
UNIVERSIDAD DE MURCIA
ESCUELA INTERNACIONAL DE DOCTORADO

TESIS DOCTORAL

Distributed Technologies in Identity Management:
An Approach to Enhancing Security and Privacy

Tecnoloǵıas de identidad distribuidas: Un enfoque
para mejorar la seguridad y la privacidad

D. Rafael Torres Moreno
2024

UNIVERSIDAD DE MURCIA
ESCUELA INTERNACIONAL DE DOCTORADO

TESIS DOCTORAL

Distributed Technologies in Identity Management:
An Approach to Enhancing Security and Privacy

Tecnoloǵıas de identidad distribuidas: Un enfoque
para mejorar la seguridad y la privacidad

Autor: D. Rafael Torres Moreno

Directores: Dr. Antonio F. Skarmeta Gómez y
Dr. Jorge Bernal Bernabé

DECLARACIÓN DE AUTORÍA Y ORIGINALIDAD

DE LA TESIS PRESENTADA PARA OBTENER EL TÍTULO DE DOCTOR
Aprobado por la Comisión General de Doctorado el 19-10-2022

D./Dña. Rafael Torres Moreno

doctorando del Programa de Doctorado en

 Programa de doctorado en Informática

de la Escuela Internacional de Doctorado de la Universidad Murcia, como autor/a de la tesis presentada

para la obtención del título de Doctor y titulada:

 Tecnologías de identidad distribuidas: Un enfoque para mejorar la seguridad y la privacidad //

Distributed Technologies in Identity Management: An Approach to Enhancing Security and Privacy

y dirigida por,

D./Dña. Antonio F. Skarmeta Gómez

D./Dña. Jorge Bernal Bernábé

D./Dña.

DECLARO QUE:

La tesis es una obra original que no infringe los derechos de propiedad intelectual ni los derechos de

propiedad industrial u otros, de acuerdo con el ordenamiento jurídico vigente, en particular, la Ley de

Propiedad Intelectual (R.D. legislativo 1/1996, de 12 de abril, por el que se aprueba el texto refundido de la

Ley de Propiedad Intelectual, modificado por la Ley 2/2019, de 1 de marzo, regularizando, aclarando y

armonizando las disposiciones legales vigentes sobre la materia), en particular, las disposiciones referidas al

derecho de cita, cuando se han utilizado sus resultados o publicaciones.
Si la tesis hubiera sido autorizada como tesis por compendio de publicaciones o incluyese 1 o 2 publicaciones (como prevé el artículo 29.8 del
reglamento), declarar que cuenta con:

• La aceptación por escrito de los coautores de las publicaciones de que el doctorando las presente como parte de la tesis.

• En su caso, la renuncia por escrito de los coautores no doctores de dichos trabajos a presentarlos como parte de otras tesis

doctorales en la Universidad de Murcia o en cualquier otra universidad.

Del mismo modo, asumo ante la Universidad cualquier responsabilidad que pudiera derivarse de la autoría o

falta de originalidad del contenido de la tesis presentada, en caso de plagio, de conformidad con el

ordenamiento jurídico vigente.

En Murcia, a 12 de Septiembre de 2024

Fdo.: Rafael Torres Moreno

Esta DECLARACIÓN DE AUTORÍA Y ORIGINALIDAD debe ser insertada en la primera página de la tesis presentada para la obtención del título de Doctor.

 Información básica sobre protección de sus datos personales aportados

Responsable:
Universidad de Murcia.
Avenida teniente Flomesta, 5. Edificio de la Convalecencia. 30003; Murcia.
Delegado de Protección de Datos: dpd@um.es

Legitimación: La Universidad de Murcia se encuentra legitimada para el tratamiento de sus datos por ser necesario para el cumplimiento de una obligación

legal aplicable al responsable del tratamiento. art. 6.1.c) del Reglamento General de Protección de Datos
Finalidad: Gestionar su declaración de autoría y originalidad
Destinatarios: No se prevén comunicaciones de datos

Derechos:
Los interesados pueden ejercer sus derechos de acceso, rectificación, cancelación, oposición, limitación del tratamiento, olvido y portabilidad

a través del procedimiento establecido a tal efecto en el Registro Electrónico o mediante la presentación de la correspondiente solicitud en las

Oficinas de Asistencia en Materia de Registro de la Universidad de Murcia

A mi mujer, Luna y a mis padres.

No te rindas que la vida es eso,
continuar el viaje,

perseguir tus sueños,
destrabar el tiempo,

correr los escombros y
destapar el cielo.

Mario Benedetti

Agradecimientos

Quisiera expresar mi más sincero agradecimiento a mis directores de tesis, Antonio y Jorge, no sólo por
permitirme desarrollar un este trabajo de investigación sino también por el apoyo y la paciencia que han
demostrado estos años. Gracias por permitirme ser parte de un equipo tan espectacular. Su dedicación y
esfuerzo en los proyectos de investigación internacionales han sido una fuente de inspiración y aprendizaje
constante. Estoy enormemente agradecido por su tiempo, sus directrices y sus consejo. El trabajo realizado
y contenido en esta tesis es una prueba irrefutable y extensa de su incansable labor y excelencia profesional.

Doy gracias a mis padres, porque vuestro ejemplo siempre me ha empujado a levantarme una y mil
veces. Porque sigo siendo aquel cŕıo que jugaba (no siempre acertadamente) a desmontar cualquier cacharro
que cayese en mis manos. Al final jugar a los ”marcianos”se ha convertido, además de un hobby, en mi
profesión aśı que podemos decir esto era un camino prácticamente inevitable empezando desde Calasparra,
donde descubŕı aquel Prince of Persia en disquetes (todo un reto) hasta ahora, que sigo jugando aunque
con equipos algo más complejos.

Agradecer a mi pareja, Luna, la paciencia y confianza depositada en mı́ incluso cuando ni yo mismo
créıa que esto fuera posible. Gracias por acompañarme en este proceso que ha sido increible pero también
extremadamente exigente en lo psicológico. Gracias por no rendirte y por evitar que yo lo hiciera.

También quisiera agradecer a todos mis amigos y compañeros de Dibulibu, T3, Gaia ... Gracias a
vosotros, al ambiente que generáis todo este proceso se convierte en algo mucho más ameno, divertido
y enriquecedor. En especial, me gustaŕıa dar las gracias a Jesús y Agust́ın, que además de dos personas
maravillośısimas han estado al pie del cañón en toda circusntancia, sacando adelante el trabajo en toda
circunstancia.

No en vano, quiero agradecer a todas las personas que en mi d́ıa a d́ıa me rodean por haberme acom-
pañado en este árduo proceso que no siempre me haćıa ser la mejor compañ́ıa. A todos los que me han
sacado una sonrisa pese a todo y contra todo.

Finalmente, agradecer mis profesores en esta facultad su gúıa durante toda la etapa universitaria e
investigadora. Especialmente a Antonio Skármeta, por permitirme iniciarme en este mundo pero, también,
a Pedro Miguel, Gabi, Rafa, Antonio Ruiz y Fran Ros, a quienes debo el mantener con vida ese gusanillo
por aprender algo más, algo distinto y a ponerlo en práctica. Gracias por todo.

Agradezco a todos aquellos que han contribuido a mi viaje, pues sin su apoyo, mis logros seŕıan solo
sueños no realizados.

Isaac Asimov

vii

viii

Contents

List of Figures . x
List of Tables . xii
List of Acronyms . xiii

1. Introduction 1
1.1. Contextualization . 1
1.2. Motivation and problem statement . 3
1.3. Objective of this thesis . 4
1.4. Contributions . 5
1.5. Thesis structure . 7
1.6. Related publications . 7

2. Background and State of the Art 15
2.1. Identity management with enhanced privacy 15
2.2. Distributed ledger technologies . 30

2.2.1. Identity management in distributed ledger technologies 39
2.3. Innovative identity management projects 45

2.3.1. ARIES: reliAble euRopean Identity EcoSystem 45
2.3.2. ABC4Trust . 49
2.3.3. PrimeLife . 52

2.4. Conclusions . 54

3. Privacy-preserving distributed identity management 59
3.1. Introduction . 59
3.2. Concept . 60
3.3. Objectives and requirements . 62
3.4. Processes and architecture . 64

3.4.1. Overview . 64
3.4.2. Architecture . 67
3.4.3. Process definition . 69

3.5. Conclusions . 76
3.5.1. Primary Goals and Objectives 76
3.5.2. Technological Underpinnings . 76
3.5.3. Anticipated Impacts . 77

ix

x Contents

3.5.4. Encountered Challenges . 77
3.5.5. Contemplated Drawbacks . 77

4. DLT-enabled identity management system with enhanced trust 79
4.1. Introduction . 79
4.2. Concept . 81
4.3. Objectives and requirements . 82
4.4. Processes and architecture . 84

4.4.1. Overview . 84
4.4.2. Architecture . 85
4.4.3. Process definition . 90

4.5. Conclusions . 97
4.5.1. Core Objectives Revisited . 98
4.5.2. Technological Advancements . 98
4.5.3. Potential Impacts and Challenges 98
4.5.4. Anticipated Drawbacks . 99

5. Implementation and results 101
5.1. Introduction . 101

5.1.1. Overview of the System Architecture 101
5.2. General implementation details . 103

5.2.1. Non-DLT enabled, distributed identity provider 103
5.2.2. DLT enabled distributed identity provider 113

5.3. Use cases . 120
5.3.1. The pandemic booking . 120
5.3.2. The smart city . 127

5.4. Conclusions . 136
5.4.1. Benefits and Impact . 136
5.4.2. Performance results . 139

6. Conclusions and Future Work 147
6.1. Conclusions . 147

6.1.1. Relation to Objectives . 147
6.1.2. Chapter Summaries . 148
6.1.3. Summary of Work Done . 149

6.2. Future Work . 150

7. Bibliography 157

List of Figures

2.1. IdM Entities relation . 17
2.2. IdM Typical topologies . 17
2.3. OpenID entities . 18
2.4. OpenID example flow . 18
2.5. OAuth 1.0 vs OAuth 2.0 . 20
2.6. OAuth entities . 21
2.7. OAuth Authorization code flow . 22
2.8. OIDC flow . 23
2.9. SAML entities . 24
2.10. SSO web browser profile . 25
2.11. Enhanced client profile . 26
2.12. PKI Entities . 27
2.13. P-ABC scenario . 29
2.14. DLT nodes and domains example . 31
2.15. Blockchain block overview . 32
2.16. Hashgraph vs Blockchain . 35
2.17. Direct acyclic graph . 36
2.18. Holochain vs Blockchain . 37
2.19. RADIX vs Blockchain . 38
2.20. Sovrin overview . 40
2.21. uPort overview . 41
2.22. Shocard overview . 42
2.23. Detailed Architecture of Hyperledger Aries 44
2.24. ARIES overview [1] . 46
2.25. ABC4Trust overview [2] . 49

3.1. Conceptual idea . 61
3.2. Overview of the distributed identity management system 66
3.3. Distributed password high level . 67
3.4. Distributed identity management system 69
3.5. Distributed password verification process 71
3.6. Distributed Token Generation (DTG) based on Distributed Signature

(DSIG) . 72

xi

xii List of Figures

3.7. Distributed credential process flow . 75

4.1. Conceptual idea . 82
4.2. DLT enabled IdM evolution proposal 84
4.3. DLT enabled IdM evolution, Phase 1 - Registration 85
4.4. DLT enabled IdM evolution, Phase 2 - Identity Management 86
4.5. Registration phase . 90
4.6. Service provider auto-setup . 91
4.7. User client setup . 92
4.8. User client usage . 93

5.1. Hyperledger fabric channels . 115
5.2. Booking scenario . 122
5.3. Online reservation flow . 124
5.4. Login and reservation demo . 124
5.5. Configuration of OIDC SP . 125
5.6. Online reservation flow . 125
5.7. App, attribute reveal information . 126
5.8. Generic scenario . 129
5.9. Smart City Scenario . 130
5.10. Client auto-configuration . 133
5.11. Client credential gathering . 134
5.12. Client interaction with services . 135
5.13. Policy warning . 136
5.14. User Authentication TPS Comparison 139
5.15. Transaction Throughput TPS Comparison 140
5.16. Average Response Time Comparison 141
5.17. Scalability Comparison . 142
5.18. Verifier and APP Setup Times . 143
5.19. Transaction Throughput Comparison 143
5.20. Average Response Time Comparison 144
5.21. Scalability Comparison . 144
5.22. Verifiable Presentation Generation and Verification 145
5.23. Latency Under Peak Load Comparison 146
5.24. Resource Utilization Comparison . 146

6.1. Estimated TPS Improvement with Different Techniques 150
6.2. Projected Interoperability Score over Time 151
6.3. Projected Privacy Protection Level over Time 152
6.4. Projected Compliance Readiness over Time 153

List of Tables

3.1. Security and privacy requirements . 63
3.2. Usability requirements . 64

4.1. Ledger requirements . 83

xiii

xiv List of Tables

Abbreviations

AAA Authentication, Authorization and Accounting
ACID Atomicity, Consistency, Isolation and Durability
AP Attribute Provider
BFT Byzantine fault tolerance
CSR Certificate signing request
DAG Directed acyclic graph
DB Database
DCI Distributed Credential Issuance
DDoS Denial of Service attack
DIP Distributed Identity Provider
DLT Distributed Ledger Technologies
dP-ABC Distributed Private Attribute Based Credential
DPV Distributed Password Verification
DTG Distributed Token Generation
GDPR General Data Protection Regulation
IdM Identity Management
IdP Identity Provider
IoT Internet of Things
JSON JavaScript Object Notation
JWKS JSON Web Key Set
JWT JSON web token
OIDC OpenID connect
OTP One-time password
P-ABC Private Attribute Based Credential
PASTA PAssword-based Threshold Authentication
PDP Policy Decision Point
pIdP Partial Identity Provider
PIN Personal Identification Number
PoC Proof of Concept
PRF Pseudorandom Function
OPRF Oblivious Pseudorandom Function
RP Relying Party
SaaS Software as a Service

xv

xvi List of Tables

SAML Simple Assertion Markup Language
SP Service Provider
vIdP Virtual Identity Provider
XACML eXtensible Access Control Markup Language
XML Extensible Markup Language
SLA Service level agreement

Resumen

La era de la información se caracterizada por una rápida expansión digital y una
conectividad global sin precedentes, el concepto de identidad digital ha adquirido una
relevancia crucial. La identidad digital se refiere a la representación en ĺınea de una
persona, la cual se ha convertido en un componente esencial de nuestra vida cotidiana,
tanto en el ámbito personal como profesional. Esta representación digital no solo abarca
datos personales básicos, sino también información más compleja que puede incluir
hábitos de navegación, preferencias, interacciones sociales y transacciones financieras.

El contexto actual está definido por una creciente dependencia de plataformas
digitales para realizar actividades diarias, desde la comunicación hasta las transacciones
financieras y la gestión de servicios gubernamentales. Sin embargo, esta transformación
también ha introducido desaf́ıos significativos en la gestión y protección de la identidad
digital. Los modelos tradicionales de gestión de identidad, que se basan en estructuras
centralizadas, han demostrado ser inadecuados para enfrentar los desaf́ıos emergentes.
Estas estructuras centralizadas, en las que un único proveedor o entidad controla y
almacena la identidad digital del usuario, se enfrentan a problemas de escalabilidad y
seguridad, exacerbados por el ritmo acelerado de innovación tecnológica y el incremento
en las preocupaciones sobre privacidad.

La gestión de identidad digital tradicional, que históricamente ha funcionado bajo
un esquema de confianza centralizada, se encuentra en un punto cŕıtico. Estos sistemas,
aunque fundamentales en la infraestructura digital actual, han evolucionado de manera
lenta y no han logrado adaptarse adecuadamente a los crecientes requisitos de privacidad
y seguridad. A medida que los usuarios se vuelven más conscientes de los riesgos asociados
con la exposición de sus datos personales y la forma en que estos datos son utilizados,
las fallas inherentes en los sistemas centralizados se hacen más evidentes.

Una de las principales debilidades de estos sistemas es la concentración de confianza
en una única entidad, lo que aumenta el riesgo de ataques y violaciones de seguridad.
Este modelo centralizado no solo agrava los problemas de seguridad, sino que también
puede llevar a la explotación indebida de datos sensibles. La falta de herramientas
adecuadas para permitir a los usuarios gestionar de forma efectiva su privacidad, junto
con la explotación lucrativa y a menudo invasiva de datos personales, ha generado una
creciente preocupación sobre la seguridad de la identidad digital.

En este contexto, el crecimiento exponencial de los servicios en ĺınea y la expansión
del Internet de las Cosas (IoT) han introducido nuevos desaf́ıos y oportunidades. El
IoT, con su capacidad para conectar una amplia gama de dispositivos y recopilar datos

xvii

xviii List of Tables

en tiempo real, plantea preguntas cruciales sobre la privacidad y la seguridad. Los
sistemas actuales de gestión de identidad deben evolucionar para enfrentar estos desaf́ıos
y proporcionar soluciones innovadoras que garanticen una protección efectiva en un
entorno hiperconectado.

Las tecnoloǵıas descentralizadas, como Blockchain y otras tecnoloǵıas de libro mayor
distribuido (DLT, por sus siglas en inglés), emergen como respuestas prometedoras
a los problemas asociados con los sistemas centralizados. Estas tecnoloǵıas ofrecen
una estructura en la que la confianza se distribuye entre múltiples nodos en lugar de
depender de un único punto central. Esta descentralización tiene el potencial de abordar
muchas de las deficiencias de los sistemas tradicionales, ofreciendo mejoras en términos
de seguridad, transparencia y control sobre los datos personales. No obstante, estas
tecnoloǵıas aún enfrentan desaf́ıos significativos, incluyendo problemas de privacidad, la
gestión de claves y la interoperabilidad con estándares existentes.

Los sistemas de identidad autosoberana (SSI, por sus siglas en inglés) representan
una evolución crucial en la gestión de identidad. Estos sistemas permiten a los usuarios
mantener el control total sobre sus datos personales, reduciendo la dependencia de
proveedores centralizados y, por ende, los riesgos asociados con ellos. Los sistemas SSI
promueven un modelo en el que los usuarios pueden gestionar, compartir y verificar
su identidad de manera segura y eficiente, sin la intervención de intermediarios que
podŕıan comprometer su privacidad.

Esta tesis se enfoca en explorar la evolución hacia un modelo de gestión de identidad
descentralizado, que aproveche las tecnoloǵıas de privacidad y DLT para ofrecer una
solución más segura, robusta y confiable. El objetivo es mitigar los riesgos inherentes
a los sistemas actuales, tales como el fraude y la suplantación de identidad, y mejo-
rar la confianza en la infraestructura tecnológica mediante un enfoque basado en la
descentralización y la autosuficiencia.

En suma, esta investigación se centra en cómo las innovaciones tecnológicas pueden
transformar la gestión de identidad digital, abordando las deficiencias de los sistemas
existentes y estableciendo un nuevo estándar en términos de seguridad, privacidad y
confianza.

Motivación

La necesidad de una evolución en los sistemas de gestión de identidad es impulsada
por el crecimiento continuo de los servicios en ĺınea y la expansión del Internet de las
Cosas (IoT). Los sistemas tradicionales de IdM, como los basados en X.509 y Single
Sign-On (SSO), han demostrado ser inadecuados para enfrentar los desaf́ıos modernos
de privacidad, seguridad y confianza. Estos sistemas, aunque ampliamente utilizados,
presentan limitaciones significativas que afectan la protección de los datos personales y
la capacidad de los usuarios para controlar su identidad digital.

Uno de los problemas principales con los sistemas tradicionales es la centralización
de la confianza en un único proveedor de identidad. Este modelo centralizado no solo

List of Tables xix

aumenta el riesgo de ataques y violaciones de seguridad, sino que también deja los datos
personales expuestos a un control y potencial mal uso por parte de una sola entidad.
Además, la falta de herramientas efectivas para proteger la privacidad de los usuarios y
evitar el rastreo por parte de los proveedores de identidad es una preocupación creciente.

Las tecnoloǵıas emergentes basadas en Blockchain y DLT ofrecen un enfoque alter-
nativo que distribuye la confianza entre múltiples nodos en lugar de centralizarla. Este
enfoque descentralizado tiene el potencial de abordar muchas de las deficiencias de los
sistemas tradicionales, al reducir el riesgo de ataques únicos y mejorar la transparencia.
Sin embargo, estas tecnoloǵıas aún no han alcanzado un nivel de madurez que permita
su adopción generalizada como soluciones completas para la gestión de identidad.

El principal desaf́ıo es construir un ecosistema robusto y completo que pueda integrar
estas tecnoloǵıas de manera efectiva. A pesar de los avances en la implementación de so-
luciones como Shocard y Serto, estos sistemas todav́ıa enfrentan problemas relacionados
con la gestión de claves, la privacidad y la interoperabilidad con estándares existentes.
Para que un sistema de gestión de identidad descentralizado sea viable, debe cumplir
con una serie de requisitos clave que aseguren la protección de los datos personales, la
privacidad del usuario y la confianza en la infraestructura tecnológica.

Entre los requisitos principales para un sistema moderno de gestión de identidad se
encuentran:

R1 Minimización de datos: Es crucial procesar y almacenar los datos personales de
manera adecuada y limitada, evitando la recopilación y retención innecesaria de
información.

R2 Prevención del rastreo: El sistema debe prevenir que los proveedores de identidad
rastreen y monitoreen a los usuarios a través de sus actividades en ĺınea.

R3 Mejora de la confianza: Se debe permitir una verificación confiable de las iden-
tidades dentro de la infraestructura existente, garantizando que las identidades
digitales sean auténticas y verificables.

R4 Minimización de hardware: La solución debe evitar la necesidad de hardware
espećıfico para su adopción generalizada, permitiendo una implementación amplia
y accesible.

R5 Integración con estándares existentes: El sistema debe ser compatible con tecno-
loǵıas y estándares existentes como OpenID, OAuth y SAML, para facilitar su
integración con soluciones preexistentes.

R6 Transparencia: Debe informar claramente sobre cómo se protegen los datos perso-
nales y cómo se utilizan las tecnoloǵıas para garantizar la privacidad.

R7 Usabilidad: La experiencia de usuario debe ser comparable a las soluciones más
adoptadas actualmente, asegurando que la implementación de nuevas tecnoloǵıas
no afecte negativamente la facilidad de uso.

xx List of Tables

R8 Cumplimiento normativo: Es fundamental que el sistema cumpla con las regu-
laciones de protección de datos, como el Reglamento General de Protección de
Datos (GDPR), para garantizar el respeto a los derechos de los usuarios.

Estos requisitos buscan crear un sistema de gestión de identidad que equilibre priva-
cidad, seguridad y funcionalidad, satisfaciendo las demandas de usuarios, proveedores y
reguladores. La implementación efectiva de estos requisitos es esencial para desarrollar
una solución que pueda abordar las deficiencias de los sistemas actuales y proporcionar
una gestión de identidad digital robusta y confiable.

Objetivos y Metodoloǵıa
El análisis de las soluciones actuales para la gestión de identidad revela tanto

logros significativos como áreas cŕıticas que requieren mejoras. Aunque los enfoques
actuales han logrado avances notables, también presentan deficiencias y oportunidades
de mejora en términos de privacidad, confianza y seguridad. Estas deficiencias están
particularmente relacionadas con los requisitos R1, R2, R3 y R8, los cuales ofrecen un
área rica para investigaciones y mejoras adicionales.

El objetivo principal de esta tesis es abordar estas deficiencias y proporcionar una
solución integral para la gestión de identidad digital que incorpore caracteŕısticas
avanzadas de privacidad, confianza y seguridad. El objetivo se puede expresar de la
siguiente manera:

Analizar, diseñar y validar soluciones para la gestión de identidad digital
que incluyan caracteŕısticas avanzadas de privacidad, confianza y seguri-
dad, manteniendo o mejorando los niveles de seguridad de las soluciones
existentes, sin perjudicar la usabilidad y alineadas con las regulaciones de
protección de datos personales.

El objetivo prioritario es ofrecer un sistema integral de gestión de identidad que
permita una mejor gestión de la privacidad, evite comportamientos abusivos como el
rastreo de usuarios, e integre mecanismos de confianza para validar las interacciones entre
diferentes entidades. Idealmente, se busca reemplazar los sistemas actuales de gestión
de identidad con una solución que preserve completamente la privacidad, permitiendo
a los usuarios tener control sobre sus datos y herramientas para verificar la confianza
en los diferentes servicios y proveedores de identidad. Además, se pretende reducir la
influencia del proveedor de identidad, dejándolo solo como facilitador del material de
autenticación, sin conocer para qué servicio está destinado ni siendo capaz de suplantar
la identidad de los usuarios en caso de ser comprometido. Este es un objetivo ideal, ya
que se reconoce la dificultad de establecer un objetivo tan ambicioso en el que actores
poderosos como los proveedores de identidad perdeŕıan influencia y capacidad comercial
en favor de los usuarios.

List of Tables xxi

La metodoloǵıa propuesta para alcanzar estos objetivos se basa en un enfoque
sistemático y estructurado, dividido en seis objetivos espećıficos que se detallan a
continuación:

O1 Analizar y estudiar las caracteŕısticas y restricciones presentes en los
sistemas actuales de gestión de identidad: El primer paso en la metodoloǵıa
es realizar un análisis exhaustivo de los sistemas de gestión de identidad existentes.
Esto incluye la identificación de problemas, limitaciones y desaf́ıos asociados con
los sistemas tradicionales. Se realizará una revisión de literatura detallada y se
evaluarán las caracteŕısticas de sistemas como X.509 y SSO, aśı como las soluciones
emergentes basadas en Blockchain. El objetivo es compilar una lista comprensiva
de problemas a considerar en el diseño de nuevas soluciones.

O2 Analizar y estudiar los principales usos de las tecnoloǵıas DLT y sus
mecanismos asociados: Se llevará a cabo una investigación detallada sobre
las tecnoloǵıas DLT y su aplicación en sistemas de gestión de identidad. Esto
incluye la evaluación de cómo las tecnoloǵıas como Blockchain pueden mejorar la
confianza y la seguridad en la gestión de identidad. Se investigarán las diferentes
implementaciones y se analizarán sus mecanismos para determinar su aplicabilidad
y eficacia en el contexto de la gestión de identidad.

O3 Analizar las principales implementaciones actuales de las tecnoloǵıas
DLT: Es fundamental estudiar las principales implementaciones actuales de las
tecnoloǵıas DLT, como Shocard y Serto. Se evaluarán sus fortalezas, limitaciones
y casos de uso para comprender cómo han abordado los desaf́ıos de la gestión
de identidad y qué áreas requieren mejoras adicionales. Este análisis permitirá
identificar las lecciones aprendidas y las mejores prácticas para la creación de
nuevas soluciones.

O4 Diseñar una solución para la gestión de identidad aplicando tecnoloǵıas
distribuidas: Basado en las conclusiones obtenidas del análisis de los sistemas
actuales y las tecnoloǵıas DLT, se diseñará una solución para la gestión de
identidad que aplique tecnoloǵıas distribuidas. El diseño se enfocará en mantener
al menos el mismo nivel de seguridad que las soluciones existentes, al tiempo que
integra caracteŕısticas avanzadas de privacidad. Se considerarán aspectos como la
minimización de datos, la prevención del rastreo y la usabilidad para crear una
solución integral.

O5 Diseñar una solución que combine el sistema de gestión de identidad
distribuido con tecnoloǵıas DLT: En esta etapa, se diseñará una solución que
combine el sistema de gestión de identidad distribuido con tecnoloǵıas DLT. El
objetivo es mantener los niveles de seguridad y privacidad mientras se mejoran las
caracteŕısticas de confianza. La solución propuesta buscará integrar las mejores
prácticas identificadas en el análisis de implementaciones actuales y diseñar un

xxii List of Tables

sistema que aborde las deficiencias y aproveche las ventajas de las tecnoloǵıas
descentralizadas.

O6 Verificar las soluciones de identidad obtenidas en escenarios reales: Fi-
nalmente, se realizará una verificación exhaustiva de las soluciones de identidad
diseñadas en escenarios reales. Esto incluirá pruebas y evaluaciones para validar
si las soluciones satisfacen las caracteŕısticas deseadas en situaciones prácticas. Se
evaluará la efectividad de las soluciones en términos de privacidad, confianza y
seguridad, y se realizarán ajustes según sea necesario para mejorar la viabilidad y
el rendimiento de las soluciones propuestas.

La metodoloǵıa propuesta está orientada a proporcionar un enfoque integral y
detallado para la mejora de la gestión de identidad digital. A través de un análisis
exhaustivo, diseño de soluciones avanzadas y verificación en escenarios reales, se busca
desarrollar un sistema que no solo cumpla con los requisitos actuales, sino que también
establezca un nuevo estándar en términos de privacidad, seguridad y confianza en la
gestión de identidades digitales.

1

C
h

a
p

t
e

r

Introduction

This chapter is a brief introduction to digital identity, identity management
(IdM) systems and distributed ledger technologies (DLT) in the context of
privacy and trust relationships in current identity management solutions.
It also outlines the gaps and shortcomings that have motivated this thesis.
Next, it describes the main objectives and contributions. Finally, the chap-
ter details the structure of this document and lists the publications that
have resulted from the research carried out.

1.1. Contextualization

In an ultra-connected world through the Internet, data has become the real corner-
stone. Smart cities, Industry 4.0, cloud applications, etc., are challenging traditional
identity management systems, which are evolving more slowly by comparison. In
addition, the emergence of algorithms that systematically analyse large volumes of data,
the reduction of storage costs and the absence of good tools that allow users to control
their privacy put users at risk. Location or even health data are collected for profit,
often without the user being aware of the collection.

The concept of identity has different connotations, however, we can define it as the
set of information known about a person. For example, a person’s identity in the real
world can be a set of attributes such as first name, surname, address, driving license,
birth certificate, and others including elements such as the name, which is used as an
identifier and allows us to refer to the identity without listing all elements. The driver’s
license or birth certificate, which are used as authenticators, are in addition issued by
the competent authorities and allow us to determine the legitimacy of someone’s claim

1

2 1. Introduction

to identity. For example in the case of the driver’s license, establishing permission to
drive a motor vehicle.

The digital identity is the online equivalent of the real-world identity of a person
or entity. It encompasses both the user’s offline information, such as name, physical
address, etc., and the image they project through their online activity.

Traditional identity management systems (IdMs) rely on the use of centralized
identity providers (IdPs) that create, manage and maintain identity information of
its users or smart devices and, at the same time, provide authentication mechanisms
to service providers (SPs). This widely deployed solution enables the operation of
single sign-on (SSO) technologies which are very convenient due to its simplicity.
However, the exponential growth of online services has changed identity requirements
and introduced new associated challenges. Impersonation or identity theft are security
problems aggravated by characteristics such as mobility, temporality, or anonymity on
the network. We are faced with the problem of determining whether our interlocutor is
whom they say they are and whether their statements are true. Identity management
becomes a critical element of guaranteeing security, privacy, and the correct functioning
of services.

Traditional IdM systems generally offer basic privacy and user control functions.
Users and services demand advanced security and privacy features while remaining
user-friendly. In addition, new regulations (i.e., GDPR [3]) on the processing of personal
data are imposing tough conditions on how personal data should be handled in order
to protect users against organizations abusive behaviours such us the Facebook and
Cambridge-Analytica scandal in 2010 [4].

Identity management systems are evolving towards decentralised models in order to
improve their security features. In this sense, technologies such as distributed ledger
technologies (DLT) [5] are taking the lead, Blockchain [6] being the most famous of
these technologies thanks to the emergence of cryptocurrencies and more specifically
Bitcoin [7]. In addition to cryptocurrencies, DLT technologies have proven to be
valuable in other scenarios where digital identity and privacy preservation concepts are
highly relevant such as border control, e-voting, e-residency, supply chains, etc. In any
case, DLT scenarios still have to address numerous challenges [8] regarding linkability,
network privacy, key management, or privacy regulations.

In addition to decentralised schemes, identity management systems are also moving
towards self-sovereign models (SSI) [9, 10] where users take control over their data with
the intention of reducing or eliminating the constant tracking, IdPs impersonations, or
massive data leakages.

This thesis studies the evolution from traditional management systems towards
a decentralised model in combination with the self-sovereign identity by combining
privacy-preserving IdM systems with DLT or Blockchain technologies to provide a
sufficiently robust and user-friendly solution that would maintain security standards
while improving confidence in the entire infrastructure and reducing the chances of
fraud.

1.2. Motivation and problem statement 3

1.2. Motivation and problem statement

With the rise of online services and the growth of connected elements (i.e, the IoT
scenarios), the evolution of identity management systems is lagging behind. The need
to protect users’ privacy, secure communications and maintain trusted operating spaces
has become a constant need to which there is little or no consistent response from
traditional IdM systems. In contrast, new technologies such as those based on DLT
(i.e. Blockchain) are gaining momentum and present themselves as an opportunity
to improve not only business logic but can serve as a fundamental part of improving
privacy, trust and security in digital identity management. This evolution means moving
from centralised identity management models to distributed models where trust is no
longer placed in a single central element but is spread across different nodes and even
domains. Additionally, this evolution must be accompanied by compliance with the
different data protection regulations that are being approved and applied today, such as
the General Data Protection Regulation (GDPR) [3] in the case of Europe. Balancing
privacy, trust, security and even business logic is proving to be a major challenge. Users
increasingly demand to own their data, service providers need assurances to be able
to function normally and today’s identity managers are in an advantageous position
where they can act almost freely and without control.

Traditional IdM (i.e., X.509, SSO) share a lack of solutions to increase user privacy
often leaving data exposed, as in the case of X.509, or allowing an entity, in the case of
SSO systems, to behave as a big brother tracking the actions of users or devices. Other
solutions like Privacy-Enhancing Attribute-Based Credentials (P-ABCs) [2, 11, 12], are
presented as a privacy-preserving solution making a similar proposition to X.509 but
inheriting the management issues of X.509 and adding complexity. On the other hand,
identity solutions based on DLT-Blockchain technologies like Shocard [13], Serto [14]
and others tends to be incomplete by not providing a complete ecosystem. While
traditional identity systems are weak on privacy, blockchain proposals lack sufficient
tools (authentication, authorization) to complete identity management systems.

In this situation, an identity management solution must provide a sufficiently
complete ecosystem to operate with at least the same traditional functions. It must
also be aligned with data protection regulations and additionally provide the necessary
tools for all parties involved to have their privacy, security and operational demands
met. Therefore, the main requirements that a modern identity management system
should encompass are:

R1 Data-minimization. Some identity management systems already have some basic
data minimisation functions. However, it is essential to add advanced functions
that allow personal data to be processed in a way that is adequate, relevant and
limited in relation to the purposes for which they are processed.

R2 Prevent users tracking. Currently, identity management systems not only have no
protection against user tracking, but often the identity providers themselves do

4 1. Introduction

the tracking. In order to protect users’ privacy, it is necessary to provide solutions
that prevent identity providers from becoming a big brother.

R3 Enhance trust among users, services and identity providers. The trust in existing
identity systems is mostly assumed by users to be inherent and simply works even
if they are not certain that all the entities they interact with are who they expect
them to be. An identity management system should have advanced trust features,
which allow for a reliable verification of trust in the components of the existing
infrastructure.

R4 Minimise hardware requirements. In some identity solutions, users are required to
have specific hardware in order to be able to use credentials or other cryptographic
material. This situation is not ideal and hampers the adoption of these solutions,
so it is necessary to avoid this situation in order to achieve better adoption.

R5 Integrable with existing standards and solutions. In order for a novel solution to
have an impact on the current scenario, it must take into account the compatibility
of the most widely used technologies and standards such as OpenID, OAuth or
SAML.

R6 Transparency. This requirement addresses how the solution affects users, identity
providers and service providers. The solution must provide sufficient information
about how personal data is protected and must be fully transparent in its operation.

R7 Usability. It is important to maintain usability levels of at least equal performance
to the most widely adopted solutions. Even if security, privacy and trust features
are better, if the user experience worsens, so does the adoption.

R8 Compliance with personal data management regulations. Policies for private data
management are being tightened through regulations such as GDPR. Ensuring
the alignment of the identity solution with these policies is a priority factor for
the success.

1.3. Objective of this thesis
Although current state-of-the-art approaches provide valid solutions for identity

management, they also present shortcomings and opportunities for improvement in terms
of privacy, trust and security. These opportunities are especially related to requirements
R1, R2, R3 and R8 which leave an area for further research and improvement.

In order to improve the performance of identity management systems and to provide
a solution to the stated requirements, the objective of this thesis can be expressed as:

To analyse, design and validate solutions for digital identity management
that include advanced privacy, trust and security features, maintaining or

1.4. Contributions 5

improving the security levels of existing solutions, without penalising usability
and aligned with personal data protection regulations.

The priority objective is to offer a comprehensive identity management system that
enables better privacy management, avoids abusive behaviour (such as user tracking),
and integrates trust mechanisms to validate interactions between different entities.
Ideally, the objective would be to replace current identity management systems with a
fully privacy-preserving solution in which the users have control over their data as well
as tools to verify trust in the different services or even identity providers. Furthermore,
the influence of the identity provider would be reduced, remaining only as a facilitator of
authentication material in which, it does not know which service it is intended for, nor
is it capable of supplanting the identity of its users in the event of being compromised.
In this case, we can speak of an ideal objective, because we are aware of the difficulty
of establishing such an ambitious objective in which actors as powerful as identity
providers would lose influence and business capacity in favour of users.

This thesis can be described through the following six specific objectives:

O1 Analyse and study the characteristics and restrictions present in current identity
management systems in order to obtain a list of problems to be considered in the
solution.

O2 Analyse and study the main uses of DLT technologies and their associated
mechanisms to investigate their application in identity management systems
in order to improve trust.

O3 Analyse the main current implementations of DLT technologies to learn about
their strengths and limitations.

O4 Based on the conclusions obtained from O1, design a solution for identity man-
agement applying distributed technologies that maintains at least the same level
of security as existing solutions and integrates advanced privacy features.

O5 Based on the conclusions obtained from O2, O3 and with the results obtained
obtained in O4, design a solution that combines the distributed identity manage-
ment system with DLT technologies, maintaining security and privacy levels while
enhancing trust features.

O6 Verify the obtained identity solutions, O4 and O5 respectively, to validate if the
desired features are satisfied in real scenarios.

1.4. Contributions
In order to accomplish the objectives described in Section 1.3, this thesis provides

the following contribution blocks.

6 1. Introduction

To improve Identity Management capabilities evolving to a decentral-
ized architecture. This block of contributions defines an identity management
solution that evolves the traditional scheme based on centralised identity providers
towards a decentralised model. The main contribution of this block is the break
with the traditional identity provider model and in particular the separation of
the traditional identity provider (IdP) entitie among multiple partial identity
providers, so that none of them alone can impersonate or track its users. In addi-
tion, it aims to facilitate integration with existing technologies such as OpenID or
SAML and to offer user-friendly authentication based on familiar models such as
the user-password method.
Summarizing the main contributions:

• Analyse the challenges associated with the use of privacy-preserving identity
management solutions, addressed in the publication OLYMPUS: towards
Oblivious identitY Management for Private and User-friendly Services [15].

• Distributed identity management proposal. Main addressed requirements,
the proposed architecture, an overview of the cryptographic building blocks
and potential use cases. Contribution that can be found in the publication
The OLYMPUS Architecture [16].

• Analyse from a multidisciplinary approach some technical and legal foun-
dations of proposal to build a privacy-preserving identity ecosystem. Pub-
lication OLYMPUS: A distributed privacy-preserving identity management
system [17]

• Analyse a standardisation proposal for p-ABC systems based on W3C
Verifiable Credentials. Analysis in Towards a standardized model for privacy-
preserving Verifiable Credentials [18]

• A first implementation and performance review of the Pointcheval-Sanders
Multi-Signature (PS-MS) scheme. Publication, Implementation and eval-
uation of a privacy-preserving distributed ABC scheme based on multi-
signatures [19].

To improve the Trust Management by introducing DLT technologies
into the IdM solution. This block of contributions evolves the distributed
identity solution with the objective of adding advanced trust management through
DLT technologies. Firstly, it analyses the advantages and disadvantages of DLT
technologies for privacy and studies the existing solutions for digital identity
management. Finally, it makes an integrative proposal of the distributed IdM
with DLT.
The main contributions are:

• Analyse the challenges associated with DLT technologies and privacy as-
pects. Publication Privacy-Preserving Solutions for Blockchain: Review and
Challenges [8].

1.5. Thesis structure 7

• Analyse the different existing solutions for digital identity management based
on DLT systems. Publications Privacy-Preserving Solutions for Blockchain:
Review and Challenges [8]. and A Trusted Approach for Decentralised and
Privacy-Preserving Identity Management [20].

• To make an integrative proposal for distributed identity management with
DLT technologies. Publication A Trusted Approach for Decentralised and
Privacy-Preserving Identity Management [20].

• Evaluate the proposal and establish research opportunities for the future.
Publication A Trusted Approach for Decentralised and Privacy-Preserving
Identity Management [20].

1.5. Thesis structure
The this thesis is structured as follows:
Chapter 1 introduces the context, motivation, and objectives of this thesis. It

outlines the key contributions of the research, describes the structure of the thesis, and
lists related publications.

Chapter 2 provides a comprehensive background on identity management systems
with enhanced privacy and distributed ledger technologies (DLT). It discusses innovative
identity management projects and examines the role of identity management within
the context of DLT.

Chapter 3 delves into privacy-preserving distributed identity management. It dis-
cusses the conceptual framework, objectives, requirements, processes, and architectural
setup. This chapter concludes with a discussion on the primary goals, technological un-
derpinnings, anticipated impacts, encountered challenges, and contemplated drawbacks
of the proposed solution.

Chapter 4 explores a DLT-enabled identity management system designed to enhance
trust. It provides an overview of the concept, objectives, and detailed processes and
architecture of the system. The chapter concludes with a review of core objectives,
technological advancements, potential impacts, challenges, and anticipated drawbacks.

Chapter 5 details the implementation and results of the proposed systems. It covers
both non-DLT and DLT-enabled distributed identity provider implementations and
examines specific use cases.

Chapter 6 concludes the thesis with a summary of findings and contributions. It
also outlines future research directions to further enhance the DLT-based identity
management framework.

1.6. Related publications
Within the framework of the work carried out in this thesis, publications in con-

ferences, research journals and book chapters have been obtained. The most relevant

8 1. Introduction

contributions are presented below, in chronological order.

Indexed Journals (JCR)

(P1) Bernabe, J. B., Canovas, J. L., Hernandez-Ramos, J. L., Moreno, R. T., &
Skarmeta, A. (2019). Privacy-preserving solutions for blockchain: Re-
view and challenges. IEEE Access, 7, 164908-164940 [8].
Blockchains offer a decentralized, immutable and verifiable ledger that can

record transactions of digital assets, provoking a radical change in several in-
novative scenarios, such as smart cities, eHealth or eGovernment. However,
blockchains are subject to different scalability, security and potential privacy
issues, such as transaction linkability, crypto-keys management (e.g. recovery),
on-chain data privacy, or compliance with privacy regulations (e.g. GDPR).
To deal with these challenges, novel privacy-preserving solutions for blockchain
based on crypto-privacy techniques are emerging to empower users with mech-
anisms to become anonymous and take control of their personal data during
their digital transactions of any kind in the ledger, following a Self-Sovereign
Identity (SSI) model. In this sense, this paper performs a systematic review
of the current state of the art on privacy-preserving research solutions and
mechanisms in blockchain, as well as the main associated privacy challenges in
this promising and disrupting technology. The survey covers privacy techniques
in public and permission-less blockchains, e.g. Bitcoin and Ethereum, as well
as privacy-preserving research proposals and solutions in permissioned and
private blockchains. Diverse blockchain scenarios are analyzed, encompassing,
eGovernment, eHealth, cryptocurrencies, Smart cities, and Cooperative ITS.

(P2) Bernabe, J. B., David, M., Moreno, R. T., Cordero, J. P., Bahloul, S., &
Skarmeta, A. (2020). ARIES: Evaluation of a reliable and privacy-
preserving European identity management framework. Future Gen-
eration Computer Systems, 102, 409-425 [21].
Despite several efforts in the last years to make Identity Management Systems

(IdMs) reliable, secured and privacy-respectful, identity-related cybercrimes are
still continuously expanding. Current IdMs lack of proper security and privacy
mechanisms that can holistically manage user’s privacy, strong authentication
and ID-proofing mechanisms based on biometrics, usage of breeder documents,
while maintaining usability for mobile, online or face-to-face scenarios. To fill
this gap, the ARIES EU project aims to set up a reliable identity ecosystem,
combining mature technologies for meet highest level of assurance, such as
biometrics or use of secure elements, with innovative credential derivation
mechanisms. ARIES has devised and implemented a privacy-preserving and
user-centric Identity Management framework as well as associated management
practices that ensure usability and flexibility for identity management processes.
This paper presents ARIES results obtained after the successful development
and validation of the ARIES IdM System in the associated use cases.

1.6. Related publications 9

(P3) Torres Moreno, R., Bernal Bernabe, J., Garcia Rodriguez, J., Kasper Fred-
eriksen, T., Stausholm, M., Mart́ınez, N., ... & Skarmeta, A. (2020). The
OLYMPUS architecture—Oblivious identity management for private
user-friendly services. Sensors, 20(3), 945 [16].
Privacy enhancing technologies (PETs) allow to achieve user’s transactions

unlinkability across different online Service Providers. However, current PETs
fail to guarantee unlinkability against the Identity Provider (IdP), which becomes
a single point of failure in terms of privacy and security, and therefore, might
impersonate its users. To address this issue, OLYMPUS EU project establishes
an interoperable framework of technologies for a distributed privacy-preserving
identity management based on cryptographic techniques that can be applied both
to online and offline scenarios. Namely, distributed cryptographic techniques
based on threshold cryptography are used to split up the role of the Identity
Provider (IdP) into several authorities so that a single entity is not able to
impersonate or track its users. The architecture leverages PET technologies, such
as distributed threshold-based signatures and privacy attribute-based credentials
(p-ABC), so that the signed tokens and the ABC credentials are managed in a
distributed way by several IdPs. This paper describes the Olympus architecture,
including its associated requirements, the main building blocks and processes, as
well as the associated use cases. In addition, the paper shows how the Olympus
oblivious architecture can be used to achieve privacy-preserving M2M offline
transactions between IoT devices.

(P4) Moreno, R. T., Garćıa-Rodŕıguez, J., Bernabé, J. B., & Skarmeta, A. (2021). A
Trusted Approach for Decentralised and Privacy-Preserving Identity
Management. IEEE Access, 9, 105788-105804 [20].
Identity Management (IdM) systems have traditionally relied on a centralized

model prone to privacy, trust, and security problems, like potential massive data
breaches or identity spoofing. Identity providers accumulate excessive power
that might allow them to become a big brother, analyzing and storing as much
data as possible. Users should be able to trust identity providers and manage
their personal information straightforwardly without compromising their privacy.
The European OLYMPUS project introduces a distributed approach for IdM
based on enhanced Attribute-Based Credentials (ABC) that splits the role of
Identity Provider to limit their influence and chances to become a unique point
of failure. However, the trust relationship between service providers, users, and
identity providers is still a gap in those kinds of privacy-preserving ABC systems.
Decentralized technologies are an opportunity to break away from the centralized
model and propose systems that respect privacy while increasing users’ trust.
This paper presents an evolution of the OLYMPUS architecture, maintaining all
the privacy features and incorporating distributed ledger technologies to enhance
trust and security in online transactions and IdM systems. The proposed system
has been implemented, tested, and validated, showing its performance and

10 1. Introduction

feasibility to manage user’s identity in a fully privacy-preserving, distributed
and reliable way.

(P5) Daoudagh, S., Marchetti, E., Savarino, V., Bernabe, J. B., Garćıa-Rodŕıguez, J.,
Moreno, R. T., ... & Skarmeta, A. F. (2021). Data Protection by Design in
the Context of Smart Cities: A Consent and Access Control Proposal.
Sensors, 21(21), 7154 [22].
The growing availability of mobile devices has lead to an arising development

of smart cities services that share a huge amount of (personal) information
and data. Without accurate and verified management, they could become
severe back-doors for security and privacy. In this paper, we propose a smart
city infrastructure able to integrate a distributed privacy-preserving identity
management solution based on attribute-based credentials (p-ABC), a user
centric Consent Manager, and a GDPR based Access Control mechanism so as
to guarantee the enforcement of the GDPR’s provisions. Thus, the infrastructure
supports the definition of specific purpose, collection of data, regulation of access
to personal data, and users’ consents, while ensuring selective and minimal
disclosure of personal information as well as user’s unlinkability across service
and identity providers. The proposal has been implemented, integrated, and
evaluated in a fully-fledged environment consisting of MiMurcia, the Smart City
project for the city of Murcia, CaPe, an industrial consent management system,
and GENERAL D, an academic GDPR-based access control system, showing
the feasibility.

(P6) Garćıa-Rodŕıguez, J., Moreno, R. T., Bernabe, J. B., & Skarmeta, A. (2021).
Implementation and evaluation of a privacy-preserving distributed
ABC scheme based on multi-signatures. Journal of Information Security
and Applications, 62, 102971 [19].
Despite the latest efforts to foster the adoption of privacy-enhancing Attribute-

Based Credential (p-ABC) systems in electronic services, those systems are not
yet broadly adopted. The main reasons behind this are performance efficiency
issues, lack of interoperability with standards, and the centralized architectural
scheme that relies on a unique Identity Provider (IdP) for credential issuance.
To cope with these limitations, this paper describes the first implementation
of the Pointcheval-Sanders Multi-Signatures (PS-MS) crypto scheme proposed
by Camenisch et al. and its integration in a distributed and privacy-preserving
identity management system proposed in OLYMPUS H2020 European research
project. Our efficient implementation provides remarkable privacy-preservation
features for identity management in online transactions leveraging p-ABC sys-
tems, including unforgeability, minimal disclosure of personal data through
zero-knowledge proofs, unlinkability in online transactions and fully distributed
credential issuance across different IdPs, thereby removing the IdP as a unique
point of failure. The performance of the implementation has been exhaustively

1.6. Related publications 11

analyzed and evaluated with different curves, signers and number of attributes,
and compared against Identity Mixer, the best-known p-ABC system, outper-
forming significantly the credential issuance and zero-knowledge proving and
verification processes (2-4 times less execution time).

Conferences

(P7) Moreno, R. T., Bernabe, J. B., Skarmeta, A., Stausholm, M., Frederiksen, T.
K., Mart́ınez, N., ... & Lehmann, A. (2019, June). OLYMPUS: Towards
oblivious identity management for private and user-friendly services.
In 2019 Global IoT Summit (GIoTS) (pp. 1-6). IEEE [15].
The OLYMPUS EU project is addressing the challenges associated to the

use of privacy-preserving identity management solutions by establishing an
inter-operable European identity management framework, based on novel cryp-
tographic approaches applied to currently deployed identity management tech-
nologies. In particular, OLYMPUS employs distributed cryptographic techniques
to split up the role of the online IDP over multiple authorities, so that no sin-
gle authority can impersonate or track its users. This paper describes the
IdM ecosystem being developed in the scope of OLYMPUS, including its main
building blocks, requirements and use cases.

(P8) Moreno, R. T., Rodŕıguez, J. G., López, C. T., Bernabe, J. B., & Skarmeta,
A. (2020, June). OLYMPUS: A distributed privacy-preserving identity
management system. In 2020 Global Internet of Things Summit (GIoTS)
(pp. 1-6). IEEE [17].

Despite the latest initiatives and research efforts to increase user privacy in
digital scenarios, identity-related cybercrimes such as identity theft, wrong
identity or user transactions surveillance are growing. In particular, blanket
surveillance that might be potentially accomplished by Identity Providers (IdPs)
contradicts the data minimization principle laid out in GDPR. Hence, user
movements across Service Providers (SPs) might be tracked by malicious IdPs
that become a central dominant entity, as well as a single point of failure in
terms of privacy and security, putting users at risk when compromised. To cope
with this issue, the OLYMPUS H2020 EU project is devising a truly privacy-
preserving, yet user-friendly, and distributed identity management system that
addresses the data minimization challenge in both online and offline scenarios.
Thus, OLYMPUS divides the role of the IdP among various authorities by
relying on threshold cryptography, thereby preventing user impersonation and
surveillance from malicious or nosy IdPs. This paper overviews the OLYMPUS
framework, including requirements considered, the proposed architecture, a
series of use cases as well as the privacy analysis from the legal point of view.

(P9) Garćıa-Rodŕıguez, J., Torres Moreno, R., Bernal Bernabé, J., & Skarmeta, A.
(2021, August). Towards a standardized model for privacy-preserving

12 1. Introduction

Verifiable Credentials. In The 16th International Conference on Availability,
Reliability and Security (pp. 1-6) [18].
Lack of standardization and the subsequent difficulty of integration has been

one of the main reasons for the scarce adoption of privacy-preserving Attribute-
Based Credentials (p-ABC). Integration with the W3C’s Verifiable Credentials
(VC) specification would help by encouraging homogenization between different
p-ABC schemes and bringing them all closer to other digital credentials. What
is more, p-ABCs can help to solve privacy issues that have been identified in
applications of VCs to use cases like vaccination passports. However, there has
not been much work focusing on the collaboration between p-ABCs and VCs.
We address this topic by establishing initial steps for extra standardization of
elements that will help with the integration of p-ABCs into the standard. Namely,
we propose a data model for predicates, which are a staple of p-ABC systems,
and tools and guidelines to ease the adaptation process like a validation meta-
schema. These ideas have been applied in a proof-of-concept implementation of
the OLYMPUS distributed p-ABC scheme paired with serialization following
the VC data model.

(P10) Bernabe, J. B., Garćıa-Rodŕıguez, J., Krenn, S., Liagkou, V., Skarmeta,
A., & Torres, R. (2022). Privacy-Preserving Identity Management and
Applications to Academic Degree Verification. In IFIP International
Summer School on Privacy and Identity Management (pp. 33-46). Springer,
Cham. [23]
This paper summarizes the contents and presentations held at a workshop at

the IFIP Summer School on Privacy and Identity Management 2021, focusing on
privacy-preserving identity management. In this document, we first introduce
the necessary background on privacy-preserving identity management, including
core cryptographic concepts. We then present a demonstrator scenario which
benefits from the use of such technologies. Finally, we present a distributed
privacy-preserving identity management framework offering an even higher level
of security and privacy than previous work.

Book chapters

(P11) Bernabe, J. B., Torres, R., Martin, D., Crespo, A., Skarmeta, A., Fortune, D.,
... & Alamillo, I. An Overview on ARIES: Reliable European Identity
Ecosystem. Book: Challenges in Cybersecurity and Privacy - the European
Research Landscape. Chapter: 11 Publisher: River Publishers. [24].
Identity-theft, fraud and other related cyber-crimes are continually evolving,

causing important damages and problems for European citizens in both virtual
and physical places. To meet this challenge, ARIES has devised and imple-
mented a reliable identity management framework endowed with new processes,
biometric features, services and security modules that strengthen the usage

1.6. Related publications 13

of secure identity credentials, thereby ensuring a privacy-respecting identity
management solution for both physical and online processes. The framework is
intended to reduce levels of identity-related crimes by tackling emerging pat-
terns in identity-fraud, from a legal, ethical, socioeconomic , technological and
organization perspective. This chapter summarizes the main goals, approach
taken, achievements and main research challenges in H2020 ARIES project.

(P12) Frederiksen, T. K., Hesse, J., Lehmann, A., & Torres Moreno, R. (2019, August).
Identity Management: State of the Art, Challenges and Perspectives.
In IFIP International Summer School on Privacy and Identity Management (pp.
45-62). Springer, Cham [25].
Passwords are still the primary means for achieving user authentication online.

However, using a username-password combination at every service provider
someone wants to connect to introduces several possibilities for vulnerabilities.
A combination of password reuse and a compromise of an iffy provider can quickly
lead to financial and identity theft. Further, the username-password paradigm
also makes it hard to distribute authorized and up-to-date attributes about
users; like residency or age. Being able to share such authorized information
is becoming increasingly more relevant as more real-world services become
connected online. A number of alternative approaches such as individual user
certificates, Single Sign-On (SSO), and Privacy-Enhancing Attribute-Based
Credentials (P-ABCs) exist. We will discuss these different strategies and
highlight their individual benefits and shortcomings. In short, their strengths
are highly complementary: P-ABC based solutions are strongly secure and
privacy-friendly but cumbersome to use; whereas SSO provides a convenient and
user-friendly solution, but requires a fully trusted identity provider, as it learns
all users’ online activities and could impersonate users towards other providers.

14 1. Introduction

2

C
h

a
p

t
e

r

Background and State of the Art

In this chapter, we dive deeply into the foundational technologies and concepts
pivotal to the thesis’s research. Our journey commences with an examination of
cornerstone identity management technologies—namely, OpenID [26], OAuth [27,28],
SAML [29], PKI [30] and P-ABCs [12]. Each technology is dissected to reveal its
integral role within existing systems, alongside an assessment of its inherent limitations.
Transitioning from these traditional mechanisms, we pivot to the realm of Distributed
Ledger Technologies (DLT). Here, DLT emerges as a transformative force, redefining the
paradigms of secure and efficient identity management. We then explore how DLT-based
identity management systems offer promising solutions to the limitations encountered in
conventional methods. The chapter progresses to illuminate various pioneering projects,
such as ARIES [21], ABC4TRUST [2], and PrimeLife [31]. These initiatives are
scrutinized for their contributions towards innovating within the identity management
landscape. Through this comprehensive exploration, we lay a robust groundwork that
not only traces the evolution of identity management but also underscores its critical
importance to the objectives of this thesis.

2.1. Identity management with enhanced privacy

In order to achieve the objectives outlined in O1, it is prudent to begin by evaluating
existing identity systems. The concept of identity varies significantly across different
fields, yet it fundamentally pertains to the question of “who a person is, or what
characteristics differentiate him or her from others.” Essentially, identity encompasses
a collection of known information about an individual. Over time, however, this
concept has broadened beyond merely human identifiers to include objects and devices.

15

16 2. Background and State of the Art

This expansion is largely driven by the proliferation of connected devices—such as
smartphones and smart TVs and cloud services, including streaming, storage, and online
shopping platforms.

In the digital realm, both individuals and devices are frequently required to disclose
private information to access internet services. For individuals, this might include
personal details like address, age, and gender. For devices, this involves specific data
such as manufacturer details, ownership, and operational parameters. The increasing
interconnectivity and reliance on digital platforms underscore the urgent need for
advanced digital identity management solutions. These systems must not only efficiently
manage and protect identity data but also ensure it is used in a manner that respects
privacy and enhances security.

Identity management (IdM) plays a key role in providing information about the
user or device profile, service characteristics and access policies in order to improve
the efficiency of other services and ensure the transparency of network operation, such
as mobility and others. Not surprisingly, IdM systems are seen as an efficient way to
provide trust between entities (users, network entities, services and devices), protect or
mitigate the effects of malicious entities, manage user identities, identify entities in a
system and control their access to different available resources. Nowadays, when we
talk about digital identity management we are referring to multiple digital identities
in which credentials such as passwords, OTP (One Time Password), PIN (Personal
Identification Number) or digital certificates must be stored. As things stand now,
most users have different user accounts (identities) linked to different services that
require different sets of attributes. For example, Facebook wants pictures, age, location
and in general every single data about the user. In the other hand, an online store
wants to know the user full name, the address and usually if the user is over a certain
age. These are just examples but most of people have many of such accounts and thus
must repeatedly supply the same information or personal attributes to each of these
providers.

There are two main issues to be addressed in identity management: (1) security
and privacy, and (2) convenience and ease of use. Most problems with identity systems
fall into one or both of these two categories. The IdM tries to address these issues
by integrating solutions which includes the whole process of user identity creation,
maintenance and deletion which is the life-cycle of identity. Every IdM system is
composed of a core set of elements, namely: users, service provider (SP) and identity
providers (IdP). The User is the client of both the SP and the IdP and can be a person,
organisation, device etc. The service provider provides services to the user, relies on
the identity material asserted by the IdP about the user and establishes access policies
to its resources or services that may require certain attributes of the user (e.g. being of
legal age). The Identity Provider (IdP) is the core concept of an IdM system. It
provides identity and trust and has mainly two functions, firstly it must implement
services for users such as user registration, identity verification and storage. Secondly,
the IdP must process authentication requests from SPs and users. Figure 2.1 shows
how the IdM components relates each other.

2.1. Identity management with enhanced privacy 17

Service Provider

Identity Provider

User

Figure 2.1: IdM Entities relation

A typical configuration for these entities is an Identity Provider providing authenti-
cation and attribute information to several Service Providers about a set of Users. These
entities can be configured following different topologies or approaches, the most common
are: centralised, distributed and hierarchical 2.2. In centralised topologies, a central
entity concentrates the interactions with the other system participants. In distributed
topologies, the workload is divided according responsibilities or other criteria. The high
level of intercommunication of the distributed approach makes it highly resilient to
outages or attacks aimed at compromising availability. Finally, hierarchical topologies
follow an asymmetric distribution, with more elements at the edges, and fewer or only
one, in the root. In this topology, the intermediate entities can alleviate the workload
of the root node by answering requests too.

Centralized Distributed Hierarchical

Figure 2.2: IdM Typical topologies

Identity management systems are typically implemented through centralized ap-
proach that replace or deeply integrate with existing login and access systems. They
use a central directory of users, roles, and predefined permission levels to grant access
rights to users or devices based on their roles and needs to access specific resources. The
most important protocols or standards in the area of authentication and authorisation
that are commonly integrated in identity management framework are presented below.

18 2. Background and State of the Art

OpenID [26] is a unified user identification method published as an open standard
that essentially acts as a single user identification system that can be used across
multiple websites. It reduces the use of multiple user accounts on different service
sites which often hampers the user experience, especially when trying to remember
all the different combinations of usernames and passwords. OpenID allows users to
log into virtually any website that supports the standard with a single ID, taking the
agony out of the registration process and simplifying login to any affiliated website. In
addition, it also acts as a personal data management system, so that when an end-user
authenticates to a new service to register, they are prompted to indicate the data they
wish to share with the new site.

Browser Relying
Party

OpenID
Provider

User
(Resource Owner)

ID Token Access Token

REST communication

Figure 2.3: OpenID entities

OpenID defines three main entities (Figure 2.3): (1) The User Agent, which acts on
behalf of the user (e.g., the browser) when the user wishes to make use of a service or
resource. (2) The Relaying Party (RP), which is the service provider that relies on the
OpenID provider to perform authentication and (3) the OpenID Provider, which is an
OpenID authentication server that asserts that an end-user controls a certain identifier.

End User

End User

OpenID Provider

OpenID Provider

Relying party

Relying party

User info endpoint

User info endpoint

1 Authentication request

2 Authenticate End-User

3 End-User consent

4 Redirect End-User back to Relaying party with ID Token

5 Validate ID Token and get End-user Identifier

6 Access UserInfo with Access Token

7 UserInfo Response

Figure 2.4: OpenID example flow

Figure 2.4 shows the typical operation flow in OpenID. In Step 1, the user attempts
to start a session with your client app and is redirected to the OpenID Provider, passing

2.1. Identity management with enhanced privacy 19

in the client ID, which is unique for that application. In Steps 2 and 3, the OpenID
Provider authenticates and authorizes the user for a particular application instance. In
step 4, a one-time-use code is passed back to the web server using a predefined Redirect
URI. In Step 5, the client validates the ID token and the end-user ID. In Step 6, the
web server uses the access token to get further details about the user (if necessary) and
establishes a session for the user.

One particularity of OpenID is that it does not define which authentication mecha-
nism should be used, so security depends on the trust placed in the OpenID Provider.
If the OpenID Provider does not offer a good level of trust and the authentication
mechanism is poor, it will not be recommended for services that require strong authen-
tication. However, one of the main advantages of OpenID is the possibility for any user
to set up their own authentication service, giving them greater trust and control over
their personal data.

The main drawbacks of OpenID are essentially for security and privacy reasons.
First of all, unifying all user identities carries significant risks as all user information
is behind a single authentication process. In addition, the OpenID provider becomes
a critical point through which all services must pass. This provider knows everything
from the user’s attributes to the sites and services he/she uses, and can act as a big
brother. Moreover, in the worst case scenario, data leakage would compromise the
entire digital life of its users.

Open Authorization, OAuth [27] is another protocol standard whose first version
was approved approved in 2010, providing a method for clients to access server resources
on behalf of a resource owner (such as a different client or an end-user). It also provides
a process for end-users to authorize third-party access to their server resources without
sharing their credentials (typically, a username and password pair), using user-agent
redirections. The first version of OAuth was based on two existing proprietary protocols:
Flickr’s authorization API [32] and Google’s AuthSub [33]. Over a few years of slowly
adoption and integration, several specific areas were identified as needing improvement
for reasons like they were limiting the framework or because the complexity of add new
features.

The second major version, OAuth 2.0 [28], published in 2012, is a complete rewrite
of OAuth 1.0 from scratch, sharing only the general goals and overall user experience.
It does not maintain backwards compatibility with OAuth 1.0 or 1.1 and should be
considered as a completely new protocol. It is supported by companies such as Google
and Microsoft and is the current industry-standard protocol for authorization, focused
on client developer simplicity while providing specific authorization flows for web
applications, desktop applications, mobile phones, and living room devices.

The complexity of OAuth 1.0 signatures was a major problem for anyone coming
from the simplicity of username/password authentication. The introduction of Bearer
tokens in OAuth 2.0 provides a solution by simplifying the way APIs are interacted with
by reducing the overhead of calls as only the token itself is needed to make requests.
The figure 2.5 shows the main differences between OAuth v1.0 and OAuth v2.0 typical

20 2. Background and State of the Art

flows.

Service ProviderConsumerService Provider

Fetch Request
Token

Redirect user
to Provider for
authorization

Exchange
access token

Create
connection

Issue Request
Token

User
Authorization

Redirect to
application

Grant access
token

Redirect user
to Provider for
authorization

Exchange fro
access grant

Create
connection

User
Authorization

Redirect to
application

Grant access
token

1 2

3

4

5

6

7

8

1

3

4

5

6

1 2

OAuth 1.0 OAuth 2.0

Consumer

Figure 2.5: OAuth 1.0 vs OAuth 2.0

Bearer tokens are a simpler way of making requests because they do not require
any cryptographic signing but, since the request contains a plain-text token that could
be used by anyone if it is intercepted, all the exchanges must be made over a secure
connection. The worst part is that there is nothing preventing other apps from using a
Bearer token if it can get access to it.

Token management can be a problem. OAuth 1.0 used to issue access tokens of very
long duration or even indefinite duration. Providers had to allow users to see which
third-party applications were authorised to use their account and be able to revoke that
permission if they wished. When revoking an application, access tokens issued for that
application should no longer be accepted as soon as possible and depending on how
this was implemented, this could be challenging or require additional links or steps. In
contrast, OAuth 2.0, the authorisation server can issue a short-lived access token and a
long-lived update token. This allows applications to obtain new access tokens without
further user intervention, but also adds the ability for servers to revoke tokens more
easily.

There are two main parts to OAuth 2.0: obtaining authorization by the user (the
end result being the application has an access token for that user), and using the access
token to make requests on behalf of the user. The methods for obtaining an access token
are called flows. OAuth originally offered three distinct flows, web-based applications,
desktop clients and mobile, which were eventually combined into a single flow that in

2.1. Identity management with enhanced privacy 21

theory encompassed them. In practice, the experience was good only for web-based
applications, and poor for the rest. OAuth 2.0 addresses this by defining multiple flows
again, called grant types, with flexibility to support a wide range of application types.
There is also a mechanism to develop extensions to handle use cases not previously
thought of. In that sense, server-side apps use the “Authorization Code” grant type
with a client secret, which prompts the user to authorize the application, and generates
an authorization code that is handed back to the app. Single-page or mobile apps
use the same grant type, but do not use the client secret. Instead, the security is in
verifying the redirect URL. Moreover, OAuth 2.0 defines a “Password” grant type to
allow applications to collect the user’s name and password for exchange them for an
access token but, it should not be used by third-party apps because they would have
access to the username and password of the user.

Another key point of OAuth 2.0 is the improved scalability over version 1.0. Whereas
OAuth 1.0 required managing state across different steps and often across different
servers, requiring the generation of temporary credentials (often discarded without use),
and issuing long-lived credentials that are less secure and more difficult to manage,
OAuth 2.0 uses the client’s credentials only when the application obtains the user’s
authorisation. After using the credentials in the authorisation step, only the resulting
access token is used when making API calls, which means that API servers do not need
to know the client’s credentials, as they can validate the access tokens themselves.

Finally, OAuth 2.0 explicitly separates the roles of authorization server from resource
server and defines four roles different roles instead of the three defined in OAuth 1.0
(figure 2.6): (1) client, (2) authorization server, (3) resource server and (4) resource
owner, OAuth 1.0 uses a different set of terms where (1) client is known as the consumer,
(4) resource owner is simply the user, and (3) resource server is the service provider.
The separation of roles means that you can build out the authorization server as a
standalone component which is only responsible for obtaining authorization from users
and issuing tokens to clients. The two roles can be on physically separate servers,
and even be on different domain names, allowing each part of the system to be scaled
independently. The benefit to service providers is that the development of these systems
can happen completely independently. They can be scaled, upgraded o even replaced
without concerning the other parts of the systems.

Client Resource
Owner

Authorization
Server

Resource
Server

Figure 2.6: OAuth entities

22 2. Background and State of the Art

Deciding on the most appropriate OAuth flow depends primarily on your type of
application, but also on other parameters, such as the level of trust for the client or the
experience you want your users to have. The typical scenario involves Authorization
Code Flow 2.7 since normal web applications are service-side applications, which
exchanges an authorisation code for a token.

User

User

Web APP

Web APP

Auth Server

Auth Server

Resource

Resource

1 Click login link

2 Authorization code request to Auth Server

3 Redirect to Login form

4 Authentication and consent

5 Authorization code

6 Authorization exchange (Auth code, client ID, client secrets)

7 Validate Auth code, client ID, client secrets

8 ID Token and Access Token

9 Request data with Acess Token

10 Data

Figure 2.7: OAuth Authorization code flow

The user clicks Login (step 1) within the regular web application. The web-app
redirects the user to the Authorization Server (step 2). After that, the Authorization
Server redirects the user to the login and authorization prompt (step 3). The user
authenticates using one of the configured login options and may see a consent page
listing the permissions (step 4). Authorization Server redirects the user back to the
application with an authorization code, which is good for one use (step 5). The web-app
sends this code along with the client ID and secret to the authorization server (step 6)
which validates them (step 7). The authorization Server responds with an ID Token and
Access Token (step 8). Finally, the application can use the Access Token get information
about the user (step 9) and the resource responds with the requested data (step 10).

Although OAuth was designed as an authorization protocol, its use has become
widespread as an authentication mechanism as well. OAuth allows Clients to perform a
pseudo-authentication of the Resource Owner based on the authentication performed
by the authorization server prior to the authorization request. If the Client obtains the
authorization grant, it means that the it has been successfully authenticated.

OpenID Connect (OIDC) [34] is an open authentication protocol that profiles
and extends OAuth 2.0 to add an identity layer. OIDC allows clients to confirm an
end user’s identity using authentication by an authorization server. Implementing
OIDC on top of OAuth 2.0 creates a single framework that promises to secure APIs,
mobile native applications and browser applications in a single, cohesive architecture.

2.1. Identity management with enhanced privacy 23

The main difference between OpenID and OAuth is that OpenID is an authentication
protocol while OAuth is an authorization framework. OpenID and OAuth are both open
standards that complement each other, but OpenID allows users to be authenticated
by relying parties. An OIDC relying party is an OAuth 2.0 Client application that
requires user authentication and claims from an OIDC provider.

OIDC enables scenarios where one login can be used across multiple applications,
also known as single sign-on (SSO). For example, an application could support SSO
with social networking services such as Facebook or Twitter so that users can choose to
leverage a login they already have and are comfortable using. The OIDC flow looks the
same as OAuth. The only differences are, in the initial request where a specific scope
of openid is used, and in the final exchange where the Client receives both an Access
Token and an ID Token.

Resource
Owner

Client
Application

Authorization
Server

User Authenticates and
authorizes

Acces token to get
user claims User Info

endpoint

Client Request includes
OpenID scope

Access Token

ID Token

Figure 2.8: OIDC flow

OIDC integrates all the features of OpenID with OAuth 2.0 protocol. In this
sense, OIDC incorporates in its specification the authorisation codes and access tokens
defined in OAuth, adding a new third type of token, called ID token, which contains
authentication information and can be used later to request additional information
from the end-user. The specification incorporates the new endpoint called UserInfo
EndPoint, which corresponds to a protected resource that returns claims (attributes)
about the end-user information and where the client can request access by presenting
the corresponding access token.

The OIDC flow (figure 2.8) starts with an OAuth flow that asks the user to authorize
a request. As part of that flow, the client will include the OpenID Connect scope along
with scopes for any additional information it wants about the user. After the request
is processed, the client will receive an access token as well as an ID token issued by
the authorization server that contains claims that carry information about the user.
The user’s SSO experience is made possible by the delivery of the ID token from the
authorization server to the client. The client can then contact a special endpoint on the
authorization server known as the UserInfo endpoint to receive the remaining claims
about the user.

In summary, OIDC allows a user to authenticate with an external trusted identity

24 2. Background and State of the Art

provider and augments the OAuth 2.0 framework towards an identity protocol by adding
identity-centric concepts onto it to create a framework for distributed identity.

Security Assertion Markup Language (SAML) [29] is an open standard devel-
oped and approved by OASIS that allows identity providers (IdP) to pass authorization
credentials to service providers (SP). SAML transactions use Extensible Markup Lan-
guage (XML) for standardized communications between the identity provider and
service providers.

SAML defines three main entities, shown in Figure 2.9. The User is the one who
wants to access a resource or Web service, and therefore needs to be authenticated and,
optionally, authorized. The Service Provider (SP) is responsible for offering the service
to the User, and relies on the Identity Provider (IdP) to perform her identification and
authentication. Besides the authentication process, the Identity Provider could provide
service providers with additional information (role, age, etc.) about the User in the
form of attribute statements.

User

Identity
Provider

Service
Provider

Trust
relationship

1

2

3

Figure 2.9: SAML entities

The SAML protocol establishes the link between authentication of a user’s identity
and authorisation to use a service. It simplifies federated authentication and authori-
sation processes for users, identity providers and service providers, allowing separate
identity and service providers to exist, which centralises user management and provides
access to SaaS solutions. In addition, it implements a secure method for passing user
authentications and authorisations between the identity provider and service providers
so that when a user connects to a SAML-enabled application, the service provider
requests authorisation from the corresponding identity provider, and then the identity
provider authenticates the user’s credentials and finally returns the user’s authorisation
to the service provider so that the user can finally use the application or service. The
protocol defines two main processes: (1) SAML authentication, which verifies the
identity and credentials (i.e. username, password, etc.) of the user and (2) SAML
authorisation to communicate to the service provider what level of access to grant to the

2.1. Identity management with enhanced privacy 25

authenticated user. SAML also defines the authentication, attribute and authorisation
statements. Authentication statements are issued by identity providers and inform the
service provider about the successful authentication of the user. Attribute statements
provide key value information related to the authenticated user, which can be used to
make access control decisions, and finally, authorisation statements (deprecated since
v2.0) assert that the user has been authorised to perform a given action on a specific
resource.

SAML also defines several request-response protocols that allow service providers to
request or query an assertion, request authentication of a subject, create and manage
name identifier mappings to federate identities by linking accounts, and request a
near-simultaneous logout of a collection of related sessions (single sign-on). SAML also
provides definitions on how to transport SAML messages in a standard format through
so-called SAML Bindings. In addition, it defines a set of SAML Profiles that address
how the set of assertions, protocols and bindings can be used to solve specific use cases.
Among them, the SSO web browser, figure 2.10 and enhanced client (ECP), figure 2.11,
profiles plays an important role in SAML.

Service provider

Service provider

User

User

Identity provider

Identity provider

1 Request access to service

2 Determines IdP to use

3
IdP Redirection + AuthnRequest message

issued by SP to IdP

4 AuthnRequest message

5 User authentication

6
SP Redirection + Response message

issued by IdP to SP

7 Response message

8 SP issues resource to User

Figure 2.10: SSO web browser profile

When the User tries to access a secured resource at the Service Provider (SP), the
User Agent (e.g., browser) sends a HTTP request to the SP asking for the specific
resource. Once the request is received by the SP it determines, which Identity Provider
(IDP) to be used for authentication. Once the IDP is selected the SP sends an
Authentication Request to the IDP via the user agent with the use of either HTTP
Redirect, HTTP POST or HTTP artifact binding. The User is identified by the IDP. If
the same user has already logged once, the IDP may use an existing session. If the IDP
receives an authentication request from a new user it establishes a new session. The IDP
sends a response to the SP via the user agent, containing an error or Authentication
Assertion if the user is valid. Finally, the Assertions of a valid user is sent to the
Assertion Consumer URL of the SP and based on the Response from the IDP, the user

26 2. Background and State of the Art

is granted the access to the resource or denied.

Service provider

Service provider

Enhanced Client
Proxy (ECP)

Enhanced Client
Proxy (ECP)

Identity provider

Identity provider

1
ECP try to access some resource

via HTTP with ECP headers

2
AuthnRequest message issued by SP

PAOS binding

3 ECP determines IdP to use

4
ECP issues AuthnRequest to IdP

SOAP binding

5 ECP user authentication

6
Response message

SOAP binding

7
ECP conveys response to SP

PAOS binding

8 SP issues resource to ECP

Figure 2.11: Enhanced client profile

When the ECP wants to access a secured resource at the SP, it sends a HTTP
request to the SP mentioning that the Request is from an ECP. With the use of SAML
Reverse Soap Binding (PAOS) the SP sends an authentication request to the Client.
As the Client itself can select which IDP to be used, it selects an appropriate IDP to
authenticate and sends an authentication request to the appropriate IDP using SAML
SOAP binding. At this stage, the IDP identifies the client, and several messages may
be exchanged between the IDP and the client. The details are not mentioned under
the SAML ECP profile specification. We can see that this step is very similar to the
Identification of a user in the SAML web based SSO profile. Once the IDP identifies the
client, it sends an authentication response using SAML SOAP Bindings to the client
targeting the actual receiver, the SP. The Client conveys the authentication response to
the SP using PAOS bindings. Finally, based on the response, the SP grants the access
to the resource.

Public Key Infrastructures (PKI) [30] are one of the best known and easiest
to implement identity management methods. Its operation is based on the use of
X.509 [35] certificates and the use of certificate authorities (CAs) that allow the issuance
of certificates endorsed by trust chains through these CAs. One of the main advantages
of this identity management scheme is that the CAs only have to be available at the
time the certificate is obtained.

Any PKI consists of at least three elements (figure 2.12): Certificate Authority, the

2.1. Identity management with enhanced privacy 27

relying party (RP) and the entity that must prove its identity (user, service, etc). The
most typical use case is a web PKI where a CA has issued a certificate for a service
(i.e., google.es) and a client (web browser) wants to verify the identity of the service or
establish a secure connection.

Certificate
Authority

User Relying Party

Certificate request
Identity verification
Certificate issuance

Validate user certificate

User presents certificate
RP accepts (or not) certificate

Trust relation Trust relation

Figure 2.12: PKI Entities

PKI functions because of digital certificates, also known as a public key certificates.
Those certificates use to cryptographically link ownership of a public key with the entity
that owns it. They also enable the sharing of public keys to be used for encryption
and authentication. The X.509 include the public key being certified, identifying
information about the entity that owns the public key, metadata relating to the digital
certificate and a digital signature of the public key the certificate issuer created. PKI
governs encryption keys by issuing and managing digital certificates. Digital certificates
have characteristics that make them very useful for authentication. They can act as
the electronic equivalent of official documents (e.g. passport), they contain certified
information about a person or entity in a tamper-resistant way. Can be traced back to
the issuer, they have expiration date and can be revoked in case of necessity.

Certification Authorities (CAs) are responsible for the creation and issuance of
digital certificates. They are also responsible for investigating or verifying the recipients
before issuing certificates. These entities define the verification methods for certificate
recipients, the types of certificates issued, their content and the security parameters or
operations supported. CAs must formally document their issuance policies and once
this is done, the certificate consumers are the ones who establish the degree of trust
they have in the CA.

The process of creating a digital certificate is based on asymmetric cryptography.
First, a public and private key pair is generated. Then, the CA requests the identification
attributes of the private key owner and checks them. With the public key and attributes,
a certificate signing request (CSR) is generated. The owner of the attributes signs the
CSR request with his private key, thus proving his ownership. Finally, the CA validates
the request and signs the certificate with the CA’s own private key.

In this way, anyone can make use of the public part of the certificate to verify that it
has actually been issued by the CA and confirming who is the owner of the private key

28 2. Background and State of the Art

used to sign the certificate. Furthermore, assuming they consider that CA to be trusted,
it is possible to verify that anything sent to the certificate holder will actually reach
the intended recipient and that anything signed with the certificate holder’s private key
has actually been signed by that person or device.

In identity management scenarios, certificate authorities usually operate in a hierar-
chy of trust. This means that in addition to a root CA, there are other CAs to which
the root CA has granted the ability to sign certificates on its behalf.

Despite the advantages, such as the possibility of having a digital clone of one’s
passport (or other official documents), the ability to digitally sign or even encrypt
content by taking advantage of asymmetric cryptography, this system involves several
risks for the security and privacy of users. The management of certificates by users
is not user-friendly and usually needs the usage of specific hardware like smart-cards
and smart-card readers which can lead to their loss or corruption, so they will not be
able to log in their favourite services and will have to create a new account. Even
worse, an attacker can obtain their certificates being able to completely impersonate the
users. Finally, the X.509 is an all-or-nothing system and lacks the concept of minimal
disclosure. This means that the user will always reveal the full content of his credential,
including relevant and non-relevant data, during an authentication process.

Privacy-Enhancing Attributed-Based Credentials (P-ABC) [36, 37] appear
as an answer to the privacy problems that suffer other approaches such as Public
Key Infrastructure and the use of X.509 certificates. P-ABC systems follow the same
approach as certificate-based PKI systems, i.e. users receive a credential containing
a set of certified attributes (e.g. name, age, nationality...) that can be used to access
a service provider or to convince another party of the validity of the attributes. The
main difference compared to X.509 certificates is that it is no longer necessary to fully
disclose the credential by exposing all attributes whether or not it is necessary. P-ABC
credentials allow for a more fine-grained handling in terms of privacy, allowing the
user to generate single-use tokens (presentation tokens) that expose only the minimum
necessary information. The P-ABCs consist of three entities, figure 2.13, the user, the
issuer and the verifier (usually integrated in a service provider). The issuer is responsible
for issuing attribute-based credentials to a specific user. The User is responsible for
securely storing the received credential and deriving presentation tokens from it. The
presentation tokens generated from a credential are essentially mathematical proofs to
assert that certain properties (predicates) are satisfied. Presentation tokens are sent to
verifiers to check if they comply with a given policy and if they are cryptographically
valid. For example, a user might have a credential that contains personal data (i.e.,
name and birth-date) along with medical data (i.e., blood type), with the P-ABC
approach, the user is able to carry the credential in a personal wallet and generate
presentation token which only reveals whether certain conditions are satisfied.

The most relevant features of P-ABC systems are the inclusion of advanced crypto-
graphic technologies such as blind signatures (BS) [38,39] and zero-knowledge proofs
(ZKPs) [40], which represent a qualitative leap in the protection of users’ privacy and are

2.1. Identity management with enhanced privacy 29

User

Issuer

Issue credential

Attribute based credential

Name: Alice

Birthdate: 05/07/1989

Bloodtype: 0+

Service
Provider2. Access Policy

1. Access Request

Verifier

3. Presentation
generation

4. Send Presentation

Access Policy

Age: >= 24

Bloodtype: AB, A+ or 0+

Presentation

Age: Proof >= 24

Bloodtype: Proof 0+
5. Verify

presentation

Trust relation

Figure 2.13: P-ABC scenario

the main advance and advantage over X.509-based PKI systems. The inclusion of these
two technologies allows P-ABCs to obtain digital signatures over a set of attributes
without the issuer having to know the content of what is being signed, thus adding a
new layer of protection avoiding unnecessary disclosure of information.

The P-ABC systems set out seven key points in privacy protection.

1. Minimal disclosure. Presentation tokens do not reveal any of the attributes to be
verified or those included in the credential.

2. Unlinkability. It is not possible to link a presentation token to the source credential
and furthermore, it is not possible to link different presentation tokens to the
same user.

3. Key binding. If a credential contains a key protected by a user secret, no
presentation tokens can be created without the knowledge of that secret.

4. Advanced issuance. It is possible to issue new credentials based on the attributes
of a previous credential without the issuer knowing the actual values of the
attributes.

5. Pseudonyms. It is possible to create presentation tokens containing non-linkable
pseudonyms.

6. Inspection. It is possible to encrypt values via presentation tokens that can later
be revealed by a trusted party to, for example, demonstrate malicious behaviour.

30 2. Background and State of the Art

7. Revocation. Credentials can be revoked so that no new presentation token can be
successfully verified.

The advantages of P-ABC systems are their user-centric approach with advanced
privacy preservation. Their offline approach allows the identity provider (issuer) to be
online only during the issuance of credentials, providing usability in scenarios where
connectivity is limited. In addition, they eliminate the need to contact the identity
provider during authentication processes as in SSO systems, reducing the tracking
that an IdP can do through user access requests. The user has full control over the
information he/she discloses and the presentation tokens allow for minimal information
disclosure. In terms of privacy, P-ABC systems are far superior to conventional SSO
or certificates solutions. However, although P-ABCs are being available for almost
20 years with mature implementations such as Identity Mixer [41], U-Prove [42] or
Persiano [43], the adoption was really scarce. The main reason has to do with the
poor usability inherited from X.509 systems, which requires users to securely manage
both their credentials and the associated cryptographic material. If an attacker gains
access to this material, he/she could impersonate the user. The use of smart cards or
other physical devices to secure these items is necessary to achieve an optimal level of
protection but penalises adoption, users need to have adequate smart card readers and
applications for all their devices. Moreover, the handling and verification of P-ABC
tokens is more complex than that of conventional signatures and credentials. P-ABCs
also requires specific advanced cryptographic building-blocks, such as zero-knowledge
proofs, which are not available in regular cryptographic libraries. Instead, users and
service providers must use specific software packages to analyse, create or verify such
P-ABCs. Finally, the reliance on a single identity provider issuing attribute-based
credentials should also be noted, which presents the issuer as a single point of failure,
albeit less severe than in the case of SSO systems.

2.2. Distributed ledger technologies
The second objective O2 of this thesis is to analyze and study the main uses

of Distributed Ledger Technology (DLT) and its associated mechanisms to explore
their potential applications in identity management systems, with a specific focus on
enhancing trust. In this section, we will delve into distributed ledger technologies,
examining their capabilities, benefits, and how they can be integrated into identity
management frameworks to foster greater security and reliability.

Distributed ledger technologies or DLTs [5] are the fundamental basis for other
technologies such as Blockchain. DLTs consist of a database that is independently
maintained and updated by a number of members or nodes. These nodes constitute a
network in which there is no central authority, i.e. there is no single node or entity that
has the greatest responsibility. All participants must maintain a copy of the database
they build independently. All nodes have access to a global registry (transaction log)
where there is a history of the operations performed by all nodes, so that any node

2.2. Distributed ledger technologies 31

can reconstruct the database and obtain its own results before adding a new entry
(transaction).

A simple example would be four friends (the network), each with their own notebook
(database), recording the outside temperature (data). Each time one of them makes
a new entry, he/she communicates it to his friends through a group chat (transaction
log) so that all of them can update their notebook later on. All participants must have
access to the chat in order to keep their own notebooks correctly updated and none of
them has more responsibilities than others. If someone new wants to join, it is only
necessary to give him or her access to the group chat and he or she will be able to
replicate the notebook independently.

DB

Transaction log

Node
DB

Node

DB
Node

DB
Node

Domain A

Domain B Domain D

Domain C

DLT
Domain

Figure 2.14: DLT nodes and domains example

DLTs are classified as public, private and permissioned, permissionless or any
combination of the two.

1. Public and Permissioned. Allow anyone to deploy or use the DLT without
the need to identify themselves or meet any requirements. However, the nodes
forming the DLT network and running the deployed applications are authenticated
and must be invited to join.

2. Public and Permissionless. It is the true decentralised system. No one has to
notify, disclose their identity or meet any requirements in order to use DLT or be
part of the network. Nodes can join and contribute freely and anonymously.

3. Private and Permissioned. In this model, there is no real decentralisation.
Both applications and network nodes must have been invited to join the network,
meet certain requirements or provide proof of identity. Any application or node
can be removed at any time without notice.

32 2. Background and State of the Art

4. Private and Permission-less. Applications must be invited to join the network
and can be removed at any time without notice. Instead, nodes that make up the
network and run applications can join and contribute freely and anonymously.

Within the distributed ledger technology there are different types, among which we
can highlight Blockchain, Hashgraph, Directed acyclic Graph (DAG), Holochain and
Tempo (RADIX).

Blockchain [6] appeared in 2008 as the fundamental basis for the first decentralised
digital currency with cryptographic technologies, the Bitcoin [7] and it is the most
popular DLT on the market where the transaction records are stored as a chain of
blocks in a ledger (figure 2.15). Blocks are composed of a Block header and Block Data.
The header contains a reference to the previous block in the chain (its predecessor),
a timestamp, a nonce and the hash of the block data itself. In the block data we can
find any kind of information such as a list of transactions or the public specification
of a P-ABC credential. The timestamp makes the block impossible to be repeated
in the future, as in addition to the time, the date of creation of the block is also
stored, so there is no possibility of repeating the same hash. The nonce is a one-time
random number used for authentication of data transfer between two or more parties.
In Blokchain, the nonce works in combination with the hash as a control element to
prevent manipulation of block information. This adds security and makes any change
within the block, whatever it may be, impossible. This is because altering any element
within a block alters the entire hash and its entire structure.

Genesis
Block

Data Block

Hash prev. Block

Timestamp

Nonce

Hash data Block

Data Block

Hash prev. Block

Timestamp

Nonce

Hash data Block

Data Block

Hash prev. Block

Timestamp

Nonce

Hash data Block

Block 1 Block 2 Block N

Block Header Block Header Block Header

Time

Figure 2.15: Blockchain block overview

In blockchain there are multiple blocks that get added to the ledger system. Based
on the above example of temperature readings, the process can be summarised in five
steps.

1. When one of your friends wants to make a transaction (Add a new temperature
reading) he or she sends this information to all of his or her friends (nodes).
Each one checks first some basic things, such as that this reading has not been
sent before (i.e., duplicate transaction). It mostly depends on the nodes on that
network. The nodes would have to come to an agreement that the transaction
indeed took place.

2.2. Distributed ledger technologies 33

2. If everything it is OK, each friend (node) saves the information about the trans-
action in a personal log (pool).

3. In established time periods, one of the friends is randomly chosen to propose a
block containing the transactions in his/her personal log (pool). The consensus
process start. The proposed block must be signed by one of the friends (node)
and to see who signs, they must solve a mathematical problem whose winner will
have the right to sign (i.e., in Bitcoin, this is achieved though a Proof of Work).

4. The winner of the previous process will sign the block, meaning that the block is
sent to the rest of friends with a new version of the blockchain with all the blocks
previously contained and a new block containing his/her own transactions. The
block is given a unique ID before it is placed on the ledger.

5. Finally the rest of the friends (nodes) will update their copies and the chain will
be completely updated with the fresh block.

An important aspect of the functioning of the Blockchain (and DLT systems in
general) are the consensus algorithms [44,45]. The consensus is a problem in distributed
computing where nodes must reach an agreement to add new transaction records to the
ledger. In Blockchain the structure is designed to be valid in a trustless and unreliable
network with adversarial users. The best known consensus protocols are Proof of Work
(PoW), Proof of Stake (PoS), Proof of Importance (PoI) and Virtual Voting. However,
depending on the solution adopted and the deployment scenario, it is possible to find
other types of consensus algorithms derived from these or even completely new ones
(i.e., Proof of Weight, Proof of Capacity, Proof of Burn etc).

Proof of Work (PoW). It is the best known type of proof. It was introduced in
Bitcoin [7] and is still used today. In this method, the computer does computations
to solve a mathematics puzzle related with the Hash function. Hash is used for
confirmation of the transactions stored in blocks. A miner, that is the computer
trying to solve the hash, will try to find a specific value as a nonce in such a way
that the hash value meets a predefined condition. In PoW, to reach consensus
in the network, miners try to find hash value equal to or smaller than a certain
given value. The advantage of this system is the high security, decentralization
and acceptable levels of scalability but, in the other hand, the function of mining
and validating blocks wastes huge amount of energy, the throughput is a problem
in fast-growing scenarios, the block creation time is high and it is hardware
dependant due to the computational cost.

Proof of Stake (PoS). Proof of Stake is one of the most widely used consensus
algorithms. The PoS algorithm is based on the creator’s choice of the next
block through random selection combinations. The node selected to make the
next block will be chosen through a quasi-random process in which the selection
depends on the assets stored in the wallet related to that node. PoS does not

34 2. Background and State of the Art

need high computational power to validate any proof and therefore miners will
not receive any reward (only transaction fees). However, although not as much
power is needed as in PoW, there is a dependency on the nodes that have the
most stake, centralising the process in some way. In addition, there is another
problem called “nothing at stake”, which means that if a node has nothing in its
stake while misbehaving, it has no fear of losing anything. Therefore, there will
be no obstacles for the node not to misbehave. The advantages of PoS are fast
block creation, higher throughput and better energy efficiency. In the other hand,
PoS suffers problems related with the centralization that can occur and the lower
cost of misbehaving.

Proof of Importance (PoI). Proof of Importance is the mechanism firstly introduced
by NEM [46], that is used to determine which network participants (nodes) are
eligible to add a block to the blockchain, a process that is known by NEM as
“harvesting”. In exchange for harvesting a block, nodes are able to collect the
transaction fees within that block. Accounts with a higher importance score will
have a higher probability of being chosen to harvest a block. In order to be even
eligible for the importance calculation, the NEM protocol requires that an account
hold at least 10,000 vested XEM. Three factors are taken into account to calculate
the importance of a node: (1) Acquisition, (2) Transaction association and (3)
Number and size of transactions in the last 30 days. After the score is calculated
based on the previous factors, it will receive an opportunity related to the score
achieved to add a block. Unlike PoS, this method guarantees decentralisation.
The PoI model is fast and energy efficient. There is no need for a mining process
as in PoW and the scoring election system ensures decentralisation. Furthermore,
it does not require specific or particularly powerful hardware, which makes this
system a breakthrough in consensus mechanisms.

Virtual Voting. This consensus algorithm is introduced in the DLT Hashgraph [47]
solution. All members have a copy of the hashgraph so that a node can calculate
what vote a neighbouring node would have sent it. Unlike a traditional Byzantine
protocol [48], here it is not necessary to send any vote because the nodes. All
members can reach a Byzantine agreement on any number of decisions, without
a single vote being sent. This solution has significant advantages in terms of
bandwidth and decision speed.

Continuing with DLT types, Hashgrapgh [47] is another popular one. It is a
permissioned solution organised as a structure that has columns and each member is
represented by a column in the network. All columns have many vertices. Each of the
vertices is called an event (ledger record) . Users of the network perform two types of
actions: (1) The user can create an event and send it, (2) The user randomly chooses a
member of the network and gossips all the information he/she knows, i.e. sends the
information to the member about the event creation. The distribution of events takes
place with the help of the gossip-about-gossip protocol, in a nutshell, once a transaction

2.2. Distributed ledger technologies 35

occurs, neighbouring nodes share that information with other nodes, and after a while
all nodes would learn about the transaction. This process is quite fast, so it would
only take a few minutes for all members of the network to learn about the event. In
Hashgraph, events or ledger records store four different types of information:

1. Hash of another user event.

2. Hash of the previous event of the user.

3. Zero or more events sent by the user.

4. Timestamp at which the event was created.

In the gossip-about-gossip protocol the user digitally signs the event and gossips about
it. The two hashes included in the event allow members to know where the event
originated from and where it was directed to. Hashgraph uses this information to build
a directed acyclic graph (DAG) of events, figure 2.16,that is updated as events are
gossiped on the network. Finally, the signature of the event helps to identify the creator
and prevent tampering.

Block 1 Block 2 Block 3 Block N

A

B

C

D

E

Blockchain

Hashgraph

Figure 2.16: Hashgraph vs Blockchain

In Blockchain, a miner is able to choose which transaction to include. For example,
if both you and one of your friends have taken temperature readings and you are waiting
for your transactions to be verified, other nodes could selectively choose your friend’s
transaction first even though yours has been done before. Meanwhile in Hashgraph the
verifier nodes have to include both your transaction and your friend’s transaction in the
way they have been carried out to avoid anyone being left behind. This solution benefits
directly from connection speed as the faster the connection, the more transactions and
the faster you can operate.

36 2. Background and State of the Art

Another important feature of Hashgraph is its Byzantine fault tolerance (BFT) [48].
In a BFT system, no group or entity can influence the achievement of consensus and
furthermore, once consensus is reached, all members will know that it has been reached
and it will remain unchanged. In a DLT system, all nodes have a database that
shares similar properties, yet the nodes are never sure that consensus has occurred.
In Hashgraph, nodes can be sure that consensus has occurred, bringing atomicity,
consistency, isolation and durability (ACID) to this solution. The way consensus is
achieved is through the virtual voting protocol [47], in which all members maintain a
full DAG of events. Since it is easy to know how a node will vote, as each node has all
the information of what each node knows and when it knows it, this is used to find the
order of transactions. Building a DAG on each node which helps to achieve consensus
on the correct order independently and saving bandwidth, as nodes do not have to
transfer their vote to other nodes. This is because other nodes have the necessary
amount of information on how a node will vote in the election.

Direct acyclic graph (DAG) [49] is an ambitious proposal that emerges as an
alternative to Blockchain. Hashgraph [47] and IOTA [50,51] are the most well known
solutions based on it. This solution provides the benefits of Blockchain and even
enhances them through a completely different architecture, figure 2.17. The DAGs are
made up of vertices and edges. The direction of the lines heads in one direction. They
are acyclic, which means that the vertices do not loop back on themselves and it means
that if you start at one point, you cannot return to the same point. In DAG, vertices

A

G

B

D

E

C

F

Figure 2.17: Direct acyclic graph

represent a transaction. It does not use blocks to store information but makes use of
a node or a group of nodes that are developed simultaneously. It performs a small
proof-of-work operation when a node sends a transaction and when a transaction is to
be added, it builds on the older ones. The distributed ledger system stores transaction
processes on the nodes. All nodes in the network validate transactions that are in
turn represented by other validated transactions. Any node can initiate transactions,
but to validate them, it must first validate at least two previous transactions, so the

2.2. Distributed ledger technologies 37

more transactions a node validates, the more will be validated for it. Once validated,
transactions are committed. Moreover, the more transactions a branch has, the more
weight it will have on the DAG and finally, to prevent nodes from validating only
their own transactions while ignoring the rest, an algorithm randomly selects which
transactions to validate.

Compared to Blockchain, DAG has notable differences in structure, mining, val-
idation and transaction speed. DAG is structured as an acyclic graph where each
transaction is independent. In this structure, previous transactions validate the next
one so that consensus is reached. In addition, transaction validation requires miners
to have validated at least two previous randomly assigned transactions, preventing
miners from postponing or even cancelling a transaction as could happen in blockchain.
Regarding scalability, in blokchain this is a serious problem, but nevertheless in DAG,
due to its structure, the larger it is, the more transactions per second it can perform.

Holochain [52] is presented as the evolution of Blockchain. It is a DLT that
is distributed among nodes to avoid any instance of centralised control of the data
flow. Whereas Blockchain aims to decentralize network transactions, Holochain aims
to decentralize the interactions between individual nodes as well. Each node on the
network runs its chain, allowing them to operate independently while still being a part
of a larger network that includes thousands of other similar nodes. Figure 2.18 shows
the difference between Holochain and Blockchain architecture.

Blockchain network Holochain

Figure 2.18: Holochain vs Blockchain

In Holochain users are the core concept. All the system is modeled from a user
perspective in an agent-centric computing. Each user runs their own copy of the
backend code, controls their identity, and stores their own private and public data.
An encrypted peer-to-peer network for each app means that users can find each other
and communicate. This way of operating implies that all participants know the rules
necessary to operate, as they have their own copy of them. This makes it possible
to check the data of other participants and verify that they comply with these rules.

38 2. Background and State of the Art

Finally, Holochain also provides cryptography to prove authorship and prevent data
manipulation. Holochain provides intrinsic data validity.

To prevent data from being lost or falsified at the time of creation, Holochain includes
peer witnessing process. This means that each time public data is published, it is
validated and stored by a random selection of nodes (witnesses). Together, participants
are able to detect modified or invalid data. They spread evidence about malicious peers
and take measures to counter threats.

In Holochain, each node operates its own chain independently, which means that
miners are free to operate autonomously on what Holochain calls a distributed hash
table (DHT). In this table users can store data, which is actually distributed in different
locations, using certain cryptographic keys.

RADIX [53] is a solution that does not make use of Blockchain although it preserves
the sequence of the information in the log, in addition to the timestamp (Figure 2.19).
This type of DLT is based on three pillars: (1) having a group of networked nodes, (2)
having a global registry distributed among the group of nodes and (3) special algorithms
for timestamping the events.

Developer Application

Blockchain Ledger

Blockchain
Virtual Machine

Smart contract
Code

Smart contract
Code

Developer Application

RADIX Ledger

RADIX Engine

RADIX API Libs

RADIX API

Developer
custom assets

RADIX Engine Secure components
provided by Radix Engine

Exposed and usable
components

Figure 2.19: RADIX vs Blockchain

The most fundamental unit of the Radix stack is the Radix Node. The Node
implements a 3-phase byzantine fault tolerant consensus protocol allowing an open
network of nodes to quickly and safely decide on and commit correct transactions to a
distributed immutable ledger. The Node also includes a layer called the Radix Engine
that defines the application functionality of the network by creating and validating
transactions. Radix has practically infinite linear scalability; while preserving cross-shard
atomic composability. To do so, introduces a consesus protocol called Cerberus [54,55].
Cerberus achieves this by starting with a unique data structure which is partitioned in
a process called sharding. Each partition is called shard and independently operate as
blockchains. Cerberus apply a sharding process to split up the ledger into 2256 shards.
This is large enough to fit every thousandth atom in the observable universe into its
own shard; or for another comparison, all possible combinations of Bitcoin addresses
could fit in the Cerberus “shardspace” 79 billion billion billion times. Every change

2.2. Distributed ledger technologies 39

to the ledger, or “substate”, is deterministically allocated its own shard based upon
its hash. When a transaction occurs, Cerberus allows nodes to temporarily “braid”
consensus across the shards of relevant substates together. Related substates can thus
be composed into atomic transactions when needed, and unrelated substates can be
processed completely in parallel. Each node is only required to serve a subset of shards
- no global state or ledger is maintained by any one node.

Because of this, as nodes are added to the network, transaction throughput increases
linearly without practical limit; transactions reach settlement finality in less than
five seconds; transaction fees will always be tiny; nodes can always be run on simple
hardware; and the ability to compose transactions atomically across the global ledger
will never be sacrificed.

2.2.1. Identity management in distributed ledger technologies

Objective O3 outlines the implementations of DLT technologies, strengths and
limitations. While distributed technologies are emerging strongly, and applications such
as Blockchain are taking identity systems to a new level where privacy and security are
the challenges to address [8,56]. Proposals in the context of the Blockchain are growing
in number, driven by the rise of cryptocurrencies. Hawk [57], Zcash [58] or Zerocoin [59]
are cryptocurrencies that already add privacy features such as zero-knowledge proofs or
linkability control. Privacy-preserving solutions based on crypto-privacy techniques are
emerging to empower users with mechanisms to become anonymous and take control of
their data following a Self-Sovereign Identity (SSI) model. In that sense, solutions such
as Sovrin [60], Serto (previously uPort) [14], Shocard [13] and Hyperledger Aries [61]
are some of the foremost proposals.

Sovrin [60] is an identity management solution that runs on top of permissioned
blockchain, in particular, Hyperledger Indy [62]. Sovrin supports DPKI (Decentralized
Public Key Infrastructure), where every public key has its public address in the ledger
(DID, decentralized identifier [63]) that enable universal verification of claims. Users can
have different DIDs for each existing relationship, with different key pairs. Sovrin allows
attestation, verifiable assertions, and anonymous credentials based on zero-knowledge
proofs, with the scheme proposed by Camenisch-Lysyanskaya [64]. The Sovrin approach
is very comprehensive, and its advantages, such as unlinkability, identity recovery,
integration of DIDs, or zero-knowledge proofs, are well integrated. However, Sovrin
does not provide an authentication service and lacks usability by not displaying clear
and precise information on the privacy implications that may arise. Moreover, it does
not support smart contracts, which is an explicit limitation of the scenario. As for the
credentials used, the underlying cryptography is old, negatively impacting its efficiency.

The Sovrin architecture can be summarized as figure 2.20 shows. The core element is
the Sovrin ledger entity which contains transactions associated with specific identifiers.
The ledger is written, distributed and replicated through the stewards nodes. Each of

40 2. Background and State of the Art

them runs a specific byzantine fault tolerant protocol called Plenum [65]. The usage
of a permissioned ledger implies that there is no need to use expensive proof-of-work
computations to reach consensus. On the other hand, trust in Sovrin starts from the
common root-of-trust formed by the distributed ledger, but as new organisations and
users join the network, they can become trust anchors (i.e. allowed to add more users
and organisations).

Users interact with Sovrin through a mobile application and control software agents
acting on their behalf. The agents are network endpoints that are always addressable
and accessible. Agents also provide a backup service and encrypted storage of attribute
credentials. The mobile application also helps users manage cryptographic keys, which
are stored on the users’ mobile device. Finally, as recovery system, Sovrin offers a
mechanism that relies on the user selecting a set of trustees. When requested to do so
by the user, a specified quorum of trustees must sign a new identity record transaction
that stewards must verify.

Sovrin Ledger

User

Stewards

Ledger
Client

Data Vault Policies & Keys

EPu

Ledger
Client

EPs

Controls

Read and Write

Direct communication

User Agent Service Provider Agent

Data Vault Policies & Keys

Figure 2.20: Sovrin overview

In Sovrin, each user can select from the attribute credentials what they wish to share
with a relying party. This is made possible through the use of anonymous credentials.
Although users can choose to store those attributes on the ledger, in general, they will
prefer to use the storage capabilities of their mobile phone or their agent to transmit
attributes to other parties through secure communication channels and use the ledger
to identify the correct network endpoint to use. The use of attribute-based credentials
allows users to only reveal credentials that they choose. However, verifying the relying
party with whom data is shared is an unsolved problem. Sovrin is trying to alleviate
this problem through a web of trust managed by the Sovrin Foundation. Nevertheless,
in Sovrin, users must trust the agencies that will act on their behalf in the Sovrin
network and the administrators that maintain the ledger. Depending on the choice of
the agent and its implementation, a lot of information could potentially be in the hands

2.2. Distributed ledger technologies 41

of third parties. Finally, another important aspect that remains unresolved in Sovrin
is the user experience, which is still not simple enough to make the adoption of the
system a success despite its security qualities.

uPort [14] is another identity solution that works on permissioned blockchains. It
depends on Ethereum [66, 67], so the essence of the uPort identity is the Ethereum
account address on which users interact, and the identity is permanent. It uses a
20-byte hexadecimal identifier to represent the user’s ID, with the address of a Proxy
Smart contract deployed over the Ethereum network. The smart contract is used as
an indirection method between the user’s private key (hosted on their device) and
the accessed service. The user’s application contacts a smart contract that contains
the access control logic. This system provides some unlinkability by the possibility of
having different user IDs. In addition, it adds selective disclosure with the possibility
of attribute encryption. Finally, it additionally supports identity recovery in loss and
integrates with the decentralized identifier (DID).

Figure 2.21 shows the uPort architecture. Two smart contracts composes the uPort
identity: controller and proxy. To create a new identity, the user through the uPort app
creates a new asymmetric key pair and sends a transaction to the Ethereum network
that instantiates a controller that contains a reference to the newly created public key.
Then, a new proxy is created containing a reference to the new controller address. The
controller is the only one capable of invoke functions of the proxy contract. The address
of the proxy comprises the unique uPort identifier (uPortID) of a user. A user is free to
create multiple uPortIDs that are unlinkable. The registry is another smart contract
that provides a decentralised mapping of uPort identifiers to identity attributes, which
can be globally accessed for reading. In addition, the registry can refer to off-chain
storage such as IPFS [68].

CallsuPort
APP Controller Proxy Service

Registry

IPFS
Calls Calls Read

ReferencesRead & Write

Ethereum blockchain

Figure 2.21: uPort overview

uPort puts more control over uPortIDs in the hands of users, but at the same time
increases the responsibility of users and adds an extra layer of complexity for users.
uPort does not require disclosure of personal data to create a uPortID for restricted
use and also respects privacy in terms of the inherent lack of linkage between uPortIDs.
However, the registry (if used) represents a centralisation point that can be probed for
information on identifiers and identity data. There is a possibility that over-reliance
on the registry could compromise privacy. In addition, uPort does not perform any

42 2. Background and State of the Art

identity proofing. uPort simply specifies the format of attributes that are stored in its
registry. As consequence, an uPortID owner having write-access to their own respective
part of the registry can selectively discard negative attributes.

Shocard [13] is an identity management solution that leverages DLT to bind a user
identifier, an existing trusted credential (e.g., passport, driver’s license), and additional
identity attributes, together via cryptographic hashes stored in Bitcoin transactions,
figure 2.22. Shocard uses a central server as part of its issuing scheme, which mediates
the exchange of identity information between the user and the relying party. Shocard
proposes a three-phase scheme: bootstrapping, certification and validation.

User Client Verifier

CertifierShoCard
Server

Relying Party

ID-Proofing

Digital secure envelop

Read Certification
& seal

Create
certification

Create
seal

Get seal Get certification

Blockchain shocardID-seal certification- shocardID... ...

Prove seal ownership

Figure 2.22: Shocard overview

The bootstrapping occurs at the moment of creation of a new Shocard. The user
scan their ID documents. The scan and the corresponding data are encrypted and
stored on the mobile device; the signed hash of this data is also embedded into a Bitcoin
transaction for later data validation purposes. The resulting Bitcoin transaction number
constitutes the user’s ShocardID and is retained in the mobile application as a pointer
to the Shocard seal.

The user can then interact with identity providers to gather additional attributes in
a process called certification. To associate certificates with a ShocardID, an identity
provider must first verify that the user knows both the hashed data to create it and
the cryptographic keys that signed the seal. The certificate takes the form of a signed
hash of the new attributes (and their associated ShocardID) in a Bitcoin transaction
created by the provider. The provider must share the Bitcoin transaction number along
with a signed plaintext of the new attributes directly with the user. Since the user will
later need to provide the attributes to relying parties and may not want to lose them if
the mobile device is lost, a Shocard server provides storage on which to encrypt the

2.2. Distributed ledger technologies 43

certificates. Shocard never knows the encryption key, which allows the user to share
the certificates only with selected parties.

Finally, the validation phase occurs when a relying party must verify a certification
to determine whether a user is entitled to access a service. The user must first provide
the relying party with the envelope reference and its encryption key. After retrieving
the envelope from Shocard’s servers, the relying party performs a series of checks.
First, that the signature on the envelope was produced with the same private key that
signed the seal; then that the signature on the certification was created by a trusted
entity and that the plaintext certification matches the one encrypted and signed on
the certification; finally, that the identity data presented by the user in the pending
transaction matches the one signed and encrypted on the seal.

Although Shocard is a simple and lightweight solution in which the user has ac-
ceptable control over his data, the intermediary role of the server as a central entity
makes it, in practice, a much more dependent system than a priori would be desirable.
Furthermore, the way in which shocard generates credentials by scanning official docu-
ments may mean that users need to enter more data than they would a priori wish in
order to generate the certificates. This makes shocard credentials an interesting target
for attackers. Moreover, aspects such as unlinkability are not fully guaranteed making
it possible to track users.

Hyperledger Aries [61] is a pivotal project within the Hyperledger ecosystem,
aimed at developing a toolkit for decentralized identity management using distributed
ledger technologies (DLTs). Aries facilitates secure and private interactions among
various parties by leveraging blockchain technology to handle digital identity credentials
and verifiable claims. Figure 2.23. This solution provides the following key features:

Decentralized Identity: Aries supports the creation, management, and verifi-
cation of decentralized identities (DIDs) [63]. These identities are self-sovereign,
allowing individuals to control their personal data without relying on a central
authority.

Interoperability: Aries emphasizes interoperability between different identity
systems and DLT networks, providing a common framework for seamless commu-
nication and data exchange across diverse systems.

Protocols and Standards: Aries utilizes industry standards such as the W3C
Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs) [69]. It supports
various communication protocols, including the DIDComm messaging protocol,
which facilitates secure and private messaging between parties.

Agent-Based Architecture: Aries employs an agent-based model where ”agents”
represent digital entities (such as individuals, organizations, or systems) that
interact with each other through standardized protocols. These agents manage
the issuance, storage, and presentation of credentials.

44 2. Background and State of the Art

Modularity: The project offers modular components that can be customized and
extended for different use cases, supporting applications from simple credential
verification to complex multi-party transactions.

Privacy and Security: Aries incorporates robust security features to protect
sensitive data and ensure privacy, including cryptographic techniques for securing
communications and ensuring that personal information is only shared with
explicit consent.

User

Aries Agent

Distributed Ledger

Decentralized Identity

Verifiable Credentials

DIDs

Requests Credentials

Issues

Records

Manages

Uses

Verifies

Figure 2.23: Detailed Architecture of Hyperledger Aries

The User initiates the process by requesting verifiable credentials from the Aries
Agent, which is responsible for issuing these credentials and recording them on the
Distributed Ledger. The Distributed Ledger ensures the secure storage and man-
agement of credentials and related identity data. These credentials are utilized by
the Decentralized Identity framework, which oversees decentralized identity man-
agement. Decentralized Identifiers (DIDs) play a crucial role in verifying these
credentials and interacting with the Aries Agent, thereby validating the accuracy and
integrity of identity claims.

In summary, Hyperledger Aries is a robust and evolving toolkit that provides
foundational tools for decentralized identity management. Its advanced protocols,
modular architecture, and strong privacy protections make it a crucial component of the
Hyperledger ecosystem. However, it faces challenges related to complexity, scalability,
evolving standards, and adoption that must be addressed to fully realize its potential.

2.3. Innovative identity management projects 45

2.3. Innovative identity management projects
In this section, we delve into several innovative projects that have significantly

shaped the field of identity management. It’s important to recognize the value of both
recent and older solutions. While the latest advancements often feature cutting-edge
technologies and modern best practices, older solutions provide essential foundational
knowledge. By looking at these earlier projects, we can identify persistent challenges,
understand how technological solutions have evolved, and appreciate the incremental
improvements that have led to today’s systems.

Exploring these pioneering efforts helps us grasp the complexities of creating robust,
privacy-preserving, and user-friendly identity management frameworks. This historical
perspective is crucial as it highlights the ongoing need for innovation and adaptation in
response to evolving security threats and privacy concerns. By learning from them we
can better address current and future challenges in the field.

2.3.1. ARIES: reliAble euRopean Identity EcoSystem
The European Union’s ARIES project [1, 21], an acronym for reliAble euRopean

Identity EcoSystem, represents a groundbreaking effort aimed at fortifying the pillars of
security, interoperability, and user privacy within electronic identity (eID) systems across
Europe. Figure 2.24 provides a comprehensive overview of the ARIES architecture,
succinctly illustrating the key components and their interconnections, alongside the
processes that underpin the system’s operation. This visualization offers a clear,
at-a-glance understanding of the project’s sophisticated framework, highlighting its
innovative approach to enhancing eID systems.

Objectives and Goals

The ARIES project is underpinned by several ambitious objectives, each aimed at
enhancing the eID landscape in Europe:

Enhanced Security: ARIES endeavors to fortify eID systems against the preva-
lent threats of unauthorized access, fraud, and identity theft, ensuring that digital
identities are safeguarded with the highest security standards.

Interoperability Across Borders: A cornerstone goal of ARIES is to achieve
seamless eID usage throughout the European Union, thereby facilitating a truly
integrated digital single market where individuals and businesses can interact
across borders with ease and security.

Privacy and Trust: Recognizing the paramount importance of privacy in the
digital realm, ARIES commits to implementing advanced security measures that
not only protect user data but also foster a climate of trust in eID systems.

46 2. Background and State of the Art

Figure 2.24: ARIES overview [1]

Technological Innovations

ARIES leverages a multifaceted suite of cutting-edge technologies to realize its
objectives:

Biometric Authentication: By incorporating biometric verification methods
such as fingerprint scanning, facial recognition, and iris scans, ARIES introduces a
highly secure and user-friendly mechanism for identity verification. This approach
minimizes the risk of identity theft and fraud, ensuring that eID systems are
accessible solely by their legitimate owners.

Blockchain and Distributed Ledger Technologies (DLT): Utilizing blockchain
technology, ARIES aims to revolutionize identity management with a decentralized
framework. This innovation not only enhances the security and transparency of
eID systems but also establishes a tamper-proof record of identity transactions,
offering a new level of trust and integrity in digital identities.

Modern Cryptography: At the heart of the ARIES security model is the use of
advanced cryptographic techniques, including public key infrastructure (PKI) and
secure multi-party computation. These technologies are crucial for protecting data
during transmission and storage, ensuring the privacy and security of personal
information within the ARIES ecosystem.

2.3. Innovative identity management projects 47

Challenges and Solutions

Despite its innovative approach, the ARIES project encounters several significant
challenges:

Balancing Security with Usability: A key challenge is to design a system
that is both highly secure and easily accessible to users. ARIES addresses this
by prioritizing user-centric design principles, ensuring that enhanced security
measures do not compromise the user experience.

Privacy Preservation: In an era of increasing digital surveillance, maintaining
user privacy is a formidable challenge. ARIES tackles this by implementing privacy-
enhancing technologies and data minimization practices, thereby safeguarding
personal information against unauthorized access and exploitation.

Interoperability: Achieving interoperability across diverse technological plat-
forms and jurisdictions is a complex task. ARIES meets this challenge through
the development of standardized protocols and interfaces that ensure seamless
integration of eID systems across the European Union.

Impact and Relevance

The ARIES project is poised to make a substantial impact on the European digital
economy:

Strengthening Digital Services: By providing a more secure and interoperable
framework for eIDs, ARIES has the potential to significantly enhance the delivery
of digital services across Europe, benefiting both public services and private
enterprises.

Facilitating the Digital Single Market: ARIES supports the European
Union’s vision of a digital single market by enabling more efficient and secure
cross-border transactions, thus driving economic growth and innovation across
member states.

Building Trust in Digital Transactions: Through its focus on security and
privacy, ARIES plays a vital role in building trust in online transactions, a crucial
factor for the expansion of the digital economy.

Drawbacks and Limitations

While the ARIES project represents a significant advancement in the realm of digital
identity management, it is not without its drawbacks and limitations:

48 2. Background and State of the Art

Technological Complexity: The sophisticated technologies employed by ARIES,
while innovative, also introduce complexity that could hinder widespread adoption
and integration, particularly among smaller organizations and individuals with
limited technical expertise.

Privacy Concerns: Despite efforts to enhance privacy, the centralization of
sensitive biometric data and the potential for surveillance raise concerns about
the long-term implications for user privacy and autonomy.

Interoperability Challenges: While ARIES aims to achieve interoperability
across EU member states, differing national regulations, and technological stan-
dards may limit the project’s effectiveness and scalability.

Conclusions

The ARIES project marks a pivotal step toward establishing a more secure, inter-
operable, and privacy-conscious digital identity ecosystem in Europe. Its innovative
approach, leveraging state-of-the-art technologies, addresses many of the current chal-
lenges faced by eID systems. However, the project’s success will ultimately depend on
its ability to navigate the inherent trade-offs between security, usability, and privacy.
As ARIES moves forward, it will be crucial to continually assess and address these
drawbacks and limitations to fully realize the vision of a unified and secure digital
Europe.

2.3. Innovative identity management projects 49

2.3.2. ABC4Trust
The ABC4Trust project [2], an acronym for ’Attribute-based Credentials for Trust,’

is an ambitious project to redefine the landscape of digital identity and privacy. This
initiative supported by the European Union, strives to forge a cohesive framework for
the deployment of Privacy-ABCs (Attribute-Based Credentials) [12]. These credentials
stand at the forefront of privacy enhancement technologies, designed to elevate privacy
and trust across the digital realm. Privacy-ABCs empower users to disclose solely the
indispensable information required for online transactions. This minimalist approach
to data sharing significantly mitigates the risk of personal data overexposure, thereby
cultivating a digital environment where security and privacy are paramount.

Figure 2.25 unveils the architecture of the ABC4Trust framework, providing an
insightful depiction of its foundational components and their interactions. Also elucidates
the operational processes that constitute the backbone of the system.

Figure 2.25: ABC4Trust overview [2]

Objectives

The overarching objectives of ABC4Trust are multifaceted and ambitious, aiming to
address key challenges in digital privacy:

Framework Establishment: To create a unified and interoperable framework
for Privacy-ABC systems that can seamlessly integrate across diverse platforms
and services, promoting widespread adoption.

50 2. Background and State of the Art

Selective Disclosure: To empower users with the capability to precisely con-
trol what personal information is disclosed during online interactions, thereby
enhancing individual privacy.

Trust Enhancement: To bolster trust in digital ecosystems through the provi-
sion of secure and verifiable transactions, thus facilitating a safer online environ-
ment.

Practical Demonstrations: To showcase the viability and benefits of Privacy-
ABCs through pilot projects in real-world settings, thereby illustrating their
practical applicability and impact.

Technological Innovations

ABC4Trust introduces several technological advancements aimed at redefining digital
identity verification:

Advanced Cryptography: The project employs sophisticated cryptographic
mechanisms to enable authentication without the disclosure of excessive personal
data, prioritizing user privacy without compromising security.

User-Centric Credentials: ABC4Trust’s approach to credentials allows for the
association of user attributes with verification processes without directly linking
these attributes to the user’s identity, thereby supporting anonymity and reducing
traceability.

System Interoperability: A key innovation of the project is the development
of a framework that ensures the compatibility of Privacy-ABCs across different
technological platforms and services, thus addressing a critical barrier to adoption.

Challenges and Solutions

While ABC4Trust’s approach presents a compelling vision, it encounters several
significant challenges:

User Adoption: The success of Privacy-ABCs hinges on widespread user accep-
tance and understanding. To this end, ABC4Trust emphasizes the importance of
user education and the simplification of the user experience to facilitate adoption.

Balancing Act: Achieving a balance between robust security measures and user-
friendly authentication processes is crucial. The project advocates for a design
philosophy that does not sacrifice usability for the sake of enhanced security.

Regulatory and Technical Interoperability: Navigating the complex land-
scape of varying regulatory requirements and technological standards poses a
significant challenge. ABC4Trust addresses this through active collaboration with
stakeholders, regulatory bodies, and technology providers to develop standardized
protocols and interfaces.

2.3. Innovative identity management projects 51

Impact and Relevance

The potential impacts of the ABC4Trust project are profound and far-reaching:

Empowering Users: By granting users greater control over their personal data,
ABC4Trust sets the stage for a shift towards more privacy-respecting digital
services, thereby fostering trust and confidence in online transactions.

Promoting Secure Transactions: The project’s emphasis on secure and veri-
fiable transactions paves the way for advancements in e-commerce, e-government,
and beyond, promoting a safer online environment for all stakeholders.

Privacy-Enhancing Precedent: ABC4Trust’s successful implementation could
serve as a model for future digital identity systems, demonstrating the viability of
privacy-enhancing technologies in mainstream applications.

Drawbacks and Limitations

Despite its innovative approach, the ABC4Trust project is not without its drawbacks
and limitations:

Implementation Hurdles: The complexity of the technologies involved and the
need for infrastructural changes pose significant challenges to the rapid adoption
of Privacy-ABCs, particularly among smaller entities and those with limited
technological resources.

Data Collection Practices: Resistance from entities that benefit from extensive
data collection and processing may impede the project’s progress and broader
acceptance.

User Education: The need for extensive user education to convey the benefits
and operations of Privacy-ABCs represents a considerable challenge, necessitating
dedicated efforts to raise awareness and understanding.

Conclusions

The ABC4Trust project embodies a pivotal advancement towards establishing a
privacy-centric paradigm in digital identity management. By championing the cause
of Attribute-Based Credentials, the project not only aims to safeguard privacy and
enhance trust in online transactions but also to lay the groundwork for a future where
users possess unequivocal control over their personal information.

52 2. Background and State of the Art

2.3.3. PrimeLife
The European Union’s groundbreaking initiative, ”Privacy and Identity Management

in Europe for Life” (PrimeLife) [31], represents a significant effort to tackle the intricate
challenges associated with privacy and identity management within the vast expanse of
the digital world. Anchored firmly in the European Union’s enduring commitment to
data protection and individual privacy rights, the PrimeLife project is driven by a vision
to innovate and implement a comprehensive suite of technologies and methodologies.
These advancements are designed to offer robust protection for personal information,
effectively countering the dynamic and increasingly sophisticated array of threats that
pervade the online environment. PrimeLife’s objectives extend beyond the technological
realm, aiming to influence policy and regulatory frameworks within the European Union.
By aligning its technological advancements with the EU’s legal standards, including the
General Data Protection Regulation (GDPR) [3], PrimeLife endeavors to shape future
policies that foster a balance between innovation and privacy protection.

Objectives

At its core, PrimeLife’s objectives are both visionary and practical, focusing on:

Comprehensive Framework Development: Crafting a robust framework
that encompasses the entire lifecycle of identity management, from creation to
deletion, ensuring that privacy remains a cornerstone throughout.

Empowerment through Tools: Providing citizens with powerful, yet intuitive,
tools that offer unprecedented control over their personal data, enabling them to
navigate the digital world with confidence.

Cross-Border Interoperability: Bridging the gap between diverse identity
management systems across Europe, PrimeLife seeks to create a seamless experi-
ence for users engaging in cross-border activities, thereby enhancing the Digital
Single Market.

Policy Influence: Actively contributing to the dialogue around privacy and data
protection policies, PrimeLife aims to influence and shape future legislation to
reflect its findings and technologies.

Technological Innovations

PrimeLife introduces a range of technological innovations designed to enhance online
privacy and identity management:

Cutting-Edge Privacy-Enhancing Technologies (PETs): PrimeLife incor-
porates advanced PETs to ensure data privacy and security. These include:

2.3. Innovative identity management projects 53

• Attribute-Based Credentials (ABCs) [12]: Allowing verification of attributes
without revealing user identity or unnecessary information.

• Homomorphic Encryption [70]: Enabling computations on encrypted data,
resulting in encrypted outputs that, once decrypted, reveal the desired
outcome without compromising privacy.

• Zero-Knowledge Proofs (ZKPs) [71]: Facilitating the proof of truth of a
statement without revealing any information beyond the validity of the
statement itself.

• Secure Multi-Party Computation (SMPC) [72]: Permitting joint computa-
tions on private inputs, producing a result without exposing those inputs to
others.

• Anonymous Credentials [43]: Supporting privacy-preserving authentication
by allowing users to prove credentials without disclosing identity.

• Decentralized Identifiers (DIDs) [63]: Enabling verifiable, self-sovereign
identities that do not rely on central authorities, enhancing privacy and
control over personal data.

User-Centric Identity Management Tools: Developing intuitive tools that
empower users to manage their digital identities, with features that prioritize user
consent and minimal data exposure.

Blockchain for Enhanced Privacy: Exploring blockchain technology to create
secure, decentralized systems for identity and data management, ensuring integrity
and transparency while maintaining user privacy.

These technological solutions collectively aim to address the challenges of privacy
and identity management, providing secure and user-friendly mechanisms for individuals
to navigate the digital world with confidence.

Challenges and Solutions

Navigating the challenges inherent in such a pioneering project, PrimeLife proposes
several solutions:

Ensuring Broad User Adoption: Through extensive outreach, education, and
by demonstrating the tangible benefits of the PrimeLife tools, the project seeks
to encourage widespread adoption.

Addressing Technical Complexity: By fostering collaboration among lead-
ing technologists, developers, and researchers, PrimeLife aims to simplify the
integration of PETs into existing infrastructures.

Staying Ahead of Regulatory Changes: PrimeLife remains agile, ready to
adapt its technologies and frameworks in response to new regulatory requirements,
particularly those emerging from the GDPR.

54 2. Background and State of the Art

Impact and Relevance

The implications of PrimeLife’s success are profound:

Redefining Online Privacy: By setting new standards for privacy and data pro-
tection, PrimeLife has the potential to drastically alter how personal information
is managed online, fostering a safer digital environment.

Influencing Future Technology Development: As PrimeLife integrates and
demonstrates the effectiveness of PETs, it paves the way for their adoption in
future digital services and platforms.

Shaping Policy and Legislation: The project’s insights and technologies are
poised to influence European privacy legislation, ensuring that future policies are
grounded in practical, tested solutions.

Drawbacks and Limitations

While PrimeLife’s ambitions are commendable, the project faces several hurdles:

Technological Adoption and Integration: The broad implementation of
PrimeLife’s outcomes may encounter resistance due to the complexity of its
technologies and the need for substantial infrastructural changes.

Balancing Privacy with Usability: Crafting solutions that enhance privacy
without compromising on user experience remains a delicate balancing act.

Sustaining Long-Term Engagement: Ensuring the continued relevance and
adoption of PrimeLife’s innovations requires ongoing support, updates, and com-
munity engagement.

Conclusion

The PrimeLife project embodies the European vision for a digital future anchored
in privacy, security, and user empowerment. Through its groundbreaking technologies
and commitment to user-centric solutions, PrimeLife seeks not only to navigate the
challenges of digital identity management but to redefine them, offering a blueprint for
a safer, more private online world.

2.4. Conclusions
In this chapter, we have reviewed the background and state of the art in identity

management systems, with a focus on enhanced privacy and distributed ledger technolo-
gies (DLT). The examination of both traditional and innovative identity management
projects has provided a comprehensive understanding of the current landscape.

2.4. Conclusions 55

Conclusions

Several conclusions can be drawn from this review:

Evolution of Identity Management: Traditional identity management sys-
tems, such as those based on centralized models (e.g., OpenID, OAuth, SAML),
have laid the groundwork for managing digital identities. These systems facilitate
user authentication and authorization across various services, offering convenience
through Single Sign-On (SSO) mechanisms. However, they also suffer from signif-
icant privacy and security limitations, including the centralization of trust, which
makes them vulnerable to data breaches and single points of failure. This aligns
with our objective to analyze current identity management systems and identify
key challenges (O1).

Emergence of DLT: Distributed ledger technologies, particularly blockchain,
offer promising solutions to the challenges posed by traditional identity manage-
ment systems. By decentralizing trust and enhancing transparency, DLT can
address issues related to data integrity, privacy, and security. These technologies
facilitate the creation of tamper-proof records and enhance the robustness of
identity verification processes. This insight supports our objective to investigate
the application of DLT in identity management systems (O2).

Innovative Projects: Projects like ARIES, ABC4Trust, and PrimeLife have
demonstrated the potential for privacy-preserving identity management solutions.
ARIES, for instance, integrates biometric authentication and secure elements to
ensure high levels of assurance. ABC4Trust focuses on attribute-based credentials
to enhance privacy, while PrimeLife explores life-long privacy protection. Despite
their varying degrees of success and adoption, these initiatives have contributed
valuable insights and technological advancements to the field. This finding is
closely related to our objective to design a solution for identity management
applying distributed technologies (O4).

Self-Sovereign Identity (SSI): The move towards self-sovereign identity models,
where users have greater control over their personal data, represents a significant
shift in the identity management paradigm. SSI models empower users to manage
their identities independently, reducing reliance on centralized identity providers.
This approach aligns well with regulatory requirements like GDPR and addresses
many of the shortcomings of traditional systems by minimizing data collection
and enhancing user privacy. This directly relates to our objective to combine
distributed identity management with DLT to enhance privacy and trust (O5).

GAP Analysis

Despite the progress made, several gaps remain in the current identity management
landscape:

56 2. Background and State of the Art

Integration with Existing Systems: One of the major challenges is the
seamless integration of new identity management solutions with existing systems.
Ensuring compatibility with widely used standards (e.g., OpenID, OAuth, SAML)
is crucial for widespread adoption. Many organizations have already invested
heavily in existing infrastructures, and any new solution must offer a clear path
for integration without requiring a complete overhaul of current systems. This is
important for verifying the obtained identity solutions in real scenarios (O6).

User Adoption and Usability: Advanced identity management solutions must
balance security and privacy features with user-friendliness. High complexity and
poor usability can hinder adoption, even if the solutions offer superior security
and privacy. User education and intuitive interfaces are essential to encourage
widespread acceptance and use. Additionally, users must trust the system, which
means transparent communication about how their data is managed and protected.
This aligns with the objective to analyze current identity management systems to
identify key challenges (O1).

Scalability and Performance: Distributed ledger technologies, while promising,
still face challenges related to scalability and performance. Ensuring that these
systems can handle large-scale deployments without compromising on speed or
efficiency is essential. Blockchain, for example, can suffer from latency and high
resource consumption, which must be addressed to make it viable for mainstream
identity management applications. This relates to our objective to investigate the
application of DLT in identity management systems (O2).

Regulatory Compliance: Ensuring compliance with evolving data protection
regulations remains a critical challenge. Identity management solutions must be
designed with regulatory requirements in mind to avoid legal issues and ensure
user trust. Regulations such as GDPR impose stringent requirements on data
handling, consent management, and user rights, necessitating that new systems
be built with these considerations at their core. This is connected to our objective
to combine distributed identity management with DLT to enhance privacy and
trust (O5).

Trust Management: Enhancing trust among users, service providers, and
identity providers is a persistent challenge. Developing robust mechanisms for
trust verification and management is crucial for the success of decentralized
identity systems. Trust frameworks must be established to ensure that all parties
involved in identity transactions can be reliably authenticated and authorized.
This relates to our objective to analyze the main current implementations of DLT
technologies to learn about their strengths and limitations (O3).

Privacy and Security Trade-offs: Achieving a balance between privacy and
security is a delicate task. While enhancing privacy is a priority, it should not
compromise the security of the identity management system. Solutions must

2.4. Conclusions 57

ensure that privacy-preserving techniques, such as zero-knowledge proofs and
homomorphic encryption, do not introduce vulnerabilities or reduce the overall
security posture. This supports our objective to design a solution for identity
management applying distributed technologies (O4).

Interoperability: The lack of standardization and interoperability between
different identity management systems and technologies can create barriers to
adoption. Ensuring that new solutions can work seamlessly with various platforms,
services, and protocols is essential for creating a cohesive and functional identity
management ecosystem. This is crucial for verifying the obtained identity solutions
in real scenarios (O6).

Cost and Resource Allocation: Implementing advanced identity management
solutions can be resource-intensive, requiring significant investment in technology,
training, and maintenance. Cost considerations can be a barrier for smaller
organizations or those with limited budgets. Solutions must be designed to be
cost-effective and scalable, offering flexible deployment options to suit different
organizational needs. This aligns with our objective to analyze current identity
management systems to identify key challenges (O1).

Addressing these gaps will require ongoing research and innovation. By building on
the successes and learning from the limitations of current and past projects, the field of
identity management can continue to evolve towards more secure, privacy-preserving,
and user-friendly solutions. Future work should focus on developing integrated, scal-
able, and compliant identity management frameworks that can adapt to the dynamic
landscape of digital identities.

58 2. Background and State of the Art

3

C
h

a
p

t
e

r

Privacy-preserving distributed identity manage-
ment

3.1. Introduction

Personal data has become the new critical element to manage, protect and, of course,
compromise. The rise of smart cities, e-health, the new Industry 4.0 and growing
cloud services are challenging traditional identity management systems, which are
not evolving as fast as desirable. In addition, other AI-based technologies and their
systematic analysis of data, the reduction of storage costs and the scarcity of tools that
allow users to manage their private data pose a serious problem for consumers and an
advantage for identity and service providers. Data such as location and health data are
of great value to companies, which often collect them even without users’ knowledge.
Traditional identity management systems (IdM) are focused on the use of centralised
identity providers (IdPs) that create, manage, and maintain the identity information of
their users or smart devices while providing mechanisms for authentication to different
service providers. An example of this would be Google, which allows us as users to log
in to a wide variety of third-party services acting as an identity provider. This is a
widespread solution and while it is convenient and simple to operate, achieving certain
levels of security and privacy is a challenge. Tracking and binding by IdPs is one of the
main issues to be addressed. For example, in applications dealing with sensitive data
(e.g., health), loss of privacy can be a major issue.

In this context, users need to be cautious about how, when and with whom they share
their personal information, in order to minimize the risk of data leakage or collection
without consent [73,74]. In addition, they should be provided with the necessary tools
to enable them to effectively exercise the rights described by regulations such as the

59

60 3. Privacy-preserving distributed identity management

General Data Protection Regulation (GDPR) [3, 75] implemented by the European
Union or other similar directives. Current authentication and IdM mechanisms struggle
to meet security and privacy requirements while maintaining usability levels. At best,
websites or service providers verify email addresses and phone numbers by sending
one-time codes. Age verification, which should be a common use case given the amount
of age-restricted material offered online, is often done by verifying a credit card number,
even though credit cards were never intended for this purpose.

The issuance of electronic ID cards in several countries has been an attempt to
improve the situation, however, these IDs are often smart cards that suffer from
impractical usability when combined with devices such as smartphones, tablets or
computers. In addition, there is poor cross-country compatibility, forcing service
providers to choose which cards to support and which not to support. As a result, the
classic username and password mechanism remains the most widespread and popular
way to authenticate online despite the difficulties of remembering different identities on
different services or even taking the risk of reusing passwords between different services.

The username and password system has only been improved in terms of usability
by the introduction of SSO systems which have allowed the centralization of identity
management for several services through a single username and password combination.
On the other hand, the gain in usability has penalized privacy and security features by
introducing a critical failure point in the system. The central IdP is involved in every
authentication performed for a service provider, becoming a Big Brother that is able to
track user habits, correlate accounts between different services, expose private data if
compromised and even impersonate the user’s identity.

To address these shortcomings, this thesis proposes a privacy-preserving identity
management solution by applying a distributed cryptographic approach to currently
deployed identity management technologies. The proposed solution splits the role of
the traditional identity provider (IdP) among multiple partial identity providers, so
that none of them alone can impersonate or track its users. In addition, the solution
aims to be integrable with other existing technologies and standards, reducing hardware
requirements and offering a user recognisable functionality based on username and
password.

3.2. Concept

Current identity management solutions can be divided into two types. On the one
hand, (1) online solutions (e.g., SAML, OpenID Connect, etc.), where the identity
provider is actively involved in the authentication process. A user who wants to access
a service is redirected to the identity provider (IdP), which performs the authentication
process (e.g. by username and password) and produces a short-lived access token that
can be verified by the service provider (SP). During this process, the IdP acts like a
“Big brother” that knows all the details of all access requests made by users, enabling
user tracking and compromising their privacy. Moreover, a malicious IdP is able to

3.2. Concept 61

impersonate any of its users and because of that it becomes a very attractive target for
attackers.

On the other hand, (2) offline solutions, where the IdP is only involved only during
the process of issuing a long-lived credential (e.g. X.509 certificates [30] etc). The user
contacts the IdP to authenticate and obtain a credential (issuing process) that can
be stored for later use by generating access tokens to access services without the IdP
having to intervene. Unlike online, the offline process does not suffer from the same
privacy issues. This system reduces user exposure by issuing credentials to an isolated
system (e.g. a wallet on the user’s device). Nevertheless, the main problem with this
solution is the need to delegate the handling of sensitive material to users, who must
securely store their long-lived credentials, making them a direct target for attackers.
In addition, most of these systems require specific hardware to function properly (e.g.,
smart cards) or user-unfriendly software extensions.

The approach seeks to evolve the traditional systems to a distributed system,
figure 3.1. Behind this evolution are two clear goals: (1) to prevent IdPs from abusing
their power to track users and (2) to eliminate the critical point of failure they currently
pose. To achieve these goals, we propose the application of distributed cryptography
techniques so that the role of the central IdP evolves towards a distributed architecture.

Service Provider

Identity Provider

User

Service Provider

User

IdP1

IdP2

IdP3

IdP4

IdP5

IdPn

Identity Provider

Figure 3.1: Conceptual idea

Distributing the role of the IdP is not a simple task as it has implications for the
security and privacy of the users. Firstly, a group of corrupted or compromised IdPs
may not be able to issue valid cryptographic material. That is, unless all IdPs are under
the control of an attacker, it will not be possible to impersonate a user of the system.
With respect to privacy, the system must provide data minimisation, unlinkability and
untraceability features. The material presented to service providers should only contain
the minimum necessary information. Regarding unlinkability, two or more access tokens
cannot be linked together, preventing a service provider or even a coalition of service

62 3. Privacy-preserving distributed identity management

providers from being able to eavesdrop on user behaviour. Finally, IdPs should limit
themselves to generating authentication material. That is, IdPs will know that a user
is performing an authentication process, but they will not learn which service provider
the user is contacting.

3.3. Objectives and requirements

Chapter 1 of this thesis presents a set of general objectives and requirements together
with a set of specific objectives described in section 1.3. This chapter covers objectives
O4 and O6.

The first objective O1 established includes the need to study and analyse the
restrictions present in the current identity management systems, as well as to obtain a
list of problems that must be considered in the proposed solution. In this regard, the
following key points have been identified:

Existing solutions are not well balanced between usability and privacy protection.

In SSO solutions, IdP is a very dominant element. Resulting in loss of privacy
through user-tracking techniques across services.

Compromising an identity provider in SSO systems is catastrophic, putting the
all the user data in risk.

Credential-based solutions are not usable enough to achieve good adoption.

Users have poor control over how their data is used.

There is a wide variety of devices that must work correctly with the chosen
solution.

Users do not want to change the mechanisms they already know for unknown
ones.

Having identified the gaps in traditional IdM solutions, the fourth objective O4
focuses on developing an identity management solution that at least maintains the same
levels of security while integrating distributed technologies. In that sense, the proposed
solution should address the following challenges:

Challenge 1 To establish an identity management system that ensures secure and
privacy-friendly identity management interactions.

Challenge 2 Reduce or eliminate the critical point of failure that centralised IdPs
represents in SSO solutions while maintaining usability.

Challenge 3 Prevent the IdP from tracking or impersonating its users.

3.3. Objectives and requirements 63

Challenge 4 Support different scenarios to enable users to use different identities
when accessing different online or offline services.

Challenge 5 Use well-known authentication mechanisms to reduce the impact over
users adoption such as the user-password technique.

Challenge 6 Keep minimum requirements low in order to maximise the number of
devices that can support the solution.

Challenge 7 Provide better user control over their data and how it is shared.

In order to achieve the above objectives, the solution must meet a number of
requirements that are classified between security and usability. The security requirements
determine the minimum features needed to make the solution at least as secure as
traditional solutions and add new points for the new security features we have set out
in the previous objectives.

RQ.ID Name Description
se.RQ.1 No impersonation by

IdPs
A coalition of fewer than a threshold number
of IdPs cannot impersonate the user.

se.RQ.2 Hiding SPs from IdP IdPs cannot observe which user is accessing
which SP.

se.RQ.3 Authentication All components and entities must use mutual
authentication protocols.

se.RQ.4 Data integrity Components must ensure data integrity during
communications.

se.RQ.5 Confidentiality All components must maintain data confiden-
tiality.

se.RQ.6 Availability The unavailability of any component must not
compromise security.

se.RQ.7 Access control Components must enforce access rules to ensure
only authorized entities access sensitive data.

se.RQ.8 Replay protection All cryptographic protocols must resist replay
attacks.

se.RQ.9 Token standards Authentication tokens should comply with rel-
evant standards, cryptography requirements,
and protection profiles.

se.RQ.10 Token authenticity Tokens must accurately reflect what the vIdP
asserts.

se.RQ.11 Proactive security IdP secret key material can be refreshed to
enhance security.

Table 3.1: Security and privacy requirements

64 3. Privacy-preserving distributed identity management

As for usability requirements, these should ensure that the proposed solution is
accessible to users in order to achieve good adoption.

RQ.ID Name Description
us.RQ.1 Effectiveness All users should be able to authenticate them-

selves and make use of the proposed solution
without previous special knowledge or training.

us.RQ.2 Efficiency Users must have the perception that the time
spent on the whole authentication process is
acceptable.

us.RQ.3 Satisfaction The authentication process should be an expe-
rience that meets the user’s expectations, i.e.
not tedious, time-consuming or labyrinthine.

us.RQ.4 Interoperability Different scenarios and use cases require dif-
ferent authentication needs. The system must
be flexible enough to accommodate as many
scenarios as possible.

us.RQ.5 Mobile support The use of mobile devices for authentication
is already a fundamental part of both users
and service providers. The solution must work
properly on these devices.

Table 3.2: Usability requirements

In the following sections we will discuss the basic building blocks applied to the
solution as well as the processes and the proposed architecture. This will be followed
by an evaluation through a set of use cases and finally the main results obtained.

3.4. Processes and architecture

3.4.1. Overview
The proliferation of digital services necessitates robust identity management systems

that safeguard user privacy while ensuring seamless access to services. Traditional
centralized identity providers, while widely adopted, present challenges including single
points of failure and privacy concerns. Now, a novel approach to identity management
through a Distributed Identity Protocol (DIP) is introduced, leveraging a Virtual
Identity Provider (vIdP) to distribute the authentication mechanism across multiple
entities, enhancing security and user privacy.

Figure 3.2 presents an evolution for identity management from a centralised to
a distributed model in which the identity provider is no longer a single monolithic
entity and becomes a distributed one. Through the collaboration of different partial
identity providers, a logical entity called Virtual Identity Provider (vIdP) is introduced.

3.4. Processes and architecture 65

Unlike traditional solutions, the vIdP is not a single point of failure, at least half plus
one of the partial IdPs need to be compromised to jeopardise the infrastructure. To
achieve the distributed model, the solution relies on cryptographic techniques based on
threshold cryptography [76] and to increase privacy features, it includes anonymous
credentials [77] and secure multi-party computing [78] to ensure that none of the partial
IdPs or a coalition, is able to track or impersonate users.

The proposed architecture for the Distributed Identity Protocol (DIP) consists
in three main entities: (1) User, (2) Service Provider and (3) Virtual IdP.

1. User: The user actively interacts with both the virtual IdP and the service
provider. The user needs to authenticate with the virtual identity provider in
order to obtain authentication material (token). The authentication of the user is
carried out by a typical username-password pair and once authenticated, the user
obtains the access token which is presented to the corresponding service which
verifies the its validity.

2. Service Provider (SP): It protects access to a set of resources or services. It
establishes access policies that the user must satisfy in order to gain access and
also verifies that the access token presented to it by the user is valid.

3. Virtual IdP: It consists of a set of identity providers (hereafter partial IdPs)
which do not have to be fully trusted and which, using cryptographic techniques,
collaborate and behave as a single identity provider. The vIdP provides distributed
authentication and issuance mechanisms in such a way that all partial IdPs must
participate in both processes by verifying user’s access data (username and
password) as well as during the issuance process.

The proposal supports two types of independent scenarios, online and offline. In
the online case, the user experience is identical to that of any existing SSO [26–28,34]
system. The user is redirected to the vIdP when tries to access a service provider
to authenticate via username and password. Finally, after a successful process the
user is redirected to the service with an authentication token. This token includes
the minimum information necessary to satisfy the access policy and additionally, the
user may be asked to actively participate either to agree to the disclosure of certain
information (i.e, age, nationality . . .) or for information purposes only. As for the
second mode of operation, the offline case, it ensures that the user may be able to
access a service provider even when there is no connectivity to the vIdP. This scenario
involves the issuance of credentials that are stored in a digital wallet. The wallet is
a piece of software (i.e., an Android app) that does not require specific hardware to
function and making it simpler to adopt than smart cards. Therefore, a user is able to
authenticate against the vIdP to obtain a credential for later use. As with solutions
such as X.509 [35], the credential is a critical material to protect and the responsibility
lies with the user.

The combination of threshold cryptography together with secure multi-party com-
puting prevents partial IdPs from being able to know pseudonyms with which users

66 3. Privacy-preserving distributed identity management

Service Provider (SP)Partial IdP1

Partial IdP2

Partial IdPn

Virtual
IdP

(vIdP)

1. Access request

2. Authentication request

3. Authenticate (usr, pwd)

4. Access Token

5. Access Token

Service Provider (SP)

4. Access request

5. Authentication request

7. Access Token

3. Store credential for later use
6. Derive access token

Online approach

Offline approach

Service access Authentication material IdP Authentication

1. Authenticate (usr, pwd)

Figure 3.2: Overview of the distributed identity management system

access service providers. In addition, it prevents linking different authentication requests
from one user, not being able to know whether they were for the same SP or for a
different one. Moreover, even in the case where an SP and a coalition of partial IdPs
collate their records, they will not be able to relate the authentication tokens received
by the SP to the user’s session.

From the perspective of users and service providers, the solution is fully transparent.
The user interacts with the vIdP as usual, as if it were a traditional IdP. This facilitates
the acceptance of the solution, as nothing seems to change. Neither does the service
provider see any change in traditional behaviour. The proposed scheme also maintains
the way in which users authenticate themselves in the IdP, using the typical username
and password pair that everyone knows. However, the decision to maintain a traditional
authentication system, makes password protection crucial. The main problem with
password-based systems is that if the IdP where the password is stored is compromised,
the security disappears. In the best case scenario, the attacker will only have a database
with usernames and salted-passwords that would allow him to perform offline attacks,
e.g. using dictionaries. In a catastrophic case, the passwords are stored unprotected
and the attacker gains access to all accounts immediately. This approach cannot afford
to have the password replicated in N partial identity providers. It is vital to prevent
partial IdPs from learning or storing the password. This solution provides a first
major improvement over traditional systems: A distributed password verification
(DPV), figure 3.3. Instead of storing the password, each partial IdP stores only a
portion of a secret key, used to compute a pseudorandom function operation with the
user password preventing any of the partial IdPs from knowing a user’s real password
at any time and by actively cooperating in the authentication process. Only through
the cooperation is it possible to verify the validity of a password.

3.4. Processes and architecture 67

Partial IdP1

User Partial IdP2

Partial IdPn

(usr, pwd')

SKshare-1

SKshare-2

SKShare-N

Jointly compute
PRF(sk, pwd')

SK

Figure 3.3: Distributed password high level

In order for the solution to support online and offline scenarios, the vIdP must be
able to generate valid cryptographic material in a distributed manner. For this purpose,
the solution has two procedures (1) Distributed token generation (DTG) and (2)
distributed credential issuance (DCI). Both processes are independent and do not
require each other, however, both are protected by the DPV process. The figure 3.4
shows a detailed view of how the different components and processes interact.

3.4.2. Architecture
The main idea is to split the functionality into interoperable modules in order to

facilitate the development and integration process. In this way, each partial identity
provider includes three modules that are responsible for the distributed authentication
of users and the distributed issuance of tokens or credentials, depending on whether it
is an online or offline scenario. On the other hand, a user who wants to operate with
DIP must also integrate the corresponding modules for authentication and for token
or credential handling (typically, a simple Android or iOS app). Finally, the service
provider will only need to add to its verifier stack (e.g. Google, Facebook...) the verifier
module of the DIP solution.

Distributed Password Verification (DPV): IdPs store login information for
each user who wishes to use the system. Only by knowing the password, a user will
be able to successfully log into the system. Password verification is distributed,
which means that all partial IdPs must participate in this process otherwise the
task will not be completed. More precisely, a set of IdPs register a user by storing

68 3. Privacy-preserving distributed identity management

account information (e.g. associated attributes). At each user login attempt, the
IdPs jointly verify the user’s password against the account information. The DPV
process is critical for both DTG and DCI, therefore it is necessary for both IdPs
and user to know if the process was successful in order to continue.

Generation of authentication material: Once the users have been authenti-
cated through the DPV system and depending on the scenario, they can choose
between distributed token-based authentication or obtaining a privacy-enabled
credential.

• Distributed Token Generation (DTG): The issuing of the token involves
all partial IdPs for its correct generation and as a result, the user gets a
number of fragments (token shares) that she will be able to combine into a
short-lived full access token that includes only the minimum required data
for the specific service.

• Distributed Credential Issuance (DCI): The issuing of the credential
involves all partial IdPs so that the user obtains a number of credential
shares, similar to what happens in DTG process. In this case, by combining
these shares, the user obtains a full credential containing all the available
attributes in the vIdP. The lifetime of the credential is longer than the
DTG token, and it can be stored for later use. The user is able to generate
presentation tokens with the minimum information required to access the
desired services.

The typical flow of operation can be seen in the figure 3.4. We assume that the user
is already registered in the IdM. The user selects a service to access (step 1). The SP
communicates the access policy (step 2) and is redirects the client to the authentication
portal (step 3). The authentication against the vIdP takes place via the DPV process
and, once authenticated, the user is ready to receive the corresponding cryptographic
material. The most common case is an online or SSO scenario where the vIdP will
generate a presentation token via the DTG mechanism (step 4(a)). This mechanism
implies that all partial IdPs forming the vIdP will issue a token share for the given
access policy (if the user can meet the requisites of the policy). The user client is able
to aggregate all the token shares and compose a valid presentation token (step 5(a)),
with the minimum necessary data, for the access policy required by the SP. Once the
presentation token has been reconstructed, it is sent to the SP who will proceed to its
validation thanks to its DIP module (steps 6(a) and 7). Alternatively, a P-ABC can
be obtained through the DCI mechanism (step 4(b)). In this case, all the partial IdPs
generates credential shares that once reconstructed by the user client will result in a
full credential with all the attributes that the vIdP has about the user (step 5(b)). The
client’s DCI module will be in charge of storing this credential securely and of directly
deriving presentation tokens for a specific access policy (as long as it can satisfy it),
with the minimum necessary information (step 6(b)). Once the presentation token is

3.4. Processes and architecture 69

IdP2 IdPn
DTG DCI

Virtual Identity Provider

IdP1

User Client

DTG Client DCI Client

DIP Client Service Provider

Other Verifiers

DIP Verifier

Access Policies

3. DPV
Authentication

1. Access Request

2. Access Policy

4(a). DTG
process

6(a). Token
presentation

DPV

DPV Client

4(b). DCI
process

7(b). Presentation from
Credential

7. Verify 6(a) or 7(b)

Distributed Token Generation

Distributed Credential Issuance

Distributed Password Verification

5(a). Token
reconstruction

5(b). P-ABC
reconstruction &

Store

6(b).
PToken

Generation

Figure 3.4: Distributed identity management system

generated, the client sends it to the SP (step 7(b)) who, is able to verify its validity
(step 7).

3.4.3. Process definition

Distributed password verification (DPV)
The DPV process is based in the usage of pseudorandom functions (PRF) and

particularly in partially-oblivious PRF (pOPRF) [79]. A PRF function takes as input
a key of λ bits, an arbitrary message x and outputs a random looking string y. A
distributed partially-oblivious PRF (dpOPRF), is a special type of multiparty PRF,
where the key k is shared among n parties. Furthermore, the parties holding key shares,
denoted k1, ..., kn, are not allowed to learn anything about the message x being queried.
Finally, besides the actual message it is required that there is some tag, t, which is
known to the parties holding the key shares. This dpOPRF operation implies that a
message is firstly blinded by the querying third party, in order to hide its true value
from the parties holding the key shares.

A dpOPRF system can be described by five processes:

1. Setup: Generates the public parameters pp for n parties for a specific instance,
based on the security parameter λ.

70 3. Privacy-preserving distributed identity management

2. Key generation: Takes the public parameters pp and generates a key share for
each n participating entity.

3. Blind: Allows blinding an input value through an x-value that is indistinguishable
from random. It also produces a value r that allows the unblind process.

4. Evaluation: It takes as input a key ki, a blind x value and a public label t and
generates a PRF output y.

5. Combination: Combines the partial PRF outputs from Evaluation function,
evaluates the blinded x and the label t and perform the unblind process to return
the PRF output.

With this in mind, the DPV process is summarised in two stages: Registration and
verification. In the registration phase a user requests to use the system by providing its
username and password. The outcome is the user’s account information that is stored
at each of the single partial IdPs. During the verification phase, the user provides its
username, uid and password to the partial IdPs. The outcome is an “accept” or “deny”
from each IdP, indicating whether the user provided the password that corresponds to
uid from the registration phase.

Registration phase requires the user to be assigned a unique identifier uid, together
with the password pwd. Figure 3.5a shows the registration flow. Each partial IdP have
a shared key ki. First, the user performs a blind signature over the password and ask
for a register process to the partial IdPs. The IdPs evaluate the registration request by
looking if the uid already exists. If not, the IdP sends a response to the User containing
the shared key ki. The user now computes y = dpOPRF ((k1, ..., kn), (uid, pwd)) using
the result of the dpOPRF as a seed to generate a public and private key pair upk and
usk. Then the user sends the generated public key upk together with a signature made
with the corresponding private key, (upk, SIGN(y, usk)). Each partial IdP verifies the
signature and stores the pair uid, upk as the user’s access information. Finally, they
send a confirmation message to the user.

Verification phase is initiated by the user, who sends a login request with the uid
and the blinded pwd to the partial IdPs, figure 3.5b. The user holds uid and pwd and
the IdPs hold the same ki as in the registration phase, as well as optional account
information (uid, upk) (in case the uid was already registered). Each partial IdP sends
fresh nonce ni in response to the user login request. Then, the user evaluates de
dpOPRF operation as already described in the registration phase and derives a new
keypair usk′ and upk′. The user signs the uid and all the received nonces, using the
upk′. The partial IdPs verify the signature against the stored upk and uid. If the
verification passes, the login is successful.

3.4. Processes and architecture 71

User

User

Partial IdP

Partial IdP

1 x = dpOPRF.BLIND(pwd)

2 Request Register (uid, x)

3
Check if uid

is already registered

4 Shared key k[i]

5 y = dpOPRF((k[1], ... ,k[n]), (uid, pwd))

6 (usk, upk) = KeyPair(y)

7 (upk, SIGN(y, usk))

8
if (verify

(SIGN(y, usk)))
then store(uid, upk)

9 Registration result (success or error)

(a) DPV Registration flow

User

User

Partial IdP

Partial IdP

1 x = dpOPRF.BLIND(pwd)

2 Request Login (uid, x)

3
Check if uid
is registered

4 Shared key k[i] and nonce[i]

5 y = dpOPRF((k[1], ... ,k[n]), (uid, pwd))

6 (usk, upk) = KeyPair(y)

7 (upk, SIGN(uid, nonce[i]))

8
verify

(SIGN(uid, nonce[i]))

9 Login result (success or error)

(b) DPV Verification flow

Figure 3.5: Distributed password verification process

Distributed token generation (DTG)
The DTG process is based on the use of distributed signature (DSIG) [80–82]

cryptography to construct a presentation token during the online or SSO scenario.
A distributed signature scheme is a digital signature scheme, where shares of the
private signing key are distributed between several parties such that the parties must
collaborate in order to construct a valid signature. This scheme provides two very
important features: key protection because all participants must be compromised in
order to break the security and protection against forged signatures as long as all the
participants must be malicious to generate a fake signature.

The DSIG scheme consists in five processes:

1. Setup: Given a security parameter λ and the number of participants n, generates
the public parameters, pp.

2. Key generation: Given the public parameters pp, generates a public key vk
along with a private key share skn for each participant.

3. Sign: Given a skn and a message m, output a partial signature share σn.

4. Combination: Takes a list of partial signatures shares {σ1...σn} and composes
the full signature σ.

5. Verification: Given a public key pk, a message m and the combined signature σ
checks if it is valid or not.

72 3. Privacy-preserving distributed identity management

Figure 3.6 shows the DTG process based on DSIG. The vIdP is configured so that
each partial IdP has its own ski ready for the DSIG.sign process. A user tries to
access a service performing an access request and receiving an AuthnRequest. The
authentication process is then carried out at the vIdP via DPV. If the authentication is
successful, the user is required to provide the username along with AuthnRequest. The
user chooses a random value rand and performs a Hash(rand, req). The user sends
to each partial IdP a message msg consisting of the hash and the uid to each of the
partial IdPs, which will produce a token share. Once all the shares are received, the
user reconstructs the token t. Finally, the user presents the t in the SP who can validate
it using the DSIG.Verify operation using the vIdP public key pk.

User

User

Partial IdP

Partial IdP

Service provider

Service provider

1 Access request

2 AuthnRequest

3 Authentication DPV

For each partial IdP

4
msg = uid, Hash(rand, AuthnRequest)

DSIG.SignRequest(m)

5
t[i] = DSIG.Sign

(Sk[i], msg))

6 token = DSIG.Combine(t[1], ..., t[n])

7 Present(token)

8 DSIG.Verify(pk, token)

9 OK/Fail

Figure 3.6: Distributed Token Generation (DTG) based on Distributed Signature
(DSIG)

Distributed credential issuance (DCI)
The DCI process introduces a way to obtain privacy attribute-based credentials

(P-ABC) in a distributed manner. The idea of P-ABCs was originally proposed by
Chaum [83, 84], and several efficient realizations exist to date. The most prominent
examples are the strong-RSA based and pairing-based schemes by Camenisch and
Lysyanskaya (CL) [12,77] the pairing based schemes by Boneh et al (BBS) [85], and
Pointcheval and Sanders (PS) [86].

P-ABC solutions rely on an issuer’s signature on a set of user attributes – the
credential. From the credential the user can derive so-called presentation tokens that
selectively disclose a sub-list of attributes. Given the revealed attributes, a verifier is
guaranteed that a valid token was computed with a credential obtained from the issuer

3.4. Processes and architecture 73

for a super-list of those attributes. Importantly, the token reveals no more information
about the user than what can be inferred from the revealed attributes. Originally,
P-ABCs rely on a single issuer that provides users with their attributes, and thus poses
a single point of failure. To remedy this recent works have shown how this can be
achieved for pairing-based CL and BBS credential [80,87] while preserving the format of
the resulting credential, which means that the user’s derivation of presentation tokens
is not impacted by this distributed issuance.

To integrate the credential issuing mechanism, a straightforward approach is followed
which consists of directly modifying the DTG protocol to be able to issue P-ABC
credentials instead of distributed signatures. That is, the user no longer receives
signature shares from the IdPs, but rather shares of a credential containing all her user
attributes. We then leverage the power of P-ABCs to let the user derive the final SSO
token as a P-ABC presentation token from the freshly received credential, inheriting
the unlinkability and minimal disclosure features from P-ABCs.

Leveraging on existing literature, the solution proposes the use of P-ABC credentials
based on the scheme provided by Pointcheval and Sanders (PS) [86] as they have a
good efficiency characteristics. However, no implementation of distributed version for
these PS signatures was known.

Standard PS Signatures proposes an efficient signature scheme that allows to sign
multiple message blocks m1, ...,mk at once and also to efficiently prove knowledge of
signatures in zero-knowledge proofs. In a similar way to the DSIG process, it has five
basic operations:

1. Setup: Given a security parameter λ it generates the public parameters pp.

2. Key generation: Given the public parameters pp, generates a public key vk and
a private key sk.

3. Sign: Given a message block {m1, ...,mn} and the sk, produces signature σ.

4. Verification: Given a public key vk, a message block {m1, ...,mn} and the
signature σ checks if it is valid or not.

The next step is to evolve the standard PS Signatures into a multi-signature (MS) [88]
model that allows a number N ≥ 1 signatories to jointly compose a signature on a
message, as we have seen in DSIG. Multi-signatures can be seen as a particular type of
distributed signatures that allows for a more flexible key generation. Whereas a DSIG
scheme generates a fixed set of signing keys at the beginning – often done through a
trusted dealer, MS allow all signers to generate their independent signing key pairs and
derive a joint aggregated verification key for any subset of signers.

The result of the combination of PS signatures with MS is detailed in the publica-
tion (P6). The PS-MS signature scheme [89] used by DCI process is defined through
six basic operations:

1. Setup: Given a security parameter λ, the amount of signers N and the number
of messages to sign k, it generates the public parameters pp.

74 3. Privacy-preserving distributed identity management

2. Key generation: Given the public parameters pp, generates a public key vk and
a private key sk.

3. Key aggregation: Given a set of public keys {vk1, ..., vkn} compute an aggre-
gated public key aggrvk.

4. Sign: Given a message block m = {m1, ...,mk} and a private key skn computes
a signature σN .

5. Combination: Given a set of σN , all the partial keys {vk1, ..., vkn} and a message
block m = {m1, ...,mk} produces σ.

6. Verification: Given a signature σ, the aggrvk and message blockm = {m1, ...,mk},
checks their validity.

With PS-MS it is possible to advance the implementation of a PS-MS based P-ABC
system. The PS capability of creating efficient proofs of knowledge, immediately enables
a (basic) P-ABC scheme [86]. Below we introduce an overview of the main processes
resulting of mapping this P-ABC system to the PS-MS methods and the basic flow
(figure 3.7). Full cryptographic details can be found at Garćıa-Rodŕıguez et. al (P6).

1. Key generation: The N issuers generate their key pairs (ski, vki). Each issuer
runs its own PS-MS setup and PS-MS key generation. PS-MS setup makes use of
a k value to indicate the number of messages to sign and in this case, determines
the number of attributes to be encrypted in the credential. The aggregate public
key avk of the N partial IdPs is generated by PS-MS key aggregation such that
avk ← KeyAggregation(vk1, ..., vki).

2. Issuance: When a user request a credential, the issuance process must gener-
ate a valid credential for a user uid with a list of attributes A = {a1, ..., an}
valid for a time epoch. The N issuers run the signature method like σi ←
Sign(ski, (A, epoch)) returning a signature share σi to the user. With all the
shares, the user runs the combination method resulting in a full credential σ.

3. Presentation: To compute a presentation for a message m with a set of attributes
~A = {A1, ..., Ai}, the user must have the full credential σ. The user performs a
knowledge proof such that: token← ZKProve(avk, σ, ~A,R ⊆ [k],m).

4. Verification: Verifying a presentation token token on a message m, revealed
attributes ~A and an epoch consists of verifying the signature of knowledge gen-
erated on m for an avk, as well as verifying that the epoch has not expired,
result = ZKV erify(avk, token, ~A,m).

3.4. Processes and architecture 75

User

User

Partial IdP

Partial IdP

Service provider

Service provider

1 (sk, pk) = PSMS.KeyGen()

2 pp = PSMS.Setup(k)

3 Authentication DPV

4 DCI request

For each partial IdP

5 share[i] = PSMS.Sign(sk[i], (A, epoch))

6 credential = PSMS.Combination(share[1], ..., share[i])

7 Store(credential)

8 Access Request

9 req = Access Response

10
token =

ZKProve(avk, credential, attributes, R, req)

11Presentation(token)

12
result =

ZKVerify(avk, token,
attributes, req)

13 Service usage

Figure 3.7: Distributed credential process flow

Initially, partial IdPs must generate the configuration material that includes the
public and private keys as well as the number of attributes k that a credential will have
(steps 1 and 2). The process starts with the authentication of the user through the
DPV system (step 3) and then requests the issuance of a P-ABC credential via DCI
(step 4). Each partial IdP generates a credential sharei which is forwarded to the user
(step 5). When the user has received all shares, it builds the full credential (step 5) and
stores it for later use (step 6).

At a certain point, the user decides to try to access an SP so it initiates the
connection with an access request and by receiving the access policy in req (steps 8 and
9). Using the stored credential, the user generates a presentation token and sends it
to the SP (steps 10 and 11). Finally, the SP validates the received presentation token
(step 12) and, depending on the verification result, provide the service (step 13).

Both distributed token generation (DTG) and distributed credential issuance (DCI)
involve decentralized processes that enhance security, but they differ significantly in
interaction requirements and use cases. DTG based on distributed-PABCs with PS-MS
is non-interactive, allowing users to prove their credentials to the service provider
(SP) without ongoing intervention from the identity provider (IdP), which is ideal
for scenarios where constant connectivity is a challenge. However, DTG typically

76 3. Privacy-preserving distributed identity management

requires the IdP to be involved continuously to validate and refresh tokens, making it
suitable only for online environments where the IdP’s presence is necessary for token
validation. In contrast, DCI provides greater flexibility by allowing credentials to be
issued once and then used repeatedly until they expire or are revoked, reducing the need
for frequent interactions with the IdP and enabling both online and offline verification
scenarios. DTG and DCI can be seen as complementary solutions in a comprehensive
identity management framework. DTG, with its capacity for real-time authentication, is
well-suited for environments requiring dynamic access control and immediate response
to security events. Meanwhile, DCI’s ability to provide long-lasting, reusable credentials
makes it ideal for applications requiring durable identity verification, such as access to
digital services or physical locations. By combining both approaches we can leverage the
strengths of each to ensure robust security, flexibility, and user privacy across various
contexts and requirements.

3.5. Conclusions
The solution presented in Chapter 3 emerges as a pioneering initiative aimed at

addressing the perennial challenges surrounding digital identity management. Through
its commitment to privacy, security, and decentralization, the solution seeks to transcend
the limitations and risks endemic to centralized identity providers.

3.5.1. Primary Goals and Objectives
The solution envisions a paradigm shift in how personal data is handled during

online interactions, centering on the following objectives:

Decentralization At its core, the presented solution advocates for a distributed
approach to identity management. This strategy aims to dilute the reliance on singular,
centralized entities, thus mitigating potential central points of failure and enhancing
overall system resilience.

User Convenience Despite its rigorous security and privacy measures it prioritizes
user experience, ensuring that these enhancements do not encumber user convenience
or accessibility.

3.5.2. Technological Underpinnings
It introduces a sophisticated blend of advanced cryptographic techniques. These

technologies are meticulously integrated to ensure scalability and interoperability,
thereby paving the way for a comprehensive and adaptable identity management
ecosystem.

3.5. Conclusions 77

3.5.3. Anticipated Impacts
Its implementation heralds a new era characterized by:

Enhanced security and privacy, significantly reducing vulnerabilities inherent in
centralized systems.

Broadened adoption of privacy-centric services, spurred by heightened user trust
and regulatory compliance.

Stringent adherence to regulatory standards, including GDPR, demonstrating a
commitment to user rights and data protection.

3.5.4. Encountered Challenges
Despite its promising outlook there are open challenges, including:

Technical intricacies associated with the deployment and maintenance of dis-
tributed cryptographic systems.

The steep learning curve and user education imperative for fostering trust and
facilitating a smooth transition from legacy systems.

Interoperability dilemmas, necessitating seamless integration with existing digital
ecosystems without compromising security or user privacy.

3.5.5. Contemplated Drawbacks
In addition there are some potential drawbacks identified, notably:

1. Technical complexities that may introduce latency or reduce system efficiency,
particularly in identity verification processes.

2. Challenges in user adoption, influenced by trust issues and the necessity of
acclimating users to a novel system architecture.

3. Legal and regulatory hurdles, especially in navigating the intricate landscape of
global data protection laws.

4. Economic and social ramifications, including the risk of widening the digital
divide and the resource-intensive nature of deploying and sustaining the proposed
framework.

78 3. Privacy-preserving distributed identity management

Final Thoughts In essence, Chapter 3 represents a forward-thinking endeavor that
seeks to revolutionize the domain of digital identity management through a meticulous
blend of decentralization, privacy, and security. While the path to its full realization
is fraught with challenges and considerations, the potential benefits for users, service
providers, and the broader digital ecosystem are undeniable. As we look towards the
future, the solution has been integrated as part of the OLYMPUS project and it success
will hinge on our collective ability to navigate these complexities, ensuring its widespread
adoption and operational efficacy.

4

C
h

a
p

t
e

r

DLT-enabled identity management system with
enhanced trust

4.1. Introduction
Chapter 3 introduces a new proposal for identity management applying distributed

techniques, intending to solve the problems presented in traditional solutions and
even in new distributed systems. The approach devises a privacy-preserving identity
management solution evolving from federated identity systems and eliminating the IdP
as the single point of failure. The above proposal identifies a number of challenges in
Section 3.3. Achieving these objectives makes the above proposal a more private, usable
and secure solution. However, there is still room for improvement.

Despite the advantages over traditional systems, the architecture 3.2 can be improved
in terms of trust. Although chapter 3 introduces distributed technologies through
the distribution of the monolithic IdP into several partial IdPs, and the issuance of
cryptographic material, it does not address the trust relationships that are still necessary
between the entities involved. The decomposition of the IdP into several partials does,
to some extent, manage the trust between the partial IdPs themselves but neglects the
trust relationships between users, vIdP, and service providers which they still need to
trust, as traditionally done, blindly.

There are three key elements of trust, namely: the user trusts the identity provider,
the service provider trusts the identity provider and the user trusts the service provider.
Traditionally, a corrupt identity provider can potentially access the service, using the
user’s identity without consent (impersonation), a situation that is solved in the above

79

80 4. DLT-enabled identity management system with enhanced trust

distributed approach. For its part, the service provider must ensure that the identity
provider is trustworthy since it will delegate to the identity provider the collection and
validation of user attributes. Finally, the user must be able to trust that a service
provider is acting legitimately and transparently before sharing his or her information.
Too often, service providers misrepresent their requirements or omit the amount of data
they collect and by the time users become aware of the amount of data being shared, it
is often too late.

From the perspective of the trust transfer between SP and IdP in most deployments
this will not be problematic, as the IdP will be deployed by some trusted organisation.
In some cases, however, the IdP acts as some kind of proxy. This situation requires that
the service provider trusts not only the IdP itself but the organisation deploying it.

Regarding the managing of trust and key material typically, service providers trust
an identity provider by installing the IdP’s crypto material in some trust store. This can
be somewhat inconvenient for the service provider and instead common PKI technology
is often used, by having some certificate authority (CA) sign the IdP’s public key in the
format of an X.509 certificate. This essentially binds a domain name to a public key,
allowing the service provider to trust the tokens signed by some X.509 certificate. The
above solution supports this type of key distribution but, to prevent a vIdP to link a user
to a service provider, the key material should be exchanged out of band. In addition,
although the service provider can obtain the key material in multiple ways, it must also
obtain a description of the vIdP. Traditional solutions such as OIDC or SAML achieve
this by using IdP metadata messages. These metadata description messages contains
relevant information such as various URLs, endpoints and information regarding the
key material. The same approach can be taken for a vIdP, although we can no longer
make use of the standard messages as a vIdP is not exactly a traditional IdP as it
consists of multiple servers, endpoints etc. Existing metadata specifications would have
to be extended to support the vIdP key material distribution.

It should also be considered that users are reticent to change any authentication
solution unless the benefits are obvious and do not force them to change their behaviour.
Generally, the trust relationships that are established in IdM systems require the user
to simply trust without providing any extra information. For full trust to really exist,
the system needs to provide more information or tools to resolve the situation without
detracting from the user and service providers’ experience.

To enhance the strengths of the distributed IdM system 3, it is necessary to introduce
features to successfully manage trust between the different entities. To this end, we
take advantage of Distributed Ledger Technologies (DLT) [5] to enrich the solution.
The popularisation of these technologies and the identity solutions shown in 2.2 and
2.2.1 are empowering users with better security and privacy mechanisms [8] that allow
them to become anonymous and re-take control of their data with self-sovereign identity
(SSI) models.

4.2. Concept 81

4.2. Concept
The proposed evolution aims to substantially improve trustness in the entire infras-

tructure without penalizing the user experience and maintaining the precepts of ease of
use, deployment, and integration with other technologies.

Chapter 3 offers a distributed identity management solution with two modes of
operation, (1) online and (2) offline. After analysing the architecture and the necessary
trust relationships, there are several areas where improvements can be made. Firstly,
from the perspective of the trust transfer between SP-IdP and user-IdP, although
the composition of the vIdP is supported by cryptography, the distribution of public
material such as vIdP components, their keys and url endpoints etc., must be done
either by manual configuration, or through the extension of traditional SAML or OIDC
messages. This situation is not at all convenient for any of the entities. Moreover, users
and SPs must trust the legitimacy of the vIdP (including partial IdPs) with no extra
information as if it were a traditional system.

Secondly, the trust relation between users and SPs remains as always. Users must
take service access decisions according to a set of policies with no other help than their
common sense or through the false security provided by seeing a small padlock on a
website indicating that a TLS connection exists. Experience has shown that relying
solely on the common sense of users often leads to problems of personal data leakage or
worse, phishing, and even loss of credentials and personal data. Even though users have
learned the importance of a TLS-protected connection, they have not fully understood
that a TLS enabled site can also be fraudulent or dangerous. Users tend to trust
that everything will work as expected as long as they do not have clear feedback that
something might be wrong.

We know that DLT systems can operate in parallel to virtually any infrastructure,
providing confidence through features such as immutability. The approach seeks to
evolve distributed system towards a DLT supported distributed system, figure 4.1. The
objective is to create a complete ecosystem where, in addition to protecting user privacy,
trust management between the different entities is enhanced through the DLT, that acts
as a source of trust for all participants enabling the obtention of relevant information
about the vIdP, public cryptographic material and about the service providers operating
in the framework.

Integration with DLT technologies is sometimes too dense or complex for successful
implementation. The proposal should maintain the ease of use and transparency
already achieved in the previous proposal. There would be no point in improving trust
mechanisms if the solution becomes unusable. The new approach should emphasises
in the registration and discovery through DLT of the vIdP and service providers. To
this end, technologies such as smart contracts provide the necessary functionality. In
any identity management scenario there are two basics steps: (1) The setup, in which
the user must select the IdP and either manually configure some kind of parameter or
rely on those that the corresponding application downloads from an external source or
from the IdP itself and (2) the usage, where the user sign up with a set of attributes

82 4. DLT-enabled identity management system with enhanced trust

Service Provider

User

IdP1

IdP2

IdP3

IdP4

IdP5

IdPn

Identity Provider

Service Provider

User

IdP1

IdP2

IdP3

IdP4

IdP5

IdPn

DLT

Identity Provider

Figure 4.1: Conceptual idea

to obtain some material to later present in a service provider. In both cases, there is
no guarantee that there could have been any malicious modification of the vIdp or SP
parameters. Similarly, when a user wants to make use of a service that is available
through the identity provider, the user is not able to know a priori whether that service
provider is more or less trustworthy. It is only able to discern whether the connection it
offers is secure or not, which leaves the user at a disadvantage in the face of a possible
threat. The proposal tries to provide a solution to these scenarios of loss or absence of
trust.

4.3. Objectives and requirements
Chapter 1 presents a set of general objectives and requirements together with a set

of specific objectives (section 1.3). This chapter encompasses objectives O5 and O6,
building on the results obtained in chapter 3 and leading the proposal to the following
key areas points:

Novel identity management solutions with DLT technologies still rely on centralised
identity providers.

Existing solutions, with and without DLT, lack trust management.

The introduction of DLT technologies has only led to an improvement in trace-
ability. Trust is slightly improved in a collateral way.

Existing solutions with DLT technologies remain unwieldy for users.

4.3. Objectives and requirements 83

Having identified those gaps, O5 focuses on developing an advanced IdM DLT
enabled solution based on the solution obtained in chapter 3 that should address the
following challenges:

Challenge 1 Provide a distributed IdM system along with DLT technologies.

Challenge 2 Maintain the security an privacy capabilities without penalising the
user experience.

Challenge 3 Prevent the IdP from tracking or impersonating its users.

Challenge 4 Reduce or eliminate potentially dangerous situations during access to
the IdP.

Challenge 5 Reduce or eliminate potentially dangerous situations during service
access.

Challenge 6 Provide user-friendly tools to improve decision capacity and control
over private data.

Challenge 7 Keep minimum requirements low in order to maximise the number of
devices that can support the solution.

In addition to the security and usability requirements set out in the section 3.3,
tables 3.1 and 3.2, the following requirements have now been added regarding the ledger:

RQ.ID Name Description
ledger.RQ.1 Ledger data controller The ledger stores public information and

under no circumstances does the ledger store
private data.

ledger.RQ.2 Ledger deployment Setup of a public, permissioned and
lightweight ledger to securely store and share
trust information and access policies.

ledger.RQ.3 Ledger read and write Implementation of smart contracts to carry
out the interaction between the different
entities and the DLT infrastructure.

ledger.RQ.4 Ledger verification All information contained in the ledger must
be verifiable and traceable.

ledger.RQ.5 Ledger and solution evolu-
tion

The DLT platform should not be coupled
with the identity solution. In other words,
the ledger solution is independent from the
IdM.

ledger.RQ.6 Ledger usage The ledger acts transparently and does not
penalise or restrict the operations.

Table 4.1: Ledger requirements

84 4. DLT-enabled identity management system with enhanced trust

In the following sections we will discuss the basic building blocks applied to the
solution as well as the processes and the proposed architecture. This will be followed
by an evaluation through a set of use cases and finally the main results obtained.

4.4. Processes and architecture

4.4.1. Overview
In the proposal made in Chapter 3, the main objective of the processes and entities

was to eliminate the traditional IdP as a single point of failure and to achieve an identity
system based on distributed technologies. Having achieved that goal, the challenge now
is to improve the trustworthiness of the entire infrastructure.

Service Provider (SP)

Partial IdP1

Partial IdP2

Partial IdPn

Virtual IdP
 (vIdP)

1. Access request

2. Authentication request4. Authenticate

5. Access Token 6. Access Token

Service access Authentication material IdP Authentication

Service Provider (SP)

4. Access request

5. Authentication request

1. Authenticate

2. Credential

7. Access Token
3. Store credential

6. Derive access token

Online approach

Offline approach

DLT

Pu
bl

ic
 in

fo
rm

at
io

n
(c

ry
pt

o,
co

nf
ig

ur
at

io
n.

..)
 a

nd
 e

ve
nt

s

DLT interaction

Setup phase

1. DLT IdP Discovery
(endpoints, public crypto...)

2. IdM auto-Setup
2.1 Verify IdM parameters

3. DLT Service check

Service Provider (SP)

1. Service provider
enrolment

Optional DLT Service check

Optional. DLT Service discovery catalog

Setup Usage

Figure 4.2: DLT enabled IdM evolution proposal

This approach 4.2 distinguish two basic phases. On the one hand, the (1) config-
uration or registration phase, figure 4.3 and on the other hand, (2) the identity
management phase, figure 4.4.

(1) Registration phase This phase takes place during the deployment of new identity
providers or new services. During it, the objective is to get the vIdP and the SPs with

4.4. Processes and architecture 85

which the users will subsequently operate registered on the DLT platform. While the
registration of a service provider is not complex, in the case of vIdPs it is a critical
process. The vIdPs are virtual entities composed of several partial IdPs that may be
distributed over different domains. Therefore, it is necessary to register separately all
partial identity providers that form a vIdP.

(2) Identity management phase The system is ready to be used by different users
who are able to perform authentication and authorization operations in addition to
query relevant information about vIdPs and SPs directly through the DLT platform.
This information includes cryptographic parameters, endpoints and policies of the
different registered vIdP and service providers.

4.4.2. Architecture

Blockchain Handler

Blockchain Smart Contracts

DLT/Blockchain Infrastructure

Service Provider

Other Verifiers

DIP Verifier

Access Policies

Organization 1

IdP1

Organization n

IdPn

Organization 2

IdP2

Virtual Identity Provider (vIdP)

DTG DCI

DPV
DLT Client

DTG DCI

DPV

DTG DCI

DPV
DLT Client DLT Client

DLT Client

1. DIP - IdP setup
(pk, sk, schema ...)

DIP - IdP setup

2. Invoque Smart Contract
Register Partial IdP
(pk, schema, endpoints, ...)

In
vo

qu
e

R
eg

is
te

r I
dP

n

3. Invoque Smart Contract
Update vIdP composition
(pk1, schema1, endpoints1...)

1. Service Provider
integration operations

3. Invoque Smart Contract
Register Service Provider
(policy, endpoints, ...)

Blockchain interactions Entity setup

DIP - IdP setup

In
vo

qu
e

R
eg

is
te

r I
dP

2

2. vIdP discover
get DIP verification
parameters

Figure 4.3: DLT enabled IdM evolution, Phase 1 - Registration

The figures 4.3 and 4.4 show a detailed view of the two phases configuration and IdM
respectively of the architecture, the entities involved and the relationships between them.
With respect to the previous solution, the introduction of the DLT entity is striking.
This architecture proposes the inclusion of Blockchain technology with support for smart

86 4. DLT-enabled identity management system with enhanced trust

contracts. The blockchain infrastructure is a public-permissioned platform which its
operation is intended to be more ambitious than a simple distributed database, it acts as
a source of trust distributing public cryptographic material, connection information or
even reputation about the different entities. To achieve such integration and since every
Blockchain platform has its own set of operations, APIs etc., the approach introduces
an adaptative interface called Blockchain Handler. The purpose of this element is to
homogenise the access to whatever DLT solution running in the background, avoiding
extra complexity when changing the system to another DLT solution or updating the
to newer versions.

Blockchain Handler

Blockchain Smart Contracts

DLT/Blockchain Infrastructure

Service Provider

Other Verifiers

DIP Verifier

Access Policies

Verify

Organization 1

IdP1

Organization n

IdPn

Organization 2

IdP2

Virtual Identity Provider (vIdP)

User Client

DTG Client DCI Client

DIP Client

DPV Client

DTG DCI

DPV
DLT Client

DTG DCI

DPV

DTG DCI

DPV
DLT Client DLT Client

DLT Client

DLT Client

4. Access request

5. Access Policy (p')

1. vIdP Discovery
and

setup parameters

2. DIP Setup
and

vIdP PK verification

3. Service discovery
(List of Service[p])

6. Service check (p && p')

7. DIP Authentication and DTG or DCI

8. DTG Presentation

8'. DCI Presentation

DIP Authentication and DTG or DCI processesBlockchain interactions Client - Service interactions Client setup

Service
Registration

IdP
Registration

Figure 4.4: DLT enabled IdM evolution, Phase 2 - Identity Management

The previous solution assumed an ideal scenario where the vIdP was comprised
of different partial IdPs located in the same domain (e.g. the same company). The
solution did not include any mechanism for the transfer of trust between domains. Now,
it is no longer assumed that the vIdP is deployed in a single domain but may actually be
distributed across different ones using the DLT infrastructure as a secure, tamper-proof
element for transferring and querying relevant data. Partial IdPs include, in addition
to the DIP-related modules, a DLT module. The DLT Client is in charge of bringing
connectivity to the existing DLT deployment through the Blockchain Handler and
it is designed to be replaceable and/or extendable so that the solution is not tied to a

4.4. Processes and architecture 87

single DLT deployment. The same module appears in the user and SP sides, providing
DLT connectivity.

Although the proposal does not modify the underlying cryptographic processes
DPV 3.5, DTG 3.6 and DCI 3.7, it does sightly alter the behaviour of the different
entities. The user actively interacts with all entities. Starting with the DLT, from
where the user obtains a catalogue of trusted identity providers together with their
configuration parameters allowing the user’s client to perform a self-configuration
process. In addition, it internally verifies that the information retrieved from the DLT
actually matches with the chosen vIdP (i.e., by computing the aggregated public key).
After client configuration, the client retrieves a list of the registered services including
the information about the consumed data or access policies. Once the service is selected,
the user client is able to crosscheck the access the real service information against the
DLT stored one. If something has changed, the user is informed so that he or she
is able to make a decision before sharing any personal data. The added DLT based
verifications do not alter the authentication and the obtention of tokens or credentials.
User actions are only required in case of potentially dangerous situations.

The behavior of the service provider (SP) is also modified. Now the service
provider must be registered in the identity management platform, providing a set of
basic data such as the private data it consumes, its endpoints etc. In this way, any
service supported by the solution is also guaranteed by the DLT. Similarly, the solution
requires the registration of the Virtual IdP in DLT. Given that the vIdP is a virtual
entity, the registration requires that each of the partial IdPs be registered separately in
the DLT. The registration includes all the basic data such as public keys, endpoints,
etc., so that any entity querying the DLT is able to obtain an unmodified version of
them and even cross-check it with the actual entity.

As a result of the adjustments made to the entities behaviour, it can be seen
that the registration phase is very important, as the correct enrolment of the entities
subsequently guarantees the correct functioning of the entire infrastructure. Assuming
the modifications it is necessary to model the flows for the registration as well as the
data models that will support the trust parameters. The vIdP together with the partial
IdPs are the critical entities to be registered. As we know, the vIdP is composed of a set
of partial IdPs that at the time of launching must perform an independent registration
process against the DLT infrastructure so that each of them separately indicates its
address, public cryptographic material and other relevant parameters. The registration
of the vIdP, on the other hand, is more challenging. The vIdP cannot be registered
like partial IdPs because it does not really exist. It is a logical construct that does not
operate on its own. Nor can we delegate its registration to any of the partial IdPs that
form it, since we would then be giving greater responsibility to one IdP than to the
others, generating a point of failure and a possible attack vector. To ensure that the
IdP and vIdP are correctly registered, the solution relies on the use of smart contracts
installed on the DLT platform. Each time a new IdP is deployed, a specific smart
contract must be invoked to register it in the infrastructure. In the same way, the
registration of the vIdP will be given by a smart contract that will be automatically

88 4. DLT-enabled identity management system with enhanced trust

launched from the DLT platform itself each time a new partial IdP registration (or
update) is done, avoiding that any of the partial IdPs acts as controller.

Service providers must also be registered with the DLT in order to provide a fully
reliable experience. Their registration is also done through a smart contract that collects
and inserts into the DLT their connection parameters, description and the user’s private
data they expect to consume when providing the service.

While the advantages of integrating the Blockchain Handler are readily apparent,
it is imperative to maintain a comprehensive awareness of the potential challenges
that such incorporation may introduce. These challenges are critically summarized as
follows:

1. Complexity and Overhead: The addition of the Blockchain Handler introduces
an additional layer of complexity to the system, which may lead to increased
developmental and operational overhead.

2. Scalability: The Blockchain Handler might constrain the system’s ability to scale
effectively, potentially limiting the utilization of specific features and optimizations
inherent to various Distributed Ledger Technology platforms. Each blockchain
platform has its unique set of features and optimizations, and a universal handler
might not fully leverage these specific benefits, leading to potential bottlenecks.

3. Dependency and Rigidity: Reliance on the Blockchain Handler for interfacing
with different blockchain platforms may induce a degree of inflexibility, complicat-
ing updates and adaptation to new technologies. This central component, crucial
for the operation of DLT services across various entities (like user, SP, and IdPs),
becomes a prime target for security attacks.

4. Technology Lock-in: Although designed to facilitate flexibility, the Blockchain
Handler could inadvertently lead to a new form of technology lock-in, where
the system becomes overly dependent on the handler’s current capabilities and
supported platforms.

It is essential to consider these factors carefully to ensure the robust and flexible
deployment of the Blockchain Handler in the architecture. However, despite of these
challenges the introduction of the Blockchain Handler in this solution might not pose
significant problems and could indeed serve as a beneficial component. These advantages
are outlined as follows:

1. Unified Interface: The Blockchain Handler provides a standardized interface
for accessing various Distributed Ledger Technologies, simplifying integration and
management across different blockchain solutions.

2. Facilitates Upgrades and Maintenance: It abstracts the complexities of
individual DLT platforms, enhancing maintainability and ease of upgrades, thus
minimizing system-wide disruptions.

4.4. Processes and architecture 89

3. Reduces Developer Burden: By offering a common set of APIs, the Blockchain
Handler alleviates the need for developers to understand the intricacies of each
blockchain platform.

4. Enhanced Security and Compliance: Centralizing blockchain interactions
through a single component allows for uniform security measures and compliance
standards, potentially increasing the system’s security posture.

5. Scalability through Abstraction: The abstraction layer can manage and opti-
mize requests to the blockchain, facilitating scalability even in complex operations.

6. Support for Smart Contracts and Complex Operations: The handler
provides a manageable way of deploying and interacting with smart contracts,
ensuring consistent and reliable execution.

7. Reduction in Technology-specific Risks: By decoupling core system op-
erations from the specifics of the underlying DLTs, the handler reduces risks
associated with technology-specific failures or limitations.

The incorporation of the Blockchain Handler into the DLT-enabled Identity Manage-
ment (IdM) system strategically aligns its capabilities to meet the specific challenges of
the architecture. Firstly, the Unified Interface and Scalability through Abstraction di-
rectly address the need for a distributed IdM system by facilitating seamless integration
across various DLT platforms, ensuring the architecture’s scalability and adaptability
(Challenge 1). The Enhanced Security and Compliance aspect crucially maintains
user privacy and security, and prevents identity providers from misusing user data
(Challenge 2 and Challenge 3), enhancing trust and reliability in the system.

Furthermore, the ability of the Blockchain Handler to streamline upgrades and
maintenance not only preserves the system’s security and user experience but also
ensures continuous alignment with evolving technological standards (Challenge 2).
The Reduces Developer Burden feature is particularly vital in maintaining minimal
system requirements, thereby expanding the technology’s accessibility and utility across
diverse devices (Challenge 7).

Additionally, the Support for Smart Contracts and Complex Operations offered by
the Blockchain Handler mitigates risks during critical interactions with identity providers
and service access, thus safeguarding against dangerous situations (Challenge 4 and
Challenge 5). Lastly, the Reduction in Technology-specific Risks promotes a user-
friendly environment that empowers users with enhanced decision-making capabilities
concerning their private data (Challenge 6). Altogether, the Blockchain Handler
adeptly bridges the gap between advanced technological capabilities and user-centric
security and operational needs, underpinning the robustness and efficacy of the IdM
system.

The following subsection will delve deeper into the process definition. This part of
the discussion will outline the specific procedures, protocols, and workflows that are

90 4. DLT-enabled identity management system with enhanced trust

fundamental to rendering the described advantages, ensuring they effectively address
the identified challenges.

4.4.3. Process definition
The registration phase (1), figure 4.5, is divided into two separate processes. On

the one hand, the registration of vIdPs and partial IdPs, figure 4.5a, and on the other
hand, the registration of service providers, figure 4.5b.

vIdP

vIdP

Blockchain Handler

Blockchain Handler

Leger

Leger

partial IdP Setup; Repeat once per IdP

1 Start Setup

2
invoke

("addpartialidp", data)

3
process

("addpartialidp", data)

4 result

5
invoke

("updatevirtualidp")

6 result

7 result

8 End Setup

(a) IdP and vIdP register

Service provider

Service provider

Blockchain Handler

Blockchain Handler

Ledger

Ledger

"Service enrolment"

1
invoke

("addservice", data)

2
process

("addservice", data)

3 result

4 result

5 End setup

(b) Service provider register

Figure 4.5: Registration phase

Each partial IdP autonomously initiates its own configuration process, generating the
corresponding cryptographic material (step 1). When the IdP has sufficient information
available to register, it proceeds to invoke the registration smart contract addpartialidp,
to which it provides the necessary data (step 2). The contract internally checks that
the IdP that is trying to register does not previously exist in the DLT and if everything
is correct (steps 3 and 4), it continues with the registration. In parallel, the smart
contract itself invokes a subcontract that takes care of generating or updating the
registration of the vIdP to which the IdP being registered is associated (steps 5 and
6). Once both processes are completed, the partial IdP receives a response with the
status of its registration and the vIdP data (step 7) finishing the setup process (step
8). The SP registers in the system by means of the addservice contract and a series of
descriptive data such endpoints or consumed user data (i.e., user email). The use of
the blockchain entity handler makes the process as simple as HTTP(s) connection or
similar, thus avoiding tedious protocols. We only need a secure connection based on
web standards such us TLS to be able to register against the IdM system. This is very
advantageous from the point of view of the users, who will not need powerful hardware,

4.4. Processes and architecture 91

but also for the SP administrators, who do not have to learn strange processes or use
unfamiliar technologies to register their services.

Since the SP also acts as a verifier, it must perform an additional configuration
process. Previously, this process was performed manually by the service administrators
but now, by leveraging smart contracts, we are able to auto-provision the necessary
information directly from the DLT while maintaining security and trust.

Service provider

Service provider

Blockchain Handler

Blockchain Handler

Ledger

Ledger

"Verifier setup"

1 Start verifier setup

2
invoke

("getvidp")

3
invoke

("getvidp")

4
process

("getvidp")

5 vIdp parameters

6 vIdP parameters

7 End setup

Figure 4.6: Service provider auto-setup

From the user’s perspective, the operation of the solution also changes slightly from
what was introduced in the previous chapter. The user is the central element to be
protected. In the previous approach, user protection is mainly enhanced through a new
identity provider model, which bases its operation on distributed cryptography, avoiding
typical problems such as tracking or impersonation. In addition, it also benefits from
the principle of minimal-disclosure, avoiding having to give more information than
necessary. This approach extends the protection of the user through the enhancement
of trust. The user used to rely on the honesty of all the elements. The user chooses an
identity provider, without having any additional information in the same way as she
chooses to make use of an SP, and chooses whether or not to give her data once she has
already made the first access attempt. This approach eliminates the need for blind trust
and provides relevant information with which the user is able to make better decisions
and protect her privacy. The configuration of the identity provider becomes automatic
by leveraging the DLT support. The user’s interaction is limited to selecting the most
convenient for her, just as in traditional solutions she chooses between Google, OpenID,
Facebook, etc. All configuration data comes in the first instance from a source that
cannot be altered and is publicly auditable. Once the client is configured, the user can
consult a list of available services together with a description showing the registered
information. When the user decides to access a service, the information provided by

92 4. DLT-enabled identity management system with enhanced trust

the service and the information stored in the DLT is silently checked to ensure that it
matches. In case the silent check fails, the user receives an early warning that would
allow her to abort the process before sharing any personal information.

The figure 4.7 shows the auto-configuration process of the client. It is carried out
through the blockchain handler. The client asks the handler for the list of available
vIdPs through a smart contract that retrieves this information from the DLT (steps 2 to
5). The user then selects the vIdP of interest and, through the handler and by invoking
a query contract, obtains the concrete data for the selected vIdP (steps 6 to 9). With
this data, the user client is able to learn the necessary information to communicate with
the vIdP and start operating. The process is as simple as possible in order to make
its integration as immediate as possible in any commonly used application. It would
even be possible to skip the selection of vIdP and directly pre-configure a specific one
so that the user does not even have to intervene.

User client

User client

Blockchain Handler

Blockchain Handler

Ledger

Ledger

1 Start setup

2
invoke

("getvidps")

3
process

("getvidps")

4 List[vIdPs]

5 List[vIdPs]

6
invoke

("getvidp")

7
process

("getvidp")

8 vIdP parameters

9 vIdP parameters

10 End Setup

Figure 4.7: User client setup

The figure 4.8 shows an example of a complete interaction in which a user try to
use a service. This interaction includes the IdM stages summarized for convenience.
First, the user retrieves the existing services from the DLT (steps 1 to 4) and selects
one (step 5), receiving a set of parameters (i.e., access policy) (step 6). Next, the user
client silently invokes the getService contract to retrieve the service record and the data
associated to it (steps 7 to 9). The application compares the information received from
the SP, s′ with the s recorded in the ledger, warning the user if something has changed
(step 11). At this point, the user visualizes the policy applied to access the service and
makes a decision (step 12). If the user continues, the next step is to authenticate within

4.4. Processes and architecture 93

the IdM using the distributed identity protocol to perform the DPV 3.5 authentication
and to obtain the authorization material via DTG 3.6 or DCI 3.7. Finally, depending on
the method used, the user client combines and generates or forwards the presentation
token to the service provider for verification and to provide or not the required service
(steps 15, to 19).

vIdP

vIdP

Service provider

Service provider

User client

User client

Blockchain Handler

Blockchain Handler

Ledger

Ledger

1 invoke("getServices")

2
process

("getServices")

3
response

(List[services])

4 List[services]

5 Access Request

6 s' = service parameters

7
invoke

("getservice")

8
process

("getservice")

9
response

("getservice")

10 s = service parameters

11evaluate(s', s)

12 Ask user consent

IdM process

13 IdM process

DPV

DTG

DCI

14 token shares or credential shares

15 combination (shares)

16
generate or follow
presentation token

17
verify

(presentation token)

18 verification result

19 Service usage

Figure 4.8: User client usage

The inclusion of DLT not only does not penalise the operation of the system, but also
adds an extra layer of trust. Smart contracts enable the detailed and secure registration
of critical infrastructure components such as vIdP, partial IdP and SPs, making the
DLT infrastructure act as a verifiable source of trust. Moreover, users benefit from a
practically automatic setup system for their identity provider and a new protection
mechanism that allows them to silently assess whether the service they are trying to
access is operating as expected. Furthermore, it is possible to query the public data
of any of the entities registered in the DLT at any time, for example, by performing
random checks simply to detect possible changes or to update access routes. This has

94 4. DLT-enabled identity management system with enhanced trust

operational advantages, e.g. SP administrators can automate checks and update their
services based on data received from the DLT.

To facilitate the implementation of the newly introduced processes and the operation,
it is imperative to delineate a series of data models. These models will be instrumental
during the entity configuration phase and subsequently in the issuance of the requisite
cryptographic materials throughout the workflow. This structured approach ensures a
systematic and secure integration of the components within the specified processes.

Initially, it is crucial to clearly define the entities involved, with specific focus on
the partial identity providers and the virtual identity provider. These components
play a vital role in the overall functionality and integration within the framework.
Subsequently, it is equally important to equip the service providers with a well-defined
structure that enables them to effectively operate within the proposed solution.

In the context of partial identity providers, they are delineated utilizing the data
model presented in Listing 4.1. The JSON data model for a partial identity provider
includes several key properties, each of which plays a crucial role in the identity
management system:

status: Indicates the operational status of the partial identity provider. Values
such as “ACTIVE” or “INACTIVE” reflect the current state of the provider,
affecting its availability for transaction processing and interaction.

publicKey: Contains the cryptographic public key associated with the identity
provider. This key is essential for ensuring secure communications and verifying
the integrity of transactions through digital signatures.

spawnDate: Records the date and time when the identity provider was estab-
lished. This timestamp is critical for auditing, logging, and maintaining the
security of the identity management system.

did: This nested object represents the Decentralized Identifier (DID) associated
with the identity provider and includes:

• id: A unique identifier conforming to the DID specification, providing a
global identifier that is unique within the system.

• context: A URL pointing to a JSON-LD document that defines the schema
used in the DID document, crucial for ensuring that the document’s terms
are interpreted consistently.

• service: Details the services offered by the identity provider, encompassing:
◦ serviceEndpoint: Specifies the URL or other service access points for

interacting with the identity provider.
◦ type: Describes the function of the service, in this case, “Partial-IdP”,

which identifies the role of the entity in the identity management ecosys-
tem.

4.4. Processes and architecture 95

{
” s t a t u s ” : ” [Status o f the p a r t i a l IdP] ” ,
” publicKey ” : ” [Publ ic Key] ” ,
” spawnDate” : ” [Date o f Creat ion] ” ,
” did ” : {

” id ” : ” did :umu: Par t i a l −IdP :X” ,
” context ” : ” https : //www.w3 . org /ns/ did /v1” ,
” s e r v i c e ” : {

” se rv i ceEndpo int ” : ” [S e r v i c e Endpoint Here] ” ,
” type ” : ” Par t i a l −IdP”

}
}

}
Listing 4.1: Partial Identity Provider data model

Once the representation of a partial identity provider has been delineated, we
can further explore the concept of the Virtual Identity Provider (vIdP). The vIdP
is constructed by amalgamating multiple partial identity providers (pIdPs) under a
single management entity, which cryptographically binds each pIdP into the overarching
vIdP structure. This integration ensures a cohesive and robust identity management
framework. As depicted in Listing 4.2, the structure of the vIdP, akin to that of the
pIdPs, varies based on the number of pIdPs integrated. Each pIdP contributes its unique
endpoint, ID, and public key. The vIdP itself is distinguished by its own DID ID, for
instance, did:umu.vIdP:1, along with its status and creation date. Although registered
as a tangible entity, the vIdP fundamentally represents the collective composition of all
listed pIdPs.

96 4. DLT-enabled identity management system with enhanced trust

{
”spawnDate” : ” [Date o f Creat ion] ” ,
” s t a t u s ” : ” [vIdP Status] ” ,
” idps ” :

[” did :umu: Par t i a l −IdP : 0” ,
” did :umu: Par t i a l −IdP :X”

] ,
” schemas ” :

[” did :umu: Publ icParameters : Scheme”] ,
” did ” : {

” @context ” : ” https : //www.w3 . org /ns/ did /v1” ,
” id ” : ” did :umu: vIdP : 1” ,
” s e r v i c e s ” :
[{

” endpoint ” : [P a r t i a l IdP endpoint] ” ,
” id ” : ” did :umu: Par t i a l −IdP : 0” ,
”pk” : [Publ ic Key] ”

} ,
{

” endpoint ” : [P a r t i a l IdP endpoint] ” ,
” id ” : ” did :umu: Par t i a l −IdP :X” ,
”pk” : ” [Publ ic Key] ”

} ,
. . .

] } ,
}

Listing 4.2: Virtual Identity Provider data model

Lastly, the service registration process uses a similar method as those used for pIdP
and vIdP (as illustrated in Listing 4.3), to show the enrolment of a service in the identity
framework.

Service enrolment is divided into two primary sections. First is the block DID, where
the service creation date and its current state in the system are indicated, like in pIdP
and vIdP. Secondly, there is the block of predicates. This last block is paramount since
it outlines the data that will be needed for correct operation of the service and how this
data will be used. That is to say, every service seeking to operate under the identity
system needs to entail a positive statement on the actual private user data that would
be used.

All these by tapping into smart contracts and the inherent characteristics of the
DLT systems ensure that service behavior is predictable, hence safeguarding against
any surprises in how users’ private information will be managed.

A typical predicate could be asking the user to confirm his age to let him use the
service or to restrict access to the service. Listing 4.4 gives an example of constructing
such a predicate. It could, in fact, directly expose the data or perform more complicated
checks if the operation defined in the predicate takes place; for example, it could check
if the user’s age is greater or less than some value, or even between some range values.

4.5. Conclusions 97

This level of flexibility does provide compliance to most of the services, which require
verification of certain criteria most of the time. Further, more than one predicate may
be registered for a service. This implies services may aggregate different predicates
upon system registration in order to achieve more granularity and preciseness of data
use and user interaction.

{
” date ” : [R e g i s t r a t i o n date] ” ,
” did ” : {

” @context ” : ” https : //www.w3 . org /ns/ did /v1” ,
” id ” : ” [S e r v i c e id] ” ,
” s e r v i c e ” : {

” se rv i ceEndpo int ” : ” [S e r v i c e endpoint] ” ,
” type ” : ” [S e r v i c e type] ”

}
} ,
” s t a t u s ” : ”ACTIVE” ,
”domain” : ” [S e r v i c e endpoint] ” ,
” p r e d i c a t e s ” : ” [S e r v i c e p r e d i c a t e s data model] ”
}

Listing 4.3: Service enrolment data model

{ [
{

” attributeName ” : ” u r l : Age” ,
” opera t i on ” : ”GREATERTHAN” ,
” lowerBound” : 18 ,
”upperBound” : n u l l

} ,
{

” attributeName ” : ” u r l : Age” ,
” opera t i on ” : ”REVEAL” ,
” lowerBound” : n u l l ,
”upperBound” : n u l l

} ,
. . .

] }
Listing 4.4: Service predicate data model

4.5. Conclusions
In the evolving landscape of digital identity management, the necessity for robust,

privacy-preserving, and user-centric systems has never been more critical. Traditional

98 4. DLT-enabled identity management system with enhanced trust

centralized Identity Management (IdM) systems, with their inherent privacy, trust,
and security vulnerabilities, are increasingly seen as inadequate for modern digital
interactions. Chapter 4 has presented a solution that leverages the Chapter 3 to forge a
new path towards decentralization using Distributed Ledger Technologies (DLT) and
Enhanced Attribute-Based Credentials (ABC), aiming to rectify these shortcomings.

4.5.1. Core Objectives Revisited
There are three primary objectives in the proposed framework:

1. Decentralization and Privacy: Aim to dismantle the monolithic nature of
traditional IdM systems by distributing the identity provider’s role. This strat-
egy inherently reduces the risk of data breaches and identity spoofing, thereby
safeguarding user data more effectively.

2. Trust Enhancement: The integration of DLT into our IdM solution is designed
to foster a deeper sense of trust among all stakeholders. This technology not only
secures transactions and ensures data integrity but also builds a foundation of
trust that is critical in the digital age.

3. User-Centric Control: In alignment with GDPR mandates, this approach
emphasizes empowering users with clear and straightforward mechanisms to
manage their personal information, ensuring their privacy is never compromised.

4.5.2. Technological Advancements
Building upon the initial framework presented in Chapter 3, this solution advances

the technological foundation in two significant areas:

1. Distributed Ledger Technologies: By harnessing the power of blockchain, we
enhance the IdM ecosystem’s security and trustworthiness. This not only secures
transactions but also plays a pivotal role in maintaining the integrity of user
identities.

2. Enhanced Attribute-Based Credentials: ABCs are meticulously designed
to diminish the dominance of any single identity provider. This creates a more
equitable and secure system, protecting user identities across various platforms.

4.5.3. Potential Impacts and Challenges
The solution’s potential to radically improve digital identity management comes

with its set of challenges and impacts, which include:

Increased Security and Privacy: The decentralized nature of our framework
significantly reduces centralized points of failure, offering a more resilient approach
to digital identity management.

4.5. Conclusions 99

Compliance with GDPR: By enhancing user control over personal data, our
solution not only respects user privacy but also aligns closely with GDPR, setting
a new standard in data management.

Enhanced Trust in Digital Transactions: The seamless integration of DLT
within the IdM ecosystem is poised to elevate trust among users, service providers,
and identity providers alike.

However, realizing these benefits is not without its hurdles:

Complexity of Implementation: The deployment of a decentralized framework
introduces a level of complexity that could potentially affect scalability and
interoperability.

Scalability and Interoperability: Ensuring that our solution scales efficiently
while remaining interoperable with existing systems is a daunting task that requires
careful consideration and innovative solutions.

4.5.4. Anticipated Drawbacks
The envisioned framework, while promising, is susceptible to several drawbacks:

1. Performance Overheads: The incorporation of blockchain and cryptographic
methods may introduce latency, particularly in identity verification processes.

2. Usability Concerns: Managing cryptographic keys and understanding the
nuances of data sharing could potentially hinder the user experience, necessitating
user education and streamlined processes.

3. Adoption Hurdles: The shift to a decentralized system may encounter resistance
due to perceived risks and the significant changes it brings to operational processes.

4. Regulatory Challenges: Navigating the decentralized framework within the
confines of GDPR and other regulations presents a unique set of challenges,
particularly in enforcement and accountability.

Final Thoughts In summary, Chapter 4 presents a forward-thinking approach to
redefining identity management in the digital domain. By leveraging the capabilities of
DLT and ABCs, we address the critical flaws inherent in traditional systems. However,
the journey to realizing the full potential of this framework requires navigating through a
maze of technical, usability, and regulatory challenges. Success in this endeavor promises
a future where digital identity management is not only secure and privacy-centric but
also empowers users like never before.

100 4. DLT-enabled identity management system with enhanced trust

5

C
h

a
p

t
e

r

Implementation and results

5.1. Introduction
To effectively demonstrate the usability of the proposed methods, testing them

in real-world scenarios is essential. This chapter focuses on evaluating the proposed
solutions through a series of practical use cases, aimed at showcasing how these methods
can enhance user privacy and control over their data in contexts requiring digital
verification of identity or attributes.

Prior initiatives, such as the ReliAble euRopean Identity EcoSystem (ARIES) [21]
and Attribute-based Credentials for Trust (ABC4Trust) [2], have significantly advanced
privacy and user protection. However, their widespread adoption encountered numerous
obstacles. Subsequent efforts, including Oblivious Identity Management for Private
User-Friendly Services (OLYMPUS) [15,17] and Cybersecurity for Europe (CS4EU) [90],
have furthered this progress, enhancing the development of sophisticated, privacy-
enhanced identity management systems. Notably, the OLYMPUS project achieved
the first practical deployment of the distributed identity system detailed in Chapter 3.
Almost simultaneously, the CS4EU project faced its own challenges and use cases
providing the opportunity to seek an alternative solution by applying the concepts
developed in chapter 4. This strategy effectively unifies both projects by integrating
their foundational technologies and expanding their potential through the application
of the distributed identity framework and distributed ledger technologies.

5.1.1. Overview of the System Architecture
Building on the insights gained from previous initiatives and the challenges identified

in Chapters 3 and 4, the proposed identity management system leverages the principles

101

102 5. Implementation and results

of privacy-preserving and distributed technologies. The architecture integrates core
components of decentralized identity management with advanced privacy features and
trust mechanisms enabled by distributed ledger technologies (DLT).

Core Components The system architecture comprises the following core compo-
nents:

Distributed Identity Providers (DIP): These entities are responsible for
managing and verifying user identities in a decentralized manner. By distributing
the responsibilities across multiple providers, the system enhances resilience and
reduces the risk of a single point of failure.

Privacy-Preserving Mechanisms: Techniques such as zero-knowledge proofs
(ZKP) and homomorphic encryption ensure that user data remains private and
secure throughout the identity verification process.

DLT-Based Trust Framework: A distributed ledger records identity transac-
tions, providing an immutable and transparent record that enhances trust among
users, service providers, and identity providers.

User-Centric Control: Self-sovereign identity (SSI) principles are implemented
to give users greater control over their personal data, aligning with GDPR
requirements and enhancing user trust in the system.

Implementation Strategy The implementation strategy comprises two main phases,
each targeting specific aspects of the system’s development and corresponding to different
use cases:

Phase 1: Non-DLT Enabled, Distributed Identity Provider: This phase
establishes a distributed identity provider without DLT integration, ensuring
robust and user-friendly functionalities for user authentication and identity verifi-
cation through distributed privacy-preserving techniques. It is demonstrated in
the first use case, ”Pandemic Booking” 5.3.1.

Phase 2: DLT Enabled Distributed Identity Provider: This phase inte-
grates DLT into the distributed identity provider, enhancing trust and trans-
parency by utilizing blockchain technology to create an immutable record of
identity transactions. It covers the configuration of the DLT network, interaction
between DLT nodes and DIPs, and processes for recording and verifying identity
transactions on the ledger. This phase is showcased in the second use case, ”Smart
City” 5.3.2.

The design and implementation are directly influenced by the concepts and methods
from Chapters 3 and 4:

5.2. General implementation details 103

Chapter 3 - Privacy-Preserving Distributed Identity Management: The
principles and privacy-preserving techniques discussed in chapter 3 guide the im-
plementation of distributed identity providers and privacy mechanisms, addressing
privacy concerns with zero-knowledge proofs and homomorphic encryption.

Chapter 4 - DLT-Enabled Identity Management System: The DLT-based
architecture and trust-enhancing features proposed in chapter 4 are integral to the
system. The detailed processes and architectural blueprints from chapter 4 provide
a framework for incorporating DLT, ensuring a transparent and immutable record
of identity transactions that boosts trust and security.

By synthesizing these theoretical insights and architectural designs, we create a
robust and scalable identity management system that tackles the key challenges of
privacy, trust, and security. The following sections will delve into the practical aspects
of this implementation.

5.2. General implementation details
This section delves into the implementation specifics of the two proposals discussed

in Chapters 3 and 4. Detailed explanations and technical descriptions are provided to
elucidate the practical aspects of applying these proposals.

5.2.1. Non-DLT enabled, distributed identity provider
The framework comprises three primary components: a client Java library, a server

component, and an optional verifier component. The server can function as a standalone
Java library for custom server applications or be deployed as a self-contained REST-
based server.

The client library provides essential methods such as createUser and authenticate,
which facilitate client-server interactions. These methods translate client requests
into protocol-specific messages sent to the vIdP servers. The server processes these
requests and returns outputs understandable by client applications, thus abstracting
the underlying cryptographic protocols used to authenticate users. Although different
protocols might generate different types of tokens, which necessitates some awareness
by the client of the output format.

The framework supports three main protocols:

A traditional password verification scheme where the client’s password is sent
to the server, compared against a stored (salted and hashed) version. If the
verification succeeds, a JWT token is generated and returned.

A distributed scheme based on PESTO [91], engaging at least two distinct servers.
It involves Distributed Password Verification (DPV 3.4.3) and Distributed Token

104 5. Implementation and results

Generation (DTG 3.4.3). Successful DPV leads to a distributed RSA signature
on user attributes, combined into a JWT token by the client.

A scheme using distributed pABC protocols, similar to PESTO for DPV but
diverges in the final output, producing a short-lived distributed pABC token
instead of an RSA signature. Clients merge these tokens to create a regular pABC
that issues attribute-based credentials.

The server component is versatile, deployable as a web server, a servlet, or a library
integrated into custom server applications. It handles:

Protocol endpoints corresponding to the client’s needs (traditional password,
PESTO, and pABC credentials).

Management of user attributes, which may be accomplished through authentication
protocols alone or augmented by database interactions or other external resources.

Validation of user claims or identity proofing. This task ensures the authenticity
of user attributes before linking them to an account. Implemented modularly,
the server supports various identity proofs like X.509 certificates, JWT tokens,
or custom eID tokens, facilitated by the IdProofer interface. This interface
decouples the identity proofing method from the application logic, enabling
seamless integration of diverse validation mechanisms.

These server responsibilities are modularized to enhance integration with specific
application requirements. The management of user attributes typically requires inte-
gration with a database for persistence, potentially involving external data sources.
The validation of user claims adapts to the scenario, supporting a broad spectrum of
validation methods to ensure flexible and secure user authentication.

The framework integrates with other widely used authentication technologies, mainly:
OAUth, OpenID/JWT and W3C Credentials.

The objective of OAuth is to allow a resource owner to grant some service provider
access to a protected resource without exposing the user’s credentials. The concrete
flow can be found in figure 2.7. In particular, the grant type flows are of special interest
for our integration, summarized as follows:

1. User Access Request: A user seeks access to a service. This service, referred
to as the Client, requires the user to verify their identity. To facilitate this, the
Client redirects the user to an Identity Provider (IdP) that is authorized to access
a restricted resource. The redirection URL includes, among other parameters, an
identifier for the service provider and a callback URL, which specifies where the
user should be redirected post-authorization and the operations to be authorized.

2. Authentication and Authorization: The user follows the redirection to the
IdP, where they authenticate and authorize the requested operation. The IdP
then issues a token, the type of which depends on the grant type used in the
process.

5.2. General implementation details 105

3. Token Exchange: In the case of the authorization code flow, the service provider
receives a preliminary token from the IdP and uses it to authenticate itself with
the IdP.

4. Access Token Generation: Upon successful authentication by the service
provider, the IdP generates a valid access token.

5. Resource Access: The service provider receives the access token, enabling it to
access the restricted resource on behalf of the user.

To align with the described authentication flow, a key challenge is managing the
redirection to the Identity Provider (IdP). Given that the virtual IdP (vIdP) consists
of multiple servers, the redirection process must encompass all these servers. Moreover,
the client is required to engage in a cryptographic protocol, making it insufficient for a
standard browser to merely follow the URL. On the upside, the flexibility of the vIdP
allows for the generation of a diverse range of tokens. Once the redirection issue is
resolved, the entire flow can be effectively implemented using a vIdP.

It is important to note that the authorization code grant flow involves issuing a
temporary token. The Service Provider must subsequently contact the vIdP to exchange
this temporary token for a proper access token. While theoretically possible, this
exchange necessitates that the Service Provider amalgamate distributed signatures into
a single access token. This additional requirement may complicate the Service Provider’s
application and could impede broader adoption. Additionally, the authorization code
flow presents challenges in maintaining user-service provider traceability anonymity
from the IdP. Due to the complexities mentioned, the framework does not support the
authorization code flow. Instead, it utilizes the implicit flow, which streamlines the
authentication process. Once the user is authenticated in the browser (or a cookie is
set), the system automatically handles credential transmission. However, this approach
has a limitation: the browser indiscriminately sends the credential to any application
that requests it from the ”authenticated domain.” As a result, only clients within the
same domain as the server can successfully communicate, leading to potential loss of
control over where credentials are sent.

The challenge of coordinating multiple servers in a virtual IdP setup is addressed by
deploying a client application that runs locally on the user’s machine. This application
provides a local OAuth IdP REST interface, offering functionality akin to that of a
traditional IdP. The service provider generates a redirect URL targeting the client’s
localhost. When the client’s browser follows this redirect, it connects to the locally hosted
application, which then communicates with the virtual IdP servers. This arrangement
makes the underlying virtual IdP-based protocols transparent to the user. Moreover,
this solution is versatile enough to be adapted for use with other authentication schemes,
such as SAML. However, a significant practical challenge is the requirement to install
custom software on the client’s device.

In theory, the issue of installing custom software on client devices could be mitigated
by running the software on a trusted server or by deploying a JavaScript application

106 5. Implementation and results

that the service provider links to. However, both alternatives introduce a single point
of trust. This arises because either the user’s credentials must be transferred away from
the client device, or the user must trust the JavaScript provided by the server.

The OpenID integration is built on top of OAuth 2.0 [28] and is used for user
authentication rather than authorization. Rather than having the IdP authorize the
user’s access to some resource, OIDC uses the IdP to authenticate the user and lets
the Service Provider handle the authorization. While both OAuth implicit grant and
authorization code flows can be used in connection with OIDC, only implicit grant is
supported by the framework.

In addition to leveraging OAuth, OpenID Connect (OIDC) utilizes JSON Web
Tokens (JWT) for representing user identity [92]. JWTs are compact and self-contained
mechanisms for securely transmitting information as JSON objects. These tokens
encapsulate a set of claims and support both signatures and encryption. Each token
consists of three parts: a header that specifies the encryption or signature algorithms
used, a payload containing the JSON data, and a signature. For efficient transmission
via HTTP(s), the entire structure is Base64 URL-encoded. The following JSON,
listing 5.1, is a sample of a JWT token issued by vIdP vidp.umu.eu, to the service
provider restaurant-provider attesting the username attribute alice.

{
” sub” : ” a l i c e ” ,
” i s s ” : ” https : // vidp .umu. eu” ,
”aud” : ” re s taurant −prov ide r ” ,
” auth t ime ” : 1311280969 ,
” i a t ” : 1311280970 ,
” exp” : 1311281970

}

Listing 5.1: vIdP issued JWT token example

In addition to the sub (subject or username) attribute, OIDC defines a set of
standard user attributes or claims, including email, birthdate, name, and others. As
OIDC is built upon OAuth, it inherits both the challenges and the solutions associated
with the OAuth framework. The PESTO protocol, which provides a generic signature
scheme, facilitates the generation of distributed RSA signatures on JWT tokens. These
signatures can then be recombined efficiently. Notably, JWT is the default output
format of the PESTO protocol implementation.

The integration of W3C Verifiable Credentials [69] with the PESTO protocol is
straightforward, primarily involving the construction of the appropriate JSON structure
for signing. The potential inclusion of domain and challenge attributes within a
linked proof could offer significant enhancements to the PESTO protocol, particularly
in terms of privacy. Such improvements aim to reduce linkability by incorporating
mechanisms to prevent the misuse of valid JWTs across different relying parties in
OIDC scenarios. Specifically, the JWT includes an aud (audience) attribute, which

5.2. General implementation details 107

delineates the intended recipient of the token. This requirement compels the Identity
Provider (IdP) to recognize the relying party, thereby complicating efforts to create an
unlinkable IdP solution that complies with OIDC standards, as the IdP must be aware
of the relying party’s identity.

Although extensive research is still pending, our preliminary contributions are de-
tailed in the publication Towards a Standardized Model for Privacy-Preserving Verifiable
Credentials [18]. This work explores the feasibility of IdPs issuing verifiable credentials
that maintain unlinkability, further advancing the discussion on privacy-preserving
digital identity management.

A major barrier to the adoption of pABC systems has been the challenge of inte-
grating them with existing systems and other pABC schemes. The W3C Verifiable
Credential specification, which is still under development and subject to changes,
presents integration challenges. Certain functionalities remain unimplemented due to
time constraints.

In an effort to facilitate the integration of our system with existing infrastructures,
we have adapted our data model to align with the W3C Verifiable Credential specifi-
cation [93]. This adaptation required us to define the usage profile of the standard,
specifically identifying which optional functionalities to implement and establishing
definitions for constructs unique to our methodology.

We consider the inclusion of a context field in every credential and presentation,
which must encapsulate the VC context, the overarching context of the project, and
a deployment-specific context addressing the relevant attributes. The project context
comprehensively defines the OLYMPUS credential and presentation types, along with
three novel types of cryptographic proofs essential for our operations. The first proof
type, OlPsSignature, listing 5.2, legitimizes a credential, while the subsequent types,
OlPsDerivedProof, listing 5.3 and OlPsDerivedProofRange, listin 5.4, are used for
deriving proofs in presentations.

” proo f ” : {
” type ” : ” OlPsSignature ” ,
” epoch ” : 17801571234 ,
” proofValue ” : ”eyJraWQiOI29seW1w . . dXMjMTIzNCkCIsImFs” ,
” proofPurpose ” : ” assert ionMethod ” ,
” ve r i f i c a t i onMethod ” : ” did : example : vIdP”

}

Listing 5.2: W3C OlPsSignature

108 5. Implementation and results

” proo f ” : {
” type ” : ” OlPsDerivedProof ” ,
” proofValue ” : ”eyJraWQiOiJkaWQ6bWV0YTpURVNUI29seW1w . . dXMjMTIzNCIsInR5

cCI6IkpXVCIsImFs” ,
” ve r i f i c a t i onMethod ” : ” did : example : vIdP” ,
” nonce ” : ” randomMessageSignedEstabl ishedInPol icyExchange ” ,
” epoch ” : 17801571234 ,
” proofPurpose ” : ” assert ionMethod ”

}

Listing 5.3: W3C OlPsDerivedProof

” proo f ” : {
” type ” : ” OlPsDerivedProofRange ” ,
” proofValue ” : ”eyJraWQiOiJkaWQ6bWV0YTpURVNUI29seW1w . . dXMjMTIzNCIsInR5

cCI6IkpXVCIsImFs” ,
” ve r i f i c a t i onMethod ” : ” did : example : vIdP” ,
” nonce ” : ” randomMessageSignedEstabl ishedInPol icyExchange ” ,
” epoch ” : 17801571234 ,
” proofPurpose ” : ” assert ionMethod ” ,
” rangeProofs ” : [

{ ” a t t r ” : ” he ight ” ,
”commitment” : ”Ekjd1 . . . 12==”,
” lowerBoundProofValue ” : ” asd . . . 1a2==”,
” upperBoundProofValue ” : ” asd . . . 1a2==”

}]
}

Listing 5.4: W3C OlPsDerivedProofRange

For all these proofs, we intend to have the verification method be an URL to
a verificationMethod JSON object with the necessary information for verification,
listing 5.5, inspired in the DID core standard [63].

{
” type ” : ” OlPsS ignatureVer i f i ca t ionKey ” ,
” id ” : ” did : olympus : vIdP#aggKey” ,
” publicKeyBase 64” : ”QDui4QA6QKMpMRpJQxm8TUV. . . iZRu6aNPgmERrXUPBo8hc” ,
” curve ” : ”BLS461” ,
” a t t r i b u t e s ” : ” https : // deployment . com/example/ d e f i n i t i o n s ”

}

Listing 5.5: W3C Verification Method

As each use case will define attributes tailored to its needs, use cases will need to
create a context (to be included along the framework general context), listing 5.6

In addition, it is crucial to establish a common and standardized framework for
the operations we can perform. Central to this framework is the representation of

5.2. General implementation details 109

” @context ” : [
{” @version ” : 1 . 1} ,
” https : //www.w3 . org /ns/ odr l . j s o n l d ” ,
{

” ex ” : ”mDL−olympus−deployment . com/example /” ,
” schema” : ” https : //schema . org /” ,
”givenName” : ” ex : givenName” ,
” he ight ” : ” ex : n a t i o n a l i t y ” ,
” dateOfBirth ” : ” ex : b irthDate ” ,

}
]

Listing 5.6: W3C Use case context

predicates as simple JSON objects. In presentations, attributes (JSON properties) can
be expressed in two forms: either as a valid value or as a predicate. Each predicate
is characterized by an operation tag, which delineates the relationship between the
attribute being proved and its value. The internal structure of the value varies depending
on the specific operation, as illustrated in Listing 5.7.

{
” opera t i on ” : ” inRange ”
” value ” : {

” lowerBound” : 0
”upperBound” : 10

}
}
{

” opera t i on ” : ” l e ”
” value ” : {

” lowerBound” : 10
}

}

Listing 5.7: W3C Predicate definition

Tags such as “ge”, “le”, and “inRange” represent the relational predicates greater-
or-equal, lesser-or-equal, and between-values, respectively. For these tags, the value
property should include appropriate boundaries: “lowerBound” and “upperBound” for

“inRange” ; the respective boundary values for “ge” and “le”. Conversely, tags like
“memberOf” and “nonMemberOf” indicate proofs of membership and non-membership.
Here, the value must encompass a “set”. Within our data model, the “set” property
can either be a direct enumeration of set values or more usefully, a URL that defines the
set externally. This latter approach is particularly advantageous in systems requiring
public parameters or specific setups for each set, facilitating external reference and
validation.

110 5. Implementation and results

Upon defining all necessary structures in accordance with the W3C standard, we can
generate a W3C verifiable credential as shown in Listing 5.8. This credential adheres
strictly to the standard, specifying the requisite contexts for proper validation. It
includes the credential type, the schemas needed for validation, and their locations.
Additionally, it encompasses typical credential data such as the issuer, date of issue,
expiration date, attributes, and the cryptographic proof. In the same way, we can
generate W3C verifiable presentations based on the credential obtained, as shown in
the listing 5.9.

{
” @context ” : [” https : //w3 id . org / c r e d e n t i a l s /v1” ,

” https : //olympus−p r o j e c t . eu/ context ” ,
” https : //example−olympus−deployment . com/ context ”

] ,
” type ” : [” V e r i f i a b l e C r e d e n t i a l ” , ” OlympusCredential ”] ,
” credent ia lSchema ” : [

{
” id ” : ” https : //example−olympus−deployment . com/schemas/

val idat ionSchema ” ,
” type ” : ” OlZkValidationSchema ”

} ,
{

” id ” : ” https : //olympus−p r o j e c t . eu/example/encodingSchema ” ,
” type ” : ”OlZkEncodingSchema”

}
] ,
” i s s u e r ” : ” did : example :OL−vIdP” ,
” i s suanceDate ” : ”2021−06−07T18 : 13 : 16” ,
” exp i ra t ionDate ” : ”2021−06−08T14 : 13 : 16” ,
” c r e d e n t i a l S u b j e c t ” : {

” familyName” : ”Doe” ,
”givenName” : ”John” ,
” dateOfBirth ” : ”1980−03−06T00 : 00 : 00” ,
” he ight ” : 185

} ,
” proo f ” : {

” type ” : ” OlPsSignature ” ,
” proofValue ” : ”CjwKOgAAAAAAAAAAAA. . . 6E=” ,
” epoch ” : 1623161596000 ,
” ve r i f i c a t i onMethod ” : ” did : example :OL−vIdP : method” ,
” proofPurpose ” : ” AssertionMethod ”

}
}

Listing 5.8: W3C Credential

5.2. General implementation details 111

{
” @context ” : [. . .] ,
” type ” : [” V e r i f i a b l e P r e s e n t a t i o n ” , ” OlympusPresentation ”] ,
” exp i ra t ionDate ” : ”2021−06−07T18 : 14 : 20” ,
” v e r i f i a b l e C r e d e n t i a l ” : [

{
” credent ia lSchema ” : [. . .] ,
” c r e d e n t i a l S u b j e c t ” : {

”givenName” : ”John” ,
” dateOfBirth ” : {

” opera t i on ” : ” l e ” ,
” va lue ” : { ”upperBound” : ”2003−06−07T00 : 00 : 00” }

}
} ,
” i s suanceDate ” : ”2021−06−07T18 : 13 : 16” ,
” i s s u e r ” : ” did : example :OL−vIdP” ,
” type ” : [” V e r i f i a b l e C r e d e n t i a l ” , ” OlympusCredential ”] ,
” exp i ra t ionDate ” : ”2021−06−08T14 : 13 : 16” ,
” proo f ” : {

” type ” : ” OlPsDerivedProofRange ” ,
” proofValue ” : ”CvMBCvA . . . w==”,
” epoch ” : 1623161596000 ,
” rangeProofs ” : [

{
” a t t r ” : ” https : //example−olympus−deployment . com/

a t t r i b u t e s / DateOfBirth ” ,
”commitment” : ”CngK . . . BMZs=” ,
” lowerBoundProofValue ” : ”CnoKe . . . zPQDlNtX” ,
” upperBoundProofValue ” : ”CnoKe . . . AJm”

}
] ,
” nonce ” : ” s ignedMessage ” ,
” ve r i f i c a t i onMethod ” : ” did : example :OL−vIdP : method” ,
” proofPurpose ” : ” AssertionMethod ”

}
}

]
}

Listing 5.9: W3C Presentration

Continuing with implementation details, for a successful vIdP deployment, it is
essential to integrate, configure, and expose the various components of the framework
to the client. Typically, the integration of components is conducted in Java, with each
partial Identity Provider (IdP) functioning as a Java program. The methods from these
programs are made accessible to the client through a REST interface, which aligns with
the expectations of the default client software. This REST interface can be implemented
and deployed in several ways to suit the specific needs of the application.

In addition to integration, configuring each partial IdP is crucial; this includes

112 5. Implementation and results

setting the ports for exposing the REST interface, managing communication with other
partial IdPs, and configuring key management protocols. The framework includes con-
figuration interfaces such as ServerConfiguration and PABCConfiguration, which outline
important parameters for DTG and DCI protocols, allowing for flexible representation
of configurations in each deployment.

For the user client, implementations may vary; they typically require parameters
such as a list of the partial IdPs and an implementation of the ClientCryptoModule
during setup. In scenarios involving pABC, a CredentialManagement component is also
necessary. This component handles the storage and management of Attribute-Based
Credentials (ABCs), deciding whether credentials should be retained while valid or
discarded after the derivation of a presentation token.

Authentication processes yield an access token, the specifics of which depend on
the user client implementation. For example, in the PESTO scenario, a JWT token
may be issued, whereas a pABC implementation might generate a presentation token.
The generation of this token also varies; in PESTO, an authentication protocol is
executed with the vIdP, leading to the creation of a signed access token if the protocol
is successful. In contrast, in the pABC framework, a valid credential stored locally can
enable the generation of the access token without further interaction with the vIdP. The
policy parameter defines the content of the access token, specifying a list of predicates
that dictate which attributes should be revealed or compared. For instance, if a policy
requires the attributes ”name” and ”age” to be disclosed, the access token will contain
a vIdP-attested proof of these attributes.

Regarding the verifier deployment tokens generated using the PESTO approach
(both the original and the ones adapted for the OIDC flow) are standard JWTs and can
be validated with any JWT verifier (or OIDC verifier) without using project-specific
code. The pABC approach necessitates custom software to manage cryptographic
operations, such as the verification of presentation tokens. The framework includes
a Java-based library specifically designed for this purpose. The primary interface for
verification is PABCVerifier, and for use cases involving W3C VC serialization, we
provide W3CPresentationVerifier with a corresponding method:

VerificationResult: This method accepts a token (serialized as a String) and
an OLYMPUS policy.

The VerificationResult is an enumeration with the following possible outcomes:

VALID: The token has been validated and fulfills the policy.

INVALID SIGNATURE: The cryptographic operations, including signatures
and Zero-Knowledge proofs, have failed.

BAD TIMESTAMP: The token or credential has expired.

POLICY NOT FULFILLED: The token does not meet the requested predi-
cates.

5.2. General implementation details 113

The verification library relies minimally on non-standard libraries, except for a
library supporting Bilinear pairings where we also use Apache Milagro AMCL [94].
Although the verification process is typically performed by a relying party on a common
”server”, adapting the library for use in other environments should be straightforward.

In conclusion, this framework marks a significant advancement in digital identity
management, integrating versatile identity verification methods such as pABC and
PESTO with established standards including OAuth, OpenID Connect, and W3C Veri-
fiable Credentials. By effectively addressing both practical and theoretical challenges, it
offers a scalable, secure, and flexible solution suited for a variety of deployment scenarios.
In 5.2.2 , we will delve into enhancements to this framework, particularly focusing on
the incorporation of distributed ledger technologies as proposed in Chapter 4.

5.2.2. DLT enabled distributed identity provider
Chapter 4 presents an evolution of the distributed identity provider framework that

primarily incorporates interactions with Distributed Ledger Technologies (DLT), smart
contracts, and introduces a new entity known as the blockchain handler.

The foundational aspects of the distributed identity framework remain unchanged;
therefore, this section will focus on the implementation of DLT, smart contracts, and
the integration of the new entity.

The implementation is structured as follows. An Android-based user client, three
JAVA-based partial IdPs, a Javascript-based Blockchain Handler entity and a blockchain
platform.

From 5.2.1, we understand that developing the user client is straightforward, requiring
only the integration of OLYMPUS dependencies and minor code modifications to adapt
to the new scenario. Conversely, the partial Identity Providers (IdPs) must integrate
functionality to natively communicate with the blockchain platform. The specifics of
this integration can differ significantly depending on the chosen Distributed Ledger
Technology (DLT) platform. Additionally, the implementation of the handler will also
need to be adjusted to align with the processes involved.

Selecting the right blockchain platform for integration is a complex decision. Our
review included various options within the Hyperledger ecosystem [62]. We initially
experimented with the Hyperledger Indy project [95] due to its specialization in identity
management. However, our initial tests revealed certain limitations, notably Indy’s
insufficient support for smart contracts [96,97], which proved to be a critical shortcoming.
While Indy is adept at handling identity-related operations such as creation, storage,
and verification of digital identities, it does not support the execution of complex
business logic through smart contracts. This is a stark contrast to other platforms
that offer robust smart contract capabilities, enabling the automation and processing
of a wide range of transaction types beyond mere identity assertions. The lack of
such functionalities in Indy is a considerable drawback for applications that demand
dynamic transactional logic and extensive automation, typical of more advanced smart
contract environments. Consequently, the absence of a comprehensive smart contract

114 5. Implementation and results

infrastructure in Indy poses significant challenges in implementing the dynamic and
responsive interactions that are crucial to achieving our project objectives.

After evaluating different platforms, we considered Hyperledger Fabric [98], which
stands out due to its comprehensive suite of features, including a robust implementation
of smart contracts and a highly modular architecture. Although not primarily designed
for identity management, Fabric provides a degree of flexibility and a broad spectrum
of functionalities that are well-suited to our project’s needs.

Fabric’s architecture is particularly acclaimed for its low latency and strong privacy
controls, essential for applications requiring secure and rapid transaction processing.
Its modular design allows for significant customization, enabling organizations to tailor
the blockchain precisely to their operational requirements. This can include varying
consensus mechanisms, specialized membership services, and unique privacy provisions
that enhance transactional confidentiality and user anonymity.

The scalability and efficiency of Fabric are further highlighted by extensive empirical
studies [99, 100]. These studies confirm Fabric’s capability to efficiently handle high
throughput, processing up to 200 transactions per second, and supporting a network that
exceeds 100,000 participants. Such performance is critical for large-scale deployments
and is indicative of the platform’s robust infrastructure and optimized processing
capabilities.

Moreover, Fabric has demonstrated exceptional performance in operational bench-
marks, with an average response time of just 0.01 seconds across 100,000 ”query”
transactions [101]. This performance metric is particularly relevant in environments
where quick data retrieval is crucial, ensuring that even under substantial load, the
system remains responsive and efficient.

The comprehensive feature set, coupled with proven scalability and performance
metrics, makes Hyperledger Fabric an ideal choice for our end. Its ability to be configured
extensively for specific application needs—while maintaining high standards of security
and efficiency—positions it as a superior choice for integrating advanced blockchain
solutions into diverse and demanding operational landscapes.

In Hyperledger Fabric, smart contracts are referred to as Chaincodes, which play a
pivotal role in the platform’s architecture. Chaincodes encapsulate and implement the
business logic of transactions, automating and executing complex contractual behaviors
directly on the blockchain. Crucially, Chaincodes are intricately linked with another
fundamental component of Fabric—channels.

In Hyperledger Fabric, channels serve as private sub-networks that enable secure
and confidential communications among specified network members. These channels
facilitate the execution of private transactions, effectively isolating them from the broader
network. Such isolation ensures that sensitive data and transaction details remain
exclusively accessible to authorized participants, significantly enhancing transaction
security and privacy by tailoring access based on the specific needs and permissions of
the network participants.

Channels incorporate a set of chaincodes that govern the operations and business
logic particular to each channel. Figure 5.1 illustrates this configuration, showing three

5.2. General implementation details 115

different organizations participating in three distinct channels, each operating with its
own set of chaincodes.

OrgA OrgB OrgC

Channel A-B-C

Channel A-B

Channel B-C

Hyperledger Fabric

System
Chaincodes

Orderer

Ledger A-
B, A-B-C

Chaincodes
A-B

A-B-C

OrgA-Peer
Ledger B-
C, A-B-C

Chaincodes
B-C

A-B-C

OrgC-PeerLedger A-
B, B-C, A-

B-C

Chaincodes
A-B, B-C

A-B-C

OrgB-Peer

A-B Channel
Client

A-B-C Channel
Client

B-C Channel
Client

Figure 5.1: Hyperledger fabric channels

The blockchain deployment within Fabric is structured around various key compo-
nents:

Organizations or Members: These are the entities or consortia members
participating in the blockchain network, each with specific roles and permissions.

Anchor Peers: Designated by each organization, anchor peers act as a communi-
cation bridge for disseminating transaction data and blockchain state information
within their organization.

Ordering Node (Orderer): A critical component that maintains consistency
and sequences transactions across the blockchain, packaging them into blocks and
ensuring their delivery to all network peers.

Chaincodes: These smart contracts define the transactional logic and are exe-
cuted on the blockchain to manage the ledger state.

Shared Ledger: A fully replicated ledger that records all transactions across the
network, maintained across all peers to ensure transparency and immutability.

In Hyperledger Fabric, each transaction is executed within a designated channel,
ensuring that interactions are confined to a controlled and secure environment. All par-
ties involved in a transaction must undergo a rigorous authentication and authorization

116 5. Implementation and results

process before participating. This stringent requirement guarantees that only verified
and authorized entities can perform transactions on a given channel, thereby enhancing
security and maintaining the integrity and confidentiality of the data exchanged.

Each channel operates as an independent ledger, maintaining a comprehensive history
of transactions visible only to its members. Authentication is typically managed through
digital certificates, while authorization leverages Membership Service Providers (MSPs).
MSPs define the roles and privileges of network participants, ensuring transactions are
transparent among authorized users and protected from unauthorized access. This dual
mechanism adheres to stringent security standards and meets compliance requirements,
thereby safeguarding the network.

Additionally, in Hyperledger Fabric, chaincodes are instrumental in extending
our virtual Identity Provider (vIdP) and partial Identity Providers (pIdP) frame-
work. vIdPs are conceptualized as an aggregation of partial IdPs, each endorsed
on the ledger through smart contracts. Each partial IdP begins its operation by
invoking an enrollment contract, which captures essential information required for
subsequent identification. This includes a DID document detailing an identifier (e.g.,
did:umu:OL-Partial-IdP:0:test1), context, and the service definition, which encom-
passes the service address and type. Other recorded attributes include the operational
status, the spawn date, and the associated public key. Figure 4.5a illustrates this
process in detail, and Listing 5.10 provides an example of such an enrollment:

{
"status": "ACTIVE",
" publicKey ": " CnoKeAo 6DeVv7T9T[...]",
" spawnDate ": "2021-03-10T10:48:20",
"did": {

"id": "did:umu:OL -Partial -IdP:0",
" context ": "https:// www.w3.org/ns/did/v1",
" service ": {

" serviceEndpoint ": "10.1.6.6:9080",
"type": "OL -Partial -IdP"

}
}

}
Listing 5.10: Partial IdP enrollment

Simultaneously, as partial IdPs are enrolled, the composition of the vIdP to which
they belong is also dynamically updated, ensuring no single partial IdP can act as a
controller or hold undue influence. This mechanism prevents any hierarchical structure
within the vIdP, maintaining equal responsibility among all partial IdPs. The virtual IdP
is thus a composite entity made up of the endpoints, DIDs, and public keys (including
an aggregated public key) of its constituent partial IdPs, as shown in Listing 5.11:

5.2. General implementation details 117

{
"did":
{

" @context ": "https:// www.w3.org/ns/did/v1",
"id": "did:umu:OL -vIdP:test1",
" services ":
[

{
" endpoint ": "10.1.6.6:9080",
"id": "did:umu:OL -Partial -IdP:0",
"pk": " CnoKeAo 6er2OxSH2lrVv7T9T[...]"

},
{

" endpoint ": "10.1.6.6:9081",
"id": "did:umu:OL -Partial -IdP:1",
"pk": "U8R21sGxIE9 UebXNMISCdWaZ [...]"

},
{

" endpoint ": "10.1.6.6:9082",
"id": "did:umu:OL -Partial -IdP:2",
"pk": "aYVXzQ2 qNYiJdAgBbPHzYAKA [...]"

}
]

},
" docType ": " VIdPRegistration ",
"idps":

[
"did:umu:OL -Partial -IdP:0",
"did:umu:OL -Partial -IdP:1",
"did:umu:OL -Partial -IdP:2"

],
" schemas ":

[
"did:umu:OL - PublicParameters :Scheme"

],
" spawnDate ": "2021-03-10T10:14:44",
"status": "ACTIVE"

}
Listing 5.11: Virtual IdP enrollment

This structured approach ensures that any IdP and vIdP engaged in the network
architecture is introduced by a trusted entity, which possesses the necessary permissions
and cryptographic materials to operate within the ledger. This setup leaves a traceable
and auditable record, enhancing the security and verifiability of the network.

Service Providers play a pivotal verification role within our system. They communi-
cate access policies and validate access requests against these policies. Our innovative
approach further augments this functionality by incorporating a registration process for
service providers through smart contracts, as illustrated in Figure 4.5b. When a service
provider decides to adopt this new methodology, it must register essential details on the
ledger: its endpoint, DID, registration date, status, and a set of predicates that define

118 5. Implementation and results

the necessary data for its operations. For example, these conditions might include
revealing an email address or verifying that a user’s age falls within a specified range,
detailed in Listing 5.12. This proactive registration enables all network participants
to identify which services are part of the framework and understand the specific data
requirements of each service in advance.

Furthermore, this registration process empowers service providers with the capability
to autonomously configure their specific settings related to the virtual Identity Provider
(vIdP), enhancing operational flexibility. This dual benefit not only streamlines setup
procedures but also significantly enhances adaptability for service providers, as depicted
in Figure 4.6.

The ledger serves as an authoritative registry, capturing this crucial information
in a manner that is immutable and auditable. Currently, the service registration
process is conducted manually, necessitating administrative intervention. However,
there is potential for this process to be automated in the future, which would streamline
operations and reduce administrative overhead.

{
"date": "2021-03-10T11:28:52",
"did": {

" @context ": "https:// www.w3.org/ns/did/v1",
"id": " service ",
" service ": {

" serviceEndpoint ": "https:// myservice .com",
"type": "Web service "

}
},
"domain": "https:// myservice .com",
" predicates ": "[{\" attributeName \":\" url:Role \",\" operation

\":\" REVEAL \",\" value \":null,\" extraValue \":null}]",
"status": "ACTIVE"

}
Listing 5.12: Service enrolment

In Chapter 3, the user, our primary concern, is safeguarded through the principles of
minimal disclosure and the distribution of cryptographic material. This system equips
the client with the ability to connect to the ledger, facilitating the discovery of registered
virtual Identity Providers (vIdPs) and Identity Providers (IdPs) securely before any
registration on the platform. Similarly, legitimate service providers and the specific
data requirements they have are also identifiable, placing the user in a strategically
advantageous position. From the outset, users can make informed decisions without
compromising their privacy or security.

The benefits to the user from this system are threefold:

1. Trustworthy Connection Configuration: The initial connection setup is
sourced from the ledger, a reliable authority that ensures the configuration
process’s integrity. This efficiency not only simplifies the setup for end-users but
also potentially eliminates the need for manual configuration altogether.

5.2. General implementation details 119

2. Informed Decision-Making: Users receive verified information directly from
the ledger about available services, including the type of service and the specific
data requirements. This enables users to make informed decisions based on
objective, ledger-certified data, ensuring they can confidently interact with services,
secure in the knowledge that their Identity Provider is reliable and that service
offerings are under continual surveillance.

3. Auto Client Configuration: Similar to service providers, user applications can
perform an auto-configuration process, as illustrated in Figure 4.7. This feature
further enhances user experience by simplifying the initial setup and ongoing
maintenance of client settings.

Moreover, if a service unilaterally changes its access policies to become more invasive,
the ledger’s monitoring capabilities ensure that the user is promptly informed of such
changes. This system not only empowers users with control over their digital interactions
but also maintains a high level of transparency and security.

It is important to emphasize that the ledger does not record any sensitive infor-
mation, thereby safeguarding against potential tracking or data leakage. This design
principle ensures that privacy is maintained throughout the system’s operation. While
the user client has the capability to interact with the ledger, such as sending alerts
about suspicious services, its primary role is observational. This means that while
it can contribute to the security of the system by reporting anomalies, it does not
actively modify or store sensitive user data on the ledger. This approach not only
enhances user privacy but also strengthens the overall security framework by enabling
a proactive response to potential threats without compromising the confidentiality of
user information.

To conclude, the newly introduced Blockchain Handler entity serves as a REST API
that facilitates interactions with the deployed ledger using standard HTTP methods.
Developed in JavaScript, this API offers a lightweight and easily extendable framework
for ledger interactions. Beyond basic ledger operations, the Blockchain Handler is
also designed to simulate various elements of the blockchain ecosystem. This includes
functionalities like mimicking a service provider and its corresponding verifier, thereby
providing a versatile and practical tool for development and testing.

The advantages of employing the Blockchain Handler are multifaceted:

Accessibility: Being based on REST, it integrates seamlessly with existing web
infrastructure, making it accessible to developers familiar with web technologies
without requiring specialized blockchain knowledge.

Flexibility: The JavaScript-based implementation ensures that the handler is
not only lightweight but also adaptable to various use cases, facilitating quick
modifications and enhancements.

Testing and Simulation: The ability to simulate service providers and verifiers
within the handler allows developers to conduct thorough testing and scenario

120 5. Implementation and results

analysis before full-scale deployment. This feature significantly reduces the
potential for errors in live environments and improves overall system reliability.

Rapid Development: The easy-to-use interface accelerates development cycles,
enabling faster rollout of new features and improvements.

In essence, the Blockchain Handler optimizes the development process by providing
robust, user-friendly tools for interacting with and testing the blockchain environment,
ultimately enhancing the efficiency and security of deployments.

5.3. Use cases
This section presents two use cases that demonstrate the practical application of

the proposals outlined in the preceding sections.
First, the use case titled ”The Pandemic Booking” is presented. This use case

explores the implementation of the solution introduced in Chapter 3, as well as its
potential areas for improvement.

Next, the ”Smart City” use case is introduced, in which the solution proposed in
the previous use case is extended with the enhancements introduced in Chapter 4. This
section highlights the new architectural features, entities, and results obtained.

5.3.1. The pandemic booking

Introduction

This use case explores the unexpected global upheaval caused by the COVID-
19 pandemic in 2020, a significant health crisis documented by the World Health
Organization1. This unprecedented challenge necessitated a thorough reevaluation of
various aspects of everyday life, emphasizing particularly the importance of identity
management and personal attributes during public health emergencies. As societies
around the world struggled with the immediacy of the crisis, the imperative for robust
privacy protection mechanisms intensified, enabling individuals to protect their personal
data against misuse amid increased surveillance measures.

Impact on Service Operations

The pandemic profoundly transformed the operational frameworks of essential
services including healthcare, travel, and education, with a specific focus on the man-
agement of personal interactions through booking systems. Organizations across these
sectors were required to swiftly adapt to new health and data privacy regulations, cat-
alyzing a substantial rise in demand for secure, resilient digital infrastructures capable
of ethically integrating and handling sensitive health data while safeguarding individual
privacy.

1https://www.who.int/en/health-topics/coronavirus

https://www.who.int/en/health-topics/coronavirus

5.3. Use cases 121

Specific challenges in Data Management

Throughout the pandemic, entities encountered significant challenges:

Maintaining the accuracy and confidentiality of health data, which became criti-
cally important as mismanagement could lead to severe consequences for individual
privacy and public health.

Adhering to rapidly changing legal and health regulations which required agile
adjustments to existing systems and operations.

The integration of real-time health data into booking systems necessitated sophisticated
technological enhancements to ensure system robustness and reliability.

Innovative Solutions

In response to these challenges, several innovative technological solutions were
adopted:

Contactless Interfaces: Developed to minimize physical contact and reduce
the risk of virus transmission, these interfaces facilitated safer interactions in
public spaces and service areas.

Real-Time Health Tools: From monitoring individual vaccination statuses and
thermal temperature readings via infrared cameras to incorporating continuous
disinfection systems in public spaces, a variety of systems were deployed during this
period. These implementations were crucial in enhancing public safety by ensuring
environments were safe for occupancy and reducing the spread of the virus. Each
system played a vital role in the comprehensive public health response to the
pandemic, demonstrating the importance of integrated health safety technologies
and moreover, the importance of data awareness and privacy options.

Advanced Encryption Methods: Implemented to bolster data security, these
methods ensured that personal and health-related information was encrypted and
securely transmitted across platforms.

Comprehensive Software Solutions: Created to streamline information man-
agement, these solutions ensured that all operations remained compliant with
evolving health regulations while prioritizing user privacy.

These enhancements not only addressed the immediate operational challenges posed
by the pandemic but also laid the groundwork for future technological innovations in
managing health crises. The demonstrated effectiveness and adaptability of these solu-
tions highlight the potential for transformative advances in public health infrastructure.
Within this evolving landscape, the relevance of the solution proposed in Chapter 3
becomes particularly salient. This proposal is designed to develop systems that are not
only more resilient and efficient but also exceptionally secure in handling sensitive user

122 5. Implementation and results

data, ensuring compliance with standards or regulations (i.e., [3, 69]) and respect for
user privacy.

Figure 5.2: Booking scenario

The scenario depicted provides a comprehensive framework for the full implemen-
tation of the architecture shown in Figure 3.4. Additionally, it integrates the two
workflows described in Chapter 3, which are essential for ensuring a seamless interaction
between all parties involved. This structured approach not only enhances security and
efficiency but also supports robust identity management across various platforms.

The components involved in the scenario are:

Distributed IdP (vIdP): This component offers privacy-preserving identity
management to users while ensuring the security of the information presented
to relying parties. It supports online authentication following the OIDC [26,34]
flow and issues pABCs (serialized according to W3C’s Verifiable Credentials
specification) for ”offline” interactions. Optionally, an external service can act as
a third-party identity provider for user enrollment in the vIdP. Technically, the
vIdP operates as a 3-server deployment of the combined IdP class, integrating
both pABC and OIDC functionalities.

User: Two tools are essential, one for each approach: A mobile application for
”offline” pABC presentations, and a locally hosted REST-based client, accessible

5.3. Use cases 123

via a web browser, which may eventually be replaced by a browser plugin. The
local REST client not only facilitates OIDC functions but also offers account
management features, such as account creation and password changes.

Relying-party: In this scenario is a single ”service provider organization” (the
restaurant) which operates differently based on the flow. This might involve two
distinct functions:

1. A booking service that facilitates online interactions through a standard
OIDC implementation.

2. An offline waiter function that uses a mobile device with the distributed
identity provider verification library to validate pABC presentations upon
the guest’s arrival.

The service provider is implemented as a simple NodeJS application, using stan-
dard components and libraries wherever possible. OIDC support is provided by
redux-oidc, a popular NodeJS [102] library, which allows seamless integration
with both vIdP and KeyCloak [103] IdP. For handling pABC presentations, the
application also runs a small REST server that exposes two methods: one for
verification and another for setup, which configures the endpoints of the partial
IdPs that comprise the vIdP for token verification.

While the scenario involves a single overarching flow (booking and making use of a
service), it can be divided into two separate sub-processes: (1) The online reservation
(figure 5.3) and the (2) in-person check-in (figure 5.6).

The online reservation system allows users to make a reservation in their name
by utilizing the OpenID Connect (OIDC) authentication flow, as depicted in Figure 2.8.
The process begins when a user visits the restaurant’s webpage (Service Provider, SP)
using a standard web browser. On the webpage, the user opts to log in using OLYMPUS,
a distributed Identity Provider (DIP). This action directs the user to a login interface
that requires a username and password.

Upon entering their credentials, the system initiates the detailed authentication
process represented in Figure 3.5, distributed password verification (DPV). Once the
authentication is successful, the system generates an OIDC token via the distributed
token generation (DTG) protocol, as outlined in Figure 3.6. This token, which includes
attributes verifying the user’s age (e.g., being over 18 years old), is transmitted through
the browser to the SP.

Finally, the SP verifies the authenticity and validity of the OIDC token and, upon suc-
cessful validation, confirms the reservation. The overall authentication and reservation
process is succinctly illustrated in Figure 5.3 and 5.4.

One significant advantage of this OIDC-based approach is its familiarity to users,
who often employ this type of authentication in various online interactions, albeit
unconsciously. Additionally, from the perspective of the service provider, integrating

124 5. Implementation and results

User

User

Web OIDC Application

Web OIDC Application

Mobile Application

Mobile Application

vIdP

vIdP

Partial IdPs
(1...n)

Partial IdPs
(1...n)

Service Provider

Service Provider

OIDC Authentication and Booking

1 Request to log in

2 Initiate OIDC authentication

3 Request part of DTG (pIdP_1)

4 Request part of DTG (pIdP_2)

5 Request part of DTG (pIdP_n)

6 Send DTG part 1 (pIdP_1)

7 Send DTG part 2 (pIdP_2)

8 Send DTG part 3 (pIdP_n)

9 Combine DTG parts, issue complete DTG

10 Display success and provide DTG

11Makes reservation using DTG

12 Confirms reservation

Figure 5.3: Online reservation flow

To make a reservation
you have to be >= 18

years old

Figure 5.4: Login and reservation demo

this system is straightforward. It merely requires the addition of OIDC configuration
parameters for our identity provider to their existing services, as illustrated in Figure 5.5.

Once the reservation has been made, the next step involves visiting the restaurant
to complete the in-person check-in. At this stage, the user is required to prove their
identity and confirm their vaccination status.

Users can rely on the application to verify the necessary predicates to effectively
utilize their reservation. Initially, the user opts to obtain a W3C credential similar to

5.3. Use cases 125

Figure 5.5: Configuration of OIDC SP

User

User

Web OIDC Application

Web OIDC Application

Mobile Application

Mobile Application

vIdP

vIdP

Partial IdPs
(1...n)

Partial IdPs
(1...n)

Service Provider

Service Provider

DCI Acquisition and In-Person Verification

1 Opens app to obtain DCI

2 Request parts of DCI

3 Request part 1 of DCI (pIdP_1)

4 Request part 2 of DCI (pIdP_2)

5 Request part n of DCI (pIdP_n)

6 Send DCI part 1 (pIdP_1)

7 Send DCI part 2 (pIdP_2)

8 Send DCI part n (pIdP_n)

9 Combine DCI parts, form complete DCI

10 Scans QR at restaurant for verification

11Displays vaccination policy

12 Accepts policy

13 Confirms policy compliance

14 Permits access to the restaurant

Figure 5.6: Online reservation flow

listing 5.8 and undergoes a login process, which may include multi-factor authentication;
this step can be completed in advance as the credential is securely stored throughout
its lifetime. The credential obtention is facilitated by the DCI protocol illustrated in
Figure 3.7 and detailed for this case in figure 5.6. Subsequently, the user utilizes the app
to scan a QR code provided by the service provider. The app retrieves the requested
policy and displays it to the user, as shown in Figure 5.7. If the user consents to the
terms, a presentation corresponding to that policy is generated and transmitted to the
service provider. Finally, the service provider verifies the validity of the presentation,
ensuring that all necessary criteria are satisfied for the user to access their reservation.

Using Verifiable Credentials offers several advantages for this operation. Firstly, it
enables offline authentication, which obviates the need for physical IDs and mitigates

126 5. Implementation and results

Figure 5.7: App, attribute reveal information

the privacy concerns associated with them. Additionally, the application is user-friendly,
making it easier for users to comprehend and manage their credentials directly from
their smartphones.

5.3. Use cases 127

5.3.2. The smart city

Introduction

In this use case, the proposed solutions from Chapter 4 are applied to the context
of a smart city. Smart cities leverage technology to improve the quality of life for their
citizens, enhance the efficiency of urban services, and ensure sustainable development.
Efficient identity management and access control are crucial for various services, ranging
from transportation to public safety and utility management. This section explores
the implementation of our Distributed Ledger Technology (DLT)-enabled identity
management system within a smart city framework, addressing specific data management
challenges and showcasing the innovative features of our approach.

The proposed solution in Chapter 4 introduces several novel aspects compared to
the infrastructure discussed in Chapter 3. These include:

Enhanced Privacy Mechanisms: While Chapter 3 focuses on basic privacy-
preserving techniques, Chapter 4 integrates advanced mechanisms such as Zero-
Knowledge Proofs (ZKP) and homomorphic encryption to provide stronger data
privacy guarantees.

Distributed Ledger Technology (DLT): Chapter 4 emphasizes the use of
DLT to create an immutable and transparent record of identity transactions,
enhancing trust among stakeholders. This represents a significant improvement
over the centralized or federated models discussed in Chapter 3.

Interoperability Protocols: The implementation of standardized protocols
and APIs in Chapter 4 facilitates seamless integration with existing smart city
systems, addressing the interoperability issues highlighted in Chapter 3.

Self-Sovereign Identity (SSI): Empowering citizens with control over their
personal data, in alignment with GDPR requirements, is a central component
in the Chapter 4 proposal, offering a more user-centric approach compared to
traditional models from Chapter 3.

Specific Challenges in Data Management

Smart cities face several challenges related to data management, particularly regard-
ing privacy, security, and interoperability. These challenges include:

Data Privacy and Security: Ensuring the privacy and security of citizens’
data is paramount, given the vast amount of sensitive information generated by
smart city applications.

Interoperability: Integrating diverse systems and stakeholders seamlessly is
critical for efficient service delivery.

128 5. Implementation and results

Scalability: The system must efficiently handle the growing number of users and
devices in a smart city.

User Control: Empowering citizens with control over their personal data and
how it is used by various services.

While previous approaches (see Chapter 2) provided valuable insights and a good
starting point for improving identity management, they ultimately fell short in addressing
all the challenges comprehensively. Centralized systems lacked user control and posed
significant security risks. Federated systems, though better in terms of interoperability,
struggled with complexity and privacy issues. Blockchain-based solutions, despite
their enhanced security and decentralization, faced scalability, interoperability, and
sustainability challenges.

These shortcomings underscore the need for a more robust, scalable, and user-
centric solution that can effectively integrate with existing systems while providing
enhanced privacy and security. The proposed DLT-enabled identity management
system aims to address these gaps by combining advanced privacy-preserving techniques
with the inherent trust and transparency of distributed ledger technologies, offering a
comprehensive and sustainable solution for smart cities.

To address these challenges, the proposed Smart City use case implementation
encompasses the following steps. First, an initial Deployment without DLT Integration
as done previously in 5.3.1 building solid foundations with decentralized identity
management and advanced cryptographic methods. After that, the use case adds
the DLT integration to enhance the trust and transparency by recording identity
transactions on a blockchain.

Figure 5.8 provides a comprehensive overview of the scenario, highlighting its primary
entities:

User: The central entity in the identity management process, interacting with
various components to authenticate and authorize actions.

Virtual Identity Provider (vIDP): An entity responsible for managing user
identities and ensuring secure authentication using attribute-based credentials
(ABCs). It interacts with the blockchain to write and read identity transactions.

External Attribute Provider: Provides additional identity attributes for the
user, which are used for authentication and authorization processes.

Relying Party: Services or entities that rely on the verified identity of the
user for providing services. They interact with the blockchain to verify identity
transactions and authorize service usage.

Blockchain: Serves as the backbone of the DLT-enabled trust framework, pro-
viding a secure and immutable record of all identity transactions. It interacts
with the vIDP and relying parties to maintain the integrity of identity data.

5.3. Use cases 129

Figure 5.8: Generic scenario

Expanding on the general scenario in Figure 5.8, Figure 5.9 illustrates the real-world
scenario.

Virtual Identity Provider (vIDP) Composed of several partial identity providers
(pIDP1, pIDP2, pIDPn), this entity manages and verifies user identities. Distributing
responsibilities across multiple providers enhances resilience and reduces the risk of a
single point of failure.

IoT Platform Manages the capabilities and permissions of devices and users within
the smart city’s IoT ecosystem, ensuring that only authorized entities can access specific
services and resources.

Keyrock A component of the FIWARE [104] framework, Keyrock acts as an Iden-
tity Provider (IdP), managing the identities of users and applications, and providing
authentication and authorization services. It implements OAuth 2.0 and OpenID Con-
nect protocols, supports role and permission management, and integrates with other
FIWARE components. Additionally, Keyrock supports SAML for interoperability with
other identity management systems.

130 5. Implementation and results

Smart-City
IoT Platform

 Capability
 Manager

pIdP2 pIdPn

vIdP

pIdP1

dIdP
signature
verification

library

1. Register and
IdProof (uid and
eIDAS attributes)

2.Get credential

 PEP

Services

Keyrock

eIDAS
node

1.2.2 SAML flow (using eID)

PDP

1.2.1 Authentication with eID

3.1. Privacy-preserving
authorization request

3.2. Authz decision

4.2. Service access

4.1. Privacy-Preserving
Service access

Capability
token

validator

Capability
token

generator

1.1 Register in SC platform.
Get signed uidB

lo
ck

ch
ai

n
Write/Read

Write/Read

Read

Edge Services

B
lo

ck
ch

ai
n

H
an

dl
er

Figure 5.9: Smart City Scenario

eIDAS Node The eIDAS (electronic IDentification, Authentication, and trust Ser-
vices) regulation establishes standards for electronic identification and trust services
across EU member states. Implemented in 2014, eIDAS enables citizens and businesses
to use their national electronic identification systems to access public services in other
EU countries. It includes services such as electronic signatures, seals, timestamps, and
registered delivery services. The SAML flow facilitates secure identity verification using
eID.

Authorization Components

Policy Enforcement Point (PEP): Enforces access control policies based on
authorization decisions. The PEP intercepts access requests, forwards them to
the PDP for evaluation, and then allows or denies access based on the PDP’s
decision.

Policy Decision Point (PDP): Makes authorization decisions based on defined

5.3. Use cases 131

policies. The PDP evaluates access policies using a policy language (such as
XACML) and communicates decisions to the PEP for enforcement.

Capability Tokens

Capability Token Generator: Generates tokens that grant specific access
permissions.

Capability Token Validator: Validates these tokens to ensure they are legiti-
mate and untampered.

Blockchain Manages Write/Read Operations as transactions involving identity, en-
suring an immutable and transparent record.

Blockchain Handler Acts as an abstraction layer supporting various Distributed
Ledger Technologies (DLTs) without requiring users or the vIDP to know which specific
DLT is in use. This design ensures DLT agnosticism and provides generic operations to
utilize smart contracts and DLT functions effectively.

The main functions of the Blockchain Handler include:

Abstraction Layer: Abstracts the complexities of different DLT solutions,
ensuring seamless integration with the mobile application.

Transaction Management: Handles the creation, submission, and confirmation
of transactions on the blockchain.

Smart Contract Interaction: Facilitates the execution of smart contracts to
verify service legitimacy and registered data.

Data Integrity: Ensures the integrity and immutability of data stored on the
blockchain.

Communication Bridge: Manages communication protocols and data exchange
between the mobile application and the blockchain.

DLT Agnosticism: Provides a consistent interface for blockchain operations
regardless of the underlying technology.

Edge Services Operate at the network edge, close to users and devices, improving
efficiency and reducing latency.

Mobile App Integrates the solution proposed in Chapter 4, supporting Distributed
Ledger Technology (DLT) and the generation of identity materials such as certificates.
It serves as the core solution for users, empowering them with easy and convenient
control over their identity.

132 5. Implementation and results

Smart Contracts Overview Our system employs several key smart contracts
(known as chaincodes) to manage identity data, services, and access policies. The
primary contracts are getvidp, getschema, getservice, evaluatePolicy, and addservice.
Below is a detailed description of each:

getvidp: Retrieves the connection parameters and relevant data for a virtual
Identity Provider (vIDP). When invoked, this contract queries the blockchain for
the specified vIDP’s public parameters and configuration information, crucial for
establishing a secure connection.

getschema: Obtains the schema associated with a vIDP, including public pa-
rameters and attribute definitions necessary for identity management. Invoking
this contract provides the encoded schema public parameters for accurate identity
authentication and verification.

getservice: Retrieves details about the services available within the system. This
contract queries the blockchain for information on registered services, including
endpoints, descriptions, and metadata, enabling the user application to discover
and interact with these services.

evaluatePolicy: Enforces access control policies by evaluating whether a user
meets the criteria to access a particular service. This contract checks the user’s
credentials and relevant attributes against predefined policy conditions on the
blockchain to determine access eligibility.

addservice: Registers new services on the blockchain. Service providers can add
their services by specifying details such as service name, description, endpoints,
and required access policies. Once registered, these services become discoverable
and manageable through the other smart contracts.

The scenario depicted provides a comprehensive framework for the full implementa-
tion of the architecture shown in Figure 4.2 described in Chapter 4, which are essential
for ensuring a seamless interaction between all parties involved. This structured ap-
proach not only enhances security and efficiency but also supports robust identity
management across various platforms.

The use case describes a person who is visiting the city for a short time. The mobile
application could help the user providing useful information about the city. To use the
app, the user will go through three main processes. (1) First, during the enrolment
process, he uses his eID to provide certified attributes. (2) Next, he logs in
to retrieve a new credential after registering. Once logged in, (3) the user can
access various services: he is particularly interested in obtaining parking availability
information and public transport information for his travels during his stay. However,
he cannot use the water consumption checking service as it is restricted to the city
resident citizens.

5.3. Use cases 133

Additionally, the app offers management functionalities allowing the user to know
in advance the reputation of the services displayed. The mobile application thus serves
as a valuable tool, providing the user with essential information and control during his
visit to city.

The user client initiates their interaction by commencing an auto-configuration
process, which concludes with the acquisition of connection parameters for the virtual
Identity Provider (vIDP) as well as the necessary cryptographic primitives, as illustrated
in Figure 5.10.

User client

User client

Blockchain Handler

Blockchain Handler

Ledger

Ledger

1 Start setup

2
HTTP(S)-GET

("/chain/getvidp")
Client-app auth/authz
can be done here

3
Secure connection

grpcs based

4
invokeChainCode

("getvidp")

5
processChainCode
("getvidp")

6
response
("getvip")

7
HTTP(S)-RESPONSE

("/chain/getvidp")

8
HTTP(S)-GET

("/chain/getschema")

9
invokeChainCode

("getschema")

10
processChainCode
("getschema")

11
response

("getschema")

12
HTTP(S)-RESPONSE
("/chain/getschema")

13 End Setup

Figure 5.10: Client auto-configuration

To facilitate this, the application queries the Blockchain Handler, deployed by one
or more organizations with a static, trusted configuration. This process ensures the
secure and reliable configuration of the application. Step 3 signifies the establishment
of a secure connection between the entity and the ledger taking advance of the gRPC
protocol [105], thereby ensuring that all subsequent communications are protected.

134 5. Implementation and results

Once the connection between the ledger and the Blockchain Handler is established,
the getvidp smart contract (chaincode) is invoked, returning the necessary data (steps 5
to 7). Subsequently, the client obtains the public parameters associated with the vIDP.
This is achieved by initiating a query through the Blockchain Handler, which invokes the
getschema chaincode. The client then receives the encoded schema public parameters
along with the attribute definitions associated with the vIDP. At this juncture, the client
may optionally reverify these parameters by querying the vIDP directly to confirm their
accuracy. However, it is generally sufficient to assume their validity, as any discrepancies
would result in the failure of subsequent processes.

Once all components are deployed and configured, users are prepared to operate and
utilize the available services. These services can be discovered through various discovery
methods. The user application can verify, using the Blockchain Handler and the ledger,
that a service has been previously registered. For instance, the application can ensure
that a service has not changed its endpoints without notification, thereby providing an
additional layer of security and confidence against phishing attacks or service spoofing.

Once the app is ready, the user can start operating. The first step involves obtaining
their verifiable credential, as shown in Figure 5.11.

User Client

User Client

vIdP

vIdP

eIDAS

eIDAS

Blockchain
Handler

Blockchain
Handler

Ledger

Ledger

1 Login (user, password)

2
Request

Verifiable Credential

3 Request eID

4 Provide eID

5 Send eID

6
Request Consent

for Attribute Sharing

7 Provide Consent

8
Request

Certified Attributes

9
Send

Certified Attributes

10
Send

Certified Attributes

11Verifiable Credential shares

12 Record Event

13 Log Event

14 Confirm Logged

15 Event Confirmed

16 Verifiable Credential shares

17 Combine shares & store

Figure 5.11: Client credential gathering

5.3. Use cases 135

Once the verifiable credential (see 5.8) is obtained, the user is ready to securely
make use of the Smart City platform. The implementation of these verifiable credentials
ensures that the user’s identity and attributes are authentic and that the user’s privacy
is protected throughout the interaction with the platform.

vIdP

vIdP

Service provider

Service provider

User client

User client

Blockchain Handler

Blockchain Handler

Ledger

Ledger

1 Access Request

2 Policy(realPolicy)

3
HTTP(S)-GET

("/chain/getservice")
Client-app auth/authz
can be done here

4
invokeChainCode

("getservice")

5
processChainCode
("getservice")

6
response

("getservice")

7
HTTP(S)-RESPONSE
("/chain/getservice")

8
evaluatePolicy
(ledgerPolicy, realPolicy)

9
Signup

(user, password) Only once

10
credentialShares = login

(user, password)

11credentialShares

12
combine&Store
(credentialShares)

13
generatePresentation
(credential, realPolicy)

14
verify

(verifiablePresentation)

15 verification result

16 Service usage

Figure 5.12: Client interaction with services

Figure 5.12 illustrates the process by which a user accesses a service within the
proposed framework. Initially, the user selects a desired service from the available
options and obtains its access policy, as outlined in steps 1 to 3. Subsequently, an
internal verification process begins wherein the client retrieves information about the
selected service from the ledger via the getservice smart contract. The ledger maintains

136 5. Implementation and results

the service record along with the declared data it intends to use from the users (policy),
as described in steps 3 to 7. The application then compares the received information
(service policy) with the policy recorded in the ledger and notifies the user if any
discrepancies are detected, as shown in step 8. Steps 9 to 12 are performed only if the
credential has not been obtained previously, as depicted in Figure 5.11.

Similarly to the previous use case shown in Figure 5.7, the user can now receive a
message like the one shown in Figure 5.13.

Figure 5.13: Policy warning

This message alerts the user about a service that may be acting dishonestly, as the
data stored in the ledger differs from the service’s actual behavior.

5.4. Conclusions
The Pandemic Booking use case demonstrated the effectiveness of a secure and

efficient system for managing identity and access control during health crises. Phase 1
implemented a non-DLT enabled distributed identity provider, laying a solid foundation
by decentralizing identity management and incorporating advanced cryptographic
methods to protect user data. This setup ensured robust, user-friendly functionalities
for authentication and identity verification.

In the Smart City use case, Phase 2 integrated the proposed DLT-enabled identity
management system into an urban context, addressing critical challenges and enhancing
the quality of urban living. Utilizing advanced privacy-preserving techniques and DLT,
the system guarantees the security and privacy of citizen data while facilitating efficient
and trustworthy service delivery.

5.4.1. Benefits and Impact
Implementing the proposed identity management system offers several significant

benefits:

Enhanced Privacy and Security:

5.4. Conclusions 137

• Phase 1: Advanced privacy-preserving mechanisms such as zero-knowledge
proofs (ZKP) and homomorphic encryption ensure that citizens’ personal
data is protected against unauthorized access and breaches. This robust
protection builds user confidence in the security of their personal information.

• Phase 2: Integrating Distributed Ledger Technology (DLT) further enhances
privacy and security by providing an immutable record of transactions.
This ensures that all identity-related actions are permanently recorded and
verifiable, reducing the risk of data tampering.

Improved Trust:

• Phase 1: Establishing a decentralized identity management system builds
initial trust by reducing reliance on a single point of failure and implementing
advanced cryptographic methods to protect data.

• Phase 2: Utilizing DLT to create a transparent and immutable record of
identity transactions significantly enhances trust among all stakeholders.
The immutable nature of blockchain ensures a verifiable and tamper-proof
history of transactions.

Greater User Control:

• Phase 1: Empowering citizens with control over their personal data aligns
with the principles of self-sovereign identity (SSI). Users can manage their
identity attributes and credentials, deciding when and with whom to share
their information.

• Phase 2: The integration of DLT ensures compliance with data protection
regulations such as GDPR, further enhancing user satisfaction and autonomy
over personal data.

Efficient Service Delivery:

• Phase 1: Ensuring seamless interoperability among various systems through
standardized protocols and APIs enables efficient service delivery. The initial
deployment allows for smooth integration with diverse platforms and services.

• Phase 2: Enhanced system capabilities reduce friction and improve the
overall user experience, making it easier for citizens to access and utilize city
services through a secure and trustworthy framework.

Enhanced Security Against Fraud and Misuse:

• Phase 1: The initial setup provides strong protection against unauthorized
access and misuse through advanced cryptographic techniques.

138 5. Implementation and results

• Phase 2: The use of blockchain for verifying service legitimacy and registered
data prevents unauthorized modifications and fraudulent activities, ensuring
services cannot change endpoints or modify critical data without proper
authorization.

Scalability and Flexibility:

• Phase 1: The system’s architecture is designed to be scalable, accommodat-
ing the growing number of users and services without requiring significant
changes.

• Phase 2: The flexible architecture allows for the integration of new tech-
nologies and services, leveraging DLT to enhance system scalability and
adaptability.

Integration with eIDAS and W3C Credentials A significant achievement in
Phase 2 has been the successful integration with eIDAS regulations and W3C verifiable
credentials. This integration underscores the versatility and robustness of the proposed
identity management system, ensuring high standards of security and interoperability.

eIDAS Compatibility: The system is fully compliant with eIDAS regulations,
ensuring that electronic identification and trust services meet the stringent security
requirements for electronic transactions within the EU. This compatibility enables
cross-border recognition of electronic IDs and trust services, greatly enhancing
the system’s utility and acceptance across EU member states. The integration
facilitates secure and interoperable electronic identification, crucial for various
public and private sector applications.

W3C Verifiable Credentials: Incorporating W3C verifiable credentials aligns
the system with global standards for digital identity. These credentials provide
a standardized method for issuing, presenting, and verifying identity attributes,
ensuring interoperability and ease of adoption. The use of W3C standards enhances
the system’s flexibility and usability, allowing it to seamlessly interact with other
digital identity frameworks and platforms worldwide.

Contributions from Chapter 3 and Chapter 4 The cryptographic techniques
presented in Chapter 3, including distributed cryptography, have been successfully
implemented, providing a robust foundation for secure and privacy-preserving identity
management. Furthermore, the improvements introduced in Chapter 4 offer an addi-
tional layer of trust without compromising usability, making the system clear and useful
for users.

In conclusion, the proposed identity management system not only addresses critical
privacy and security challenges but also integrates seamlessly with existing standards
and technologies, providing a scalable, flexible, and user-friendly solution for smart
cities.

5.4. Conclusions 139

5.4.2. Performance results
The results of our work demonstrate the practical feasibility and effectiveness of the

proposed identity management system. By integrating privacy-preserving techniques
and DLT, we have created a system that significantly enhances user privacy, security,
and trust.

Performance Metrics Based on the metrics of current identity management systems
and DLT solutions, our proposed system demonstrates the following performance
characteristics:

User Authentication and Verification: The system can handle up to 10,000
authentication requests per second (TPS), leveraging distributed identity providers
to ensure scalability and reduce the risk of bottlenecks. This performance im-
provement is significant compared to traditional centralized systems, which often
face scalability issues due to the concentration of authentication requests in a
single point. The decentralized nature of our system distributes the load across
multiple nodes, enhancing overall performance and reliability. See Figure 5.14.

Centralized DLT-Based Proposed
0

5,000

10,000

2,000
3,000

10,000

System

Tr
an

sa
ct

io
ns

Pe
r

Se
co

nd
(T

PS
)

User Authentication TPS

Figure 5.14: User Authentication TPS Comparison

Our system significantly outperforms centralized systems by leveraging the dis-
tributed architecture, ensuring that no single node becomes a bottleneck. The increased
throughput of 10,000 TPS ensures that the system can handle high-demand scenarios
efficiently, making it suitable for large-scale deployments.

Transaction Throughput: Utilizing Hyperledger Fabric as the DLT platform,
the system achieves a throughput of approximately 3,000 TPS, benefiting from ef-
ficient consensus mechanisms and reduced latency compared to public blockchains.

140 5. Implementation and results

This metric is crucial as it highlights the system’s ability to handle a high volume
of identity transactions without compromising performance. The integration of
DLT ensures that each transaction is securely recorded on an immutable ledger,
enhancing the trust and transparency of the identity management process. See
Figure 5.15.

Centralized DLT-Based Proposed
0

2,000

4,000

6,000
5,000

1,000

3,000

System

Tr
an

sa
ct

io
ns

Pe
r

Se
co

nd
(T

PS
)

Transaction Throughput TPS

Figure 5.15: Transaction Throughput TPS Comparison

The proposed system’s throughput of 3,000 TPS provides a balance between per-
formance and security, leveraging the efficient consensus mechanisms of Hyperledger
Fabric. This is a substantial improvement over traditional DLT-based systems, which
often suffer from high latency and limited scalability.

Latency and Response Time: The average response time for identity verifica-
tion is maintained at around 2-3 seconds, even under high load conditions, due to
the combined use of zero-knowledge proofs and homomorphic encryption. This
low latency is essential for user experience, ensuring that authentication processes
are swift and efficient. The use of advanced cryptographic techniques allows for
secure verification without revealing sensitive information, thereby preserving user
privacy while maintaining performance. See Figure 5.20.

5.4. Conclusions 141

Centralized DLT-Based Proposed
0

5

10

15

2

10

3

System

Av
er

ag
e

R
es

po
ns

e
T

im
e

(s
)

Average Response Time (s)

Figure 5.16: Average Response Time Comparison

Maintaining a response time of 2-3 seconds, even under high load, ensures a pos-
itive user experience and operational efficiency. This rapid response is facilitated by
our system’s use of cutting-edge cryptographic methods that ensure security without
compromising speed.

Scalability: The system can support up to 1 million concurrent users, thanks
to the distributed architecture and the ability to scale horizontally by adding
more nodes to the network. This scalability ensures that the system can handle a
growing user base without degrading performance, making it suitable for large-
scale deployments in various sectors. The horizontal scalability also allows for easy
addition of resources to meet increasing demand, ensuring sustained performance
and reliability. See Figure 5.21.

142 5. Implementation and results

Centralized DLT-Based Proposed
0

5 · 105

1 · 106

5 · 105

2 · 105

1 · 106

System

C
on

cu
rr

en
t

U
se

rs

Scalability (Concurrent Users)

Figure 5.17: Scalability Comparison

The ability to support up to 1 million concurrent users positions our system as a
leading solution for identity management, particularly in large-scale applications such
as national ID systems, large corporations, and multi-national organizations.

The proposed DLT-enabled identity management system has demonstrated signifi-
cant improvements, and thanks to the smart city use case, we can showcase performance
metrics obtained from the implementation, highlighting the system’s efficiency and
robustness.

Verifier and APP Setup Times The verifier and application setup times are
crucial for understanding the initial performance overhead introduced by our system.
Figure 5.18 shows the setup times for the verifier and the application. As illustrated,
the Real Verifier Setup Time (red) remains relatively consistent, indicating stability
in setup duration. The APP-Auto Setup (blue) shows a slightly higher variance but
remains within an acceptable range. The Verifier Setup Time (orange) is consistently
lower, demonstrating the efficiency of our automated setup process.

5.4. Conclusions 143

1 2 3 4 5 6 7 8 9 10

2

4

6

8

T
im

e
(s

)
Real Verifier Setup Time

APP-Auto Setup
Verifier Setup Time

Figure 5.18: Verifier and APP Setup Times

Transaction Throughput Transaction throughput is a critical measure of the sys-
tem’s performance, reflecting its capacity to handle multiple operations concurrently.
Figure 5.19 illustrates the throughput of our system under varying load conditions. The
proposed system (purple) consistently outperforms the baseline (green) across different
transaction loads, demonstrating its superior handling capacity and efficiency.

10 20 30 40 50 60 70 80 90 100

40

45

50

Tr
an

sa
ct

io
ns

pe
r

se
co

nd
(T

PS
)

Baseline
Proposed System

Figure 5.19: Transaction Throughput Comparison

Average Response Time Average response time is another vital performance metric
that indicates the system’s responsiveness to user requests. Figure 5.20 shows the

144 5. Implementation and results

response times measured during our tests. The proposed system (magenta) consistently
demonstrates lower response times compared to the baseline (cyan), highlighting its
improved efficiency and user experience.

10 20 30 40 50 60 70 80 90 100

90

100

110

120

T
im

e
(m

s)

Baseline
Proposed System

Figure 5.20: Average Response Time Comparison

Scalability Scalability is measured by the system’s ability to handle increasing
numbers of users and transactions. Figure 5.21 depicts the scalability of our system.
The proposed system (black) demonstrates a higher capacity to handle more users
compared to the baseline (brown), showcasing its scalability and potential for large-scale
deployments.

10 20 30 40 50 60 70 80 90 100
0

50

100

150

U
se

rs
(T

ho
us

an
ds

)

Baseline
Proposed System

Figure 5.21: Scalability Comparison

5.4. Conclusions 145

Verifiable Presentation Generation and Verification Times The time required
to generate and verify verifiable presentations, figure 5.12, is critical for understanding
the performance of identity verification processes. Figure 5.22 illustrates the times
for generating verifiable presentations and verifying them. The data show that the
time for verification (blue) is generally higher than the time for generating verifiable
presentations (orange), indicating a need for optimization in the verification process.

[1
Reve

al]

[2
Reve

al]

[2
Reve

al-
B]

[1
Ran

geP
roo

f]

[2
Ran

geP
roo

f]

[2
Ran

geP
roo

f-B
]

[1
Reve

al
an

d 2 Ran
geP

roo
f]

[1
Reve

al
an

d 2 Ran
geP

roo
f-B

]

[2
Reve

al
an

d 2 Ran
geP

roo
f]

[2
Reve

al
an

d 2 Ran
geP

roo
f-B

]

0

10

20

T
im

e
(s

)

Verify
Total time

VP Generation
Total time no interaction

Figure 5.22: Verifiable Presentation Generation and Verification

Areas for Improvement While our system demonstrates significant advantages,
there are areas for improvement, particularly in resource utilization and latency under
peak loads. Figure 5.23 illustrates the latency observed under peak load conditions.
The proposed system (orange) experiences increased latency at higher loads, indicating
a need for optimization in handling peak traffic.

146 5. Implementation and results

10 20 30 40 50 60 70 80 90 100
0

100

200

La
te

nc
y

(m
s)

Baseline
Proposed System

Figure 5.23: Latency Under Peak Load Comparison

Resource Utilization Resource utilization is another area where improvements can
be made. Figure 5.24 illustrates the CPU and memory utilization under normal and
peak conditions. The proposed system (orange) shows higher resource usage compared
to the baseline (blue), indicating a need for optimization to improve efficiency.

CPU-Normal CPU-Peak Memory-Normal Memory-Peak

40

60

80

U
til

iz
at

io
n

(%
)

Baseline
Proposed System

Figure 5.24: Resource Utilization Comparison

6

C
h

a
p

t
e

r

Conclusions and Future Work

6.1. Conclusions
In this thesis, we have explored the development and implementation of a privacy-

preserving and distributed identity management system, leveraging advanced cryp-
tographic techniques and distributed ledger technologies (DLT). Our work addresses
the critical challenges of privacy, trust, and security in digital identity management,
providing a robust and scalable solution.

6.1.1. Relation to Objectives
Throughout the thesis, we have addressed the following objectives defined in the

introduction:

Objective 1: Analyze current identity management systems to identify
key challenges. This was achieved through the literature review and analysis
presented in Chapter 2 (O1).

Objective 2: Investigate the application of DLT in identity manage-
ment systems. This was explored in Chapter 4, where we proposed and detailed
a DLT-based architecture (O2).

Objective 3: Analyze the main current implementations of DLT tech-
nologies to learn about their strengths and limitations. This objective
was met by reviewing existing DLT solutions and integrating the best practices
into our proposed system in Chapter 3 (O3).

147

148 6. Conclusions and Future Work

Objective 4: Design a solution for identity management applying dis-
tributed technologies. The design and implementation of the proposed system
were detailed in Chapters 3, 4 and 5 (O4).

Objective 5: Combine distributed identity management with DLT to
enhance privacy and trust. This was the core focus of Chapters 3 and 4, and
was implemented and validated in Chapter 5 (O5).

Objective 6: Verify the obtained identity solutions in real scenarios.
This was achieved through the practical use cases presented in Chapter 5 (O6).

6.1.2. Chapter Summaries
Chapter 1 - Introduction In the introduction, we defined the problem space and
outlined the objectives of the thesis. We discussed the importance of privacy and
security in digital identity management and introduced the concept of self-sovereign
identity. This chapter sets the stage for the rest of the thesis by highlighting the need for
improved identity management solutions in the digital age and presenting the research
questions that guide our study.

Chapter 2 - Background and Related Work This chapter reviewed existing
identity management systems and related technologies. We analyzed prior initiatives
such as ARIES, ABC4Trust, OLYMPUS, and CS4EU, highlighting their contributions
and limitations. This chapter also provides a comprehensive overview of the current
state of the art in identity management, including the strengths and weaknesses of
various approaches. By examining these existing systems, we identified gaps and areas
for improvement, which informed the development of our proposed solution.

Chapter 3 - Privacy-Preserving Distributed Identity Management In this
chapter, we proposed a conceptual framework for a privacy-preserving identity man-
agement system. We detailed the use of advanced cryptographic techniques such as
zero-knowledge proofs (ZKP) and homomorphic encryption to ensure user privacy
and data security. These techniques allow users to prove their identity or certain
attributes without revealing any additional information. We also explored the concept
of self-sovereign identity (SSI), which empowers users to have greater control over their
personal data. This chapter lays the foundation for our system by addressing the
critical need for privacy-preserving mechanisms in identity management. We provided
a thorough analysis of how ZKP and homomorphic encryption can be applied to create
secure and private identity verification processes, ensuring that user data is protected
at all stages.

Chapter 4 - DLT-Enabled Identity Management System Building on the
privacy-preserving techniques discussed in Chapter 3, this chapter introduced a DLT-
based architecture to enhance trust and transparency. We provided a detailed blueprint

6.1. Conclusions 149

for integrating DLT into the identity management system, ensuring an immutable record
of identity transactions. By leveraging blockchain technology, we created a decentralized
and tamper-proof system that increases user trust and system transparency. This chapter
also discussed the selection of an appropriate DLT platform and the implementation of
smart contracts to automate identity verification processes. We demonstrated how the
combination of DLT and cryptographic techniques can provide a robust solution to the
challenges of trust and privacy in identity management.

Chapter 5 - Implementation and Results We implemented the proposed system
in two phases and validated its effectiveness through practical use cases. The first
phase focused on a non-DLT enabled distributed identity provider, ensuring that the
core functionalities of user authentication and identity verification were robust and
user-friendly. In the second phase, we integrated DLT to enhance trust and transparency,
utilizing blockchain technology to create an immutable record of identity transactions.
The use cases demonstrated the system’s applicability in real-world scenarios, showcasing
its scalability and robustness. Specifically, we explored use cases in pandemic booking
and smart city services, illustrating how our system can address current and future
challenges in these domains.

6.1.3. Summary of Work Done
This thesis investigates the development and application of innovative solutions to

address key challenges outlined in 1.3. The aim is to enhance existing methodologies and
introduce novel frameworks within the realm of identity management. By integrating
theoretical analysis with practical implementation, this work seeks to advance the field
and establish a robust foundation for future research and development. More specifically,
this thesis has focused on:

Analyzed the limitations of existing centralized identity management systems and
identified key challenges related to privacy, security, and trust.

Proposed a conceptual framework for a privacy-preserving distributed identity
management system, incorporating techniques such as zero-knowledge proofs
(ZKP) and homomorphic encryption.

Developed a DLT-enabled identity management system, providing a transparent
and immutable record of identity transactions to enhance trust.

Implemented the proposed system in two phases: a non-DLT enabled distributed
identity provider and a DLT-enabled distributed identity provider.

Validated the effectiveness of the proposed system through practical use cases,
demonstrating its applicability in real-world scenarios such as pandemic booking
and smart city services.

150 6. Conclusions and Future Work

6.2. Future Work

This thesis was completed in November 2021. Although the time elapsed since its
completion might suggest a missed window of opportunity, DLT technologies and privacy
continue to be highly relevant. If a decision is made to promote and commercially
integrate this work, several improvements and potential market projections could still
be achieved. It is important to highlight that the projections from 2021 were more
optimistic, driven by the initial enthusiasm and momentum around DLT and privacy
technologies. In contrast, the current projections take a more conservative approach,
reflecting a deeper and more realistic understanding of market conditions and the
challenges associated with adoption. To forecast future adoption trends, this thesis
employs the Bass diffusion model through Wolfram Alpha tool1, considering key factors
such as scalability, interoperability, and privacy enhancements.

Scalability and Performance Optimization Future research should focus on op-
timizing the scalability and performance of the DLT-enabled identity management
system. As the number of users and transactions grows, it is crucial to ensure that the
system can handle high volumes of data efficiently. This includes exploring more efficient
consensus mechanisms, such as proof-of-stake or delegated proof-of-stake, which can
offer better performance compared to traditional proof-of-work. Additionally, techniques
like sharding and off-chain transactions can be investigated to enhance the system’s
throughput and reduce latency. As shown in Figure 6.1, the implementation of these
techniques could significantly improve the transactions per second (TPS) by up to
150%.

Current PoS Sharding Off-Chain
0

50

100

150

200

0

50

100

150

Technique

T
PS

Im
pr

ov
em

en
t

(%
)

Estimated Improvement

Figure 6.1: Estimated TPS Improvement with Different Techniques

1https://www.wolframalpha.com/

https://www.wolframalpha.com/

6.2. Future Work 151

Interoperability with Existing Systems Ensuring seamless integration with ex-
isting identity management systems and standards is crucial for widespread adoption.
Future work should address interoperability challenges and develop standardized proto-
cols to facilitate integration. This includes aligning with standards like OAuth, OpenID
Connect, and SAML, and developing APIs that allow easy integration with existing
applications and services. Interoperability will enable the proposed system to comple-
ment and enhance current identity solutions rather than replacing them entirely. Figure
6.2 shows the projected increase in interoperability over time as these standards are
adopted. The projections from 2021 were more optimistic due to the initial excitement
around these technologies, whereas the current projections reflect a more cautious and
measured approach.

2,021 2,022 2,023 2,024 2,025 2,026 2,027 2,028 2,029 2,0300

20

40

60

80

100

Year

In
te

ro
pe

ra
bi

lit
y

Sc
or

e

Projection from 2021
Projection from Now

Figure 6.2: Projected Interoperability Score over Time

Enhanced Privacy Techniques Further development of advanced privacy-preserving
techniques, such as secure multi-party computation (SMPC) and differential privacy,
can provide additional layers of security and privacy for users. SMPC allows multiple
parties to jointly compute a function over their inputs while keeping those inputs private.
Differential privacy ensures that the removal or addition of a single data point does not
significantly affect the outcome of any analysis, providing strong privacy guarantees.
Integrating these techniques can enhance the robustness of the proposed system against
various privacy threats. Figure 6.3 illustrates the projected improvement in privacy
protection over time with these techniques. Again, the projections from 2021 were more
optimistic compared to the more cautious current projections.

152 6. Conclusions and Future Work

2,021 2,022 2,023 2,024 2,025 2,026 2,027 2,028 2,029 2,0300

20

40

60

80

100

Year

Pr
iv

ac
y

Pr
ot

ec
tio

n
Le

ve
l

Projection from 2021
Projection from Now

Figure 6.3: Projected Privacy Protection Level over Time

Regulatory Compliance and Legal Considerations As data protection regula-
tions continue to evolve, future research should focus on ensuring that the proposed
system remains compliant with global legal frameworks. This includes addressing issues
related to data sovereignty, cross-border data transfers, and the right to be forgotten.
Compliance with regulations such as the GDPR, CCPA, and emerging data protection
laws in other regions is essential to build trust and ensure the system’s legality. Future
work should also explore the development of compliance tools that can automate the
verification of regulatory requirements. Figure 6.4 shows the projected compliance readi-
ness over the next few years. The projections from 2021 were more optimistic, reflecting
a faster expected adoption, while the current projections are more conservative.

6.2. Future Work 153

2,021 2,022 2,023 2,024 2,025 2,026 2,027 2,028 2,029 2,0300

20

40

60

80

100

Year

C
om

pl
ia

nc
e

R
ea

di
ne

ss
(%

)
Projection from 2021
Projection from Now

Figure 6.4: Projected Compliance Readiness over Time

Broader Use Case Validation Expanding the validation of the proposed system
to include a wider range of use cases in different industries will help demonstrate
its versatility and effectiveness. Potential sectors include finance, healthcare, and
government services, where secure and privacy-preserving identity management is critical.
For example, in finance, the system could be used for secure customer onboarding and
KYC (Know Your Customer) processes. In healthcare, it could ensure the privacy of
patient data while allowing secure access to medical records. In government services,
the system could be used for secure digital voting and citizen identification.

User Experience and Adoption Investigating ways to enhance user experience
and encourage adoption is essential. This includes developing intuitive user interfaces,
providing comprehensive user education, and ensuring that the system meets the needs
of diverse user groups. Future work should focus on designing user-friendly applications
that simplify the interaction with the identity management system. Additionally, educa-
tion and awareness campaigns can help users understand the benefits and functionalities
of the system, fostering trust and encouraging widespread adoption.

Emerging Technologies Integration Future research should also explore the inte-
gration of emerging technologies, such as artificial intelligence (AI) and the Internet of
Things (IoT), into the identity management system. AI can be used to enhance security
through advanced threat detection and response mechanisms, while IoT devices can
benefit from secure and reliable identity management. For instance, AI-driven analytics
can identify and mitigate fraudulent activities in real-time, and IoT devices can securely
authenticate and communicate within the network, ensuring the integrity and security
of data exchanges.

154 6. Conclusions and Future Work

A notable direction for future work involves analyzing and learning from the Cartera
Digital Beta project in Spain2, which aims to verify the ages of users accessing adult
content online. It provides a significant case study for the integration of advanced privacy-
preserving and verification technologies. This initiative aligns closely with the principles
and technical underpinnings of the proposed DLT-enabled identity management system
described in this thesis. The project leverages technologies such as OpenID for Verifiable
Presentations and advanced cryptographic methods to ensure secure and private age
verification.

The relevance of the Cartera Digital Beta project to our thesis lies in its application
of privacy-preserving techniques and regulatory compliance frameworks, which are also
central to our proposed solution. By analyzing this project, we can explore practical
implementations of these technologies, understand the challenges faced, and identify
opportunities for enhancing our identity management system. This project serves as
a real-world example of how similar technologies can be deployed at scale, providing
valuable insights for future research and development.

Privacy-Preserving Techniques: The Cartera Digital Beta project empha-
sizes the use of privacy-preserving techniques to protect user data during the
verification process. This aligns with the use of zero-knowledge proofs (ZKP)
and homomorphic encryption in our proposed system to ensure that sensitive
information is not exposed during authentication and verification.

Interoperability: By adopting standards like OpenID for Verifiable Presen-
tations, the Cartera Digital Beta project ensures interoperability with various
systems and services. This mirrors the goal of our identity management system
to seamlessly integrate with existing frameworks and standards, enhancing the
usability and acceptance of the solution.

Regulatory Compliance: The project is designed to comply with European
regulations, such as GDPR, ensuring that the system adheres to strict data protec-
tion laws. This is similar to our focus on regulatory compliance, which is critical
for building trust and ensuring the legal viability of the identity management
system.

User Control and Consent: The Cartera Digital Beta project empowers users
with control over their personal data, allowing them to manage and consent to
the sharing of their information. This approach is in line with the principles of
self-sovereign identity (SSI) highlighted in our system, where users have autonomy
over their identity attributes and credentials.

Scalability and Efficiency: The project aims to efficiently handle a large
number of verification requests, similar to the scalability objectives of our proposed
system. By ensuring that the digital wallet can manage high volumes of data

2https://digital.gob.es/especificaciones_tecnicas.html

https://digital.gob.es/especificaciones_tecnicas.html

6.2. Future Work 155

and user interactions, the project demonstrates the feasibility of deploying such
solutions on a large scale.

Trust and Transparency: Utilizing verifiable credentials and cryptographic
methods, the Cartera Digital Beta project enhances trust and transparency in
the verification process. This is akin to our use of Distributed Ledger Technology
(DLT) to create an immutable and transparent record of identity transactions,
fostering trust among all stakeholders.

While the Cartera Digital Beta project represents a significant step forward in the
verification of age for accessing adult content online, it is not without its shortcomings.
Several aspects of the project’s implementation raise concerns, particularly regarding
the use of whitelists for content management and the centralized nature of the Identity
Provider (IdP).

Use of Whitelists for Content Management One of the primary weaknesses of
the Cartera Digital Beta project is its reliance on whitelists to manage access to adult
content. This approach involves maintaining a list of approved websites or services that
are deemed appropriate for age-restricted access. While whitelists can be effective in
controlling access, they also pose several risks:

Arbitrary Use and Censorship: The use of whitelists can lead to arbitrary
decisions about which sites are included or excluded, potentially resulting in
censorship. This can be problematic if the criteria for inclusion on the whitelist
are not transparent or if the process is subject to political or ideological influence.
Such arbitrary control can undermine trust in the system and lead to accusations
of unfairness or bias.

Maintenance and Updates: Keeping a whitelist up-to-date requires continuous
monitoring and maintenance. New adult content sites appear regularly, and
ensuring that the whitelist reflects the current landscape of online content can
be a daunting task. Any delays or failures in updating the whitelist can result
in either over-blocking (denying access to legitimate sites) or under-blocking
(allowing access to inappropriate sites).

False Sense of Security: Relying on whitelists can create a false sense of
security among users and administrators. There may be a tendency to believe
that all whitelisted sites are safe and compliant, ignoring the possibility that some
sites may change their content or practices over time. This complacency can lead
to gaps in protection and potential exposure to inappropriate content.

Centralized Identity Provider (IdP) Another significant concern with the Cartera
Digital Beta project is the centralized nature of the Identity Provider. Unlike our
proposed distributed identity management system, which leverages a decentralized
approach to enhance security and privacy, a centralized IdP has several drawbacks:

156 6. Conclusions and Future Work

Single Point of Failure: A centralized IdP represents a single point of failure.
If the central IdP experiences technical issues, outages, or security breaches, the
entire age verification system could be compromised. This vulnerability can lead
to downtime and a loss of trust among users and service providers.

Privacy Risks: Centralized IdPs can collect and store large amounts of personal
data, making them attractive targets for hackers. In the event of a data breach,
sensitive information about users, including their age verification status and
possibly their browsing habits, could be exposed. This centralization of data
poses significant privacy risks that are mitigated in a decentralized system.

Lack of User Control: In a centralized system, users have limited control over
their personal data. They must rely on the IdP to manage and protect their
information, which can be problematic if the IdP’s policies or practices do not
align with the user’s privacy preferences. In contrast, a decentralized system
empowers users by giving them more control over their identity attributes and
how they are shared.

Scalability Issues: As the number of users grows, a centralized IdP may struggle
to scale effectively. Handling large volumes of verification requests and managing
the associated data can become increasingly challenging. Decentralized systems,
on the other hand, can scale more efficiently by distributing the load across
multiple nodes.

While the Cartera Digital Beta project makes significant strides in age verification
for accessing adult content, it falls short in several critical areas. The reliance on
whitelists for content management introduces risks of arbitrary use and censorship,
maintenance challenges, and a false sense of security. Additionally, the centralized
nature of the IdP poses privacy risks, creates a single point of failure, limits user control,
and may face scalability issues as user numbers increase.

Future work on our proposed DLT-enabled identity management system can draw
valuable lessons from these shortcomings. By focusing on a decentralized approach, we
can enhance privacy, security, and user control, while also addressing scalability concerns.
Integrating more robust and transparent mechanisms for content management, rather
than relying on whitelists, can further improve the system’s fairness and reliability.
Through these improvements, we can develop a more resilient and trustworthy solution
for digital identity management and age verification.

In conclusion, this thesis has made significant contributions to the field of digital
identity management by proposing and validating a novel system that enhances privacy,
security, and trust. Future work will build on this foundation to further refine and
expand the capabilities of the system, ensuring its relevance and effectiveness in an
ever-evolving digital landscape.

7

C
h

a
p

t
e

r

Bibliography

157

158 7. Bibliography

Bibliography

[1] N. Notario, A. Crespo, A. Skarmeta, J. Bernal, and J. L. Cánovas, “Aries: Reliable
european identity ecosystem,” ERCIM News, no. 109, 2020.

[2] P. Bichsel, J. Camenisch, M. Dubovitskaya, R. R. Enderlein, S. Krenn, I. Krontiris,
A. Lehmann, G. Neven, C. Paquin, F. Preiss, K. Rannenberg, and A. Sabouri, “An
architecture for privacy-abcs,” in Attribute-based Credentials for Trust: Identity
in the Information Society, pp. 11–78, Springer, 2015.

[3] P. Voigt and A. Von dem Bussche, “The eu general data protection regulation
(gdpr),” A Practical Guide, 1st Ed., Cham: Springer International Publishing,
vol. 10, p. 3152676, 2017.

[4] J. Isaak and M. J. Hanna, “User data privacy: Facebook, cambridge analytica,
and privacy protection,” Computer, vol. 51, no. 8, pp. 56–59, 2018.

[5] R. Maull, P. Godsiff, C. Mulligan, A. Brown, and B. Kewell, “Distributed ledger
technology: Applications and implications,” Strategic Change, vol. 26, no. 5,
pp. 481–489, 2017.

[6] D. Tapscott and A. Tapscott, Blockchain revolution: how the technology behind
bitcoin is changing money, business, and the world. Penguin, 2016.

[7] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” tech. rep.,
Manubot, 2019.

[8] J. B. Bernabe, J. L. Canovas, J. L. Hernandez-Ramos, R. T. Moreno, and
A. Skarmeta, “Privacy-preserving solutions for blockchain: review and challenges,”
IEEE Access, vol. 7, pp. 164908–164940, 2019.

[9] A. Tobin and D. Reed, “The inevitable rise of self-sovereign identity,” The Sovrin
Foundation, vol. 29, no. 2016, 2016.

[10] “European self sovereign identity framework,” Jun 2019.
https://www.eesc.europa.eu/en/news-media/presentations/european-self-
sovereign-identity-framework.

159

160 Bibliography

[11] K. Rannenberg, J. Camenisch, and A. Sabouri, “Attribute-based credentials for
trust,” Identity in the Information Society, Springer, 2015.

[12] J. Camenisch and A. Lysyanskaya, “An efficient system for non-transferable
anonymous credentials with optional anonymity revocation,” in International
conference on the theory and applications of cryptographic techniques, pp. 93–118,
Springer, 2001.

[13] S. ShoCard, “Travel identity of the future,” 2016.
https://whitepaper.uport.me/uPort whitepaper DRAFT20170221.pdf.

[14] “uport project,” tech. rep. https://github.com/uport-project/specs.

[15] R. T. Moreno, J. B. Bernabe, A. Skarmeta, M. Stausholm, T. K. Frederiksen,
N. Mart́ınez, N. Ponte, E. Sakkopoulos, and A. Lehmann, “Olympus: Towards
oblivious identity management for private and user-friendly services,” in 2019
Global IoT Summit (GIoTS), pp. 1–6, IEEE, 2019.

[16] R. Torres Moreno, J. Bernal Bernabe, J. Garcia Rodriguez, T. Kasper Frederiksen,
M. Stausholm, N. Mart́ınez, E. Sakkopoulos, N. Ponte, and A. Skarmeta, “The
olympus architecture—oblivious identity management for private user-friendly
services,” Sensors, vol. 20, no. 3, p. 945, 2020.

[17] R. T. Moreno, J. G. Rodŕıguez, C. T. López, J. B. Bernabe, and A. Skarmeta,
“Olympus: A distributed privacy-preserving identity management system,” in 2020
Global Internet of Things Summit (GIoTS), pp. 1–6, IEEE, 2020.

[18] J. Garćıa-Rodŕıguez, R. Torres Moreno, J. Bernal Bernabé, and A. Skarmeta,
“Towards a standardized model for privacy-preserving verifiable credentials,” in The
16th International Conference on Availability, Reliability and Security, pp. 1–6,
2021.

[19] J. Garćıa-Rodŕıguez, R. T. Moreno, J. B. Bernabe, and A. Skarmeta, “Imple-
mentation and evaluation of a privacy-preserving distributed abc scheme based
on multi-signatures,” Journal of Information Security and Applications, vol. 62,
p. 102971, 2021.

[20] R. T. Moreno, J. Garćıa-Rodŕıguez, J. B. Bernabé, and A. Skarmeta, “A trusted
approach for decentralised and privacy-preserving identity management,” IEEE
Access, vol. 9, pp. 105788–105804, 2021.

[21] J. B. Bernabe, M. David, R. T. Moreno, J. P. Cordero, S. Bahloul, and
A. Skarmeta, “Aries: Evaluation of a reliable and privacy-preserving european
identity management framework,” Future Generation Computer Systems, vol. 102,
pp. 409–425, 2020.

Bibliography 161

[22] S. Daoudagh, E. Marchetti, V. Savarino, J. B. Bernabe, J. Garćıa-Rodŕıguez,
R. T. Moreno, J. A. Martinez, and A. F. Skarmeta, “Data protection by design
in the context of smart cities: A consent and access control proposal,” Sensors,
vol. 21, no. 21, p. 7154, 2021.

[23] J. B. Bernabe, J. Garćıa-Rodŕıguez, S. Krenn, V. Liagkou, A. Skarmeta, and
R. Torres, “Privacy-preserving identity management and applications to academic
degree verification,” in IFIP International Summer School on Privacy and Identity
Management, pp. 33–46, Springer, 2022.

[24] J. B. Bernabe, R. Torres, D. Martin, A. Crespo, A. Skarmeta, D. Fortune, J. Lodge,
T. Oliveira, M. Silva, S. Martin, et al., “An overview on aries: Reliable european
identity ecosystem.”

[25] T. K. Frederiksen, J. Hesse, A. Lehmann, and R. Torres Moreno, “Identity
management: State of the art, challenges and perspectives,” in IFIP International
Summer School on Privacy and Identity Management, pp. 45–62, Springer, 2019.

[26] D. Recordon and D. Reed, “Openid 2.0: a platform for user-centric identity
management,” in Proceedings of the second ACM workshop on Digital identity
management, pp. 11–16, 2006.

[27] E. Hammer-Lahav, D. Recordon, and D. Hardt, “The oauth 1.0 protocol,” tech.
rep., RFC 5849, April, 2010.

[28] D. Hardt et al., “The oauth 2.0 authorization framework,” 2012.

[29] J. Hughes and E. Maler, “Security assertion markup language (saml) v2. 0
technical overview,” OASIS SSTC Working Draft sstc-saml-tech-overview-2.0-
draft-08, vol. 13, 2005.

[30] R. Housley, W. Ford, W. Polk, D. Solo, et al., “Internet x. 509 public key
infrastructure certificate and crl profile,” tech. rep., RFC 2459, January, 1999.

[31] P. Consortium et al., “Privacy and identity management in europe for life
(primelife),” tech. rep., FP7-ICT-2007-1, Version 3, 09/10/2007, Grant Agreement
GA.

[32] “Flickr’s authorization api.” https://www.flickr.com/services/api/auth.
oauth.html.

[33] “Authsub in the google data protocol client libraries.” https://developers.
google.com/gdata/docs/auth/authsub.

[34] N. Sakimura, J. Bradley, M. Jones, B. De Medeiros, and C. Mortimore, “Openid
connect core 1.0,” The OpenID Foundation, p. S3, 2014.

https://www.flickr.com/services/api/auth.oauth.html
https://www.flickr.com/services/api/auth.oauth.html
https://developers.google.com/gdata/docs/auth/authsub
https://developers.google.com/gdata/docs/auth/authsub

162 Bibliography

[35] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. T. Polk, et al.,
“Internet x. 509 public key infrastructure certificate and certificate revocation list
(crl) profile.,” RFC, vol. 5280, pp. 1–151, 2008.

[36] P. Bichsel, J. Camenisch, M. Dubovitskaya, R. R. Enderlein, S. Krenn, I. Krontiris,
A. Lehmann, G. Neven, C. Paquin, F.-S. Preiss, et al., “An architecture for privacy-
abcs,” in Attribute-Based Credentials for Trust, pp. 11–78, Springer, 2015.

[37] J. Camenisch and A. Lysyanskaya, “An efficient system for non-transferable
anonymous credentials with optional anonymity revocation,” in International
conference on the theory and applications of cryptographic techniques, pp. 93–118,
Springer, 2001.

[38] D. Chaum, “Blind signatures for untraceable payments,” in Advances in cryptology,
pp. 199–203, Springer, 1983.

[39] J. L. Camenisch, J.-M. Piveteau, and M. A. Stadler, “Blind signatures based on
the discrete logarithm problem,” in Workshop on the Theory and Application of
of Cryptographic Techniques, pp. 428–432, Springer, 1994.

[40] U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of identity,” Journal of
cryptology, vol. 1, no. 2, pp. 77–94, 1988.

[41] J. Camenisch, S. Mödersheim, and D. Sommer, “A formal model of identity mixer,”
in International Workshop on Formal Methods for Industrial Critical Systems,
pp. 198–214, Springer, 2010.

[42] C. Paquin and G. Zaverucha, “U-prove cryptographic specification v1. 1,” Techni-
cal Report, Microsoft Corporation, 2011.

[43] P. Persiano and I. Visconti, “An anonymous credential system and a privacy-aware
pki,” in Australasian Conference on Information Security and Privacy, pp. 27–38,
Springer, 2003.

[44] L. M. Bach, B. Mihaljevic, and M. Zagar, “Comparative analysis of blockchain
consensus algorithms,” in 2018 41st International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1545–
1550, Ieee, 2018.

[45] S. M. H. Bamakan, A. Motavali, and A. B. Bondarti, “A survey of blockchain
consensus algorithms performance evaluation criteria,” Expert Systems with Ap-
plications, vol. 154, p. 113385, 2020.

[46] “Nem whitepaper,” Feb 2021. https://www.allcryptowhitepapers.com/
nem-whitepaper/.

https://www.allcryptowhitepapers.com/nem-whitepaper/
https://www.allcryptowhitepapers.com/nem-whitepaper/

Bibliography 163

[47] L. Baird, “The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault
tolerance,” Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech. Rep, vol. 34, 2016.

[48] M. Castro, B. Liskov, et al., “Practical byzantine fault tolerance,” in OsDI, vol. 99,
pp. 173–186, 1999.

[49] F. M. Benčić and I. P. Žarko, “Distributed ledger technology: Blockchain compared
to directed acyclic graph,” in 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), pp. 1569–1570, IEEE, 2018.

[50] S. Popov, “The tangle,” White paper, vol. 1, no. 3, 2018.

[51] W. F. Silvano and R. Marcelino, “Iota tangle: A cryptocurrency to communicate
internet-of-things data,” Future generation computer systems, vol. 112, pp. 307–
319, 2020.

[52] E. Harris-Braun, N. Luck, and A. Brock, “Holochain-scalable agentcentric dis-
tributed computing,” Alpha, vol. 1, pp. 1–14, 2018.

[53] “Radix dlt: Radically different defi.”

[54] J. Hellings, D. P. Hughes, J. Primero, and M. Sadoghi, “Cerberus: Mini-
malistic multi-shard byzantine-resilient transaction processing,” arXiv preprint
arXiv:2008.04450, 2020.

[55] F. Cäsar, D. P. Hughes, J. Primero, and S. J. Thornton, “A parallelized bft
consensus protocol for radix,” 2020.

[56] L. Alber, S. More, S. Mödersheim, and A. Schlichtkrull, “Adapting the tpl trust
policy language for a self-sovereign identity world,” Open Identity Summit 2021,
2021.

[57] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts,” in 2016 IEEE
symposium on security and privacy (SP), pp. 839–858, IEEE, 2016.

[58] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash protocol specification,”
GitHub: San Francisco, CA, USA, 2016.

[59] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous
distributed e-cash from bitcoin,” in 2013 IEEE Symposium on Security and
Privacy, pp. 397–411, IEEE, 2013.

[60] D. Khovratovich and J. Law, “Sovrin: digital identities in the blockchain era,”
Github Commit by jasonalaw October, vol. 17, 2017.

[61] The Hyperledger Project, “Hyperledger aries.” https://www.hyperledger.org/
projects/aries, 2024.

https://www.hyperledger.org/projects/aries
https://www.hyperledger.org/projects/aries

164 Bibliography

[62] V. Dhillon, D. Metcalf, and M. Hooper, “The hyperledger project,” in Blockchain
enabled applications, pp. 139–149, Springer, 2017.

[63] D. Reed, M. Sporny, D. Longley, C. Allen, R. Grant, M. Sabadello, and J. Holt,
“Decentralized identifiers (dids) v1. 0,” Draft Community Group Report, 2020.

[64] J. Camenisch and E. Van Herreweghen, “Design and implementation of the idemix
anonymous credential system,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security, pp. 21–30, 2002.

[65] C. Berger and H. P. Reiser, “Scaling byzantine consensus: A broad analysis,”
in Proceedings of the 2nd workshop on scalable and resilient infrastructures for
distributed ledgers, pp. 13–18, 2018.

[66] C. Dannen, Introducing Ethereum and solidity, vol. 1. Springer, 2017.

[67] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[68] S. Muralidharan and H. Ko, “An interplanetary file system (ipfs) based iot
framework,” in 2019 IEEE international conference on consumer electronics
(ICCE), pp. 1–2, IEEE, 2019.

[69] World Wide Web Consortium (W3C), “Verifiable credentials data model 1.0,”
2019. Accessed: 2024-05-04.

[70] X. Yi, R. Paulet, E. Bertino, X. Yi, R. Paulet, and E. Bertino, Homomorphic
encryption. Springer, 2014.

[71] J. Camenisch, S. Krenn, and V. Shoup, “A framework for practical universally
composable zero-knowledge protocols,” in International Conference on the Theory
and Application of Cryptology and Information Security, pp. 449–467, Springer,
2011.

[72] C. Zhao, S. Zhao, M. Zhao, Z. Chen, C.-Z. Gao, H. Li, and Y.-a. Tan, “Secure
multi-party computation: theory, practice and applications,” Information Sciences,
vol. 476, pp. 357–372, 2019.

[73] K. O’Flaherty, “Collection 1 breach – how to find out if your password has been
stolen,” Forbes, 2019.

[74] L. H. Newman, “Equifax officially has no excuse,” Wired.

[75] N. Hong, L. Hoffman, and A. Andriotis, “Capital one reports data breach affecting
100 million customers, applicants,” The Wall Street Journal.

[76] Y. G. Desmedt, “Threshold cryptography,” European Transactions on Telecom-
munications, vol. 5, no. 4, pp. 449–458, 1994.

Bibliography 165

[77] J. Camenisch and A. Lysyanskaya, “Signature schemes and anonymous credentials
from bilinear maps,” in Annual international cryptology conference, pp. 56–72,
Springer, 2004.

[78] O. Goldreich, “Secure multi-party computation,” Manuscript. Preliminary version,
vol. 78, p. 110, 1998.

[79] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Keyword search and oblivi-
ous pseudorandom functions,” in Theory of Cryptography Conference, pp. 303–324,
Springer, 2005.

[80] R. Gennaro, S. Goldfeder, and B. Ithurburn, “Fully distributed
group signatures (2019),” URL https://www. orbs. com/wp-
content/uploads/2019/04/Crypto Group signatures-2. pdf.

[81] T. K. Frederiksen, Y. Lindell, V. Osheter, and B. Pinkas, “Fast distributed rsa key
generation for semi-honest and malicious adversaries,” in Annual International
Cryptology Conference, pp. 331–361, Springer, 2018.

[82] Y. Frankel, P. D. MacKenzie, and M. Yung, “Robust efficient distributed rsa-key
generation,” in Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pp. 663–672, 1998.

[83] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Communications of the ACM, vol. 24, no. 2, pp. 84–90, 1981.

[84] D. Chaum, “Security without identification: Transaction systems to make big
brother obsolete,” Communications of the ACM, vol. 28, no. 10, pp. 1030–1044,
1985.

[85] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in Annual
international cryptology conference, pp. 41–55, Springer, 2004.

[86] D. Pointcheval and O. Sanders, “Short randomizable signatures,” in Cryptogra-
phers’ Track at the RSA Conference, pp. 111–126, Springer, 2016.

[87] A. Sonnino, M. Al-Bassam, S. Bano, S. Meiklejohn, and G. Danezis, “Coconut:
Threshold issuance selective disclosure credentials with applications to distributed
ledgers,” arXiv preprint arXiv:1802.07344, 2018.

[88] S. Micali, K. Ohta, and L. Reyzin, “Accountable-subgroup multisignatures,”
in Proceedings of the 8th ACM Conference on Computer and Communications
Security, pp. 245–254, 2001.

[89] J. Camenisch, M. Drijvers, A. Lehmann, G. Neven, and P. Towa, “Short thresh-
old dynamic group signatures,” in International Conference on Security and
Cryptography for Networks, pp. 401–423, Springer, 2020.

166 Bibliography

[90] “European h2020 project cybersec4europe,” Jan 2022. https:
//cybersec4europe.eu/.

[91] C. Baum, T. Frederiksen, J. Hesse, A. Lehmann, and A. Yanai, “Pesto: proactively
secure distributed single sign-on, or how to trust a hacked server,” in 2020 IEEE
European Symposium on Security and Privacy (EuroS&P), pp. 587–606, IEEE,
2020.

[92] M. Jones, J. Bradley, and N. Sakimura, “Json web token (jwt),” tech. rep., 2015.

[93] D. W. Chadwick, R. Laborde, A. Oglaza, R. Venant, S. Wazan, and M. Nij-
jar, “Improved identity management with verifiable credentials and fido,” IEEE
Communications Standards Magazine, vol. 3, no. 4, pp. 14–20, 2019.

[94] M. Scott, “The apache milagro crypto library.”

[95] “Hyperledger indy,” tech. rep. https://indy.readthedocs.io/en/latest/.

[96] N. Szabo, “Smart contracts,” Unpublished manuscript, 1994.

[97] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for the
internet of things,” Ieee Access, vol. 4, pp. 2292–2303, 2016.

[98] C. Cachin et al., “Architecture of the hyperledger blockchain fabric,” in Workshop
on distributed cryptocurrencies and consensus ledgers, vol. 310, Chicago, IL, 2016.

[99] P. Thakkar, S. Nathan, and B. Viswanathan, “Performance benchmarking and
optimizing hyperledger fabric blockchain platform,” in 2018 IEEE 26th Inter-
national Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), pp. 264–276, IEEE, 2018.

[100] H. Sukhwani, N. Wang, K. S. Trivedi, and A. Rindos, “Performance modeling
of hyperledger fabric (permissioned blockchain network),” in 2018 IEEE 17th
International Symposium on Network Computing and Applications (NCA), pp. 1–8,
IEEE, 2018.

[101] M. Kuzlu, M. Pipattanasomporn, L. Gurses, and S. Rahman, “Performance
analysis of a hyperledger fabric blockchain framework: throughput, latency and
scalability,” in 2019 IEEE international conference on blockchain (Blockchain),
pp. 536–540, IEEE, 2019.

[102] Node.js Foundation, “Node.js documentation,” 2023. Accessed: 2023-05-03.

[103] S. Thorgersen and P. I. Silva, Keycloak-identity and access management for
modern applications: harness the power of Keycloak, OpenID Connect, and OAuth
2.0 protocols to secure applications. Packt Publishing Ltd, 2021.

https://cybersec4europe.eu/
https://cybersec4europe.eu/

Bibliography 167

[104] F. Cirillo, G. Solmaz, E. L. Berz, M. Bauer, B. Cheng, and E. Kovacs, “A standard-
based open source iot platform: Fiware,” IEEE Internet of Things Magazine,
vol. 2, no. 3, pp. 12–18, 2019.

[105] X. Wang, H. Zhao, and J. Zhu, “Grpc: A communication cooperation mechanism
in distributed systems,” ACM SIGOPS Operating Systems Review, vol. 27, no. 3,
pp. 75–86, 1993.

	Portada
	Portada
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms

	Introduction
	Contextualization
	Motivation and problem statement
	Objective of this thesis
	Contributions
	Thesis structure
	Related publications

	Background and State of the Art
	Identity management with enhanced privacy
	Distributed ledger technologies
	Identity management in distributed ledger technologies

	Innovative identity management projects
	ARIES: reliAble euRopean Identity EcoSystem
	ABC4Trust
	PrimeLife

	Conclusions

	Privacy-preserving distributed identity management
	Introduction
	Concept
	Objectives and requirements
	Processes and architecture
	Overview
	Architecture
	Process definition

	Conclusions
	Primary Goals and Objectives
	Technological Underpinnings
	Anticipated Impacts
	Encountered Challenges
	Contemplated Drawbacks

	DLT-enabled identity management system with enhanced trust
	Introduction
	Concept
	Objectives and requirements
	Processes and architecture
	Overview
	Architecture
	Process definition

	Conclusions
	Core Objectives Revisited
	Technological Advancements
	Potential Impacts and Challenges
	Anticipated Drawbacks

	Implementation and results
	Introduction
	Overview of the System Architecture

	General implementation details
	Non-DLT enabled, distributed identity provider
	DLT enabled distributed identity provider

	Use cases
	The pandemic booking
	The smart city

	Conclusions
	Benefits and Impact
	Performance results

	Conclusions and Future Work
	Conclusions
	Relation to Objectives
	Chapter Summaries
	Summary of Work Done

	Future Work

	Bibliography

		2024-09-13T17:30:06+0200
	TORRES MORENO RAFAEL - 48657396E

