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Predictability of COVID‑19‑related 
morbidity and mortality 
based on model estimations 
to establish proactive protocols 
of countermeasures
Göran Svensson1*, Rocio Rodriguez1,2 & Carmen Padin1,3

The COVID‑19 pandemic (SARS‑CoV‑2) has revealed the need for proactive protocols to react and 
act, imposing preventive and restrictive countermeasures on time in any society. The extent to which 
confirmed cases can predict the morbidity and mortality in a society remains an unresolved issue. 
The research objective is therefore to test a generic model’s predictability through time, based on 
percentage of confirmed cases on hospitalized patients, ICU patients and deceased. This study reports 
the explanatory and predictive ability of COVID‑19‑related healthcare data, such as whether there is 
a spread of a contagious and virulent virus in a society, and if so, whether the morbidity and mortality 
can be estimated in advance in the population. The model estimations stress the implementation 
of a pandemic strategy containing a proactive protocol entailing what, when, where, who and how 
countermeasures should be in place when a virulent virus (e.g. SARS‑CoV‑1, SARS‑CoV‑2 and MERS) 
or pandemic strikes next time. Several lessons for the future can be learnt from the reported model 
estimations. One lesson is that COVID‑19‑related morbidity and mortality in a population is indeed 
predictable. Another lesson is to have a proactive protocol of countermeasures in place.

The COVID-19 pandemic (SARS-CoV-2) has revealed the need for proactive protocols to react and act, imposing 
preventive and restrictive counter measures on time in a given society. The number of confirmed COVID-19 
cases drives the pandemic across societies. The research question is to what extent confirmed COVID-19 cases 
through time can predict the number of hospitalized and intensive care unit (ICU) COVID-19 patients, as well 
as the number of deceased by COVID-19.

To the best of the authors knowledge, the predictability of morbidity (i.e. hospitalized patients and ICU 
patients) and mortality (i.e. deceased) through time based on confirmed cases has received only minor and insuf-
ficient  attention1,2. Consequently, it remains unresolved to what extent confirmed cases can predict the number of 
hospitalized patients, ICU patients and deceased in a society. The research objective is therefore to test a generic 
model’s predictability through time, based on the percentage of confirmed cases, on hospitalized patients, ICU 
patients and deceased. The aim is to establish a logic of model estimation for COVID-19-related morbidity and 
mortality in the society that may also be applied in other settings of virulent viruses and future pandemics.

The framework of model estimation consists of four COVID-19-related healthcare variables (see Fig. 1) as 
follows: (1) weekly percentage of confirmed cases; (2) weekly totals of hospitalized patients per day; (3) weekly 
totals of ICU patients per day; and (4) weekly totals of deceased per day.

The COVID-19-related healthcare data applied in this study has been gathered from the Swedish Agency 
of Public  Health3, the Swedish National Board of Health and Welfare, and the Swedish Intensive Care Regis-
try—SIR4,5. Consequently, the data used has been obtained directly from the primary source of origin (i.e. not 
indirectly and from secondary sources) for each variable, and the quality has been assured by each entity. Data 
validity and reliability has therefore been safeguarded in the data-collection process.
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Results
We test the model estimations of COVID-19-related morbidity and mortality, based on linear and quadratic 
regression analyses. However, the quadratic analyses are not reported, as no significantly curved distributions 
were found. Consequently, only a series of linear regression analyses are reported. IBM SPSS Statistics 26.0 
software has been used.

The dependent variable was set as the weekly percentage of confirmed cases, while the independent variable 
was set as either weekly totals of hospitalized patients per day, weekly totals of ICU patients per day or weekly 
totals of deceased per day, as shown in Table 1. The model estimations also report time-delays from 0 to 4 weeks 
between the dependent and independent variables. Furthermore, the regression analyses are divided into three 
time-periods, namely first wave, second wave, and both waves combinéd. The methodology section contains 
additional details regarding the analyses undertaken to enable replications by others with other sets of healthcare 
data and pandemic as well as epidemic settings.

Part (i) of Table 1 reports the regression statistics for the relationship between the weekly percentage of con-
firmed cases and the weekly totals of hospitalized patients. This shows that the R-square estimates (i.e. R-square 
and adjusted R-square) range between 0.81 and 0.98 across the three time-periods, but with the R-squares, for 
the full timeframe for March–December at 0.79–0.80. The model predictors (i.e. unstandardized beta) range 
between 669.4 and 1132.2, with the model estimation based on the complete timeframe at 815.2–840.0. The model 
predictors are all significant at 0.00. The COVID-19-related healthcare data confirms a significant relationship 
between the percentage confirmed cases and hospitalized patients through time.

Part (ii) of Table 1 reports the regression statistics for the relationship between the percentage of confirmed 
cases and the weekly totals of ICU patients. It shows that the R-square estimates range between 0.69 and 0.97 
across the three time-periods, but for March–December at 0.78. The model predictors range between 135.0 and 
208.8, with the model estimation based on the complete time-period at 181.2–186.2. The model predictors are 
all significant at 0.00. Accordingly, the COVID-19-related healthcare data confirms a significant relationship 
between the percentage of confirmed cases and ICU patients through time.

Furthermore, part (iii) of Table 1 reports the regression statistics for the relationship between the percentage 
of confirmed cases and those for the weekly totals of hospitalized, including the weekly totals of ICU patients. 
The table shows that the R-square estimates range between 0.82 and 0.98 across the three time-periods, but for 
March–December at 0.83–0.84. The model predictors range between 875.8 and 1278.9, with the model estimation 
based on the complete time-period at 891.3–995.9. The model predictors are all significant at 0.00. Accordingly, 
the COVID-19-related healthcare data confirms a significant relationship between the percentage of confirmed 
cases and hospitalized including ICU patients, through time.

Finally, part (iv) of Table 1 reports the regression statistics for the relationship between the percentage of con-
firmed cases and the weekly totals of deceased patients by COVID-19. It shows that the R-square estimates range 
between 0.73 and 0.97 across the three time-periods, but with March–December at 0.78–0.84. The model predic-
tors range between 33.0 and 43.8, with the model estimation based on the complete time-period at 36.7–36.9. 
The estimates are all significant at 0.00. Again, the COVID-19-related healthcare data confirms a significant 
relationship between the percentage of confirmed cases and deceased through time.

It should also be noted that the explanatory and predictive power of the regression analyses reported between 
the percentage of confirmed cases on the one hand, and the weekly totals of hospitalized patients, ICU patients 
and deceased on the other, is consistently higher in the second wave, with R-squares ranging between 0.92 and 
0.98, while those of the first wave range between 0.73 and 0.86. This is in line with the recent results  reported6.

Figures 2 and 3 displays the March–December regression analyses reported in Table 1. The quadratic regres-
sions and related curved lines as a complement to the linear distributions have also been assessed, but no 
significant improvement was found (i.e. quadratic lines were only non-significantly curved) and as previously 
mentioned, therefore not reported.

Each regression line of distribution in the diagram represents one of the four pairs of COVID-19-related 
healthcare data (i.e. with the same specified time-delay of 1 and 2 weeks): (1) percentage of confirmed cases 
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Figure 1.  Model of COVID-19 related morbidity and mortality.
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Time-period 2020 R R-square Adjusted R-square
Standard error of the 
estimate

Unstandardized beta 
(predictor) Coefficient standard error t Significance

(i) Dependent: Number of hospitilized patients per week (i.e. time-delays from 0 to 4 weeks) Independent: weekly percentage confirmed cases (i.e. week zero)

Zero week time-delay–time-period 9/3–27/12

 March–August 0.81 0.65 0.64 2597.07 600.77 89.91 6.68 0.00

 September–December 0.94 0.89 0.88 2132.59 978.56 93.69 10.45 0.00

 March–December 0.85 0.72 0.71 2682.69 739.70 72.84 10.16 0.00

One week time-delay—time-period 16/3–3/1

 March–August 0.91 0.82 0.81 1841.45 669.39 63.75 10.50 0.00

 September–December 0.97 0.95 0.94 1581.35 1077.81 69.47 15.52 0.00

 March–December 0.89 0.80 0.79 2379.05 815.16 64.60 12.62 0.00

Two weeks time-delay–ime-period 23/3–10/1

 March–August 0.92 0.85 0.85 1674.18 683.74 57.96 11.80 0.00

 September–December 0.99 0.96 0.98 861.22 1132.15 37.83 29.92 0.00

 March–December 0.89 0.79 0.78 2556.96 839.99 69.43 12.10 0.00

Three weeks time-delay–time-period 30/3–17/1

 March–August 0.87 0.76 0.75 2170.94 661.32 75.16 8.80 0.00

 September–December 0.99 0.98 0.97 1074.14 1107.91 47.19 23.48 0.00

 March–December 0.83 0.69 0.69 3147.54 812.15 85.47 9.50 0.00

Four weeks time-delay–time-period 6/4–24/1

 March–August 0.80 0.64 0.63 2707.34 617.38 93.73 6.59 0.00

 September–December 0.95 0.89 0.89 2112.08 1000.00 92.78 10.78 0.00

 March–December 0.75 0.56 0.66 3837.08 739.19 104.19 7.10 0.00

(ii) Dependent: Number of ICU patients per week (i.e. time-delays from 0 to 4 weeks) independent: weekly percentage confirmed cases (i.e. week zero)

Zero week time-delay–time-period 9/3–27/12

 March–August 0.90 0.81 0.80 593.11 201.04 21.04 9.55 0.00

 September–December 0.94 0.88 0.88 266.40 121.10 11.70 10.35 0.00

 March–December 0.84 0.71 0.70 658.62 171.61 18.84 9.47 0.00

One week time-delay–time-period 16/3–3/1

 March–August 0.93 0.86 0.85 518.84 207.67 17.97 11.56 0.00

 September–December 0.96 0.93 0.92 231.15 134.99 10.15 13.29 0.00

 March–December 0.90 0.81 0.80 533.36 182.15 14.48 12.58 0.00

Two weeks time-delay–time-period 23/3–10/1

 March–August 0.91 0.83 0.82 576.18 208.79 19.95 10.47 0.00

 September–December 0.98 0.96 0.95 193.33 148.07 8.49 17.44 0.00

 March–December 0.91 0.82 0.82 510.15 186.82 13.85 13.49 0.00

Three weeks time-delay–time-period 30/3–17/1

 March–August 0.84 0.70 0.69 754.30 196.71 26.11 7.53 0.00

 September–December 0.99 0.98 0.98 131.47 153.38 5.78 26.56 0.00

 March–December 0.87 0.75 0.75 603.65 180.51 16.39 11.01 0.00

Four weeks time-delay–time-period 6/4–24/1

 March–August 0.75 0.56 0.54 924.01 177.45 31.99 5.54 0.00

 September–December 0.98 0.96 0.96 172.28 147.37 7.57 19.47 0.00

 March–December 0.80 0.64 0.63 730.18 165.41 19.83 8.34 0.00

(iii) Dependent: Number of hospitilized AND ICU patients per week (i.e. time-delays from 0 to 4 weeks) independent: weekly percentage confirmed cases (i.e. week zero)

Zero week time-delay–time-period 9/3–27/12

 March–August 0.81 0.66 0.65 3338.74 787.38 115.59 6.81 0.00

 September–December 0.94 0.89 0.88 2403.29 1098.80 105.57 10.41 0.00

 March–December 0.86 0.74 0.74 3099.22 903.58 84.15 10.74 0.00

One week time-delay–time-period 16/3–3/1

 March–August 0.91 0.83 0.82 2359.68 875.78 81.69 10.72 0.00

 September–December 0.97 0.94 0.94 1812.45 1211.85 79.62 15.22 0.00

 March–December 0.92 0.84 0.84 2514.83 995.86 68.29 14.58 0.00

Two weeks time-delay–time-period 23/3–10/1

 March–August 0.92 0.85 0.85 2180.06 891.53 75.47 11.81 0.00

 September–December 0.99 0.98 0.98 1027.00 1278.92 45.11 28.35 0.00

 March–December 0.92 0.84 0.83 2632.27 1025.71 71.48 14.35 0.00

Three weeks time-delay–time-period 30/3–17/1

Continued
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Time-period 2020 R R-square Adjusted R-square
Standard error of the 
estimate

Unstandardized beta 
(predictor) Coefficient standard error t Significance

 March–August 0.87 0.76 0.75 2871.75 857.71 99.42 8.63 0.00

 September–December 0.99 0.98 0.98 1118.73 1260.62 49.14 25.65 0.00

 March–December 0.86 0.74 0.74 3395.40 992.28 92.20 10.76 0.00

Four weeks time-delay–time-period 6/4–24/1

 March–August 0.80 0.63 0.62 3.582.96 795.79 124.04 6.42 0.00

 September–December 0.95 0.91 0.90 2245.40 1147.47 98.64 11.63 0.00

 March–December 0.78 0.60 0.59 4281.74 905.29 116.26 7.79 0.00

(iv) Dependent: Number of deceased patients per week (i.e. time-delays from 0 to 4 weeks) independent: weekly percentage confirmed cases (i.e. week zero)

Zero week time-delay–time-period 9/3–27/12

 March–August 0.85 0.72 0.71 119.51 32.39 4.14 7.82 0.00

 September–December 0.92 0.85 0.84 94.43 37.54 4.24 8.86 0.00

 March–December 0.88 0.77 0.76 110.38 34.24 3.00 11.43 0.00

One week time-delay–time-period 16/3–3/1

 March–August 0.90 0.81 0.80 97.91 34.33 3.39 10.13 0.00

 September–December 0.96 0.93 0.92 70.63 41.91 3.10 13.51 0.00

 March–December 0.92 0.84 0.83 95.10 36.94 2.58 14.31 0.00

Two weeks time-delay–time-period 23/3–10/1

 March–August 0.86 0.74 0.73 115.20 32.98 3.99 8.27 0.00

 September–December 0.98 0.97 0.96 50.33 43.84 2.21 19.83 0.00

 March–December 0.89 0.78 0.78 112.33 36.66 3.05 12.02 0.00

Three weeks time-delay–time-period 30/3–17/1

 March–August 0.75 0.56 0.54 153.17 29.07 5.30 5.48 0.00

 September–December 0.98 0.97 0.97 47.39 43.35 2.08 20.82 0.00

 March–December 0.80 0.64 0.63 148.15 33.88 4.02 8.42 0.00

Four weeks time-delay–time-period 6/4–24/1

 March–August 0.65 0.42 0.40 173.19 25.08 6.00 4.18 0.00

 September–December 0.95 0.90 0.89 81.98 39.75 3.60 11.04 0.00

 March–December 0.70 0.49 0.48 177.11 29.84 4.81 6.20 0.00

Table 1.  Regression statistics.

ONE-WEEK TIME-DELAY
Hospitalized and ICU Patients:
R-square: 0.84
Predictor: 995.9
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Hospitalized Patients:
R-square: 0.80
Predictor: 815.2

ICU Patients:
R-square: 0.81
Predictor: 182.2

Deceased Patients:
R-square: 0.84
Predictor: 36.9

Figure 2.  Linear distributions from March to December 2020 with 1 week time-delays.
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and weekly totals of hospitalized patients; (2) percentage of confirmed cases and weekly totals of ICU patients; 
(3) percentage of confirmed cases and weekly totals of hospitalized plus weekly totals of ICU patients; and (4) 
percentage of confirmed cases and weekly totals of deceased.

Consequently, Figs. 2 and 3 display four regression lines, combining first and second waves (i.e. March–August 
and September–December) with the R-squares ranging between 0.78 and 0.84. There were highly significant 
relationships across both the first and second waves between the percentage of confirmed cases on the one hand, 
and weekly totals of hospitalized patients, ICU patients and deceased on the other.

The next section discusses the results of the model estimations reported, and implications, as well as key les-
sons learnt from the COVID-19-related healthcare data across the three time-periods.

Discussion
The reported COVID-19-related healthcare statistics and diagrams based on Sweden, demonstrate explanatory 
and predictive power between the percentage of confirmed cases on the one hand, and the weekly totals of hos-
pitalized patients, ICU patients and deceased on the other. We contend that the logic of model estimation and 
results reported offer relevance to other countries as well.

Early in the pandemic, the model estimations and results indicated that the effects of COVID-19 were going 
to cause large numbers of hospitalized patients, ICU patients and  deceased1. The first wave of COVID-19 health-
care data provided an opportunity to gather experience and insights in order to handle a second wave with pre-
determined, preventive and restrictive countermeasures.

The first wave opened-up a window of model estimations for assessing the predictability of COVID-19- related 
morbidity and mortality, not only in Sweden, but in other countries as well. Model estimations after the first wave 
could have established a satisfactory predictability of hospitalized patients, ICU patients and deceased. This could 
thus have been used by governments and agencies of public health in their pandemic strategies and epidemic 
plans of action to impose enhanced countermeasures to face a second wave in advance. Proactive protocols could 
have been established about what, when, where, who and how to react and act by imposing pre-determined, 
preventive and restrictive countermeasures in the case of a second wave.

With the facts on hand derived from the COVID-19-related healthcare data from the first wave, many gov-
ernments and agencies of public health appear to have disregarded the predictability of COVID-19-related 
healthcare data on morbidity and mortality. Epidemic scenarios provided guidance, while the epidemic curves 
and related reproduction ratios  (R0) captured most of the attention and countermeasures appears to have been 
adapted to them across countries. The drawback of the epidemic curve and reproduction ratios  (R0) is that they 
are after-the-fact points of reference for determining measures to handle the pandemic and epidemic, both in the 
present as well as in the future. Subsequently, these measures have turned out to be reactive rather than proactive.

We therefore contend that pre-determined fixed numbers or thresholds of confirmed COVID-19 cases (≥ 0) 
could have been applied as reference points to impose pre-determined, preventive and restrictive measures in 
many countries. The reported logic of model estimation of COVID-19-related morbidity and mortality in Fig. 4 
shift the focus from the epidemic curve being a key point of reference to react and act, to instead determining 
in advance countermeasures to be imposed, based on pre-specified numbers or percentages of confirmed cases 
(e.g. the higher, the more preventive measures and stricter restrictions imposed, and vice versa).

TWO-WEEK TIME-DELAY

Weekly Percentage Confirmed Cases
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Hospitalized and ICU Patients:
R-square: 0.84
Predictor: 1025.7

Hospitalized Patients:
R-square: 0.79
Predictor: 840.0

ICU Patients:
R-square: 0.82
Predictor: 186.8

Deceased Patients:
R-square: 0.78
Predictor: 36.7

Figure 3.  Linear distributions from March to December 2020 with 2-week time-delay.
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In line with this, there are countries (such as Australia, China, New Zealand and Taiwan) that appear to 
have applied a zero-tolerance protocol of confirmed cases to react and act with at least to some extent pre-
determined, preventive and restrictive countermeasures, such as implementing immediate  lockdowns7–12 or travel 
 restrictions13, and others (e.g. Finland, Norway, South Korea and Vietnam) with minor-tolerance  protocols14–16, 
while other countries (e.g. Brazil, Sweden, UK and USA) applied major-tolerance protocols to react and act, 
based on a post hoc reliance on epidemic scenarios, epidemic curves and reproduction  ratios17.

Furthermore, it appears that several Asian countries have reutilized and applied pre-established  protocols11,16 
to face different pandemic and epdidemic scenarios based on previous experiences (e.g. SARS-CoV-1 in 2003 
and MERS in 2012). It appears that the zero-tolerance protocols implicitly applied the logic of the reported model 
estimation, taking into account the predictable consequences that the number or percentage of confirmed cases 
would have on morbidity and mortality in the society. In fact, we contend that the logic of model estimation can 
be used as a generic decision tool along with generated predictors to determine a proactive protocol of what, 
when, where, who and how countermeasures should be imposed, that is, pre hoc rather than ad hoc or post hoc.

A proactive protocol of pre-determined, preventive and restrictive counter measures requires the considera-
tion of a country’s contextual and societal circumstances, such as legislative and judicial boundaries, economic 
pros and cons, social consequences and cultural acceptability. A non-exhaustive list of countermeasures in a 
proactive protocol may rest on the questions of what, when, where, who and how to react and act, imposing 
pre-determined, preventive and restrictive countermeasures.

The initial question is ‘what’ countermeasures are available in the tool box to elaborate a proactive protocol for 
formulating a pandemic strategy and creating an epidemic plan of action. One of the strongest countermeasures 
that was imposed during the COVID-19 pandemic in many countries worldwide is the lockdown (i.e., the closure 
of society) including home confinement of entire  populations8,9,13.

Societal lockdown in a country is economically and socially, undoubtedly a highly intrusive and extremely 
restrictive countermeasure. A crucial criterion of a lockdown protocol is therefore to establish ‘when’ it should be 
imposed and for how long. Another criterion of a lockdown protocol is to establish ‘where’ it should be imposed, 
such as a specific residential area, city, region or the entire country. An additional criterion of a lockdown pro-
tocol is to establish who’ is going to be affected (e.g. activities in crucial sectors of society may be excluded, such 
as healthcare, police force, fire brigade, energy and food supply and vital transport). Ultimately, a criterion of a 
lockdown protocol is to establish ‘how’ pre-determined, preventive and restrictive countermeasures should be 
implemented, so that they become effective (e.g. reducing the spread of infection, morbidity and mortality) and 
efficient (e.g. optimizing economic costs and social impact).

Consequently, the reported logic of model estimation with a proactive protocol of countermeasures illustrated 
in Fig. 4 appears not to have been applied, nor have the outcomes of morbidity and mortality been estimated in 
many  countries17, though a few may have applied it implicitly or  explicitly11.

Proactive protocols of pre-determined, preventive and restrictive countermeasures appear not to have been in 
place across many  countries17. Rather, they seem to have been post hoc countermeasures, as opposed to pre hoc 

Figure 4.  A model estimation and proactive protocol of counter measures.
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ones, taking into account the outcome of available healthcare data of model estimation after the first wave. This 
data could have been used to establish proactive protocols of what, when, where, who and how to react and act, 
in order to impose countermeasures to meet a second wave. It appears that some countries in Asia and Oceania 
(e.g. Australia, China, New Zealand and Taiwan) have had proactive protocols of pre-determined, preventive 
and restrictive measures in  place8,10.

The Swedish data reported in this study, with high R-squares between the percentage of confirmed cases on the 
one hand and morbidity as well as mortality on the other, in the first wave appear to have been neglected. In fact, 
the R-squares became even higher in the second wave. The disregard of a proactive protocol of pre-determined, 
preventive and restrictive countermeasures guided by pre-fixed numbers or a percentage of confirmed cases, may 
have contributed to the second wave’s higher rates of morbidity and mortality in Sweden and other countries as 
well, because of not reacting and acting sufficiently and in advance or at least reasonably quickly. Consequently, 
lessons that could and should have been learned from the first wave appear to have been disregarded as a means 
of effectively facing the second wave.

The predictability of COVID-19-related healthcare data outlined on the basis of the logic of model estimation 
regarding morbidity and mortality in Fig. 4, therefore provides an opportunity and foundation for elaborating 
proactive protocols of pre-determined, preventive and restrictive countermeasures to formulate a pandemic 
strategy and create an epidemic plan of action. The reported model estimations show that, if data is available 
regarding the percentage of confirmed cases, it enables in advance, the estimation of expected numbers of mor-
bidity and mortality in the society.

These are model estimations that can forsee human suffering and death in the population. They can also be 
used to determine economic costs and social impact, as well as the benefits of countermeasures. Therefore, this 
study not only provides empirical evidence that COVID-19-related healthcare data is interconnected, but also 
interrelated, having significant explanatory and predictive abilitites to react and act pre hoc, rather than ad hoc 
or post hoc. As such, the logic of model estimation offers guidance for elaborating proactive protocols of pre-
determined, preventive and restrictive countermeasures in order to formulate a pandemic strategy and create 
an epidemic plan of action, all of which may be estimated based on different scenarios in connection with the 
estimated severity of a contagious and virulent virus in society.

We therefore contend that the logic of model estimation is applicable in different settings. Naturally, the 
outcome of model estimations will vary between countries, but by having the COVID-19-related healthcare 
data available in a society, the consequences of morbidity and mortality could have been estimated satisfactorily. 
It could thus have enabled governments and public health agencies to assess in advance the impact on health, 
social and economic costs. It could have shed light on the impact that the percentage of confirmed cases can 
have, such as: (1) health issues in the population; and (2) healthcare resources, such as professionals, equipment, 
medicines and medical treatments. It could also have shed light on the indirect impact on: (1) sick leave in the 
labour market; (2) school absenteeism; and (3) care and nursing at old age homes; (4) travel restrictions; and (5) 
closures of non-vital commercial and hospitality businesses.

We believe it is likely that the introduced logic of model estimation may have been used to some extent in 
the other Nordic countries, as well as several European ones, based on the preventive and restrictive counter-
measures. COVID-19 has affected many countries in a similar way sooner or later in relation to the elevated 
numbers of morbidity and mortality in the populations in question. Preventive and restrictive countermeasures 
(i.e. what, when, where, who and how) differ between countries and may explain why some countries have suc-
ceeded better than others, and vice versa.

It is therefore likely that the explanatory and predictive ability of model estimations reported in this study 
will resemble those in other countries, taking to account the preventive and restrictive countermeasures. Con-
sequently, COVID-19-related healthcare data appears to be strongly interrelated. Evidently, there are other cir-
cumstances that will also effect the COVID-19-related healthcare data, such as the economic, social and cultural 
circumstances in each country. Nevertheless, the reported logic of model estimation and proposed proactive 
protocol of counter measures, provides guidance in other settings, although differences will certainly occur.

We therefore contend that the logic of model estimation for COVID-19- related morbidity and mortality 
to some extent possesses generality to other pandemic and epidemic situations. For example, it may have been 
applicable to other virulent viruses (e.g. SARS-CoV-1 and MERS), although the model estimations and related 
predictors had to be re-visited and subsequently re-calculated. The reported logic of model estimation can 
therefore be relevant to viruses causing virulent seasonal flues that may strike countries on occasion (i.e. not 
necessarily annually), though the severity of morbidity and rates of mortality is not comparable to the COVID-
19. The model estimations may have similar explanatory and predictive power, although the consequences for 
morbidity and mortality are less in comparison to COVID-19-related healthcare data.

Nevertheless, it is not the last time a pandemic will strike the world, and the question is therefore when the 
current one will end and the next one will emerge. Though several vaccines have been developed and approved, 
and vaccinations are taking place on a large scale, the end of the pandemic is regrettably not around the corner. 
It may still endure longer than expected as mutated viruses (e.g. the British one labelled ALFA and the Indian 
one labelled DELTA) are emerging continuously around the  world18 and will continue to emerge down the line. 
It is therefore relevant to consider at early stages, the explanatory and predictive patterns revealed, based on the 
logic of model estimation regarding COVID-19-related healthcare data reported in this study.

The model estimations contribute a counterweight to the epidemic curve by turning the ballgame around 
to pre-fixed numbers or thresholds of confirmed cases, thus enabling reacting and acting with pre-determined, 
preventive and restrictive countermeasures, which can be updated on a weekly basis. Another contribution is 
the explanatory and predictive ability of COVID-19-related healthcare data, such as, if there is a spread of a 
contagious and virulent virus in the society, the morbidity and mortality can be estimated in advance at an early 
stage. A third one is that the logic of model estimation assists in the implementation of a pandemic strategy 
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and epdidemic plan of actions containing a proactive protocol regarding what, when, where, who and how pre-
determined, preventive and restrictive countermeasures should be in place when a virulent virus or pandemic 
strikes again. A fourth one is that of shedding light on the sequence of reactions and actions needed in the early 
identification of confirmed cases and the subsequent chain of transmission in the society. If the disease-trans-
mission chain is interrupted, or at least restricted, the reported model estimations indicate that the morbidity 
and mortality can indeed be controlled.

In conclusion, we contend that relevant and valuable lessons for the future can be learnt by taking into account 
the reported model estimations. One lesson is that COVID-19-related morbidity and mortality in a population 
are predictable. Another lesson is the need to have a proactive protocol of countermeasures in place.

Methodology
This section contextualizes the Swedish pandemic and epidemic setting in relation to the other Nordic countries, 
and also explains the methodological procedures applied in this study.

The Swedish approach to handling the pandemic strategy and epidemic plan of action differs from neighbor-
ing and nearby  countries17, as well as in the world as a whole, thus providing a distinguishing point of reference 
to other research contexts.

The planning and implementation of the Swedish pandemic strategy and epidemic plan of action have been 
characterized by the government and the Agency of Public Health, both of which to a large extent transferred the 
responsibility for reacting and acting to the population, rather than imposing strict, preventive and restrictive 
countermeasures in advance, so as to control the spread of the COVID-1917,18, as done in neighboring countries, 
such as Denmark, Finland and Norway, as well as most European countries. In fact, the Government  Offices19 
writes: “…every person in Sweden needs to take responsibility. By everyone taking responsibility theselves, we 
can keep the level of spread of infection down…”.

The COVID-19-related mortality per capita in Sweden is among the highest in the  world3,4 , although it is a 
highly developed economy with a small population and low population  density20. Furthermore, the population 
is socially and culturally characerised anyway by the norm of social  distancing21. Denmark, Finland and Norway 
are socially and culturally similar to  Sweden22–24. The Swedish government and the Agency of Public Health have 
reacted and acted differently to the neighboring  countries17, and not to the benefit of the country.

The COVID-19-related healthcare statistics between the neighboring countries (Danmark, Finland and Nor-
way) and Sweden reveal major  differences25,26 , such as: (1) the number of confirmed cases is three times higher 
per capita in Sweden than in Denmark, Finland and Norway alltogether; (2) the number of performed tests per 
capita is seven times lower in Sweden than in the neighboring countries together; and (3) mortality per capita 
is six times lower in the neighboring countries together than in Sweden. Accordingly, the COVID-19-related 
morbidity per capita (i.e. hospitalized and ICU patients) is therefore also much lower in Denmark, Finland and 
Norway altogether, compared to Sweden.

The official healthcare-related COVID-19 data was gathered from the Swedish Agency of Public  Health3, 
the Swedish National Board of Health and Welfare, and the Swedish Intensive Care Registry—SIR4,5. The sets of 
healthcare data from each entity has been continuously revisited for updates throughout the pandemic. Conse-
quently, the model estimations of COVID-19-related morbidity and mortality in this study are tested according 
to Swedish official healthcare data.

The model estimations and results are based on the COVID-19-related healthcare data during 42 consecu-
tive weeks, all of which has been divided into three time-periods to separate the first wave of COVID-19 from 
the second one, and all together as one time-period. The first wave terminated at the end of August (i.e. week 
number 36) and the beginning of September (i.e. week number 37). The criteria for determining the end of the 
first wave and the beginning of the second one is based on when the percentage of confirmed cases reached it 
lowest  level3 (i.e. 1.1% weeks 36 and 37) since the inception of the pandemic. The subsequent series of statistical 
analyses and related diagrams are based on three time-periods: (1) from March to August (26 weeks); (2) from 
September to December (16 weeks); and (3) from March to December (42 weeks).

The model estimations of COVID-19-related morbidity and mortality are based on the weekly totals of 
healthcare data from the beginning of March 2020 until end of December of the same  year3. The data analyses 
start on March 9 (week 11 when the first death of COVID-19 was  reported3) and ends on December 27 (week 52) 
when vaccinations were  initiated27 to enable model estimations to be comparable between the first and second 
waves, including the time-delays up to 4 weeks of healthcare data in connection with the dependent variables 
(see Table 1).

It should be noted that the confirmed cases at a given time do not usually lead to hospitalization, ICU or death 
at the same time, and there is a time-delay. Time-delays between tested Covid-19-related variables are therefore 
applied in the reported analyses. Nevertheless, a hypothetical situation could refer to a confirmed case on day 
one, being hospitalized on day two, then admitted to ICU on day three and finally, deceased on day four. In fact, 
all of this could take place on day one, but alternatively, with a major time-delay.

In reality, there is often a certain time-delay after a case of Covid-19 has been tested and confirmed, and the 
subsequent effects on the number of hospitalized and ICU patients in the near future, as well as on the time 
between confirmed cases until patients are deceased. In fact, the time-delay in Sweden between confirmed cases 
and: (1) patients being hospitalized—on average 6.2  days4; (2) patients being submitted to ICU—on average 10.6 
 days5; and (3) until patients are deceased—on average 12.5  days4.

Consequently, the averages indicate a range of time-delays. We therefore find it justified to apply time-delays 
from 0 to 4 weeks in model estimations, to enable comparisons between the weekly percentage of confirmed 
cases and the number of hospitilized and ICU patients per week, as well as deceased per week. In fact, there are 
only minor differences between the R-squares reported with time-delays of one and two weeks in Table 1, but 
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the R-squares are lower for weeks zero, three and four. We have therefore determined that primarily one and two 
weeks are the appropriate range of time-delays on which to focus in the model estimations. One and two week 
time-delays are therefore prioritized in the results reported. The other time-delays of zero, three and four weeks 
are also reported to provide the results of all tested model estimations.
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