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ABSTRACT: A catalytic protocol that reliably predicts
and controls the site-selective incorporation of CO2 to a
wide range of unsaturated hydrocarbons utilizing water as
formal hydride source is described. This platform unlocks
an opportunity to catalytically repurpose three abundant,
orthogonal feedstocks under mild conditions.

The utilization of carbon dioxide (CO2) and alkenes as
chemical feedstocks holds promise to streamline synthetic

sequences for forging C−C bonds.1 In particular, the direct
catalytic hydrocarboxylation of olefins with CO2 represents a
unique opportunity to convert abundant feedstocks into fatty
acids, key building blocks in industrial endeavors.2 However,
major hurdles have impeded the full adaptation of such a
scenario.3 Although Markovnikov selectivity can be obtained
with styrenes, these methods make use of air-sensitive,
stoichiometric organometallic reagents (Scheme 1, path a),4

or remain substrate-specific.5 Extensions to abundant unac-
tivated internal alkenes or α-olefins are more problematic
(Scheme 1, path b),6 as noble metals, high CO2 pressures and
elevated temperatures are required. Additionally, the challenge
of site-selectivity in these events is preeminent, invariably
obtaining mixtures of carboxylic acids.6 Indeed, the ability to
control and fundamentally alter the effective discrimination of a
catalytic CO2 incorporation into unactivated olefins still
remains an unanswered challenge.

Recent studies from our group demonstrated that a
halogenation/carboxylation sequence allowed for obtaining
isomerically pure fatty acids from hydrocarbon feedstocks.7

However, the need for halogenated species and activating
groups for modulating the site-selectivity still constituted a
daunting scenario, reinforcing a change in strategy.8 Driven by
the ability of some specific low-valent transition metals to
generate metal hydrides (Scheme 1, bottom),9,10 we questioned
whether we could harness water, a renewable feedstock
typically employed as proton source, as a mild, inexpensive
and safe hydride precursor, thus significantly reducing the
chemical footprint of traditional hydride sources used in
hydrocarboxylation events (Scheme 2, top).3−6 Although we

recognized that such a scenario might unlock an opportunity to
repurpose three abundant chemical feedstocks, it was unclear
whether such a strategy could be implemented, as the
combination of nickel salts and water remains virtually
unexplored.11 If successful, we hypothesized that site-selectivity
could be rationally predicted and controlled by exploiting the
inherent distinct chemical reactivity of easily interconverted
alkenes and alkynes12 with CO2 via either hydrometalation
(I)13 or nickelalactone formation (II) (Scheme 2, bottom).14

Herein, we report our studies toward this goal, resulting in a
user-friendly protocol that selectively combines three abundant
chemical feedstocks under mild conditions.
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Scheme 1. Catalytic Carboxylation of Olefins and H2O as
Potential Hydride Source

Scheme 2. Hydrocarboxylation Events with H2O and CO2
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Our investigations began by evaluating the reaction of
styrene with CO2 at atmospheric pressure. A judicious
screening of all the reaction parameters revealed that a
combination of NiCl2·6H2O (5 mol %), 4,4′-di-tert-butyl-6-
methyl-2,2′-bipyridine (L1, 5 mol %), water (9 equiv) in DMA
at 0 °C using Mn as reducing agent provided 1 in 91% isolated
yield as single regioisomer.15−17 In line with our expect-
ations,7,18 the reaction temperature, the amount of water and
the inclusion of substituents adjacent to the nitrogen atom on
the ligand backbone had a profound impact on reactivity.15

Importantly, rigorous control experiments univocally revealed
that the presence of both Mn and water are crucial for the
generation of the catalytic active species.15

With a reliable set of conditions in hand, we then turned our
attention to study the generality of our protocol (Table 1).

Comparable reactivity was found for electron-rich and electron-
poor styrenes, whereas the inclusion of ortho-substituents did
not hinder the reaction (2b). This method displayed excellent
chemoselectivity, as silyl ethers (2k), aryl fluorides (2g, 2s, 2t),
esters (2f, 2v), ketones (2l, 2m), acetals (2e, 2i) or amides
(2h) could be well accommodated. The presence of boronic
esters (2j) or disubstituted olefins (2d) did not interfere,

suggesting the implementation of orthogonal techniques via
further functionalization. The prospective potential of this
technique was showcased by the preparation of nonsteroidal
anti-inflammatory drugs such as Naproxen (2p), Fenoprofen
(2n) or Ibuprofen (2o), the latter on a gram scale. In contrast
to related styrene hydrocarboxylations,3−5 this method could be
extended to disubstituted styrenes by simply adjusting the
amount of water and temperature, leading to quaternary carbon
centers (2q−2u), or 1,2-disubstituted analogues (2v, 2w). In
the latter, CO2 incorporation selectively occurred adjacent to
the most electron-poor arene,13 the structure of which was
univocally characterized by X-ray crystallography.15

Encouraged by these results, we wondered whether our
protocol could be extended to industrially relevant unactivated
α-olefins, compounds produced on a large scale from ethylene
oligomerization.19 Notably, a cocktail consisting of NiI2 (10
mol %) and bathocuproine (L2, 25 mol %) allowed to cleanly
convert 1-hexene into 3a in 66% yield as a single regioisomer
under atmospheric pressure of CO2 (Table 2). These results

are particularly remarkable taking into consideration the low
selectivity profiles found in related carbonylation processes
where CO was generated via reverse water−gas shift reactions
at elevated temperatures with either Ru or Rh complexes.6,20 As
shown for 3c−3e the inclusion of arenes, esters or ketones on
the side-chain did not erode the selectivity profile, obtaining
exclusively linear acids. Although extending the scope to
internal unactivated alkenes was expected to be rather
problematic due to their lower binding affinity to metal
complexes,21 this was not the case. Indeed, cyclic olefins led to
3b, whereas the use of acyclic olefins, even as E/Z mixtures,
resulted in the selective CO2 incorporation at unfunctionalized
primary sp3 C−H sites en route to 3f−3j via iterative β-hydride
elimination/migratory insertion sequences (chain-walking).21,22

These observations are particularly noteworthy; indeed, the
ability to use water as hydride source might significantly reduce
the chemical footprint in chain-walking strategies while
circumventing the need for stoichiometric organometallic

Table 1. H2O-Mediated Hydrocarboxylation of Styrenesa

aIsolated yields, average of two independent runs. Conditions: 1a−w
(0.20 mmol), NiCl2·6H2O (5 mol %), L1 (5 mol %), Mn (1.50 equiv),
H2O (9 equiv), CO2 (1 bar), DMA (0.5 M), 0 °C. bIsolated as methyl
ester. cNiCl2·6H2O (10 mol %). dAt rt. eFrom acetal after workup.
fH2O (6 equiv). gdr = 1:1. h1 g scale. iNiCl2·glyme (10 mol %), H2O
(1.1 equiv), 70 °C, NMP (0.5 M). jH2O (3.3 equiv). k50 °C.

Table 2. Hydrocarboxylation of Unactivated Olefinsa

aIsolated yields, average of two independent runs. Conditions: olefin
(0.20 mmol), NiI2 (10 mol %), bathocuproine (L2, 25 mol %), Mn
(3.60 equiv), H2O (4.0 equiv), CO2 (1 bar), DMF (0.25 M), 50 °C.
bH2O (6.0 equiv) and DMF (0.50 M).
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reagents, halogen precursors reducing agents with high
molecular weight such as organosilanes.21−23

Next, we surmised that the distinct reactivity of chemically
interchangeable alkynes and alkenes with CO2 could be turned
into a strategic advantage, thus offering a method that might
promote a site-selectivity switch in aliphatic side-chains. As
shown in Table 3, this turned out to be the case. Although

linear acids 3f, 6b−10b were exclusively formed from alkene
coupling partners under a NiI2/L2 regime, a carboxylation/
hydrogenolysis event of alkyne counterparts resulted in
branched products (4a−10a).24,25 Notably, no significant
erosion in enantioselectivity was found en route to either 10a
or 10b whereas exclusive linear selectivity was found for 6b.22 It
is worth noting that 3f could be obtained on a large scale using
5% NiI2 loading. As expected, such a regioselectivity switch was
not limited to terminal alkynes or α-olefins, as 5a and 3f were
exclusively obtained from the corresponding internal congeners
(Table 3, bottom). Collectively, the results of Tables 2 and 3

suggested that the valorization of bulk industrially relevant
olefins by using inexpensive CO2 and H2O as chemical
feedstocks would be within reach (Scheme 3). Gratifyingly, 3f

could be obtained as a single regioisomer from unrefined
mixtures of olefins (Scheme 3, top). Bolstered by these results,
we became intrigued about the prospect of coupling ethylene,
the largest-volume organic chemical produced in industry
(Scheme 3, bottom).26 Although preliminary, we found that
propionic acid (11) could be obtained in 20 turnover numbers
(TON), representing a proof of concept that could potentially
pave the way to design safer alternatives to the BASF process
based on hazardous CO and [Ni(CO)4].

27

In summary, we have designed a predictable and tunable site-
selective hydrocarboxylation of a wide range of unsaturated
hydrocarbons with CO2 by using water as hydride source.28

This method unlocks an opportunity to selectively repurpose
three chemical feedstocks, including bulk industrial olefins.
Although future mechanistic work is warranted to unravel the
origin of both reactivity and selectivity,29 we believe this study
will foster new investigations for building up molecular
complexity.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/jacs.7b07637.

Data for 2w (CIF)
Experimental procedures, crystallographic data and
spectral data (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*rmartinromo@iciq.es
ORCID
Ruben Martin: 0000-0002-2543-0221
Author Contributions
‡M.G., T.M. and F.J.-H. contributed equally to this work.
Funding
No competing financial interests have been declared.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We thank ICIQ, European Research Council (ERC-277883 &
ERC-2015-PoC-713577), MINECO (CTQ2015-65496-R &

Table 3. Site-Selectivity Switch in Aliphatic Side-Chainsa

aIsolated yields, average of two independent runs. Branched: NiI2 (10
mol %), L2 (25 mol %), B2nep2 (10 mol %), Mn (3.6 equiv), H2O
(1.0 equiv), CO2 (1 bar), DMF (0.17 M) at rt, then H2 (1 bar), Pd/C
(10 mol %). Linear: As Table 2. b10 mmol, 5 mol % NiI2.

cNaI (1
equiv). ddr = 1:1. eEt3SiH (1 equiv) and RhCl(PPh3)3 (6 mol %) in
lieu of H2, Pd/C.

fee determined from the acrylate intermediate.

Scheme 3. Carboxylation of Industrially-Relevant Olefins
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