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Abstract 

Context: A relevant question in requirements engineering is which set of functional requirements 
(FR) to prioritize and implement, while keeping non-functional requirements (NFR) balanced and 
optimized. 

Objective: We aim to provide empirical evidence that requirement engineers may perform better 
at the task of selecting FRs while optimizing and balancing NFRs using an alternative (automated) 
i* post-processed model, compared to the original i* model. 

Method: We performed a controlled experiment, designed to compare the original i* graphical 
notation, with our post-processed i* visualizations based on Pareto efficiency (a tabular and a radar 

chart visualization). Our experiment consisted of solving different exercises of various complexity 
for selecting FRs while balancing NFR. We considered the efficiency (time spent to correctly 
answer exercises), and the effectiveness (regarding time: time spent to solve exercises, 
independent of correctness; and regarding correctness of the answer, independent of time).  

Results: The efficiency analysis shows it is 3.51 times more likely to solve exercises correctly 
with our tabular and radar chart visualizations than with i*. Actually, i* was the most time-
consuming (effectiveness regarding time), had a lower number of correct answers (effectiveness 
regarding correctness), and was affected by complexity. Visual or textual preference of the 
subjects had no effect on the score. Beginners took more time to solve exercises than experts if i* 

is used (no distinction if our Pareto-based visualizations are used). 

Conclusion: For complex model instances, the Pareto front based tabular visualization results in 
more correct answers, compared to radar chart visualization. When we consider effectiveness 
regarding time, the i* graphical notation is the most time consuming visualization, independent of 
the complexity of the exercise. Finally, regarding efficiency, subjects consume less time when 
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using radar chart visualization than tabular visualization, and even more so compared to the 

original i* graphical notation.  

 

Keywords Controlled experiment, i*, requirements engineering, Pareto efficiency. 

1. Introduction 

Several studies have shown that effective requirements engineering (RE) is a 

critical success-factor in software projects, e.g. (Verner et al. 2005; Nasir et al., 

2011). Generally, two types of requirements are discerned: functional 

requirements (FRs) that describe the system services, behaviour or functions to be 

provided, and non-functional requirements (NFRs), which include (quality) 

attributes or constraints on the application to build or in the development process 

(Glinz. 2007). Taking NFRs into account while elaborating the FRs from the early 

design phases significantly improves the end-user satisfaction (Ameller et al. 

2010).  Approaches that incorporate goal-oriented techniques, such as i* (Yu, 

1997) used as a framework in this article, are an ideal candidate for this purpose, 

as they explicitly represent FRs (as tasks), and NFRs (as softgoals), and allow to 

denote the impact of FRs on NFRs (using contribution links). Like other 

modelling languages, i* has an accompanying graphical notation, which enables 

modellers to easily create and communicate requirement models, and gain an 

overall insight in the requirements of the system. Despite the importance of the 

graphical notation, and its effect on model interpretations (e.g., Nordbotten and 

Crosby 1999), very few empirical evidence is available regarding their efficiency 

and effectiveness (see Related Work), nor works comparing different 

visualizations that consider different purposes to interpret a model1. 

A pertinent challenge in requirements engineering is to identify an optimal subset 

of all identified FRs to implement, within the scope of available resources, that 

satisfy the demand of customers (Zhang et al. 2008). This requires requirements 

engineers to correctly interpret and compare models varying in the set of FRs they 

define, while maintaining a balanced satisfaction of NFRs according to priorities 

determined by the user. This is important in several contexts: during the 

requirement specification and negotiation phase, where requirements are agreed 
                                                
1 According to (Atkinson & Kuhne, 2003), models have two main characteristics: on one hand, concepts 

available for creating models and the rules governing their use (i.e., abstract syntax), and on the other hand 
the notation to use in depicting models (i.e., concrete syntax). For the sake of clarity, from now on, in this 
paper we use "model" when we refer to the abstract syntax of models, while "visualization" is used when 
we refer to concrete syntax of models. 
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upon between developers and clients within time and budgetary constraints, and 

ensuring compliance with the priorities of the clients in terms of NFRs; during the 

requirements elicitation and analysis process, when FR alternatives need to be 

compared and decided upon, with respect to NFRs; and in incremental 

development, such as according to the SCRUM Agile methodology (Schwaber 

and Beedle 2002), where subsets of requirements are chosen in each iteration 

(“sprint”) to implement; when conceiving a new release of existing software, 

where a list of new features (FRs) needs to be chosen to include in the next 

release. 

To tackle this challenge, we introduced in our previous work (Aguilar et al. 2011) 

a method based on Pareto efficiency (Szidarovszky et al. 1986), which post-

processes, in an automatable way, an i* model and produces two Pareto-front 

based visualizations: a tabular and a radar chart. This helps designers to make 

informed decisions by understanding the trade-offs that are necessary to obtain a 

well-balanced, optimized NFRs satisfaction, and allow them to more easily 

prioritize FRs. Recognizing the importance of model visualization (Nordbotten 

and Crosby, 1999), and considering that the original i* graphical notation was not 

developed with comparing and balancing alternative requirements specifications 

in mind, we developed two custom visualizations to support our Pareto efficiency-

based model: a tabular (Aguilar et al. 2011) and radar chart (Aguilar et al. 2012) 

visualizations, that both capture NFR optimization while allowing to easily 

compare different subsets of FRs to implement. 

In this article, we shortly recap our Pareto efficiency-based RE approach to 

compare subsets of FRs while balancing NFRs, and present an extensive 

experimental evaluation of the original i* graphical notation (based on the original 

i* model) and two novel visualizations (based on our i* post-processed model) 

(tabular and radar chart visualization). The objective is to determine which 

visualization is better (regarding efficiency and effectiveness) under which 

conditions, and provide supporting empirical evidence. We hereby focus on 

efficiency (time spent to correctly answer solve a problem), and the effectiveness 

(regarding time: time spent to solve a problem, either correct, partially correct or 

wrong; and correctness of the solution, independent of time) of these 

visualizations when being used by the designers. The evaluation was set up as a 

controlled experiment consisting of a set of modelling exercises with two levels of 

complexity. The level of expertise of the designers participating in the experiment 

was heterogeneous (i.e. beginners and experts in goal-oriented modelling). 
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Moreover, due to the different types of visualizations (i.e., graphical and tabular), 

it is important to study the relation between the learning style of the subjects and 

the notation used. We have determined the learning style of the subjects by 

performing a Felder test (Felder and Silverman, 1988). 

Specifically, contributions of this article are as follows: (i) an empirical 

comparison between our Pareto front model (and two different visualizations 

based upon the model), and the original i* model (with the corresponding original 

i* graphical notation), thus showing the convenience of using an i* postprocessed 

model for solving specific tasks (in our case, selecting FRs while balancing and 

optimizing NFRs); and (ii) a detailed discussion on the results of our empirical 

evaluation, thus giving insight in the variables and conditions under which 

visualization performs better (or worse) and considering the level of complexitiy 

of the models (i.e., complementing qualitative evidence found in literature with 

additional quantitative evidence of the performance of the original i* model under 

different complexities) and other features such as relation between the learning 

style and the visualization used.  

The remainder of this paper is structured as follows: Section 2 describes related 

work. Section 3 shortly describes the three types of visualizations evaluated by 

means of an example. Section 4, describes the experimental methodology to 

validate our hypotheses. The analysis of the data obtained is shown in Section 5. 

Section 6 presents the threats to validity of the experiments. In section 7 the 

results obtained are discussed. Finally, the conclusion and future work are 

presented in Section 8. 

2. Related work 

Requirements Engineering (RE) approaches include mechanisms to help designers 

to understand the trade-offs that are necessary to prioritize FRs while optimizing 

NFRs satisfaction.  

Regarding FR prioritization, in (Salado and Nilchiani, 2015), the authors propose 

an Adaptive Requirements Prioritization (ARP) method that improves decision 

making between conflicting functional requirements using the principles of 

multidimensionality. Its efficiency is evaluated using Monte Carlo simulations for 

a variety of priority dimensions and priority levels. Bridging simulation and real-

world experiments, an interesting work is the one proposed in (Benestad and 

Hannay, 2012), where an artificial and a field experiment are performed using the 
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same prioritization techniques to assess whether they affect stakeholders’ 

selection of software product features. Furthermore, in (Duan et al, 2009), the 

authors present an approach for automating a significant part of the prioritization 

process. The method applies data-mining and machine learning techniques to 

prioritize functional requirements according to stakeholders’ interests, business 

goals, and cross-cutting concerns such as security or performance requirements. 

Recent efforts in order to simplify the prioritization process are focused in an 

algorithm to prioritizing FRs in incremental software development model 

according to dependency relationships between requirements (Alzyoudi et al, 

2015). In (Jackson, 1999) the author addresses the importance of theoretically 

sound and practical methods for classifying and prioritizing product requirements 

by developing a structured approach to gather, analyze, and aggregate stakeholder 

input. In (Shannin and Zairi, 2009) the authors present how the Kano model and a 

questionnaire are used for classifying and prioritizing customer requirements in 

the international airlines industry. 

There are also efforts that focus on NFRs, and more specifically on optimizing 

and balancing them. For example, in (Broster and Coombes, 2011) some of the 

challenges of measuring performance and timing behavior of reliable embedded 

systems are shown. Additionally, this work explains techniques and strategies for 

optimization of software reliability and compares different techniques for 

measuring and analyzing software including tracing methods, in-memory analysis 

and using hardware support. It shows how those techniques can be used for 

verification of non-functional properties, such as satisfying the requirements for 

safety in automobiles in the ISO26262 standard. This work is interesting since it 

introduces optimization at a high and low level, studying strategies and trade-offs 

that occur in reliable software development. To do this, the authors introduce a 

process that supports optimization with the idea that it is possible to have the 

maximum benefit for the minimum effort. In the Model-Driven Development 

(MDD) field, in (Xuan and Geihs, 2010) the authors propose an approach to 

address optimizing NFRs through trade-offs by combining MDD with 

Evolutionary Algorithms (EA). The framework proposed in (Douglas, 2010) 

defined 11 major relationships between FRs and NFRs focused on cost, risk, 

schedule, communication, and quality perceptions. A dynamic decision-making 

infrastructure to support both NFRs representation and monitoring, and to reason 

about the degree of satisfaction during runtime is presented in (Almeida et al, 

2015). The infrastructure is composed of an extended feature model aligned with 
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a domain-specific language for representing NFRs to be monitored at runtime; a 

monitoring infrastructure to continuously assess NFRs at runtime and a flexible 

decision-making process to select the best available configuration based on the 

satisfaction degree of the NFRs. Therefore, this work allows to quantify the level 

of satisfaction with respect to NFRs specification.  

In several situations, post-processing of modeled requirements may be beneficial 

to better interpret the model instances for a particular purpose. This is important in 

order to know how to visualize, in the best form, the stakeholders’ needs to obtain 

an optimal final product. There are several approaches that post-process 

requirements models for a particular purpose. E.g.  in (Buarque et al 2013) a new 

approach is introduced, called OOM-NFR, which processes initial requirements 

expressed in terms of i* diagrams to get OO-Method conceptual models (Pastor et 

al 2001) that allow designer to easier consider both FRs and NFRs in order to  

define the appropriate configuration of the application to be generated. Also, in 

(Abirami et al 2015), the authors present a framework for post-processing of RE 

models in order to automatically detect and segregate the FRs and NFRs, thus 

obtaining an improved conceptual model with more information about NFRs in 

order to be considered in later stage of development (e.g., for defining 

constraints). 

For the sake of NFRs optimization, two important dimensions of requirement 

engineering are visualization of requirements, as stated by (Pohl, 2013); they form 

a relevant research topic (see e.g. the survey of (Cooper et al. 2009)). There are 

some papers that deal with approaches for visualizing NFRs trade-off. In (Rahimi 

et al. 2014), authors focus on adequately capturing NFRs such as security, 

performance, and usability, and present a data mining approach for automating the 

extraction and subsequent modelling and visualization of NFRs from requirement 

documents. (Zhang et al. 2008) explain, in their position paper, advantages of 

using Pareto front to identify optimal choices and trade–offs for stakeholders once 

an initial set of requirements has been gathered. A survey on Pareto-optimal 

Search-Based Software Engineering is presented in (Sayyad and Ammar 2013). 

Finally, (Zhang et al. 2011) highlight the problem for requirement engineers to 

find a set of requirements that reflect the needs of several different stakeholders, 

while remaining within budget. The authors introduce and evaluate two multi-

objective evolutionary optimization algorithms for the automated analysis of 

requirements assignments when multiple stakeholders are to be satisfied by a 

single choice of requirements. In this paper, the authors use radar charts to 
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illustrate the tensions between the stakeholders’ competing requirements in the 

presence of increasing budgetary pressure, i.e., they are used as a visualization 

mechanism to easily understand trade-offs between budget and satisfaction of 

stakeholders. 

However, although the literature provides a large number of works related to 

techniques for visualization of requirements, less effort has been reported on 

empirical evaluation of different visualizations of requirements. Only some works 

did a limited theoretic analysis using visual notation theory of respectively the 

KAOS (Matulevičius et al. 2007) and i* (Moody et al. 2009) visual notations. The 

authors identify some weaknesses, and propose improvements, such as the 

introduction of a mnemonic colour scheme.  

Next to the original graphical notations, several alternatives or extensions have 

been proposed, addressing various aspects of RE. In this respect, the workshop 

series on Requirements Engineering Visualization (REV) produced several 

interesting ideas and proposals. For example, (Feather et al. 2006) illustrate the 

use of software visualization techniques applied to requirements engineering, and 

propose the use of several visualization techniques (bar charts, tree maps, Kiviat 

charts) for various RE concerns (e.g., listing requirements, displaying risk). (Gotel 

et al. 2007) describe some visualization techniques to enumerate requirements 

along with some quality attributes, e.g., a smiley face visualization denoting if 

requirements’ necessary data is present, or a volcanic world visualization denoting 

requirements stability. Heim et al. (2009) propose a graph-based visualization to 

better show the relationships between requirements. (Gabrysiak et al. 2009) 

combine formal requirements models and prototyping in the form of scenario-

based prototyping, which enables the interactive visualization for elicitation and 

validation of requirements in the business domain by means of a simulation and 

animation. The prototype tool allows stakeholders to visualize the FRs by means 

of a simulation and animation; NFRs are not considered. As far as we can verify, 

all these proposals remained ideas, in few cases accompanied with a prototype 

tool, but never validated or evaluated. 

Also in other contexts, several techniques and tools have been proposed for 

requirements visualization. PaladinRM (Austin et al. 2006) is a tool for 

requirements visualization established by the NASA Goddard Space Flight 

Center. Requirements are organized into layers for team development and graph 

structures are used to describe compliance of requirements, and define 

relationships among requirements. In (Horkoff et al. 2010), the authors developed 
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an approach for visualizing reasoning through i* models in order to help analysts 

in understanding conflicts among alternatives (e.g., goals with conflicting paths). 

These visualization mechanisms were tested with some case studies that suggest 

that further visualization mechanisms could support analysis. In (Ernst et al. 

2006), the authors present graphical and textual annotations in i* diagrams to 

denote four quality attributes (NFRs): degree of certainty, feasibility, trustability 

and performance of a goal. For example, the degree of trust is denoted by 

thickness of delegation links. A theoretical evaluation of this visualization 

technique is presented. In the context of the object-oriented analysis (OOA) 

method, (Gemino 2004) performed an empirical validation to assess the 

effectiveness of animations and narrations to complement textual descriptions and 

static OOA diagrams when validating requirements, and concluded that in 

particular the latter might have a positive effect. 

In conclusion, while several efforts have been done to improve requirement 

visualization at different stages and for different purposes in the RE process, there 

is a clear lack of rigorous, empirical evaluations of the proposals. To the best of 

our knowledge, there are no empirical studies that show how the cycle: 

prioritizing, post-processing and visualization of FRs considering NFRs has been 

integrated in one framework, or compare different visualizations with a single 

purpose in mind (in our case: NFR optimization). This gap is bridged in this 

article by conducting a controlled experiment on different visualizations for NFR 

trade-offs: one visualization is based on i* model, while the remaining 

visualizations are based on our post-processed Pareto efficiency-based model (a 

tabular and a radar chart visualization).  

3 Goal oriented Requirements models 

In this section, we shortly describe the two i* models used in this article, the 

original i* model and our post-processed Pareto efficiency-based model, and 

focus on their visualization that have been evaluated in the experiment, by means 

of an example: the original i* diagram for the former, and a tabular and radar 

chart visualization for the latter.  

3.1. I* modeling 

The i* modeling framework is a goal-oriented requirements engineering (GORE) 

technique that incorporates social analysis by modeling the relationships between 
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different actors. It consists of two models: the strategic dependency (SD) model to 

describe the dependency relationships among various actors in an organizational 

context, and the strategic rationale (SR) model, used to describe actor interests 

and concerns and how they are addressed. The SR model provides a detailed way 

of modeling internal intentional elements and relationships of each actor. 

Intentional elements are goals, tasks, resources and softgoals (see Figure 1 (A)). 

Intentional relationships are means-end links representing alternative ways for 

fulfilling goals; task-decomposition links representing the necessary sub-

components for a task to be performed; or contribution links in order to model 

how an intentional element contributes to the satisfaction or fulfilment of a 

softgoal (see Figure 1 (B)). Possible labels for a contribution link are “Make”, 

indicating complete satisfaction of a softgoal, “Some+”, indicating a strong 

positive contribution and “Help”, indicating a smaller positive contribution; their 

negative counterparts are “Break”, “Some-”, “Hurt”. Finally, the label 

“Unknown” indicates an unknown (positive or negative) strength of the 

contribution.  

 

 

 

 
Fig. 1.  Graphical notation of i* model. 

 

Figure 2 shows an example of a simple i* diagram from our experiment. This i* 

diagram describes a system for managing surveys, having a main goal "Survey to 

be performed", which can be achieved by means of three FRs (“tasks” in i* 

terminology), in this case navigational requirements: “Interactive interview”, 

“Perform interview”, “Private questionnaire”. Each of these tasks is further 

decomposed into sub-tasks and required resources, and affects one or more NFRs. 

For example, “Interactive interview" is decomposed into sub-tasks "Establish chat 
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connection" and "Perform interview", it requires the resource "SurveyRepository", 

and it helps usability and hurts reliability.  

 

Fig. 2. Visualization of an example i* model with Complexity “simple” and type “i* diagram” 

 

3.2.Tabular visualization of Pareto Front 

Our Pareto-based approach assists requirement engineers to evaluate and prioritize 

FRs while NFRs trade-off improves the application’s quality. To do so, our 

approach builds upon the goal-oriented RE approach i*, with the aim of 

supporting and improving it using Pareto efficiency. The Pareto efficiency 

algorithm is based on computing the Pareto front, which is useful when there are 

multiple competing and conflicting objectives that need to be balanced (Sayyad & 

Ammar 2013). The Pareto efficiency is a notion from economics widely applied 

to engineering, which can be described as follows: “given a set of individuals, a 

set of alternative allocations, and a set of allocation-dependent valuations, an 

allocation A is an improvement over allocation B only if A can make at least one 

particular valuation better than B, without making any other worse”. Intuitively, 

the Pareto front is the set of allocations that cannot uniformly be improved.  

Applying this principle to our setting, the set of individuals refers to the set of 

FRs, the alternative allocations corresponds with sets of FRs in a certain state 

(implemented or not implemented), i.e. a configuration, and improving a 
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particular valuation refers to better satisfying a particular NFR. Therefore, a 

Pareto front configuration is an allocation of states for FRs (implemented or not 

implemented) so that no other configuration better satisfies any single NFR, while 

satisfying the other NFRs equally. The Pareto front typically contains several 

configurations (i.e., subsets of implemented requirements), each representing an 

optimal trade-off between the NFRs. While individual NFR may be satisfied 

better or worse in the different Pareto front configurations, none of the Pareto 

front configurations can be changed without negatively affecting at least one 

NFR. The Pareto front can thus be used by requirement engineers to assess the 

impact of implementing requirements on individual NFRs, and allows them to 

make a well-informed decision which of the well-balanced configurations best 

satisfies all NFRs as prioritized by the stakeholders. 

Finding the set of Pareto optimal configuration can be defined as the problem of 

finding a (decision) vector of decision variables X (i.e., a valid implemented/not 

implemented requirements configuration), which maximizes a vector of M 

objective functions fi(X) (i.e., the satisfaction of softgoal i in configuration X) 

where i = 1..M (with M the amount of softgoals). To do so, the concept of 

domination between vectors is defined as follows: a decision vector X is said to 

dominate a decision vector Y (also written X≻Y) if and only if their 

corresponding objective vectors of objective functions fi(X) and fj (X) satisfies: 

∀i ∈ {1...M}: fi(X) ≥ fi(Y ) and ∃i ∈ {1...M}: fi(X) > fi(Y ), it is then said that all 

decision vectors that are not dominated by any other decision vectors form the 

Pareto optimal set, while the corresponding objective vectors are said to form the 

Pareto front. For a more detailed explanation of the Pareto algorithm we refer the 

reader to our previous work (Aguilar et al. 2011; Aguilar et al. 2012).   

Table 1 shows the tabular visualization of the Pareto front of the goal-oriented 

requirements model instance for the system for managing surveys example, 

introduced in Fig. 2. Three FRs are shown as columns (R0 = PublicQuestionnaire; 

R1 =PrivateQuestionnaire; R2 = IntertactiveInterview), and the NFRs (reliability, 

anonymity, usability) as the remaining columns. Different configurations are 

shown as rows. For each configuration, an “I” in a cell means the corresponding 

FR was implemented, an N means it was not implemented. The cells containing 

numerical values correspond with the sum of all the contribution links for that 

NFR in this configuration, where “make” contributes +4, “some+” contributes +2 

and “help” contributes +1. Negative contribution links are correspondingly 
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negatively graded. The complete specification of the experiment is available at 

https://github.com/josezubcoff/soft_expt to allow its replication. 

 

Table 1. An example of a tabular chart visualization of a Pareto front model: Complexity “simple” 
and type “tabular” (corresponding to the i* diagram in Fig. 2). 

Config. R0 R1 R2 Reliability Anonymity Usability 

X2 I I N 1 0 -1 

X3 I N I -2 2 1 

X4 I N N -1 2 0 

X5 N I I 1 -2 0 

X6 N I N 2 -2 -1 

X7 N N I -1 0 1 

X8 N N N 0 0 0 

 

3.3. Radar chart visualization of Pareto Front 

Figure 3 shows an example of a radar chart visualization of a Pareto front from a 

i* model for a movie provider. A radar chart is equivalent to a tabular Pareto front 

visualization (i.e., it is based on the same underlying model), whereas NFRs are 

shown as axes in the radar chart (S0 = reliability; S1 = anonymity; S2 = usability), 

and configurations (of implemented and not-implemented FRs) are shown as 

colored plots on the axes, where each particular plot on an axis denotes the total 

contribution of this configuration for this particular NFR. Figure 3 shows 

configurations X2 – X5 as a radar visualization of the Pareto front of the goal-

oriented requirements model instance for the system for managing surveys 

example, introduced in Fig. 2. 
 



14 

 
Fig. 3. An example of a radar chart visualization of a Pareto front model:  

Complexity “simple” and type “tabular” (corresponding to the i* diagram in Fig. 

2) 

 

It is worth noting that the i* and Pareto efficiency-based model, along with the 

three discussed visualization, are all supported by means of our WebREd CASE 

tool (Aguilar et al 2012). The tool allows regular i* modeling, and is subsequently 

capable of automatically calculating the Pareto Front, and generating the tabular 

and radar chart visualizations (only Pareto Front configurations are shown). 

Furthermore, the tool allows interactively adding/removing Pareto Front 

configurations to/from the radar chart. 

4 Experiments 

In this section, we describe the definition, design, and settings of the controlled 

experiment we conducted. The context of the controlled experiment is described 

following the guidelines described in (Kitchenham et al. 2002) and the subjects as 

proposed by (Höst et al. 2000) to perform empirical studies in Software 

Engineering.  
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4.1. Experiment definition 

The overall aim of our experiments was to compare three different visualization 

techniques used within goal-oriented modeling to select which FRs to implement, 

while optimizing NFRs. We considered and compared the following techniques: 

(i) i* graphical notation, based on the original i* model, (ii) a tabular visualization 

of FRs and NFRs configurations, based on the i* post-processed Pareto front 

model, and (iii) a radar chart visualization of these configurations, based on the i* 

post-processed Pareto front model. For these three techniques, we have tested the 

efficiency (time to correctly solve a problem), and effectiveness of results 

according to time (independent of the score) and according to correctness 

(independently of time), under two different levels of complexity (i.e., simple and 

complex). In particular, we evaluated the following main hypotheses: 

• Is there a relation between the complexity of an i* model, the type of 

visualization, and the correctness of selected configurations? We studied this 

hypothesis separately by classifying correctness into three levels (i.e., correct, 

partially correct and incorrect). 

• Is there a relation between the complexity of an i* model, the type of 

visualization and the time required to select a FR configuration? We studied 

this hypothesis separately for the three different visualizations (i* diagram, 

tabular and radar chart) and for the different complexities (easy and complex), 

and subsequently determined if there is any interaction between the type of 

visualization and the complexity of model instances.  

After obtaining the results of the analysis, and due to the different nature of every 

visualization of the i* model instances (textual or visual), we performed a follow-

up study to verify an additional hypothesis: 

• Is there a relation between the subject’s learning style (textual or visual) and 

the time required to select a FR configuration? We also determined the subject 

learning style to see its possible influence in the time required to select a FR 

configuration within our experiments. 

 

To this aim, we set up a controlled experiment with two fixed factors: the three 

types of visualizations and two kinds of complexity levels. Specifically, simple 

and complex model instances differ by the number of intentional elements that 

directly influence the decision for NFR optimization: softgoals, contribution links, 

and tasks with outgoing contribution links. All simple model instances follow the 
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same pattern: 3 softgoals, 7 contribution links and 3 tasks with outgoing 

contribution links (as well as 1 goal, 7 other tasks and 1 resource). For complex 

model instances, we considered instances that have 5 softgoals, 14 contribution 

links and 6 tasks with outgoing contribution links (as well as 3 goals, 3 other tasks 

and 2 resources). The complex model instances of this experiment represent 

partial cases of real world scenarios. 

Consequently, we have developed six exercises to be solved by the subjects of the 

experiments (one per type of visualization and per level of complexity). For each 

exercise, we observed two variables: time (measured in seconds) and score 

(ranging from 0 to 2). Time is measured by using the subjects’ response time in 

accomplishing the required tasks. The time variable can bring us a measure for 

assessing the efficiency, as wasting more time to correctly solve an exercise 

indicates a less efficient notation. Score is measured by expert-judging the 

effectiveness of the subjects’ answers: 0 if the result is wrong, 2 if the result is 

right, and 1 when the given solution contains the right result but it is incomplete. 

Subsequently, score serves as a useful measure for analyzing the effectiveness 

regarding correctness. Finally, we analyzed the time spent for all scores to assess 

the effectiveness regarding time and the efficiency (considering only correct 

answers). Consequently, we can assess the efficiency and effectiveness of each 

visualization by statistically analyzing the time and score variables. 

In addition, due to the different nature of the visualization techniques used 

(textual and visual), we studied the relation of the learning style (textual or visual) 

of the subject and the type of visualization. To this aim, we performed a Felder 

test (Felder and Silverman, 1988) to determine the learning style of each subject. 

Finally, the experience of the subject dealing with FRs was considered when 

studying the different types of visualization. As some of the subjects have 

extensive previous i* experience, and others have little i* experience, the 

efficiency could show different behavior according to the experience of the 

subject. 

4.2. Experiment context 

The context of the controlled experiments is described next (following the 

guidelines described in (Kitchenham et al. 2002). 

 

4.2.1 Subjects 
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In order to ease the generalization of the results, the subjects are identified. The 

subjects are master students (Official Master of Web Technologies) from the 

University of Alicante (Spain), researchers and PhD students of the Polytechnic 

University of Valencia (Spain) and Jaume I of Castellon (Spain). Specifically, 32 

subjects participated in total: 20 from Alicante (18 of them were master students 

and 2 PhD students), 12 from Valencia and Castellon (6 PhD students and 6 

professors). 

The subjects from the University of Alicante are experts in the software 

development domain and they had previous knowledge of the i* modeling 

framework (all of them have been enrolled in a 30-hour i* course). Therefore, 

they have experience with the i* modeling framework, although, they did not 

know anything about Pareto efficiency. The remainder of the subjects have 

previous experience with i* ranging from experts with deep understanding of i* to 

beginners with little i* experience. None of the participants had knowledge of 

Pareto efficiency. Consequently, a training session about Pareto efficiency took 

place to provide the subjects with the necessary knowledge to carry out the tasks 

required in the experiment. 

 

4.2.2 Objects 

As previously stated, in our experiment we defined six exercises: three having a 

“simple” complexity level, and three having a “complex” level. Each exercise of 

each complexity level uses one of the following types of visualization: (i) i* 

diagram, (ii) tabular visualization of Pareto front, and (iii) radar chart 

visualization of Pareto front.  

Each single exercise contains three questions with the aim of asking the subject 

which is the best set of FRs to implement, while optimizing certain NFRs. For 

each exercise, the subject is asked to write down the answers to three questions: 

the first question asks for the best configuration for satisfying one NFR, the 

second aims to satisfy two NFRs (according to a specific priority) while the third 

asks for satisfying three NFRs (according to a specific priority). For example, in 

the survey system exercise represented in Figure 2, the following three questions 

are asked: 

Question 1: which tasks do you need to implement to maximize usability? 

Question 2: which tasks do you need to implement to maximize usability and 

reliability at the same time (equal priority)? 
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Question 3: which tasks do you need to implement to maximize usability (1st 

priority), and then reliability and anonymity (both 2nd priority)? 

The model instances were different for each type of visualization (i* diagram, 

tabular Pareto front or radar chart) and level of complexity (simple or complex). 

Furthermore, we distributed the experiment’s solving sequence randomly. This 

was necessary to avoid a repeated measure experiment (i.e., subjects learning 

from a previous model/visualization); however, we ensured that for each level of 

complexity, the underlying model instances for every visualization (type) had 

exactly the same difficulty. This was done by assuring that each model had the 

same amount of FRs, NFRs, tasks, resources, means-end and contribution links 

and the same hierarchy of tasks. Furthermore, we had an equal amount of positive 

and negative outgoing contribution links from tasks, and an equal amount of 

positive and negative incoming contribution links for each softgoal. 

 

4.3. Hypothesis formulation 

 

The main objective of our experiments was comparing three different 

visualizations for optimizing NFRs and how they respond to the complexity. 

Therefore, we tested the relation of the visualization used (i.e. i* notation, tabular 

and radar chart visualization) and the complexity in order to assess the 

effectiveness regarding correctness of the answers. The null-hypotheses were then 

formulated for correct answers:  

- H01: There is no interaction between the type of visualization and the 

complexity level, for correct answers (score=2). 

- H02: There are no differences between the types of visualization, for correct 

answers (score=2). 

- H03: There are no differences between the complexity levels, for correct 

answers (score=2). 

We also proposed to compare the differences of visualization measured according 

to effectiveness regarding time. The null hypotheses were: 

- H04: There is no difference in the time spent to identify a set of FRs to 

implement while optimizing NFRs between type of visualization. 

- H05: There is no difference in the time spent to identify a set of FRs to 

implement while optimizing NFRs between simple and complex levels of 

complexity. 
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- H06: There is no interaction between type of visualization and complexity 

levels, when measuring the time spent. 

- H07: There is no interaction between type of visualization, complexity levels 

and score when measuring the time spent. 

Furthermore, we performed a similar analysis on the efficiency where we 

considered time spent for correct answers. The null hypotheses for this variable 

were: 

- H08: There is no difference in the time spent to correctly identify a set of FRs 

to implement while optimizing NFRs between different types of visualization. 

- H09: There is no difference in the time spent to correctly identify a set of FRs 

to implement while optimizing NFRs between simple and complex levels of 

complexity. 

- H010: There is no interaction between type of visualization and complexity 

level, when measuring the time spent for the correct answers. 

In addition, two further analyses were done to study the impact of the subjects’ 

experience on modeling FRs and the learning style (visual or textual) identified by 

the Felder test (Felder and Silverman, 1988). To analyze if a relation exists 

between the learning style of subjects and their performance measured in time 

spent to solve the exercise, we tested the following hypotheses (addressing both 

effectiveness regarding time and efficiency):  

- H011: There is no difference to identify a set of FRs to implement, while 

optimizing NFRs, in the time spent, for different learning styles of subjects.  

- H012: There is no difference in the time spent to correctly identify a set of FRs 

to implement while optimizing NFRs, for different types of visualization. 

- H013: There is no interaction between type of visualization and learning style, 

when measuring the time required to correctly identify a set of FRs to 

implement, while optimization NFRs. 

Finally, we compared the results obtained from experts and beginners to be able to 

evaluate the influence of the subjects’ experience when testing the effectiveness 

regarding time of the type of visualization. The formulation was: 

- H014: There is no difference in time required between experts and beginners 

when using i*, tabular and radar chart visualization to identify a set of FRs to 

implement while optimizing NFRs. 

If the null hypothesis can be rejected with a low margin of error, we may accept 

an alternative hypothesis, which admits a positive effect of the type of 
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visualizations and/or complexity/learning-style/experience on the 

effectiveness/efficiency of the model. 

 

4.4 Identification of Main factors and cofactors 

In our experiment the main factors were: the type of visualization used to optimize 

NFRs (i* diagram, tabular and radar chart visualizations) and the complexity of 

the represented model (easy or complex). We also assessed if there is interaction 

among the main factors, which is the combined effect of both factors on the 

dependent variable (time or score).  In addition, to better assess the effect of type 

of visualization it was needed to control other factors (called co-factors) that may 

have effect on the dependent variables. Those co-factors were the subjects 

previous i* experience and learning style.  

 

4.5 Measurement of dependent variables 

We have considered two dependent variables: score and time, as follows: 

• Time is measured in seconds, by using the subjects’ response time in 

accomplishing the required tasks. To do so, the subjects’ starting and end 

time of each exercise are recorded. Therefore, time is a continuous 

variable. 

• Score is ranging from 0 to 2 as discrete values (categorical variable). Score 

is measured by expert-judging the correctness of the subjects’ answers:  

o A score of 0 is obtained if the result is wrong 

o A score of 2 is obtained if the result is right 

o A score of 1 is obtained when the result contains the right solution 

but is incomplete 

 

4.6 Experimental trials 

The experiments are performed using the test subjects. There are six exercises in 

total, two exercises for each type of visualization (i* diagram, Pareto front based 

tabular and radar chart), and, for each of them, one with complexity level easy and 

the other complex. All subjects solve all exercises. In order to avoid learning 

effects, each exercise is related to a different case study (for more details see 

Section 6 Threats to Validity). 

Before the experiments, subjects were trained on the different approaches. 

Specifically, all individuals had previous knowledge on requirements engineering 

with i*. Regarding the other visualizations (table and radar chart), we did an ad-
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hoc 30-minutes training session before conducting experiments. Due to the fact 

that the visualizations are based on the i* diagrams, it is enough time for the 

subjects to understand them (since all of them know i*). We also gave the subjects 

detailed instructions related to the tasks to be performed. 

Each exercise was done individually. Subjects could take as much time as was 

needed to solve each exercise (i.e., no fixed time). The subject recorded the 

starting and ending time for each answer in hours, minutes and seconds, and the 

answer to the questions, i.e., one or more configurations of FRs. 

 

4.7 Data analysis 

The diagram in figure 4 presents an overview of the analysis strategy followed. 

We have divided the data analysis results in four subsections, results for: score, 

time, visual-preference and experience. A descriptive analysis is presented in each 

of the four sections as first step. Afterwards, we include the results of the relevant 

statistical tests to verify the formulated hypotheses. 



22 

 
Figure 4. Data analysis strategy   

 

To analyze effectiveness regarding correctness, after a descriptive analysis, we 

tested the effect of type of visualization and complexity on the score (Fig. 4) by 

using a logistic Generalized Linear Mixed Model (GLMM) (Hair and Anderson, 

2010). For the model selection, we tested all possible models (GLM & GLMM) 

against the null model and finally selected the complete logistic GLMM (Chi-

square p-value=8.89e-05; Area under ROC=0.758). The complete logistic GLMM 

model includes score as response variable, Type and Complexity as fixed factors, 

subject and exercise as random effects, and Time as covariate; no transformation 

was required for this model. Here, we eliminate the level 1 of the score variable 
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for comparing only correct vs. incorrect answers.  Then, the estimated GLMM 

model can be easily interpreted by comparing the ratio between score=2 (correct 

answers) vs. score=0 (incorrect answers) probabilities. 

We have analyzed the effectiveness regarding time by testing the time spent to 

solve the exercise considering type and complexity as fixed factors in a 

multifactorial ANOVA. Here, we used all answers, to understand the behavior 

across the type of visualization between the two levels of complexity. Due to the 

heterogeneity of variability around the mean time across these factors, a 

logarithmic transformation was needed to be able to assure the homogeneity of 

variances. After that analysis, we selected only the correct answers (with score = 

2), to go in deep with the efficiency analysis. We used the Tukey HSD test 

(Jaccard et al. 1984) for the post hoc analysis when needed. 

The analysis for the time spent considering only those answers with the maximum 

score, shows the heteroscedasticity (Fig. 5). The time does not show homogeneity 

of variances between the type, score and complexity levels (p-value under 0.05 

even with square root or logarithmic transformations). In this case, we proceed to 

analyze the ANOVA setting the significance to 0.01. 

 

Analysis of subject learning style preference 

To analyze the subject’s textual or visual learning preference, we performed a 

Felder test, with which we obtain the subject’s learning style preference. Then, 

ANOVA was used to detect if there is any evidence that the relationship between 

the preference of the subjects and the type of visualization has any influence on 

the time spent. 

 

Analysis of experience 

We tested if the experience of the subjects (with previous knowledge of i*) has 

any effect on time. We used the experience and type of visualization as fixed 

factor and the time as a dependent variable. Then, we analyze the experience 

effect by testing with ANOVA, and the Tukey HSD when a significant difference 

was found.  

 

5. Results 



24 

We have divided the results into four subsections, focusing respectively on 

effectiveness, efficiency, visual or textual preference and influence of experience 

analysis.  

 

5.1 Analysis of score  

The results for score, which represent effectiveness regarding correctness, are 

summarized in Table 2 in which the total amounts of correct/incorrect/partially-

correct answers by type and complexity levels are shown. For example, each 

participant had to solve 3 questions on easy (complexity) i* graphical notation 

(type), therefore the total amount of answers for that type of exercise should be 

96. However, not all participants answered all questions, and we got 84 answers. 

Considering the score results, we applied an analysis strategy separating the score 

levels in: correct (score = 2), incorrect (score = 0) and partially correct answers 

(score = 1). 
  

Table 2. Total amount of score by type of visualization and complexity level 

Type i*	Graphical	Notation Pareto	tabular	

visualization 

Pareto	radar	chart	

visualization 

Complexity Easy Complex Easy Complex Easy Complex 

Score=2 41 23 41 39 28 24 

Score=1 8 6 12 12 22 26 

Score=0 35 19 15 13 20 11 

 84 48 68 64 70 61 

132 132 131 

 

From Table 2, we highlight some results: (i) overall, there is a similar amount of 

correct (64) versus incorrect and partially correct answers (68) for i* graphical 

notation; more correct answers (80 versus 52) for tabular visualization; less 

correct answer for radar chart visualization (52 versus 79); ii) i* graphical 

notation has a larger amount of wrong answers compared to tabular and radar 

chart visualizations, even for easy model instances; iii) when the model is getting 

complex, the amount of correct answers for the i* graphical notation decreases 

sharply (-44%), while only mildly for radar chart visualization (~ -15%) and quite 

similar for tabular visualization (< -5%); iv) the total amount of partially correct 

answers is much lower than that of the correct answers for i* graphical notation 

and tabular visualization; for the radar chart the correct and partially correct 

answers are more evenly spread (52 and 48 respectively); and v) the Pareto tabular 
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visualization has similar values of correct answer for easy and complex model 

instances.  

 
Fig. 5. Barplot for the amount of correct answers by exercise for type and complexity. 

 

The dependent variable on ANOVA was the amount of correct answers (score=2) 

by exercise. ANOVA was not able to detect significant interaction between Type 

and Complexity (F2,12=0.597; p=0.566) (hence, H01 cannot be rejected). 

Subsequently, the differences on the combined effect were not significant. This is 

mainly due to the high variability in the number of correct answers on i* graphical 

notation (type of visualization). This behavior can be hiding the tendency shown 

in Figure 5 where i* graphical notation sharply decreases the number of correct 

answers on complex models, while there is no clear pattern on the other two types 

of visualizations.  

We found no significant differences in mean of the number of correct answers by 

Type (F2,12=1.550; p=0.252) (H02 cannot be rejected). Also regarding Complexity, 

there are no significant differences (F1,12=1.508; p=0.243), and complexity does 

not seem to affect the radar chart and tabular visualizations (Fig. 5) (hence, H03 

cannot be rejected). We note that, as for interaction between Type and 

Complexity, the lack of individual effect may be due to the high variability on the 

behavior of i* graphical notation, which may hide differences on decrease in the 

number of correct answers.  

Furthermore, we have done a Logistic Generalized Linear Mixed Models 

(GLMM) for score as a dependent variable. The objective behind this analysis is 
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to understand the effects from the fixed factors (type and complexity), as well as 

the possible random effects (individuals and exercises), considering the time as 

covariate. The results of the estimates, standard error, Wald test statistic, p-value 

and Odd Ratio (OR) from the GLMM model are shown in Table 3.  

 
Table 3. Results of the complete logistic mixed model GLMM.  

 Estimate	

beta 

Std.error Wald	

value 

Pv	Wald Odds	ratio	

(OR) 

Intercept 0.4385 0.3866 1.134 0.2567 1.5504 
TYPE.Radar_chart 0.2537 0.4393 0.578 0.5635 1.2889 
TYPE.Pareto_table 1.2568 0.4252 2.956 0.0031* 3.5143 

COMPLEXITY.Easy 1.4146 0.4197 3.370 0.0007* 4.1150 

Radar_chart & Easy -0.6027 0.6417 -0.939 0.3475 0.5473 
Pareto_table & Easy -1.4264 0.6294 -2.266 0.0234* 0.2402 

Time  -0.0070 0.0020 -3.483 0.00049* 0.9930 

 

Positive values in estimates from Table 3 (or greater than 1 in OR) indicates an 

increase in the probability of the score=2 vs score=0 ratio. The Intercept OR is 

1.5504, in other words it is 1.55 times more probable to solve the exercise 

correctly, compared to not solving it correctly (Score=0) by using the i* graphical 

notation with complex model instances (intercept), however is not significant 

(Wald test p=0.2567). The tabular visualization of the Pareto front has significant 

behavior compared with the intercept (Wald test p=0.0031), and, its OR indicates 

that it is 3.51 times more probable to solve the exercise correctly using the tabular 

visualization of Pareto front than using the i* graphical notation, when working 

with complex model instances. The complexity, in global terms, has a significant 

effect (p=0.0007): for easy model instances, it is 4.115 times more probable that 

the exercise is solved correctly (score=2) compared to incorrectly (score=0). For 

radar chart there is no significant effect with respect to easy or complex model 

instances (p=0.3475). Pareto front for easy model instances has a (significant) 

negative effect compared to i* complex model instances: the estimate from table 3 

is -1.4264 and the OR indicates that it is almost 4 times more probable to solve an 

easy Pareto exercise than an i* complex model, an evident result. The time, 

considered as covariate in the analysis of effectiveness, has a significant negative 

effect, which is interpreted as follows: as long as the time increases, the 

probability of getting correct answers diminishes. As the estimate is close to zero 
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(estimate=-0.0070), this is only a minor behavior, however, it is significant (p-

value=0.00049). This behavior is further confirmed in the efficiency analysis. 
  

 
Figure 6: Estimation of probability for score=2 by Complexity and 
Type 

 

The interaction plot in figure 6 shows that all three types of model visualization 

obtain similar probabilities for solving the exercises when the model is easy. 

However, when modeling becomes complex, the probability to correctly solve the 

problem when using the i* graphical notation is halved. Although the radar chart 

visualization seems to have similar behavior for complex model instances, the 

probability is much lower and is not significantly different from the probability of 

solving easy exercises. Finally, the tabular visualization of the Pareto front seems 

not to be affected by the complexity, because its probability remains high for easy 

and complex model instances (around 0.73 of probability to correctly solve the 

exercise). 

 

5.2 Analysis of time 

 

The strategy for the analysis of time starts with the descriptive analysis of the time 

variable followed by the analysis of the effect of type and complexity (fixed 
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factors) on the time. We consider all responses (effectiveness regarding time) and 

only correct responses (efficiency). 

 
Table 4. Summary of mean and (standard deviation) of time in seconds by type and complexity for 

all answers (effectiveness regarding time) and for score=2 (efficiency) 
 ALL ANSWERS EASY COMPLEX 

i* graphical notation      141.85 (112.51) 133.36 (84.78) 

Tabular visualization  69.29 (42.21) 100.08 (43.11) 
Radar chart  70.38 (48.05) 76.36 (44.59) 

SCORE=2   

i* graphical notation  119.29 (87.32) 106.09 (62.48) 

Tabular visualization  70.15 (40.68) 94.18 (45.92) 
Radar chart  71.35 (62.00) 61.71 (33.68) 

 
 

Considering the effectiveness regarding time (see Table 4), the i* graphical 

notation obtained the worst results, both for easy and complex models. On the 

other hand, radar chart overall performs best regarding time (lowest time), yet for 

easy models, tabular visualization obtains similar results (note that it is not 

possible to statistically significantly differentiate between tabular and radar chart 

visualization for easy models, even though the mean for the former is slightly 

lower). Interestingly, the complexity of models doesn’t seem to significantly 

affect the time needed to solve exercises for i* graphical notation and radar chart 

visualization (only minor differences); for tabular visualization on the other hand, 

the time spent seems to significantly increase as models become more complex. 

Finally, as a disclaimer, we must mention that there is a high variability in time to 

solve the exercise for all visualizations (see standard deviation in Table 4). This 

variability is higher for i* graphical notation than for the tabular and radar chart 

visualizations. 
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Figure 7. Density plot for time variable. Lines for score=2 and dashed-line for score=0. Tick marks 

on top are for score=2, bottom for score=0. Red marks are for complex model instances, blue 
marks for easy model instances.  

 

Time is not normally distributed as shown in Figs 7 and 8. There is a peak below 

100 seconds, and there is another small peak around 200 seconds (around 300 

seconds if considering the corresponding wrong answers). The tick marks on the 

top represents score=2, for easy and complex model instances. The tick marks on 

the base of x-axis represents score=0 (for easy and complex model instances too). 

The tick marks of score=2 are more concentrated around the mean than tick marks 

of score=0. The wrong answers are distributed along the range of time observed.  
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Fig. 8. Density plot of the Time variable. Black line for score=2 and dashed-line for score=0. Tick 

marks on top are for score=2, bottom for score=0. Red marks are for i*, black marks for Pareto 
tabular and blue marks for radar chart.  

 

The variability in time was mainly produced by the time required to solve the 

exercises using the i* graphical notation (see Table 4 and figures 7 and 8). The 

lack of normality and homoscedasticity (large dispersion for score=0 and 1, and 

more concentrated times for score=2) discourages the use of parametric test. 

However, ANOVA is robust under the lack of normality, also in presence of 

heteroscedasticity (Lix et al. 1996), when applied on balanced datasets where the 

sample size is large enough (n>30), but it is recommended to reduce the 

significance used to 0.01. The alternative tests do not address the main problem, 

namely the inequality of variances. Moreover, the heterogeneity can result in a 

lack of effect detection, while it is important to deal with heterogeneity observed 

over time, and explain its effects. Given these restrictions, the significance was set 

to 0.01 and we proceed with the multifactorial ANOVA analysis.  

The ANOVA results (Table 5) hint an interaction effect between the type and the 

complexity (F2,377=5.005; p=0.00716) (hence, H06 can be rejected). The lines of 

the interaction plot (Fig. 9) show different trends in time by type and complexity 

levels. The more complex the model, the more time is required for solving the 
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exercise when using the Pareto table (see Fig.9). When using the other notations, 

complexity seems to have no effect on the time spent for solving the exercise. The 

type of visualization has a significant effect on the time to solve the exercise 

(F2,377=34.619; p=1.57e-14) (H04 can be rejected).  There is a lack of effect of 

complexity on the effectiveness regarding time (H05 is not rejected) (F1,377=0.872; 

p=0.35113). In addition, the interaction between type, complexity and score was 

not significant to the effectiveness regarding time (H07 is not rejected) 

(F4,377=0.870; p=0.48210).  

The score has significant effect on effectiveness regarding time (F2,377=5.289; p 

=0.00543). The post-hoc Tukey test showed differences between score=2 and 

score=0 (TukeyHSD test p=0.00554). Furthermore, the Tukey test showed that for 

score=2 (special case for the H08-10), measuring efficiency, the time required 

using the i* graphical notation was significantly higher than radar chart 

(p=0.0043) and Pareto tabular (p=0.0766).  Considering efficiency, the tabular and 

radar chart visualizations have similar time values on correct answers (p=0.9474) 

(Fig. 9b). In addition, for any score, the i* graphical notation requires more time 

to solve the same exercise than any other visualization (Fig. 9). Based on the 

results of the Tukey test, we can thus reject H08: subjects using the i* graphical 

notation spent (significant) more time (p=0.00000) than radar chart and Pareto 

table. The complexity does not seem to have an effect on time (p-value=0.35113), 

and thus H09 cannot be rejected. The interaction between type and complexity has 

significant effect on time (F2,377=5.005; p=0.00716) (H010 is rejected). Figure 9 

shows the time spent considering all data (Fig.9a) and by score (Fig. 9bcd).  
 

Table 5. ANOVA results for the model (Time ~ Type * Score * Complexity) 

                            Df   Sum Sq  Mean Sq  F value    Pr(>F)     

Type                         2   309615   154808   34.619  1.57e-14 *** 
Score                        2    47300    23650    5.289   0.00543 **  
Complexity                   1     3897     3897    0.872   0.35113     
Type x Score                 4    23300     5825    1.303   0.26850     

Type x Complexity            2    44762    22381    5.005   0.00716 **  
Score x Complexity           2    17677     8839    1.977   0.13999     
Type x Score x Complexity    4    15558     3889    0.870   0.48210     
Residuals                  377  1685866     4472                        

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Fig. 9. Interaction plot for time by type and complexity with a) all answers, b) only Score=2, c) 
Score=1, and d) Score=0 

 

5.3 Analysis of subject learning style preference 

As stated, we also performed a Felder test (Felder and Silverman, 1988) to assess 

if there is any evidence on the relationship between the preferred learning style of 

the subjects (visual, textual or balanced) by complexity and the time spent to solve 

the exercises. Table 6 contains the total amount of correct versus incorrect or 

partially correct answers by subject learning style preference. We hereby note that 

not all the subjects performed the Felder test and not all the participant answered 

all the questions. Note that for our experiment, the Felder test did not reveal any 

subjects with “textual” learning style preference; only “visual” and “balanced”. 

Considering the ratio between visual vs balanced subject style preference, both for 

correct versus incorrect and partially correct answers (Table 6), we observe that 

for i* graphical notation and for radar chart visualization, the ratio is close to 1 

both for correct and incorrect/partially correct answers, while for tabular 

visualization the ratio shows slightly different behavior for correct (ratio=1.2) 

versus incorrect and partially correct answer (ratio=0.7) answers.   
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Table 6. Total amount of answers by type and subject learning style preference 

Type i*  Tabular  Radar chart  
Sub. pref. Visual Balanced Ratio Visual Balanced Ratio Visual Balanced Ratio 

Score=2 30 27 1.1 43 37 1.2 21 26 0.8 

Score=1 or 
Score=0 

30 33 0.9 17 23 0.7 38 34 1.1 

 60 60  60 60  59 65  
120  120  124  

 

The ANOVA test did not detect any significant difference in mean time 

(effectiveness regarding time) for the interactions between type, complexity and 

subject learning style preference. Considering the main factor, the subject’s 

preference has no effect on the time spent to solve an exercise (F1,347=0.100; 

p=0.753) (H011 is not rejected). Observing only those well-answered exercises 

(score=2), measuring efficiency, the subject learning style preference does not 

seem to have an effect on the time spent in answering (F1,172=1.063; p=0.304) 

(H012 is not rejected). The interaction between the type and subject learning style 

preference was also not significant (F2,172=0.997; p=0.371) (H013 is not rejected).  

The interaction plot on figure 10 shows similar slopes for visual or balanced 

subject learning style preference for any type and score. Thus, the subject learning 

style preference does not seem to have any effect on the efficiency.  
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Fig. 10. Interaction plot for time by type and subject learning style preference with a) all answers, 

b) only score=2, c) score=1, and d) score=0 
 

5.4 Analysis of experience 

We analyzed effectiveness regarding time and efficiency based on the subjects 

experience. The subjects experience was not balanced between the beginner and 

expert levels, mainly due to the fact that few experts were present among the 

students, and almost all were beginners. Nevertheless, using the i* graphical 

notation requires more time to interpret model instances and formulate an answer 

for beginners than for those that are experts (p-value=4.09e-14) (H014 can be 

rejected). Radar chart and tabular visualizations of Pareto front have a similar 

effect on time for experts and beginners (Fig. 11A). Assessing the efficiency, the 

ANOVA test did not find significant differences on any source of variation. Also, 

the trend to increase the time to correctly solve the exercise observed for Pareto 

table in (Fig. 11B) was not significant. 
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.

 
Fig. 11. Barplot for time by type and experience with all answers (A) and the correct answers (B). 

 

There is a high number of outliers for the beginners (Fig. 12). This means that 

some beginners take a lot of time to solve some questions. Most of those outliers 

come from i* graphical notations. This is different from the experts’ behavior, 

where the maximum (correct) solving time was lower than 200 seconds.  
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Fig. 12 Boxplot representing time by experience. 

 

The GLM model (Poisson family) did not find any significant difference for the 

count of correct answers by experience or type of visualization. The variability on 

the effectiveness regarding correctness was high across all levels (Fig. 13) 

masking any behavior (the relative lower effectiveness regarding correctness on 

experts was not significant). 

 
Fig. 13 Effectiveness regarding correctness by experience and type of visualization. 
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6 Threats to Validity 

In this section, we will analyze the threats to validity related to the experiment. 

We can categorize them as internal, external, construct and conclusion validity 

threats. 

6.1. Internal Validity 

In this type of experiments, the main internal validity threat is the learning effect. 

This effect appears when performing the experiments consecutively, and subjects 

learn how to improve their results if they always need to solve the same problem, 

or always start with the same type of visualization and complexity. In this work, 

we deal with this effect by not using the same assignment for any exercises (one 

for each combination of type and complexity) and in addition, by randomly 

distributing the experiment’s solving sequence. Furthermore, subjects were asked 

to optimize different NFRs, having similar difficulty for each different assignment 

(within easy/complex). 

To avoid the communication between subjects, which could falsify results, they 

performed all experiments in one run, and having surveillance to make sure there 

was no communication between subjects. 

6.2. External Validity 

As was described in the experiment’s methodology, all the subjects were students 

from a master in computing engineering, with the same short training in the 

modelling instruments used in the experiments. Then, the results can be 

generalized for all graduates. No modelling experience was required. The short 

training period establishes a common basis suitable for the analysis.  

The main external validity threat is the relatively small model instances used in 

the exercises compared to business scenarios that can result in more complex 

model instances. However, the complexity level was restricted for the duration of 

the experiments, which was limited to maximum two hours, not days as in real 

world cases. Nevertheless, the complex level was always selected with enough 

level of difficulty to represent partial cases of real world scenarios. In addition, to 

deal with this external validity threat and to allow detecting the differences in 

effectiveness or accuracy related to complexity it was taken as a factor in the 

analysis.  
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6.3 Construct Validity 

The validity threats related to the design mainly affect discrete or categorized 

variables. The relation between factors when considering discrete variables can be 

analyzed by a Chi square test. However, it is known that this analysis cannot deal 

with interaction and/or multifactorial analysis and it increasingly rejects the null 

hypothesis on some circumstances (Bull et al. 1992). To deal with this validity 

threat a logistic regression was used to explain relationships on possible hidden 

effects behind multifactorial models on qualitative variables.  

Construct validity threats that may be present in this experiment, i.e., interactions 

between different treatments, were mitigated by a proper design that allowed 

separating the analysis of the different factors and their interactions. In particular, 

in each set of exercises, subjects worked on two different model instances to avoid 

learning effects and to ensure that the differences in instances’ complexity would 

not bias the results (we selected two data instances of comparable complexity at 

each level, as described in section 4.2.2 Objects). 

An important issue is the diversity on the subjects. They were selected from 

masters in software engineering, researchers and Phd students from three 

universities. These subjects share the interest of acquiring more and specialized 

knowledge in the topic of the experiment. Nevertheless, they come from different 

universities, different basic formation and different business experience. This 

diversity represents the real-world scenery in software engineering (Briand et al. 

2005). 

 

6.4 Conclusion Validity 

We have presented the results classified by four aspects: effectiveness, efficiency, 

preference and experience of subjects. We have used the appropriate tests 

considering the analytical strategy. We presented the suitable model (and its p-

value) for testing differences between means for quantitative dependent variables, 

and, in case of qualitative dependent variables we used a proper analytical tool 

(GLMM) for the experiment. We checked the validity of the model instances and 

the assumption required in each statistical analysis. In addition, we used the 

descriptive analysis preceding the statistical one. Figures included in this work 

were selected to improve the comprehension of the experiment results related to 

each analysis. Thereby, they facilitate demonstrating and reaching a conclusion 

for each aspect.  
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7. Discussion  

It is well known that research in a particular field passes through several phases, 

depending on its maturity (we consider the classification scheme suggested by 

Wieringa et al (2006)). Our research contributes to the mature field of software 

engineering (and more specifically, requirements engineering), where solid 

validation/evaluation of solution proposals are expected. Our work indeed 

classifies as validation/evaluation research, as we: (i) compare our solution 

(Pareto Front model) with an existing solution (original i* model) at hand of three 

visualization (two for the former, one for the latter); and (ii) further qualify the 

comparison, and the Pareto Front solution itself, by investigating under which 

conditions the Pareto Front-based visualization performs better/worse (e.g., 

simple/complex models, learning style, time spent). 

Our results shed light on some important issues. Regarding the original i* 

graphical notation, with respect to selecting functional requirements while 

balancing and optimizing non-functional requirements: 

1. Considering the effectiveness regarding correctness we have observed a 

large amount of wrong answers. Additionally, for complex model 

instances, the amount of answers in general, and the amount of correct 

answers in particular, decreases.  

2. Considering the effectiveness regarding time and efficiency, in general, 

using the i* graphical notation takes more time to obtain an answer (and 

also having more extreme values2). Surprisingly, the average time spent 

decreases as models become more complex. We can explain this 

unexpected result considering that mostly experts answered the complex 

model exercises, and beginners, which are generally slower, were not 

always able to complete the complex exercises. We observed that some 

beginners take a lot of time to solve some exercises of the experiment. 

Both the above observations discourage the use of i* graphical notation in real 

world cases: these models tend to be rather complex, whereby fewer modelers 

are able to formulate an answer; modelers on average spend more time 

formulating an answer; and there generally is a larger amount of incorrect 

answers. 

Regarding the tabular and radar chart visualizations: 
                                                
2 This variability was randomly observed and cannot be explained by visual preferences, previous knowledge 

of i* or complexity. 
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1. Considering the effectiveness regarding correctness, complexity does not 

seem to affect our tabular and radar chart visualization, as each 

(separately) obtains similar amounts of correct answers for easy and 

complex model instances. However, tabular visualization got significantly 

more correct answers than radar chart.  

2. Considering the effectiveness regarding time, tabular and radar chart 

visualizations emerge as the most efficient approaches. The tabular 

visualization seems to be slightly affected in its efficiency on complex 

model instances, but the post-hoc test was not able to detect that trend. 

Nevertheless, for our experiment, we emphasize that the using radar chart 

modelers perform ~30% faster (around 30 seconds) on average for 

complex models, and using tabular visualization around 10% faster, 

compared to i* graphical notation. 

 

Taking in mind the above facts, on complex model instances, which are especially 

relevant as real-world cases are indeed complex by nature, the visualization with 

better effectiveness regarding correctness was the tabular visualization. We can 

conclude then, that regarding correctness, the original i* graphical notation is not 

suitable for complex model instances. Nevertheless, although the tabular 

visualization is the one that obtains more correct answers, it performs worse 

regarding time on complex model instances. 

An important observation in this experiment is the high variability of the i* 

graphical notation results across all the variables (time and correctness). This 

variability denotes a large number of outliers: participants spending much more or 

less time than the average, and a large spread between correct and incorrect 

answers. Together with the sharp drop of correct answer on complex models, it 

suggests a lack of confidence of users using the i* graphical notation, and a larger 

possibility that a particular modeler produces a bad result (in time and/or 

correctness). We could also not find an improvement with experience: even 

gaining experience in i* graphical notation, the results are still highly variable, or 

in other words, training in i* does not remedy the problem of high variability. 

Clearly, the high variability detected for i* graphical notation, and the 

consequences it implies, is an undesirable property in a real word context (i.e., in 

industry). On the other hand, using Pareto based visualization the results were 

more consistent, showing less variability, particularly on the correctness. 
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Furthermore, the Pareto front based alternatives tend to performs better even 

without any previous experience.  

 

8. Conclusions 

Requirements Engineering (RE) methods and frameworks were developed to 

understand, elaborate, reason about and document requirements. RE methods 

feature graphical notations (visualizations), which were primarily designed for 

ease of model construction and interpretability, and model readability. In this 

article, we argue that different visualizations for different purposes in the RE 

process might be useful. Particularly, we focus on a crucial step in RE: optimizing 

NFRs when selecting FRs to implement. For this purpose, we chose the goal-

oriented RE approach i*, and compare its original graphical notation with two 

visualizations of our custom developed i* post-processed Pareto front model. 

More specifically, contributions of this article is twofold: (i) a controlled 

experiment to compare the three visualizations, to test their effectiveness 

regarding correctness and time, and their efficiency when being used by the 

designers (thus showing the convenience of using an i* postprocessed model for 

solving specific tasks such as selecting FRs while balancing and optimizing 

NFRs); and (ii) a detailed discussion on the results of our empirical evaluation, 

thus giving insight in the variables and conditions under which visualization 

performs better (or worse). From this work, we can conclude that, when selecting 

FRs to implement while optimizing NFRs, the original i* graphical notation is the 

least adequate visualization method. It performs worse regarding correctness, and 

scales worse when dealing with complex model instances, compared to Pareto 

efficiency-based radar chart and tabular visualizations. The latter two have a 

higher probability than the i* graphical notation to obtain a correct configuration 

of FR while balancing NFRs, while spending less time. Among them, and for 

complex model instances, the tabular visualization resulted in more correct 

answers compared to radar chart visualization.  

When considering the time required to solve an exercise, the radar chart 

visualization scales better with complexity compared to the tabular visualization. 

According to our experiments, subjects perform better when using our Pareto-

efficiency-based visualizations (tabular and radar chart) in efficiency and 

effectiveness regarding time. Moreover, there is no difference with regards to the 
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visualization preference of the subjects, nor to their previous experience, when 

considering time spent to solve an exercise. 

As future work, we will focus on considering these results to improve 

visualizations mechanisms of our approach for increasing efficiency and 

effectiveness of NFR optimization. Also, we would like to replicate these 

experiments to get more valuable insights.   
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