness (8 mm), slice gap (2 mm), and 20 imaging
phases, were consistent across all hospitals. All patients underwent the scans while in
apnea, synchronized with ECG, and without using contrast agents.

The original dataset comprises data from three subsets: P, X, and H. Set P, from HVAM,
consists of 293 patients (2381 slices) with hypertrophic cardiomyopathy (HCM). Set X,
from HMCM, includes 58 patients (467 slices) with various heart conditions, including
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HCM. Finally, set H, from HUVHB, comprises 28 patients (196 slices) diagnosed with left
ventricular non-compaction cardiomyopathy (LVNC) according to the Petersen criteria.

Given the time-intensive nature of manual segmentation methods, we use a represen-
tative subset of 545 modified segmentations from the original dataset. This subset includes
355 slices from the P dataset, 75 from the X dataset, and 115 from the H dataset. The
selection process ensures that the larger dataset’s diversity of heart conditions and image
characteristics is still adequately represented in the smaller subset.

To enable comparison with the results of our previous U-Net model, we train our new
models using a train/validation/test split. From our dataset of 545 images, we retain the
113 images used as a test in our prior work [18]. The remaining 432 images were divided
into 5 non-overlapping folds, ensuring no patient data were shared between folds, allowing
us to create a cross-validation dataset. For the creation of these training folds, 297 images
were from P, 53 from X, and 82 from H, while for testing, 58 were from P, 22 from X, and 33
were from H.

3. Results
This section presents the results obtained by applying the blob-selection and manual

correction methods to the segmentation tasks. First, we compare the performance of these
methods against the original segmentation targets.

3.1. Comparison Between Models Generated by the Datasets

To determine whether modifying the dataset has led to improvements in the test Dice
scores, we evaluated the cross-validation U-Nets from [18] and compared them to cross-
validation U-Nets trained on the adjusted datasets. Specifically, we trained five U-Nets for
the blob-selection and manually fixed methods, evaluating each model on test images from
their respective datasets. The results of these evaluations are shown in Tables 2–4.

Table 2. Dice coefficients from the U-Net in [18] on its images from our test set.

Population Dice EL Dice IC Dice TZ Average Dice

P 0.90 ± 0.02 0.963 ± 0.002 0.87 ± 0.01 0.91 ± 0.01

X 0.88 ± 0.02 0.967 ± 0.003 0.87 ± 0.003 0.90 ± 0.01

H 0.89 ± 0.01 0.937 ± 0.003 0.82 ± 0.01 0.88 ± 0.01

Table 3. Dice coefficients from the U-Net trained on blob-selection images on its test set.

Population EL IC TZ Media

P 0.928 ± 0.004 0.97 ± 0.01 0.895 ± 0.004 0.930 ± 0.004

X 0.90 ± 0.01 0.97 ± 0.01 0.87 ± 0.01 0.91 ± 0.01

H 0.90 ± 0.01 0.95 ± 0.01 0.87 ± 0.02 0.91 ± 0.01

Table 4. Dice coefficients from the U-Net trained on manually fixed images on its test set.

Population EL IC TZ Media

P 0.91 ± 0.01 0.966 ± 0.004 0.89 ± 0.02 0.92 ± 0.01

X 0.88 ± 0.02 0.97 ± 0.01 0.87 ± 0.02 0.90 ± 0.01

H 0.87 ± 0.02 0.93 ± 0.01 0.88 ± 0.02 0.89 ± 0.02
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3.2. Dataset Comparison with Original Segmentation Targets

We evaluate the performance of both the blob-selection and manual correction methods
by comparing their resulting segmentations with the original segmentation targets using
the Dice coefficient. Tables 5 and 6 show the average Dice coefficients for each method
across the three populations: P, X, and H.

Table 5. Dice coefficients comparing original segmentation targets with those obtained using the
blob-selection method.

Population Dice EL Dice IC Dice TZ Average Dice

P 0.94 ± 0.02 0.98 ± 0.02 0.91 ± 0.04 0.94 ± 0.04

X 0.93 ± 0.02 0.98 ± 0.01 0.90 ± 0.03 0.94 ± 0.03

H 0.93 ± 0.02 0.95 ± 0.03 0.86 ± 0.05 0.92 ± 0.05

Table 6. Dice coefficients comparing original segmentation targets with those obtained through
manual correction.

Population Dice EL Dice IC Dice TZ Average Dice

P 0.89 ± 0.03 0.94 ± 0.03 0.85 ± 0.05 0.89 ± 0.03

X 0.84 ± 0.05 0.95 ± 0.02 0.82 ± 0.05 0.87 ± 0.04

H 0.85 ± 0.04 0.88 ± 0.05 0.75 ± 0.05 0.80 ± 0.10

3.3. Comparison Between Blob-Selection and Manual Correction Methods

To assess how closely the blob-selection method approximates the manual corrections,
we directly compare the segmentations from both methods, as shown in Table 7, with the
corresponding Dice coefficients from this comparison.

Table 7. Dice coefficients comparing the blob-selection method with the manual correction method.

Population Dice EL Dice IC Dice TZ Average Dice

P 0.91 ± 0.03 0.95 ± 0.02 0.87 ± 0.02 0.90 ± 0.03

X 0.88 ± 0.04 0.96 ± 0.02 0.85 ± 0.02 0.90 ± 0.03

H 0.87 ± 0.03 0.90 ± 0.05 0.80 ± 0.06 0.84 ± 0.08

4. Discussion
As shown in Table 2, the baseline U-Net model achieves Dice coefficients ranging

from 0.82 to 0.87 for the Trabecular Zone. In comparison, the blob-selection and manually
fixed methods (Tables 3 and 4) exhibit improved Dice coefficients, with increases of up
to 0.06 for the H population. This improvement is particularly noteworthy given that
the baseline model was trained with seven times more data per neural network than the
adjusted models. Despite having less training data, the blob-selection and manual methods
yield higher accuracy and stability, especially in regions like the Trabecular Zone. For the P
population, both methods achieve a 0.02 increase in Dice coefficients. However, for the X
Trabecular Zone, no improvement is observed, potentially due to the lower representation
of X images within the 432 images used in the training sets.

The blob-selection method consistently outperforms both the baseline and the man-
ually fixed method, though the difference with the latter is slight. This is because the
blob-selection method only allows changes proposed by the cross-validation method,
which tends to homogenize results. While this approach reduces variability, it may also
exclude changes that would increase accuracy by correctly capturing variations.
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Modifying an image using the blob-selection method takes approximately 20 to 30 s,
while manual correction requires around 2 to 3 min per image. This significant difference
indicates that the blob-selection method is much more efficient in terms of time.

Table 5 shows that the blob-selection method achieves high Dice coefficients across all
populations, with average values around 0.94. In contrast, the manual correction method
yields lower Dice coefficients, as shown in Table 6, with average values ranging from 0.80 to
0.89. The higher Dice coefficients for the blob-selection method indicate a closer similarity
to the original segmentation targets. This is expected because the blob-selection method
makes more conservative adjustments, while the manual correction method allows for
more significant modifications that may deviate further from the original targets.

The results in Table 7 indicate a slight improvement in Dice coefficients for the blob-
selection method compared to those of the manual correction method and the original
targets (Table 6). This slight increase of approximately 0.03 suggests that the blob-selection
method aligns segmentations closer to the desired outcomes. However, the difference may
not be substantial enough to fully correct the images on its own.

Given the balance between accuracy and efficiency, a mixed-method approach could
benefit larger datasets. Initially, a subset of images could be manually corrected to create
a robust foundational model, enhancing cross-validation predictions. Subsequently, the
remaining images could primarily utilize the blob-selection method, with manual adjust-
ments as necessary. This approach not only ensures data quality and optimizes resource
allocation but also leverages the strengths of both methods: the automatic blob-selection
method provides a rapid and reliable baseline, while expert manual adjustments further
refine the dataset, maintaining both high accuracy and flexibility for future modifications.

5. Conclusions
This paper enhances the approach to diagnosing left ventricular non-compaction

cardiomyopathy (LVNC) by introducing a semi-automatic framework designed to improve
the quality of segmentations in training datasets, ultimately yielding more robust models.
Utilizing cross-validation with multiple neural networks, the framework includes tools
such as the Image Fixer and Image Selector to refine segmentation quality within the
training dataset. This approach addresses a primary bottleneck in model effectiveness: the
quality of input segmentations.

Our results demonstrate that improving segmentation quality in the training data
substantially impacts the effectiveness of neural network models. Notably, despite being
trained on datasets with seven times fewer images per neural network than the baseline
model, the models trained on adjusted datasets using the blob-selection and manual
correction methods achieved superior performance.

The fast image modification method (blob-selection method) led to an alignment
improvement of approximately 0.03 in the average Dice coefficient. This leaves significant
room for improvement, making it necessary to first create good segmentations via the
proposed manual method.

We intend to provide clinicians with the Image Fixer tool, allowing them to refine the
automatically generated segmentation immediately after receiving it, as needed. This could
potentially improve both the efficiency and accuracy of future model training datasets.
Once we apply these methods to all the images, we anticipate a significantly improved
model, as previous papers have shown that more data leads to better, more robust models.
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