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ABSTRACT: A regiodivergent Ni-catalyzed amidation of unac-
tivated secondary alkyl bromides is described. The site-selectivity
of the amidation event is dictated by subtle differences on the
ligand backbone, allowing introduction of the amide function at
either the original sp3 carbon−halide bond or at distal sp3 C−H
sites within an alkyl side-chain via chain-walking scenarios.
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Although cross-coupling reactions of unactivated alkyl
halides have evolved at a comparatively slower pace

than their aryl congeners, these techniques have offered a
fertile ground for building up new sp3 architectures.1 The latter
is particularly important, as an increase of sp3 character in drug
candidates has recently been shown to contribute to clinical
success.2 At present, cross-coupling reactions of unactivated
alkyl halides rely primarily on bond-formations at prefunction-
alized sp3 sites via functional group interconversion (Scheme 1,

path a).1 The recent years have witnessed the design of chain-
walking reactions as a new technology to enable functionaliza-
tion at remote sp3 C−H sites via formal metal translocation
within the alkyl side chain (Scheme 1, path b).3 Despite the
advances realized, the ability to rationally, predictably, and
reliably control the site-selectivity of these reactions by fine-
tuning the nature of the catalyst still remains an uncharted
cartography.

Prompted by the relevance of aliphatic amides in agro-
chemicals, pharmaceuticals, and polymeric materials,4 we
questioned whether it would be possible to dictate the
incorporation of an amide function at different sp3 sites via
site-selective Ni-catalyzed amidation of unactivated alkyl
halides with isocyanate counterparts. If successful, such a
strategy would provide a complementary technique to known
catalytic amidations requiring stoichiometric organometallic
reagents5 or hazardous carbon monoxide,6 among others.7 At
the outset of our investigations, it was unclear whether such
strategy could be implemented. Indeed, the high reactivity of
isocyanates and their propensity to parasitic di(tri)merization
pathways with low-valent metal complexes8 left a reasonable
doubt whether it would be possible to trigger a dynamic
translocation of the metal center throughout the alkyl chain. As
part of our interest in the field,9 we report herein the successful
development of a catalytic method that provides access to
aliphatic amides from unactivated alkyl halides by a subtle
modulation of the catalyst of choice (Scheme 1, bottom).
We began our investigations by studying the reaction of 2-

bromoheptane (1) with tBuNCO (Table 1). The choice of the
latter was not arbitrary, as primary amides can be easily
accessed by simple deprotection of the tert-butyl group.10 After
judicious evaluation of the reaction parameters,11 we found
that a combination of NiI2 (2.5 mol%), L4 (5.0 mol%), and
Mn as reductant in NMP at 10 °C resulted in amide bond-
formation at the sp3 C−H linkage, delivering 2b in good yield
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Scheme 1. Cross-Couplings Reactions of Alkyl Halides
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and excellent selectivity (entry 1). As for other catalytic
reductive coupling reactions,12 2,2′-bipyridines and 1,10-
phenanthroline ligands possessing alkyl substituents adjacent
to the nitrogen atom were critical for success (entries 2−4),
with 2,2′-bipyridine ligands containing aromatic rings at the
4,4′-position being particularly suited for our purposes. While
solvents and reductants other than NMP and Mn resulted in
lower yields of 2b (entries 5 and 6), the utilization of
Ni(COD)2 as catalyst had a deleterious effect in both reactivity
and site-selectivity (entry 7). Interestingly, site-selective
amidation at the sp3 C−Br site was achieved using nitrogen-
containing ligands with a single alkyl substituent at C6 of the
2,2′-bipyridine core (L5−L8). In particular, 2a could be
obtained in an exquisite 99:1 ratio (entries 8−11), and in an
excellent 93% yield by employing NiBr2 as precatalyst and L8
in DMF at 3 °C (entry 12).9e

With reliable access to both 2a and 2b in hand, we turned
our attention to evaluating the generality of our regiodivergent
Ni-catalyzed amidation based on a Ni/L4 or Ni/L8 regime
(Figure 1). As shown, a series of unactivated secondary alkyl
bromides could be utilized with similar ease, resulting in the
corresponding linear or α-branched amides in good yields and
excellent site-selectivities. In contrast with traditional catalytic
amidation techniques,5−7 we found that our protocol was
particularly suited for accessing bulky amides by employing a
range of differently substituted isocyanates (2−6). Notably,
remote amidation could be extended beyond α-methyl

Table 1. Optimization of the Reaction Conditionsa

aConditions: 1a (0.50 mmol), tBuNCO (0.75 mmol), NiI2(2.5 mol
%), L4 (5.0 mol %), Mn (1.25 mmol), NMP (1.0 mL) at 10 °C under
N2, 24 h.

bConditions: 1a (0.50 mmol), tBuNCO (0.75 mmol), NiBr2
(2.5 mol %), L8 (5.0 mol %), Mn (0.75 mmol), DMF (0.50 mL) at 3
°C under N2, 24 h. Yields and selectivities were determined by GC
analysis using anisole as an internal standard.

Figure 1. Regiodivergent amidation of unactivated secondary alkyl bromides. Isolated yields, average of at least two independent runs. Conditions
Ni/L4: As for Table 1, entry 1. Conditions Ni/L8: As for Table 1, entry 12. [a] 1 mmol scale. [b] Obtained as 92:8 ratio of 8b and the
corresponding amidation event adjacent to the ester motif. [c] NiI2 (5.0 mol %), L4 (10 mol %).
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substituted alkyl halides, as 2b could be within reach from 3-
bromo or 4-bromoheptane in 57% and 66% yield, respectively.
Similarly, 15b and 16b could also be obtained by incorporating
the amide function at distal sp3 C−H bonds with substrates
containing aromatic or boron fragments within the alkyl side
chain. The latter is particularly interesting, thus leaving ample
room for further derivatization via conventional cross-coupling
reactions.13 As evidently illustrated in Figure 1, amines (9),
nitriles (11), esters (6, 8) or nitrogen-containing heterocycles
(13, 14) did not interfere with productive C−C bond-forming
reaction. Interestingly, a competitive chain-walking amidation
at the weak benzylic sp3 C−H bonds was not found en route to
7b and 15b.14 Notably, amide bond formation adjacent to an
ester motif was observed as a minor byproduct (8b), thus
complementing related C−C bond-forming reactions via Ni-
catalyzed chain-walking scenarios.15 Remarkably, branched
substituents do not compete with the efficacy of C−C bond
formation, with the targeted amidation occurring exclusively at
the less sterically hindered primary sp3 C−H site (12b). In line
with the results of entry 12 (Table 1), the utilization of L8
suppressed β-hydride elimination and chain-walking, forging
the targeted amide bond at the initial C−Br site in excellent
yields for all substrates employed (2a−16a). The synthetic
applicability of our method is further illustrated in Scheme 2.

As shown, 17 was exclusively obtained from n-hexanes via a
sequence consisting of an unselective sp3 bromination followed
by an amidation at the primary sp3 C−H bond based on the
Ni/L4 couple. Aiming at extending the generality of our
reaction, we anticipated that tertiary aliphatic amides might be
within reach by intercepting I with an appropriate electrophile.
Indeed, this turned out to be the case and 20 could be
obtained in good overall yield from 19 by treatment with MeI.
Furthermore, primary aliphatic amides such as 21 could easily
be prepared by simple deprotection of the tert-butyl group with
Sc(OTf)3.

16 More importantly, 22 could easily be prepared
from 19 by tandem methylation/deprotection, thus showcas-

ing the opportunity of accessing secondary aliphatic amides
that would otherwise be derived from flammable and toxic
MeNCO.17

To gain further information about the mechanism of the
reaction, we turned our attention to study the reactivity of the
putative, low-valent Ni(0)L2 species within the catalytic cycle.
Initial attempts to synthesize (L4)2Ni and (L8)2Ni from
Ni(COD)2 were met with failure, probably due to the difficulty
of displacing COD with both L4 and L8. However, these
complexes could be prepared in analytically pure form by an
alternative route consisting of reduction of LNiX2 with either
TMSCH2MgCl or EtMgBr.11 The structure of these complexes
in the solid state is depicted in Scheme 3. A closer inspection

into the crystal structures reveals a significant difference in the
coordination geometry. While (L4)2Ni shows a traditional
tetrahedral backbone, a significant deviation from tetrahedral
and square planar geometry (81° vs 65°) was found for
(L8)2Ni, thus showing the intriguing impact that subtle
modifications on the 2,2′-bipyridine backbone might have on
the putative Ni intermediates within the catalytic cycle. As
expected, (L8)2Ni and (L4)2Ni were found to be catalytically
competent, delivering 2a and 2b in 74% and 56% yield,
respectively. Interestingly, a competitive experiment with both
L4 and L8 showed that 2a was exclusively formed (99:1 ratio)
in 72% yield, tacitly suggesting a stronger binding of L8 to the
nickel center and the ability of the in situ generated alkyl-
Ni(L8) to prevent β-hydride elimination.18 Note, however,
that stoichiometric experiments with Ni/L8 or Ni/L4 in the
absence of Mn revealed traces of 2a or 2b, with alkenes arising
from β-hydride elimination being formed predominantly in the
crude mixtures.19 Taken together, these results strongly suggest
a mechanistic pathway consisting of the intermediacy of alkyl-
Ni(I) species generated via single electron transfer of Mn to
the putative alkyl-Ni(II) intermediates prior to RNCO
insertion. At present, we hypothesize that the striking
differences of L8 and L4 are tentatively attributed to a more
congested environment in alkyl-Ni(II)(L4)Br, thus facilitating
halide dissociation en route to cationic intermediates that

Scheme 2. Synthetic Applicability

Scheme 3. Mechanistic Experiments
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might favor a chain-walking scenario via iterative sequences of
β-hydride elimination/migratory insertion events.
In conclusion, a nickel-catalyzed regiodivergent amidation of

secondary alkyl bromides has been described. This protocol
tacitly shows the subtle differences that the ligand backbone
might have on the site-selectivity pattern, favoring amide bond-
formation at either the initial C−halide bond or at remote sp3

C−H sites within the alkyl side chain. The reaction is
distinguished by its mild conditions, wide substrate scope, and
exquisite site-selectivity profile while minimizing unproductive
isocyanate dimerization or trimerization events. Further
extensions to related regiodivergent events are currently
underway.
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